Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information

Concise synthesis of pyrrolo[3,4-c]quinolines via a P(NMe₂)₃-

catalyzed [4 + 2] annulation followed by a Zn/AcOH-mediated

reduction-hydroamination-isomerization

Zhengyang Chen,^{a‡} Dan Xiong,^{a‡} Nengzhong Wang,^{ac}* Yufei Zhang,^a Hui Yao,^a Jinkun Zhang,^b Nianyu Huang^{ac}* and Kun Zou^a*

^aHubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.

^bThe First College of Clinical Medical Science, China Three Gorges University, Yichang Hubei 443002, China.

^cHubei Three Gorges Laboratory, Yichang Hubei 443007, China

[‡]These authors contributed equally.

*Corresponding Authors. E-mail: <u>wangnz@ctgu.edu.cn</u>, <u>huangny@ctgu.edu.cn</u>, <u>kzou@ctgu.edu.cn</u>

Table of Contents

I.	General Information	S2
II.	Representative Procedure of the Reaction	S3
III.	Analytical Data	S4
IV.	Gram-Scale and Synthetic Manipulations	S22
V.	References	S25
VI.	X-Ray Crystallographic Analysis	S26
VII.	Copies of ¹ H and ¹³ C{ ¹ H} NMR Spectra	S29

I. General Information

Unless otherwise specified, **all reactions** were carried out under a nitrogen atmosphere at room temperature. **All solvents** were purified according to the standard procedures. **All chemicals** which are commercially available were employed without further purification. **Thin-layer chromatography (TLC)** was performed on silica gel plates (GF254) using UV-light (254 and 365 nm). **Flash chromatography** was conducted on silica gel (200–300 mesh). ¹H and ¹³C{¹H} NMR spectra were recorded at ambient temperature in CDCl₃ on a Bruker 400 MHz spectrometer. Chemical shifts were reported in parts per million (ppm). The ¹H NMR (400 MHz) chemical shifts were measured relative to CDCl₃ or DMSO-d6 as the internal reference (CDCl₃: δ = 7.260 ppm, DMSO-d6: δ = 2.500 ppm). The ¹³C{¹H} NMR (100 MHz) chemical shifts were given using CDCl₃ or DMSO-d6 as the internal standard (CDCl₃: δ = 77.00 ppm, DMSO-d6: 40.00 ppm). **All high-resolution mass spectra (HR-MS)** were obtained on a Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometer solariX (Bruker Daltonik GmbH, Bremen, Germany). **Crystal measurement** was performed by Bruker D8 Venture X-ray diffractionmeter.

II. Representative Procedure of the Reaction

To a stirred solution of 2-amino- β -nitrostyrenes **1** (0.1 mmol) and β '-acetoxy allenoates **2** (0.15 mmol, 1.5 equiv) in MeCN (1.0 mL) was added P(NMe₂)₃ (3.3 mg, 20 mol %) and Cs₂CO₃ (39.1 mg, 120 mol %) at room temperature for 1 h. The reaction mixture was concentrated under reduced pressure and purified via flash chromatography on silica gel (PE:EtOAc = 10:1) to afford compounds **3**. To a stirred solution of compounds **3** (0.1 mmol) and zinc powder (65.4 mg, 1.0 mmol, 10 equiv) in AcOH (2 mL) at 120 °C for 3 h. After cooling to room temperature, the reaction was quenched with saturated aq. NaHCO₃ (5 mL) and the mixture was stirred for 30 mins. Then it was extracted with EtOAc (3 x 10 mL). The combined organic extracts were dried over dry Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (PE:EtOAc = 3:1) to afford compounds **4**.

III. Analytical Data

Benzyl 3-ethynyl-4-(nitromethyl)-1-tosyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (3a)

The **3a** was prepared according to the general procedure described above using **1a** (31.8 mg, 0.1 mmol), **2a** (36.9 mg, 0.15 mmol), $P(NMe_2)_3$ (3.3 mg, 20 mol %) and Cs_2CO_3 (39.1 mg, 120 mol %) and isolated as a yellow liquid (37.8 mg, 75% yield, >20:1 *d.r.*)

after flash column chromatography on silica gel (PE:EtOAc = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.3 Hz, 1H), 7.57 (d, J = 8.0 Hz, 2H), 7.32 – 7.26 (m, 5H), 7.25 – 7.20 (m, 1H), 7.18 – 7.08 (m, 2H), 7.01 – 6.89 (m, 2H), 5.08 – 4.97 (m, 2H), 4.61 (dd, J = 13.4, 3.9 Hz, 1H), 4.57 (d, J = 12.8, 1H), 4.06 (dd, J = 10.0, 3.9 Hz, 1H), 3.69 – 3.57 (m, 2H), 2.49 (s, 1H), 2.41 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.3, 144.8, 135.1, 134.4, 130.1, 129.3, 129.2, 128.6, 128.3, 126.8, 125.3, 125.1, 123.2, 78.2, 76.0, 68.5, 49.9, 46.3, 42.0, 21.5. HRMS (ESI) m/z: calcd. for C₂₇H₂₄N₂NaO₆S⁺ (M + Na)⁺ 527.1247, found 527.1250.

2-Methylbenzyl 3-ethynyl-4-(nitromethyl)-1-tosyl-1,2,3,4-tetrahydroquinoline-3carboxylate (3b)

The **3b** was prepared according to the general procedure described above using **1a** (31.8 mg, 0.1 mmol), **2b** (39.6 mg, 0.15 mmol), $P(NMe_2)_3$ (3.3 mg, 20 mol %) and Cs_2CO_3 (39.1 mg, 120 mol %) and isolated as a yellow liquid (39.0

mg, 70% yield, 13:1 *d.r.*) after flash column chromatography on silica gel (PE:EtOAc = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.3 Hz, 1H), 7.59 – 7.53 (m, 2H), 7.28 (s, 1H), 7.26 – 7.06 (m, 6H), 6.97 (td, J = 7.5, 1.1 Hz, 1H), 6.91 (dd, J = 7.7, 1.6 Hz, 1H), 5.05 (d, J = 12.1 Hz, 1H), 5.01 (d, J = 12.2 Hz, 1H), 4.60 (dd, J = 13.4, 3.9 Hz, 1H), 4.55 (dd, J = 12.8, 1.5 Hz, 1H), 4.04 (dd, J = 9.9, 3.5 Hz, 1H), 3.64 (d, J = 12.8 Hz, 1H), 3.56 (dd, J = 13.4, 9.9 Hz, 1H), 2.49 (s, 1H), 2.41 (s, 3H), 2.25 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.3, 144.8, 137.2, 135.0, 134.9, 132.3, 130.4, 130.1, 129.5, 129.3, 129.2, 129.0, 126.8, 126.0, 125.3, 125.1, 123.2, 78.2, 76.03,

75.97, 67.0, 49.8, 46.3, 42.0, 21.6, 18.8. **HRMS** (ESI) m/z: calcd. for $C_{28}H_{26}N_2NaO_6S^+(M + Na)^+541.1404$, found 541.1413.

2-Fluorobenzyl 3-ethynyl-4-(nitromethyl)-1-tosyl-1,2,3,4-tetrahydroquinoline-3carboxylate (3c)

The **3c** was prepared according to the general procedure described above using **1a** (31.8 mg, 0.1 mmol), **2c** (39.6 mg, 0.15 mmol), $P(NMe_2)_3$ (3.3 mg, 20 mol %) and Cs_2CO_3 (39.1 mg, 120 mol %) and isolated as a yellow liquid (38.1 mg, 73%)

yield, 17:1 *d.r.*) after flash column chromatography on silica gel (PE:EtOAc = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, J = 8.3, 1.0 Hz, 1H), 7.60 – 7.54 (m, 2H), 7.35 – 7.26 (m, 3H), 7.21 (m, 1H), 7.14 – 7.01 (m, 3H), 6.99 – 6.90 (m, 2H), 5.09 (t, J= 12.4 Hz, 2H), 4.61 (dd, J = 13.4, 3.8 Hz, 1H), 4.55 (dd, J = 12.8, 1.4 Hz, 1H), 4.05 (ddd, J = 10.0, 3.9, 1.4 Hz, 1H), 3.64 (d, J = 12.8 Hz, 1H), 3.58 (dd, J = 13.4, 10.0 Hz, 1H), 2.50 (s, 1H), 2.41 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.2, 160.9 (J = 247.5 Hz), 144.8, 135.0 (J = 3.5 Hz), 130.70, 130.66, 130.6, 130.1, 129.3 (J = 14.1 Hz), 126.7, 125.2, 125.1, 124.2 (J = 3.7 Hz), 123.2, 121.5 (J = 14.5 Hz), 115.5 (J = 20.8 Hz), 78.0, 76.1, 75.9, 62.3, 49.8, 46.2, 41.9, 21.6. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -117.6. HRMS (ESI) m/z: calcd. for C₂₇H₂₃FN₂NaO₆S⁺ (M + Na)⁺545.1153, found 545.1147.

Naphthalen-1-ylmethyl-3-ethynyl-4-(nitromethyl)-1-tosyl-1,2,3,4-tetrahydroquinolin e-3-carboxylate (3d)

The **3d** was prepared according to the general procedure described above using **1a** (31.8 mg, 0.1 mmol), **2d** (44.4 mg, 0.15 mmol), $P(NMe_2)_3$ (3.3 mg, 20 mol %) and Cs_2CO_3 (39.1 mg, 120 mol %) and isolated as a yellow

liquid (40.1 mg, 72% yield, >20:1 *d.r.*) after flash column chromatography on silica gel (PE:EtOAc = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.75 (m, 3H), 7.67 – 7.60 (m, 2H), 7.58 – 7.53 (m, 2H), 7.53 – 7.46 (m, 2H), 7.22 (m, 3H), 7.10 – 7.04 (m,

1H), 6.83 (dd, J = 7.7, 1.7 Hz, 1H), 6.76 (td, J = 7.5, 1.1 Hz, 1H), 5.23 (d, J = 12.1 Hz, 1H), 5.14 (d, J = 12.1 Hz, 1H), 4.64 – 4.60 (dd, J = 13.2, 4.0 Hz, 1H), 4.60 – 4.56 (dd, J = 12.8, 1.6 Hz, 1H), 4.07 (ddd, J = 10.0, 4.0, 1.6 Hz, 1H), 3.64 (d, J = 12.8 Hz, 1H), 3.56 (dd, J = 13.2, 10.0 Hz, 1H), 2.51 (s, 1H), 2.38 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.3, 144.8, 134.98, 134.95, 133.2, 133.1, 131.7, 130.1, 129.24, 129.22, 128.5, 128.1, 127.9, 127.7, 126.7, 126.5, 126.3, 125.8, 125.1, 124.9, 123.1, 78.2, 76.1, 76.0, 68.6, 49.8, 46.2, 42.0, 21.5. HRMS (ESI) m/z: calcd. for C₃₁H₂₆N₂NaO₆S⁺ (M + Na)⁺ 577.1404, found 577.1398.

Benzhydryl 3-ethynyl-4-(nitromethyl)-1-tosyl-1,2,3,4-tetrahydroquinoline-3carboxylate (3e)

The **3e** was prepared according to the general procedure described above using **1a** (31.8 mg, 0.1 mmol), **2e** (48.3 mg, 0.15 mmol), $P(NMe_2)_3$ (3.3 mg, 20 mol %) and Cs_2CO_3 (39.1 mg, 120 mol %) and isolated as a yellow liquid (36.5

mg, 63% yield, 5:1 *d.r.*) after flash column chromatography on silica gel (PE:EtOAc = 8:1). ¹**H NMR (400 MHz, CDCl₃)** δ 7.70 (dd, J = 8.4, 1.1 Hz, 1H), 7.54 (d, J = 8.4 Hz, 2H), 7.36 – 7.27 (m, 7H), 7.25 – 7.18 (m, 4H), 7.12 – 7.03 (m, 2H), 6.91 (td, J = 7.5, 1.2 Hz, 1H), 6.79 (dd, J = 7.6, 1.6 Hz, 1H), 6.66 (s, 1H), 4.59 (dd, J = 13.3, 3.6 Hz, 2H), 4.05 (dd, J = 10.3, 2.9 Hz, 1H), 3.66 (d, J = 12.8 Hz, 1H), 3.57 (dd, J = 13.3, 10.3 Hz, 1H), 2.53 (s, 1H), 2.40 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.4, 144.8, 138.54, 138.51, 135.0, 134.8, 130.1, 129.3, 129.2, 128.5, 128.3, 128.1, 127.3, 126.74, 126.71, 125.2, 125.1, 123.4, 79.4, 78.1, 76.1, 75.8, 49.7, 46.4, 42.0, 21.6. HRMS (ESI) m/z: calcd. for C₃₃H₂₈N₂NaO₆S⁺ (M + Na)⁺ 603.1560, found 603.1556.

9H-fluoren-9-yl 3-ethynyl-4-(nitromethyl)-1-tosyl-1,2,3,4-tetrahydroquinoline-3carboxylate (3f)

The **3f** was prepared according to the general procedure described above using **1a** (31.8 mg, 0.1 mmol), **2f** (48.0 mg, 0.15 mmol), $P(NMe_2)_3$ (3.3 mg, 20 mol %) and

Cs₂CO₃ (39.1 mg, 120 mol %) and isolated as a white solid (35.2 mg, 61% yield, 8:1 *d.r.*) after flash column chromatography on silica gel (PE:EtOAc = 8:1). m.p.: 149.7 – 151.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (dd, J = 8.4, 1.1 Hz, 1H), 7.67 – 7.60 (m, 2H), 7.59 – 7.54 (m, 2H), 7.41 – 7.29 (m, 3H), 7.25 – 7.19 (m, 4H), 7.11 (td, J = 7.5, 1.1 Hz, 1H), 6.99 (td, J = 7.5, 1.1 Hz, 1H), 6.88 (dd, J = 7.6, 1.6 Hz, 1H), 6.80 (dd, J = 7.6, 0.9 Hz, 1H), 6.60 (s, 1H), 4.63 (dd, J = 12.8, 1.6 Hz, 1H), 4.62 – 4.56 (dd, J = 13.2, 3.6 Hz, 1H), 4.07 (ddd, J = 10.4, 3.6, 1.5 Hz, 1H), 3.63 (d, J = 12.8 Hz, 1H), 3.47 (dd, J = 13.2, 10.4 Hz, 1H), 2.54 (s, 1H), 2.39 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.2, 144.9, 141.0, 140.9, 140.6, 140.4, 135.0, 134.8, 130.1, 129.82, 129.77, 129.7, 129.6, 127.92, 127.87, 126.7, 125.7, 125.5, 125.14, 125.10, 123.4, 120.1, 120.0, 78.0, 76.1, 75.8, 49.5, 46.3, 42.0, 21.5. HRMS (ESI) m/z: calcd. for C_{33H26}N₂NaO₆S⁺ (M + Na)⁺601.1404, found 601.1407.

Phenethyl3-ethynyl-4-(nitromethyl)-1-tosyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (3g)

The **3g** was prepared according to the general procedure described above using **1a** (31.8 mg, 0.1 mmol), **2g** (39.0 mg, 0.15 mmol), P(NMe₂)₃ (3.3 mg, 20 mol %) and Cs₂CO₃ (39.1 mg, 120 mol %) and isolated as a yellow liquid (26.4 mg, 51%)

yield, 8:1 *d.r.*) after flash column chromatography on silica gel (PE:EtOAc = 8:1). ¹**H NMR (400 MHz, CDCl₃)** δ 7.70 (d, J = 8.4 Hz, 1H), 7.59 (d, J = 8.2 Hz, 2H), 7.36 – 7.27 (m, 5H), 7.24 – 7.21 (m, 1H), 7.19 – 7.13 (m, 2H), 6.98 (t, J = 7.6, 1H), 6.80 (dd, J = 7.7, 1.5 Hz, 1H), 4.58 (dd, J = 13.4, 3.9 Hz, 1H), 4.48 (dd, J = 12.8, 1.5 Hz, 1H), 4.23 (dt, J = 10.8, 6.7 Hz, 1H), 4.12 (dt, J = 10.8, 7.2 Hz, 1H), 4.03 (dd, J = 9.8, 3.9 Hz, 1H), 3.64 (d, J = 12.8 Hz, 1H), 3.58 (dd, J = 13.4, 9.8 Hz, 1H), 2.77 (t, J = 7.0 Hz, 2H), 2.48 (s, 1H), 2.42 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.4, 144.8, 137.0, 135.1, 130.1, 129.3, 129.2, 128.9, 128.6, 126.78, 126.76, 125.4, 125.0, 123.1, 78.2, 76.0, 75.9, 67.3, 49.8, 46.2, 42.0, 34.5, 21.6. HRMS (ESI) m/z: calcd. for C₂₈H₂₆N₂NaO₆S⁺ (M + Na)⁺541.1404, found 541.1414.

Ethyl 3-ethynyl-4-(nitromethyl)-1-tosyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (3h)

The **3h** was prepared according to the general procedure described above using **1a** (31.8 mg, 0.1 mmol), **2h** (27.6 mg, 0.15 mmol), $P(NMe_2)_3$ (3.3 mg, 20 mol %) and Cs_2CO_3 (39.1 mg, 120 mol %) and isolated as a yellow liquid (29.6 mg, 67% yield, 8:1 *d.r.*) after

flash column chromatography on silica gel (PE:EtOAc = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.71 (m, 1H), 7.64 – 7.57 (m, 2H), 7.33 – 7.26 (m, 2H), 7.09 – 7.01 (m, 2H), 4.65 (dd, *J* = 13.4, 3.9 Hz, 1H), 4.53 (dd, *J* = 12.7, 1.5 Hz, 1H), 4.14 – 4.02 (m, 3H), 3.66 – 3.63 (d, *J* = 12.7 Hz, 1H) 3.62 (dd, *J* = 13.4, 9.8 Hz, 1H), 2.49 (s, 1H), 2.42 (s, 3H), 1.05 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.4, 144.8, 135.2, 135.1, 130.1, 129.4, 129.3, 126.8, 125.4, 125.0, 123.1, 78.3, 76.1, 75.9, 63.0, 49.8, 46.1, 42.0, 21.6, 13.6. HRMS (ESI) m/z: calcd. for C₂₂H₂₂N₂NaO₆S⁺ (M + Na)⁺465.1091, found 465.1091.

Tert-butyl3-ethynyl-4-(nitromethyl)-1-tosyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (3i)

The **3i** was prepared according to the general procedure described above using **1a** (31.8 mg, 0.1 mmol), **2i** (31.8 mg, 0.15 mmol), $P(NMe_2)_3$ (3.3 mg, 20 mol %) and Cs_2CO_3 (39.1 mg, 120 mol %) and isolated as a yellow liquid (14.5 mg, 31% yield, 1.2 :1 *d.r.*)

after flash column chromatography on silica gel (PE:EtOAc = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (dd, J = 8.2, 1.2 Hz, 1H), 7.44 (d, J = 8.3 Hz, 2H), 7.36 – 7.29 (m, 1H), 7.23 (s, 2H), 7.16 (td, J = 7.6, 1.2 Hz, 1H), 7.00 (d, J = 7.6 Hz, 1H), 4.83 (dd, J = 14.5, 3.0 Hz, 1H), 4.74 (dd, J = 14.5, 9.8 Hz, 1H), 4.33 (d, J = 12.7 Hz, 1H), 4.02 (d, J = 12.7 Hz, 1H), 2.98 (dd, J = 9.8, 3.0 Hz, 1H), 2.47 (s, 1H), 2.41 (s, 3H), 1.20 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.2, 144.7, 135.9, 134.6, 130.0, 128.8, 128.4, 126.7, 125.9, 125.8, 125.2, 84.2, 79.4, 75.4, 74.8, 53.1, 48.7, 42.3, 27.3, 21.6. HRMS (ESI) m/z: calcd. for C₂₄H₂₆N₂NaO₆S⁺ (M + Na)⁺493.1404, found 493.1395.

Benzyl 3-ethynyl-4-(nitromethyl)-1-(phenylsulfonyl)-1,2,3,4-tetrahydroquinoline-3carboxylate (3j)

The **3j** was prepared according to the general procedure described above using **1b** (30.4 mg, 0.1 mmol), **2a** (36.9 mg, 0.15 mmol), $P(NMe_2)_3$ (3.3 mg, 20 mol %) and Cs_2CO_3 (39.1 mg, 120 mol %) and isolated as a white solid (33.8 mg, 69% yield, 10:1 *d.r.*) after

flash column chromatography on silica gel (PE:EtOAc = 8:1). m.p.: 84.5 - 86.2 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.75 - 7.66 (m, 3H), 7.65 - 7.58 (m, 1H), 7.53 - 7.47 (m, 2H), 7.35 - 7.27 (m, 3H), 7.23 (ddd, J = 8.6, 7.4, 1.7 Hz, 1H), 7.18 - 7.10 (m, 2H), 6.98 (td, J = 7.5, 1.1 Hz, 1H), 6.91 (dd, J = 7.7, 1.7 Hz, 1H), 5.06 (d, J = 12.1 Hz, 1H), 5.00 (d, J = 12.1 Hz, 1H), 4.64 (dd, J = 13.3, 4.0 Hz, 1H), 4.58 (dd, J = 12.8, 1.4 Hz, 1H), 4.11 - 4.03 (m, 1H), 3.74 (dd, J = 13.3, 9.8 Hz, 1H), 3.71 (d, J = 12.8 Hz, 1H), 2.50 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.3, 138.3, 135.1, 134.4, 133.6, 129.5, 129.3, 129.2, 128.60, 128.59, 128.3, 126.8, 125.3, 125.2, 123.0, 78.1, 76.11, 76.08, 68.5, 50.0, 46.3, 42.0. HRMS (ESI) m/z: calcd. for C₂₆H₂₃N₂O₆S⁺ (M + H)⁺ 491.1271, found 491.1271.

Benzyl 3-ethynyl-1-((4-methoxyphenyl)sulfonyl)-4-(nitromethyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (3k)

The **3k** was prepared according to the general procedure described above using **1c** (34.9 mg, 0.1 mmol), **2a** (36.9 mg, 0.15 mmol), $P(NMe_2)_3$ (3.3 mg, 20 mol %) and Cs_2CO_3 (39.1 mg, 120 mol %) and isolated as a yellow liquid (27.0 mg, 52% yield, 10:1 *d.r.*) after flash column chromatography on silica gel (PE:EtOAc = 8:1). ¹H

NMR (400 MHz, CDCl₃) δ 7.74 – 7.70 (m, 1H), 7.66 – 7.59 (m, 2H), 7.30 (m, 3H), 7.26 – 7.20 (m, 1H), 7.16 – 7.09 (m, 2H), 7.01 – 6.88 (m, 4H), 5.05 (d, J = 12.1 Hz, 1H), 4.99 (d, J = 12.1 Hz, 1H), 4.63 (dd, J = 13.3, 3.9 Hz, 1H), 4.57 (dd, J = 12.8, 1.5 Hz, 1H), 4.06 (dt, J = 10.0, 2.4 Hz, 1H), 3.84 (s, 3H), 3.68 (dd, J = 13.3, 10.0 Hz, 1H), 3.64 (d, J = 12.8 Hz, 1H), 2.50 (s, 1H).¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.3, 163.6, 135.1, 134.4, 129.5, 129.3, 129.2, 128.9, 128.6, 128.2, 125.2, 125.0, 123.2,

114.7, 78.1, 76.1, 76.0, 68.5, 55.7, 49.8, 46.2, 42.0. **HRMS (ESI)** m/z: calcd. for $C_{27}H_{25}N_2O_7S^+(M + H)^+$ 521.1377, found 521.1382.

Benzyl 3-ethynyl-1-(mesitylsulfonyl)-4-(nitromethyl)-1,2,3,4-tetrahydroquinoline-3carboxylate (3l)

The **3l** was prepared according to the general procedure described above using **1d** (34.6 mg, 0.1 mmol), **2a** (36.9 mg, 0.15 mmol), $P(NMe_2)_3$ (3.3 mg, 20 mol %) and Cs_2CO_3 (39.1 mg, 120 mol %) and isolated as a yellow liquid (44.2 mg, 83% yield, >20:1 *d.r.*) after flash column chromatography on silica gel (PE:EtOAc = 8:1).

¹**H NMR** (400 MHz, **CDCl**₃) δ 7.35 – 7.29 (m, 3H), 7.21 (dt, J = 4.6, 3.5 Hz, 2H), 7.09 (m, 1H), 7.06 – 7.01 (m, 3H), 7.00 – 6.95 (m, 2H), 5.11 (d, J = 12.1 Hz, 1H), 5.03 (d, J = 12.1 Hz, 1H), 4.94 (dd, J = 13.7, 4.4 Hz, 1H), 4.52 (dd, J = 13.7, 8.8 Hz, 1H), 4.38 (dd, J = 12.8, 1.2 Hz, 1H), 4.34 (dd, J = 8.8, 4.4 Hz, 1H), 3.89 (d, J = 12.8Hz, 1H), 2.55 (s, 6H), 2.53 (s, 1H), 2.34 (s, 3H). ¹³C{¹H} **NMR** (100 MHz, CDCl₃) δ 167.8, 143.4, 139.6, 136.1, 134.6, 134.5, 132.5, 129.3, 128.9, 128.5, 128.4, 125.8, 124.9, 122.0, 78.0, 76.4, 68.5, 49.1, 46.2, 41.9, 22.9, 21.0. HRMS (ESI) m/z: calcd. for C₂₉H₂₈N₂NaO₆S⁺ (M + Na)⁺ 555.1560, found 555.1550.

Benzyl 3-ethynyl-1-(naphthalen-2-ylsulfonyl)-4-(nitromethyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (3m)

The **3m** was prepared according to the general procedure described above using **1e** (35.4 mg, 0.1 mmol), **2a** (36.9 mg, 0.15 mmol), $P(NMe_2)_3$ (3.3 mg, 20 mol %) and Cs_2CO_3 (39.1 mg, 120 mol %) and isolated as a yellow liquid (33.8 mg, 53% yield, 3:1 *d.r.*) after flash column chromatography on silica gel (PE:EtOAc = 8:1). ¹H

NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 8.7 Hz, 1H), 8.21 – 8.16 (m, 1H), 8.10 (d, J = 8.3 Hz, 1H), 7.96 – 7.91 (m, 1H), 7.60 – 7.46 (m, 4H), 7.35 – 7.29 (m, 3H), 7.24 – 7.15 (m, 3H), 7.03 – 6.91 (m, 2H), 5.06 (d, J = 12.1 Hz, 1H), 5.02 (d, J = 12.1 Hz, 1H), 4.63 (dd, J = 13.5, 3.9 Hz, 1H), 4.61 (dd, J = 12.7, 1.1 Hz, 1H), 4.11 (dd, J = 9.4,

3.9 Hz, 1H), 3.99 (dd, J = 13.5, 9.4 Hz, 1H), 3.93 (d, J = 12.7 Hz, 1H), 2.49 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.6, 135.6, 134.7, 134.6, 134.5, 134.4, 129.1, 129.02, 129.00, 128.61, 128.59, 128.5, 128.3, 128.2, 127.3, 125.4, 125.0, 124.4, 124.1, 123.2, 77.9, 76.1, 75.5, 68.5, 50.0, 46.6, 42.1. HRMS (ESI) m/z: calcd. for C₃₀H₂₄N₂NaO₆S⁺ (M + Na)⁺ 563.1247, found 563.1256.

Benzyl 1-((2-bromophenyl)sulfonyl)-3-ethynyl-4-(nitromethyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (3n)

The **3n** was prepared according to the general procedure described above using **1f** (38.19 mg, 0.1 mmol), **2a** (36.9 mg, 0.15 mmol), $P(NMe_2)_3$ (3.3 mg, 20 mol %) and Cs_2CO_3 (39.1 mg, 120 mol %) and isolated as a yellow liquid (31.2 mg, 55% yield, >20:1 *d.r.*) after flash column chromatography on silica gel

(PE:EtOAc = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (dd, J = 7.8, 1.9 Hz, 1H), 7.79 (dd, J = 7.7, 1.5 Hz, 1H), 7.48 (m, 2H), 7.34 (m, 4H), 7.25 – 7.22 (m, 1H), 7.15 – 7.03 (m, 3H), 6.99 (m, 1H), 5.16 (d, J = 12.2 Hz, 1H), 5.09 (d, J = 12.2 Hz, 1H), 5.00 (dd, J = 13.9, 4.5 Hz, 1H), 4.59 (dd, J = 13.9, 8.4 Hz, 1H), 4.53 (d, J = 13.0 Hz, 1H), 4.37 (dd, J = 8.4, 4.5 Hz, 1H), 4.20 (d, J = 13.0 Hz, 1H), 2.55 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.9, 140.1, 136.1, 135.7, 134.5, 134.2, 131.4, 129.1, 128.8, 128.6, 128.4, 128.1, 125.1, 124.9, 121.3, 120.2, 77.7, 77.1, 68.6, 50.9, 46.2, 41.9. HRMS (ESI) m/z: calcd. for C₂₆H₂₁BrN₂NaO₆S⁺ (M + Na)⁺ 591.0196, found 591.0187.

Benzyl 1-((3-bromophenyl)sulfonyl)-3-ethynyl-4-(nitromethyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (30)

The **30** was prepared according to the general procedure described above using **1g** (34.6 mg, 0.1 mmol), **2a** (36.9 mg, 0.15 mmol), P(NMe₂)₃ (3.3 mg, 20 mol %) and Cs₂CO₃ (39.1 mg, 120 mol %) and isolated as a yellow liquid (44.2 mg, 57% yield, >20:1 *d.r.*) after flash column chromatography on silica

gel (PE:EtOAc = 8:1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.93 (t, J = 1.9 Hz, 1H), 7.74 (m, 1H), 7.68 – 7.55 (m, 2H), 7.39 – 7.29 (m, 4H), 7.25 – 7.19 (m, 1H), 7.19 – 7.12 (m, 2H), 7.05 – 6.90 (m, 2H), 5.09 (d, J = 12.1 Hz, 1H), 5.04 (d, J = 12.1 Hz, 1H), 4.72 (dd, J = 13.2, 3.9 Hz, 1H), 4.56 (dd, J = 12.8 1.3 Hz, 1H), 4.07 (dd, J = 9.7, 3.8 Hz, 1H), 3.96 (dd, J = 13.2, 9.7 Hz, 1H), 3.79 (d, J = 12.8 Hz, 1H), 2.51 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.4, 140.3, 136.6, 134.8, 134.3, 131.0, 129.7, 129.4, 129.1, 128.7, 128.6, 128.4, 125.4, 125.24, 125.23, 123.5, 122.6, 77.9, 76.4, 76.2, 68.6, 50.3, 46.3, 41.9. HRMS (ESI) m/z: calcd. for C₂₆H₂₁BrN₂NaO₆S⁺ (M + Na)⁺ 591.0196, found 591.0197.

Benzyl 3-ethynyl-1-(methylsulfonyl)-4-(nitromethyl)-1,2,3,4-tetrahydroquinoline-3carboxylate (3p)

The **3p** was prepared according to the general procedure described above using **1h** (24.1 mg, 0.1 mmol), **2a** (36.9 mg, 0.15 mmol), $P(NMe_2)_3$ (3.3 mg, 20 mol %) and Cs_2CO_3 (39.1 mg, 120 mol %) and isolated as a yellow liquid (27.0 mg, 54% yield, 10:1 *d.r.*) after

flash column chromatography on silica gel (PE:EtOAc = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (dd, J = 8.5, 1.0 Hz, 1H), 7.29 (m, 4H), 7.16 – 7.09 (m, 2H), 7.07 (dd, J = 7.7, 1.9 Hz, 1H), 7.00 (td, J = 7.5, 1.0 Hz, 1H), 5.12 (d, J = 12.0 Hz, 1H), 5.05 (d, J = 12.2 Hz, 1H), 5.01 (dd, J = 13.4, 4.5 Hz, 1H), 4.56 (dd, J = 13.4, 8.6 Hz, 1H), 4.48 (dd, J = 13.2, 1.3 Hz, 1H), 4.40 (dd, J = 8.6, 4.6 Hz, 1H), 3.84 (d, J = 13.2 Hz, 1H), 2.98 (s, 3H), 2.55 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.6, 135.3, 134.4, 129.8, 129.6, 128.7, 128.6, 128.3, 123.9, 122.5, 118.7, 77.8, 77.6, 68.6, 48.8, 44.3, 41.9, 38.3. HRMS (ESI) m/z: calcd. for C₂₁H₂₀N₂NaO₆S⁺ (M + Na)⁺ 451.0934, found 451.0926.

Benzyl 7-chloro-3-ethynyl-4-(nitromethyl)-1-tosyl-1,2,3,4-tetrahydroquinoline-3carboxylate (3q)

The **3q** was prepared according to the general procedure described above using **1i** (35.2 mg, 0.1 mmol), **2a** (36.9 mg, 0.15 mmol), $P(NMe_2)_3$ (3.3 mg, 20 mol %) and Cs_2CO_3 (39.1

mg, 120 mol %) and isolated as a yellow liquid (30.6 mg, 57% yield, >20:1 *d.r.*) after flash column chromatography on silica gel (PE:EtOAc = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 2.0 Hz, 1H), 7.59 (d, *J* = 8.1 Hz, 2H), 7.39 – 7.27 (m, 5H), 7.13 – 7.07 (m, 2H), 6.86 (dd, *J* = 8.2, 2.0 Hz, 1H), 6.77 (d, *J* = 8.2 Hz, 1H), 5.09 (d, *J* = 12.0 Hz, 1H), 4.98 (d, *J* = 12.0 Hz, 1H), 4.60 (dd, *J* = 13.3, 3.7 Hz, 1H), 4.55 (dd, *J* = 12.7, 1.6 Hz, 1H), 4.04 (dd, *J* = 10.3, 3.1 Hz, 1H), 3.56 (d, *J* = 12.7 Hz, 1H), 3.44 (dd, *J* = 13.3, 10.3 Hz, 1H), 2.53 (s, 1H), 2.42 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.9, 145.2, 135.9, 135.0, 134.4, 134.2, 130.3, 130.2, 128.7, 128.6, 128.5, 126.8, 125.0, 123.2, 123.0, 77.8, 76.3, 75.8, 68.6, 49.3, 45.7, 41.6, 21.6. HRMS (ESI) m/z: calcd. for C₂₇H₂₃ClN₂NaO₆S⁺ (M + Na)⁺ 561.0858, found 561.0869.

Benzyl 7-bromo-3-ethynyl-4-(nitromethyl)-1-tosyl-1,2,3,4-tetrahydroquinoline-3carboxylate (3r)

The **3r** was prepared according to the general procedure described above using **1j** (39.6 mg, 0.1 mmol), **2a** (36.9 mg, 0.15 mmol), $P(NMe_2)_3$ (3.3 mg, 20 mol %) and Cs_2CO_3 (39.1 mg, 120 mol %) and isolated as a yellow liquid (36.1 mg, 62%)

yield, >20:1 *d.r.*) after flash column chromatography on silica gel (PE : EtOAc = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 1.9 Hz, 1H), 7.63 – 7.53 (m, 2H), 7.35 – 7.27 (m, 5H), 7.10 (dd, J = 7.9, 1.7 Hz, 2H), 7.00 (dd, J = 8.2, 1.9 Hz, 1H), 6.70 (d, J= 8.2 Hz, 1H), 5.10 (d, J = 11.9 Hz, 1H), 4.98 (d, J = 11.9 Hz, 1H), 4.64 – 4.58 (dd, J= 13.3, 3.7 Hz, 1H), 4.57 – 4.52 (dd, J = 12.7, 1.6 Hz, 1H), 4.02 (ddd, J = 10.3, 3.8, 1.5 Hz, 1H), 3.55 (d, J = 12.7 Hz, 1H), 3.43 (dd, J = 13.3, 10.3 Hz, 1H), 2.52 (s, 1H), 2.42 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.9, 145.3, 136.0, 134.4, 134.2, 130.5, 130.2, 128.8, 128.6, 128.5, 128.0, 126.8, 125.8, 123.7, 123.0, 77.7, 76.3, 75.7, 68.6, 49.3, 45.7, 41.7, 21.6. HRMS (ESI) m/z: calcd. for C₂₇H₂₃BrN₂NaO₆S⁺ (M + Na)⁺ 605.0352, found 605.0357.

Benzyl 3-ethynyl-6-methyl-4-(nitromethyl)-1-tosyl-1,2,3,4-tetrahydroquinoline-3carboxylate (3s)

The **3s** was prepared according to the general procedure described above using **1k** (30.1 mg, 0.1 mmol), **2a** (36.9 mg, 0.15 mmol), $P(NMe_2)_3$ (3.3 mg, 20 mol %) and Cs_2CO_3 (39.1 mg, 120 mol %) and isolated as a yellow liquid (36.1 mg, 58%)

yield, 16:1 *d.r.*) after flash column chromatography on silica gel (PE:EtOAc = 8:1). ¹**H NMR (400 MHz, CDCl₃)** δ 7.61 (d, J = 8.5 Hz, 1H), 7.55 (d, J = 8.1 Hz, 2H), 7.40 – 7.27 (m, 5H), 7.15 – 7.08 (m, 2H), 7.03 (dd, J = 8.5, 2.0 Hz, 1H), 6.72 – 6.66 (m, 1H), 5.07 (d, J = 12.1 Hz, 1H), 4.97 (d, J = 12.1 Hz, 1H), 4.56 (dd, J = 13.2, 3.8 Hz, 2H), 4.00 (dd, J = 10.0, 3.8 Hz, 1H), 3.59 (d, J = 12.8 Hz, 1H), 3.49 (dd, J = 13.2, 10.0 Hz, 1H), 2.49 (s, 1H), 2.41 (s, 3H), 2.19 (s, 3H). ¹³C{¹H} **NMR (100 MHz, CDCl₃)** δ 167.3, 144.7, 135.0, 134.8, 134.4, 132.3, 130.12. 130.07, 129.6, 128.53, 128.49, 128.2, 126.7, 125.2, 123.3, 78.2, 75.97, 75.95, 68.4, 49.7, 46.2, 41.8, 21.5, 20.7. **HRMS** (**ESI**) m/z: calcd. for C₂₈H₂₆N₂NaO₆S⁺ (M + Na)⁺541.1404, found 541.1404.

Benzyl 3-ethynyl-6-methoxy-4-(nitromethyl)-1-tosyl-1,2,3,4-tetrahydroquinoline-3carboxylate (3t)

The **3t** was prepared according to the general procedure described above using **1l** (34.8 mg, 0.1 mmol), **2a** (36.9 mg, 0.15 mmol), $P(NMe_2)_3$ (3.3 mg, 20 mol %) and Cs_2CO_3 (39.1 mg, 120 mol %) and isolated as a yellow liquid (35.4 mg, 66%)

yield, 8:1 *d.r.*) after flash column chromatography on silica gel (PE:EtOAc = 8:1). ¹**H NMR (400 MHz, CDCl₃)** δ 7.67 (d, *J* = 9.0 Hz, 1H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.33 – 7.25 (m, 5H), 7.18 – 7.09 (m, 2H), 6.78 (dd, *J* = 9.0, 3.0 Hz, 1H), 6.41 (d, *J* = 2.9 Hz, 1H), 5.10 (d, *J* = 12.0 Hz, 1H), 4.98 (d, *J* = 12.0 Hz, 1H), 4.57 (dd, *J* = 12.9, 1.5 Hz, 1H), 4.47 (dd, *J* = 13.5, 3.6 Hz, 1H), 3.90 (dd, *J* = 10.2, 3.0 Hz, 1H), 3.67 (s, 3H), 3.53 (d, *J* = 12.9 Hz, 1H), 3.38 (dd, *J* = 13.5, 10.2 Hz, 1H), 2.47 (s, 1H), 2.41 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.3, 156.9, 144.8, 134.42, 134.38, 130.1, 128.60, 128.55, 128.3, 127.7, 127.5, 126.8, 125.7, 115.0, 113.7, 78.3, 75.9, 75.5, 68.5, 55.3, 50.1, 46.7, 41.9, 21.6. HRMS (ESI) m/z: calcd. for C₂₈H₂₆N₂NaO₇S⁺ (M + Na)⁺557.1353, found 557.1360.

Benzyl 6-bromo-3-ethynyl-4-(nitromethyl)-1-tosyl-1,2,3,4-tetrahydroquinoline-3carboxylate (3u)

The **3u** was prepared according to the general procedure described above using **1m** (39.6 mg, 0.1 mmol), **2a** (36.9 mg, 0.15 mmol), $P(NMe_2)_3$ (3.3 mg, 20 mol %) and Cs_2CO_3 (39.1 mg, 120 mol %) and isolated as a yellow liquid (32.0 mg, 55%)

yield, >20:1 *d.r.*) after flash column chromatography on silica gel (PE:EtOAc = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (m, 3H), 7.32 (m, 6H), 7.16 – 7.09 (m, 2H), 7.06 (d, *J* = 2.3 Hz, 1H), 5.08 (d, *J* = 11.9 Hz, 1H), 4.99 (d, *J* = 11.9 Hz, 1H), 4.60 – 4.56 (m, 1H), 4.56 – 4.52 (m, 1H), 4.02 (dd, *J* = 10.0, 3.2 Hz, 1H), 3.55 (d, *J* = 12.8 Hz, 1H), 3.42 (dd, *J* = 13.7, 10.0 Hz, 1H), 2.52 (s, 1H), 2.42 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.9, 145.2, 134.4, 134.08, 134.06, 132.5, 132.0, 130.3, 128.8, 128.7,128.4, 127.2, 126.7, 124.8, 118.1, 77.7, 76.4, 75.5, 68.8, 49.5, 45.9, 41.6, 21.6. HRMS (ESI) m/z: calcd. for C₂₇H₂₃BrN₂NaO₆S⁺ (M + Na)⁺ 605.0352, found 605.0332.

Benzyl 3-methyl-5-tosyl-1,4,5,9b-tetrahydro-3aH-pyrrolo[3,4-c]quinoline-3a-carboxylate (4a)

The **3a** (37.8 mg, 75% yield, >20:1 *d.r.*) was obtained according to the general procedure. The **4a** was prepared according to the general procedure described above using **3a** (25.2 mg, 0.05 mmol), zinc powder (32.7 mg, 0.5 mmol) and AcOH (2 mL) and isolated

as a white solid (19.6 mg, 83% yield, >20:1 *d.r.*) after flash column chromatography on silica gel (PE:EtOAc = 3:1). m.p.: 107.6 – 108.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.67 (m, 2H), 7.46 (d, *J* = 8.4 Hz, 1H), 7.41 – 7.31 (m, 5H), 7.27 – 7.25 (m, 2H), 7.13 – 7.02 (m, 3H), 5.20 (d, *J* = 12.0 Hz, 1H), 5.16 (d, *J* = 12.0 Hz, 1H), 4.57 (d, *J* = 13.7 Hz, 1H), 4.41 (m, 1H), 3.94 (dd, *J* = 9.3, 5.4 Hz, 1H), 3.77 (d, *J* = 13.7 Hz, 1H), 3.40 – 3.32 (m, 1H), 2.39 (s, 3H), 2.10 (t, *J* = 2.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.5, 170.0, 144.0, 137.4, 137.1, 134.9, 132.5, 129.7, 129.2, 128.71, 128.67, 128.4, 127.3, 127.1, 125.1, 120.8, 70.0, 68.8, 67.7, 48.1, 44.0, 21.5, 16.6. **HRMS (ESI)** m/z: calcd. for $C_{27}H_{27}N_2O_4S^+(M + H)^+475.1686$, found 475.1672.

2-Methylbenzyl 3-methyl-5-tosyl-1,4,5,9b-tetrahydro-3aH-pyrrolo[3,4-c]quinoline-3a-carboxylate (4b)

The **3b** (39.0 mg, 70% yield, 13:1 *d.r.*) was obtained according to the general procedure. The **4b** was prepared according to the general procedure described above using **3b** (29.0 mg, 0.056 mmol), zinc powder (36.6 mg, 0.56

mmol) and AcOH (2 mL) and isolated as a yellow liquid (22.1 mg, 81% yield, >20:1 *d.r.*) after flash column chromatography on silica gel (PE:EtOAc = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.3 Hz, 2H), 7.47 (d, *J* = 8.1 Hz, 1H), 7.28 (d, *J* = 7.6 Hz, 2H), 7.25 (d, *J* = 2.6 Hz, 2H), 7.20 (d, *J* = 7.4 Hz, 2H), 7.13 – 7.01 (m, 3H), 5.23 (d, *J* = 12.3 Hz, 14H), 5.18 (d, *J* = 12.3 Hz, 1H), 4.59 (d, *J* = 13.7 Hz, 1H), 4.44 – 4.34 (m, 1H), 3.93 (dd, *J* = 9.4, 5.4 Hz, 1H), 3.74 (d, *J* = 13.7 Hz, 1H), 3.34 (m, 1H), 2.39 (s, 3H), 2.34 (s, 3H), 2.10 (t, *J* = 2.0 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.6, 170.1, 144.0, 137.4, 137.04, 137.02, 132.9, 132.5, 130.5, 129.7, 129.5, 129.1, 129.0, 127.3, 127.1, 126.1, 125.1, 120.8, 70.0, 68.9, 66.1, 48.1, 44.0, 21.5, 18.9, 16.5. HRMS (ESI) m/z: calcd. for C₂₈H₂₉N₂O₄S⁺ (M + H)⁺ 489.1843, found 489.1849.

2-Fluorobenzyl 3-methyl-5-tosyl-1,4,5,9b-tetrahydro-3aH-pyrrolo[3,4-c]quinoline-3a-carboxylate (4c)

The 3c (38.1 mg, 73% yield, 17:1 *d.r.*) was obtained according to the general procedure. The 4c was prepared according to the general procedure described above using 3c

(26.1 mg, 0.05 mmol), zinc powder (32.9 mg, 0.5 mmol) and AcOH (2 mL) and isolated as a white solid (19.1 mg, 78% yield, >20:1 *d.r.*) after flash column chromatography on silica gel (PE:EtOAc = 3:1). m.p.: 82.6 – 84.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.66 (m, 2H), 7.49 – 7.41 (m, 1H), 7.40 – 7.30 (m, 2H), 7.27 (m, 2H), 7.18 – 7.02 (m, 5H), 5.25 (t, *J* = 13.2 Hz, 2H), 4.57 (d, *J* = 13.7 Hz, 1H), 4.45 – 4.34 (m, 1H), 3.95 (dd, *J* = 9.4, 5.4 Hz, 1H), 3.76 (d, *J* = 13.7 Hz, 1H), 3.42 –

3.30 (m, 1H), 2.39 (s, 3H), 2.13 (t, J = 2.0 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.4, 170.1, 161.1 (J = 247.6 Hz), 144.0, 137.4, 137.1, 132.4, 130.9 (J = 2.8 Hz), 130.8 (J = 1.8 Hz), 129.7, 129.2, 127.3, 127.1, 125.1, 124.3 (J = 3.7 Hz), 122.1 (J = 14.3 Hz), 120.8, 115.7 (J = 20.8 Hz), 69.9, 68.8, 61.8, 48.1, 43.9, 21.5, 16.5. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -117.5. HRMS (ESI) m/z: calcd. for C₂₇H₂₆FN₂O₄S⁺ (M + H)⁺ 493.1592, found 493.1602.

Benzhydryl 3-methyl-5-tosyl-1,4,5,9b-tetrahydro-3aH-pyrrolo[3,4-c]quinoline-3acarboxylate (4d)

The **3e** (36.5 mg, 63% yield, 5:1 *d.r.*) was obtained according to the general procedure. The **4d** was prepared according to the general procedure described above using **3e** (29.1 mg, 0.05 mmol), zinc powder (32.9 mg, 0.5 mmol) and AcOH (2

mL) and isolated as a yellow solid (23.1 mg, 84% yield, 10:1 *d.r.*) after flash column chromatography on silica gel (PE:EtOAc = 3:1). m.p.: 100.1- 101.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.66 (m, 2H), 7.51 – 7.47 (m, 1H), 7.38 – 7.27 (m, 10H), 7.24 (d, *J* = 8.2 Hz, 2H), 7.10 (m, 1H), 7.08 – 7.01 (m, 2H), 6.90 (s, 1H), 4.71 (d, *J* = 13.7 Hz, 1H), 4.52 – 4.42 (m, 1H), 3.91 (dd, *J* = 9.3, 5.0 Hz, 1H), 3.72 (d, *J* = 13.7 Hz, 1H), 3.40 (m, 1H), 2.38 (s, 3H), 2.05 (t, *J* = 2.4 Hz, 3H).¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.2, 169.7, 144.0, 139.19, 139.16, 137.5, 137.0, 132.6, 129.7, 129.2, 128.71, 128.67, 128.33, 128.28, 127.3, 127.12, 127.05, 126.9, 125.1, 120.9, 78.4, 70.2, 69.1, 48.0, 44.2, 21.5, 16.6. HRMS (ESI) m/z: calcd. for C₃₃H₃₁N₂O₄S⁺ (M + H)⁺ 551.1999, found 551.1993.

Ethyl 3-methyl-5-tosyl-1,4,5,9b-tetrahydro-3aH-pyrrolo[3,4-c]quinoline-3acarboxylate (4e)

The **3h** (29.6 mg, 67% yield, 8:1 *d.r.*) was obtained according to the general procedure. The **4e** was prepared according to the general procedure described above using **3h** (18 mg, 0.04 mmol), zinc powder (26.6 mg, 0.4 mmol) and AcOH (2 mL) and isolated as a

yellow liquid (13.4 mg, 81% yield, 10:1 d.r.) after flash column chromatography on

silica gel (PE:EtOAc = 3:1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.76 – 7.66 (m, 2H), 7.51 – 7.42 (m, 1H), 7.27 (d, *J* = 7.7 Hz, 2H), 7.15 – 7.00 (m, 3H), 4.55 (d, *J* = 13.6 Hz, 1H), 4.42 (m, 1H), 4.27 – 4.19 (m, 2H), 3.95 (dd, *J* = 9.4, 5.5 Hz, 1H), 3.77 (d, *J* = 13.6 Hz, 1H), 3.42 – 3.33 (m, 1H), 2.39 (s, 3H), 2.20 (t, *J* = 2.0 Hz, 3H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.6, 170.5, 144.0, 137.4, 137.1, 132.4, 129.8, 129.2, 127.3, 127.0, 125.0, 120.7, 69.8, 68.7, 62.1, 48.1, 43.9, 21.5, 16.6, 14.1. HRMS (ESI) m/z: calcd. for C₂₂H₂₄N₂NaO₆S⁺ (M + Na)⁺ 435.1349, found 435.1349.

Benzyl 3-methyl-5-(phenylsulfonyl)-1,4,5,9b-tetrahydro-3aH-pyrrolo[3,4-c]quinoline-3a-carboxylate (4f)

The **3j** (33.8 mg, 69% yield, 10:1 *d.r.*) was obtained according to the general procedure. The **4f** was prepared according to the general procedure described above using **3j** (33.1 mg, 0.067 mmol), zinc powder (44 mg, 0.67 mmol) and AcOH (2 mL) and isolated as a yellow liquid (25.1 mg, 81% yield, >20:1 *d.r.*) after flash column

chromatography on silica gel (PE:EtOAc = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.78 (m, 2H), 7.58 – 7.53 (m, 1H), 7.47 (m, 3H), 7.41 – 7.29 (m, 5H), 7.15 – 7.04 (m, 3H), 5.23 – 5.14 (m, 2H), 4.58 (d, *J* = 13.8 Hz, 1H), 4.46 – 4.36 (m, 1H), 3.95 (dd, *J* = 9.4, 5.4 Hz, 1H), 3.79 (d, *J* = 13.8 Hz, 1H), 3.34 (m, 1H), 2.09 (t, *J* = 2.0 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.5, 169.9, 140.2, 137.3, 134.9, 133.1, 132.6, 129.2, 129.1, 128.72, 128.68, 128.4, 127.2, 127.1, 125.3, 121.0, 70.0, 68.8, 67.7, 48.2, 44.0, 16.6. HRMS (ESI) m/z: calcd. for C₂₆H₂₅N₂O₄S⁺ (M + H)⁺ 461.1530, found 461.1526.

Benzyl 5-((4-methoxyphenyl)sulfonyl)-3-methyl-1,4,5,9b-tetrahydro-3aH-pyrrolo-[3,4-c]quinoline-3a-carboxylate (4g)

The **3k** (27.0 mg, 52% yield, 10:1 *d.r.*) was obtained according to the general procedure. The **4g** was prepared according to the general procedure described above using **3k** (28.5 mg, 0.055 mmol), zinc powder (36.5 mg, 0.55 mmol) and AcOH (2 mL) and

isolated as a yellow liquid (22.8 mg, 85% yield, >20:1 *d.r.*) after flash column chromatography on silica gel (PE:EtOAc = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.71 (m, 2H), 7.49 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.43 – 7.28 (m, 5H), 7.07 (m, 3H), 6.95 – 6.88 (m, 2H), 5.19 (d, *J* = 12.1 Hz, 1H), 5.17 (d, *J* = 12.1 Hz, 1H), 4.58 (d, *J* = 13.7 Hz, 1H), 4.41 (m, 1H), 3.94 (dd, *J* = 9.4, 5.4 Hz, 1H), 3.83 (s, 3H), 3.75 (d, *J* = 13.7 Hz, 1H), 3.39 – 3.31 (m, 1H), 2.11 (t, *J* = 2.0 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.5, 170.2, 163.2, 137.5, 134.9, 132.5, 131.3, 129.6, 129.1, 128.71, 128.66, 128.3, 127.0, 125.0, 120.8, 114.2, 70.0, 68.9, 67.7, 55.6, 47.9, 43.9, 16.6. HRMS (ESI) m/z: calcd. for C₂₇H₂₆N₂NaO₅S⁺ (M + Na)⁺ 513.1455, found 513.1459.

Benzyl 5-(mesitylsulfonyl)-3-methyl-1,4,5,9b-tetrahydro-3aH-pyrrolo-[3,4-c]quinoline-3a-carboxylate (4h)

The **3l** (44.2 mg, 83% yield, >20:1 *d.r.*) was obtained according to the general procedure. The **4h** was prepared according to the general procedure described above using **3l** (69.0 mg, 0.13 mmol), zinc powder (84.8 mg, 1.3 mmol) and AcOH (2 mL) and isolated as a white solid (52.1 mg, 80% yield, >20:1 *d.r.*) after flash

column chromatography on silica gel (PE:EtOAc = 3:1). m.p.: $110.7 - 112.9 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 3.6 Hz, 5H), 7.17 – 7.13 (m, 1H), 7.08 (td, J = 7.4, 1.2 Hz, 1H), 7.03 – 6.96 (m, 3H), 6.62 (dd, J = 8.1, 1.2 Hz, 1H), 5.20 (d, J = 12.1 Hz, 1H), 5.17 (d, J = 12.1 Hz, 1H), 4.52 (m, 1H), 4.38 (d, J = 14.3 Hz, 1H), 4.03 (dd, J = 9.7, 6.0 Hz, 1H), 3.90 – 3.79 (m, 2H), 2.53 (s, 6H), 2.34 (s, 3H), 1.96 (d, J = 2.0 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.9, 169.9, 143.0, 139.8, 137.7, 135.4, 135.0, 133.8, 132.3, 129.3, 128.7, 128.6, 128.4, 127.1, 125.8, 121.9, 69.8, 68.9, 67.6, 48.3, 43.9, 22.8, 21.0, 16.4. HRMS (ESI) m/z: calcd. for C₂₉H₃₀N₂NaO₄S⁺ (M + Na)⁺ 525.1818, found 525.1809.

Benzyl 3,8-dimethyl-5-tosyl-1,4,5,9b-tetrahydro-3aH-pyrrolo-[3,4-c]quinoline-3acarboxylate (4i)

The 3s (36.1 mg, 58% yield, 16:1 d.r.) was obtained according to the general

procedure. The **4i** was prepared according to the general procedure described above using **3s** (32.0 mg, 0.06 mmol), zinc powder (41.7 mg, 0.6 mmol) and AcOH (2 mL) and isolated as a white solid (25.7 mg, 88% yield, >20:1 *d.r.*) after flash column chromatography on silica gel (PE:EtOAc = 3:1).

m.p.: 152.7-155.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.3 Hz, 2H), 7.42 – 7.28 (m, 6H), 7.24 (d, J = 8.5 Hz, 2H), 6.95 – 6.86 (m, 2H), 5.20 (d, J = 12.2 Hz, 1H), 5.18 (d, J = 12.2 Hz, 1H), 4.55 (d, J = 13.7 Hz, 1H), 4.43 – 4.34 (m, 1H), 3.89 (dd, J = 9.4, 5.5 Hz, 1H), 3.75 (d, J = 13.7 Hz, 1H), 3.38 – 3.28 (m, 1H), 2.38 (s, 3H), 2.25 (s, 3H), 2.10 (t, J = 2.0 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.6, 170.1, 143.9, 137.2, 134.9, 134.81, 134.75, 132.3, 129.7, 129.6, 128.7, 128.6, 128.3, 127.7, 127.3, 120.8, 69.9, 68.7, 67.6, 48.1, 43.9, 21.5, 20.7, 16.6. HRMS (ESI) m/z: calcd. for C₂₈H₂₈N₂NaO₄S⁺ (M + Na)⁺ 511.1662, found 511.1671.

Benzyl 8-methoxy-3-methyl-5-tosyl-1,4,5,9b-tetrahydro-3aH-pyrrolo-[3,4-c]quinoline-3a-carboxylate (4j)

The **3t** (35.4 mg, 66% yield, 8:1 *d.r.*) was obtained according to the general procedure. The **4j** was prepared according to the general procedure described above using **3t** (45.9 mg, 0.086 mmol), zinc powder (56.3 mg, 0.86 mmol) and AcOH (2 mL)

and isolated as a white solid (33.5 mg, 77% yield, 10:1 *d.r.*) after flash column chromatography on silica gel (PE:EtOAc = 3:1). m.p.: 127.8 - 130.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.3 Hz, 2H), 7.47 – 7.28 (m, 6H), 7.23 (d, *J* = 8.0 Hz, 2H), 6.71 – 6.56 (m, 2H), 5.19 (d, *J* = 12.1 Hz, 1H), 5.15 (d, *J* = 12.1 Hz, 1H), 4.57 (d, *J* = 14.0 Hz, 1H), 4.42 – 4.32 (m, 1H), 3.89 (dd, *J* = 9.5, 5.6 Hz, 1H), 3.73 (m, 4H), 3.34 – 3.22 (m, 1H), 2.38 (s, 3H), 2.09 (t, *J* = 2.0 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.6, 170.1, 156.9, 143.9, 137.2, 134.9, 134.3, 130.2, 129.6, 128.71, 128.67, 128.3, 127.3, 122.7, 114.1, 112.4, 69.7, 68.9, 67.7, 55.4, 48.4, 44.2, 21.5, 16.5. HRMS (ESI) m/z: calcd. for C₂₈H₂₉N₂O₅S⁺ (M + H)⁺ 505.1792, found 505.1791.

Benzyl 2-methylenebut-3-ynoate (D)

To a stirred solution of β '-acetoxy allenoate **2a** (49.3 mg, 0.2 mmol) in MeCN (2.0 mL) was added P(NMe₂)₃ (6.5 mg , 20 mol %) and Cs₂CO₃ (78.2 mg, 120 mol %) at room temperature for

1 h. The reaction mixture was concentrated under reduced pressure and purified via flash column chromatography on silica gel (PE:EtOAc = 100:1) to afford the intermediate **D** (33.9 mg, 91% yield) as a pale yellow oil. ¹H NMR (400 MHz, **CDCl₃**) δ 7.42 – 7.31 (m, 5H), 6.69 (s, 1H), 6.22 (s, 1H), 5.26 (s, 2H), 3.12 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.6, 136.2, 135.4, 128.6, 128.3, 128.1, 123.3, 80.6, 78.6, 67.3.

IV. Gram-Scale and Synthetic Manipulations

(a) Synthesis of 3a on gram-scale.

To a stirred solution of 2-amino- β -nitrostyrenes **1a** (1.45 g, 4.5 mmol, 1.0 equiv) and β '-acetoxy allenoate **2a** (1.67 g, 6.8 mmol, 1.5 equiv) in MeCN (30.0 mL) was added P(NMe₂)₃ (146.7 mg , 20 mol %) and Cs₂CO₃ (1.76 g, 120 mol %) at room temperature for 1.5 h. The reaction mixture was concentrated under reduced pressure and purified via flash column chromatography on silica gel (PE:EtOAc = 8:1) to afford product **3a** (1.12 g) in 50% yield with >20:1 *d.r.*.

(b) Synthetic manipulations of 3a.

4-(Aminomethyl)-3-ethyl-1-tosyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (5)

The According to the known procedure.¹ A round-bottomed flask with magnetic stir bar was charged with the **3a** (25.2 mg, 0.05 mmol) and MeOH (1 mL), then was added Pd/C (10%, 2.5 mg). The flask was evacuated and back-filled with H₂. After stirring for 12 h under a H₂ atmosphere (balloon), the reaction mixture was filtered through a short pad of Celite that was carefully rinsed with EtOAc (3 x 5 mL). The filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (PE/EtOAc 1:1 as the eluent) to afford a yellow liquid **5** (12.3 mg, 59% yield). ¹H NMR (400 MHz, DMSO-d6) δ 7.75 – 7.69 (m, 2H), 7.55 (d, *J* = 8.3 Hz, 1H), 7.39 (d, *J* = 8.2 Hz, 2H), 7.19 (m, 1H), 6.98 – 6.86 (m, 2H), 4.84 (dd, *J* = 12.4, 4.0 Hz, 1H), 4.27 (dd, *J* = 12.0, 1.8 Hz, 1H), 3.82 – 3.75 (m, 1H), 3.66 (dd, J = 12.4, 10.8 Hz, 1H), 3.43 (d, J = 12.0 Hz, 1H), 2.37 (s, 3H), 1.76 – 1.64 (m, 2H), 0.87 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-d6) δ 173.7, 144.8, 135.7, 135.5, 130.6, 130.2, 128.9, 127.4, 127.3, 124.0, 121.1, 77.1, 49.7, 49.6, 41.7, 27.7, 21.5, 9.2. HRMS (ESI) m/z: calcd. for C₂₀H₂₂N₂NaO₆S⁺ (M + Na)⁺ 441.1091, found 441.1086.

Methyl-3-ethynyl-4-(nitromethyl)-1-tosyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (6)

According to the known procedure.² Mg powder (2.43 mg, 0.1 mmol) were added to a solution of **3a** (25.2 mg, 0.05 mmol) in MeOH (2 mL) at room temperature. After stirring at room temperature for 12 h. The reaction mixture was filtered through a short pad of Celite that was carefully rinsed with EtOAc (3 x 5 mL). The filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (PE/EtOAc 8:1 as the eluent) to afford a yellow liquid **6** (9.1 mg, 43% yield). ¹**H NMR (400 MHz, CDCl₃)** δ 7.72 (d, *J* = 7.9 Hz, 1H), 7.65 – 7.59 (m, 2H), 7.36 – 7.27 (m, 3H), 7.09 – 7.03 (m, 2H), 4.69 – 4.63 (dd, *J* = 13.6, 4.0 Hz, 1H), 4.52 (dd, *J* = 12.8, 1.6 Hz, 1H), 4.10 (ddd, *J* = 9.5, 4.1, 1.3 Hz, 1H), 3.75 – 3.71 (d, *J* = 13.6 Hz, 1H), 3.72 – 3.69(d, *J* = 12.8 Hz, 1H), 3.63 (s, 3H), 2.50 (s, 1H), 2.42 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.1, 144.8, 135.3, 135.2, 130.1, 129.3, 129.1, 126.78, 126.75, 125.1, 123.0, 78.1, 76.2, 76.0, 53.7, 50.0, 46.2, 41.9, 21.6. HRMS (ESI) m/z: calcd. for C₂₁H₂₀N₂NaO₆S⁺ (M + Na)⁺ 451.0934, found 451.0936.

According to the known procedure.³ To a solution of **3a** (50.5 mg, 0.1 mmol) in MeOH (1.0 mL) was added 1.6 M KOH in MeOH (0.1 mL, 1.6 M, 0.16 mmol, 1.6 eq). The mixture was stirred at room temperature for 30 min, cooled to 0 $^{\circ}$ C, and a freshly prepared aq. solution of KMnO₄ (0.05 M, 1.05 eq)/MgSO₄ (0.043 M, 0.9 eq) was added slowly keeping internal temperature below 10 $^{\circ}$ C. The resulting mixture was stirred at 0 $^{\circ}$ C After 25 min, saturated Na₂S₂O₃ (1.0 mL) was added at 0 $^{\circ}$ C followed by 1 M H₂SO₄ (0.5 mL). The reaction mixture was extracted with MTBE (3 x 5 mL) and the organic phase was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (PE/EtOAc 8:1 as the eluent) to afford a yellow liquid **6** (33.4 mg, 78% yield).

V. References

1. Aspin, S.; López-Suárez, L.; Larini, P.; Goutierre, A.-S.; Jazzar, R.; Baudoin, O., Palladium-Catalyzed β -Arylation of Silyl Ketene Acetals and Application to the Synthesis of Benzo-Fused δ -Lactones. *Org. Lett.* **2013**, *15*, 5056-5059.

2. Fan, T.; Zhang, Z.-J.; Zhang, Y.-C.; Song, J., Construction of All-Carbon Quaternary Stereocenters via Sequential Photoactivation/Isothiourea Catalysis. *Org Lett.* **2019**, *21*, 7897-7901.

3. Zeng, X.; Gao, J. J.; Song, J. J.; Ma, S.; Desrosiers, J.-N.; Mulder, J. A.; Rodriguez, S.; Herbage, M. A.; Haddad, N.; Qu, B.; Fandrick, K. R.; Grinberg, N.; Lee, H.; Wei, X.; Yee, N. K.; Senanayake, C. H., Remarkable Enhancement of Enantioselectivity in the Asymmetric Conjugate Addition of Dimethylzinc to (Z)-Nitroalkenes with a Catalytic [(MeCN)4Cu]PF6–Hoveyda Ligand Complex. *Angew. Chem. Int. Ed.* **2014**, *53*, 12153-12157.

VI. X-Ray Crystallographic Analysis

Crystal Growth Method: 15 mg of **3j** was added in a HPLC vial and dissolved by 1.0 mL EtOAc, closed the lid. Then put it in a large bottle, added petroleum ether to the same level of the liquid in the HPLC vial, tighten the lid, put it in a fumehood and waited for growth.

Figure S1. X-ray structure of **3j** (ellipsoid contour at 50% probability CCDC 2287287)

Crystal Growth Method: 15 mg of **4d** was added in a HPLC vial and dissolved by EtOAc 1.0 mL, closed the lid. Then put it in a large bottle, added petroleum ether to the same level of the liquid in the HPLC vial, tighten the lid, put it in a fumehood and waited for growth.

Figure S1. X-ray structure of **4d** (ellipsoid contour at 50% probability CCDC 2303256)

Identification code	3ј	4d
Empirical formula	$C_{26}H_{22}N_2O_6S$	$C_{33}H_{30}N_2O_4S$
Formula weight	490.51	550.65
Temperature/K	119.99(14)	158(14)
Crystal system	triclinic	triclinic
Space group	P-1	P-1
a/Å	9.3636(5)	10.0509(5)
b/Å	14.6831(6)	11.7269(5)
c/Å	18.2931(7)	12.5630(5)
α/°	103.066(3)	100.660(4)
β/°	102.730(4)	98.042(4)
γ/°	91.504(4)	109.309(5)
Volume/Å ³	2382.05(19)	1340.68(11)
Z	4	2
$\rho_{calc} (g/cm^3)$	1.368	1.364
μ/mm^{-1}	0.181	1.420
F(000)	1024.0	580.0
Crystal size/mm ³	0.15 imes 0.12 imes 0.1	0.14 imes 0.13 imes 0.1
Radiation	Mo Kα ($\lambda = 0.71073$)	Cu Ka (λ = 1.54184)
2Θ range for data collection/°	4.108 to 50	7.334 to 147.714
Index ranges	$-10 \le h \le 11, -17 \le k \le 17,$	$-12 \le h \le 11, -14 \le k \le 9,$ 15 < 1 < 15
Reflections collected	22002	9131
Independent reflections	8386 [$\mathbf{R}_{int} = 0.0439$,	5230 [$R_{int} = 0.1152$, R_{sigma}
	$R_{sigma} = 0.0540$	= 0.0879]
Data/restraints/parameters	8386/0/631	5230/0/363
Goodness-of-fit on F ²	1.081	0.989
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0542, wR_2 = 0.1555$	$R_1 = 0.0792, wR_2 = 0.2000$
Final R indexes [all data]	$R_1 = 0.0679, wR_2 = 0.1682$	$R_1 = 0.0878, wR_2 = 0.2061$
Largest diff. peak/hole / e Å ⁻³	0.41/-0.45	1.01/-0.71

Table 1 Crystal data and structure refinement for 3j and 4d.

VII. Copies of ¹H and ¹³C{¹H} NMR Spectra

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

7,750 7,748 7,748 7,751 7,748 7,7512 7,750 7,7512 7,750 7,7512 7,750 7,7512 7,750 7,7512 7,750 7,7512 7,750 7,751 7,250 7,7250 7,2250 7,7250 7,2250 7,7250 7,2250 7,7250 7,22500 7,22500 7,2500 7,2500 7,2500 7,2500

7.731 7.728 7.7716 7.7728 7.7716 7.7716 7.7768 7.7768 7.7689 7.7618 7.7618 7.7618 7.7618 7.7618 7.7599 7.7599 7.7599 7.7599 7.7599 7.7159 7.7159 7.7156 7.7156 7.7259 7.7156 7.7259 7.7156 7.7259 7.7156 7.7259 7.7156 7.7258 7.7258 7.7258 6.6982 7.7157 7.7258 6.6982 7.7157 7.7156 7.7258 7.72

7, 7, 7, 939 7, 7, 752 7, 7, 752 7, 7, 752 7, 7, 752 7, 7, 752 7, 7, 752 7, 7, 754 7, 7, 754 7, 7, 754 7, 7, 754 7, 7, 754 7, 7, 756 7, 7, 756 7, 7, 756 7, 7, 757 7, 757 7, 757 7, 757 7, 757 7, 757 7, 757 7, 757 7, 757 7, 757 7, 757 7,

7,556 7,532 7,532 7,532 7,532 7,532 7,5333 7,533 7,5333 7,5333 7,5333 7,5333 7,5333 7,5333 7,5333 7,5333 7,5333 7,

7.748 7.748 7.748 7.748 7.7336 7.7336 7.73313 7.3323 7.3323 7.3323 7.3323 7.3323 7.3323 7.4323 7.4323 7.4323 7.4323 7.4323 7.4323 7.4323 7.4323 7.4323 7.4323 7.4323 7.4323 7.4323 7.4323 7.4323 7.4323 7.4323 7.43337 7.43337 7.43337 7.43337 7.43337 7.43337 7.43337 7.43337 7.43337 7.43337 7.43337 7.43337 7.43337 7.43337 7.43347 7.43347 7.43347 7.43347 7.43347 7.43347 7.43347 7.43347 7.43

7, 7, 900 7, 7, 900 7, 7, 900 7, 7, 585 7, 7, 901 7, 7, 901 7, 7, 902 7, 7, 903 7, 903 7,

7,552 7,555 7,555 7,555 7,555 7,555 7,555 7,555 7,550 7,550 7,759 7,759 7,729 7,7129 7,7129 7,7129 7,7129 7,7116 7,7126 7

7,569 7,587 7,587 7,587 7,587 7,587 7,587 7,587 7,588 7,588 7,533 7,533 7,332 7,332 7,533 7,332 7,332 7,332 7,332 7,332 7,332 7,332 7,332 7,332 7,332 7,332 7,332 7,119

7.709 7.708 7.704 7.7.688 7.7.688 7.7.688 7.7.688 7.7.360 7.7.360 7.7.356 7.7.360 7.7.356 7.7.356 7.7.356 7.7.360 7.7.341 7.7.095 7.7.341 7.7.095 7.7.005 7.7.

7.705 7.705 7.784 7.784 7.7584 7.7584 7.7595 7.7284 7.7286 7.7286 7.7286 7.7286 7.7193 7.7194

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

7, 569 7, 569 7, 569 7, 569 7, 569 7, 569 7, 750 7,

7.370 7.370 7.3.559 7.7.161 7.7.161 7.7.161 7.7.164 7.7.104 7.7.104 7.7.104 7.7.104 7.7.105 7.

7.772 7.772 7.7713 7.7713 7.7713 7.7561 7.7561 7.7561 7.7561 7.7561 7.7561 7.7561 7.7561 7.7561 7.7561 7.7561 7.7561 7.7169 7.7169 6.962 6.963 6.971 6.963 6.971 6.963 6.971 6.963 6.971 6.963 6.971 6.893 6.971 6.893 6.971 6.893 6.971 6.893 6.973 6.971 6.893 6.973 6.971 6.893 6.973 6.971 6.950 6.973 6.973 6.973 6.973 6.973 6.973 6.973 6.973 6.973 6.973 6.973 6.973 6.973 6.973 6.973 6.973 6.973 7.7169 6.973 7.7169 6.973 7.7169 6.973 7.7169 6.973 7.7169 6.878 6.973 7.7169 6.973 7.7169 6.973 7.7169 6.973 7.7169 6.878 6.933 7.7169 6.878 7.71729 7.729 6.878 7.723 6.971 6.950 6.971 6.950 6.971 6.950 6.971 6.950 6.971 6.950 6.971 6.950 6.971 6.950 6.973 6.950 6.971 6.950 6.971 6.950 6.973 6.973 6.973 6.973 6.973 6.973 6.973 6.973 6.973 6.973 6.973 6.973 6.973 6.973 6.973 6.950 6.973 6.950 6.973 6.950 6.933 6.950 6.933 6.950 6.933 6.950 6.933 6.502 6.503 6

¹H NMR (400 MHz, DMSO-d6)

