Supporting Information for:

Electrochemically dehydrogenative $\mathbf{C}\left(\mathbf{s p}^{2}\right)-\mathbf{H} / \mathrm{S}-\mathrm{H}$ cross-coupling: eff ective synthesis of ortho-aminophenyl thioglycoside derivatives

Li-Yan Hu, Li Zhu, Shen-Yuan Zhang, Yu-Xin Guo, Yuan Li, Jie Zhu* and Lei Wu* Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
E-mail: : zhujie@njau.edu.cn; rickywu@njau.edu.cn

Contents

1. General informationS2
2. Numberings and structures of 1-thiosugars S3
3. General procedures for 1-thiosugars S3
3.1 General procedure I S3
3.2 General procedure II. S4
3.3 General procedure III. S4
3.4 The synthesis of 1 k S5
3.5 Characterization of new substrates S5
4. Optimization of reaction conditions S7
5. General procedure for the synthesis of thioglycosides S9
6. Cyclic voltammetry studies S10
7. Control experiments S13
8. GC detection test of \mathbf{H}_{2} S16
9. Characterization data S18
10. Scale-up experiment S43
11. Characterization data for compounds in Scheme 2 S44
12. Reference S51
13. NMR spectra S52
14. Proof of absolute configuration S111

1. General information

Solvents and reagents were reagent grade and used without purification unless otherwise noted. All reactions dealing with air- or moisture-sensitive compounds were carried out in a flame-dried, sealed Schlenk reaction tube under an atmosphere of nitrogen. Anhydrous solvent were bought from Aladdin Chemicals, Shanghai, China. Compound spots were visualized either by UV light (254 nm) or by heating with a solution with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in ethanol. Column chromatography was performed using silica gel (200-300 mesh).

Structural assignments were made with additional information from COSY, HSQC, HMBC, and NOESY experiments. ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F},{ }^{13} \mathrm{C}$, and COSY NMR data reported in ppm (δ) were recorded on a 500 MHz NMR JEOL with tetramethylsilane (TMS) as an internal standard and CDCl_{3} as solvent unless otherwise stated. Coupling constants are reported in Hertz (Hz). Spectral splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; p, pentet; m, multiplet; and br, broad.

High resolution mass spectroscopic data of the products were collected on a Waters Micromass GCT instrument using EI (70 eV) or an AB Sciex Triple TOF5600 Plus LC/MS using ESI.

Cyclic voltammetry (CV) were taken on a CS2350M electrochemical workstation (Wuhan Corrtest Instrument Co., Ltd) in $\mathrm{CH}_{3} \mathrm{CN}$ (EnergySeal, 99.9\%, with molecular sieves, water $\leqslant 50 \mathrm{ppm}$ (by K.F.)) at room temperature, and the CV experiments were carried out in a three-electrode cell configuration with a glassy carbon (GC) working electrode (3 mm diameter) and a platinum wire counter electrode. The potentials were measured versus an $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode.

The ElectraSyn Set-up

2. Numberings and structures of 1-thiosugars

1a

1e

1b

1f

1c

19

1d

$\beta / \alpha=15 / 1$

$1 i$

1 j

1k

1at

10

1p

1n

$1 r$

1q

3. General procedures for 1-thiosugars

3.1 General procedure I .

1-Bromosugar (1.0 equiv) and thiourea (1.5 equiv) were dissolved in dry acetone (0.1 $\mathrm{M})$. The solution was heated at reflux for Ca .4 h until 1-bromosugar was fully consumed as indicated by TLC analysis. The resulting mixture was concentrated in vacuo. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ (3.0 equiv) and $\mathrm{DCM} / \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}, 2 / 1)$ were added to the resulting mixture, which was then heated at $50{ }^{\circ} \mathrm{C}$ for ca. 3 h and then diluted by addition of DCM. The organic phase was separated and washed by brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and purified by silica gel chromatography (petroleum-
$\mathrm{EtOAc})$ afforded the desired 1-thiosugar. ${ }^{1}$

3.2 General procedure II.

GP1: Synthesis of thiolacetate derivative. To asolution of the glycosyl halide (1.0 equiv) in dry DMF (0.3 M) was added potassium thioacetate (1.5 equiv). The mixture was stirred at room temperature until TLC indicated complete consumption of the starting material, then poured into water, and extracted with EtOAc. The organic layer was washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and purified by silica gel chromatography (petroleum-EtOAc) afforded the desired thiolacetate derivative.

GP2: Synthesis of 1-thiosugar. To a 0.15 M solution of thiolacetate derivative (1.0 equiv) and DTT (Dithiothreitol, 1.5 equiv) in DMA was added TEA (0.1 equiv), and the mixture was stirred at room temperature for an appropriate time until complete consumption of the starting material. The reaction mixture was poured into water and extracted with EtOAc. The combined organic layers were washed with water, brine and concentrated to furnish the crude product, which was further purified over silica gel chromatography. ${ }^{2}$

3.3 General procedure III.

GP1: Synthesis of thiolacetate derivative. Per- O-acetyl glycoside (1.0 equiv) was dissolved in anhydrous DCM (0.1 M), to which HSAc (3.0 equiv) was added, and cooled to $0^{\circ} \mathrm{C}$. After addition of TMSOTf (1.0 equiv), the reaction was allowed to proceed at $0^{\circ} \mathrm{C}$ until TLC indicated complete consumption of the starting material, then poured into aqueous NaHCO_{3}, and extracted with EtOAc. The organic layer was washed successively with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and
purified by silica gel chromatography.
GP2: Synthesis of 1-thiosugar. Prepared from thiolacetate derivative according to $\mathbf{G P}_{2}$ in General procedure II. ${ }^{2}$

3.4 The synthesis of $\mathbf{1 k}$.

To a round flask, NaOMe in $\mathrm{MeOH}(60 \mu \mathrm{~L}, 0.5$ equiv, 5.0 M$)$ was added to a solution of $\mathbf{1 a}(0.11 \mathrm{~g}, 0.3 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$. The solution was stirred at room temperature. When the reaction was completed, the pH of solvent was adjusted to ~ 7 with Amberlite IR-120 and then filtration and remove the solvent under vacuo to gain the pale-yellow oil. These oils bypass purification and proceed straight to the next step reaction.

3.5 Characterization of new substrates

$\mathrm{R}_{f}=0.3$, Petroleum Ether/Ethyl Acetate $=10: 1(\mathrm{v} / \mathrm{v})$. Colorless oil; ${ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.72$ - 7.70 (m, 2H), 7.67 7.65 (m, 2H), $7.45-7.36$ (m, 6H), $5.21-5.13$ (m, 2H), 4.94 (t, J $=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=11.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=$ 11.8, $4.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.57-3.53(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}$, $5 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 170.5,169.8$, $169.4,136.0,135.8,133.3,133.2,129.9,127.8,79.1,78.5,74.1,73.9,68.4,62.8,26.8$, 20.9, 20.8, 20.7, 19.4. HRMS (ESI) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{8} \mathrm{SSi}^{+} 561.1973$; Found 561.1949.

$\mathrm{R}_{f}=0.3$, Petroleum Ether/Ethyl Acetate $=2: 1(\mathrm{v} / \mathrm{v})$. Colorless oil; ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform-d) $\delta 5.22-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.94$ $(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.12(\mathrm{~m}, 2 \mathrm{H})$, 3.69 (ddd, $J=9.8,4.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.08 ($\mathrm{s}, 3 \mathrm{H}$), 2.06 ($\mathrm{s}, 3 \mathrm{H}$), 2.04 (d, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.99 ($\mathrm{s}, 3 \mathrm{H}$), $1.94-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform-d) δ 170.7, 170.1, 169.8, 78.7, 76.7, 74.1, 73.6, 67.5, 62.3, 48.4, 42.3, 36.7, 32.8, 28.6, 20.9, 20.8. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{O}_{9} \mathrm{~S}^{+} 499.1996$; Found 499.1984.

$\mathrm{R}_{f}=0.2$, Petroleum Ether/Ethyl Acetate $=2: 1$ (v/v). Colorless oil; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 5.18(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{t}, J$ $=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.67$ $(\mathrm{m}, 1 \mathrm{H}), 4.53(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.18(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{ddd}$, $J=9.7,4.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.14$ $(\mathrm{m}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.92(\mathrm{~m}, 1 \mathrm{H})$, $1.85-1.77(\mathrm{~m}, 5 \mathrm{H}), 1.66-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 8 \mathrm{H})$, $1.29-1.21(\mathrm{~m}, 4 \mathrm{H}), 1.07-1.04(\mathrm{~m}, 5 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.62$ (s, 3H). ${ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform-d) $\delta 172.9,170.8,170.7,170.2,169.8,78.8$, $76.5,74.5,73.7,73.6,67.9,62.1,56.5,56.0,42.8,42.0,40.5,40.2,35.9,35.5,35.1$, 34.7, 32.3, 31.1, 30.9, 28.2, 27.1, 26.7, 26.4, 24.3, 23.4, 21.6, 20.9, 20.7, 18.3, 12.1. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{38} \mathrm{H}_{59} \mathrm{O}_{11} \mathrm{~S}^{+} 723.3773$; Found 723.3775.

$\mathrm{R}_{f}=0.3$, Petroleum Ether/Ethyl Acetate $=2: 1(\mathrm{v} / \mathrm{v})$. Colorless oil; ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.14$ $7.05(\mathrm{~m}, 7 \mathrm{H}), 5.17(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.09(\mathrm{~m}, 2 \mathrm{H})$, $4.92(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{t}, J=9.3 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.50(\mathrm{q}$, $J=9.7 \mathrm{~Hz}, 1.7 \mathrm{H}), 4.17(\mathrm{dd}, J=12.5,4.8 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.05(\mathrm{dd}, J=12.5,2.2 \mathrm{~Hz}, 0.7 \mathrm{H})$,
$3.90(\mathrm{dd}, J=12.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=12.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.58(\mathrm{~m}, 3.4 \mathrm{H})$, $2.41(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.27(\mathrm{dd}, J=9.9,3.4 \mathrm{~Hz}, 1.7 \mathrm{H}), 2.08(\mathrm{~s}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H})$, $2.01(\mathrm{~s}, 5 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.79(\mathrm{~m}, 1.7 \mathrm{H}), 1.45-1.42(\mathrm{~m}, 5 \mathrm{H}), 0.88-0.86(\mathrm{~m}$, 11H). ${ }^{13}$ C NMR (126 MHz , Chloroform-d) $\delta 173.4,173.0,170.7,170.4,170.2,169.8$, 169.7, 141.1, 141.0, 136.8, 136.7, 129.6, 127.2, 127.1, 78.7, 76.6, 76.3, 73.9, 73.8, $73.5,72.9,68.0,67.8,62.0,45.1,45.0,44.8,30.2,22.4,20.9,20.8,20.6,20.1,18.1$, 18.0. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{O}_{9} \mathrm{~S}^{+} 511.1996$; Found 511.1983.

$\mathrm{R}_{f}=0.2$, Petroleum Ether/Ethyl Acetate $=1: 2$ (v/v). Colorless oil; ${ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform-d) $\delta 5.38-5.34(\mathrm{~m}, 2 \mathrm{H}), 5.32-5.21$ $(\mathrm{m}, 3 \mathrm{H}), 5.04(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J=10.6$, $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=10.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{t}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.42(\mathrm{t}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.29-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.02(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.90(\mathrm{~m}, 4 \mathrm{H}), 3.73-3.71(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 6 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}$, $3 \mathrm{H}), 1.97$ (s, 9H). ${ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform-d) $\delta 170.8,170.7,170.5,170.1$, $170.0,169.9,169.8,169.6,95.9,95.7,78.2,76.5,76.0,74.4,73.8,72.6,71.7,70.5$, 70.2, 69.4, 69.1, 68.6, 67.9, 63.2, 62.3, 61.4, 21.0, 20.9, 20.8, 20.7. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{38} \mathrm{H}_{53} \mathrm{O}_{25} \mathrm{~S}^{+} 941.2591$; Found 941.2588.

4. Optimization of reaction conditions

Table S1. Supporting electrolytes screening

Entry	Supporting electrolyte	Yield (\%)
	${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}$	30
2	${ }^{n} \mathrm{Bu}_{4} \mathrm{OAc}$	Trace
3	${ }^{n} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$	20
4	${ }^{n} \mathrm{Bu}_{4} \mathrm{NClO}_{4}$	32^{b}

5	TBAB	20
6	LiBr	18
7	NaBF_{4}	31^{b}
8	$\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$	trace

${ }^{a}$ Isolated yields. ${ }^{b}$ The electrolyte is adsorbed to the electrode, which greatly reduces the effciency of the reaction, although the yield is
similar to entry 1.

Table S2. Electrode material screening

Entry	Electrode	Current (mA)	Time (h)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%) ${ }^{a}$
1	$\mathrm{C}(+) \mid \operatorname{Pt}(-)$	9	2	r.t.	30
2	$\mathrm{C}(+) \mid \mathrm{C}(-)$	9	2	r.t.	7
3	$\mathrm{GC}(+) \mid \mathrm{CF}(-)$	9	2	r.t.	trace
4	$\mathrm{Pt}(+) \mid \operatorname{Pt}(-)$	9	2	r.t.	15
5	$\operatorname{RVC}(+) \mid \operatorname{Pt}(-)$	9	2	r.t.	28
6	$\mathrm{C}(+) \mid \operatorname{Pt}(-)$	3	4	60	60
7	$\operatorname{Pt}(+) \mid \mathrm{C}(-)$	3	4	60	15
$\mathbf{8}$	$\mathbf{R V C}(+) \mid \operatorname{Pt}(-)$	$\mathbf{3}$	4	r.t.	$\mathbf{7 0}$
9	$\operatorname{RVC}(+) \mid \operatorname{Pt}(-)$	3	4	r.t.	68

${ }^{a}$ Isolated yields.

Table S3. The solvent screening

Entry	Supporting electrolyte	Yield $(\%)^{a}$
	$\mathbf{M e C N}$	$\mathbf{7 0}$
2	DMF	trace
3	MeOH	20
4	DMSO	18

${ }^{a}$ Isolated yields.

Table S4. Electrode material screening

Entry	Electrode	Current (mA)	Time (h)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%) ${ }^{\text {a }}$	
					3ak	3bk
1	RVC (+)\|Pt (-)	3	4	r.t.	18	18
2	$\mathrm{Pt}(+) \mid \mathrm{Pt}(-)$	3	4	r.t.	30	15
3	$\mathrm{Pt}(+) \mid \mathrm{C}(-)$	3	5	r.t.	36	0
4	$\mathbf{P t}(+) \mid \mathbf{C}(-)$	3	4	60	65	0
5	$\mathrm{Pt}(+) \mid \mathrm{RVC}(-)$	3	4	60	15	15
6	$\mathrm{Pt}(+) \mid \mathrm{C}(-)$	3	4	70	58	0

Table S5. Supporting electrolytes screening

5. General procedure for the synthesis of thioglycosides

General procedure A: An oven-dried 15 mL undivided three-necked bottle fitted with a magnetic stir-bar was charged with 1-thiosugars ($0.3 \mathrm{mmol}, 1.0$ equiv), aniline derivatives ($0.3 \mathrm{mmol}, 1.0$ equiv), ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}(1.0 \mathrm{mmol})$, and dry $\mathrm{MeCN}(6.0$ $\mathrm{mL})$. The bottle was equipped with reticulated vitreous carbon (RVC) $(15 \times 15 \times 0.1$ $\left.\mathrm{cm}^{3}\right)$ as the anode, platinum plate $\left(15 \times 15 \times 0.1 \mathrm{~cm}^{3}\right)$ as the cathode, and then charged with argon. The reaction mixture was stirred and electrolyzed under a constant current of 3.0 mA at room temperature for 4 h . In the reaction process, the generation of bubbles can be observed at the cathode. After completion, the solvent was concentrated under vacuum and the residue purified by flash column chromatography on silica gel (eluting with petroleum ether/ethyl acetate) to give the desired product.

General procedure B: An oven-dried 15 mL undivided three-necked bottle fitted with a magnetic stir-bar was charged with 1-thiosugars ($0.3 \mathrm{mmol}, 1.0$ equiv), aniline derivatives ($0.3 \mathrm{mmol}, 1.0$ equiv), ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}(1.0 \mathrm{mmol})$, and dry $\mathrm{MeCN}(6.0$
$\mathrm{mL})$. The bottle was equipped with platinum plate $\left(15 \times 15 \times 0.1 \mathrm{~cm}^{3}\right)$ as the anode, graphite plate $\left(15 \times 15 \times 0.1 \mathrm{~cm}^{3}\right)$ as the cathode, and then charged with argon. The reaction mixture was stirred and electrolyzed under a constant current of 3.0 mA at $60{ }^{\circ} \mathrm{C}$ for 4 h . In the reaction process, the generation of bubbles can be observed at the cathode. After completion, the solvent was concentrated under vacuum and the residue purified by flash column chromatography on silica gel (eluting with petroleum ether/ethyl acetate) to give the desired product.

General procedure C: An oven-dried 15 mL undivided three-necked bottle fitted with a magnetic stir-bar was charged with 1-thiosugars ($0.3 \mathrm{mmol}, 1.0$ equiv), aniline derivatives ($0.3 \mathrm{mmol}, 1.0$ equiv), ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}(1.0 \mathrm{mmol})$, and dry $\mathrm{MeCN}(6.0$ $\mathrm{mL})$. The bottle was equipped with graphite plate $\left(15 \times 15 \times 0.1 \mathrm{~cm}^{3}\right)$ as the anode, platinum plate $\left(15 \times 15 \times 0.1 \mathrm{~cm}^{3}\right)$ as the cathode, and then charged with argon. The reaction mixture was stirred and electrolyzed under a constant current of 9.0 mA at room temperature for 2 h . In the reaction process, the generation of bubbles can be observed at the cathode. After completion, the solvent was concentrated under vacuum and the residue purified by flash column chromatography on silica gel (eluting with petroleum ether/ethyl acetate) to give the desired product.

6. Cyclic voltammetry studies

All cyclic voltammograms were performed in a three-electrode cell at room temperature. A glassy carbon disk electrode (diameter is 3.0 mm , PTFE shroud) was used as a working electrode. A platinum wire was used as a counter electrode. $\mathrm{Ag} / \mathrm{AgCl}$ electrode submerged in 3.5 M KCl solution was used as a reference electrode. 30 mL of MeCN containing $0.1 \mathrm{M}{ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}$ were poured into the electrochemical cell in all experiments. The CV of all substrates were measured at the concentration of 0.01 M . The scan rate was $0.10 \mathrm{~V} / \mathrm{s}$, ranging from -3.0 V to 3.0 V .

Figure S1. Cyclic voltammogram of $\mathbf{2 a d}(0.01 \mathrm{M})$ in an electrolyte of ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}(0.1 \mathrm{M})$ in $\mathrm{CH}_{3} \mathrm{CN} . E$ $=1.23 \mathrm{~V}$.

Figure S2. Cyclic voltammogram of $\mathbf{2 a e}(0.01 \mathrm{M})$ in an electrolyte of ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}(0.1 \mathrm{M})$ in $\mathrm{CH}_{3} \mathrm{CN} . E$ $=1.18 \mathrm{~V}$.

Figure S3. Cyclic voltammogram of $\mathbf{2 a f}(0.01 \mathrm{M})$ in an electrolyte of ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}(0.1 \mathrm{M})$ in $\mathrm{CH}_{3} \mathrm{CN}$. E
$=1.09 \mathrm{~V}$.

Figure S4. Cyclic voltammogram of $\mathbf{2 a g}(0.01 \mathrm{M})$ in an electrolyte of ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}(0.1 \mathrm{M})$ in $\mathrm{CH}_{3} \mathrm{CN} . E$ $=0.91 \mathrm{~V}$.

Figure S5. Cyclic voltammogram of $\mathbf{2 a k}(0.01 \mathrm{M})$ in an electrolyte of ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}(0.1 \mathrm{M})$ in $\mathrm{CH}_{3} \mathrm{CN} . E$ $=0.84 \mathrm{~V}$.

Figure S6. Cyclic voltammograms of reactions.

7. Control experiments

Figure S6. HRMS of radical trapping experiments.
(a) With TEMPO: An oven-dried 15 mL undivided three-necked bottle fitted with a magnetic stir-bar was charged with 1-thiosugars $1 \mathbf{1 a}(110 \mathrm{mg}, 0.3 \mathrm{mmol})$, aniline derivatives 2a ($49 \mathrm{mg}, 0.3 \mathrm{mmol}$), TEMPO ($141 \mathrm{mg}, 0.9 \mathrm{mmol}$), ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}$ ($330 \mathrm{mg}, 1 \mathrm{mmol}$), and dry $\mathrm{MeCN}(6.0 \mathrm{~mL}$). The bottle was equipped with reticulated vitreous carbon (RVC) $\left(15 \times 15 \times 0.1 \mathrm{~cm}^{3}\right)$ as the anode, platinum plate $(15 \times 15 \times 0.1$ cm^{3}) as the cathode, and then charged with argon. The reaction mixture was stirred and electrolyzed under a constant current of 3.0 mA at room temperature for 4 h . After completion, the solvent was concentrated under vacuum and the residue purified by flash column chromatography on silica gel failed to obtain 3a.
(b) With 4: An oven-dried 15 mL undivided three-necked bottle fitted with a magnetic stir-bar was charged with 1-thiosugars 1a ($110 \mathrm{mg}, 0.3 \mathrm{mmol}$), aniline derivatives 2a ($49 \mathrm{mg}, 0.3 \mathrm{mmol}$), 4 ($144 \mathrm{mg}, 0.6 \mathrm{mmol}$), ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}(330 \mathrm{mg}, 1$ $\mathrm{mmol})$, and dry $\mathrm{MeCN}(6.0 \mathrm{~mL})$. The bottle was equipped with reticulated vitreous carbon $(\mathrm{RVC})\left(15 \times 15 \times 0.1 \mathrm{~cm}^{3}\right)$ as the anode, platinum plate $\left(15 \times 15 \times 0.1 \mathrm{~cm}^{3}\right)$ as the cathode, and then charged with argon. The reaction mixture was stirred and
electrolyzed under a constant current of 3.0 mA at room temperature for 4 h . After completion, the solvent was concentrated under vacuum and the residue purified by flash column chromatography on silica gel to afford 5 ($21 \mathrm{mg}, 15 \%$) and $\mathbf{6}(9 \mathrm{mg}$, 10%), respectively, and impeded the generation of $\mathbf{3 a}$.

$\mathrm{R}_{f}=0.4$, Petroleum Ether/Ethyl Acetate $=2: 1(\mathrm{v} / \mathrm{v})$. Yellow oil; ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform-d) $\delta 6.24$ (s, $1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.03$ (dt, $J=$ $19.2,9.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=$ $12.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=12.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{ddd}, J=10.0$, 5.1, 2.3 Hz, 1H), $3.60-3.49(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 6 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 170.7, 170.3, 169.5, 166.3, 136.6, 127.2, 82.7, 75.8, 73.9, 69.9, 68.3, 62.2, 52.3, 30.9, 20.8, 20.7. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{11} \mathrm{~S}^{+} 463.1269$; Found 463.1268.

$\mathrm{R}_{f}=0.5$, Petroleum Ether/Ethyl Acetate $=15: 1(\mathrm{v} / \mathrm{v})$. Yellow oil; ${ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 8.05(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.73$ (m, 4H), 2.41 (s, 3H), 1.76 - 1.73 (m, 4H). ${ }^{13}$ C NMR (126 MHz , Chloroform-d) δ $148.4,142.7,137.6,135.6,134.5,132.3,130.1,128.2,127.8,124.6,54.2,24.8,21.0$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}^{+}$302.1209; Found 302.1210.
(c) An oven-dried 15 mL undivided three-necked bottle fitted with a magnetic stir-bar was charged with 1-thiosugars 1a ($220 \mathrm{mg}, 0.6 \mathrm{mmol}$), ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}(330 \mathrm{mg}, 1$ $\mathrm{mmol})$, and dry $\mathrm{MeCN}(6.0 \mathrm{~mL})$. The bottle was equipped with reticulated vitreous carbon $(\mathrm{RVC})\left(15 \times 15 \times 0.1 \mathrm{~cm}^{3}\right)$ as the anode, platinum plate $\left(15 \times 15 \times 0.1 \mathrm{~cm}^{3}\right)$ as the cathode, and then charged with argon. The reaction mixture was stirred and electrolyzed under a constant current of 3.0 mA at room temperature for 4 h . After completion, the solvent was concentrated under vacuum and the residue purified by flash column chromatography on silica gel to afford disulfide 7 ($414 \mathrm{mg}, 95 \%$).

$\mathrm{R}_{f}=0.3$, Petroleum Ether/Ethyl Acetate $=1: 1(\mathrm{v} / \mathrm{v})$. Yellow oil; ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform-d) $\delta 5.25(\mathrm{t}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H})$, $5.18(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.08(\mathrm{t}, J=9.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=9.7$ $\mathrm{Hz}, 2 \mathrm{H}), 4.32$ (dd, $J=12.5,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{~d}, J=10.3 \mathrm{~Hz}$, 2H), $3.79-3.76$ (m, 2H), 2.12 (s, 6H), 2.09 (s, 7H), 2.01 (s, 6H), 1.99 (s, 6H). ${ }^{13}$ C NMR (126 MHz , Chloroform-d) δ 170.8, 170.2, 169.4, 169.3, 87.2, 76.2, 73.9, 69.7, 67.8, 61.6, 20.9, 20.7, 20.6. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{O}_{18} \mathrm{~S}_{2}{ }^{+}$ 727.1572; Found 727.1588. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopic data of 7 are in accordance with those reported previously. ${ }^{3}$
(d) An oven-dried 15 mL undivided three-necked bottle fitted with a magnetic stir-bar was charged with disulfide 7 ($218 \mathrm{mg}, 0.3 \mathrm{mmol}$), aniline derivatives 2a (49 $\mathrm{mg}, 0.3 \mathrm{mmol}),{ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}(330 \mathrm{mg}, 1.0 \mathrm{mmol})$, and dry $\mathrm{MeCN}(6.0 \mathrm{~mL})$. The bottle was equipped with reticulated vitreous carbon (RVC) $\left(15 \times 15 \times 0.1 \mathrm{~cm}^{3}\right)$ as the anode, platinum plate $\left(15 \times 15 \times 0.1 \mathrm{~cm}^{3}\right)$ as the cathode, and then charged with argon. The reaction mixture was stirred and electrolyzed under a constant current of 3.0 mA at room temperature for 4 h . After completion, the solvent was concentrated under vacuum and the residue purified by flash column chromatography on silica gel to afford 3a (24 mg, 15\%).

8. GC detection test of $\mathbf{H}_{\mathbf{2}}$

An oven-dried 15 mL undivided three-necked bottle fitted with a magnetic stir-bar was charged with 1-thiosugars $\mathbf{1 a}(0.11 \mathrm{~g}, 0.3 \mathrm{mmol})$, aniline derivatives $\mathbf{2 a}(0.048 \mathrm{~g}$, $0.3 \mathrm{mmol}),{ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}(0.33 \mathrm{~g}, 1.0 \mathrm{mmol})$, and dry $\mathrm{MeCN}(6.0 \mathrm{~mL})$. The bottle was equipped with reticulated vitreous carbon (RVC) $\left(15 \times 15 \times 0.1 \mathrm{~cm}^{3}\right)$ as the anode, platinum plate $\left(15 \times 15 \times 0.1 \mathrm{~cm}^{3}\right)$ as the cathode, and then charged with nitrogen. The reaction mixture was stirred and electrolyzed under a constant current of 3.0 mA
at room temperature for 4 h . After reaction was accomplished, gas chromatography (nitrogen was used as a carrier gas) was applied to detect the existence of H_{2}.

Figure S7. GC of H_{2} standard sample

Figure S8. GC of the atmosphere (before electrolysis)

Figure S9. GC of the atmosphere (after electrolysis)

9. Characterization data

($2 R, 3 R, 4 S, 5 R, 6 S$)-2-(acetoxymethyl)-6-((5-methyl-2-(pyrrolidin-1-
yl)phenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3a)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/ $\mathrm{AcOEt}=3: 1(\mathrm{v} / \mathrm{v}))$. Compound 3a was isolated in 70\% (109.9 mg) yield as colorless oil following the general procedure A. $[\alpha]_{\mathrm{D}}{ }^{20}-0.014$ (c 1.0, MeCN); ${ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.18(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}$, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.66(\mathrm{~m}, 1 \mathrm{H})$, $3.26(\mathrm{~s}, 4 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}$, 4H). ${ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform- d) $\delta 170.8,170.4,169.6,169.3,148.9,136.0$, $129.8,129.5,121.1,116.6,85.7,75.8,74.3,70.30,68.4,62.5,51.8,25.3,20.8,20.7$, 20.5. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NO}_{9} \mathrm{~S}^{+}$524.1949; Found 524.1954. IR (film) v 3446, 2955, 2811, 1746, 1597, 1388, 1222, $1038 \mathrm{~cm}^{-1}$.
(2R,3R,4S,5R,6S)-2-((benzoyloxy)methyl)-6-((5-methyl-2-(pyrrolidin-1-
yl)phenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl tribenzoate (3b)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=6: 1(\mathrm{v} / \mathrm{v})$). Compound 3b was isolated in 73% (168.9 mg) yield as colorless oil following the general procedure A. $[\alpha] \mathrm{D}^{20}-0.025$ (c 1.0, MeCN); ${ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.99(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.37(\mathrm{~m}$, $5 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.05(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=12.7,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.15-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 4 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.48(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform-d) $\delta 166.3,165.9,165.3,164.9,149.2,137.2,133.5,133.3,133.2$,
130.1, 129.9, 129.9, 129.8, 129.7, 129.4, 129.0, 128.8, 128.5, 128.4, 119.7, 116.2, 86.5, 76.3, 74.5, 70.8, 69.6, 63.6, 51.7, 25.1, 20.1. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{45} \mathrm{H}_{4} \mathrm{NO}_{9} \mathrm{~S}^{+} 772.2575$; Found 772.2590. IR (film) v 3319, 2804, 2730, 1733, $1588,1395,1356,1273,1099,719 \mathrm{~cm}^{-1}$.

1-(4-methyl-2-(($2 S, 3 R, 4 S, 5 R, 6 R)$-3,4,5-tris(benzyloxy)-6-

((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)thio)phenyl)pyrrolidine (3c)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=8: 1(\mathrm{v} / \mathrm{v})$). Compound $\mathbf{3 c}$ was isolated in 50% (107.3 mg) yield as colorless oil following the general procedure A. $[\alpha] \mathrm{D}^{20}-0.003$ (c 1.0, MeCN); ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.53(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.35-7.21(\mathrm{~m}, 16 \mathrm{H}), 7.22(\mathrm{dd}, J=7.5,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.92(\mathrm{~m}, 2 \mathrm{H}), 4.86(\mathrm{dd}, J=10.9,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~d}$, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=12.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=10.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.55-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.24(\mathrm{~m}, 4 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.83(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 148.2,138.6,138.4,138.2,134.6,130.1,128.8,128.6$, $128.5,128.4,128.1,128.0,127.9,127.8,127.7,124.1,116.5,87.3,87.0,81.2,79.2$, 78.0, 76.0, 75.4, 75.1, 73.6, 69.1, 51.9, 25.1, 20.4. HRMS (ESI) m/z: $[\mathrm{M} \mathrm{+} \mathrm{H}]^{+}$Calcd for $\mathrm{C}_{45} \mathrm{H}_{50} \mathrm{NO}_{5} \mathrm{~S}^{+} 716.3404$; Found 716.3420.
(2S,3R,4S,5R,6R)-2-((5-methyl-2-(pyrrolidin-1-yl)phenyl)thio)-6-((pivaloyloxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl dimethylpropanoate) (3d)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=10: 1(\mathrm{v} / \mathrm{v})$). Compound 3d was isolated in $63 \% ~(130.7 \mathrm{mg})$ yield as white solid following the general procedure $\mathbf{A} ;$ m.p.: $71.9-72.8{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.016(c$
1.0, MeCN); ${ }^{1}$ H NMR (500 MHz , Chloroform- d) $\delta 7.24$ (s, 1H), 6.95 (d, $J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.77$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.33 (t, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}$), $5.17-5.10$ (m, 2H), 4.84 (d, J $=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=12.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J$ $=11.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.92-$ $1.84(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{~s}$, 9H). ${ }^{13}$ C NMR (126 MHz , Chloroform- d) δ 178.3, 177.3, 176.6, 176.5, 148.4, 133.8, $130.0,129.2,123.1,116.7,86.7,73.6,70.1,68.0,62.3,51.8,38.9,38.8,27.3,27.2$, 25.2, 20.6. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{37} \mathrm{H}_{58} \mathrm{NO}_{9} \mathrm{~S}^{+}$692.3827; Found 692.3845. IR (film) v 2968, 2868, 1736, 1485, 1279, 1150, 1041, 799, $764 \mathrm{~cm}^{-1}$.
(2R,3R,4S,5R,6S)-2-(((tert-butyldiphenylsilyl)oxy)methyl)-6-((5-methyl-2-(pyrrolidin-1-yl)phenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3e)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=8: 1(\mathrm{v} / \mathrm{v})$). Compound 3 e was isolated in 71% (153.2 mg) yield as yellow solid following the general procedure $\mathbf{A} ; m . p .: 68.2-70.0{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.008$ (c 1.0, MeCN); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.69$ (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.66 $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.16(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.54-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.25(\mathrm{~m}, 4 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.04$ (s, 3H), 2.00 (s, 3H), 1.89 - 1.86 (m, 7H), 1.04 (s, 9H). ${ }^{13}$ C NMR (126 MHz , Chloroform-d) $\delta 170.6,169.4,169.3,148.8,136.0,135.8,135.7,133.2,133.1,129.8$, $129.7,127.8,121.6,116.6,85.6,78.7,74.8,70.7,68.5,62.8,51.7,26.8,25.2,20.8$, 20.7, 20.4, 19.3. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{39} \mathrm{H}_{50} \mathrm{NO}_{8} \mathrm{SSi}^{+} 720.3021$; Found 720.3027. IR (film) v 3342, 2813, 2730, 1752, 1584, 1395, 1347, 1247, 1215, $1115,710,609 \mathrm{~cm}^{-1}$.
(2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-((5-methyl-2-(pyrrolidin-1-

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=2: 1(\mathrm{v} / \mathrm{v})$). Compound $3 f$ was isolated in 66% (103.6 mg) yield as colorless oil following the general procedure $\mathbf{A} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.009(c 1.0, \mathrm{MeCN}) ;{ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.31(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$ (dd, $J=10.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.24-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.04$ (s, 3H), 2.01 (s, 3H), $1.96(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 170.5,170.4,170.3,169.5,148.6,135.6,129.6,121.9,116.7,86.3$, $74.4,72.2,67.6,67.5,61.9,51.7,25.2,20.9,20.8,20.7,20.5$. HRMS (ESI) m/z: $[\mathrm{M}+$ $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NO}_{9} \mathrm{~S}^{+}$524.1949; Found 524.1944. IR (film) v 3348, 2827, 2733, $1745,1598,1385,1244,1044,609 \mathrm{~cm}^{-1}$.
($2 R, 3 S, 4 R, 5 R, 6 S$)-5-acetamido-2-(acetoxymethyl)-6-((5-methyl-2-(pyrrolidin-1-yl)phenyl)thio)tetrahydro-2H-pyran-3,4-diyl diacetate (3g)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=1: 2(\mathrm{v} / \mathrm{v})$). Compound $\mathbf{3 g}$ was isolated in 68% (106.5 mg) yield as colorless oil following the general procedure $\mathbf{A} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.013(c \quad 1.0, \mathrm{MeCN}) ;{ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.32$ (s, 1H), $7.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.84(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.18(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.65$ (m, 2H), $3.32-3.31(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}$, $6 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 170.8,170.5$, $169.6,137.0,130.1,121.7,116.8,85.6,75.7,73.6,68.7,62.6,54.0,52.4,25.1,23.4$, 20.8, 20.7, 20.5. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}^{+} 523.2109$; Found 523.2109. IR (film) v 3319, 2817, 2717, 1749, 1601, 1379, 1350, 1234, 1037, $600 \mathrm{~cm}^{-1}$.
(2R,3S,4R,6S)-2-(acetoxymethyl)-6-((5-methyl-2-(pyrrolidin-1-
yl)phenyl)thio)tetrahydro-2H-pyran-3,4-diyl diacetate (3h)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=3: 1(\mathrm{v} / \mathrm{v})$). Compound $\mathbf{3 h}$ was isolated in 65% (90.7 mg) yield as colorless oil following the general procedure $\mathbf{A} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.021(c 1.0, \mathrm{MeCN}) ;{ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.32(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.05-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{dd}, J=11.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=12.2,5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12(\mathrm{dd}, J=12.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.14-$ $3.11(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}$, $3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.88(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform-d) $\delta 170.9$, $170.4,170.0,147.9,145.8,133.5,129.0,124.1,116.9,81.9,76.0,72.0,69.1,63.0$, 52.0, 36.4, 25.1, 21.0, 20.9, 20.7. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{7} \mathrm{~S}^{+} 466.1894$; Found 466.1895. IR (film) v 3303, 2820, 2727, 1762, 1607, 1379, 1347, 1237, 1211, 1037, 777, $600 \mathrm{~cm}^{-1}$.
(2S,3S,4R,5R)-2-(acetoxymethyl)-5-((5-methyl-2-(pyrrolidin-1-
yl)phenyl)thio)tetrahydrofuran-3,4-diyl diacetate (3i)

Purified by flash column chromatography $\mathrm{R}_{f}=0.4$ (petroleum ether/AcOEt $=3: 1(\mathrm{v} / \mathrm{v})$). Compound 3 i was isolated in $66 \%(89.3 \mathrm{mg})$ yield as colorless oil following the general procedure $\mathbf{A} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.011(c 1.0, \mathrm{MeCN}) ;{ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform-d) $\delta 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.23(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.16-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{~s}, 2 \mathrm{H}), 2.25$ (s, 3H), 2.13 (s, 3H), 2.07 (s, 6H), $1.91-1.89(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 170.4,170.1,169.4,148.5,135.5,129.9,129.5,116.8,85.3,70.6$, 68.9, 67.6, 51.5, 25.1, 21.0, 20.8, 20.4. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{7} \mathrm{~S}^{+} 466.1894$; Found 466.1895.
yl)phenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate ($\mathbf{3 j}$)

Purified by flash column chromatography $\mathrm{R}_{f}=0.2$ (petroleum ether/AcOEt $=3: 1(\mathrm{v} / \mathrm{v})$). Compound $\mathbf{3 j}$ was isolated in 75% (104.7 mg) yield as colorless oil following the general procedure $\mathbf{A} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.012$ (c $\left.1.0, \mathrm{MeCN}\right) ;{ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.34(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=3.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.01(\mathrm{dd}, J=9.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.30-$ $3.22(\mathrm{~m}, 4 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.86(\mathrm{~m}$, $4 \mathrm{H}), 1.21(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 170.9,170.3$, $169.5,148.6,135.5,129.6,129.5,122.3,116.6,86.0,73.1,72.7,70.5,67.8,51.7,25.2$, 20.9, 20.8, 20.4, 16.5. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{7} \mathrm{~S}^{+} 466.1894$; Found 466.1893.
(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-((5-methyl-2-(pyrrolidin-1-yl)phenyl)thio)tetrahydro-2H-pyran-3,4,5-triol (3k)

Purified by flash column chromatography $\mathrm{R}_{f}=0.5$ (dichloromethane/methyl alcohol $=10: 1(\mathrm{v} / \mathrm{v})$). Compound 3k was isolated in $45 \%(47.9 \mathrm{mg})$ yield as colorless oil following the general procedure $\mathbf{A} ;[\alpha]_{\mathrm{D}}{ }^{20}+0.001$ (c 1.0, MeCN); ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}$, $J=12.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.32(\mathrm{~m}$, $1 \mathrm{H}), 3.17(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}$, $3 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) δ $150.8,140.5,133.3,131.7,121.7,118.2,87.5,80.0,71.7,70.1,62.4,52.9,24.0,20.4$.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{~S}^{+}$356.1526; Found 356.1523.

Methyl $\quad N$-(tert-butoxycarbonyl)-S-(5-methyl-2-(pyrrolidin-1-yl)phenyl)-Lcysteinate (31)

Purified by flash column chromatography $\mathrm{R}_{f}=0.2$ (petroleum ether/AcOEt $=2: 1(\mathrm{v} / \mathrm{v}))$. Compound 31 was isolated in 75% $(88.7 \mathrm{mg})$ yield as yellow oil following the general procedure \mathbf{A}; $[\alpha]_{\mathrm{D}}{ }^{20}-0.015$ (c 1.0, MeCN); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.52-4.49(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.47$ (dd, $J=14.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.40(\mathrm{~m}$, $2 \mathrm{H}), 3.22-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{dd}, J=14.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.93(\mathrm{~m}$, 4H), 1.39 (s, 9H). ${ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 171.5,155.8,150.2,138.0$, 131.2, 130.1, 124.8, 117.4, 79.7, 53.6, 52.3, 52.2, 39.0, 28.4, 24.9, 20.3. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}$395.1999; Found 395.1996. IR (film) v 3328, $2813,1594,1401,1343,770 \mathrm{~cm}^{-1}$.
(2R,3R,4S,5R,6S)-2-((2-((3R,5R,7R)-adamantan-1-yl)acetoxy)methyl)-6-((5-methyl-2-(pyrrolidin-1-yl)phenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3m)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=4: 1(\mathrm{v} / \mathrm{v})$). Compound 3 m was isolated in 68% (134.1 mg) yield as colorless oil following the general procedure $\mathbf{A} ;[\alpha]{ }_{\mathrm{D}}{ }^{20}-0.014$ (c 1.0, MeCN); ${ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.29(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.00(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.10$ (t, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.12(\mathrm{~m}$, 2H), $3.66-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.25(\mathrm{~m}, 4 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 2 \mathrm{H})$, $2.01(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.60$ $-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) δ 170.7, 170.3, $170.2,169.4,148.9,136.1,129.8,129.5,121.0,116.6,85.6,76.0,74.2,70.7,67.7$, 62.7, 51.8, 48.4, 42.3, 36.7, 32.8, 28.6, 25.3, 20.9, 20.8, 20.5. HRMS (ESI) m/z: [M +
$\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{NO}_{9} \mathrm{~S}^{+}$658.3044; Found 658.3045. IR (film) v 3325, 2813, 1749, $1588,1401,1356,1230,1134,1041,758 \mathrm{~cm}^{-1}$.
($2 R, 3 R, 4 S, 5 R, 6 S)-2-((((R)-4-((3 R, 5 R, 8 R, 9 S, 10 S, 13 R, 14 S, 17 R)-3-a c e t o x y-10,13-$ dimethylhexadecahydro- \mathbf{H}-cyclopenta[a]phenanthren-17-
yl)pentanoyl)oxy)methyl)-6-((5-methyl-2-(pyrrolidin-1-
yl)phenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3n)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/ $\mathrm{AcOEt}=4: 1(\mathrm{v} / \mathrm{v})$). Compound 3m was isolated in 68% (179.8 mg) yield as colorless oil following the general procedure $\mathbf{A} ;[\alpha]_{\mathrm{D}}{ }^{20}+0.005$ (c 1.0, MeCN); ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.78 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{t}, J=$ $9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{dd}, J=12.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=$ 12.3, 2.3 Hz, 1H), $3.69-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.25(\mathrm{~m}, 4 \mathrm{H}), 2.30-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.25$ $(\mathrm{s}, 3 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 6 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.87(\mathrm{~m}$, 4H), 1.83 - 1.78 (m, 4H), $1.69-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.36(\mathrm{~m}$, 9H), $1.25-1.22(\mathrm{~m}, 5 \mathrm{H}), 1.06-1.04(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, $0.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 172.9,170.8,170.4,169.3,148.9$, $136.0,129.8,129.5,121.1,116.6,85.7,75.9,74.5,74.3,70.4,68.1,62.5,56.6,56.0$, $51.8,42.9,42.0,40.5,40.2,35.9,35.5,35.1,34.7,32.4,31.1,31.0,28.2,27.1,26.7$, 26.4, 25.3, 24.3, 23.5, 21.6, 20.9, 20.8, 20.5, 18.3, 12.1. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{49} \mathrm{H}_{72} \mathrm{NO}_{11} \mathrm{~S}^{+} 882.4821$; Found 882.4829. IR (film) v 3313, 2820, 1601, $1395,1350,1234,770 \mathrm{~cm}^{-1}$.
(2R,3R,4S,5R,6S)-2-(((2-(4-isobutylphenyl)propanoyl)oxy)methyl)-6-((5-methyl-2-(pyrrolidin-1-yl)phenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (30)

Purified by flash column chromatography $\mathrm{R}_{f}=0.5$ (petroleum ether/AcOEt $=4: 1(\mathrm{v} / \mathrm{v})$). Compound 3 o was isolated in $60 \% ~(120.5 \mathrm{mg})$ yield as colorless oil following the general procedure $\mathbf{A} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.011$ (c 1.0, MeCN); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, Chloroform-d) $\delta 7.29$ - 7.25 (m, 2H), $7.16-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 7.01-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.78$ - $6.75(\mathrm{~m}, 1.5 \mathrm{H}), 5.17(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{t}, J=9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.87(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.67(\mathrm{~m}, 1.5 \mathrm{H}), 4.18-4.14(\mathrm{~m}, 0.5 \mathrm{H}), 4.07-$ $4.03(\mathrm{~m}, 0.5 \mathrm{H}), 3.87(\mathrm{dd}, J=12.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=12.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-$ $3.60(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 6.5 \mathrm{H}), 2.43-2.41$ (m, 3.5H), $2.24-2.23$ (m, 5H), $2.06(\mathrm{~s}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 1 \mathrm{H}), 1.89-1.86(\mathrm{~m}, 6 \mathrm{H})$, $1.85(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.42(\mathrm{~m}, 3.5 \mathrm{H}), 0.88-0.86(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 173.5, 173.1, 170.7, 170.4, 169.3, 148.9, 141.1, $136.9,136.1,135.9,129.9,129.8,129.6,129.5,127.3,127.2,127.1,121.1,116.6$, 85.7, 85.6, 76.0, 75.7, 74.2, 73.6, 70.6, 70.5, 68.2, 68.0, 62.4, 62.3, 51.8, 45.2, 45.1, $44.9,30.3,25.3,22.4,20.9,20.8,20.7,20.6,20.5,20.2,18.1,18.0$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{NO}_{9} \mathrm{~S}^{+}$670.3044; Found 670.3041. IR (film) v 3309, 2817, $1749,1601,1398,1350,761 \mathrm{~cm}^{-1}$.
(2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-(($(2 R, 3 R, 4 S, 5 R, 6 S)-4,5-$ diacetoxy-2-(acetoxymethyl)-6-((5-methyl-2-(pyrrolidin-1-yl)phenyl)thio)tetrahydro-2H-pyran-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3p)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt = 1:1 (v/v)). Compound 3p was isolated in 55% (133.9 mg) yield as colorless oil following the general procedure $\mathbf{A} ;[\alpha]^{20}-0.011$ (c 1.0, MeCN); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.25(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.98 (dd, $J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=3.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ $(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=10.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.88(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{~d}, J=$
$10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=11.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.05(\mathrm{~m}$, $3 \mathrm{H}), 3.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.28-$ 3.22 (m, 4H), $2.23(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.02$ - 2.01 (m, 9H), $1.94(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.86(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform-d) $\delta 170.5$, $170.3,170.2,169.9,169.6,169.2,148.8,135.9,129.7,129.4,121.2,116.6,101.2$, 85.4, 76.6, 76.5, 74.1, 71.1, 70.7, 69.1, 66.7, 62.5, 60.9, 51.7, 25.2, 20.9, 20.8, 20.7, 20.6, 20.5. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{37} \mathrm{H}_{50} \mathrm{NO}_{17} \mathrm{~S}^{+}$812.2794; Found 812.2781. IR (film) v 3345, 2811, 2730, 1755, 1601, 1372, 1230, 1041, $609 \mathrm{~cm}^{-1}$.
($2 R, 3 R, 4 S, 5 R, 6 S)$-2-(acetoxymethyl)-6-(($2 R, 3 R, 4 S, 5 R, 6 S)-4,5-$ diacetoxy-2-(acetoxymethyl)-6-((5-methyl-2-(pyrrolidin-1-yl)phenyl)thio)tetrahydro-2H-pyran-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3q)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt = 1:1 (v/v)). Compound $\mathbf{3 q}$ was isolated in 59% (143.6 mg) yield as colorless oil following the general procedure $\mathbf{A} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (500 MHz , Chloroform- d) $\delta 7.24$ (s, 1H), 6.97 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.76 (d, $J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.16-5.09(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.87(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J$ $=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{dd}, J=12.4$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=11.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=12.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{t}, J$ $=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.21(\mathrm{~m}, 4 \mathrm{H}), 2.23(\mathrm{~s}$, $3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 6 \mathrm{H}), 1.99(\mathrm{~s}, 6 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.85(\mathrm{~m}$, 4H). ${ }^{13}$ C NMR (126 MHz , Chloroform- d) δ 170.6, 170.4, 170.3, 169.9, 169.5, 169.4, $169.2,148.7,135.9,129.7,129.4,121.2,116.6,100.9,85.4,76.6,73.9,73.0,72.0$, 71.6, 70.6, 67.8, 62.4, 61.6, 51.7, 25.2, 20.9, 20.7, 20.6, 20.4. HRMS (ESI) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{37} \mathrm{H}_{50} \mathrm{NO}_{17} \mathrm{~S}^{+}$812.2794; Found 812.2776.
($2 R, 3 R, 4 S, 5 R, 6 R)$-2-(acetoxymethyl)-6-(($(2 R, 3 R, 4 S, 5 R, 6 R)-4,5-$ diacetoxy-2-(acetoxymethyl)-6-(((2R,3R,4S,5R,6S)-4,5-diacetoxy-2-(acetoxymethyl)-6-((5-
methyl-2-(pyrrolidin-1-yl)phenyl)thio)tetrahydro-2H-pyran-3-yl)oxy)tetrahydro-2H-pyran-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3r)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=1: 3(\mathrm{v} / \mathrm{v})$). Compound $\mathbf{3 r}$ was isolated in $65 \%(214.4 \mathrm{mg})$ yield as colorless oil following the general procedure $\mathbf{A} ;[\alpha]_{D^{20}}$ +0.030 (c 1.0, MeCN); ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.25(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.28(\mathrm{~m}, 2 \mathrm{H}), 5.24-5.21(\mathrm{~m}, 2 \mathrm{H}), 5.04$ (t, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=10.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-$ $4.72(\mathrm{~m}, 1 \mathrm{H}), 4.72-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{dd}, J=12.1,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.23(\mathrm{dd}, J=12.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=12.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=$ $12.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.89(\mathrm{~m}, 3 \mathrm{H}), 3.70-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.29$ - 3.21 (m, 4H), $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.01$ (s, 3H), $1.98(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.86(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) $\delta 170.7,170.6,170.5,170.3,169.9,169.8,169.6$, $148.9,135.9,129.8,129.5,120.9,116.6,95.9,95.7,85.0,76.7,75.9,73.9,72.6,71.8$, $71.1,70.5,70.1,69.4,69.0,68.6,67.9,63.4,62.4,61.4,51.7,25.2,21.0,20.9,20.8$, 20.7, 20.6, 20.4. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{49} \mathrm{H}_{66} \mathrm{NO}_{25} \mathrm{~S}^{+} 1100.3639$; Found 1100.3638. IR (film) v 3351, 2804, 1745, 1591, 1398, 1356, 1227, 1035, 774 cm^{-1}.
(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((5-methyl-2-morpholinophenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3s)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=2: 1(\mathrm{v} / \mathrm{v})$). Compound 3 s was isolated in 40% (153.2 mg) yield as yellow solid following the general procedure \mathbf{A}; m.p.: $100.0-101.5{ }^{\circ} \mathrm{C} ;[\alpha]{ }_{D}{ }^{20}-$
0.013 ($c 1.0, \mathrm{MeCN}$); ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=$
$8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.08(\mathrm{~m}, 2 \mathrm{H})$, 4.97 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=12.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=12.3,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84-3.80(\mathrm{~m}, 5 \mathrm{H}), 2.94-2.92(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$, 2.01 (s, 6H). ${ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 170.8,170.4,169.6,169.3,148.8$, $134.4,130.5,130.0,128.6,120.1,84.3,76.0,74.1,70.4,68.5,67.4,62.7,52.5,21.2$, 20.8, 20.7. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NO}_{10} \mathrm{~S}^{+} 540.1898$; Found 540.1898. IR (film) v 2866, 1736, 1379, 1221, $1041 \mathrm{~cm}^{-1}$.
(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((5-methyl-2-(piperidin-1-yl)phenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3t)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=3: 1(\mathrm{v} / \mathrm{v})$). Compound 3t was isolated in 35% (56.4 mg) yield as colorless oil following the general procedure $\mathbf{A} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.020(c 1.0, \mathrm{MeCN}) ;{ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform-d) $\delta 7.18$ (s, 1H), 7.00 (dd, $J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.00(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=12.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=12.3,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.82(\mathrm{~m}, 4 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}$, 3H), $2.02-2.01(\mathrm{~m}, 6 \mathrm{H}), 1.68-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.53(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform-d) $\delta 170.8,170.4,169.6,169.4,150.3,133.6,130.5,129.9,128.3$, $120.1,84.3,75.9,74.2,70.3,68.7,62.7,53.8,26.5,24.3,21.2,20.9,20.8,20.7$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{NO}_{9} \mathrm{~S}^{+} 538.2105$; Found 538.2116. IR (film) v 2929, 2856, 1739, 1376, 1225, 1035, $912 \mathrm{~cm}^{-1}$.
(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((2-(diethylamino)-5-
methylphenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3u)

Purified by flash column chromatography $\mathrm{R}_{f}=0.2$ (petroleum ether/AcOEt $=3: 1(\mathrm{v} / \mathrm{v})$). Compound $3 \mathbf{u}$ was isolated in $50 \%(78.8 \mathrm{mg})$ yield as white solid following the
general procedure \mathbf{A}; m.p.: $89.7-92.8{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.015$ (c 1.0, MeCN); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.14(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H}), 5.28(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{t}$, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=$ $12.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.83(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.92(\mathrm{~m}, 4 \mathrm{H}), 2.31$ $(\mathrm{s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 6 \mathrm{H}), 0.95-0.93(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform-d) $\delta 170.8,170.4,169.6,169.4,146.5,134.5,134.2,128.5,127.5$, 123.1, 84.4, 75.8, 74.2, 70.2, 68.6, 62.8, 48.1, 21.3, 20.9, 20.8, 20.7, 12.6. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{NO}_{9} \mathrm{~S}^{+} 526.2105$; Found 526.2110. IR (film) v $3342,2813,2720,1588,1401,1353,774,626 \mathrm{~cm}^{-1}$.
(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((2-(bis(4-methoxybenzyl)amino)-5-methylphenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3v)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=5: 1(\mathrm{v} / \mathrm{v})$). Compound $\mathbf{3 v}$ was isolated in $67 \%(142.6 \mathrm{mg})$ yield as yellow oil following the general procedure $\mathbf{A} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.024$ (c 1.0, MeCN); ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.21-7.17$ (m, 5H), $6.89-6.86$ (m, 1H), $6.83-$ $6.79(\mathrm{~m}, 5 \mathrm{H}), 5.30(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{t}, J=9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.91$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=12.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=12.3,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 1 \mathrm{H})$, 3.77 ($\mathrm{s}, 6 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform- d) $\delta 170.8,170.4,169.6,169.5,158.7,146.6,134.6$, $132.6,130.4,130.1,129.0,127.6,123.4,113.6,85.2,75.8,74.2,70.1,68.6,62.8,56.2$, 55.3, 29.8, 21.3, 20.9, 20.8, 20.7. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{NO}_{11} \mathrm{~S}^{+} 710.2630$; Found 710.2628. IR (film) $v 3454,1755,1588,1366,1230$, $1035 \mathrm{~cm}^{-1}$.
(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((2-(dibenzylamino)-5-
methylphenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3w)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=4: 1(\mathrm{v} / \mathrm{v})$). Compound $\mathbf{3 w}$ was isolated in $62 \%(120.8 \mathrm{mg})$ yield as yellow oil following the general procedure $\mathbf{A} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.015$ (c $\left.1.0, \mathrm{MeCN}\right) ;{ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform-d) $\delta 7.30-7.18$ (m, 11H), $6.89-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.33-$ 5.26 (m, 2H), $5.14(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=11.4$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=14.3 \mathrm{~Hz}$, 2H), 3.87 - 3.84 (m, 1H), 2.27 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H), 1.84 (s, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 170.7, 170.3, 169.5, 169.4, 146.4, 138.2, $134.6,132.5,129.0,128.8,128.2,127.6,127.1,123.0,85.1,75.8,74.1,70.0,68.5$, 62.7, 57.0, 21.3, 20.8, 20.7, 20.5. HRMS (ESI) $\mathrm{m} / \mathrm{z}: ~[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{NO}_{9} \mathrm{~S}^{+}$650.2418; Found 650.2416. IR (film) v 3328, 2813, 2714, 1749, 1584, $1398,1347,764,693,619 \mathrm{~cm}^{-1}$.
(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((5-(tert-butyl)-2-
(dibenzylamino)phenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3x)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=4: 1(\mathrm{v} / \mathrm{v})$). Compound $\mathbf{3 x}$ was isolated in $67 \%(138.9 \mathrm{mg})$ yield as yellow oil following the general procedure $\mathbf{A} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.020(c 1.0, \mathrm{MeCN}) ;{ }^{1} \mathbf{H}$

NMR (500 MHz, Chloroform-d) $\delta 7.44$ (s, 1H), 7.27 - 7.25 (m, 8H), $7.20-7.19$ (m, 2H), 7.08 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.31-5.24(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{t}$, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=12.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=$ $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform- d) δ 171.1, 170.5, 169.6, 169.5, 148.0, 146.7, 138.4, 131.9, 128.9, $128.4,127.2,125.6,124.2,122.7,85.8,76.0,74.3,70.0,68.4,62.6,57.0,34.7,31.6$, 21.1, 20.9, 20.7. HRMS (ESI) m/z: $[\mathrm{M} \mathrm{+} \mathrm{H}]^{+}$Calcd for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{NO}_{9} \mathrm{~S}^{+}$692.2888; Found 692.2884. IR (film) v $1755,1591,1369,1215,1031 \mathrm{~cm}^{-1}$.
(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((5-methoxy-2-(pyrrolidin-1-
yl)phenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3y)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=2: 1(\mathrm{v} / \mathrm{v})$). Compound $\mathbf{3 y}$ was isolated in 60% (97.1 mg) yield as colorless oil following the general procedure $\mathbf{A} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (500 MHz , Chloroformd) $\delta 7.06(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.9,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.20(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=$ $12.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.13 (dd, $J=12.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.71$ (s, 4H), $3.14-3.12$ (m, 4H), 2.07 ($\mathrm{s}, 3 \mathrm{H}$), $2.02(\mathrm{~s}, 3 \mathrm{H}), 2.01$ ($\mathrm{s}, 3 \mathrm{H}$), 1.98 ($\mathrm{s}, 3 \mathrm{H}$), 1.87 ($\mathrm{s}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform-d) $\delta 170.9,170.3,169.5,169.3,154.4,144.4,126.0,118.7,118.4$, 113.5, 85.0, 75.9, 74.2, 70.1, 68.4, 62.4, 55.6, 52.1, 24.9, 20.8, 20.7. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NO}_{10} \mathrm{~S}^{+} 540.1898$; Found 540.1895.
(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((5-fluoro-2-(pyrrolidin-1-yl)phenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3z)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=5: 1(\mathrm{v} / \mathrm{v})$). Compound $\mathbf{3 z}$ was isolated in $67 \%(106.0 \mathrm{mg})$ yield as white solid following the general procedure \mathbf{A}; m.p.: $131.2-132.6{ }^{\circ} \mathrm{C} ; \mathbf{}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (500 MHz, Chloroform- d) $\delta 7.24(\mathrm{~s}, 1 \mathrm{H}), 6.91-6.84(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.06-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.73(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 3.77-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.18$ (s, 4H), 2.10 (s, 3H), 2.03 ($\mathrm{s}, 6 \mathrm{H}$), 1.99 ($\mathrm{s}, 3 \mathrm{H}$), 1.89 (s, 4H). ${ }^{19}$ F NMR (471 MHz , Chloroform- d) $\delta-122.63$. ${ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) δ 171.0, 170.4, 169.6, $169.3,157.3$ (d, $J=239.4 \mathrm{~Hz}$), 146.9, $125.5,119.3$ (d, $J=23.9 \mathrm{~Hz}$), $118.0(\mathrm{~d}, J=7.6$ $\mathrm{Hz}), 115.0(\mathrm{~d}, J=22.7 \mathrm{~Hz}), 85.2,76.9,74.2,70.0,68.5,62.5,52.1,25.1,20.8,20.7$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{FNO}_{9} \mathrm{~S}^{+} 528.1698$; Found 528.1698.
(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((5-chloro-2-(pyrrolidin-1-
yl)phenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3aa)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=5: 1(\mathrm{v} / \mathrm{v})$). Compound 3aa was isolated in $67 \% ~(109.2 \mathrm{mg})$ yield as white solid following the general procedure \mathbf{A}; m.p.: $122.3-125.5{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-$ 0.046 (c 1.0, MeCN); ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.92(\mathrm{t}, \mathrm{J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.68$ (m, 1H), 3.27 (s, 4H), 2.08 (s, 3H), 2.02 (s, 3H), 2.00 (s, 3H), 1.97 (s, 3H), 1.88 (s, $4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 170.9,170.3,169.5,169.2,149.6,134.6$, $128.9,123.9,121.5,117.1,85.7,74.1,70.0,68.3,62.4,51.9,25.5,20.8,20.7,20.6$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{ClNO}_{9} \mathrm{~S}^{+}$544.1403; Found 544.1401. IR (film) $v 3374,2813,1739,1601,1391,1350 \mathrm{~cm}^{-1}$.
(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((5-bromo-2-(pyrrolidin-1-yl)phenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3ab)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=5: 1(\mathrm{v} / \mathrm{v})$). Compound 3ab was isolated in $65 \%(114.5 \mathrm{mg})$ yield as white solid following the general procedure \mathbf{A}; m.p.: $113.4-116.8^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-$ 0.017 (c 1.0, MeCN); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.94(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=12.2,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.14(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.32(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.05$ $(\mathrm{s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 170.9,170.3,169.5,169.2,150.1,137.8,131.8,121.4,117.4,110.8,85.9,75.9,74.1$, 70.1, 68.2, 62.4, 51.8, 25.5, 20.9, 20.7. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for
$\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{BrNO}_{9} \mathrm{~S}^{+}$588.0897; Found 588.0917. IR (film) v 3328, 2817, 2720, 1755, 1610, $1388,1350,1237,1208,1041,777,604 \mathrm{~cm}^{-1}$.
(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((2-(pyrrolidin-1-yl)-5-
(trifluoromethoxy)phenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3af)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=2: 1(\mathrm{v} / \mathrm{v})$). Compound 3af was isolated in 33% (58.7 mg) yield as colorless oil following the general procedure $\mathbf{A} ;[\alpha]{ }_{D}{ }^{20}-0.019(c \quad 1.0, \mathrm{MeCN}) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.42(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=9.0,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.79(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{t}$, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=12.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J$ $=12.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.29(\mathrm{~m}, 4 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}$, $3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.89(\mathrm{~m}, 4 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (471 MHz, Chloroform- d) $\delta-58.14 .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) δ 170.9, 170.4, 169.5, $169.2,149.8,141.5,127.7,121.9,121.4,116.3,86.1,74.1,69.9,68.2,62.3,52.0,25.6$, 20.7, 20.6. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{NO}_{10} \mathrm{~S}^{+} 594.1615$; Found 594.1615. IR (film) v 3351, 2817, 2727, 1742, 1601, 1388, 1350, 1237, 1035, 609 cm^{-1}.
(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((5-(2-methoxy-2-oxoethyl)-2-(pyrrolidin-

1-yl)phenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3ag)

Purified by flash column chromatography $\mathrm{R}_{f}=0.2$ (petroleum ether/AcOEt $=2: 1(\mathrm{v} / \mathrm{v})$). Compound 3ag was isolated in $32 \%(55.8 \mathrm{mg})$ yield as colorless oil following the general procedure $\mathbf{A} ;[\alpha]{ }_{D}{ }^{20}-0.030(c 1.0, \mathrm{MeCN}) ;{ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.42(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.09$ (dd, $J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.06(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}$,
$J=12.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=12.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.63(\mathrm{~m}$, $1 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.32-3.29(\mathrm{~m}, 4 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}$, 3H), 1.89 - 1.86 (m, 4H). ${ }^{13}$ C NMR (126 MHz , Chloroform-d) $\delta 172.4,170.8,170.4$, $169.5,169.3,150.3,136.9,130.1,124.8,119.8,116.1,86.3,75.8,74.3,70.1,68.2$, 62.3, 52.2, 51.8, 40.1, 25.5, 20.9, 20.8, 20.7. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{NO}_{11} \mathrm{~S}^{+}$582.2004; Found 582.2003. IR (film) v 3348, 2827, 2724, 1745, 1601, $1391,1353,1230,1044,774,604 \mathrm{~cm}^{-1}$.
($2 R, 3 R, 4 S, 5 R, 6 S$)-2-(acetoxymethyl)-6-((4-(pyrrolidin-1-yl)-[1,1'-biphenyl]-3-yl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3ah)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt = 4:1 (v/v)). Compound 3ah was isolated in $65 \%(114.1 \mathrm{mg})$ yield as colorless oil following the general procedure $\mathbf{A} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.014$ (c 1.0, MeCN); ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.78$ (s, $1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26$ (s, 1H), $6.90(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.98(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=12.5,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.09 (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 4 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H})$, $1.99(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 4 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform-d) $\delta 170.9$, $170.4,169.5,169.3,150.6,140.3,135.2,132.1,128.9,128.0,126.7,126.4,119.3$, 116.3, 86.2, 75.9, 74.3, 70.3, 68.3, 62.4, 51.9, 25.6, 20.8, 20.7, 20.4. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{NO}_{9} \mathrm{~S}^{+} 586.2105$; Found 586.2100 .
(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((2,5-di(pyrrolidin-1-yl)phenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3ai)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=3: 1(\mathrm{v} / \mathrm{v})$). Compound 3ai was isolated in $56 \%(97.1 \mathrm{mg})$ yield as colorless oil following
the general procedure $\mathbf{A} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.024(c 1.0, \mathrm{MeCN}) ;{ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- d) $\delta 6.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=8.7$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.93(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.29(\mathrm{dd}, J=12.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=12.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.69(\mathrm{~m}, 1 \mathrm{H})$, $3.25-3.23(\mathrm{~m}, 4 \mathrm{H}), 3.10-3.06(\mathrm{~m}, 4 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.00$ $-1.97(\mathrm{~m}, 7 \mathrm{H}), 1.88-1.86(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 170.9$, $170.5,169.6,169.4,144.3,140.0,127.5,119.6,115.6,112.0,85.3,75.9,74.4,70.2$, 68.5, 62.5, 52.3, 48.0, 25.6, 24.7, 20.8, 20.7. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}^{+} 579.2371$; Found 579.2367. IR (film) v 3309, 2817, 1749, 1594, 1391, $1350,1221,1035,761 \mathrm{~cm}^{-1}$.
(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((4-methyl-1-(pyrrolidin-1-yl)naphthalen-2-yl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3aj)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=6: 1(\mathrm{v} / \mathrm{v})$). Compound 3aj was isolated in $50 \%(86.9 \mathrm{mg})$ yield as colorless oil following the general procedure $\mathbf{A} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.024$ (c 1.0, MeCN); ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.99-7.94$ (m, 2H), $7.51-7.47$ (m, 2H), $7.37(\mathrm{~s}, 1 \mathrm{H}), 5.33-5.29(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{t}, J=9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.93(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=12.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=12.2,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.91-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.32(\mathrm{~m}, 4 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.09(\mathrm{~m}, 7 \mathrm{H})$, $2.05(\mathrm{~s}, 6 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform-d) $\delta 170.8,170.4,169.6$, $169.5,141.8,133.4,133.3,132.9,132.8,126.6,126.2,125.7,125.1,124.3,85.4,75.9$, 74.2, 70.2, 68.6, 62.8, 51.4, 26.9, 20.9, 20.8, 19.9. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{NO}_{9} \mathrm{~S}^{+} 574.2105$; Found 574.2104. IR (film) v 3306, 2813, 2720, 1742, $1584,1388,1350,1227,1028,761 \mathrm{~cm}^{-1}$.
(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((2-(dimethylamino)-5-
methylphenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3ak)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=3: 1(\mathrm{v} / \mathrm{v})$). Compound 3ak was isolated in $65 \% ~(96.9 \mathrm{mg}$) yield as white solid following the general procedure B; m.p.: $87.1-92.3{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-0.026(c$ $1.0, \mathrm{MeCN}) ;{ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{t}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.93$ (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=12.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.77$ (m, 1H), 2.68 (s, 6H), 2.29 (s, 3H), 2.06 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H), 2.01 (s, 3H). ${ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 170.8,170.4,169.5,169.4,150.7,133.4$, $131.0,128.8,128.6,119.7,84.5,75.8,74.2,70.1,68.5,62.6,44.7,21.2,21.0,20.8$, 20.7. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{9} \mathrm{~S}^{+} 498.1792$; Found 498.1792. IR (film) v 3364, 2820, 1752, 1607, 1388, 1343, 1244, 1054, 764, cm^{-1}.
(2R,3R,4S,5R,6S)-2-((benzoyloxy)methyl)-6-((2-(dimethylamino)-5-methylphenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl tribenzoate (3al)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=8: 1(\mathrm{v} / \mathrm{v})$). Compound 3al was isolated in 72% (161.0 mg) yield as colorless oil following the general procedure $\mathbf{B} ;[\alpha]_{\mathrm{D}}{ }^{20}+0.006(c 1.0, \mathrm{MeCN}) ;{ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform-d) $\delta 7.97-7.90(\mathrm{~m}, 6 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}$, 3H), $7.44-7.41$ (m, 1H), $7.39-7.33$ (m, 6H), $7.29-7.24$ (m, 4H), 6.96 (d, $J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.64(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dd}, J=12.2,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.48(\mathrm{dd}, J=12.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.23(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 6 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) $\delta 166.3,166.0,165.4,165.2,151.0,133.6,133.3$, 133.2, 132.0, 130.0, 129.9, 128.9, 128.6, 128.5, 128.4, 119.6, 85.2, 76.4, 74.4, 70.9, 69.8, 63.8, 44.5, 20.7. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{43} \mathrm{H}_{40} \mathrm{NO}_{9} \mathrm{~S}^{+} 746.2418$; Found 746.2412. IR (film) v 3463, 1730, 1604, 1266, 1060, $703 \mathrm{~cm}^{-1}$.
($2 R, 3 R, 4 S, 5 R, 6 S)$-2-(acetoxymethyl)-6-((2-(dimethylamino)-5-
ethylphenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3am)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=3: 1(\mathrm{v} / \mathrm{v})$). Compound 3am was isolated in 55% (84.3 mg) yield as colorless oil following the general procedure \mathbf{C}; ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) δ $7.23(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{t}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.11-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=12.7 \mathrm{~Hz}, 5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.12(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.76(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 6 \mathrm{H}), 2.58(\mathrm{q}, J=15.2 \mathrm{~Hz}, 7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 6 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 170.8,170.4,169.4,150.9,139.7,129.9,128.7,127.5$, 119.7, 84.6, 75.8, 74.2, 70.1, 68.4, 62.5, 44.7, 28.3, 20.8, 15.6. HRMS (ESI) m/z: [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{NO}_{9} \mathrm{~S}^{+}$512.1949; Found 512.1946 .
($2 R, 3 R, 4 S, 5 R, 6 S$)-2-(acetoxymethyl)-6-((5-(tert-butyl)-2-
(dimethylamino)phenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3an)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/ $\mathrm{AcOEt}=3: 1(\mathrm{v} / \mathrm{v})$). Compound 3an was isolated in 56% (90.6 mg) yield as colorless oil following the general procedure $\mathbf{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.022(c 1.0, \mathrm{MeCN}) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.44$ (s, 1H), 7.23 (dd, $J=8.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.99 (d, $J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.91(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.30(\mathrm{dd}, J=12.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=12.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.74(\mathrm{~m}, 1 \mathrm{H})$, 2.69 (s, 6H), 2.05 (s, 3H), 2.03 (s, 3H), 2.02 (s, 3H), 2.00 (s, 3H), 1.30 (s, 9H). ${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 170.9,170.4,169.5,169.4,150.7,146.5,127.9$, $125.1,119.2,85.1,76.0,74.3,70.0,68.3,62.4,44.6,34.5,31.5,20.9,20.8,20.7$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{NO}_{9} \mathrm{~S}^{+} 540.2262$; Found 540.2264. IR (film) v 2962, 2871, 2823, 2782, 1752, 1494, 1382, 1234, 1047, 905, $825 \mathrm{~cm}^{-1}$.
(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((5-bromo-2-
(dimethylamino)phenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3ao)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt = 5:1 (v/v)). Compound 3ao was isolated in $67 \% ~(112.8 \mathrm{mg})$ yield as white solid following the general procedure \mathbf{C}; m.p.: $104.4-107.4{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.023(c$ $1.0, \mathrm{MeCN}) ;{ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{t}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.87$ $(\mathrm{d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.82(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 6 \mathrm{H}), 2.12(\mathrm{~s}$, 3H), $2.04(\mathrm{~s}, 6 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 171.0,170.4$, $169.6,169.4,152.0,132.2,131.5,130.6,121.2,116.3,84.1,76.1,74.1,69.9,68.4$, 62.6, 44.4, 21.0, 20.8, 20.7. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{BrNO}_{9} \mathrm{~S}^{+}$ 562.0741; Found 562.0721. IR (film) v 2949, 2852, 1762, 1372, 1240, 1031, 828 cm^{-1}.
(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((2-(dimethylamino)-5-methoxyphenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3ap)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=2: 1(\mathrm{v} / \mathrm{v})$). Compound 3ap was isolated in 50% (77.0 mg) yield as colorless oil following the general procedure $\mathbf{B} ;[\alpha]{ }_{\mathrm{D}}{ }^{20}-0.014(c 1.0, \mathrm{MeCN}) ;{ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.03$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}$), $6.72(\mathrm{dd}, J=8.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{~d}, J$ $=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~s}, 6 \mathrm{H})$, $2.08(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 6 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform-d) $\delta 170.9$, $170.4,169.6,169.4,156.4,146.0,131.9,120.8,115.4,111.6,84.1,75.9,74.2,70.0$, 68.5, 62.6, 55.5, 45.0, 20.8, 20.7. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{10} \mathrm{~S}^{+} 514.1741$; Found 514.1746. IR (film) v 3348, 2811, 1749, 1604, 1385, 1347, 1230, $1050 \mathrm{~cm}^{-1}$.
fluorophenyl)(methyl)amino)methyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3aq)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=5: 1(\mathrm{v} / \mathrm{v})$). Compound 3aq was isolated in 20% (30.1 mg) yield as colorless oil following the general procedure $\mathbf{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.007 \quad(c 1.0$, MeCN); ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 6.98-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.78(\mathrm{~m}$, $2 \mathrm{H}), 5.11-5.00(\mathrm{~m}, 3 \mathrm{H}), 4.95(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}$, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=12.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=12.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ - $3.41(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 6 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19}$ F NMR (471 MHz, Chloroform- d) $\delta-126.16 .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) δ 170.7, 170.3, $169.5,157.5(\mathrm{~d}, J=239.4 \mathrm{~Hz}), 144.5,115.8(\mathrm{~d}, J=22.7 \mathrm{~Hz}), 115.3(\mathrm{~d}, J=7.6 \mathrm{~Hz})$, 81.7, 75.8, 73.8, 70.4, 68.3, 62.3, 55.9, 38.0, 20.9, 20.7. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{FNO}_{9} \mathrm{~S}^{+}$502.1542; Found 502.1542.

($2 R, 3 R, 4 S, 5 R, 6 S)$-2-(acetoxymethyl)-6-((2-(dimethylamino)-5-

fluorophenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3ar)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/AcOEt $=5: 1(\mathrm{v} / \mathrm{v})$). Compound 3ar was isolated in 25% (37.6 mg) yield as colorless oil following the general procedure $\mathbf{C} ;{ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- d) δ 7.14 (dd, $J=9.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=8.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{td}, J=8.3,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.29-5.26(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J$ $=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.83(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 6 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H})$, $2.04(\mathrm{~s}, 6 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 9}} \mathbf{F}$ NMR (471 MHz , Chloroform- d) $\delta-117.87 .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 170.9,170.3,169.6,169.4,159.4(\mathrm{~d}, J=244.4 \mathrm{~Hz}$), 148.5 , $132.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 121.1(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 115.3(\mathrm{~d}, J=25.2 \mathrm{~Hz}), 113.7(\mathrm{~d}, J=$
$25.2 \mathrm{~Hz}), 83.8,76.1,74.1,69.9,68.5,62.6,44.8,20.8,20.7$. HRMS (ESI) m/z: $[\mathrm{M}+$ $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{FNO}_{9} \mathrm{~S}^{+}$502.1542; Found 502.1542.
(2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-((2-(dimethylamino)-5-methoxyphenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3as)

Purified by flash column chromatography $\mathrm{R}_{f}=0.2$ (petroleum ether/AcOEt $=2: 1(\mathrm{v} / \mathrm{v})$). Compound 3as was isolated in 70% (107.8 mg) yield as colorless oil following the general procedure $\mathbf{B} ;{ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- d) $\delta 7.03(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{dd}, J=8.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.36(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=9.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18-4.11(\mathrm{~m}, 2 \mathrm{H}), 4.03-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~s}, 6 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$, $2.05(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform-d) δ 170.7, $170.4,170.2,169.5,156.3,145.9,132.1,120.7,115.4,111.4,84.6,72.2,67.5,67.1$, 62.1, 55.5, 45.0, 20.9, 20.8, 20.7, 20.6. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{10} \mathrm{~S}^{+}$514.1741; Found 514.1736.
($2 R, 3 R, 4 S, 5 S, 6 R$)-2-(acetoxymethyl)-6-((2-(dimethylamino)-5-methoxyphenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3at)

Purified by flash column chromatography $\mathrm{R}_{f}=0.2$ (petroleum ether/AcOEt $=3: 1(\mathrm{v} / \mathrm{v}))$. Compound 3at was isolated in 67% (103.1 mg) yield as colorless oil following the general procedure B; $[\alpha]_{D}{ }^{20}+0.111$ (c 1.0, MeCN); ${ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.09(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (d, $J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=8.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=3.4$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=10.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.46(\mathrm{~m}$, $1 \mathrm{H}), 4.31(\mathrm{dd}, J=12.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=12.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, 2.68 (s, 6H), 2.17 (s, 3H), 2.05 (s, 3H), 2.02 (s, 3H), 2.00 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) $\delta 170.9,170.1,169.9,156.4,146.2,130.7,120.8,115.5,112.7$,
83.0, $71.4,69.6,66.5,62.4,55.0,45.2,21.1,20.8,20.7$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{10} \mathrm{~S}^{+}$514.1741; Found 514.1737. IR (film) v 3357, 2823, 1752, 1601, 1395, 1347, 1227, 1057, $768 \mathrm{~cm}^{-1}$.
(2R,3S,4R,5R,6S)-2-((2-(dimethylamino)-5-methoxyphenyl)thio)-6-methyltetrahydro-2H-pyran-3,4,5-triyl triacetate (3au)

Purified by flash column chromatography $\mathrm{R}_{f}=0.3$ (petroleum ether/ $\mathrm{AcOEt}=3: 1(\mathrm{v} / \mathrm{v}))$. Compound 3au was isolated in 65% (88.8 mg) yield as yellow oil following the general procedure $\mathbf{B} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.009$ (c 1.0, MeCN); ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.05(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.7$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=9.9,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{q}, J=5.8,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~s}$, $6 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform- d) $\delta 170.9,170.3,169.6,156.2,146.0,132.0,120.7,115.1,112.0$, 84.4, 73.2, 72.7, 70.5, 67.1, 55.5, 45.0, 20.9, 20.8, 16.7. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{8} \mathrm{~S}^{+} 456.1687$; Found 456.1681.

(2R,3S,4R,5S)-2-(acetoxymethyl)-5-((2-(dimethylamino)-5-

methoxyphenyl)thio)tetrahydrofuran-3,4-diyl diacetate (3av)

Purified by flash column chromatography $\mathrm{R}_{f}=0.5$ (petroleum ether/AcOEt $=3: 1(\mathrm{v} / \mathrm{v})$). Compound 3av was isolated in 60% (79.4 mg) yield as white solid following the general procedure \mathbf{C}; m.p.: $97.0-99.5{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-0.017$ (c $1.0, \mathrm{MeCN}) ;{ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}$, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.06$ (m, 2H), $5.00-4.96$ (m, 1H), 4.31 (dd, $J=11.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (s, 3H), 3.49 (dd, J $=11.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 6 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform- d) $\delta 170.1,169.9,169.5,156.3,146.2,120.8,115.3,112.5,84.1,71.9$,
69.9, 68.6, 64.9, 55.7, 45.0, 29.8, 20.9. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{8} \mathrm{~S}^{+} 442.1530$; Found 442.1533. IR (film) v 3345, 2813, 2720, 1759, 1598, 1395, 1356, 1225, 1064, $597 \mathrm{~cm}^{-1}$.

10. Scale-up experiment

Figure S7. The ElectraSyn Set-up.

A beaker was charged with a stir bar, 1a $(0.7 \mathrm{~g}, 2.0 \mathrm{mmol}), \mathbf{2 a}(0.32 \mathrm{~g}, 2.0 \mathrm{mmol})$, ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}(2.3 \mathrm{~g}, 7.0 \mathrm{mmol}), 40.0 \mathrm{~mL} \mathrm{MeCN}$, and the suspension was stirred until the solids resolve. The assembled electrode was placed into the solution. After N_{2} was bubbled through the solution for 30 min , the reaction mixture was electrolyzed under a constant current of 3.0 mA at room temperature for 10 h until the substrate was completely consumed. The bubbling of N_{2} continued during the reaction. The solvent was concentrated under vacuum and the residue purified by flash column chromatography on silica gel (eluting: petroleum ether/ethyl acetate $=3: 1(\mathrm{v} / \mathrm{v})$) to give product $\mathbf{3 a}(0.47 \mathrm{~g}, 45 \%)$.

11. Characterization data for compounds in Scheme 2

Compound 3w ($0.095 \mathrm{~g}, 0.15 \mathrm{mmol}$) was dissolved in methanol (5 mL) and tetrahydrofuran $(5 \mathrm{~mL}) .20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(0.02 \mathrm{~g}, 0.03 \mathrm{mmol})$ was added and the reaction mixture was stirred overnight under a hydrogen atmosphere (balloon). The mixture was then filtered through a pad of Celite and the pad washed with MeOH (5 mL). The filtrate was concentrated under vacuum and the residue purified by flash column chromatography on silica gel to obtain 3w-1 (eluent: petroleum ether/ethyl acetate $=3: 1(\mathrm{v} / \mathrm{v}) ; 52.8 \mathrm{mg}, 75 \%$ yield). Gray solid, m.p.: $95.6-97.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.15$ ($\mathrm{s}, 1 \mathrm{H}$), $6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.17(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}$, 3H), $2.06(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ $170.7,170.4,169.5,169.3,147.4,137.9,132.2,127.7,115.6,113.2,86.8,75.9,74.1$, 70.3, 68.1, 62.0, 20.9, 20.8, 20.7, 20.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{9} \mathrm{~S}^{+} 470.1479$; Found 470.1480.

Ibuprofen ($0.041 \mathrm{~g}, 0.2 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$, then DIPEA (45 $\mu \mathrm{L}, 0.24 \mathrm{mmol})$, HATU ($0.091 \mathrm{~g}, 0.24 \mathrm{mmol}$), and compound $\mathbf{3 w - 1}(0.096 \mathrm{~g}, 0.2$ $\mathrm{mmol})$ was added. After stirring at room temperature for 6 h , the mixture was diluted with EtOAc and the organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel, affording product $\mathbf{3 w - 2}$ (eluent: petroleum ether/ethyl
acetate $=5: 1(\mathrm{v} / \mathrm{v}) ; 157.7 \mathrm{mg}, \mathrm{dr}=1.3: 1,80 \%$ yield). White solid, m.p.: $118.2-$ $120.7{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.55(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.18(\mathrm{dd}, J$ $=10.8,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 9 \mathrm{H}), 5.14-5.09(\mathrm{~m}, 2.3 \mathrm{H})$, $4.92-4.88(\mathrm{~m}, 2.6 \mathrm{H}), 4.86-4.81(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{dd}, J=13.1,10.1 \mathrm{~Hz}, 2.3 \mathrm{H}), 4.13$ (dd, $J=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.98(\mathrm{~m}, 2.5 \mathrm{H}), 3.90(\mathrm{dd}, J=12.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ - 3.65 (m, 2.3H), $3.52-3.44$ (m, 2.3H), 2.50 (dd, $J=11.5,7.1 \mathrm{~Hz}, 5 \mathrm{H}$), $2.28-2.27$ $(\mathrm{m}, 7.3 \mathrm{H}), 2.10(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 7 \mathrm{H}), 2.01-1.99(\mathrm{~m}, 13.7 \mathrm{H}), 1.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 7 \mathrm{H})$, $1.90-1.83(\mathrm{~m}, 2.7 \mathrm{H}), 1.58(\mathrm{dd}, J=10.2,7.1 \mathrm{~Hz}, 7 \mathrm{H}), 0.91-0.89(\mathrm{~m}, 14.3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 172.7,170.5,170.2,169.6,169.5,169.4,169.3$, 141.1, 141.0, 139.4, 138.1, 137.9, 137.8, 137.6, 134.1, 134.0, 132.0, 129.9, 129.8, $128.0,127.8,121.3,121.1,118.8,118.1,87.3,86.5,76.0,75.8,73.9,73.7,70.3,70.2$, 68.1, 68.0, 62.0, 61.9, 48.0, 45.1, 30.3, 22.5, 20.9, 20.7, 20.6, 18.6, 18.4. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{NO}_{10} \mathrm{~S}^{+}$658.2680; Found 658.2674. IR (film) v 3460, $1759,1517,1366,1221,1037 \mathrm{~cm}^{-1}$.

To a mixture of Cinnamaldehyde ($20 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) and compound $\mathbf{3 w}-1(0.048 \mathrm{~g}$, $0.1 \mathrm{mmol})$ in $\mathrm{DCE}(2 \mathrm{~mL})$, $\mathrm{AcOH}(11 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ was added, after the mixture is stirred at room temperature for 15 minutes, $\mathrm{NaBH}(\mathrm{OAc})_{3}(0.043 \mathrm{~g}, 0.2 \mathrm{mmol})$ is added. After completion of the reaction as indicated by thin-layer chromatography (TLC), the reaction mixture was quenched with a saturated aqueous solution of sodium bicarbonate. The mixture was then diluted with DCM and the organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel, affording product $\mathbf{3 w - 3}$ as a yellow oil (eluent: petroleum ether/ethyl acetate $=6: 1(\mathrm{v} / \mathrm{v}) ; 45.6 \mathrm{mg}, 78 \%$ yield). $[\alpha]{ }^{20}{ }^{20}-0.013(c 1.0, \mathrm{MeCN}) ;{ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.37-7.36(\mathrm{~m}$, $2 \mathrm{H}), 7.30(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$
$-6.59(\mathrm{~m}, 2 \mathrm{H}), 6.35-6.29(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{t}, J=$ $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=12.4$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=12.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.59(\mathrm{~m}, 1 \mathrm{H})$, $2.22(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform- d) δ 170.7, 170.4, 169.5, 169.3, 147.9, 138.2, 136.8, 132.4, 131.6, 128.7, 127.7, 126.7, 126.4, 126.2, 113.3, 111.1, 87.0, 76.0, 74.2, 70.3, 68.0, 62.0, 46.2, 20.9, 20.7, 20.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{NO}_{9} \mathrm{~S}^{+}$586.2105; Found 586.2100. IR (film) v 3332, 2817, 2720, 1759, 1598, 1398, 1343, 1215, 1041, $758,616 \mathrm{~cm}^{-1}$.

A suspension of compound $\mathbf{3 w - 1}(0.14 \mathrm{~g}, 0.3 \mathrm{mmol})$ in 2.7 M aqueous $\mathrm{HCl}(0.2 \mathrm{~mL})$ was cooled to $0-5{ }^{\circ} \mathrm{C}$ and a solution of sodium nitrite $(0.023 \mathrm{~g}, 0.33 \mathrm{mmol})$ in water $(0.1 \mathrm{~mL})$ was added dropwise. The diazonium salt solution was stirred for 30 min and then added to a solution of potassium ethyl xanthate $(0.077 \mathrm{~g}, 0.48 \mathrm{mmol})$ in water $(0.1 \mathrm{~mL})$ stirring at $50^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 50 min, then extracted with EtOAc for three times. The combined organic extracts were washed with 1 M NaOH and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel, affording product 3w-4 as a yellow oil (eluent: petroleum ether/ethyl acetate $=3: 1(\mathrm{v} / \mathrm{v}) ; 96.4$ $\mathrm{mg}, 56 \%$ yield). $[\alpha]_{\mathrm{D}}{ }^{20}-0.019$ (c 1.0, MeCN); ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) δ $7.59(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{t}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.06(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{dd}, J=12.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=12.3,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74-3.70(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 6 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform-d) $\delta 212.3,170.7,170.3,169.5,141.7$, $138.8,136.6,134.4,130.0,86.1,75.9,73.9,70.6,69.7,68.2,62.4,21.6,20.9,20.7$,
13.8. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{10} \mathrm{~S}_{3}{ }^{+}$575.1074; Found 575.1054. IR (film) v 3319, 2817, 2733, 1755, 1601, 1388, 1350, 1221, 1050, $761 \mathrm{~cm}^{-1}$.

A solution of compound $\mathbf{3 w - 1}(0.11 \mathrm{~g}, 0.2 \mathrm{mmol})$ in anhydrous DCM was cooled to $0^{\circ} \mathrm{C}$. m-CPBA ($0.07 \mathrm{~g}, 0.4 \mathrm{mmol}$) was added under N_{2} atmosphere. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h . Aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 15 min . The organic layer was separated and washed with aqueous NaHCO_{3} and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel, affording product 3w-5 as a colorless oil (eluent: petroleum ether/ethyl acetate $=2: 1(\mathrm{v} / \mathrm{v}) ; 36.9$ $\mathrm{mg}, 38 \%$ yield). $[\alpha]_{\mathrm{D}}{ }^{20}-0.024$ (c 1.0, MeCN); ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) δ $7.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{t}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.22(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ (dd, $J=12.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=12.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.75(\mathrm{~m}, 1 \mathrm{H}), 2.23$ $(\mathrm{s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 170.7,170.4,169.4,169.1,146.4,134.2,128.0,127.3,118.9,117.8$, 89.1, 76.6, 74.3, 67.8, 67.6, 61.8, 20.8, 20.7, 20.5, 20.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{10} \mathrm{~S}^{+}$486.1428; Found 486.1435. IR (film) v 3351, 2817, 2720, $1755,1581,1398,1347,1221,777,619 \mathrm{~cm}^{-1}$.

An mixture of acetic anhydride ($70 \mu \mathrm{~L}$) and formic acid ($70 \mu \mathrm{~L}$) was stirred at room temperature to form in situ acetic formic anhydride. After cooling to room temperature it was added dropwise to a stirred solution of compound $\mathbf{3 w} \mathbf{- 1}$ in DCM (2
mL) at $0{ }^{\circ} \mathrm{C}$. After stirring 2 h at room temperature, the reaction was stopped by the addition of a satd. NaHCO_{3}. The aqueous phase was extracted three times with DCM and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Without further purification the residue was dissolved in THF (3 mL) and triethylamine ($0.5 \mathrm{~mL}, 3.5 \mathrm{mmol}$) was added. The reaction mixture was added dropwise $\mathrm{POCl}_{3}(95 \mu \mathrm{~L}, 1 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere over 15 mins. After stirring two hours at this temperature, the reaction mixture was poured into a satd. NaHCO_{3}. The aqueous phase was extracted three times with EtOAc. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and purified by column chromatography on silica gel, affording product 3w-6 as as colorless oil (eluent: petroleum ether/ethyl acetate $=4: 1(\mathrm{v} / \mathrm{v}) ; 215.6 \mathrm{mg}, 90 \%$ for 2 steps). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.17(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{t}, J=$ $9.5,1 \mathrm{H}), 4.72(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=12.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=12.3$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.71$ (m, 1H), 2.38 (s, 3H), 2.12 (s, 3H), 2.07 (s, 3H), 2.01 (s, 3H), $1.98(\mathrm{~s}, 3 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data of $\mathbf{3 w - 6}$ are in accordance with those reported previously. ${ }^{4}$

An 10 mL glass vial was charged with $\mathbf{3 w - 6}(0.096 \mathrm{mg}, 0.2 \mathrm{mmol}$), 4CzIPN (1.6 mg , $2 \mu \mathrm{~mol}$), DIPEA ($35 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and $\mathrm{MeCN}(2 \mathrm{~mL})$. The vial was gently purged by N_{2} for 30 seconds and sealed with a rubber stopper. The reaction was stirred vigorously and irradiated with 5 W (450-455 nm, approximately 4 cm away from the vial) blue LED at $25^{\circ} \mathrm{C}$ for 12 hours. A clip fan next to the reaction setup had been kept working during the reaction, offsetting the heat generated from the LED light and to stabilize reaction temperature for reproducible results. Afterword, the reaction mixture was concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to obtain 3w-7 (eluent: petroleum ether/ethyl acetate $=2$: $1(\mathrm{v} / \mathrm{v}) ; 67.1 \mathrm{mg}, 70 \%$ yield). ${ }^{4}$ White solid, m.p.: $88.9-90.6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, Chloroform-d) $\delta 8.01$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.67 (s, 1H), 7.32 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.03$ $(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=9.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{t}, J=$
$9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=12.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=12.5$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 6 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform-d) $\delta 170.8,170.0,169.8,163.1,151.4,136.1,135.2,128.1,123.7$, 121.3, 71.6, 71.2, 70.3, 70.2, 68.6, 61.8, 21.6, 20.8, 20.7. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{9} \mathrm{~S}^{+}$480.1323; Found 480.1325.

To a solution of compound $\mathbf{3 e}(0.22 \mathrm{~g}, 0.3 \mathrm{mmol})$ in THF (5 mL) was added glacial acetic acid $(45 \mu \mathrm{~L}, 0.78 \mathrm{mmol})$ followed by TBAF $(0.39 \mathrm{~mL}, 0.39 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF). After 12 h stirring at rt , the reaction mixture was quenched with saturated NaHCO_{3}, extracted with AcOEt , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. Without further purification the residue was dissolved in DCM (5 mL), probenecid $(0.10 \mathrm{~g}, 0.36 \mathrm{mmol})$, EDCI $(0.086 \mathrm{~g}, 0.45 \mathrm{mmol})$, DMAP ($0.01 \mathrm{~g}, 0.09 \mathrm{mmol})$, and DIPEA ($96 \mu \mathrm{~L}, 0.54 \mathrm{mmol}$) was added in succession. After stirring 12 h at room temperature, the mixture was then diluted with DCM and the organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel, affording product $\mathbf{3 e - 1}$ as a yellow oil (eluent: petroleum ether/ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v}) ; 148.1 \mathrm{mg}, 66 \%$ for 2 steps). $[\alpha]_{D^{20}}-0.020(c 1.0, \mathrm{MeCN}) ;{ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.06$ (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{t}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.80(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.27$ $(\mathrm{m}, 4 \mathrm{H}), 3.10-3.07(\mathrm{~m}, 4 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.89(\mathrm{~m}$, $7 \mathrm{H}), 1.59-1.52(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroformd) $\delta 170.8,170.4,169.3,164.0,149.0,145.0,136.0,132.1,130.6,129.9,129.5,127.3$, $121.0,116.7,85.9,75.8,73.9,70.3,69.9,62.8,51.8,50.2,25.3,22.2,20.8,20.7,20.5$,
11.3. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{~S}_{2}{ }^{+} 749.2772$; Found 749.2766. IR (film) v 3325, 2813, 2727, 1742, 1601, 1385, 1347, 764, $619 \mathrm{~cm}^{-1}$.

3 3b

Under N_{2} atmosphere, compound 3ab ($0.094 \mathrm{~g}, 0.16 \mathrm{mmol}$), Loratadine boronic ester $(0.27 \mathrm{~g}, 0.56 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{DCM}(0.007 \mathrm{~g}, 0.008 \mathrm{mmol})$, and potassium carbonate ($0.066 \mathrm{~g}, 0.48 \mathrm{mmol}$) were weighed into a screw-capped vial with a magnetic stir bar. Dioxane/ $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL} / 0.6 \mathrm{~mL})$ was added. The vial was tightly sealed with a Teflonlined cap and heated at $100{ }^{\circ} \mathrm{C}$ for 12 h . The reaction was diluted with ethyl acetate (5 mL) and washed with brine. The aqueous phase was extracted with ethyl acetate for three times. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel, affording product 3ab-1 as a yellow oil (eluent: petroleum ether/ethyl acetate $=1: 2(\mathrm{v} / \mathrm{v}) ; 106.7 \mathrm{mg}, 78 \%$ yield $) .[\alpha]_{\mathrm{D}}{ }^{20}-0.007(c 1.0$, MeCN); ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.38(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.73(\mathrm{t}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (dd, $J=8.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{td}, J$ $=9.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{td}, J=9.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-$ $4.02(\mathrm{~m}, 4 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.64-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.36(\mathrm{~m}, 6 \mathrm{H}), 3.18-3.09(\mathrm{~m}$, 2H), $2.90-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.42(\mathrm{~m}, 3 \mathrm{H}), 2.31(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H})$, $1.98(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.60(\mathrm{~d}, J=30.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) δ 170.7, 170.4, 169.5, 169.2, 155.6, 150.6, 146.7, 139.3, 138.0, 137.4, 136.8, 135.4, 135.3, 135.1, 133.8, $131.4,131.3,130.0,127.8,127.0,123.9,122.2,116.2,86.1,75.7,74.2,70.2,68.2$, 62.3, 61.4, 51.9, 45.0, 32.2, 31.7, 30.9, 30.7, 25.6, 20.8, 20.7, 20.2, 20.1, 14.8. HRMS
(ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{46} \mathrm{H}_{54} \mathrm{~N}_{3} \mathrm{O}_{11} \mathrm{~S}^{+}$856.3474; Found 856.3476. IR (film) v $3328,2813,1755,1594,1382,1350,1221,1115,1037,768 \mathrm{~cm}^{-1}$.

12. Reference

1. (a) A. Brinkø, C. Risinger, A. Lambert, O. Blixt, C. Grandjean and H. H. Jensen, Org. Lett., 2019, 21, 7544-7548; (b) N. Floyd, B. Vijayakrishnan, J. R. Koeppe and B. G. Davis, Angew. Chem. Int. Ed., 2009, 48, 7798-7802. (c) R. Q. Wang, Q. H. Jiang, H. X. Wang, X. W. Zhang and N. Yan, Org. Lett., 2023, 25, 4252-4257.
2. P. H. Shu, J. Zeng, J. Y. Tao, Y. Q. Zhao, G. M. Yao and Q. Wan, Green Chem., 2015, 17, 2545.
3. J. T. Ge, L. Zhou, F. L. Zhao and H. Dong, J. Org. Chem., 2017, 82, 12613-12623.
4. L. Y. Hu, S. Y. Zhang, L. Zhu, Y. Li, K. Luo and L. Wu, Org. Lett., DOI: 10.1021/acs.orglett. 3 c 03817 .

13. NMR spectra

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{a}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of 3b $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{~b}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{c}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{c}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of 3d $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{~d}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{e}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{e}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{f}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{f}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{~g}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{~g}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{~h}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{~h}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{i}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{i}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 j}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{j}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

[^0]
${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{k}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{k}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $31\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $31\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{~m}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{~m}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{n}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{n}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $30\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{o}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{p}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{p}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{q}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 q}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{r}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{r}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{~s}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{of} 3 \mathrm{~s}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{t}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{t}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{u}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{u}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{v}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{v}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{w}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{w}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{x}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{x}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{y}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{y}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{z}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{19} \mathrm{~F}$ NMR of $3 \mathrm{z}\left(\mathrm{CDCl}_{3}, 471 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{z}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of 3aa $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of 3aa ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}$)

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a b}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of 3ab $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{af}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{19} \mathrm{~F}$ NMR of 3af $\left(\mathrm{CDCl}_{3}, 471 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of 3af $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of 3ag ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25^{\circ} \mathrm{C}$)

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{ag}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{ah}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of 3ah $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of 3ai $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of 3ai $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of 3aj ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}$)

${ }^{13} \mathrm{C}$ NMR of 3aj ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}$)

${ }^{1} \mathrm{H}$ NMR of 3ak $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of 3ak ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}$)

${ }^{1} \mathrm{H}$ NMR of 3ai $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of 3ai $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{am}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{am}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of 3an $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of 3an ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}$)

${ }^{1} \mathrm{H}$ NMR of 3ao $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of 3ao ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}$)

${ }^{1} \mathrm{H}$ NMR of 3ap $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{of} \mathrm{3ap} \mathrm{(} \mathrm{CDCl}_{3}, 471 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}$)

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{aq}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{19} \mathrm{~F}$ NMR of $3 \mathrm{aq}\left(\mathrm{CDCl}_{3}, 471 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of 3aq $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{ar}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right.$)

${ }^{19} \mathrm{~F}$ NMR of $3 \mathrm{ar}\left(\mathrm{CDCl}_{3}, 471 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right.$)

${ }^{13} \mathrm{C}$ NMR of 3ar $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of 3as $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of 3as $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of 3at $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of 3at $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

若

${ }^{1} \mathrm{H}$ NMR of 3au $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right.$)

$\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{of} \mathrm{3au(} \mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

No

${ }^{1} \mathrm{H}$ NMR of 3av $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of 3av ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}$)

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{w}-1\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{w}-2\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{w}-2\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{w}-3\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{w}-3\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{w}-4\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{w}-4\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{w}-5\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{w}-5\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{w}-6\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{w}-7\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{w}-7\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{e}-1\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{e}-1\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of 3ab- $1\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

H-H COSY of 3ab-1 ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of 3ab-1 $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $5\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $5\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $6\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $6\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR of $7\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}$ NMR of $7\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$

$\underbrace{\text { ®. }}$

14. Proof of absolute configuration

CCDC 2324843
Table S6. Crystal data and structure refinement for 3ak.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters

3ak
C23 H31 N O9 S
497.55

296(2) K
0.71073 A

Orthorhombic
P212121
$\mathrm{a}=8.4872(3) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=10.4118(4) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=29.1441(11) \AA \quad \gamma=90^{\circ}$.
2575.38(17) \AA^{3}

4
$1.283 \mathrm{Mg} / \mathrm{m}^{3}$
$0.175 \mathrm{~mm}^{-1}$
1056
$0.220 \times 0.190 \times 0.180 \mathrm{~mm}^{3}$
2.077 to 27.520°.
$-10<=\mathrm{h}<=10,-13<=\mathrm{k}<=12,-29<=1<=37$
25923
$5821[\mathrm{R}(\mathrm{int})=0.0337]$
99.6 \%

Semi-empirical from equivalents
0.7456 and 0.6919

Full-matrix least-squares on F^{2}
5821/0/314

Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
1.024
$\mathrm{R} 1=0.0430, \mathrm{wR} 2=0.0967$
$R 1=0.0632, w R 2=0.1046$
0.04(2)
n/a
0.179 and -0.210 e. \AA^{-3}

Table S7. Bond lengths [\AA] and angles $\left[{ }^{\circ}\right]$ for 3ak.

$\mathrm{C}(1)-\mathrm{O}(9)$	$1.435(3)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.500(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.527(3)$
$\mathrm{C}(1)-\mathrm{H}(1)$	0.9800
$\mathrm{C}(2)-\mathrm{O}(3)$	$1.442(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.507(4)$
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9800
$\mathrm{C}(3)-\mathrm{O}(5)$	$1.441(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.522(3)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9800
$\mathrm{C}(4)-\mathrm{O}(7)$	$1.438(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.527(3)$
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9800
$\mathrm{C}(5)-\mathrm{O}(9)$	$1.414(3)$
$\mathrm{C}(5)-\mathrm{S}(1)$	$1.804(2)$
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9800
$\mathrm{C}(6)-\mathrm{O}(1)$	$1.434(3)$
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9700
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9600
$\mathrm{C}(7)-\mathrm{O}(2)$	0.9700
$\mathrm{C}(7)-\mathrm{O}(1)$	$1.178(5)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.318(4)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	$1.472(6)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9600
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	0.9600
$\mathrm{C}(9)-\mathrm{O}(4)$	$1.181(4)$
$\mathrm{C}(9)-\mathrm{O}(3)$	C
$\mathrm{C}(9)-\mathrm{C}(10)$	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$

$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9600
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	0.9600
$\mathrm{C}(11)-\mathrm{O}(6)$	1.188(3)
$\mathrm{C}(11)-\mathrm{O}(5)$	1.358(3)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.484(5)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9600
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9600
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	0.9600
$\mathrm{C}(13)-\mathrm{O}(8)$	1.187(4)
$\mathrm{C}(13)-\mathrm{O}(7)$	1.350(4)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.494(5)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9600
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9600
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.9600
$\mathrm{C}(15)-\mathrm{C}(16)$	1.383(4)
$\mathrm{C}(15)-\mathrm{C}(19)$	1.404(4)
C(15)-S(1)	1.769(3)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.389(4)
$\mathrm{C}(16)-\mathrm{H}(16)$	0.9300
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.376(5)$
$\mathrm{C}(17)$-C(21)	1.499 (5)
$\mathrm{C}(18)-\mathrm{C}(20)$	1.359(5)
$\mathrm{C}(18)-\mathrm{H}(18)$	0.9300
$\mathrm{C}(19)$-C(20)	1.388(4)
$\mathrm{C}(19)-\mathrm{N}(1)$	1.422(4)
$\mathrm{C}(20)-\mathrm{H}(20)$	0.9300
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9600
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9600
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	0.9600
$\mathrm{C}(22)-\mathrm{N}(1)$	1.474(7)
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9600
C(22)-H(22B)	0.9600
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	0.9600
$\mathrm{C}(23)-\mathrm{N}(1)$	1.451(5)
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9600
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9600
C(23)-H(23C)	0.9600

$\mathrm{O}(9)-\mathrm{C}(1)-\mathrm{C}(6)$	106.64(19)
$\mathrm{O}(9)-\mathrm{C}(1)-\mathrm{C}(2)$	109.64(19)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	112.0(2)
$\mathrm{O}(9)-\mathrm{C}(1)-\mathrm{H}(1)$	109.5
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1)$	109.5
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	109.5
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(3)$	108.69(18)
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	106.82(19)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	111.76(19)
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	109.8
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	109.8
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	109.8
$\mathrm{O}(5)-\mathrm{C}(3)-\mathrm{C}(2)$	107.10(18)
$\mathrm{O}(5)-\mathrm{C}(3)-\mathrm{C}(4)$	108.9(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	109.63(18)
$\mathrm{O}(5)-\mathrm{C}(3)-\mathrm{H}(3)$	110.4
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	110.4
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	110.4
$\mathrm{O}(7)-\mathrm{C}(4)-\mathrm{C}(3)$	108.69(19)
$\mathrm{O}(7)-\mathrm{C}(4)-\mathrm{C}(5)$	108.64(19)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	110.6(2)
$\mathrm{O}(7)-\mathrm{C}(4)-\mathrm{H}(4)$	109.6
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	109.6
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	109.6
$\mathrm{O}(9)-\mathrm{C}(5)-\mathrm{C}(4)$	108.81(19)
$\mathrm{O}(9)-\mathrm{C}(5)-\mathrm{S}(1)$	109.34(16)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)$	106.56(17)
$\mathrm{O}(9)-\mathrm{C}(5)-\mathrm{H}(5)$	110.7
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	110.7
$\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{H}(5)$	110.7
$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(1)$	107.3(2)
$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	110.2
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	110.2
$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	110.2
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	110.2
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.5
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{O}(1)$	122.4(4)
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	124.5(4)

$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	113.1(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~B})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{O}(3)$	122.6(3)
$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	125.3(3)
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(10)$	112.1(3)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{H}(10 \mathrm{~B})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{O}(6)-\mathrm{C}(11)-\mathrm{O}(5)$	123.8(3)
$\mathrm{O}(6)-\mathrm{C}(11)-\mathrm{C}(12)$	125.8(3)
$\mathrm{O}(5)-\mathrm{C}(11)-\mathrm{C}(12)$	110.4(3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{O}(8)-\mathrm{C}(13)-\mathrm{O}(7)$	123.6(3)
$\mathrm{O}(8)-\mathrm{C}(13)-\mathrm{C}(14)$	126.3(3)
$\mathrm{O}(7)-\mathrm{C}(13)-\mathrm{C}(14)$	110.0(3)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(19)$	119.7(2)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{S}(1)$	124.75(19)
$\mathrm{C}(19)-\mathrm{C}(15)-\mathrm{S}(1)$	115.5(2)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	121.2(3)

$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	119.4
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	119.4
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	118.2(3)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(21)$	120.9(3)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(21)$	120.9(3)
$\mathrm{C}(20)-\mathrm{C}(18)-\mathrm{C}(17)$	121.3(3)
$\mathrm{C}(20)-\mathrm{C}(18)-\mathrm{H}(18)$	119.3
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	119.3
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(15)$	117.9(3)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{N}(1)$	124.4(3)
$\mathrm{C}(15)-\mathrm{C}(19)-\mathrm{N}(1)$	117.7(3)
$\mathrm{C}(18)-\mathrm{C}(20)-\mathrm{C}(19)$	121.5(3)
$\mathrm{C}(18)-\mathrm{C}(20)-\mathrm{H}(20)$	119.3
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	119.3
$\mathrm{C}(17)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5
$\mathrm{C}(17)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{C}(17)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{N}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	109.5
$\mathrm{N}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{N}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{H}(22 \mathrm{~B})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{N}(1)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	109.5
$\mathrm{N}(1)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{N}(1)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~B})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{C}(19)-\mathrm{N}(1)-\mathrm{C}(23)$	115.2(4)
$\mathrm{C}(19)$ - $\mathrm{N}(1)-\mathrm{C}(22)$	113.0(3)
$\mathrm{C}(23)-\mathrm{N}(1)-\mathrm{C}(22)$	110.2(4)
$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(6)$	118.6(3)
$\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{C}(2)$	118.0(2)
$\mathrm{C}(11)-\mathrm{O}(5)-\mathrm{C}(3)$	119.4(2)

$\mathrm{C}(13)-\mathrm{O}(7)-\mathrm{C}(4)$	$118.0(2)$
$\mathrm{C}(5)-\mathrm{O}(9)-\mathrm{C}(1)$	$113.84(17)$
$\mathrm{C}(15)-\mathrm{S}(1)-\mathrm{C}(5)$	$104.68(12)$

Symmetry transformations used to generate equivalent atoms:

Table S8. Torsion angles [${ }^{\circ}$] for 3ak.

$\mathrm{O}(9)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	-172.62(18)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	69.2(3)
$\mathrm{O}(9)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-53.9(3)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-172.0(2)
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(5)$	-72.4(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(5)$	169.96(19)
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	169.6(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	51.9(3)
$\mathrm{O}(5)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(7)$	70.1(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(7)$	-173.01(19)
$\mathrm{O}(5)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-170.72(18)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-53.8(3)
$\mathrm{O}(7)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(9)$	177.30(19)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(9)$	58.1(3)
$\mathrm{O}(7)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)$	-64.9(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)$	175.88(16)
$\mathrm{O}(9)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{O}(1)$	-54.7(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{O}(1)$	65.2(3)
$\mathrm{C}(19)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	2.2(4)
$\mathrm{S}(1)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	-176.5(2)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	1.2(5)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(21)$	-178.2(4)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(20)$	-2.2(6)
$\mathrm{C}(21)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(20)$	177.2(4)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(19)-\mathrm{C}(20)$	-4.6(4)
$\mathrm{S}(1)-\mathrm{C}(15)-\mathrm{C}(19)-\mathrm{C}(20)$	174.3(2)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(19)-\mathrm{N}(1)$	174.1(3)
$\mathrm{S}(1)-\mathrm{C}(15)-\mathrm{C}(19)-\mathrm{N}(1)$	-7.0(4)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(20)-\mathrm{C}(19)$	-0.2(6)
$\mathrm{C}(15)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(18)$	3.6(5)

$\mathrm{N}(1)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(18)$	-174.9(4)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{N}(1)-\mathrm{C}(23)$	-29.5(6)
$\mathrm{C}(15)-\mathrm{C}(19)-\mathrm{N}(1)-\mathrm{C}(23)$	151.9(4)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{N}(1)-\mathrm{C}(22)$	98.5(4)
$\mathrm{C}(15)-\mathrm{C}(19)-\mathrm{N}(1)-\mathrm{C}(22)$	-80.1(4)
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(6)$	4.8(6)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(6)$	-174.2(3)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{O}(1)-\mathrm{C}(7)$	-175.7(3)
$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{C}(2)$	-3.0(4)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{C}(2)$	177.1(2)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{C}(9)$	116.9(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{C}(9)$	-122.4(2)
$\mathrm{O}(6)-\mathrm{C}(11)-\mathrm{O}(5)-\mathrm{C}(3)$	-5.0(4)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{O}(5)-\mathrm{C}(3)$	173.9(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(5)-\mathrm{C}(11)$	146.5(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(5)-\mathrm{C}(11)$	-95.0(3)
$\mathrm{O}(8)-\mathrm{C}(13)-\mathrm{O}(7)-\mathrm{C}(4)$	-0.8(4)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{O}(7)-\mathrm{C}(4)$	178.2(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(7)-\mathrm{C}(13)$	-103.4(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{O}(7)-\mathrm{C}(13)$	136.2(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(9)-\mathrm{C}(1)$	-62.4(3)
$\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{O}(9)-\mathrm{C}(1)$	-178.39(17)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{O}(9)-\mathrm{C}(5)$	-178.3(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(9)-\mathrm{C}(5)$	60.2(3)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{S}(1)-\mathrm{C}(5)$	12.9(3)
$\mathrm{C}(19)-\mathrm{C}(15)-\mathrm{S}(1)-\mathrm{C}(5)$	-165.9(2)
$\mathrm{O}(9)-\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{C}(15)$	-78.09(19)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{C}(15)$	164.47(16)

Symmetry transformations used to generate equivalent atoms:

Table S9. Hydrogen bonds for $3 \mathbf{3}$ [$\left[\AA\right.$ and ${ }^{\circ}$].

$\mathrm{D}-\mathrm{H} \ldots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A}) \ldots \mathrm{O}(2) \# 1$	0.96	2.40	$3.266(5)$	150.0
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B}) \ldots \mathrm{O}(4) \# 1$	0.96	2.48	$3.272(5)$	139.4
$\mathrm{C}(16)-\mathrm{H}(16) \ldots \mathrm{O}(9)$	0.93	2.62	$3.267(3)$	127.2
		S 118		

$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C}) \ldots \mathrm{S}(1)$	0.96	2.79	$3.281(5)$	112.6

Symmetry transformations used to generate equivalent atoms:
\#1 x+1/2,-y+3/2,-z+1

[^0]: -0.017

