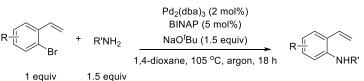
Synthesis of ¹⁰B-enriched 2,1-Borazaronaphthalenes from *o*-Aminostyrenes and ¹⁰BF₃

Weihua Qiu¹, Jide Zhu¹, Rencai Tao¹, Kai Yang^{*1} and Qiuling Song^{*1,2}

¹Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China ²School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China

*Corresponding author. Email: kyang@fzu.edu.cn; qsong@fzu.edu.cn

Table of Content


1. General information	1
2. General Procedure for the Synthesis of 2-Aminostyrenes	1
3. Comparison of GC-MS data between ¹¹ B-3a and ¹⁰ B-3a	3
4. General procedure for the synthesis of ¹⁰ B-enriched 2,1-borazaronaphthalenes	3
5. Synthetic transformations	8
6. Control experiments	10
7. References	12
8. NMR Spectra	13

1. General information

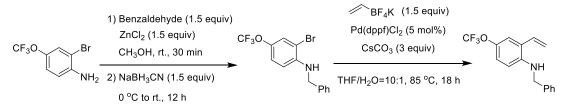
Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Flash column chromatography was performed over silica gel (200-300 mesh). ¹H NMR, ¹³C NMR, ¹⁹F NMR spectra were recorded at ambient temperature using Bruker 400M and JEOL 500M spectrometers, chemical shifts (in ppm) were referenced to CDCl₃ (δ = 7.26 ppm) as internal standards. ¹³C NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl₃ (δ = 77.0 ppm). Data for ¹H NMR are recorded as following abbreviations: multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constant (J, Hz). High resolution mass spectroscopy (HRMS) analysis was performed at an Exactive Plus (Thermo Scientific) or Agilent 8890-7250.

2. General Procedure for the Synthesis of 2-Aminostyrenes.

1a^[1], 1n^[1], 1p^[1], 1q^[2], 1r^[3] and 1t^[9] is a known compound, 1m, 1o, 1s are synthesized as follows:

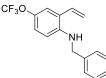
By analogy to a modified literature procedure.^[1] To a 50 mL Schlenk flask equipped with a stir bar were added $Pd_2(dba)_3$ (2 mol%), BINAP (5 mo%), and NaO'Bu (1.5 equiv). The flask was evacuated and filled with argon for three cycles. Dioxane was added under argon, followed by 2-bromostyrene (5.0 mmol, 1 equiv), and the corresponding amine (1.5 equiv). The resulting mixture was heated to 105 °C and stirred until full consumption of 2-bromostyrene was observed by TLC (12~18 h). The reaction mixture was cooled to rt., diluted with EtOAc, and filtered over Celite. After removal of the solvent, the crude reaction mixture was purified by flash column chromatography to afford the desired products 1m and 10.

N-(thiophen-2-ylmethyl)-2-vinylaniline (1m)

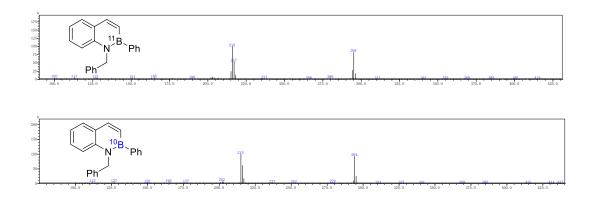


Yellow liquid. Yield: 79% (849.2 mg), $R_f = 0.46$ (silica gel, PE: EtOAc = 20:1).¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 (d, J = 7.5 Hz, 1H), 7.17 (dd, J = 19.2, 6.2 Hz, 2H), 7.01 – 6.89 (m, 2H), 6.80 – 6.62 (m, 3H), 5.61 (d, J = 17.4 Hz, 1H), 5.30 (d, J = 11.0 Hz, 1H), 4.50 (s, 2H), 4.17 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.5, 142.7, 132.7, 128.9, 127.4, 126.8, 125.0, 124.6, 124.6, 118.0, 116.5, 111.1, 77.3, 77.0, 76.7, 43.5. HRMS (EI) calcd for C₁₃H₁₃NS [M]: 215.0769, found: 215.0763.

N-propyl-2-vinylaniline (10)


Yellow liquid. Yield: 85 % (685.3 mg), $R_f = 0.6$ (silica gel, PE: EtOAc = 20:1).¹H NMR (500 MHz, Chloroform-*d*) δ 7.31 (dd, J = 7.5, 1.5 Hz, 1H), 7.25 – 7.20 (m, 1H), 6.84 – 6.73 (m, 2H), 6.69 (d, J = 8.1 Hz, 1H), 5.66 (dd, J = 17.3, 1.6 Hz, 1H), 5.36 (dd, J = 11.0, 1.6 Hz, 1H), 3.83 (s, 1H), 3.15 (t, J = 7.1 Hz, 2H), 1.78 – 1.66 (m, 2H), 1.07 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.4, 132.9, 128.9, 127.4, 124.0, 116.9, 116.1, 110.5, 45.7, 22.6, 11.7. HRMS (EI) calcd for C₁₁H₁₅N [M]: 161.1204, found: 161.1199.

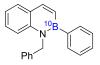
By analogy to a modified literature procedure.^[2] To a 100 mL Schlenk flask equipped with a stir bar were added ZnCl₂ (15 mmol, 1.5equiv), The flask was evacuated and filled with argon for three cycles. CH₃OH (30 mL) was added under argon, followed by 2-bromoaniline (10 mmol, 1.0 equiv) and benzaldehyde (15 mmol, 1.5 equiv). The mixture was stirred at room temperature for 30 min, then cool to 0 °C and added NaBH₃CN (15 mmol, 1.5 equiv). Allow reaction to rise to room temperature overnight. The reaction was quenched by saturated NH₄Cl solution, the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄. Removal of the solvent, the crude reaction mixture was purified by flash column chromatography to afford *N*-benzyl-2-bromo-4-(trifluoromethoxy)aniline (3.08 g, 89%).


By analogy to a modified literature procedure.^[1] To a 50 mL Schlenk flask equipped with a stir bar were added Pd(dppf)Cl₂ (0.25 mmol, 5 mol%), CsCO₃ (15 mmol, 3 equiv), and Potassium vinyltrifluoroborate (7.5 mmol, 1.5 equiv). The flask was evacuated and filled with argon for three cycles. THF (20 mL) and H₂O (2 mL) was added under argon, followed N-benzyl-2-bromo-4-(trifluoromethoxy)aniline (5 mmol, 1.0 equiv). The resulting mixture was heated to 85 °C and stirred until full consumption of *N*-benzyl-2-bromo-4-(trifluoromethoxy)aniline was cooled to rt., diluted with EtOAc, and filtered over Celite. The filtrate were dried over anhydrous Na₂SO₄. Removal of the solvent, the crude reaction mixture was purified by flash column chromatography to afford **1s** (1.0841g, 74%).

N-benzyl-4-(trifluoromethoxy)-2-vinylaniline (1s)

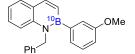
Borwn liquid. Yield: 74% (1.0841 g), $R_f = 0.4$ (silica gel, PE:EA = 20:1).¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 – 7.24 (m, 5H), 7.14 (s, 1H), 6.98 (d, J = 8.7 Hz, 1H), 6.70 (dd, J = 17.2, 11.0 Hz, 1H), 6.54 (d, J = 8.8 Hz, 1H), 5.63 (d, J = 17.3 Hz, 1H), 5.36 (d, J = 11.0 Hz, 1H), 4.32 (s, 2H), 4.17 (s, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -58.29. ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.7, 140.5, 138.7, 131.6, 128.7, 127.4, 127.4, 125.0, 121.7, 120.7 (q, J = 255.5 Hz), 120.4, 117.8, 111.2, 48.4. HRMS (EI) calcd for C₁₆H₁₄F₃NO [M]: 293.1027, found: 293.1027.

3. Comparison of GC-MS data between ¹¹B-3a and ¹⁰B-3a



4. General procedure for the synthesis of ¹⁰B-enriched 2,1-

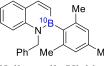
borazaronaphthalenes


In argon, 2-Aminostyrene (0.5 mmol, 1.0 equiv) was transferred to the 25 mL Young tube with 1.5 mL dry toluene and then added to ${}^{10}BF_3 \cdot OEt_2$ (0.5 mmol, 1.0 equiv), DIPEA (1.0 mmol, 2.0 equiv), SiCl₄ (0.5 mmol, 1.0 equiv). The resulting mixture was heated to 90 °C. After stirring for 5 hours, the mixture was cooled to -30 °C, then added RMgBr (1.5 mmol, 3.0 equiv) in argon. The resulting mixture allow to rise to room temperature and stir for 12 h. The reaction was quenched by saturated NH₄Cl solution, the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄. Removal of the solvent, the crude reaction mixture was purified by flash column chromatography to afford the desired products **3a-3s**.

1-benzyl-2-phenyl-1,2-dihydrobenzo[e][1,2]azaborinine-2-¹⁰B (3a)

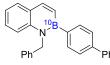
White solid, mp: 100 - 102 °C. Yield: 87% (128.4 mg). $R_f = 0.6$ (silica gel, PE: EtOAc = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (d, *J* = 11.3 Hz, 1H), 7.68 (d, *J* = 7.8 Hz, 1H), 7.55 - 7.49 (m, 2H), 7.35 - 7.24 (m, 7H), 7.23 - 7.14 (m, 2H), 7.12 (s, 1H), 7.10 (s, 1H), 7.05 (d, *J* = 11.3 Hz, 1H), 5.42 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.4, 141.1, 139.3, 132.5, 130.2, 128.7, 128.5, 127.9, 127.7, 127.3, 126.8, 125.7, 121.0, 117.0, 52.4. HRMS (EI) calcd for C₂₁H₁₈¹⁰BN [M]: 294.1569, found: 294.1570.

1-benzyl-2-(3-methoxyphenyl)-1,2-dihydrobenzo[e][1,2]azaborinine-2-¹⁰B (3b)


White solid, mp: 99 - 101 °C. Yield: 85% (137.47 mg). $R_f = 0.5$ (silica gel, PE: EtOAc = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (d, J = 11.3 Hz, 1H), 7.70 (d, J = 7.7 Hz, 1H), 7.34 (d, J = 3.7 Hz, 2H), 7.31 – 7.16 (m, 5H), 7.14 – 7.09 (m, 3H), 7.08 – 7.01 (m, 2H), 6.87 (d, J = 8.0 Hz, 1H), 5.43 (s,

2H), 3.59 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.8, 145.4, 141.2, 139.3, 130.3, 128.9, 128.7, 128.6, 127.3, 126.8, 125.7, 124.9, 121.0, 117.1, 117.0, 114.1, 54.8, 52.5. HRMS (EI) calcd for C₂₂H₂₀¹⁰BNO [M]: 324.1674, found: 324.1671.

1-benzyl-2-(4-chlorophenyl)-1,2-dihydrobenzo[e][1,2]azaborinine-2-¹⁰B (3c)


White solid, mp: 118 - 120 °C. Yield: 77% (126.7 mg). $R_f = 0.6$ (silica gel, PE: EtOAc = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (d, J = 11.3 Hz, 1H), 7.77 (d, J = 7.7 Hz, 1H), 7.50 (d, J = 7.7 Hz, 2H), 7.43 – 7.33 (m, 6H), 7.32 – 7.24 (m, 2H), 7.16 (d, J = 7.5 Hz, 2H), 7.07 (d, J = 11.3 Hz, 1H), 5.45 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.7, 141.1, 139.0, 134.2, 133.9, 130.3, 128.8, 128.7, 127.9, 127.3, 126.9, 125.6, 121.2, 117.0, 52.4. HRMS (EI) calcd for C₂₁H₁₇¹⁰BClN [M]: 328.1179, found: 328.1174.

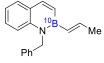
1-benzyl-2-mesityl-1,2-dihydrobenzo[e][1,2]azaborinine-2-¹⁰B (3d)

Yellow oil. Yield: 45% (76.2 mg). $R_f = 0.6$ (silica gel, PE: EtOAc = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (d, *J* = 11.3 Hz, 1H), 7.70 (d, *J* = 7.6 Hz, 1H), 7.32 (s, 2H), 7.22 – 7.07 (m, 4H), 7.01 – 6.88 (m, 3H), 6.86 – 6.75 (m, 2H), 5.25 (s, 2H), 2.28 (s, 3H), 2.10 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.1, 141.3, 139.2, 138.6, 136.9, 130.3, 128.4, 128.2, 127.3, 127.3, 126.5, 125.9, 120.9, 117.1, 51.9, 22.6, 21.1. HRMS (EI) calcd for C₂₄H₂₄¹⁰BN [M]: 336.2038, found: 336.2037.

2-([1,1'-biphenyl]-4-yl)-1-benzyl-1,2-dihydrobenzo[*e*][1,2]azaborinine-2-¹⁰*B* (3e)

White solid, mp: 207 - 209 °C. Yield: 67% (128.4 mg). $R_f = 0.5$ (silica gel, PE: EtOAc = 20:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.14 (d, J = 11.4 Hz, 1H), 7.71 (d, J = 7.6 Hz, 1H), 7.63 – 7.58 (m, 4H), 7.58 – 7.55 (m, 2H), 7.45 – 7.38 (m, 2H), 7.36 – 7.28 (m, 5H), 7.25 – 7.17 (m, 2H), 7.15 (d, J = 7.2 Hz, 2H), 7.10 (d, J = 11.3 Hz, 1H), 5.48 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.4, 141.2, 141.1, 140.6, 139.3, 133.2, 130.3, 128.8, 128.7, 128.6, 127.3, 127.2, 127.0, 126.8, 126.4, 125.7, 121.0, 117.0, 52.5. HRMS (ESI) calcd for $C_{27}H_{22}^{10}BN$ [M+H]⁺: 371.1955, found: 371.1947.

1-benzyl-2-ethynyl-1,2-dihydrobenzo[e][1,2]azaborinine-2-¹⁰B (3f)


White solid, mp: 75 - 76 °C. Yield: 77% (93.3 mg). $R_f = 0.6$ (silica gel, PE: EtOAc = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (d, J = 11.4 Hz, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.40 - 7.31 (m, 2H), 7.30 - 7.24 (m, 2H), 7.23 - 7.12 (m, 4H), 7.03 (d, J = 11.4 Hz, 1H), 5.64 (s, 2H), 3.03 (s, 1H). ¹³C NMR

(**101 MHz, Chloroform-***d*) δ 145.6, 140.8, 138.3, 130.3, 128.8, 128.6, 127.1, 127.0, 126.1, 121.3, 116.5, 95.9, 53.6. **HRMS (EI)** calcd for C₁₇H₁₄¹⁰BN [M]: 242.1256, found: 242.1257.

1-benzyl-2-vinyl-1,2-dihydrobenzo[e][1,2]azaborinine-2-¹⁰B (3g)

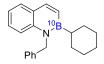
White solid, mp: 52 - 54 °C. Yield: 58% (70.7 mg). $R_f = 0.6$ (silica gel, PE: EtOAc = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (d, *J* = 11.5 Hz, 1H), 7.61 (d, *J* = 7.7 Hz, 1H), 7.36 - 7.17 (m, 5H), 7.17 - 7.09 (m, 4H), 6.63 (dd, *J* = 19.4, 13.6 Hz, 1H), 6.26 (dd, *J* = 19.4, 3.6 Hz, 1H), 6.05 (dd, *J* = 13.5, 3.4 Hz, 1H), 5.38 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.0, 141.4, 138.6, 133.7, 130.1, 128.7, 128.4, 127.2, 126.9, 125.8, 120.7, 116.1, 51.1. HRMS (EI) calcd for C₁₇H₁₆¹⁰BN [M]: 244.1412, found: 244.1410.

(E)-1-benzyl-2-(prop-1-en-1-yl)-1,2-dihydrobenzo[e][1,2]azaborinine-2-¹⁰B (3h)

White solid, mp: 57 - 59 °C. Yield: 70% (89.7 mg). $R_f = 0.6$ (silica gel, PE: EtOAc = 20:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.05 (d, J = 11.4 Hz, 1H), 7.69 – 7.65 (m, 1H), 7.37 – 7.27 (m, 4H), 7.23 (t, J = 7.3 Hz, 1H), 7.19 – 7.12 (m, 3H), 7.06 (d, J = 11.4 Hz, 1H), 6.39 – 6.30 (m, 1H), 6.12 – 6.07 (m, 1H), 5.37 (s, 2H), 1.91 (dd, J = 6.8, 1.5 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 144.4, 141.5, 139.4, 138.6, 130.1, 128.6, 128.3, 126.9, 126.8, 125.8, 120.6, 116.1, 51.7, 18.5. HRMS (EI) calcd for C₁₈H₁₈¹⁰BN [M]:258.1569, found: 258.1561.

2-allyl-1-benzyl-1,2-dihydrobenzo[e][1,2]azaborinine-2-¹⁰B (3i)

Colorless oil. Yield: 67% (87.0 mg). $R_f = 0.6$ (silica gel, PE: EtOAc = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (d, J = 11.4 Hz, 1H), 7.62 (d, J = 7.7 Hz, 1H), 7.34 – 7.24 (m, 4H), 7.22 – 7.17 (m, 1H), 7.14 – 7.06 (m, 3H), 6.94 (d, J = 11.4 Hz, 1H), 6.18 – 6.02 (m, 1H), 5.31 (s, 2H), 5.05 – 4.90 (m, 2H), 2.26 (d, J = 7.6 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.9, 141.5, 138.3, 137.4, 130.2, 128.7, 128.4, 126.9, 126.8, 125.7, 120.6, 116.0, 114.0, 50.5. HRMS (EI) calcd for C₁₈H₁₈¹⁰BN [M]: 258.1569, found: 258.1563.


1-benzyl-2-isopropyl-1,2-dihydrobenzo[e][1,2]azaborinine-2-¹⁰B (3j)

White solid, mp: 66 - 68 °C. Yield: 67% (87.9 mg). $R_f = 0.7$ (silica gel, PE: EtOAc = 20:1).¹H NMR (400 MHz, Chloroform-d) δ 8.01 (d, J = 11.5 Hz, 1H), 7.60 (d, J = 7.7 Hz, 1H), 7.31 – 7.24 (m, 4H), 7.22 – 7.16 (m, 1H), 7.14 – 7.06 (m, 3H), 6.99 (d, J = 11.5 Hz, 1H), 5.35 (s, 2H), 1.70 – 1.56 (m, 1H), 1.13 (d, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 145.2, 141.3, 138.9, 130.1, 128.7, 128.2,

126.8, 126.8, 125.7, 120.5, 116.3, 50.2, 20.6. **HRMS (EI)** calcd for C₁₈H₂₀¹⁰BN [M]: 260.1725, found: 260.1723.

1-benzyl-2-cyclohexyl-1,2-dihydrobenzo[*e*][1,2]azaborinine-2-¹⁰*B* (3k)

Colorless oil, Yield: 75% (113.3 mg). $R_f = 0.7$ (silica gel, PE: EtOAc = 20:1).¹H NMR (500 MHz, Chloroform-*d*) δ 7.99 (d, J = 11.6 Hz, 1H), 7.62 – 7.55 (m, 1H), 7.28 – 7.22 (m, 4H), 7.19 (dd, J = 8.7, 6.5 Hz, 1H), 7.10 – 7.06 (m, 3H), 7.00 (d, J = 11.5 Hz, 1H), 5.34 (s, 2H), 1.78 – 1.67 (m, 6H), 1.54 – 1.44 (m, 2H), 1.32 – 1.24 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.0, 141.3, 139.0, 130.0, 128.7, 128.2, 126.8, 126.8, 125.7, 120.4, 116.4, 50.3, 30.3, 27.8, 27.0. HRMS (EI) calcd for C₂₁H₂₄¹⁰BN [M]: 300.2038, found: 300.2034.

1-benzyl-2-methyl-1,2-dihydrobenzo[e][1,2]azaborinine-2-¹⁰B (3l)

White solid, mp: 57 - 59 °C. Yield: 79% (92.1 mg). $R_f = 0.7$ (silica gel, PE: EtOAc = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (d, *J* = 11.3 Hz, 1H), 7.59 (d, *J* = 7.7 Hz, 1H), 7.30 - 7.21 (m, 4H), 7.20 - 7.15 (m, 1H), 7.08 (d, *J* = 7.3 Hz, 3H), 6.87 (d, *J* = 11.3 Hz, 1H), 5.27 (s, 2H), 0.83 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.1, 141.7, 138.5, 130.1, 128.7, 128.2, 126.8, 125.8, 120.3, 115.8, 50.9. HRMS (EI) calcd for C₁₆H₁₆¹⁰BN [M]: 232.1422, found: 232.1411.

2-phenyl-1-(thiophen-2-ylmethyl)-1,2-dihydrobenzo[e][1,2]azaborinine-2-¹⁰B (3m)

Brown solid, mp: 92 - 94 °C. Yield: 61% (91.9 mg). $R_f = 0.6$ (silica gel, PE: EtOAc = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (d, *J* = 11.3 Hz, 1H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.63 - 7.56 (m, 2H), 7.53 (d, *J* = 8.6 Hz, 1H), 7.43 - 7.32 (m, 4H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.13 (d, *J* = 5.0 Hz, 1H), 7.00 (d, *J* = 11.3 Hz, 1H), 6.91 - 6.86 (m, 1H), 6.77 (s, 1H), 5.52 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.4, 143.2, 141.0, 132.5, 130.3, 128.6, 128.0, 127.7, 127.3, 127.0, 124.2, 123.9, 121.2, 116.4, 48.2. HRMS (EI) calcd for C₁₉H₁₆¹⁰BNS [M]: 300.1133, found: 300.1133.

1,2-diphenyl-1,2-dihydrobenzo[e][1,2]azaborinine-2-¹⁰B (3n)

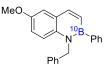
White solid, mp: 119 - 121 °C. Yield: 76% (106.2 mg). $R_f = 0.6$ (silica gel, PE: EtOAc = 20:1). ¹H NMR (400 MHz, Chloroform-d) δ 8.15 (d, J = 11.4 Hz, 1H), 7.70 (d, J = 7.7 Hz, 1H), 7.43 – 7.27 (m, 4H), 7.24 – 7.09 (m, 9H), 6.94 (d, J = 8.5 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 145.2, 143.8,

142.7, 133.8, 129.7, 129.4, 129.3, 128.2, 127.6, 127.1, 127.1, 126.1, 121.2, 117.6. **HRMS (EI)** calcd for C₂₀H₁₆¹⁰BN [M]: 280.1412, found: 280.1416.

2-phenyl-1-propyl-1,2-dihydrobenzo[e][1,2]azaborinine-2-¹⁰B (30)

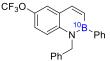
Colorless oil. Yield: 73% (89.5 mg). $R_f = 0.65$ (silica gel, PE: EtOAc = 20:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.02 (d, J = 11.3 Hz, 1H), 7.69 (dd, J = 7.8, 1.4 Hz, 1H), 7.60 – 7.48 (m, 4H), 7.44 – 7.39 (m, 2H), 7.39 – 7.34 (m, 1H), 7.25 – 7.20 (m, 1H), 6.90 (d, J = 11.3 Hz, 1H), 4.15 – 4.05 (m, 2H), 1.86 – 1.76 (m, 2H), 0.85 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 144.7, 140.9, 132.2, 130.5, 128.4, 127.6, 127.4, 127.2, 120.7, 115.6, 49.5, 23.4, 11.2. HRMS (EI) calcd for C₁₇H₁₈¹⁰BN [M]: 246.1569, found: 246.1566.

2-phenyl-1,2-dihydrobenzo[e][1,2]azaborinine-2-¹⁰B (3p)


White solid, mp: 134 - 136 °C. Yield: 45% (45.5 mg). $R_f = 0.5$ (silica gel, PE: EtOAc = 20:1). ¹H NMR (400 MHz, Chloroform-d) δ 8.12 (d, J = 11.3 Hz, 2H), 7.90 (d, J = 6.2 Hz, 2H), 7.64 (d, J = 7.7 Hz, 1H), 7.52 - 7.39 (m, 4H), 7.33 - 7.24 (m, 2H), 7.18 (t, J = 7.6 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 145.5, 140.1, 132.7, 129.6, 129.4, 128.4, 128.2, 125.7, 121.0, 118.2. HRMS (EI) calcd for $C_{14}H_{12}^{10}BN$ [M]: 204.1099, found: 204.1095.

1-benzyl-6-methyl-2-phenyl-1,2-dihydrobenzo[e][1,2]azaborinine-2-¹⁰B (3q)

White solid, mp: 76 - 78 °C. Yield: 91% (141.2 mg). $R_f = 0.6$ (silica gel, PE: EtOAc = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.07 (d, J = 11.3 Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.51 (s, 2H), 7.34 – 7.25 (m, 5H), 7.22 (d, J = 7.1 Hz, 1H), 7.12 (d, J = 8.5 Hz, 3H), 7.04 – 6.92 (m, 2H), 5.40 (s, 2H), 2.31 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.1, 141.2, 139.4, 138.7, 132.5, 130.1, 128.7, 127.8, 127.6, 126.7, 125.7, 125.1, 122.4, 117.1, 52.3, 22.2. HRMS (EI) calcd for $C_{22}H_{20}^{10}BN$ [M]: 308.1725, found: 308.1723.

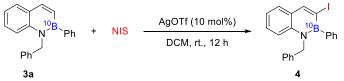

1-benzyl-6-methoxy-2-phenyl-1,2-dihydrobenzo[e][1,2]azaborinine-2-¹⁰B (3r)

White solid, mp: 88 - 90 °C. Yield: 66% (107.4 mg). $R_f = 0.5$ (silica gel, PE: EtOAc = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 (d, J = 11.3 Hz, 1H), 7.52 (s, 2H), 7.36 - 7.18 (m, 7H), 7.16 - 7.03 (m, 4H), 6.96 (dd, J = 9.2, 2.5 Hz, 1H), 5.41 (s, 2H), 3.84 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*)

δ 153.7, 144.8, 139.4, 135.7, 132.6, 128.7, 128.0, 127.8, 127.7, 126.8, 125.7, 118.2, 117.2, 111.7, 55.5, 52.5. **HRMS (EI)** calcd for C₂₂H₁₀¹⁰BNO [M]: 324.1674 found: 324.1674.

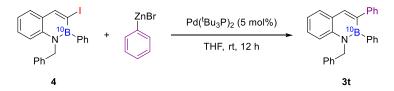
1-benzyl-2-phenyl-6-(trifluoromethoxy)-1,2-dihydrobenzo[e][1,2]azaborinine-2-¹⁰B (3s)

Colorless oil. Yield: 71% (133.6 mg). $R_f = 0.6$ (silica gel, PE: EtOAc = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (d, J = 11.4 Hz, 1H), 7.59 – 7.46 (m, 3H), 7.36 – 7.27 (m, 6H), 7.27 – 7.21 (m, 1H), 7.18 (d, J = 9.3 Hz, 1H), 7.15 – 7.08 (m, 3H), 5.42 (s, 2H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -57.86. ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.6, 142.9, 139.6, 138.7, 132.5, 128.9, 128.2, 127.9, 127.8, 127.1, 125.6, 124.4, 121.9, 121.6, 121.5, 119.3, 118.4, 116.8, 52.7. HRMS (EI) calcd for $C_{22}H_{17}^{10}BF_3NO$ [M]: 378.1392, found: 378.1390.

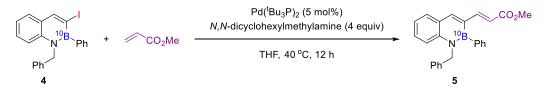

1-benzyl-2,3-diphenyl-1,2-dihydrobenzo[*e*][1,2]azaborinine-2-¹⁰B (3t)

Yellow oil, yield: 31% (57.7 mg). $R_f = 0.5$ (silica gel, PE: EtOAc = 20:1). ¹H NMR (400 MHz, Chloroform-d) δ 8.09 (s, 1H), 7.75 (d, J = 7.6 Hz, 1H), 7.34 (s, 2H), 7.29 – 7.08 (m, 16H), 5.36 (s, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 144.3, 143.4, 140.4, 139.1, 132.1, 130.4, 128.9, 128.7, 128.5, 127.6, 127.4, 127.3, 126.8, 126.7, 125.7, 125.7, 121.4, 117.0, 52.9. HRMS (EI) calcd for $C_{27}H_{22}^{10}BN$ [M]: 370.1882, found: 370.1880.

5. Synthetic transformations

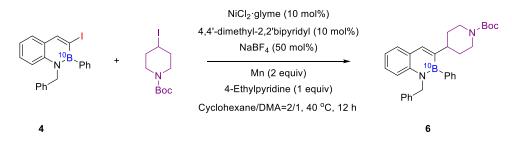

1-benzyl-3-iodo-2-phenyl-1,2-dihydrobenzo[e][1,2]azaborinine-2-¹⁰B (4)

By analogy to a modified literature procedure.^[4] In argon, a 50 mL Schlenk tube was charged with **3a** (2.0 mmol, 1 equiv), AgOTf (10 mol%) and dry DCM (5 mL). Then, NIS (2.2 mmol, 1.1 equiv) in dry DCM (15 mL) was slowly added dropwise. The mixture was stirred at room temperature for 12 h. Upon completion, proper amount of silica gel was added to the reaction mixture. After removal of the solvent, the crude reaction mixture was purified on silica gel to afford product **4**.


White solid, mp: 136 - 138 °C. Yield: 91% (766.8 mg). $R_f = 0.6$ (silica gel, PE: EtOAc = 20:1). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.81 (s, 1H), 7.59 (dd, J = 7.8, 1.4 Hz, 1H), 7.41 - 7.36 (m, 2H), 7.35 - 7.27 (m, 5H), 7.26 - 7.21 (m, 2H), 7.20 - 7.13 (m, 2H), 7.02 (d, J = 7.2 Hz, 2H), 5.29 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.4, 140.4, 138.3, 131.3, 129.4, 129.2, 128.7, 128.0, 128.0, 127.6, 126.9, 125.5, 121.7, 117.3, 53.9. HRMS (EI) calcd for $C_{21}H_{17}^{10}BIN$ [M]: 420.0535, found: 420.0539.

1-benzyl-2,3-diphenyl-1,2-dihydrobenzo[e][1,2]azaborinine-2-¹⁰B (3t)

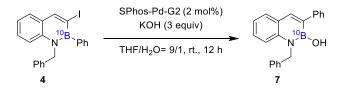
By analogy to a modified literature procedure.^[5] In a glove box, a 25 mL Schlenk tube was charged with zinc chloride (0.64 mmol, 3.2 equiv) and phenylmagnesium bromide (in THF (1M), 0.32 mmol, 1.6 equiv). The mixture was stirred for 30 minutes. Then, the mixture was charged with **4** (0.2 mmol, 1.0 equiv), bis(tri-tert-butylphosphine)palladium (0.005 mmol, 5 mol%), 2 mL of THF and phenylzinc solution prepared in the previous step. The tube was removed from glove box, and stirred for 12 h at room temperature. Upon completion, the solvent was concentrated under reduced pressure and rapidly purified by column chromatography to obtain product **3t** (63.7 mg, 86% yield).


methyl (E)-3-(1-benzyl-2-phenyl-1,2-dihydrobenzo[e][1,2] azaborinin-3-yl-2-¹⁰B)acrylate (5)

By analogy to a modified literature procedure.^[6] A 25 mL Young tube was charged with **4** (0.2 mmol, 1 equiv) and Pd('Bu₃P)₂ (5 mol%). and *N*,*N*-dicyclohexylmethylamine (4 equiv). The tube was evacuated and filled with argon for three cycles, then added methyl acrylate (2 equiv), N, N-dicyclohexylmethylamine (4 equiv) and dry THF (2 mL) in argon. The mixture was stirred at 40 °C for 12 h. Upon completion, proper amount of silica gel was added to the reaction mixture. After removal of the solvent, the crude reaction mixture was purified on silica gel to afford product **5**.

Yellow solid, mp: 73 - 75 °C. Yield: 79% (59.9 mg). $R_f = 0.3$ (silica gel, PE: EtOAc = 10:1). ¹H NMR (500 MHz, Chloroform-d) δ 8.27 (s, 1H), 7.75 - 7.68 (m, 2H), 7.40 - 7.17 (m, 12H), 7.04 (d, J = 7.2 Hz, 2H), 5.90 (d, J = 15.9 Hz, 1H), 5.29 (s, 2H), 3.67 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 167.9, 148.7, 145.3, 141.4, 138.6, 131.2, 131.1, 129.9, 128.7, 128.0, 127.9, 126.8, 126.3, 125.6, 121.7, 118.2, 117.1, 52.6, 51.4. HRMS (ESI) calcd for $C_{25}H_{22}^{10}BNO_2$ [M+H]⁺: 379.1853, found: 379.1859.

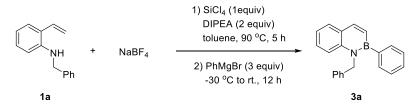
tert-butyl 4-(1-benzyl-2-phenyl-1,2-dihydrobenzo[*e*][1,2] azaborinin-3-yl-2-¹⁰*B*)piperidine-1carboxylate (6)



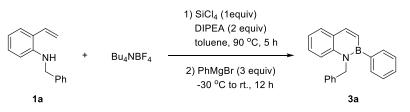
By analogy to a modified literature procedure.^[7] A 25 mL Young tube was charged with **4** (0.2 mmol, 1equiv), alkyl iodide (2.4 mmol, 1.2 equiv), NiCl₂·glyme (0.02 mmol, 10 mol%), 4,4'-dimethy-2,2'-bipyridyl (0.02 mmol, 10 mol%), NaBF₄ (0.1 mmol, 50 mol%), Mn (0.4 mmol, 2 equiv). The tube was

evacuated and filled with argon for three cycles, then added 4-Ethylpyridine (0.2 mmol, 1 equiv), dry Cyclohexane (1 mL) and dry DMA (0.5 mL) in argon. The mixture was stirred at 40 °C for 12 h. Upon completion, removal of the solvent, the crude reaction mixture was purified on silica gel to afford product **6**.

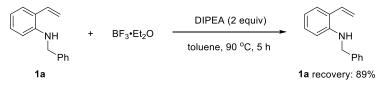
Colorless oil. Yield: 93% (87.9 mg). $R_f = 0.3$ (silica gel, PE: EtOAc = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (s, 1H), 7.67 (d, J = 7.6 Hz, 1H), 7.38 – 7.12 (m, 11H), 7.02 (d, J = 7.4 Hz, 2H), 5.23 (s, 2H), 4.11 (s, 2H), 2.59 – 2.40 (m, 3H), 1.74 – 1.63 (m, 2H), 1.56 – 1.36 (m, 11H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.8, 139.8, 139.6, 138.9, 130.9, 129.9, 128.5, 127.9, 127.7, 127.3, 126.9, 126.7, 125.6, 121.2, 116.7, 79.1, 52.8, 44.6, 39.8, 33.0, 28.5. HRMS (ESI) calcd for $C_{31}H_{35}^{10}BN_2O_2$ [M+H]⁺: 478.2901, found: 478.2908.


1-benzyl-3-phenylbenzo[e][1,2]azaborinin-2(1H)-ol-2-¹⁰B (7)

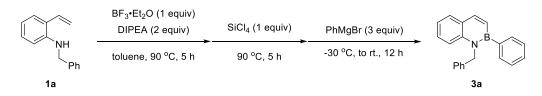
By analogy to a modified literature procedure.^[8] A 25 mL Schlenk tube was charged with **4** (0.2 mmol, 1 equiv), SPhos-Pd-G2 (0.004 mmol, 2 mol%), KOH (0.6 mmol, 3 equiv), The tube was evacuated and filled with argon for three cycles, then added THF (0.9 mL) and H₂O (0.1 mL) in argon. The mixture was stirred at room temperature for 12 h. Upon completion, anhydrous sodium sulfate was added, then diatomite and a small amount of silica gel filtration. The desired product **7** is obtained by removing the solvent.


Brown oil, yield: 99% (61.4 mg). $R_f = 0.5$ (silica gel, PE:EtOAc = 5:1). ¹H NMR (400 MHz, Chloroform-d) δ 7.82 (s, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.48 – 7.43 (m, 4H), 7.34 – 7.16 (m, 8H), 7.03 (d, J = 5.9 Hz, 1H), 5.26 (s, 2H), 4.56 (s, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 143.5, 142.4, 141.6, 138.8, 130.2, 129.3, 128.6, 128.6, 127.3, 126.8, 126.7, 126.3, 124.4, 119.7, 115.0, 46.8. HRMS (EI) calcd for C₂₁H₁₈¹⁰BNO [M]: 310.1518, found: 310.1519.

6. Control experiments



In argon, 2-Aminostyrene (0.5 mmol, 1.0 equiv) was transferred to the 25 mL Young tube with 1.5 ml dry toluene and then added to NaBF₄ (0.5 mmol, 1.0 equiv), DIPEA (1.0 mmol, 2.0 equiv), SiCl₄ (0.5 mmol, 1.0 equiv). The resulting mixture was heated to 90 °C. After stirring for 5 hours, the mixture was cooled to -30 °C, then added PhMgBr (1.5 mmol, 3.0 equiv) in argon. The resulting mixture allow to rise to room temperature and stir for 12 h. The reaction was quenched by saturated NH₄Cl solution, the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over anhydrous


 Na_2SO_4 . Removal of the solvent, the crude reaction mixture was purified by flash column chromatography to afford the desired products **3a** (119.7 mg, 81% yield).

In argon, 2-Aminostyrene (0.5 mmol, 1.0 equiv) was transferred to a 25 mL Young tube with 1.5 ml dry toluene and then added to Bu_4NBF_4 (0.5 mmol, 1.0 equiv), DIPEA (1.0 mmol, 2.0 equiv), SiCl₄ (0.5 mmol, 1.0 equiv). The resulting mixture was heated to 90 °C. After stirring for 5 hours, the mixture was cooled to -30 °C, then added PhMgBr (1.5 mmol, 3.0 equiv) in argon. The resulting mixture allow to rise to room temperature and stir for 12 h. The reaction was quenched by saturated NH₄Cl solution, the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄. Removal of the solvent, the crude reaction mixture was purified by flash column chromatography to afford the desired products **3a** (122.5 mg, 83% yield).

In argon, 2-Aminostyrene 1a (0.5 mmol, 1.0 equiv) was transferred to the 25 mL Young tube with 1.5 ml dry toluene and then added to $BF_3 \cdot Et_2O$ (0.5 mmol, 1.0 equiv), DIPEA (1.0 mmol, 2.0 equiv). The resulting mixture was heated to 90 °C. After stir for 5 hours, The mixture was cooled to room temperature. Removal of the solvent, the crude reaction mixture was purified by flash column chromatography to recover 1a (93.5 mg, 89%).

In argon, 2-Aminostyrene **1a** (0.5 mmol, 1.0 equiv) was transferred to a 25 mL Young tube with 1.5 ml dry toluene and then added to $BF_3 \cdot Et_2O$ (0.5 mmol, 1.0 equiv), DIPEA (1.0 mmol, 2.0 equiv). The resulting mixture was heated to 90 °C. After stirring for 5 hours, the mixture was cooled to room temperature, then SiCl₄ (0.5 mmol, 1.0 equiv) was added. The resulting mixture was heated to 90 °C and stir for another 5 hours. The mixture was cooled to -30 °C and added PhMgBr (1.5 mmol, 3.0 equiv) in argon. The resulting mixture allow to rise to room temperature and stir for 12 h. The reaction was quenched by saturated NH₄Cl solution, the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄. Removal of the solvent, the crude reaction mixture was purified by flash column chromatography to afford the desired product **3a** (116.4 mg, 79% yield).

7. References

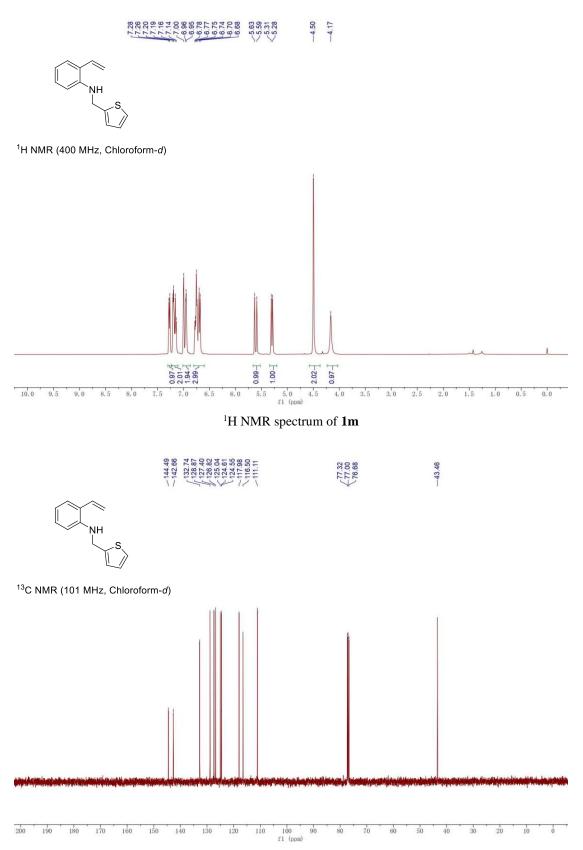
[1] S. R Wisniewski, C. L. Guenther, O. A. Argintaru, G. A. Molander, A Convergent, Modular Approach to Functionalized 2,1–Borazaronaphthalenes from 2–Aminostyrenes and Potassium Organotrifluoroborates, *J. Org. Chem.*, 2014, **79**, 365–378.

[2] A. Kessler, C. M. Coleman, P. Charoenying, D. F. O'Shea, Indole Synthesis by Controlled Carbolithiation of *o*-Aminostyrenes, *J. Org. Chem.*, 2004, **69**, 7836–7846.

[3] G. Satish, A. Polu, T. Ramar, A. Ilangovan, Iodine-Mediated C–H Functionalization of sp, sp², and sp³ Carbon: A Unified Multisubstrate Domino Approach for Isatin Synthesis, *J. Org. Chem.*, 2015, **80**, 5167–5175.

[4] Y. He, H. Wang, Y. Zhou, K. Yang, Q. Song, Divergent synthesis of 5- and 4-(2,1-azaborine) substituted isoxazoles via regioselective [3+2] cycloadditions of nitrile oxides and B-ethynyl-1,2-azaborines, *Org. Chem. Front.*, 2023, **10**, 127-132.

[5] A. N. Brown, B. Li, S.-Y. Liu, Negishi Cross-Coupling Is Compatible with a Reactive B–Cl Bond: Development of a Versatile Late-Stage Functionalization of 1,2-Azaborines and Its Application to the Synthesis of New BN Isosteres of Naphthalene and Indenyl, *J. Am. Chem. Soc.*, 2015, **137**, 8932–8935.

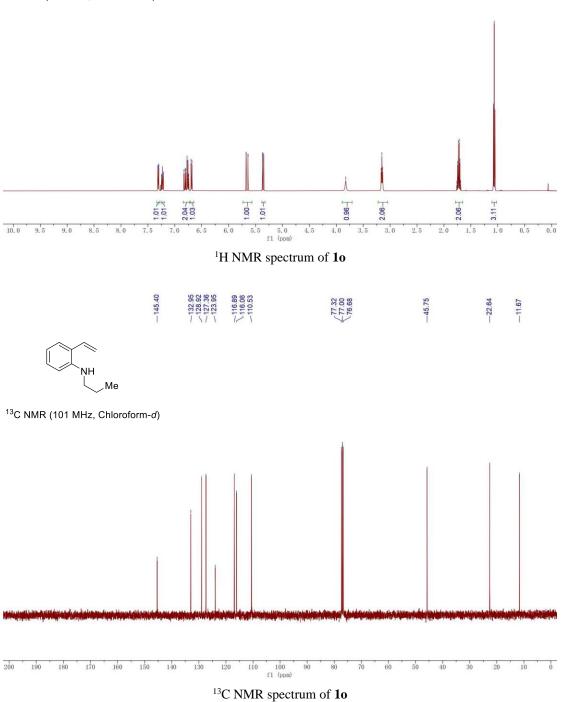

[6] M. Xu, X. You, Y. Zhang, Y. Lu, K. Tan, L. Yang, Q. Cai, Enantioselective Synthesis of Axially Chiral Biaryls by Diels–Alder/Retro-Diels–Alder Reaction of 2-Pyrones with Alkynes, *J. Am. Chem. Soc.*, 2021, **143**, 8993-9001.

[7] G. A. Molander, S. R. Wisniewski, K. M. Traister, Reductive Cross-Coupling of 3-Bromo-2,1borazaronaphthalenes with Alkyl Iodides, *Org. Lett.*, 2014, **16**, 3692–3695.

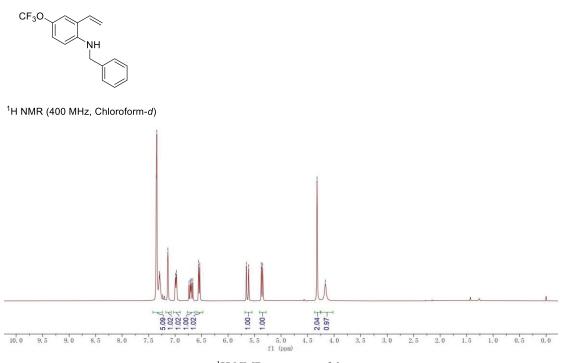
[8] G. A. Molander, S. R. Wisniewski, Accessing 2,1-Borazaronaphthols: Self-Arylation of 1-Alkyl-2-aryl-3-bromo-2,1-borazaronaphthalenes. *J. Org. Chem.*, 2014, **79**, 8339–8347.

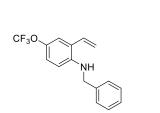
[9] A.-M. L. Hogan, D. F. O'Shea, Carbolithiation of *o*-Amino-(*E*)-Stilbenes: Diastereoselective Electrophile Substitution with Applications to Quinoline Synthesis. *J. Org. Chem.*, 2007, **72**, 9557–9571.

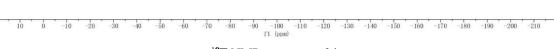
8. NMR Spectra

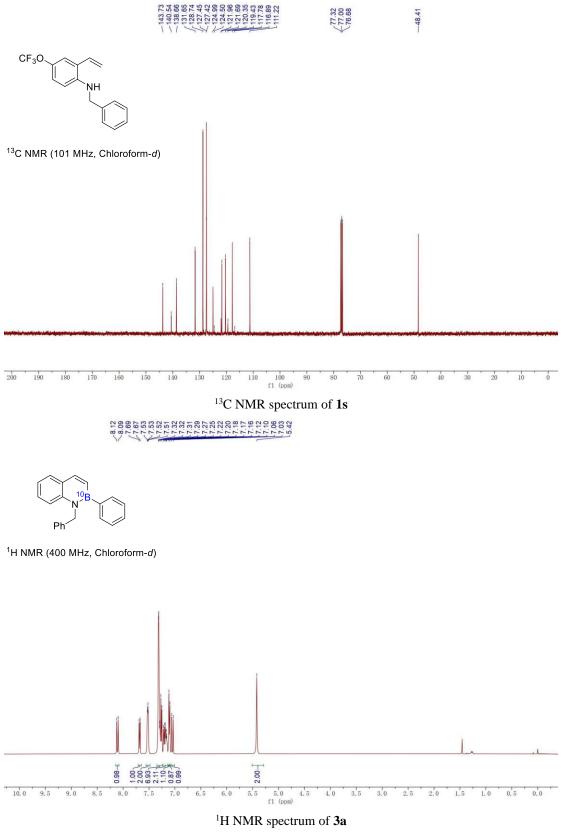


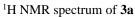
¹³C NMR spectrum of **1m**

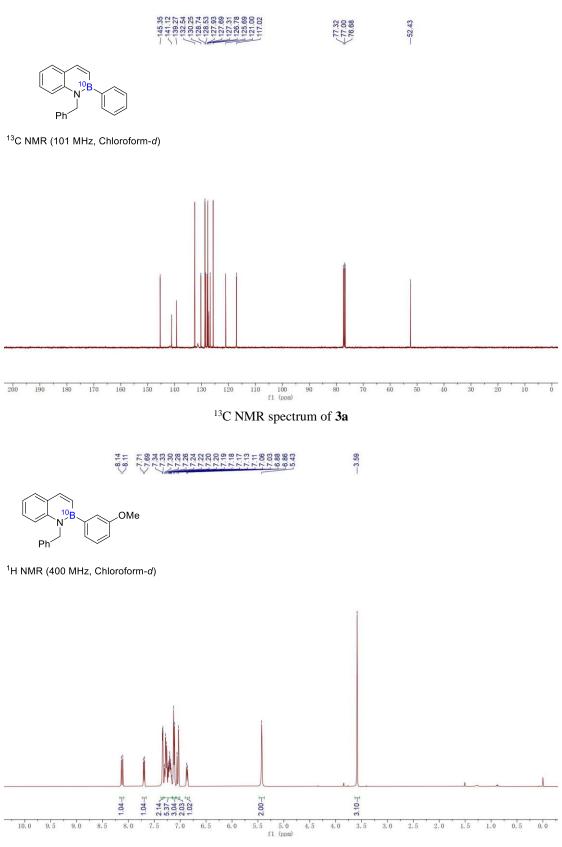

33117 33117 33117 33117 33117 33117 33117 33117 33117 33117 33117 33117 33117 33117 33117 3117 33117 3117 33117 3117 33117 3117

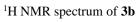

¹H NMR (500 MHz, Chloroform-*d*)



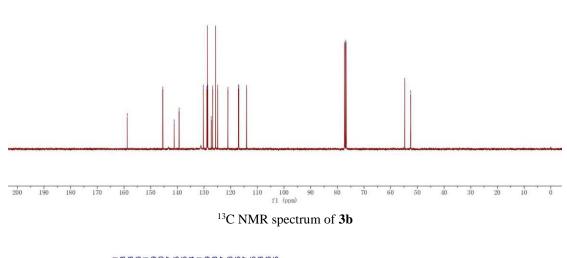

¹H NMR spectrum of **1s**

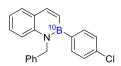



¹⁹F NMR (376 MHz, Chloroform-d)

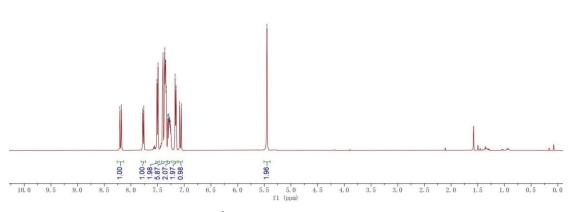


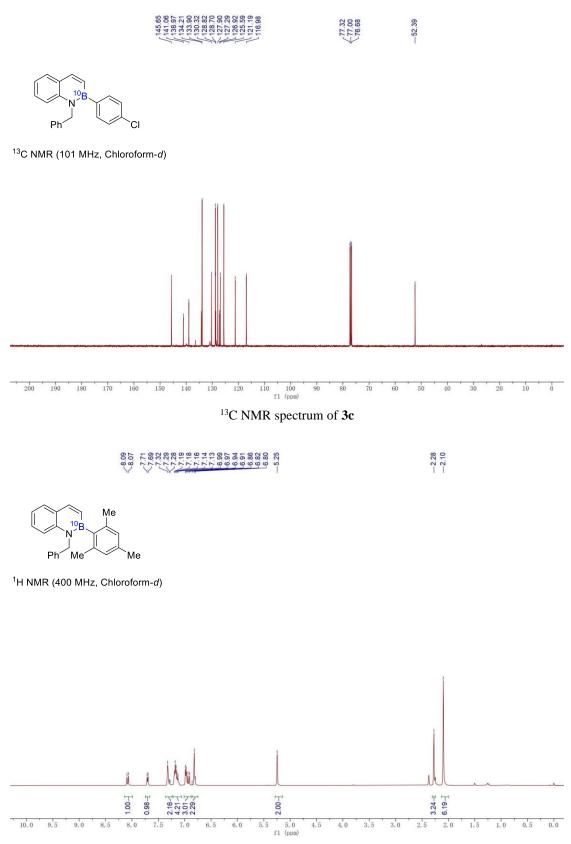
¹⁹F NMR spectrum of **1s**

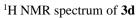


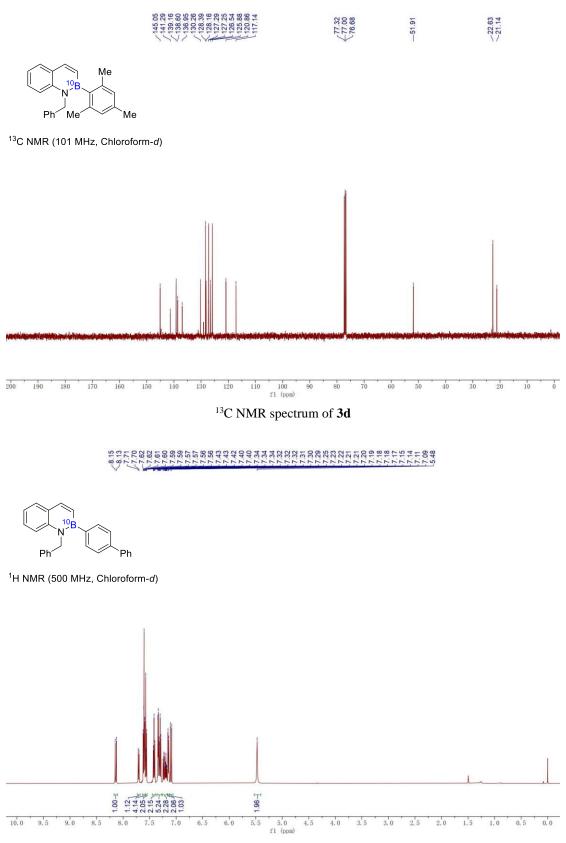


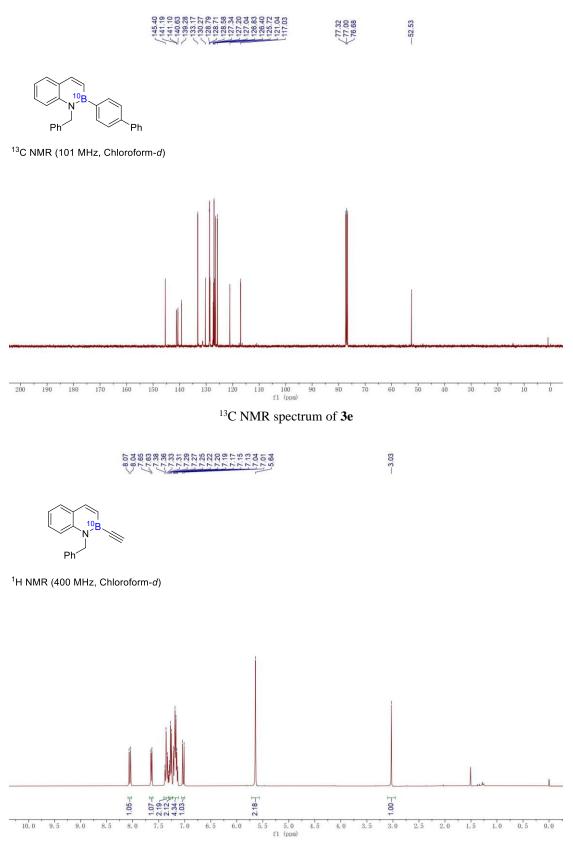
N OMe

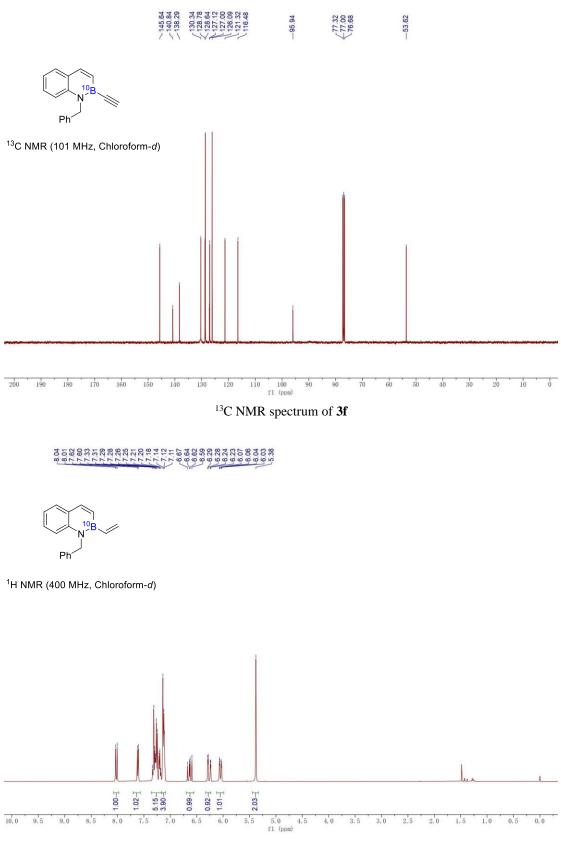

¹³C NMR (101 MHz, Chloroform-d)

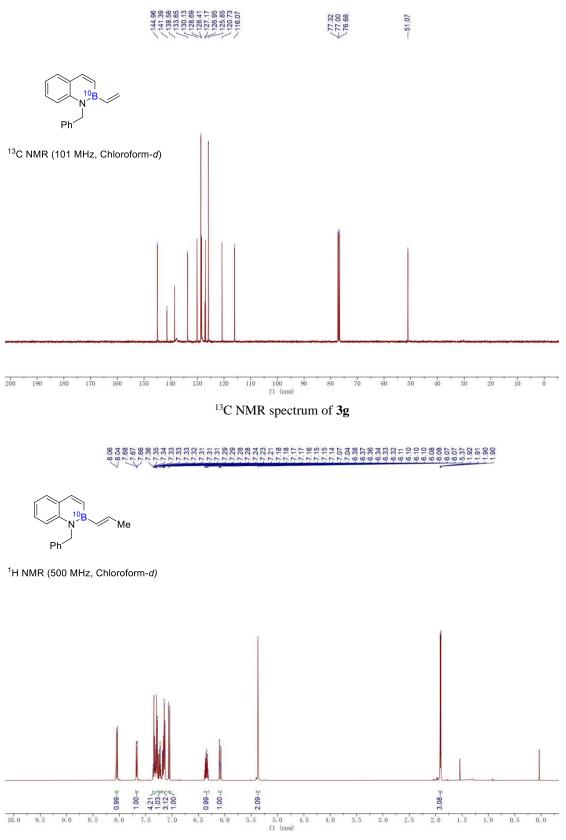


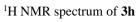


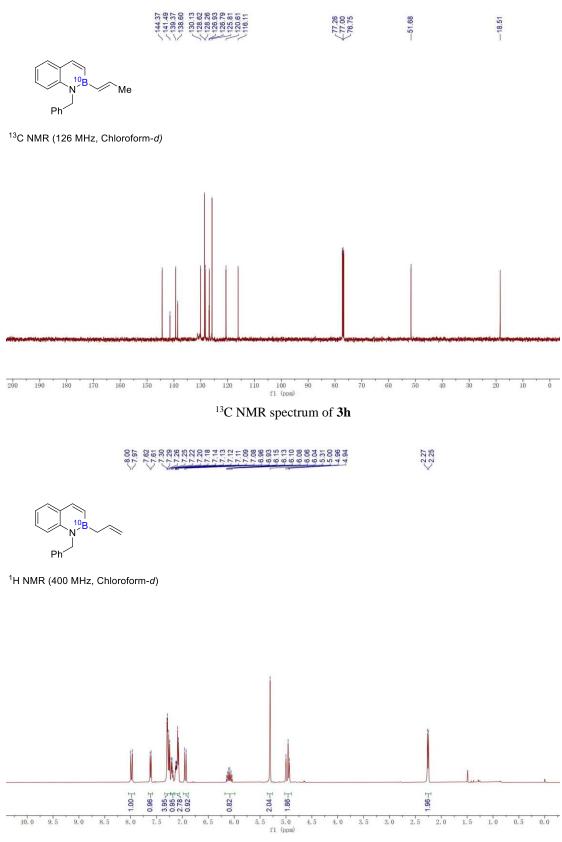

¹H NMR (400 MHz, Chloroform-d)

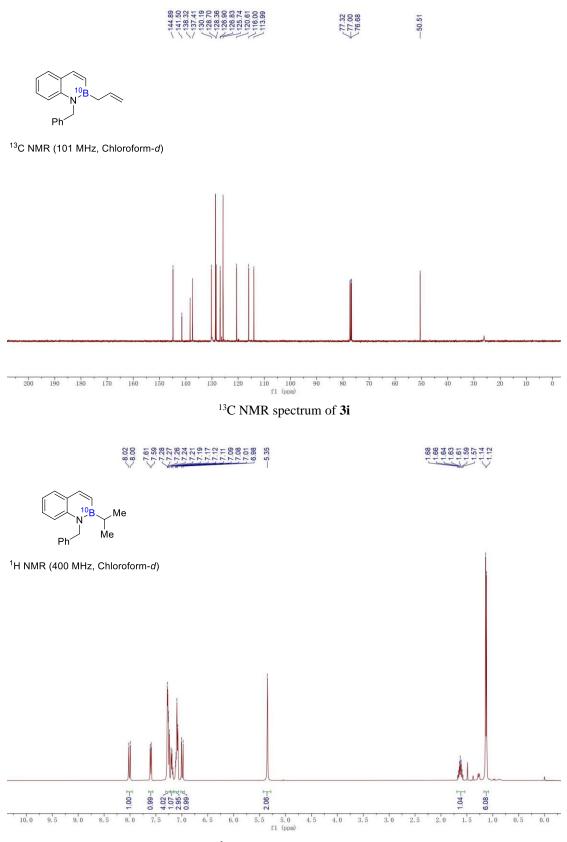

¹H NMR spectrum of **3c**

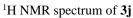


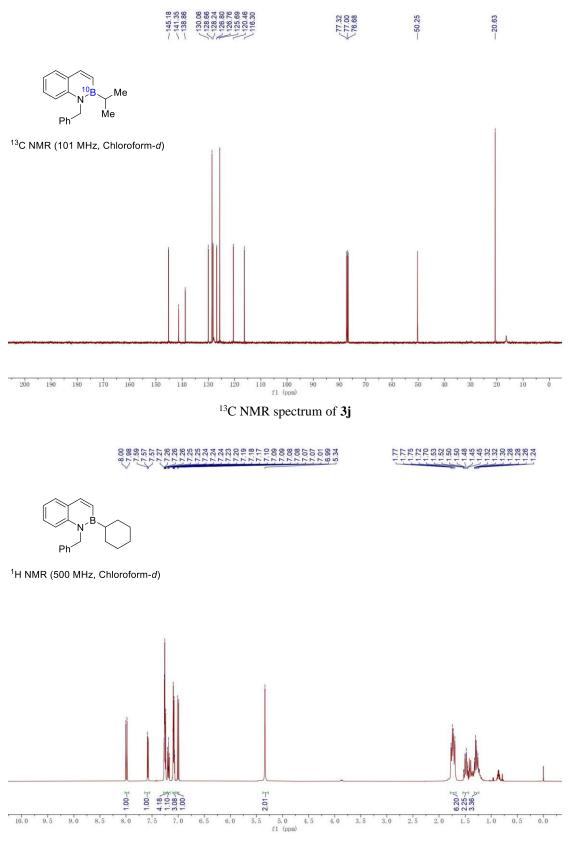

¹H NMR spectrum of **3e**

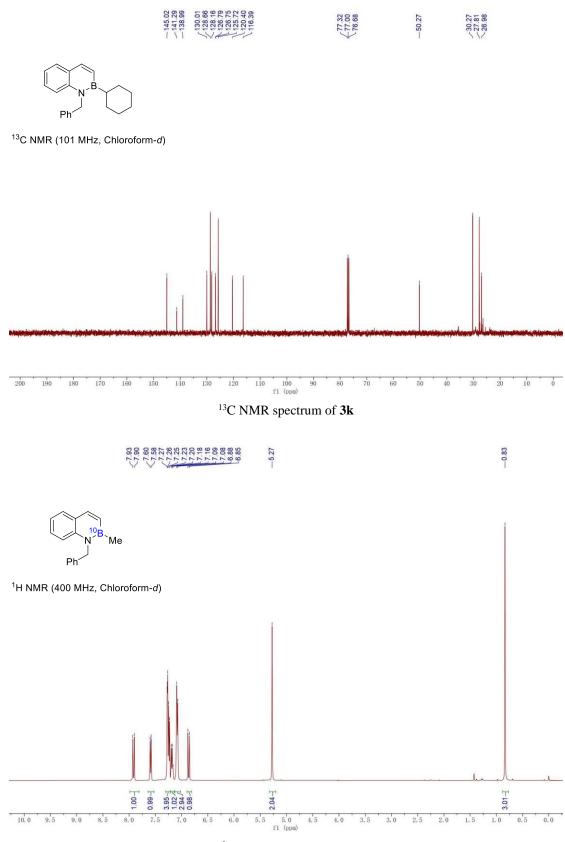


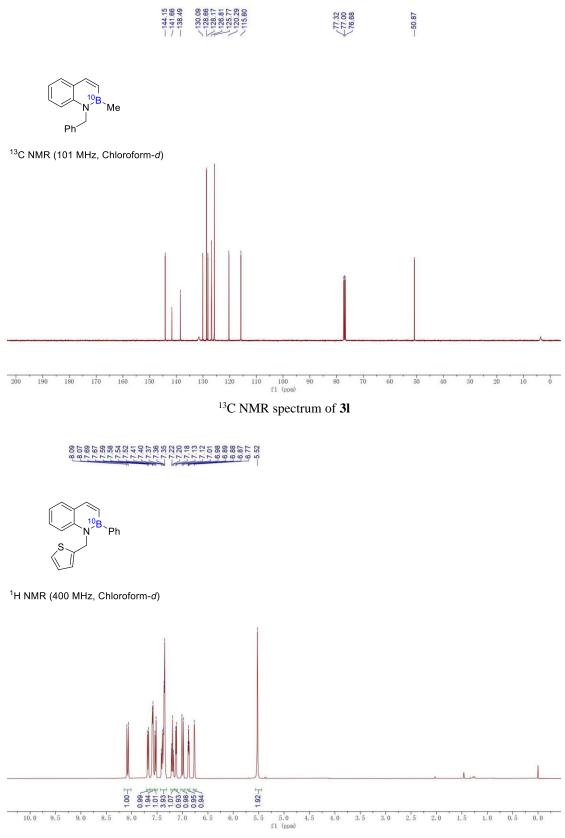

¹H NMR spectrum of 3f

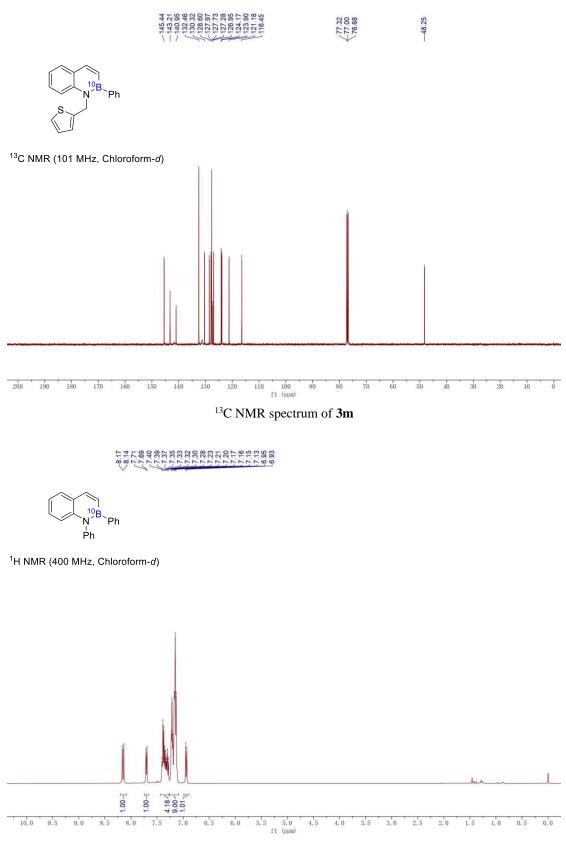


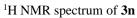




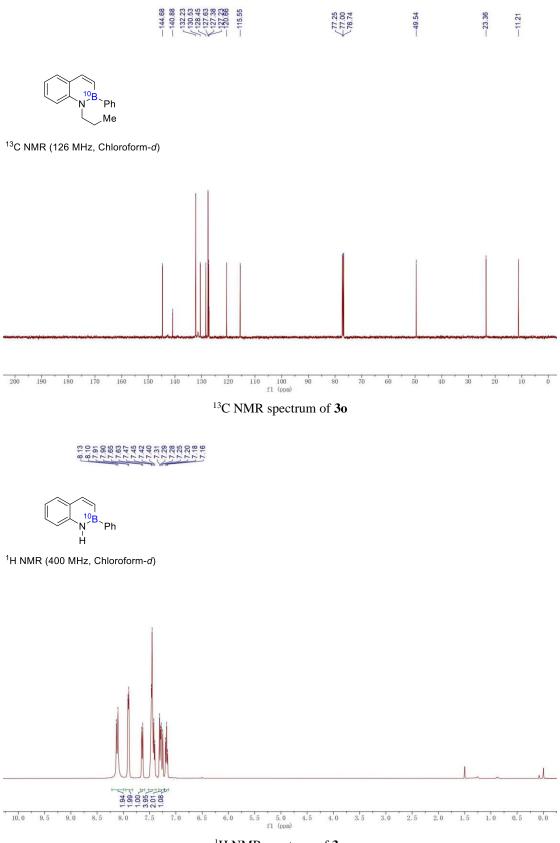


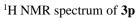


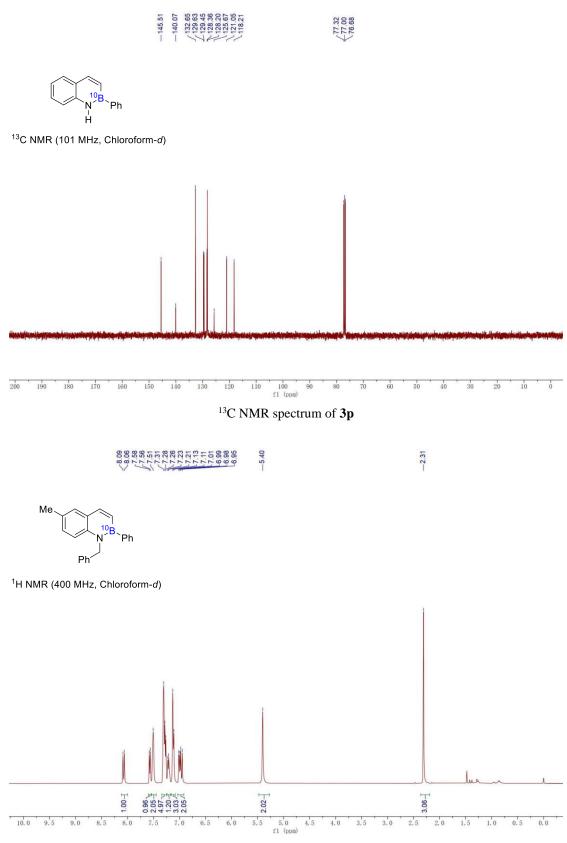

¹H NMR spectrum of 3k

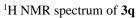


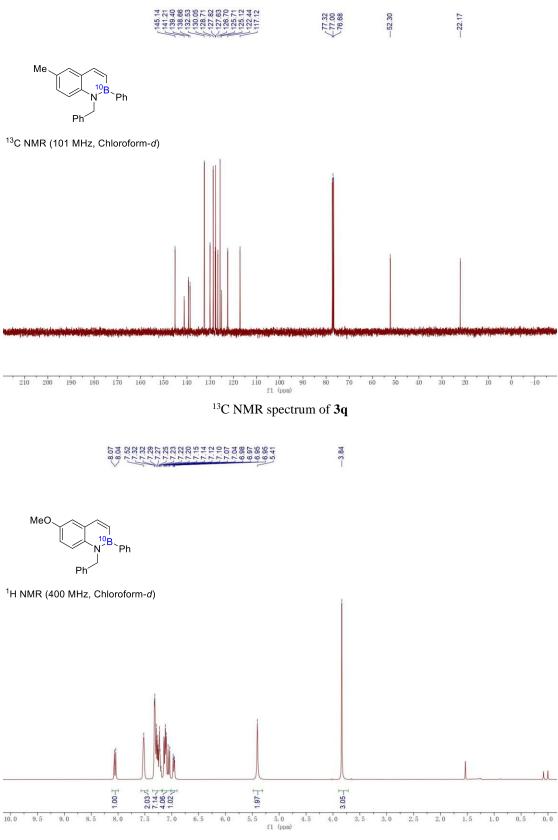
¹H NMR spectrum of **3**l

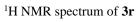

¹H NMR spectrum of **3m**

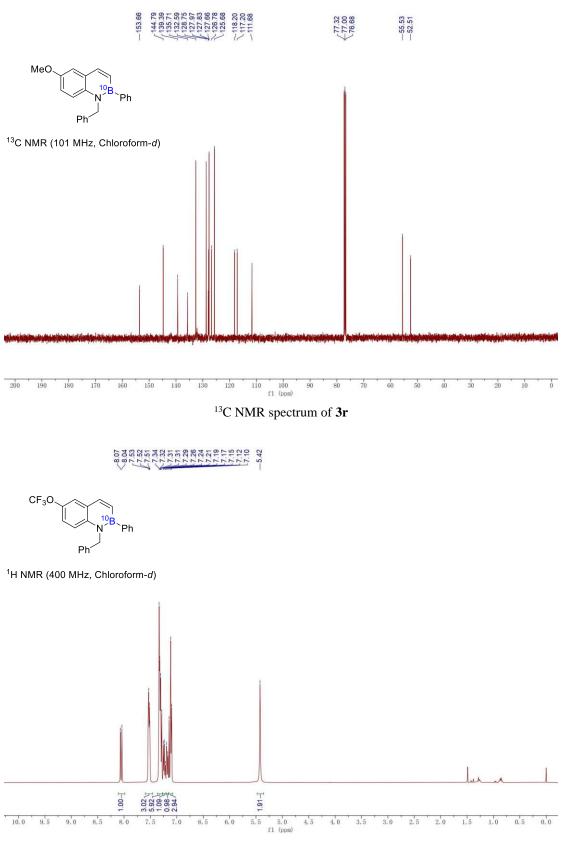


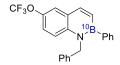


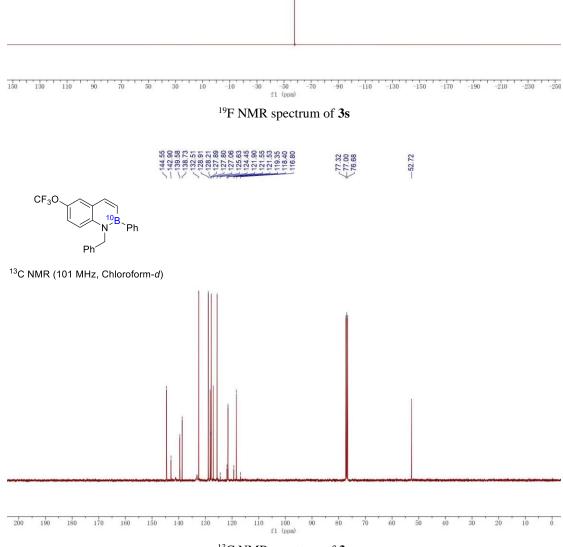


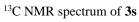

¹H NMR spectrum of **30**



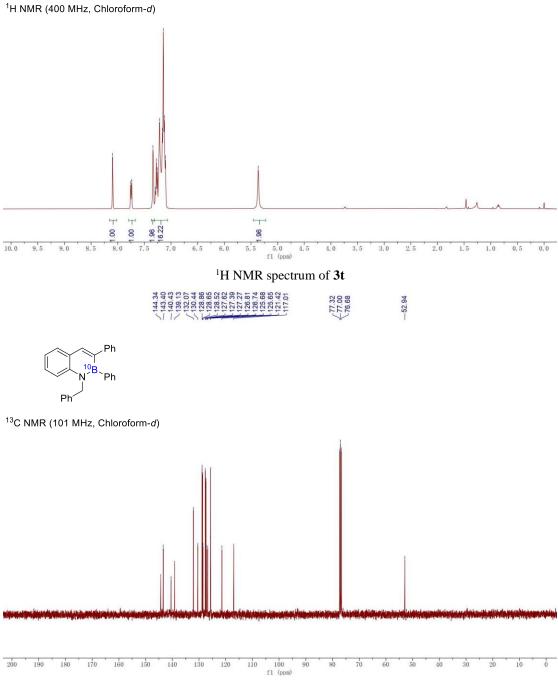


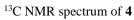




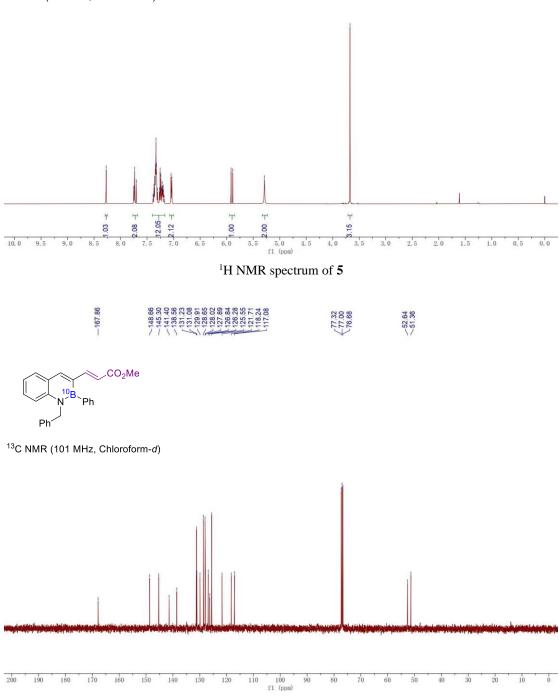


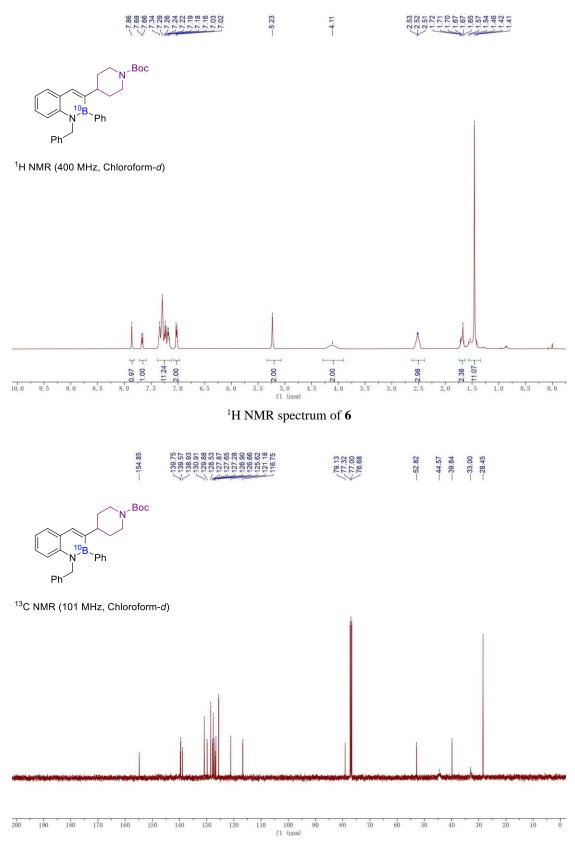
¹H NMR spectrum of **3s**

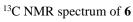

¹⁹F NMR (471 MHz, Chloroform-d)

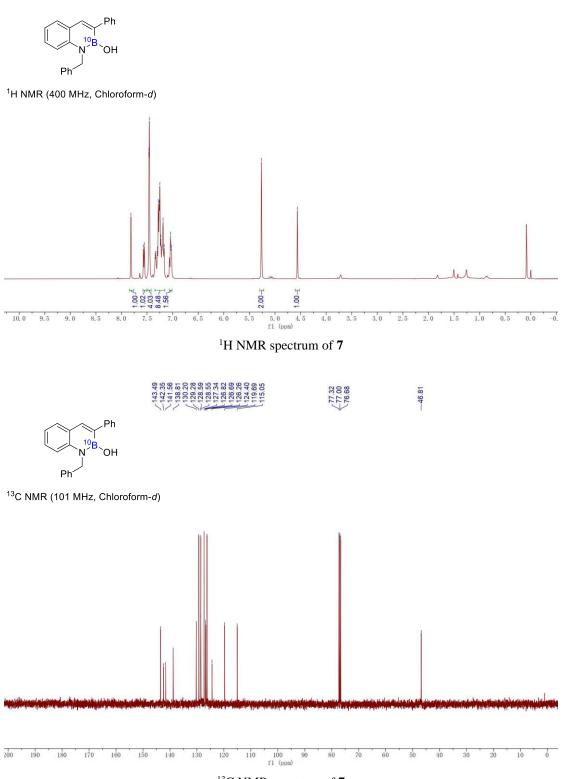

¹³C NMR spectrum of **3t**

¹H NMR (500 MHz, Chloroform-*d*)








¹H NMR (500 MHz, Chloroform-d)

¹³C NMR spectrum of **6**

¹³C NMR spectrum of **7**