Supporting Information

A Formal (3+2) Annulation-Cannizzaro Cascade of Bifunctional Peroxides for the Synthesis of Dihydrofurans
Yiwei Chen, ${ }^{\dagger, \S}$ Min Gao, ${ }^{\ddagger, ~ §}$ Qianlan Xu, ${ }^{\dagger}$ Jiumeng Zhang, ${ }^{*}{ }^{\dagger}$ and $\mathrm{Lin} \mathrm{Hu}{ }^{*, \dagger}$
${ }^{\dagger}$ Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.

*Corresponding: zhangjm@cqu.edu.cn; 1hu@cqu.edu.cn

Table of Contents

1. General information 3
2. Optimization of the reaction 4
3. Preparation of the substrates 14
4. General procedure for the synthesis of dihydrofurans 25
5. General procedure for the synthesis of epoxides 35
6. Mechanistic investigations 40
7. Synthetic applications 43
8. References 46
9. NMR spectra for new compounds 47

1. General Information

Unless otherwise stated, all reagents obtained from Adamas, Accela, or Acros were used without further purification. All solvents employed in the reactions were distilled from appropriate drying agents prior to use. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Visualization on TLC was achieved by use of UV light (254 nm). Flash column chromatography was performed using Tsingdao silica gel. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Agilent 400MR DD2 (400 MHz) spectrometer or Agilent 600MR DD2 (600 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and tetramethylsilane (TMS) or the residual solvent peak was used as an internal reference: ${ }^{1} \mathrm{H}$ NMR (TMS, $\left.\delta 0.00 ; \mathrm{CDCl}_{3}, \delta 7.26 ; \mathrm{CD}_{3} \mathrm{OD}, \delta 3.31\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $\delta 77.16 ; \mathrm{CD}_{3} \mathrm{OD}, \delta 49.00$). Data are reported as follows: chemical shift, multiplicity (s $=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad), coupling constants (Hz) and integration. High resolution mass spectra (HRMS) data were acquired on AB SCIEX TripleTOF 6600 mass spectrometer (AB SCIEX, USA) or Agilent 6546 Q-TOF mass spectrometer (Agilent Technologies, USA) with an ESI source.

2. Optimization of the reaction

Isolation and identification of the new products

Data of compound 5: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.79$ - $7.70(\mathrm{~m}, 2 \mathrm{H}), 7.47-$ $7.34(\mathrm{~m}, 3 \mathrm{H}), 4.36(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.05(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{br}, \mathrm{s}, 1 \mathrm{H})$, $2.11(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 171.2,165.0$, 164.0, 130.6, 129.7, 129.4, 127.7, 102.6, 87.0, 64.8, 64.3, 60.0, 36.2, 20.9, 14.3. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{6}$: 321.1333; Found: 321.1335 .

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlations of compound 5 :

Figure S1. COSY spectrum of compound 5

Figure S2. Enlarged view of COSY spectra of 5 (6.0 - 9.0 ppm)

Figure S3. Enlarged view of COSY spectra of 5 ($\mathbf{(2 . 5 - 5 . 0} \mathbf{~ p p m}$)

Figure S4. Enlarged view of COSY spectra of $5(0.0-2.5 \mathrm{ppm})$
${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC correlations of compound 5:

Figure S5. HSQC spectrum of compound 5

Figure S6. Enlarged view of HSQC spectra of 5 (6.0 - 9.0 and $85-175 \mathrm{ppm})$

Figure S7. Enlarged view of HSQC spectra of 5 (2.5-5.0 and 0-100 ppm)

Figure S8. Enlarged view of HSQC spectra of 5 (0.0 - 2.5 and $0-55 \mathrm{ppm})$
${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC correlations of compound 5:

Figure S9. HMBC spectrum of compound 5

Figure S10. Enlarged view of HMBC spectra of 5 (6.0 - 9.0 and 100 - 190 ppm)

Figure S11. Enlarged view of HMBC spectra of 5 (2.5-5.0 and 0 - 190 ppm)

Figure S12. Enlarged view of HMBC spectra of $5(0.5-2.5$ and $0-190 \mathrm{ppm})$

Data of compound 6: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.69$ (dd, $J=8.2,1.7 \mathrm{~Hz}$, 2H), $7.43-7.31(\mathrm{~m}, 3 \mathrm{H}), 4.30(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathbf{M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 170.8,165.0,164.2,130.7,129.4,127.8,102.2,84.8,64.9,60.2,36.7$, 20.8, 14.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{7}: 363.1439$; Found: 363.1434 .

Data of compound 7: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.64$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.04(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) δ 171.3, 164.1, 161.2, 133.5, 131.9 (d, $J=32.2 \mathrm{~Hz}$), 129.9, 124.7, 105.8, 87.1, 80.8, 64.7, 64.1, 36.5, 28.2, 20.9. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NaO}_{6}: 439.1339$; Found: 439.1346.

X-ray data for compound 7 are as follows:

CCDC: 2301447(the ellipsoid is 50% probability)
Table S1. Crystal data and structure refinement for 7

Identification code	20211115-XQL-05-92-1
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}_{6}$
Formula weight	416.38
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P2 ${ }_{1}$ c
a / \AA	6.1686(4)
b/Å	40.158(2)
c/ \AA	8.3757(7)
$\alpha{ }^{\circ}$	90
$\beta /{ }^{\circ}$	98.900(6)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	2049.8(2)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.349
μ / mm^{-1}	0.116
$\mathrm{F}(000)$	872.0
Crystal size/mm ${ }^{3}$	$0.38 \times 0.35 \times 0.24$
Radiation	Mo K $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	6.762 to 57.722
Index ranges	$-5 \leq \mathrm{h} \leq 8,-50 \leq \mathrm{k} \leq 29,-10 \leq 1 \leq 7$
Reflections collected	8311
Independent reflections	$4646\left[\mathrm{R}_{\text {int }}=0.0345, \mathrm{R}_{\text {sigma }}=0.0720\right]$
Data/restraints/parameters	4646/0/268
Goodness-of-fit on F^{2}	1.046
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0894, \mathrm{wR}_{2}=0.2242$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1482, \mathrm{wR}_{2}=0.2697$
Largest diff. peak/hole / e \AA^{-3}	0.64/-0.36

Table S2. Bond Lengths for 7

Atom	Atom	Length/ \AA	Atom	Atom	Length/ \AA
O4	C8	$1.361(4)$	C11	C12	$1.379(5)$
O4	C4	$1.466(4)$	C12	C14	$1.371(5)$
O6	C16	$1.323(5)$	C12	C13	$1.485(5)$
O6	C17	$1.478(5)$	F1	C13	$1.301(5)$
O2	C3	$1.430(5)$	F3	C13	$1.248(5)$
O2	C2	$1.345(6)$	C15	C14	$1.385(5)$
O5	C16	$1.202(5)$	C7	C16	$1.460(5)$
O3	C5	$1.405(6)$	C7	C6	$1.500(5)$
C9	C8	$1.481(5)$	C4	C3	$1.507(6)$
C9	C10	$1.382(5)$	C4	C6	$1.542(5)$
C9	C15	$1.388(5)$	C4	C5	$1.496(6)$
O1	C2	$1.202(6)$	C17	C18	$1.514(6)$
C8	C7	$1.354(5)$	C17	C19	$1.504(7)$
F2	C13	$1.343(6)$	C17	C20	$1.508(7)$
C11	C10	$1.389(5)$	C2	C1	$1.477(7)$

Table S3. Bond Angles for 7

Atom	Atom	Atom	Angle $^{\circ}$	Atom	Atom	Atom	Angle $/{ }^{\circ}$
C8	O4	C4	$109.0(3)$	C5	C4	C6	$111.8(4)$
C16	O6	C17	$121.9(3)$	C12	C14	C15	$120.2(4)$
C2	O2	C3	$114.2(4)$	O6	C16	C7	$115.1(3)$
C10	C9	C8	$122.8(3)$	O5	C16	O6	$123.9(4)$
C10	C9	C15	$119.1(3)$	O5	C16	C7	$121.0(4)$
C15	C9	C8	$117.9(3)$	F2	C13	C12	$111.4(4)$
O4	C8	C9	$110.9(3)$	F1	C13	F2	$99.2(4)$
C7	C8	O4	$113.5(3)$	F1	C13	C12	$114.6(4)$
C7	C8	C9	$135.6(3)$	F3	C13	F2	$103.3(5)$
C12	C11	C10	$119.6(3)$	F3	C13	C12	$115.7(4)$
C9	C10	C11	$120.6(3)$	F3	C13	F1	$110.7(5)$
C11	C12	C13	$119.5(4)$	O2	C3	C4	$110.4(3)$
C14	C12	C11	$120.3(4)$	O6	C17	C18	$109.5(4)$
C14	C12	C13	$120.2(4)$	O6	C17	C19	$109.8(4)$
C14	C15	C9	$120.3(3)$	O6	C17	C20	$103.0(3)$
C8	C7	C16	$133.2(4)$	C19	C17	C18	$112.6(4)$
C8	C7	C6	$108.5(3)$	C19	C17	C20	$111.3(5)$
C16	C7	C6	$118.3(3)$	C20	C17	C18	$110.2(5)$
O4	C4	C3	$107.1(3)$	C7	C6	C4	$103.4(3)$
O4	C4	C6	$104.5(3)$	O2	C2	C1	$112.3(4)$
O4	C4	C5	$106.9(3)$	O1	C2	O2	$122.2(5)$
C3	C4	C6	$115.0(4)$	O1	C2	C1	$125.5(5)$
C5	C4	C3	$110.9(4)$	O3	C5	C4	$109.7(4)$

Table S4. Screening of base, solvent, and temperature

Conditions: $\mathbf{1}(0.1 \mathrm{mmol}), \mathbf{2}(0.1 \mathrm{mmol})$ and base in indicated solvent $(1 \mathrm{~mL})$ and temperature.

Table S5. Optimization of the epoxidation reaction conditions

Entry	Base	Equiv.	Sol.	Time	Yield of 12a (\%)
1	$\mathrm{Et}_{3} \mathrm{~N}$	2.0	DCM	6 h	40
2	DABCO^{2}	2.0	DCM	1 h	39
3	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	2.0	DCM	24 h	21
4	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	2.0	DCM	30 min	81
5	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	2.0	DCM	20 min	65
6	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	2.0	PhMe	30 min	75
7	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	2.0	MeCN	20 min	63
8	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	2.0	DMF	30 min	55
9	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	1.0	DCM	45 min	77
10	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	3.0	DCM	20 min	69

Conditions: $\mathbf{1}(0.1 \mathrm{mmol}), \mathbf{2}(0.1 \mathrm{mmol})$ and base in indicated solvent (1 mL) and temperature;
12a was isolated as a pair of $1: 1$ diasteromers.

3. Preparation of the substrates

3.1 Preparation of $\boldsymbol{\beta}$-keto esters

1a

$1 e$

$1 i$

1b

$1 f$

1c

1d

1j

1g

1h

1m

1n

10

1k

11

Note: Compounds $\mathbf{1 a}, \mathbf{1 i - k}$ and $\mathbf{1 q}$ are commercial available. Other β-keto esters are known compounds and were prepared as following procedure.

Method A: preparation of 1 b .

50 mL of the dried round bottom flask was taken, and dimethylhydroxylamine hydrochloride ($1.02 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.05$ equiv) in dry DCM (24 mL) was treated dropwise with triethylamine ($2.9 \mathrm{~mL}, 21.0 \mathrm{mmol}, 2.1$ equiv) and $\mathbf{S} 1(1.2 \mathrm{~mL}, 10.0$ mmol, 1.0 equiv) at $0{ }^{\circ} \mathrm{C}$. After the addition was completed, the system was returned to room temperature, stirred for 3 h , and the reaction progress was monitored by TLC plate. After the reaction was completed, the reaction was quenched with 10 mL sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the organic phase was separated and the aqueous phase was extracted with DCM ($15 \mathrm{~mL} \times 3$). The organic phase was combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by vacuum and the mixture was purified by column chromatography on silica gel (petroleum ether / EtOAc $=5: 1$) to give product $\mathbf{S 2}$ in

85\% yield.
n-Butyllithium (1.2 M in hexane, 3.1 equiv) was added at $-78^{\circ} \mathrm{C}$ to a THF solution (0.1 M) containing diisopropylamine (3.0 equiv) in a round-bottomed flask flushed with argon. After 30 min at $0^{\circ} \mathrm{C}$, the medium was recooled to $-78^{\circ} \mathrm{C}$ and freshly distilled tert-butyl acetate (3.0 equiv) was added. After 30 min at $-78^{\circ} \mathrm{C}$, $\mathbf{S 2}$ (1.0 equiv) was added at this temperature. After 1 h , the reaction was quenched at room temperature with sat. aq. NaHCO_{3}, and the mixture extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The combined organic layer was washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether / $\mathrm{EtOAc}=50: 1$) to give product $\mathbf{1 b}$ in 92% yield.

Method B: preparation of 1 c .

An aqueous sodium hydroxide solution ($1.0 \mathrm{M}, 50 \mathrm{~mL}$) was added to ethylbenzoylacetate ($8.7 \mathrm{~mL}, 50.0 \mathrm{mmol}$). This mixture was stirred overnight at room temperature then transferred to a separating funnel. It was washed with DCM (3×10 mL) and the aqueous layer acidified to pH 1 by the addition of 2.0 M HCl . The precipitate was collected by suction filtration and dried under vacuum to yield benzoylacetic acid $\mathbf{S 3}$ ($6.3 \mathrm{~g}, 39.0 \mathrm{mmol}, 78 \%$), which was used without further purification.

A solution of acid $\mathbf{S 3}(1.640 \mathrm{~g}, 10.0 \mathrm{mmol})$ and the benzyl alcohol $(10.0 \mathrm{mmol})$ in acetonitrile (20 mL) was prepared. To this solution was added a solution of dicyclohexylcarbodiimide ($2.1 \mathrm{~g}, 10.0 \mathrm{mmol}$) and 4-dimethylaminopyridine (61 mg , 0.5 mmol) in acetonitrile (10 mL) under rapid stirring. This mixture was stirred overnight at room temperature. Then the mixture was directly purified by column chromatography on silica gel (petroleum ether / EtOAc $=50: 1$) to give product $\mathbf{1 c}$ in 85\% yield.

Method C: preparation of 1d-h and 1p.

To a dried three-necked flask equipped with a dropping funnel, a condenser, and a magnetic stirrer was added $\mathrm{NaH}(1.1 \mathrm{~g}, 28.0 \mathrm{mmol}, 2.8$ equiv, 60% in mineral oil), diethyl carbonate ($2.4 \mathrm{~mL}, 20.0 \mathrm{mmol}, 2.0$ equiv.), and toluene (10 mL). The mixture was heated to reflux. A solution of ketone $\mathbf{S 4}$ ($10.0 \mathrm{mmol}, 1.0$ equiv.) in toluene (5 mL) was added dropwise from the dropping funnel over 1-2 h. After the addition, the mixture was heated to reflux until the evolution of hydrogen ceased (15-20 min). When the reaction was cooled to room temperature, glacial acetic acid (3 mL) was added dropwise and a heavy, pasty solid appeared. Ice-water was added until the solid was dissolved completely. The toluene layer was separated, and the aqueous layer was extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The combined organic layer was washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent, the residue was purified by column chromatography on silica gel (petroleum ether / $\operatorname{EtOAc}=40: 1 \sim 20: 1$) to give the corresponding β-keto esters $\mathbf{1 d}$-h and $\mathbf{1 p}$ in $60-77 \%$ yields (Note: THF solvent was used in case of $\mathbf{1 p}$).

Method D: preparation of 11.

To a round bottom flask charged with $\mathbf{S 5}$ ($10.0 \mathrm{mmol}, 1.0$ equiv), sodium benzenesulfinate dihydrate ($2.0 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.2$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.1 \mathrm{~g}, 15.0 \mathrm{mmol}$, 1.5 equiv), and iodine ($5.0 \mathrm{~g}, 20.0 \mathrm{mmol}, 2.0$ equiv) was added THF (50 mL). This mixture was stirred at room temperature overnight until the complete consumption of the starting material as monitored by TLC. A solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(5.0 \mathrm{~g}, 34.0 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added to the mixture and then the reaction was stirred at $60^{\circ} \mathrm{C}$ for 4 h. Upon completion of the reaction, the solution was extracted with EtOAc ($3 \times 40 \mathrm{~mL}$), and the organic layer was separated, dried and concentrated to give a residue, which
was purified by flash column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=$ 9:1) to afford the desired β-keto sulfonate product 1 l in 65% yield.

Method E: preparation of $1 \mathrm{~m}-\mathrm{n}$.

To a suspension of $\mathrm{NaH}(0.4 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv, 60% in mineral oil) in dry THF (20 mL) was added dropwise $\mathbf{S 6}$ ($10.0 \mathrm{mmol}, 1.0$ equiv). When the gas evolution stopped, alkyl halide ($10.0 \mathrm{mmol}, 1.0$ equiv) was added slowly. The reaction mixture was stirred for a further 20 h at room temperature then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(30 \mathrm{~mL})$. The phases were separated and the aqueous phase further extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent, the residue was purified by column chromatography on silica gel (petroleum ether / EtOAc $=40: 1 \sim 20: 1$) to give the corresponding β-keto esters 1m-n in $85-90 \%$ yields.

Method F: preparation of 10.

The mixture of $\mathbf{S 7}$ ($30.0 \mathrm{mmol}, 1.0$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($45.0 \mathrm{mmol}, 1.5$ equiv) and methyl iodide ($33.0 \mathrm{mmol}, 1.1$ equiv) in dry DMF (30 mL) was heated under an argon atmosphere at $60^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was then poured into water and the aqueous layer was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The organic layer was washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of solvent and purification by flash column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=$ 20:1) afforded the product $\mathbf{1 0}$ in 77% yield.

1b
Following the general method $\mathrm{A}, \mathbf{1 b}$ was obtained as a yellow oil in 3:10 mixture of enol and keto form (10.0 mmol scale, $2.0 \mathrm{~g}, 92 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)
$\delta 12.72$ (s, 0.3 H), 7.94 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.59(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 0.9 \mathrm{H}), 7.53-7.35(\mathrm{~m}, 3 \mathrm{H}), 5.58(\mathrm{~s}, 0.3 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$. The spectral data of $\mathbf{1 b}$ was consistent with that reported in the literature. ${ }^{1}$

1c
Following the general method $\mathrm{B}, \mathbf{1 c}$ was obtained as a yellow oil in 3:10 mixture of enol and keto form (10.0 mmol scale, $2.2 \mathrm{~g}, 85 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} \mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 12.48$ (s, enol), 7.90 (d, $J=8.0 \mathrm{~Hz}$, enol), 7.86 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.72 (d, $J=7.9$ Hz, enol), 7.51 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.44-7.24 (m, 7H), 5.68 (s, enol), 5.19 (s, enol), 5.13 $(\mathrm{s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H})$. The spectral data of $\mathbf{1 c}$ was consistent with that reported in the literature. ${ }^{2}$

1d
Following the general method $\mathrm{C}, \mathbf{1 d}$ was obtained as a light yellow oil in 1:11 mixture of enol and keto form (10.0 mmol scale, $1.6 \mathrm{~g}, 73 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 12.63(\mathrm{~s}, 0.09 \mathrm{H}), 7.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $5.58(\mathrm{~s}, 0.09 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H})$. The spectral data of $\mathbf{1 d}$ was consistent with that reported in the literature. ${ }^{3}$

1e
Following the general method $\mathrm{C}, \mathbf{1} \mathbf{e}$ was obtained as a light yellow oil in 1:4 mixture of enol and keto form (10.0 mmol scale, $1.6 \mathrm{~g}, 75 \%$ yield). ${ }^{1} \mathbf{H}$ NMR (600 $\left.\mathbf{M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 12.61(\mathrm{~s}, 0.25 \mathrm{H}), 7.98(\mathrm{dd}, J=8.6,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 5.59(\mathrm{~s}, 0.25 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. The spectral data of $\mathbf{1 e}$ was consistent with that reported in the literature. ${ }^{3}$

1f

Following the general method $\mathrm{C}, \mathbf{1 f}$ was obtained as a yellow oil in 1:2 mixture of enol and keto form (10.0 mmol scale, $1.6 \mathrm{~g}, 60 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 12.56(\mathrm{~s}, 0.5 \mathrm{H}), 8.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 0.5 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. The spectral data of $\mathbf{1 f}$ was consistent with that reported in the literature. ${ }^{3}$

1 g
Following the general method $\mathrm{C}, \mathbf{1 g}$ was obtained as a light yellow solid in 1:4 mixture of enol and keto form (10.0 mmol scale, $1.6 \mathrm{~g}, 62 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 12.67$ ($\mathrm{s}, 0.25 \mathrm{H}$), 8.46 ($\mathrm{s}, 1 \mathrm{H}$), 8.02 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.98 (d, $J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.90$ (dd, $J=15.8,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 0.25 \mathrm{H}), 4.24(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. The spectral data of $\mathbf{1 g}$ was consistent with that reported in the literature. ${ }^{3}$

1h
Following the general method $\mathrm{C}, \mathbf{1 h}$ was obtained as a light yellow oil in keto form (10.0 mmol scale, $1.5 \mathrm{~g}, 76 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.72$ (d, $J=3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68$ (d, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.90(\mathrm{~s}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. The spectral data of $\mathbf{1 h}$ was consistent with that reported in the literature. ${ }^{3}$

1
Following the general method $\mathrm{D}, \mathbf{1 1}$ was obtained as a yellow solid $(10.0 \mathrm{mmol}$ scale, $1.7 \mathrm{~g}, \mathbf{6 5 \%}$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.67$ - 7.59 (m, 2H), 7.54 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.74$ (s, 2H). The spectral data of $\mathbf{1 1}$ was consistent with that reported in the literature. ${ }^{3}$

1m
Following the general method $\mathrm{E}, \mathbf{1 m}$ was obtained as a yellow oil $(10.0 \mathrm{mmol}$ scale, $1.9 \mathrm{~g}, 90 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.98(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.58$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.49(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. The spectral data of $\mathbf{1 m}$ was consistent with that reported in the literature. ${ }^{4}$

Following the general method E, $\mathbf{1 n}$ was obtained as a colorless oil (10.0 mmol scale, $2.4 \mathrm{~g}, 85 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$). $\delta 7.96$ (d, $J=7.98 \mathrm{~Hz}, 2 \mathrm{H}$), 7.56 (t, $J=7.26 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.50 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{t}, J=7.08$ $\mathrm{Hz}, 1 \mathrm{H}), 4.62(\mathrm{t}, J=7.26 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.30-3.37(\mathrm{~m}, 2 \mathrm{H}), 1.11$ $(\mathrm{t}, J=7.02 \mathrm{~Hz}, 3 \mathrm{H})$. The spectral data of $\mathbf{1 n}$ was consistent with that reported in the literature. ${ }^{5}$

10
Following the general method F, $\mathbf{1 0}$ was obtained as a yellow oil (10.0 mmol scale, $1.4 \mathrm{~g}, 77 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$). $\delta 4.17$ ($\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.50(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.21(\mathrm{~m}, 8 \mathrm{H}), 0.89(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. The spectral data of $\mathbf{1 0}$ was consistent with that reported in the literature. ${ }^{6}$

1p
Following the general method $\mathbf{C}, \mathbf{1 p}$ was obtained as a light brown oil (10.0 mmol scale, $1.7 \mathrm{~g}, 77 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$). $\delta 12.49(1 \mathrm{H}, \mathrm{s}), 8.05(\mathrm{dd}, J=7.8$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{td}, \mathrm{J}=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.26$ $(\mathrm{m}, 2 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{q}, 4 \mathrm{H}), 4.30-4.22(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.58(\mathrm{dd}, J=$ $10.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.52-$
$2.46(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. The spectral data of $\mathbf{1 p}$ was consistent with that reported in the literature. ${ }^{7}$

3.2 Preparation of the peroxides

Method A: preparation of 2a.

$\mathbf{S 8}$ and $\mathbf{S 9}$ were prepared according to literature report. ${ }^{3}$
To a solution of $\mathbf{S 9}$ (2.0 g , 7.4 mmol , 1.0 equiv) in DMF (74 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(2.6 \mathrm{~g}, 18.5 \mathrm{mmol}, 2.5$ equiv) and TFA ($1.4 \mathrm{~mL}, 18.5 \mathrm{mmol}, 2.5$ equiv) at room temperature. The mixture was heated to $40^{\circ} \mathrm{C}$ and stirred for 3.5 h . After completion, EtOAc (300 mL) was added and the mixture was washed with brine $(100 \mathrm{~mL} \times 3)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash silica gel chromatography (petroleum ether / $\mathrm{EtOAc}=10: 1$) to afford the compound $\mathbf{S 1 0}$ (889 $\mathrm{mg}, 75 \%$ yield) as a colorless oil.

To a solution of the $\mathbf{S 1 0}$ ($889 \mathrm{mg}, 5.5 \mathrm{mmol}, 1.0$ equiv) in DCM (55 mL) was added Dess-Martin reagent ($3.5 \mathrm{~g}, 8.3 \mathrm{mmol}, 1.5$ equiv) at room temperature. The reaction mixture was stirred for 1 h . After completion, the solution was quenched with sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. The organic layer was separated, the aqueous layer was extracted with $\mathrm{DCM}(20 \mathrm{~mL} \times 3)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash silica gel chromatography (petroleum ether $/ \mathrm{EtOAc}=$ $\mathbf{3 0 : 1)}$ to afford the product $\mathbf{2 a}\left(713 \mathrm{mg}, 81 \%\right.$ yield) as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400
$\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 9.57(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 1.22$ (s, 9H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 193.1, 144.9, 135.8, 80.7, 70.5, 26.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{K}]^{+}$Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{KO}_{3}$: 197.0575; Found: 197.0507 .

Method B: preparation of 2b-c.

Following a literature procedure ${ }^{8}$, methyl acrylate ($10.0 \mathrm{mmol}, 1.0$ equiv), aldehyde ($12.0 \mathrm{mmol}, 1.2$ equiv), formamide ($1.0 \mathrm{mmol}, 0.1$ equiv) and DABCO (3.0 $\mathrm{mmol}, 0.3$ equiv) were stirred at room temperature for 1~3 days. After completion, the reaction was directly submitted to flash silica gel chromatography (petroleum ether / $\mathrm{EtOAc}=2: 1-1: 1$) to afford the MBH adduct $\mathbf{S 1 1}$ in $85-92 \%$ yields.

LiBr (3.0 equiv) was added to a solution of the appropriate MBH adduct $\mathbf{S 1 1}$ (1.0 equiv) in anhydrous $\operatorname{DCM}(1.0 \mathrm{M})$ at room temperature. After cooling to $0{ }^{\circ} \mathrm{C}, 98 \%$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1.5 equiv) was rapidly added. And then the reaction was allowed to warm to room temperature and stir for 15-20 h. After completion, the solution was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The organic layer was separated, the aqueous layer was extracted with DCM , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash silica gel chromatography (petroleum ether $/ \mathrm{EtOAc}=70: 1$) to afford the product $\mathbf{S 1 2}$ in 67-82\% yields. ${ }^{8}$

To a solution of the $\mathbf{S 1 2}$ (1.0 equiv) in anhydrous DCM (0.1 M) was added DIBAIH (3.0 equiv) dropwise under a N_{2} atmosphere at $0^{\circ} \mathrm{C}$. After 1 h , added MeOH dropwise to quench the reaction. Then the mixture was added sat. aq. Rochelle's salt at room temperature and stir for 1 h . After completion, the solution was filtered through a pad of celite and washed with DCM. The filtrate was washed with brine, dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash silica gel chromatography (petroleum ether $/ \mathrm{EtOAc}=10: 1$) to afford the compound $\mathbf{S 1 3}$ in $65-$ 77% yields.

To a solution of the $\mathbf{S 1 3}$ (1.0 equiv), tert-butyl hydroperoxide (3.1 M solution in hexane, 1.0 equiv) and TBAB (0.1 equiv) in $\mathrm{DCM}(0.1 \mathrm{M}$) was added powder KOH (1.0 equiv). The resulting solution was stirred at room temperature for $2-4 \mathrm{~h}$. After completion, the reaction was quenched by water. The organic layer was separated and the aqueous layer was extracted with DCM. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash silica gel chromatography (petroleum ether / EtOAc $=10: 1$) to afford the compound S14 in 85-89\% yields.

To a solution of the $\mathbf{S 1 4}$ (1.0 equiv) in DCM (0.1 M) was added Dess-Martin reagent (1.5 equiv) at room temperature. The reaction mixture was stirred for 1 h . After completion, the solution was quenched with sat. aq. NaHCO_{3}. The organic layer was separated, the aqueous layer was extracted with DCM , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash silica gel chromatography (petroleum ether $/ \mathrm{EtOAc}=30: 1$) to afford the products $\mathbf{2 b} \mathbf{- c}$ in $62-75 \%$ yields.

Following the above procedure, $\mathbf{2 b}$ was obtained as a light yellow oil ($65 \mathrm{mg}, 75 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.44(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.68$ (s, $2 \mathrm{H}), 2.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 193.5$, 155.6, 138.7, 80.6, 65.4, 26.4, 15.6. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NaO}_{3}$: 195.0992; Found: 195.1022.

Following the above procedure, $\mathbf{2 c}$ was obtained as a colorless oil ($66 \mathrm{mg}, 62 \%$
yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 9.44$ ($\mathrm{s}, 0.8 \mathrm{H}$), 9.41 ($\mathrm{s}, 0.2 \mathrm{H}$), 6.78 (t, $J=7.6 \mathrm{~Hz}$, $0.8 \mathrm{H}), 6.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 0.2 \mathrm{H}), 4.65(\mathrm{~s}, 1.5 \mathrm{H}), 4.09(\mathrm{~s}, 0.5 \mathrm{H}), 2.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.84(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 193.5, 192.0, $159.5,157.4,140.5,138.1,80.6,65.8,38.3,38.2,28.4,28.2,26.4,22.7,22.6,19.9$. HRMS (ESI) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{3}$: 215.1642; Found: 215.1648.

Method C: preparation of 10 .

To a solution of the $\mathbf{2 a}(158 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) in anhydrous THF (10 mL) was added MeLi (2.5 equiv) dropwise under a N_{2} atmosphere at $-78{ }^{\circ} \mathrm{C}$. After 1 h , quench the reaction by sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The mixture was extracted with EtOAc ($5 \mathrm{~mL} \times 3$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum to afford the crude product $\mathbf{S 1 5}(170 \mathrm{mg})$ without further purification.

To a solution of the crude compound $\mathbf{S 1 5}$ ($170 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) in DCM $(10 \mathrm{~mL})$ was added Dess-Martin reagent ($636 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.5$ equiv) at room temperature. The reaction mixture was stirred for 1 h . After completion, the solution was quenched with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The organic layer was separated, the aqueous layer was extracted with $\mathrm{DCM}(10 \mathrm{~mL} \times 3)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash silica gel chromatography (petroleum ether / $\mathrm{EtOAc}=30: 1)$ to afford the product $\mathbf{1 0}(115 \mathrm{mg}, 67 \%$ overall yield of two steps) as a light yellow oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$) $\delta 6.18$ (s, 1H), 6.09 (s, $1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 198.7$, 143.9, 127.5, 80.7, 72.8, 26.4, 26.0. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NaO}_{3}$: 195.0992; Found: 195.0990 .

4. General procedure for the synthesis of dihydrofurans

To a solution of $\mathbf{1}$ ($0.2 \mathrm{mmol}, 1.0$ equiv) and $\mathbf{2}(0.2 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{DCM}(1$ mL) was added powder $\mathrm{KOH}(22 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv) at room temperature. The reaction mixture was stirred for $10-60 \mathrm{~min}$. After completion, the reaction was quenched by water (2 mL) and extracted with $\mathrm{DCM}(3 \mathrm{~mL} \times 3)$. The separated aqueous layer was left for further acidification (see below). The separated organic layers were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash silica gel chromatography (petroleum ether / EtOAc $=3: 1 \sim 2: 1$) to afford the alcohol products 4 in 29-45\% yields.

Additionally, the above mentioned aqueous layer was treated with 2.0 M HCl to adjust the pH to $2 \sim 3$ and extracted with $\mathrm{DCM}(3 \mathrm{~mL} \times 3)$. The combined organic phase was dried and concentrated. The solid residue was triturated with petroleum ether / diethyl ether (10: 1) and filtered to afford the carboxylic acid products $\mathbf{8 b} \mathbf{- 8 e}$ and $\mathbf{8 g}$ in $42-29 \%$ yields. While in case of slurry residue, the carboxylic acid products $\mathbf{8 a}, \mathbf{8 f}$, and 8h-n were purified by flash silica gel chromatography ($\mathrm{DCM} / \mathrm{MeOH}=15: 1 \sim 5: 1$) in 43-27\% yields.

4a
Following the general procedure, $\mathbf{4 a}$ was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $25 \mathrm{mg}, 45 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 7.80-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.45-$ 7.33 (m, 3H), 4.12 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.85-3.79(\mathrm{~m}, 4 \mathrm{H}), 2.95(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{br}, \mathrm{s}$, $2 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 165.1,163.8,130.5$, 129.7, 129.3, 127.6, 102.8, 88.5, 65.1, 60.0, 35.8, 14.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{5}$: 279.1227; Found: 279.1217.

8a
Following the general procedure, 8a was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $25 \mathrm{mg}, 43 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CD $\mathbf{3}_{\mathbf{3}} \mathbf{O D}$) $\delta 7.86$ - 7.79 (m, 2H), 7.45 $7.33(\mathrm{~m}, 3 \mathrm{H}), 4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.28(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, CD $\mathbf{3} \mathbf{O D)} \delta 178.7,167.0,166.9,131.9,131.2,130.7,128.5,102.8$, 92.0, 67.2, 60.9, 38.6, 14.5. HRMS (ESI) m/z: [M - H] - Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{6}$: 291.0863; Found: 291.0817.

4b
Following the general procedure, $\mathbf{4 b}$ was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $24 \mathrm{mg}, 39 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 7.74$ - 7.67 (m, 2H), 7.41 $7.34(\mathrm{~m}, 3 \mathrm{H}), 3.88-3.82(\mathrm{~m}, 4 \mathrm{H}), 2.93(\mathrm{~s}, 2 \mathrm{H}), 1.64(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 164.6,162.80130 .3,129.4,127.8,104.8,88.2,80.4,65.4,36.3$, 28.3. HRMS (ESI) m/z: [M - H] ${ }^{-}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{5}: 305.1383$; Found: 305.1332.

8b
Following the general procedure, $\mathbf{8 b}$ was obtained as a yellow solid $(0.2 \mathrm{mmol}$ scale, $27 \mathrm{mg}, 42 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{O D}$) $\delta 7.78$ - 7.71 (m, 2H), 7.44 $7.34(\mathrm{~m}, 3 \mathrm{H}), 3.92(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.08$ (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.35 (s, 9H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D} \mathbf{3} \mathbf{O D}$) $\delta 178.8$, 166.4, 165.7, 132.1, 131.0, 130.7, 128.5, 104.5, 90.8, 81.2, 66.7, 38.9, 28.5. HRMS (ESI) m/z: [M - H] Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{6}$: 319.1176; Found: 319.1121. Melting point: $190.3-191.2^{\circ} \mathrm{C}$.

Following the general procedure, $\mathbf{4 c}$ was obtained as a white oil (0.2 mmol scale, $24 \mathrm{mg}, \mathbf{3 5 \%}$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.81$ - 7.66 (m, 2H), 7.47-7.21 (m, 9H), $5.12(\mathrm{~s}, 2 \mathrm{H}), 3.88-3.82(\mathrm{~m}, 4 \mathrm{H}), 3.00(\mathrm{~s}, 2 \mathrm{H}), 1.84(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 165.0,164.7,136.2,130.6,129.8,129.4,128.5,128.5,128.2,128.1$, 128.1, 127.8, 102.6, 88.8, 65.9, 65.0, 35.9. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{5}$: 341.1384; Found: 341.1382.

8c
Following the general procedure, $\mathbf{8 c}$ was obtained as a white solid (0.2 mmol scale, $28 \mathrm{mg}, 39 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 7.79$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.18(\mathrm{~m}, 7 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 177.7,167.1,166.3,137.7,131.5,131.3,130.7,130.5,129.4,129.0$, 129.0, 128.5, 102.6, 91.0, 66.6, 38.6. HRMS (ESI) m/z: [M - H] ${ }^{-}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{6}$: 353.1019; Found: 353.0958 . Melting point: $132.1-133.4^{\circ} \mathrm{C}$.

4d
Following the general procedure, $\mathbf{4 d}$ was obtained as a colorless oil (0.2 mmol scale, $27 \mathrm{mg}, 43 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 7.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.90-3.73(\mathrm{~m}, 7 \mathrm{H}), 2.92(\mathrm{~s}, 2 \mathrm{H}), 2.32(\mathrm{br}$, $\mathrm{s}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 165.5,163.8,161.5$, 131.3, 122.1, 113.2, 101.5, 88.1, 65.3, 60.0, 55.5, 36.1, 14.4. HRMS (ESI) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{6}: 309.1333$; Found: 309.1333 .

8d
Following the general procedure, $\mathbf{8 d}$ was obtained as a white solid $(0.2 \mathrm{mmol}$ scale, $26 \mathrm{mg}, 41 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$) $\delta 7.86$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), $6.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.82$ (m, 4H), $3.23(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 179.1,167.0,166.6,162.9,132.6,123.9,113.8,101.3$, 91.0, 66.9, 60.8, 55.8, 38.8, 14.6. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{7}$: 323.1125; Found: 323.1125 . Melting point: $181.4-182.1^{\circ} \mathrm{C}$.

$4 e$
Following the general procedure, $4 \mathbf{e}$ was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $21 \mathrm{mg}, 30 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.82(\mathrm{~m}, 4 \mathrm{H}), 2.99(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{br}$, $\mathrm{s}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 165.0,162.3,133.4$, $132.2(\mathrm{~d}, J=32.8 \mathrm{~Hz}), 129.9,124.7(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.0(\mathrm{~d}, J=271.9 \mathrm{~Hz}), 104.6$, 89.1, 65.2, 60.4, 36.0, 14.3. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}_{5}$: 347.1100; Found: 347.1105.

8e
Following the general procedure, $\mathbf{8 e}$ was obtained as a yellow solid $(0.2 \mathrm{mmol}$ scale, $24 \mathrm{mg}, 33 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$) $\delta 8.02$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J$ $=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{t}, J=7.1$
$\mathrm{Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 MHz, CD $\mathbf{C O D}_{\mathbf{3}} \mathbf{O D}$) $\delta 178.9,166.4,164.6,135.6,132.6$ (q, $J=$ $32.4 \mathrm{~Hz}), 131.4,125.5(\mathrm{q}, ~ J=271.6 \mathrm{~Hz}), 125.3(\mathrm{q}, J=3.8 \mathrm{~Hz}), 104.7,91.9,66.7,61.1$, 38.7, 23.5, 14.5. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NaO}_{6}:$ 383.0713; Found: 383.0723. Melting point: $121.1-122.4^{\circ} \mathrm{C}$.

$4 f$
Following the general procedure, $\mathbf{4 f}$ was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $24 \mathrm{mg}, 40 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.78(\mathrm{dd}, J=8.1,5.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.03(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.85-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.00-2.75(\mathrm{~m}$, $4 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 165.3,164.0(\mathrm{~d}, J=251.5$ $\mathrm{Hz}), 163.0,131.8(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 126.0(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 114.8(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 102.7$, 88.6, 65.0, 60.2, 36.0, 14.3. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{FO}_{5}$: 297.1132; Found: 297.1126.

8 f
Following the general procedure, $\mathbf{8 f}$ was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $23 \mathrm{mg}, 37 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{O D}$) $\delta 7.96$ - $7.88(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{t}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$) $\delta 174.7,166.3,165.3(\mathrm{~d}, ~ J=249.0 \mathrm{~Hz}), 165.1,133.2$ (d, $J=8.6 \mathrm{~Hz}$), 127.4 (d, $J=3.1 \mathrm{~Hz}$), 115.5 (d, $J=22.0 \mathrm{~Hz}$), 102.9, 90.1, 66.2, 61.1, 38.4, 14.5. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{FO}_{6}$: 311.0925; Found: 311.0919 .

$4 g$

Following the general procedure, $\mathbf{4 g}$ was obtained as a light yellow oil (0.2 mmol scale, $22 \mathrm{mg}, \mathbf{3 3 \%}$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right.$) $\delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.80(\mathrm{~m}$, 4H), $7.55-7.47(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.92-3.86(\mathrm{~m}, 4 \mathrm{H}), 3.02(\mathrm{~s}, 2 \mathrm{H})$, 2.01 (br, s, 2H), $1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 165.3,163.8$, $134.3,132.5,129.9,128.9,127.8,127.5,127.3,126.5,126.2,103.3,88.6,65.4,60.1$, 36.2, 14.4. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{5}$: 329.1384; Found: 329.1381 .

8 g
Following the general procedure, $\mathbf{8 g}$ was obtained as a light yellow solid (0.2 mmol scale, $20 \mathrm{mg}, 29 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CD $\mathbf{3}_{\mathbf{3}} \mathbf{O D}$) $\delta 8.43$ (s, 1H), 7.96 7.80 (m, 4H), $7.54-7.51$ (m, 2H), 4.10 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.97$ (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.86(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$) δ 178.2, 167.0, 166.7, 135.6, 133.8, 131.1, 129.7, 129.1, 128.6, 128.3, 127.8, 127.7, 127.3, 103.1, 91.8, 67.1, 61.0, 38.8, 14.6. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{6}$: 343.1176; Found: 343.1177. Melting point: $211.8-212.7^{\circ} \mathrm{C}$.

4h
Following the general procedure, $\mathbf{4 h}$ was obtained as a yellow oil (0.2 mmol scale, $26 \mathrm{mg}, 45 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$) $\delta 8.17$ (d, $\left.J=3.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.49$ (d, J $=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.08(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 4 \mathrm{H}), 2.98(\mathrm{~s}, 2 \mathrm{H})$, 2.09 (br, s, 2H), $1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (~} \mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 165.3,157.4$, 132.4, 131.2, 130.3, 127.3, 101.3, 88.7, 65.2, 60.2, 36.0, 14.6. HRMS (ESI) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~S}: 285.0791$; Found: 285.0790.

8h
Following the general procedure, $\mathbf{8 h}$ was obtained as a yellow oil (0.2 mmol scale, $24 \mathrm{mg}, 40 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$) $\delta 8.19$ (dd, $J=3.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.63 (dd, $J=5.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=5.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.94$ (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.29$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$) $\delta 177.4,166.6$, 159.7, 133.6, 132.3, 131.5, 127.8, 101.0, 90.8, 66.7, 61.0, 38.7, 14.78. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{6} \mathrm{~S}$: 299.0584; Found: 299.0584.

4i
Following the general procedure, $\mathbf{4 i}$ was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $13 \mathrm{mg}, 30 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.75$ (s, 4H), $2.69(\mathrm{~s}, 2 \mathrm{H}), 2.27(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 166.8,166.1,102.5,89.3,65.4,59.8,34.4,14.5,14.3$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NaO}_{5}$: 239.0890; Found: 239.0898.

$8 i$
Following the general procedure, $\mathbf{8 i}$ was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $12 \mathrm{mg}, 27 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$) $\delta 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.83 (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}$, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}\right)$ $\delta 179.4,169.4,167.7,102.4,91.8,67.0,60.7,37.1,14.8,14.4$. HRMS (ESI) m/z: [M - H] Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{6}$: 229.0707; Found: 229.0718 .

4j

Following the general procedure, $\mathbf{4} \mathbf{j}$ was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $22 \mathrm{mg}, 43 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.75$ - 3.69 (m, 4H), 2.75-2.37 (m, 6H), 1.56-1.49 (m, 2H), 1.39-1.24 (m, 6H), 0.90 (t, J $=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l 3}\right) \delta 170.5,166.0,101.7,88.8,65.0,59.6$, 34.3, 29.1, 27.5, 22.4, 14.3, 13.8. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{5}$: 259.1540; Found: 259.1529.

8j
Following the general procedure, $\mathbf{8 j}$ was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $24 \mathrm{mg}, 44 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$) $\delta 4.14$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.83(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}$, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.32(\mathrm{~m}, 2 \mathrm{H})$, $1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta$ 177.4, 173.0, 167.4, 102.0, 91.0, 66.6, 60.7, 37.0, 30.0, 28.5, 23.4, 14.7, 14.1. HRMS (ESI) m/z: [M - H] Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{6}$: 271.1176; Found: 271.1137.

4k
Following the general procedure, $\mathbf{4 k}$ was obtained as a colorless oil (0.2 mmol scale, $20 \mathrm{mg}, 40 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.75$ - 3.69 (s, 4H), 3.65-3.58 (m, 1H), 2.69 (s, 2H), 2.19 (br, s, 2H), 1.26 (t, $J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$) δ 174.6, 166.0, 100.4, 88.7, 65.2 59.7, 34.4, 27.0, 19.7, 14.5. HRMS (ESI) m/z: $[\mathrm{M} \mathrm{-} \mathrm{H}]^{-}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{5}$: 243.1227; Found: 243.1201.

8k

Following the general procedure, $\mathbf{8 k}$ was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $21 \mathrm{mg}, 40 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$) $\delta 4.14$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.81(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.09-2.98$ (m, 1H), 2.90-2.81 (m, 1H), $1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{dd}, J=9.2,6.9 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{O D}$) $\delta 176.8,176.4,167.2,100.3,90.5,66.3,60.7,36.9$, 28.2, 19.8, 19.7, 14.7. HRMS (ESI) m/z: [M - H] Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{6}:$ 257.1019; Found: 257.0982.

41
Following the general procedure, 41 was obtained as a yellow oil (0.2 mmol scale, $24 \mathrm{mg}, \mathbf{3 5 \%}$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) $\delta 7.79$ - 7.68 (m, 2H), 7.69-7.63 (m, $2 \mathrm{H}), 7.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.34(\mathrm{~m}, 5 \mathrm{H}), 3.81-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.00(\mathrm{~s}, 2 \mathrm{H})$, 2.01 (br, s, 2H). ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right.$) $\delta 163.1,141.8,133.1,131.3,129.7$, 129.2, 128.3, 128.0, 127.1, 111.1, 89.4, 64.9, 36.5. HRMS (ESI) m/z: [M + H $]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~S}: 347.0948$; Found: 347.0950 .

81
Following the general procedure, $\mathbf{8 1}$ was obtained as a yellow oil (0.2 mmol scale, $20 \mathrm{mg}, 28 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$) $\delta 7.75-7.69$ (m, 4H), $7.62-7.55$ (m, 1H), $7.52-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J$ $=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ MHz, $\left.\mathbf{C D}_{3} \mathbf{O D}\right) \delta 177.9,165.6,143.2,134.1,131.8,130.8,130.2,128.6,127.8,110.6$, 92.0, 66.5, 39.0. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{6} \mathrm{~S}: 361.0740$; Found: 361.0743

4m

Following the general procedure, $\mathbf{4 m}$ was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $24 \mathrm{mg}, 41 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 7.72$ - 7.64 (m, 2H), 7.47 $7.32(\mathrm{~m}, 3 \mathrm{H}), 4.19-4.06(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.89 (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.25$ (q, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ (br, $\mathrm{s}, 1 \mathrm{H}), 1.80(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 165.2,163.4,130.6,130.2,129.5,127.8,109.1,89.4,64.7,62.3$, 60.0, 42.3, 14.4, 14.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{5}:$ 293.1384; Found: 293.1387.

8m
Following the general procedure, $\mathbf{8 m}$ was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $23 \mathrm{mg}, 37 \%$ yield, $\mathrm{dr}=2: 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$) $\delta 7.95-7.71$ (m, 2H), $7.50-7.32(\mathrm{~m}, 3 \mathrm{H}), 4.20-4.02(\mathrm{~m}, 2.9 \mathrm{H}), 3.96(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.89-3.78$ $(\mathrm{m}, 0.4 \mathrm{H}), 3.62(\mathrm{q}, J=5.8,0.7 \mathrm{H}), 3.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 0.3 \mathrm{H}), 1.31-1.26(\mathrm{~m}, 3 \mathrm{H}), 1.14$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, \mathbf{3 H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$) $\delta 175.5,166.7,166.3,166.2,165.7$, $131.6,131.5,131.4,131.0,130.8,128.5,128.5,109.0,108.8,94.7,92.5,66.4,63.4$, 61.0, 45.7, 44.0, 16.3, 14.5, 14.4. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaO}_{6}$: 329.0996; Found: 329.0987.

Following the general procedure, $\mathbf{4 n}$ was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $19 \mathrm{mg}, 29 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.76$ - 7.64 (m, 2H), 7.45 7.30 (m, 3H), 4.18-3.95 (m, 4H), 3.88 (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.24 (dd, $J=8.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (br, s, 2H), 1.59 (td, $J=10.5,8.8,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.47$ (dt, $J=9.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), $1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.95$ (dd, $J=12.2,6.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 165.4,163.2,130.6,130.1,129.7,127.7,108.8,90.1,64.7$,
62.5, 60.0, 45.0, 38.7, 26.7, 23.6, 22.3, 14.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NaO}_{5}$: 357.1673; Found: 357.1684.

Following the general procedure, $\mathbf{8 n}$ was obtained as a yellow oil (0.2 mmol scale, $19 \mathrm{mg}, \mathbf{2 7 \%}$ yield, dr$>20: 1$, relative configuration). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$) δ 7.84 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 3 \mathrm{H}), 4.19$ (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-3.97$ (m, $3 \mathrm{H}), 3.55(\mathrm{dd}, J=7.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{dd}, J=10.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta 175.7$, $166.9,166.3,131.6,131.2,130.8,128.4,108.7,93.4,63.6,61.0,48.4,40.4,27.6,23.6$, 22.8, 14.4. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NaO}_{6}: 371.1466$; Found: 371.1468.

5. General procedure for the synthesis of epoxides

To a solution of $\mathbf{1}$ ($0.2 \mathrm{mmol}, 1.0$ equiv) and $\mathbf{2 a}(31.6 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) in DCM (1 mL) was added powder $\mathrm{K}_{2} \mathrm{CO}_{3}(55.2 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv) at room temperature. The reaction mixture was stirred for 30 min . After completion, the solution was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(2 \mathrm{~mL} \times 3)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash silica gel chromatography (petroleum ether / $\mathrm{EtOAc}=10: 1$) to afford the epoxide products $\mathbf{1 2}$ in $52-81 \%$ yields.

12a

Following the general procedure, 12a was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $45 \mathrm{mg}, 81 \%$ yield, $\mathrm{dr}=1: 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 8.84(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.03-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 4.65$ (ddd, $J=13.5$, 8.1, $6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.20-4.03(m, 2H), 3.14-2.98(m, 2H), 2.68 (ddd, $J=41.9,14.8,7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.57-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{td}, J=7.1,5.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 198.5,198.4,194.3,194.2,169.3,169.2,135.8,135.7,133.9,128.9,128.8$, 62.0, 61.9, 59.5, 59.4, 50.9, 50.3, 49.7, 49.6, 27.3, 27.0, 14.0, 14.0. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{5}$: 277.1071; Found: 277.1046.

12b
Following the general procedure, 12b was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $46 \mathrm{mg}, 75 \%$ yield, $\mathrm{dr}=1: 1) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.04$ $7.96(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 2 \mathrm{H}), 4.63-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J$ $=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.11-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{ddd}, J=30.1,14.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{ddd}, J$ $=22.5,14.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{td}, J=7.1,4.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right)$ $\delta 198.5,198.4,192.7,192.6,169.5,169.4,164.2,131.4,131.3,128.9,128.8,114.1$, 61.9, 61.8, 59.5, 59.4, 55.7, 50.8, 50.4, 49.3, 27.4, 27.1, 14.0. HRMS (ESI) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{6}:$ 307.1176; Found: 307.1171.

12c
Following the general procedure, 12c was obtained as a colorless oil (0.2 mmol scale, $49 \mathrm{mg}, 71 \%$ yield, $\mathrm{dr}=1: 1) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 8.83(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.11(\mathrm{dd}, J=11.9,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{dd}, J=8.5,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{dt}, J=18.1$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (q, $J=6.7,6.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.13-3.03 (m, 2H), 2.73 (ddd, $J=46.9,14.8$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (ddd, $J=35.5,14.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{td}, J=7.1,4.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) δ 198.4, 198.3, 193.6, 193.3, 168.8, 168.7, 138.6, 135.2, 134.9, 129.3, 129.1, $126.0(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.6(\mathrm{q}, J=273.1 \mathrm{~Hz}), 62.2,62.2,59.4$,
59.3, 51.0, 50.4, 50.1, 50.0, 27.2, 27.0, 14.0, 13.9. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}_{5}$: 345.0944; Found: 345.0942.

12d
Following the general procedure, $\mathbf{1 2 d}$ was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $43 \mathrm{mg}, 73 \%$ yield, $\mathrm{dr}=1: 1) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.82(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.07-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{dt}, J=14.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-$ $4.09(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{dt}, J=13.9,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{ddd}, J=43.3,14.8,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.45 (ddd, $J=30.7,14.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{td}, J=7.0,4.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 198.5,198.4,192.7,192.5,169.1,169.0,167.5,165.0,132.3,131.7$, $131.6,131.5,116.2,116.0,62.0,62.0,59.4,59.3,50.9,50.3,49.7,49.6,27.2,27.0$, 14.0. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{FO}_{5}$: 295.0976; Found: 295.0973 .

Following the general procedure, 12e was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $48 \mathrm{mg}, 79 \%$ yield, $\mathrm{dr}=1: 1) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) $\delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.00-$ $7.95(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 4.54-4.50(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.02$ (m, 2H), 2.69 (dd, $J=14.8,6.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.59-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=14.8,8.0$ $\mathrm{Hz}, 0.5 \mathrm{H}), 1.31(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 198.6, 198.3, 194.6, $194.6,168.3,168.2,136.2,133.6,128.8,128.8,82.6,82.5,59.5,59.4,50.9,50.8,50.8$, 50.2, 27.8, 27.8, 27.1, 26.6. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NaO}_{5}$: 327.1203; Found: 327.1212.

12f
Following the general procedure, $\mathbf{1 2 f}$ was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $48 \mathrm{mg}, 74 \%$ yield, $\mathrm{dr}=1: 1) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.86(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.58(\mathrm{dd}, J=19.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.09-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.93-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.65-$ $7.55(\mathrm{~m}, 2 \mathrm{H}), 4.85-4.79(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{qt}, J=7.0,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.16-3.02(\mathrm{~m}, 2 \mathrm{H})$,
2.74 (ddd, $J=39.2,14.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.56$ (ddd, $J=32.1,14.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.16$ (td, $J=7.1,5.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{\mathbf{3}}$) $\delta \mathbf{1 9 8 . 5}, 198.4,194.2,194.1,169.4$, $169.3,136.0,133.2,133.2,132.6,131.0,130.9,130.0,129.1,128.9,127.9,127.1$, 124.3, 124.2, 62.0, 61.9, 59.5, 59.4, 50.9, 50.4, 49.8, 27.5, 27.2, 14.0. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{5}$: 327.1227; Found: 327.1214.

Following the general procedure, $\mathbf{1 2 g}$ was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $41 \mathrm{mg}, 71 \%$ yield, $\mathrm{dr}=1: 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.84(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.86-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 4.18-4.02(\mathrm{~m}, 2 \mathrm{H})$, 3.09-2.92 (m, 3H), $2.53(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.41(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.58(\mathrm{~d}, J$ $=3.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{td}, J=7.2,5.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 198.0$, 197.9, 197.4, 197.3, 173.4, 173.3, 135.8, 135.8, 132.8, 132.6, 128.7, 128.6, 128.6, $128.6,77.4,62.0,61.9,59.5,59.4,56.5,56.2,51.3,51.0,33.8,33.8,22.2,22.1,13.7$. HRMS (ESI) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{5}$: 291.1227; Found: 291.1218.

12h
Following the general procedure, 12h was obtained as a colorless oil (0.2 mmol scale, $45 \mathrm{mg}, 61 \%$ yield, $\mathrm{dr}=1: 1) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.81(\mathrm{~d}, J=38.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76(\mathrm{dd}, J=48.5,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.31-6.85(\mathrm{~m}, 5 \mathrm{H}), 4.34-$ $3.88(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.15-2.85(\mathrm{~m}, 3 \mathrm{H}), 2.46(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.25$ $\left.(\mathrm{d}, J=15.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 0.96(\mathrm{dt}, J=22.7,7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta$ 198.4, 198.1, 197.9, 196.3, 172.6, 137.6, 135.8, 135.6, 132.9, 132.4, 130.7, 130.6, $128.9,128.7,128.4,128.3,127.2,127.2,62.1,61.7,61.5,60.8,59.7,59.7,50.8,41.3$, 40.8, 31.9, 31.6, 13.5, 13.5. HRMS (ESI) m/z: [M + H $]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{5}: 367.1540$; Found: 367.1548.

12i
Following the general procedure, 12i was obtained as a colorless oil (0.2 mmol scale, $33 \mathrm{mg}, 65 \%$ yield, $\mathrm{dr}=1: 1) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.82(\mathrm{~d}, J=3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.22-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.67-2.44$ (m, 3H), 2.28 (ddd, $J=39.3,14.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.24$ (m, $5 \mathrm{H}), 0.89(\mathrm{td}, J=7.3,2.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) δ 204.2, 204.0, 198.3, $198.2,169.2,169.1,61.9,61.8,59.5,59.5,54.4,54.2,50.6,50.3,42.1,41.9,26.0,25.9$, 25.7, 22.2, 14.1, 14.12, 13.9. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{5}$: 257.1384; Found: 257.1377.

12j
Following the general procedure, $\mathbf{1 2} \mathbf{j}$ was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $38 \mathrm{mg}, 70 \%$ yield, $\mathrm{dr}=1: 1) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.80(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, 1H), 4.23-4.11 (m, 2H), 3.05-2.96(m, 2H), 2.81 (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.41$ (m, $2 \mathrm{H}), 2.33$ (dd, $J=14.7,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~h}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.43-1.21(\mathrm{~m}, 8 \mathrm{H}), 0.88$ $(\mathrm{td}, J=7.3,3.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 207.1,206.9,198.2,198.0$, $172.6,172.4,61.8,61.7,59.6,59.3,58.4,57.9,52.0,51.3,38.1,37.8,31.6,31.1,26.1$, 26.0, 22.3, 20.6, 20.4, 14.1, 14.0, 14.0, 13.9. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{5}$: 271.1540; Found: 271.1537 .

12k
Following the general procedure, $\mathbf{1 2 k}$ was obtained as a colorless oil $(0.2 \mathrm{mmol}$ scale, $26 \mathrm{mg}, 52 \%$ yield, $\mathrm{dr}=1: 2) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.86(\mathrm{~d}, J=17.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18(\mathrm{~m}, 2 \mathrm{H}), 3.10-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.64-2.40(\mathrm{~m}, 3 \mathrm{H})$, 2.11-1.96(m, 1.5H), $1.80-1.47(\mathrm{~m}, 5 \mathrm{H}), 1.30-1.23(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 207.5,207.3,198.2,198.1,171.8,171.3,61.9,61.8,59.5,59.4,59.4,51.6$,
51.2, 40.8, 40.8, 37.4, 37.2, 31.9, 31.6, 27.6, 27.0, 22.4, 22.2, 14.0. HRMS (ESI) m/z:
$[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{5}$: 255.1227; Found: 255.1226.

121
Following the general procedure, $\mathbf{1 2 1}$ was obtained as a colorless oil (0.2 mmol scale, $34 \mathrm{mg}, 57 \%$ yield, $\mathrm{dr}=1: 2) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.90(\mathrm{~d}, J=22.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.02$ (dd, $J=11.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.41$ (m, 1H), $7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.27-2.82(\mathrm{~m}, 5 \mathrm{H}), 2.76-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.51$ - 2.43 (m, 1H), $2.40(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.14$ (dt, $J=20.7,7.1$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) δ 198.1, 198.0, 194.8, 171.9, 171.2, 143.1, $142.9,133.8,133.5,132.3,131.9,128.8,128.7,128.3,128.1,126.9,61.8,59.7,59.3$, $56.4,56.2,52.7,51.3,33.3,32.1,31.1,30.8,26.3,26.0,14.0,14.0$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{5}$: 303.1227; Found: 303.1225.

6. Mechanistic investigations

To a solution of 1a ($19.2 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and $\mathbf{2 a}(15.8 \mathrm{mg}, 0.1 \mathrm{mmol}$, 1.0 equiv), and TEMPO ($15.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{DCM}(1 \mathrm{~mL})$ was added powder $\mathrm{KOH}(11.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv) at room temperature. The reaction mixture was stirred for 1 h . After completion, the reaction was quenched by water (2 mL) and extracted with DCM ($3 \mathrm{~mL} \times 3$). Combined the organic phase, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash silica gel chromatography (petroleum ether $/ \mathrm{EtOAc}=3: 1 \sim 2: 1$) to afford the alcohol product $\mathbf{4 a}$ in 38% yield. Additionally, the aqueous phase of step 1 was added 2.0 M HCl to adjust pH to $2 \sim 3$ and extracted with DCM ($2 \mathrm{~mL} \times 3$). The combined organic phase was dried and concentrated to give a residue, which was purified by flash silica gel chromatography
($\mathrm{DCM} / \mathrm{MeOH}=15: 1 \sim 5: 1$) to afford the carboxylic acid product $\mathbf{8 a}$ in 35% yield.
(2)

To a solution of $\mathbf{4 a}(27.8 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) in EtOAc (1 mL) was added powder KOH ($11.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv) at room temperature. The reaction mixture was stirred for 20 min . After completion, the solution was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(1 \mathrm{~mL})$ and extracted with diethyl ether $(2 \mathrm{~mL} \times 3)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash silica gel chromatography (petroleum ether / EtOAc $=50: 1 \sim 30: 1)$ to afford the products $5(17 \mathrm{mg}, 53 \%$ yield $)$ and $\mathbf{6}(4 \mathrm{mg}$, 10% yield).
(3)

To a solution of $5(64 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) in DCM (2 mL) was added DessMartin reagent ($127 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) to at room temperature. The mixture was stirred for 1 h and quenched with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with DCM ($2 \mathrm{~mL} \times 3$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash silica gel chromatography (petroleum ether $/ \mathrm{EtOAc}=20: 1$) to afford the aldehyde product 9 (39 $\mathrm{mg}, 62 \%$ yield) as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{dd}$, $J=8.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.36(\mathrm{~m}, 3 \mathrm{H}), 4.56-4.39(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $3.29(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 198.5, 170.4, 164.0, 163.8, 130.9, 129.4, 128.8, 127.8, 102.2, 89.0, 64.6, 60.2, 36.1, 20.6, 14.1. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{6}$: 319.1177; Found: 319.1187.

To a solution of 9 ($39 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.0$ equiv) in DCM (2 mL) was added powder $\mathrm{KOH}(14 \mathrm{mg}, 0.24 \mathrm{mmol}, 2.0$ equiv) at room temperature. The reaction process
was monitored by TLC, and the products $\mathbf{4 a}, \mathbf{5}$ and $\mathbf{8 a}$ could be detected at 20 min . When the reaction mixture was prolonged to 1 h , only the products $\mathbf{4 a}$ and $\mathbf{8 a}$ could be detected. Then, the reaction mixture was quenched by water $(2 \mathrm{~mL})$ and extracted with DCM ($3 \mathrm{~mL} \times 3$). The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash silica gel chromatography (petroleum ether $/ \mathrm{EtOAc}=2: 1$) to afford the alcohol product $\mathbf{4 a}(11 \mathrm{mg}, 34 \%$ yield $)$. Additionally, the aqueous phase was treated with 2.0 M HCl to adjust the pH to $2 \sim 3$ and extracted with DCM (3 mL $\times 3$). The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash silica gel chromatography ($\mathrm{DCM} / \mathrm{MeOH}=15: 1 \sim 5: 1$) to afford the carboxylic acid product $\mathbf{8 a}(13 \mathrm{mg}, 37 \%$ yield).
(4)

To a solution of $\mathbf{1 a}(19.2 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and $10(17.2 \mathrm{mg}, 0.1 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{DCM}(1 \mathrm{~mL})$ was added powder $\mathrm{KOH}(11.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv) at room temperature. The reaction mixture was stirred for 30 min . After completion, the solution was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(2 \mathrm{~mL} \times$ 3), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash silica gel chromatography (petroleum ether / $\mathrm{EtOAc}=5: 1$) to afford the product 11 (20 $\mathrm{mg}, 70 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.90-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.40(\mathrm{~m}$, $3 \mathrm{H}), 4.14(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.00-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$, $2.18(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 210.0,164.5$, 163.5, 131.0, 129.4, 129.3, 128.0 102.8, 92.6, 66.0, 60.3, 37.6, 27.0, 14.3. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{5}$: 291.1227; Found: 291.1241.
(5)

1a
$+$

2a

12a

To a solution of $\mathbf{1 a}(38.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) and $\mathbf{2 a}(31.6 \mathrm{mg}, 0.2 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{DCM}(1 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(55.2 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv) at room
temperature. The reaction mixture was stirred for 30 min . After completion, the solution was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(2 \mathrm{~mL} \times 3)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash silica gel chromatography (petroleum ether / $\mathrm{EtOAc}=10: 1$) to afford the epoxide product 12a $(45 \mathrm{mg}, 81 \%$ yield, $\mathrm{dr}=1: 1)$.
(6)

To a solution of 12a ($55 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) in DCM (1 mL) was added powder KOH ($22 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv) at room temperature. The reaction mixture was stirred for 30 min . After completion, the reaction was quenched by water (2 mL) and extracted with DCM ($3 \mathrm{~mL} \times 3$). The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash silica gel chromatography (petroleum ether / $\mathrm{EtOAc}=2: 1$) to afford the alcohol product $\mathbf{4 a}(18$ $\mathrm{mg}, 33 \%$ yield). Additionally, the aqueous phase was treated with 2.0 M HCl to adjust the pH to $2 \sim 3$ and extracted with $\mathrm{DCM}(3 \mathrm{~mL} \times 3)$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by flash silica gel chromatography ($\mathrm{DCM} / \mathrm{MeOH}=15: 1 \sim 5: 1$) to give carboxylic acid product 8a (17 mg, 30\% yield).

7. Synthetic applications

A 5 mL flask equipped with a stirrer bar was charged with $\mathbf{4 a}(56 \mathrm{mg}, 0.2 \mathrm{mmol}$, 1.0 equiv) followed by the addition of dry DCM (2 mL). The resulting mixture was stirred at $-40^{\circ} \mathrm{C}$ for 20 min , and subsequently, triethylsilane ($90 \mu \mathrm{~L}, 0.56 \mathrm{mmol}, 2.8$ equiv) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(90 \mu \mathrm{~L}, 0.64 \mathrm{mmol}, 3.2$ equiv) were added. The mixture was stirred at $-40^{\circ} \mathrm{C}$ until the consumption of $\mathbf{4 a}$ and then the mixture was warmed up to room temperature. Finally, triethylamine ($90 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3.0$ equiv) and water (2
$\mathrm{mL})$ were added. The mixture was extracted with $\mathrm{DCM}(3 \times 2 \mathrm{~mL})$, and the combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removed under reduced pressure. The residue was purified by flash chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=3: 1$) to afford the tetrahydrofuran $\mathbf{1 7}$ ($43 \mathrm{mg}, 77 \%$ yield) as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.33(\mathrm{~m}, 5 \mathrm{H}), 5.13(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.78$ - $3.65(\mathrm{~m}, 4 \mathrm{H}), 3.09(\mathrm{q}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 172.3,139.7,128.7,128.5,126.4,85.7,83.6,65.9$, 65.6, 61.1, 52.6, 35.3, 14.2. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{5}$: 303.1203; Found: 303.1206.

A solution of 17 ($43 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv) and PTSA ($1.2 \mathrm{mg}, 0.007 \mathrm{mmol}$, 0.05 equiv) in benzene (2 mL) was refluxed at $90^{\circ} \mathrm{C}$ overnight. After completion, the reaction was quenched with solid $\mathrm{Na}_{2} \mathrm{CO} 3$ and filtered. Then the filtrate was concentrated in vacuum. The residue was purified by flash column chromatography on silica gel (petroleum ether / EtOAc $=5: 1$) to afford $\mathbf{1 8}(25 \mathrm{mg}, 72 \%$ yield) as a colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) 7.42 - 7.28 (m, 5H), 5.43 ($\mathrm{s}, 1 \mathrm{H}$), 4.47 (dd, $J=11.5$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 3.19(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~m}$, $2 \mathrm{H}), 2.03(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 171.6,140.6,128.7$, 128.2, 125.2, 82.6, 82.0, 76.8, 64.2, 50.3, 28.9. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{MeOH}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{5}$: 289.1047; Found: 289.1061.

A solution of $\mathbf{8 a}$ ($58 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), $\mathbf{1 9}(45 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{HBTU}\left(91 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2\right.$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was added TEA ($83 \mu \mathrm{~L}$, $0.6 \mathrm{mmol}, 3.0$ equiv) at room temperature. The reaction mixture was stirred for 30 min . After completion, the solution was added 2.0 M NaOH to adjust pH to $12 \sim 13$ and extracted with $\operatorname{EtOAc}(3 \mathrm{~mL} \times 3)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent, the residue was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=2: 1$) to afford $20(69 \mathrm{mg}, 75 \%$ yield) as a yellow oil. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $7.79(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.36(\mathrm{~m}, 3 \mathrm{H})$,
4.16 (qd, $J=7.1,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.12(\mathrm{~m}, 12 \mathrm{H}), 1.45(\mathrm{~s}$, 9H), $1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 170.3,164.5,162.7$, $154.6,131.1,129.3,129.0,128.0,103.1,88.2,80.6,66.4,60.4,43.3,38.7,38.5,28.5$, 14.3. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{7}: 483.2102$; Found: 483.2105.

To a suspension of $\left[\mathrm{Ph}_{3} \mathrm{PCH}_{3}\right] \mathrm{Br}(86 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) in dry THF (1 mL) was added a solution of $\mathrm{NaHMDS}(2.0 \mathrm{M}, 0.15 \mathrm{~mL}, 0.3 \mathrm{mmol}, 1.5$ equiv) at room temperature. The mixture was stirred for 1 h and a solution of aldehyde $\mathbf{1 2 a}$ ($55 \mathrm{mg}, 0.2$ mmol, 1.0 equiv) in dry THF (1 ml) was added at $-20^{\circ} \mathrm{C}$. The reaction mixture was stirred overnight at the same temperature and quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with diethyl ether $(3 \times 2 \mathrm{~mL})$ and the extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. Purification of the residue by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=10: 1$) to afford 38 mg of the product $\mathbf{2 1}$ in 70% yield as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.80$ (dd, $J=7.9,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 3 \mathrm{H}), 5.95(\mathrm{dd}, J=17.3,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=$ $17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{t}, J=11.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.22(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 1.20(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 165.2,163.8,137.8,130.6,130.0,129.5$, 127.8, 115.8, 102.5, 88.9, 67.2, 60.0, 38.4, 14.3. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{4}: 275.1278$; Found: 275.1273

8. References

1. Meninno, S.; Fuoco, T.; Tedesco, C.; Lattanzi, A. Org. Lett. 2014, 16, 4746-4749.
2. Yang, M. H.; Hunt, J. R.; Sharifi, N.; Altman. R. A. Angew. Chem. Int. Ed. 2016, 55, 9080-9083.
3. Gao, M.; Zhao, Y.; Zhong, C.; Liu, S.; Liu, P.; Yin, Q.; Hu L. Org. Lett. 2019, 21, 5679-5684.
4. Surmont, R.; Verniest G.; De Kimpe, N. Org. Lett. 2010, 12, 4648-4651.
5. Gu, G; Lu, J; Yu, O; Wen, J; Yin, Q; Zhang X. Org. Lett. 2018, 20, 1888-1892.
6. Heydar, S.; Zhen L.-B.; Paultheo von Z. J. Org. Chem. 2007, 72, 5091-5097.
7. Jones, S.; Zhao, P. Tetrahedron: Asymmetry. 2014, 25, 238-244.
8. Gianluca, M.; Mario, O.; Samuele R. Eur. J. Org. Chem. 2011, 35, 7199-7206.
9. NMR spectra for new compounds

5
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

		$\begin{aligned} & \overline{\mathrm{N}} \\ & \stackrel{\mathrm{I}}{\mathrm{I}} \end{aligned}$	$\begin{gathered} \text { O. } \\ \substack{\infty} \\ 1 \end{gathered}$			$\begin{aligned} & \text { థ్ల } \\ & \text { in } \end{aligned}$	$\stackrel{\text { ®̈ }}{\stackrel{\text { ® }}{\circ}}$

5
${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^0]
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{lll}\infty & 0 & 2 \\ & 0 & 0 \\ 1 & 1 & 1\end{array}$
$\stackrel{\because}{9}$

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3})

${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^1]

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$$
E: Z=3: 1
$$

${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$$
E: Z=3: 1
$$

10
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

言

${ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4a
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

		$\begin{aligned} & \text { ๗ু } \\ & \text { ভ̀ } \\ & \hline \end{aligned}$	$\begin{gathered} \bar{\infty} \\ \infty \\ \hline \\ \hline \end{gathered}$			F	$\begin{gathered} \text { A} \\ \stackrel{N}{\mathrm{~N}} \\ 1 \end{gathered}$

4a
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

8a
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

4b
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0
1.5	0.5	0.0	-0.5	-1.0																

4b
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\stackrel{m}{i}$

8b
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

| .5 | 11.0 | 10.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0.5 | -1.0 |
| :--- |

${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathrm{CD}_{3} \mathrm{OD}$)

${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8c
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

$\begin{array}{ll}\text { O. } \\ \text { O. } \\ \stackrel{\circ}{\circ} & \text { I }\end{array}$

8c
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4e
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$4 e$
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

NiN

8 e
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

8e
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llllllllllllllllllllllllllllllll}11.0 & 10.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0.5 & -1.0\end{array}$

${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

8 f
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$

4g
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$4 g$
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\underbrace{\substack{\text { Noncon }}}$

$\stackrel{\infty}{\stackrel{\infty}{\tau}} \frac{\square}{\square}$ $\iiint J$

8 g
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

$8 g$
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

$\underset{\text { i }}{\stackrel{\infty}{\mathrm{i}}} \stackrel{\circ}{\mathrm{N}}$
$\stackrel{\text { ल. }}{\sim}$
$\int \mid+1$

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{aligned} & \text { À } \\ & \stackrel{\omega}{\circ} \\ & \stackrel{1}{1} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{n}{i n} \\ & \stackrel{1}{2} \end{aligned}$	ƠNNN ๗్ల్ల్ㅔ		$\begin{gathered} \bullet . \\ \stackrel{\infty}{\infty} \\ 1 \end{gathered}$		$$	\%	$\stackrel{\sim}{\sim}$

4h
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)
$02 \angle 29 \downarrow=$
$1 \downarrow 69 \downarrow=$
$98.6 \angle \downarrow-$

$8 i$
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4j

${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8j
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

\circ	\circ
$\stackrel{\circ}{\circ}$	\circ
1	\circ

8j
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)
$\stackrel{\stackrel{O}{0}}{\text { in }}$

4k
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl_{3})

4k

8k
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

41
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

©

${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

81

81
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

4m
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^2]

$8 m$

$\underbrace{\circledR}$

8m
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

$$
\mathrm{dr}=2: 1
$$

		- ${ }^{\circ}$
¢¢¢ ¢		\% ${ }^{\circ}$
- --5	-	

$\int_{\pi /}$ JIll

${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8n
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) dr $>20: 1$

$$
1120.1
$$

$$
10.20 .1
$$

${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)
$\mathrm{dr}>20: 1$

$8.88 \quad 8.80$
(ppm)
$\mathrm{dr}=1: 1$

12a
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

12b
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\mathrm{dr}=1: 1$

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\mathrm{dr}=1: 1$

12d
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathrm{dr}=1: 1$

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(
$\mathrm{dr}=1: 1$

$\mathrm{dr}=1: 1$

$12 f$
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl_{3})
$\underbrace{\text { No }}_{V}$

${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right)$
$\mathrm{dr}=1: 1$

[^3]
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^4]

$\mathrm{dr}=1: 1$

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\mathrm{dr}=1: 1$

(2):

$\mathrm{dr}=1: 1$

12i
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\mathrm{dr}=1: 2$

12k
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\text { Nom }}{\stackrel{N}{\sim}}$

12k
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathrm{dr}=1: 2$

121
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

V:

$\mathrm{dr}=1: 2$

121
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

©

${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\iiint \int_{0} \int$

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{N}{N}$	$\begin{aligned} & \underset{j}{\dot{N}} \\ & \stackrel{\rightharpoonup}{\top} \end{aligned}$			இNㅜㄴ ๗ฺ் VI	¢	N10

${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\int\left|\int\right| \int||\mid$

${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl_{3})

${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]:

[^1]: | 111 | |
 | :--- |
 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
 | 10 | |

[^2]:

[^3]:

[^4]:

