Electronic Supplementary Information

Simple pyrazoles as efficient organocatalysts for alkyne-CO₂ carboxylation

and one-pot construction of heterocycles

Lin Zhang, Gen Li, En-Hui Xing, Yawei Liu, Chen Jin, Zelin Du, Yan Xu, Dawei Zhang and En-Qing

Gao*

*Corresponding author. Email: eqgao@chem.ecnu.edu.cn

S1 General information
S2 Experimental section
S3 Catalytic carboxylation of phenylacetylene (1a) with CO ₂
S4 Comparison of Me ₂ Pz with the reported catalysts7
S5 Mechanism exploration
S5.1 Interactions between azoles and Cs ₂ CO ₃
S5.2 Formation of the Pz-CO ₂ adduct10
S5.3 Carboxylation of 1a with Cs(Pz ¹³ CO ₂)11
S5.4 Interaction between 1a and Cs ₂ CO ₃ 12
S5.5 Interaction between 1a and Cs(PzCO ₂)12
S6 Synthesis and characterization for propiolic acids (2)14
S7 Synthesis and characterization for propiolic acid esters (3)
S8 Synthesis and characterization for 4H-quinazin-4-ones (4)20
S9 Synthesis and characterization for 2H-pyran-2-one (5)
S10 Synthesis and characterization for 3-cyano-6-hydroxy-2-pyridones (6)
S11 Synthesis and characterization for 3a-hydroxyisoxazolo[3,2-a]isoindol-8(3aH)-ones (7)25
S12 Synthesis and characterization for imidazole-4-carboxylic derivatives (9)27
S13 X-ray crystallographic study
S14 References
S15 Copies of ¹ H NMR spectra of products

Contents

S1 General information

¹H and ¹³C spectra were collected on 300 MHz, 400 MHz or 500 MHz NMR spectrometers (Bruker AVANCE) using CDCl₃, DMSO-*d*₆ solution. For mechanism studies, NMR spectra were recorded in anhydrous DMSO, with positioning of a glass capillary filled with D₂O inside the NMR tube for magnetic field locking. ¹H chemical shifts ($\delta_{\rm H}$) are expressed in parts per million (ppm) and reported relative to the internal standard CDCl₃ ($\delta_{\rm H} = 7.26$ ppm) or DMSO-*d*₆ ($\delta_{\rm H} = 2.50$ ppm), or relative to the external standard DMSO ($\delta_{\rm H} = 2.50$ ppm) in a D₂O capillary. ¹³C chemical shifts ($\delta_{\rm C}$) are expressed in ppm and reported relative to the internal standard DMSO ($\delta_{\rm C} = 39.4$ ppm) in a D₂O capillary. Silica gel (300 - 400 mesh) was used for flash column chromatograph, eluting with ethyl acetate/petroleum ether (60 - 90 °C) mixture. Unless otherwise noted, the chemicals and reagents were purchased in analytical purity from commercial sources and used directly without further purification. Anhydrous DMSO was further dried over molecular sieve.

S2 Experimental section

General procedure for catalytic carboxylation. The catalyst and base were added to a Schlenk tube. After three times of atmosphere exchange with CO₂, the reactor was equipped with a CO₂ balloon and heated in an oil bath. Then 1.0 mmol terminal alkyne dissolved in 3 mL solution was injected under stirring to start the reaction. After stirring at required temperature for specified time, the reaction was quenched with water (15 mL). The resultant solution was washed with CH₂Cl₂ to separate the catalyst and any unreacted alkyne. The aqueous phase was acidified with 1 M HCl to pH = 1 and then extracted with ethyl acetate (15 mL × 3). The combined organic phase was washed with saturated NaCl solution and dried over anhydrous MgSO₄. The solvent was removed under vacuum to obtain the product, which was weighed for yield calculations.

Catalyst recovery. A scale-up catalytic reaction was performed in a 250 mL flask by following the typical procedure with 10 mmol **1a**, 1.0 mmol Me₂Pz and 15 mmol Cs₂CO₃ in 20 mL DMSO. The reaction was performed at 80 °C until the alkyne was completely consumed as indicated by TLC. After addition of 100 mL water, the solution was extracted with CH_2Cl_2 (3 × 100 mL). The combined extracts were washed with aqueous NaHCO₃, dried over MgSO₄ and evaporated in vacuo. The solid thus obtained was confirmed by NMR to be Me₂Pz with satisfactory purity. The recovery rate is 95%. The aqueous phase after above extraction was treated by typical procedures to give **2a** in a yield of about 99%.

S3 Catalytic carboxylation of phenylacetylene (1a) with CO₂

$ \underbrace{ \left\langle \sum_{1a} + CO_2 \atop balloon } \xrightarrow{Cat.}_{Cs_2CO_3, DMSO} \xrightarrow{HCI} \underbrace{ \left\langle \sum_{2a} - COOH \right\rangle}_{2a} COOH } $					
Cat.	Me None	° ∕∕ ́ ∕ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́		ⁿ Bu ₄ NOAc	
Yield	30%	96%	36%	30%	
Cat.					
	DBC		IBD		
Yield	28%		36%	34%	

Table S1. Additional control tests with potential catalysts ^a

^a Reaction conditions: **1a** (1.0 mmol), catalyst (0.1 mmol, 10 mol%), Cs_2CO_3 (1.5 mmol, 1.5 eq.), CO_2 (balloon), DMSO (3 mL), 60 °C, 6 h; isolated yield.

Entry	Catalyst (mol%)	Base	Solvent	T/°C	Yield/%
1	Me ₂ Pz (10)	Cs ₂ CO ₃	DMSO	60	96
2	$Me_2Pz(10)$	Cs ₂ CO ₃	DMSO	40	13
3	$Me_2Pz(10)$	Cs ₂ CO ₃	DMSO	55	68
4	$Me_2Pz(10)$	Cs ₂ CO ₃	DMSO	70	>99
5	$Me_2Pz(10)$	Cs ₂ CO ₃	DMSO	80	>99
6	-	K ₂ CO ₃	DMSO	60	-
7	$Me_2Pz(10)$	K_2CO_3	DMSO	60	24
8	-	CsF	DMSO	60	-
9	Me ₂ Pz (10)	CsF	DMSO	60	42
10	$Me_2Pz(10)$	КОН	DMSO	60	-
11	$Me_2Pz(10)$	t-KOBu	DMSO	60	5
12	$Me_2Pz(10)$	DBU	DMSO	60	24
13	-	DBU	DMSO	60	25
14	$Me_2Pz(10)$	TBD	DMSO	60	30
15	-	TBD	DMSO	60	28
16	$Me_2Pz(10)$	TMP	DMSO	60	-
17	-	Cs_2CO_3	DMF	60	-
18	$Me_2Pz(10)$	Cs_2CO_3	DMF	60	63
19	$Me_2Pz(10)$	Cs_2CO_3	CH ₃ CN	60	8
20	$Me_2Pz(10)$	Cs_2CO_3	PC ^b	60	-
21	$Me_2Pz(5)$	Cs_2CO_3	DMSO	60	78
22	$Me_2Pz(20)$	Cs_2CO_3	DMSO	60	>99

Table S2. Optimization of carboxylation of **1a** with CO₂ ^a

^a Reaction conditions: **1a** (1.0 mmol), catalyst, base (1.5 mmol, 1.5 eq.), CO₂ (balloon), solvent (3 mL), 6 h; isolated yield. ^b PC: propylene carbonate.

S4 Comparison of Me₂Pz with the reported catalysts

Entry	Catalyst	Base	T/°C	t/h	Yield/%	Ref.		
Homogene	eous metal catalysts							
1	Cu(BPhen)(4-F-PPh ₃) ₂ (NO ₃) ^c	Cs_2CO_3	35	16	98 ^b	1		
2	CuCl-TMEDA	K ₂ CO ₃	25	16	90 ^b	2		
3	CuI(dtbpf)	Cs_2CO_3	25	24	94 ^b	3		
4	CuCl- <i>n</i> -Bu ₄ NOAc ^d	K ₂ CO ₃	rt	16	90	4		
5	(NHC) ₂ -Ag complex	Cs_2CO_3	rt	16	85	5		
6	$AgBF_4$	Cs_2CO_3	50	16	98	6		
7	Nd-bis(amidate)	Cs_2CO_3	40	24	94	7		
8	NHC-Mo	Cs_2CO_3	70	18	94 ^b	8		
9	CuI ^e	Cs_2CO_3	80	18	96	9		
Heterogen	Heterogeneous metal catalysts							
10	Ag/Schiff-SiO ₂	Cs_2CO_3	60	24	98 ^b	10		
11	Fe ₃ O ₄ @Ag-40B	Cs_2CO_3	50	15	97 ^b	11		
12	CeO ₂ -Ag	Cs_2CO_3	80	12	98 ^b	12		
13	Ag/PCNF-700	Cs_2CO_3	25	18	90	13		
14	Cu-CN-8.0	Cs_2CO_3	80	10	97 ^ь	14		
15	Ag@MIL-101(Cr)	Cs_2CO_3	50	15	96.5 ^b	15		
16	Ag/Co-MOF	Cs_2CO_3	80	14	96 ^b	16		
17	UiO-66@UiO-67-BPY-Ag	Cs_2CO_3	50	24	96 ^b	17		
18	Au12Ag32(SR)30@ZIF-8	K ₂ CO ₃	50	24	100	18		
19	Poly-NHC-Ag	Cs_2CO_3	rt	20	98 ^b	19		
20	Ag-HMP-2	Cs_2CO_3	80	12	98 ^b	20		
21	AgNPs/MCC	Cs_2CO_3	50	16	99	21		
22	Ag@FeNT	Cs_2CO_3	60	15	70	22		
23	CTF-DCE-Ag	Cs_2CO_3	50	20	90.2 ^b	23		
25	Ag@CTFN	Cs_2CO_3	60	24	97	24		
26	TpBpy-Cu-14	Cs_2CO_3	60	24	95	25		
27	NHC-AuCl-COF	Cs_2CO_3	50	16	96	26		
Organocatalysts								
28	PAPBI	Cs_2CO_3	60	24	94	27		
29	ТрВру	Cs_2CO_3	60	6	67	28		
30	TG-DMPZ	Cs_2CO_3	80	10	95	29		
31	$TG(PZ)_3$	Cs_2CO_3	80	10	90	29		
32	Pz	Cs_2CO_3	60	6	85	This work		
33	Me ₂ Pz	Cs ₂ CO ₃	60	6	96	This work		

Table S3. Carboxylation of 1a using various metal and organic catalysts at ambient CO₂ pressure.^a

^a The solvent is DMSO unless otherwise specified. For a more complete collection, see ref. 30. ^b The solvent is DMF. ^c The CO₂ pressure is 5 atm. ^d n-Bu₄NOAc (1.5 mmol, 1.5 eq.), the solvent is MeCN. ^e The reaction performs ethylene carbonate (EC) as the solvent in the presence of n-butyl iodide.

S5 Mechanism exploration

S5.1 Interactions between azoles and Cs₂CO₃

Fig. S1. ¹H NMR spectra of 1,2,3-triazole with/without Cs_2CO_3 in DMSO- d_6 at room temperature (*: DMSO- d_6 ; \clubsuit : H₂O). The red dashed box shows the magnification in the 16 - 12 ppm range.

Fig. S2. ¹H NMR spectra of 1,2,4-triazole with/without Cs_2CO_3 in DMSO- d_6 at room temperature (*: DMSO- d_6 ; \clubsuit : H₂O). The red dashed box shows the magnification in the 16 - 11 ppm range.

Fig. S3. ¹H NMR spectra of pyrazole (Pz) with/without Cs_2CO_3 in DMSO- d_6 at RT or 60 °C (*: DMSO- d_6 ; •: H₂O). The red dashed box shows the magnification in the 14 - 11 ppm range.

Fig. S4. ¹H NMR spectra of 3,5-dimethylpyrazole (Me₂Pz) with/without Cs₂CO₃ in DMSO- d_6 at RT or 60 °C (*: DMSO- d_6 ; •: H₂O). The red dashed box shows the magnification in the 13 - 9 ppm range.

S5.2 Formation of the Pz-CO₂ adduct

Cs(PzCO₂). A mixture of Pz (10 mmol) and Cs₂CO₃ (1.5 eq.) in anhydrous DMSO was placed in a sealed round bottom flask. The resulting mixture was stirred for 2 h at 60 °C and then filtered. The filtrate, which contains CsPz, was stirred under CO₂ or 13 CO₂ (balloon) for another 2 h. The solutions before and after reacting with CO₂ were tested by ¹H NMR and ¹³C NMR.

Fig. S5. ¹H NMR spectra (300 MHz, DMSO, 298 K, locked to a D₂O capillary) of Pz (A), CsPz (B) and Cs(PzCO₂) (C).

Fig. S6. ¹³C NMR spectra (400 MHz, DMSO, 298 K, locked to a D₂O capillary) of CsPz (A, 1024 scans), Cs(PzCO₂) (B, 1024 scans) and Cs(Pz¹³CO₂) (C, 8 scans).

S5.3 Carboxylation of 1a with Cs(Pz¹³CO₂)

Synthetic procedure: The reactor with or without Cs_2CO_3 was equipped with a N_2/CO_2 balloon and heated in an oil bath. Then **1a** (1.0 mmol) and $Cs(Pz^{13}CO_2)$ (1 mmol in 3 mL DMSO) were injected under stirring to start the reaction. After stirring at 60 °C for 6 h, the reaction was quenched with water (15 mL). The resultant solution was washed with CH_2Cl_2 , acidified with 1 M HCl to pH = 1 and then extracted with ethyl acetate (15 mL × 3). The combined organic phase was washed with saturated NaCl solution and dried over anhydrous MgSO₄. The solvent was removed under vacuum to obtain product, which was weighed for yield calculations.

Fig. S7. ¹³C NMR spectra (400 MHz, DMSO-*d*₆) of ¹³C_{carboxyl}-labeled **2a** with 8 scans.

S5.4 Interaction between 1a and Cs₂CO₃

Fig. S8. ¹H NMR spectra of **1a** (A), **1a** with Cs₂CO₃ (B) and variable-temperature NMR spectra of **1a** with Cs₂CO₃ at 40 °C (C) and at 60 °C (D) in DMSO-d₆ (*: DMSO-d₆; \clubsuit : H₂O).

S5.5 Interaction between 1a and Cs(PzCO₂)

Fig. S9. ¹H NMR spectra (300 MHz, DMSO, 298 K, locked to a D₂O capillary) of **1a** (A), **1a** with Cs(PzCO₂) (B) and Cs(PzCO₂) (C).

Fig S10. Experimental and simulated XRD patterns of 4d.

Fig S11. ¹H NMR spectrum of **4d** synthesized from **1a** (A) or **3c** (B), the products obtained by these two methods are mixed for (C).

S6 Synthesis and characterization for propiolic acids (2)

General synthetic procedure: The catalyst (Me₂Pz, 10 mol%) and Cs₂CO₃ (1.5 mmol) were added to a Schlenk tube. After three times of atmosphere exchange with CO₂, the reactor was equipped with a CO₂ balloon and heated to 60 °C in an oil bath. Then 1.0 mmol terminal alkyne dissolved in 3 mL dry DMSO was injected under stirring to start the reaction. After stirring at 60 °C for 6 h, the reaction was quenched with water (15 mL). The resultant solution was washed with CH₂Cl₂, acidified with 1 M HCl to pH = 1 and then extracted with ethyl acetate (15 mL × 3). The combined organic phase was washed with saturated NaCl solution and dried over anhydrous MgSO₄. The solvent was removed under vacuum to obtain the propiolic acid, which was weighed for yield calculations.

Characterization data

3-Phenylpropiolic acid (2a)

White solid; 140.3 mg, yield: 96%

¹H NMR (400 MHz, DMSO-*d*₆) δ 13.58 (s, 1H), 7.64 - 7.61 (m, 2H), 7.57 - 7.52 (m, 1H), 7.49 - 7.45 (m, 2H).

4-Methoxylphenylpropiolic acid (2b)

МеО-СООН

Yellow solid; 134 mg, yield: 76%

¹H NMR (500 MHz, DMSO-*d*₆) δ 13.59 (s, 1H), 7.59 (d, *J* = 7.8 Hz, 2H), 7.03 (d, *J* = 7.8 Hz, 2H), 3.80 (s, 3H).

4-Methylphenylpropiolic acid (2c)

Ме-СООН

White solid; 128.4 mg, yield: 80%

¹H NMR (500 MHz, DMSO- d_6) δ 7.49 (d, J = 8.1 Hz, 2H), 7.26 (d, J = 8.1 Hz, 2H), 2.33 (s, 3H).

14

4-Pentylphenylpropiolic acid (2d)

С₄Н9-СООН

White solid; 121.4 mg, yield: 60%

¹H NMR (300 MHz, DMSO-*d*₆) δ 7.55 (d, *J* = 7.4 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 2H), 1.28 (s, 9H).

3-(Biphenyl-4-yl)propiolic acid (2e)

Yellow solid; 210.5 mg, yield: 95%

¹H NMR (500 MHz, DMSO-*d*₆) δ 7.77 (d, *J* = 8.0 Hz, 2H), 7.72 - 7.69 (m, 4H), 7.49 (t, *J* = 7.5 Hz, 2H), 7.41 (t, *J* = 7.3 Hz, 1H).

4-Chlorophenylpropiolic acid (2f)

Yellow solid; 173 mg, yield: 96%

¹H NMR (500 MHz, DMSO- d_6) δ 7.63 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.5 Hz, 2H).

4-Trifluoromethylphenylpropiolic acid (2g)

F₃C-СООН

White solid; 211.5 mg, yield: 99%

¹H NMR (500 MHz, DMSO- d_6) δ 7.85 (d, J = 8.5 Hz, 2H), 7.82 (d, J = 8.5 Hz, 2H).

4-Formylphenylpropiolic acid (2h)

онс--Соон

White solid; 169 mg, yield: 97%

¹H NMR (300 MHz, DMSO-*d*₆) δ 13.36 (br), 10.06 (s, 1H), 7.98 (d, *J* = 8.2 Hz, 2H), 7.82 (d, *J* = 8.2 Hz, 2H).

4-Cyanophenylpropiolic acid (2i)

ис---соон

White solid; 167.8 mg, yield: 98%

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.91 (d, *J* = 8.0 Hz, 2H), 7.79 (d, *J* = 8.0 Hz, 2H).

4-Nitrophenylpropiolic acid (2j)

02N-СООН

Yellow solid; 189 mg, yield: 99%

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.29 (d, *J* = 7.7 Hz, 2H), 7.91 (d, *J* = 7.8 Hz, 2H).

3-(Thiophen-3-yl)propiolic acid (2k)

White solid; 150 mg, yield: 99%

¹H NMR (500 MHz, DMSO-*d*₆) δ 7.89 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.67 (dd, *J* = 3.7, 1.2 Hz, 1H), 7.20 (dd, *J* = 5.1, 3.7 Hz, 1H).

(Pyridin-2-yl)propynoic acid (2l)

Dark red solid; 73 mg, yield: 50%

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.65 (dt, *J* = 4.8, 1.4 Hz, 1H), 7.90 (td, *J* = 7.7, 1.8 Hz, 1H), 7.73 (dt, *J* = 7.9, 1.2 Hz, 1H), 7.52 (ddd, *J* = 7.7, 1.2 Hz, 1H).

4-Amino-2-butynoic acid (2m)

Н2N____СООН

Colorless oil; 66 mg, yield: 67%

¹H NMR (300 MHz, DMSO-*d*₆) δ 3.79 (s, 2H).

4-Bromo-2-butynoic acid (2n)

Вг____СООН

Brown oil; 113 mg, yield: 70%

¹H NMR (300 MHz, DMSO-*d*₆) δ 4.23 (s, 2H).

3,3'-(1,4-Phenylene)dipropiolic acid (2q)

ноос---соон

White solid; 197 mg, yield: 92%

¹H NMR (300 MHz, DMSO-*d*₆) δ 13.85 (br), 7.70 (s, 4H).

3,3',3"-(1,3,5-Phenylene)tripropiolic acid (2r)

Yellow solid; 279 mg, yield: 99%

¹H NMR (300 MHz, DMSO-*d*₆) δ 7.96 (s, 3H).

S7 Synthesis and characterization for propiolic acid esters (3)

$$\begin{array}{c}
 \end{array}
 \xrightarrow{1a} + \begin{array}{c} CO_2 \\ balloon \end{array} \xrightarrow{Me_2Pz} \\ \hline CS_2CO_3, DMSO \\ 60 \ ^{\circ}C, 6 \ h \end{array} \xrightarrow{RX} \\ RT, 4 \ h \end{array} \xrightarrow{RX} \\ 3 \end{array}$$

General synthetic procedure: The catalyst (Me₂Pz, 10 mol%) and Cs₂CO₃ (1.5 mmol) were added to a Schlenk tube. After three times of atmosphere exchange with CO₂, the reactor was equipped with a CO₂ balloon and heated to 60 °C in an oil bath. Then **1a** (1.0 mmol) dissolved in 3 mL dry DMSO was injected under stirring to start the reaction. After stirring at 60 °C for 6 h and cooling to room temperature, RX (1.2 eq.) was added and stirred for another 4 h. The reaction was quenched with water (15 mL) and the resultant solution was extracted with ethyl acetate (15 mL × 3). The combined organic phase was washed with saturated NaCl solution, dried over anhydrous MgSO₄ and the solvent was removed in vacuo. The crude product was purified by flash column chromatography.

Characterization data

Methyl 3-phenylpropiolate (3a)

$$\texttt{response}^{\mathsf{o}}$$

Colorless oil; 155.4 mg, yield: 97%

¹H NMR (300 MHz, DMSO-*d*₆) δ 7.69 - 7.66 (m, 2H), 7.62 - 7.56 (m, 1H), 7.53 - 7.47 (m, 2H), 3.79 (s, 3H).

Butyl 3-phenyl-2-propynoate (**3b**)

Colorless oil; 186 mg, yield: 92%

¹H NMR (300 MHz, Chloroform-*d*) δ 7.57 - 7.54 (m, 2H), 7.44 - 7.38 (m, 1H), 7.36 - 7.31 (m, 2H), 4.21 (t, *J* = 6.7 Hz, 2H), 1.70 - 1.60 (m, 2H), 1.45 - 1.36 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H).

Ethyl 3-phenylpropiolate (3c)

Colorless oil; 163.5 mg, yield: 94%

¹H NMR (300 MHz, Chloroform-*d*) δ 7.60 - 7.57 (m, 2H), 7.48 - 7.42 (m, 1H), 7.40 - 7.34 (m, 2H), 4.30 (q, *J* = 7.1 Hz, 2H), 1.36 (t, *J* = 7.2 Hz, 3H).

2-Oxo-2-phenylethyl 3-phenylpropiolate (3d)

Pale yellow solid; 250 mg, yield: 95%

¹H NMR (300 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 7.1 Hz, 2H), 7.63 (dd, *J* = 6.9, 1.8 Hz, 3H), 7.54 - 7.45 (m, 3H), 7.39 (t, *J* = 7.3 Hz, 2H), 5.50 (s, 2H).

Cinnamyl 3-phenylpropiolate (3e)

Colourless oil; 207 mg, yield: 79%

¹H NMR (300 MHz, Chloroform-*d*) δ 7.62 - 7.59 (m, 2H), 7.49 - 7.28 (m, 8H), 6.73 (d, *J* = 15.9 Hz, 1H), 6.35 (dt, *J* = 15.9, 6.6 Hz, 1H), 4.90 (dd, *J* = 6.6, 1.3 Hz, 2H).

S8 Synthesis and characterization for 4H-quinazin-4-ones (4)

General synthetic procedure: The catalyst (Me₂Pz, 10 mol%) and Cs₂CO₃ (1.5 mmol) were added to a Schlenk tube. After three times of atmosphere exchange with CO₂, the reactor was equipped with a CO₂ balloon and heated to 60 °C in an oil bath. Then **1a** (1.0 mmol) dissolved in 3 mL dry DMSO was injected under stirring to start the reaction. After stirring at 60 °C for 6 h and cooling to room temperature, EtBr (1.2 eq.) and pyridine derivatives (2.0 eq.) were added and heated at 100 °C for another 8 h. The reaction was quenched with water (15 mL) and the resultant solution was extracted with ethyl acetate (15 mL × 3). The combined organic phase was washed with saturated NaCl solution, dried over anhydrous MgSO₄ and the solvent was removed in vacuo. The crude product was purified by flash column chromatography.

Characterization data

4-Oxo-2-phenyl-4H-quinolizine-1-carbonitrile (4a)

Yellow solid; 218 mg, yield: 89%

¹H NMR (300 MHz, Chloroform-*d*) δ 9.28 (d, *J* = 7.0 Hz, 1H), 8.15 (d, *J* = 9.0 Hz, 1H), 7.81 - 7.75 (m, 1H), 7.66 - 7.63 (m, 2H), 7.53 (dd, *J* = 4.3, 2.4 Hz, 3H), 7.29 - 7.24 (m, 1H), 6.63 (s, 1H).

2-(3-Chlorophenyl)-4-oxo-4H-quinolizine-1-carbonitrile (4b)

Yellow solid; 257 mg, yield: 92%

¹H NMR (300 MHz, Chloroform-*d*) δ 9.28 (d, *J* = 7.2 Hz, 1H), 8.13 (d, *J* = 8.9 Hz, 1H), 7.83 - 7.77 (m, 1H), 7.61 - 7.56 (m, 2H), 7.53 - 7.48 (m, 2H), 7.31 - 7.28 (m, 1H), 6.58 (s, 1H).

Ethyl 4-oxo-2-phenyl-4H-quinolizine-1-carboxylate (4c)

Yellow solid; 220 mg, yield: 75%

¹H NMR (400 MHz, Chloroform-*d*) δ 9.25 (d, *J* = 7.4 Hz, 1H), 8.22 (d, *J* = 9.2 Hz, 1H), 7.58 - 7.52 (m, 1H), 7.45 - 7.36 (m, 5H), 7.15 - 7.10 (m, 1H), 6.59 (s, 1H), 3.96 (q, *J* = 7.1 Hz, 2H), 0.79 (t, *J* = 7.1 Hz, 3H).

3-Acetyl-2-phenyl-4H-quinolizin-4-one (4d)

Yellow solid; 238 mg, yield: 90%

¹H NMR (300 MHz, Chloroform-*d*) δ 9.21 (d, *J* = 8.4 Hz, 1H), 7.54 - 7.49 (m, 2H), 7.43 - 7.35 (m, 5H), 7.12 (ddd, *J* = 7.4, 5.5, 2.5 Hz, 1H), 6.64 (s, 1H), 2.50 (s, 3H).

S9 Synthesis and characterization for 2H-pyran-2-one (5)

General synthetic procedure: The catalyst (Me₂Pz, 10 mol%) and Cs₂CO₃ (1.5 mmol) were added to a Schlenk tube. After three times of atmosphere exchange with CO₂, the reactor was equipped with a CO₂ balloon and heated to 60 °C in an oil bath. Then **1a** (1.0 mmol) dissolved in 3 mL dry DMSO was injected under stirring to start the reaction. After stirring at 60 °C for 6 h and cooling to room temperature, EtBr (1.2 eq.) was added and stirred at RT for 4 h. Then, 1,3-dicarbonyl compound (1.0 eq.) was added at 100 °C and allowed to react for 4 h. The reaction was quenched with water (15 mL) and the resultant solution was extracted with ethyl acetate (15 mL × 3). The combined organic phase was washed with saturated NaCl solution, dried over anhydrous MgSO₄ and the solvent was removed in vacuo. The crude product was purified by flash column chromatography.

Characterization date

Ethyl 6-methyl-2-oxo-4-phenyl-2H-pyran-5-carboxylate (5a)

Pale yellow solid; 116 mg, yield: 45%

¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 - 7.40 (m, 3H), 7.28 (dt, *J* = 7.6, 1.9 Hz, 2H), 6.15 (s, 1H), 3.97 (q, *J* = 7.2 Hz, 2H), 2.45 (s, 3H), 0.86 (t, *J* = 6.4 Hz, 3H).

5-Acetyl-6-methyl-4-phenyl-2H-pyran-2-one (5b)

White solid; 86.8 mg, yield: 38%

¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (d, *J* = 6.3 Hz, 3H), 7.32 - 7.29 (m, 2H), 6.12 (s, 1H), 2.33 (s, 3H), 2.31 (s, 3H).

5-Benzoyl-4,6-diphenyl-2H-pyran-2-one (5c)

Yellow solid; 263 mg, yield: 75%

 $^1{\rm H}$ NMR (300 MHz, Chloroform-
 d) δ 7.96 - 7.91 (m, 2H), 7.88 - 7.85 (m, 2H), 7.53 - 7.46 (m, 4H),

7.41 - 7.35 (m, 4H), 7.34 - 7.30 (m, 3H), 6.89 (s, 1H).

S10 Synthesis and characterization for 3-cyano-6-hydroxy-2-pyridones (6)

General synthetic procedure: The catalyst (Me₂Pz, 10 mol%) and Cs₂CO₃ (1.5 mmol) were added to a Schlenk tube. After three times of atmosphere exchange with CO₂, the reactor was equipped with a CO₂ balloon and heated to 60 °C in an oil bath. Then **1a** (1.0 mmol) dissolved in 3 mL dry DMSO was injected under stirring to start the reaction. After stirring at 60 °C for 6 h and cooling to room temperature, CH₃I (1.2 eq.) was added and stirred at RT for 4 h. Then, cyanoacetamide or 2-cyano-*N*-methyl-acetamide (1.02 eq.) was added and heated to 100 °C for 12 h. The reaction was quenched with water (15 mL) and the resultant solution was acidified with 1M HCl to produce solid. The solid was filtered and dried in vacuum.

Characterization data

6-Hydroxy-2-oxo-4-phenyl-1,2-dihydropyridine-3-carbonitrile (6a)

White solid; 159.7 mg, yield: 75% ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.51 (s, 5H), 5.65 (s, 1H). MS: [M+H]⁺; 213.21 , found: 213.2

6-Hydroxy-1-methyl-2-oxo-4-phenyl-1,2-dihydropyridine-3-carbonitrile (6b)

White solid; 162.5 mg, yield: 72% ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.51 - 7.50 (m, 5H), 5.63 (s, 1H), 3.31 (s, 3H). MS: [M+H]⁺; 227.24 , found: 227.2

S11 Synthesis and characterization for 3a-hydroxyisoxazolo[3,2-a]isoindol-8(3aH)-ones (7)

General synthetic procedure: The catalyst (Me₂Pz, 10 mol%) and Cs₂CO₃ (1.5 mmol) were added to a Schlenk tube. After three times of atmosphere exchange with CO₂, the reactor was equipped with a CO₂ balloon and heated to 60 °C in an oil bath. Then **1a** or **1o** (1.0 mmol) dissolved in 3 mL dry DMSO was injected under stirring to start the reaction. After stirring at 60 °C for 6 h and cooling to room temperature, EtBr (1.2 eq.), NHPI (1.0 eq.) and PPh₃ (0.1 eq.) were added. The reaction system soon became reddish brown and was stirred at RT for 6 h. The reaction was quenched with water (15 mL) and the resultant solution was extracted with ethyl acetate (15 mL × 3). The combined organic phase was washed with saturated NaCl solution, dried over anhydrous MgSO₄ and the solvent was removed in vacuo. The crude product was purified by flash column chromatography.

Characterization data

Ethyl 3a-hydroxy-8-oxo-2-phenyl-3a,8-dihydroisoxazolo[3,2-a]-isoindole-3-carboxylate (7a)

White solid; 327 mg, yield: 97% ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.01 (d, *J* = 7.7 Hz, 1H), 7.98 (s, 1H), 7.90 - 7.83 (m, 2H), 7.72 - 7.63 (m, 3H), 7.61 - 7.48 (m, 3H), 4.11 - 4.00 (m, 2H), 1.10 (t, *J* = 7.1 Hz, 3H).

Diethyl 2,2'-(1,4-phenylene)bis(3a-hydroxy-8-oxo-3a,8-dihydroisoxazolo[3,2-a]isoindole-3carboxylate) (**7b**)

Pale yellow solid; 378 mg, yield: 69%

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.00 (d, *J* = 6.8 Hz, 4H), 7.92 - 7.83 (m, 8H), 7.68 (t, *J* = 8.0 Hz, 2H), 4.13 - 4.08 (m, 4H), 1.15 - 1.10 (m, 6H).

Ethyl 2-(4-ethynylphenyl)-3a-hydroxy-8-oxo-3a,8-dihydro-isoxazolo[3,2-a]isoindole-3-carboxylate (7b')

White solid; 72 mg, yield: 22%

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.01 - 7.96 (m, 2H), 7.90 - 7.83 (m, 2H), 7.73 - 7.61 (m, 5H), 4.43 (s, 1H), 4.12 - 4.07 (m, 2H), 1.13 (t, *J* = 7.1 Hz, 3H).

S12 Synthesis and characterization for imidazole-4-carboxylic derivatives (9)

General synthetic procedure: The catalyst (Me₂Pz, 10 mol%) and Cs₂CO₃ (1.5 mmol) were added to a Schlenk tube. After three times of atmosphere exchange with CO₂, the reactor was equipped with a CO₂ balloon and heated to 60 °C in an oil bath. Then **1a** (1.0 mmol) dissolved in 3 mL dry DMSO was injected under stirring to start the reaction. After stirring at 60 °C for 6 h and cooling to room temperature, EtBr (1.2 eq.) was added and stirred for 4 h. Benzylamine (1.2 eq.) and Cs₂CO₃ (1.0 mmol) were addition to form intermediate products (**8**). KI (0.3 eq.) and 'BuONO (2.0 eq.) were added and the reaction mixture was stirred at 80 °C for 18 h. The reaction was quenched with water (15 mL) and the resultant solution was extracted with ethyl acetate (15 mL × 3). The combined organic phase was washed with saturated NaCl solution, dried over anhydrous MgSO₄ and the solvent was removed in vacuo. The crude product was purified by flash column chromatography.

Characterization data

Ethyl-3-(benzylamino)-3-phenylacrylate (8)

¹H NMR (300 MHz, Chloroform-*d*) δ 9.02 (t, *J* = 6.4 Hz, 1H), 7.40 - 7.37 (m, 5H), 7.34 - 7.31 (m, 2H), 7.29 - 7.21 (m, 3H), 4.76 (s, 1H), 4.31 (d, *J* = 6.5 Hz, 2H), 4.21 (q, *J* = 7.1 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H).

Ethyl 2,5-diphenyl-1H-imidazole-4-carboxylate (9)

Yellow solid; 175 mg, yield: 60%

¹H NMR (300 MHz, Chloroform-*d*) δ 10.13 (br), 7.97 - 7.95 (m, 4H), 7.48 - 7.38 (m, 6H), 4.35 (q, *J* = 7.1 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H). MS: [M+H]⁺; 293.34 , found: 293.3

S13 X-ray crystallographic study

Crystal structure determination. The diffraction intensity data of **4b** - **d**, **5a** - **c** were collected at 173 K on a Rigaku XtaLAB PRO MM003-DS dual System with a Cu micro-focus source (Cu-K_{α}, λ = 1.54184 Å). The structure was refined by Olex2 program. The nonhydrogen atoms were refined anisotropically. The H atoms attached to carbons were added geometrically and refined isotropically with the riding model. The crystal data were collected in Table S4.

	4b	4c	4d	5a	5b	5c
CCDC No.	2306337	2306336	2306341	2306338	2306339	2306340
Description	prism	prism	block	block	prism	block
Color	yellow	colorless	yellow	colourless	colourless	colourless
From solution	DCM/Hexane	DCM/Hexane	DCM/Hexane	DCM/Hexane	DCM/Hexane	DCM/Hexane
Empirical formula	C ₁₆ H ₉ ClN ₂ O	C ₁₈ H ₁₅ NO ₃	$C_{17}H_{13}NO_2$	$C_{15}H_{14}O_4$	$C_{14}H_{12}O_3$	$C_{24}H_{16}O_3$
Formula weight	280.715	293.325	263.298	258.26	228.249	352.393
Crystal system	orthorhombic	monoclinic	orthorhombic	monoclinic	monoclinic	monoclinic
Space group	Pccn	$P2_{1}/c$	Pbca	$P2_{1}/c$	$P2_{1}/n$	<i>P</i> 2 ₁
<i>a</i> , Å	14.1800(2)	13.9261(3)	7.3350(2)	9.3720(2)	9.7106(2)	10.0411(2)
b, Å	19.7617(3)	7.8917(2)	14.3799(3)	19.4732(4)	7.7880(1)	16.9542(3)
<i>c</i> , Å	18.2437(2)	13.2129(3)	24.5438(7)	7.2389(1)	15.1238(3)	10.2605(2)
α, deg	90	90	90	90	90	90
β , deg	90	98.325(2)	90	95.595(2)	102.369(2)	90.799(2)
γ, deg	90	90	90	90	90	90
V, Å ³	5112.27(12)	1436.80(6)	2588.80(12)	1314.83(4)	1117.21(4)	1746.57(6)
Z	16	4	8	4	4	4
ρ calcd, g cm ⁻³	1.459	1.356	1.351	1.305	1.357	1.340
$R_{I}\left[I > 2\sigma(I)\right]$	0.0445	0.0405	0.0490	0.0436	0.0380	0.0371
wR ₂ (all data)	0.1446	0.1049	0.1517	0.1305	0.1386	0.0826
Crystal systemSpace group $a, Å$ $b, Å$ $c, Å$ $c, Å$ a, deg β, deg γ, deg γ, deg $V, Å^3$ Z ρ calcd, $g \text{ cm}^{-3}$ $R_I [I > 2\sigma(I)]$ wR_2 (all data)	orthorhombic Pccn 14.1800(2) 19.7617(3) 18.2437(2) 90 90 90 90 5112.27(12) 16 1.459 0.0445 0.1446	monoclinic P21/c 13.9261(3) 7.8917(2) 13.2129(3) 90 98.325(2) 90 1436.80(6) 4 1.356 0.0405 0.1049	orthorhombic Pbca 7.3350(2) 14.3799(3) 24.5438(7) 90 91 92 93 94 95 96 97 98 1.351 0.0490 0.1517	monoclinic P21/c 9.3720(2) 19.4732(4) 7.2389(1) 90 95.595(2) 90 1314.83(4) 4 1.305 0.0436 0.1305	monoclinic P21/n 9.7106(2) 7.7880(1) 15.1238(3) 90 102.369(2) 90 1117.21(4) 4 1.357 0.0380 0.1386	monocl P21 10.041 16.9542 10.2602 90 90.799 90 1746.5 4 1.34 0.032 0.082

Table S4. Summary of single crystal X-ray diffraction analysis

S14 References

- L. J. Gooßen, N. Rodríguez, F. Manjolinho and P. P. Lange, Synthesis of Propiolic Acids via Copper-Catalyzed Insertion of Carbon Dioxide into the C-H Bond of Terminal Alkynes, *Advanced Synthesis & Catalysis*, 2010, 352, 2913-2917.
- 2. D. Yu and Y. Zhang, Copper- and Copper-N-heterocyclic Carbene-catalyzed C-H Activating Carboxylation of Terminal Alkynes with CO₂ at Ambient Conditions, *Proc. Natl. Acad. Sci.*, 2010, **107**, 20184-20189.
- 3. M. Trivedi, G. Singh, A. Kumar and N. P. Rath, 1,1'-Bis(di-tert-butylphosphino)ferrocene Copper(I) Complex Catalyzed C-H Activation and Carboxylation of Terminal Alkynes, *Dalton Trans.*, 2015, **44**, 20874-20882.
- 4. W.-H. Wang, L. Jia, X. Feng, D. Fang, H. Guo and M. Bao, Efficient Carboxylation of Terminal Alkynes with Carbon Dioxide Catalyzed by Ligand-Free Copper Catalyst under Ambient Conditions, *Asian J. Org. Chem.*, 2019, **8**, 1501-1505.
- 5. H. Diaz Velazquez, Z.-X. Wu, M. Vandichel and F. Verpoort, Inserting CO₂ into Terminal Alkynes via Bis-(NHC)-Metal Complexes, *Catal. Lett.*, 2017, **147**, 463-471.
- 6. M. Arndt, E. Risto, T. Krause and L. J. Goossen, C-H Carboxylation of Terminal Alkynes Catalyzed by Low Loadings of Silver(I)/DMSO at Ambient CO₂ Pressure, *ChemCatChem*, 2012, **4**, 484-487.
- 7. H. Cheng, B. Zhao, Y. Yao and C. Lu, Carboxylation of terminal alkynes with CO₂ catalyzed by bis(amidate) rare-earth metal amides, *Green Chem.*, 2015, **17**, 1675-1682.
- 8. F. Chen, S. Tao, N. Liu and B. Dai, N-Heterocyclic Carbene-nitrogen Molybdenum Catalysts for Utilization of CO₂, *Polyhedron*, 2021, **196**, 114990.
- B. Yu, Z.-F. Diao, C.-X. Guo, C.-L. Zhong, L.-N. He, Y.-N. Zhao, Q.-W. Song, A.-H. Liu and J.-Q. Wang, Carboxylation of Terminal Alkynes at Ambient CO₂ Pressure in Ethylene Carbonate, *Green Chemistry*, 2013, 15, 2401-2407.
- 10. Z. Wu, L. Sun, Q. Liu, X. Yang, X. Ye, Y. Hu and Y. Huang, A Schiff Base-modified Silver Catalyst for Efficient Fixation of CO₂ as Carboxylic Acid at Ambient Pressure, *Green Chem.*, 2017, **19**, 2080-2085.
- U. C. Rajesh, Y. Losovyj, C.-H. Chen and J. M. Zaleski, Designing Synergistic Nanocatalysts for Multiple Substrate Activation: Interlattice Ag-Fe₃O₄ Hybrid Materials for CO₂-Inserted Lactones, *ACS Catal.*, 2020, 10, 3349-3359.
- S. Das, P. Mondal, S. Ghosh, B. Satpati, S. Deka, S. M. Islam and T. Bala, A Facile Synthesis Strategy to Couple Porous Nanocubes of CeO₂ with Ag Nanoparticles: An Excellent Catalyst with Enhanced Reactivity for the 'Click Reaction' and Carboxylation of Terminal Alkynes, *New Journal of Chemistry*, 2018, 42, 7314-7325.
- X. Lan, Y. Li, C. Du, T. She, Q. Li and G. Bai, Porous Carbon Nitride Frameworks Derived from Covalent Triazine Framework Anchored Ag Nanoparticles for Catalytic CO₂ Conversion, *Chem. - Eur. J.*, 2019, 25, 8560-8569.
- P. Yang, S. Zuo, F. Zhang, B. Yu, S. Guo, X. Yu, Y. Zhao, J. Zhang and Z. Liu, Carbon Nitride-Based Single-Atom Cu Catalysts for Highly Efficient Carboxylation of Alkynes with Atmospheric CO₂, *Ind. Eng. Chem. Res.*, 2020, 59, 7327-7335.
- 15. X.-H. Liu, J.-G. Ma, Z. Niu, G.-M. Yang and P. Cheng, An Efficient Nanoscale Heterogeneous Catalyst for the Capture and Conversion of Carbon Dioxide at Ambient Pressure, *Angew. Chem., Int. Ed.*, 2015, **54**, 988-991.
- R. A. Molla, K. Ghosh, B. Banerjee, M. A. Iqubal, S. K. Kundu, S. M. Islam and A. Bhaumik, Silver Nanoparticles Embedded Over Porous Metal Organic Frameworks for Carbon Dioxide Fixation via Carboxylation of Terminal Alkynes at Ambient Pressure, *J. Colloid Interface Sci.*, 2016, 477, 220-229.
- Y. Gong, Y. Yuan, C. Chen, P. Zhang, J. Wang, S. Zhuiykov, S. Chaemchuen and F. Verpoort, Core-shell Metalorganic Frameworks and Metal Functionalization to Access Highest Efficiency in Catalytic Carboxylation, *J. Catal.*, 2019, **371**, 106-115.

- Y. Yun, H. Sheng, K. Bao, L. Xu, Y. Zhang, D. Astruc and M. Zhu, Design and Remarkable Efficiency of the Robust Sandwich Cluster Composite Nanocatalysts ZIF-8@Au₂₅@ZIF-67, *J. Am. Chem. Soc.*, 2020, 142, 4126-4130.
- 19. D. Yu, M. X. Tan and Y. Zhang, Carboxylation of Terminal Alkynes with Carbon Dioxide Catalyzed by Poly(N-Heterocyclic Carbene)-Supported Silver Nanoparticles, *Adv. Synth. Catal.*, 2012, **354**, 969-974.
- S. Ghosh, A. Ghosh, S. Riyajuddin, S. Sarkar, A. H. Chowdhury, K. Ghosh and S. M. Islam, Silver Nanoparticles Architectured HMP as a Recyclable Catalyst for Tetramic Acid and Propiolic Acid Synthesis through CO₂ Capture at Atmospheric Pressure, *ChemCatChem*, 2020, **12**, 1055-1067.
- D. J. Shah, A. S. Sharma, A. P. Shah, V. S. Sharma, M. Athar and J. Y. Soni, Fixation of CO₂ as A Carboxylic Acid Precursor by Microcrystalline Cellulose (MCC) Supported Ag NPs: A More Efficient, Sustainable, Biodegradable and Eco-friendly Catalyst, *New J. Chem.*, 2019, 43, 8669-8676.
- A. Modak, P. Bhanja and A. Bhaumik, Microporous Nanotubes and Nanospheres with Iron-Catechol Sites: Efficient Lewis Acid Catalyst and Support for Ag Nanoparticles in CO₂ Fixation Reaction, *Chem. - Eur. J.*, 2018, 24, 14189-14197.
- Q.-Q. Dang, C.-Y. Liu, X.-M. Wang and X.-M. Zhang, Novel Covalent Triazine Framework for High-Performance CO₂ Capture and Alkyne Carboxylation Reaction, *ACS Appl. Mater. Interfaces*, 2018, 10, 27972-27978.
- 24. X. Lan, C. Du, L. Cao, T. She, Y. Li and G. Bai, Ultrafine Ag Nanoparticles Encapsulated by Covalent Triazine Framework Nanosheets for CO₂ Conversion, *ACS Appl. Mater. Interfaces*, 2018, **10**, 38953-38962.
- 25. R. Bu, L. Zhang, L.-L. Gao, W.-J. Sun, S.-L. Yang and E.-Q. Gao, Copper(I)-modified covalent organic framework for CO₂ insertion to terminal alkynes, *Mol. Catal.*, 2021, **499**, 111319.
- 26. Y. Li, Y. Dong, J.-L. Kan, X. Wu and Y.-B. Dong, Synthesis and Catalytic Properties of Metal-N-Heterocyclic-Carbene-Decorated Covalent Organic Framework, *Org. Lett.*, 2020, **22**, 7363-7368.
- 27. J.-B. Shi, Q. Bu, B.-Y. Liu, B. Dai and N. Liu, Organocatalytic Strategy for the Fixation of CO₂ via Carboxylation of Terminal Alkynes, *J. Org. Chem.*, 2021, **86**, 1850-1860.
- 28. L. Zhang, R. Bu, X.-Y. Liu, P.-F. Mu and E.-Q. Gao, Schiff-base Molecules and COFs as Metal-free Catalysts or Silver Supports for Carboxylation of Alkynes with CO₂, *Green Chem.*, 2021, **23**, 7620-7629.
- P.-F. Mu, L. Zhang, R. Bu, L.-F. Xiong, Y.-W. Liu and E.-Q. Gao, Guanidine-based Covalent Organic Frameworks: Cooperation between Cores and Linkers for Chromic Sensing and Efficient CO₂ Conversion, ACS Appl. Mater. Interfaces, 2023, 15, 6902-6911.
- 30. L. Zhang and E.-Q. Gao, Catalytic C(sp)-H Carboxylation with CO₂, Coord. Chem. Rev., 2023, 486, 215138.

¹H NMR (500 MHz) spectrum of **2b** in DMSO- d_6

¹H NMR (300 MHz) spectrum of **2d** in DMSO- d_6

¹H NMR (500 MHz) spectrum of **2f** in DMSO- d_6

¹H NMR (300 MHz) spectrum of **2h** in DMSO- d_6

¹H NMR (500 MHz) spectrum of $2\mathbf{k}$ in DMSO- d_6

¹H NMR (500 MHz) spectrum of **2l** in DMSO- d_6

¹H NMR (300 MHz) spectrum of **2n** in DMSO- d_6

¹H NMR (300 MHz) spectrum of 2q in DMSO- d_6

¹H NMR (300 MHz) spectrum of **3a** in DMSO- d_6

¹H NMR (300 MHz) spectrum of **3c** in Chloroform-*d*

¹H NMR (300 MHz) spectrum of **3e** in Chloroform-*d*

¹H NMR (300 MHz) spectrum of **4b** in Chloroform-*d*

¹H NMR (300 MHz) spectrum of **4d** in Chloroform-*d*

¹H NMR (400 MHz) spectrum of **5a** in Chloroform-*d*

¹H NMR (400 MHz) spectrum of **5b** in Chloroform-*d*

¹H NMR (300 MHz) spectrum of **5c** in Chloroform-*d*

¹H NMR (300 MHz) spectrum of **6a** in DMSO- d_6

¹H NMR (300 MHz) spectrum of **7a** in DMSO- d_6

¹H NMR (300 MHz) spectrum of **7b** in DMSO- d_6

¹H NMR (300 MHz) spectrum of **7b'** in DMSO- d_6

¹H NMR (300 MHz) spectrum of **8** in Chloroform-d

¹H NMR (300 MHz) spectrum of **9** in Chloroform-*d*