Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Electronic Supporting Information

Iodine-Catalyzed Intermolecular 1,2-Thio (Seleno)amination of Alkenes with 1,2,3-Triazoles and Disulfides (Diselenides) in Air

Jian Ji, Xuwen Chen, Zongjing Hu, Cong Guan, Jinhua Liu, Yaqi Deng, Shunying Liu*

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062 (P. R. China) *E-mail: syliu@sist.ecnu.edu.cn

Table of Contents

1. General information	S2
2. Starting materials·····	S2
3. Experimental procedures·····	S2
4. ¹ H, ¹⁹ F and ¹³ C NMR data of compounds······	S5
5. ¹ H, ¹⁹ F and ¹³ C NMR Spectra·····	···S23
6. Supplementary references·····	S60

Electronic Supporting Information

1. General information

All reactions and manipulations were carried out in air, in a 4 mL sealed vial equipped with a stir bar, 1 H NMR, 19 F NMR and 13 C NMR spectra were recorded using a Brucker 400 MHz spectrometer in CDCl₃. Tetramethylsilane (TMS) served as an internal standard ($\delta = 0$) for 1 H NMR, and CDCl₃ was used as internal standard ($\delta = 77.0$) for 13 C NMR. Chemical shifts are reported in parts per million as follows: chemical shift, multiplicity (s =singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad). High-resolution mass spectrometry (HRMS) was performed on IonSpec FT-ICR or Waters Micromass Q-TOF micro Synapt High-Definition Mass Spectrometer. Mass spectra were recorded on the HP-5989 instrument by ESI methods. The X-ray diffraction analysis was performed using a Bruker Smart-1000 X-ray diffractometer.

2. Starting materials

N-sulfonyl-1,2,3-triazoles 3

1-sulfonyl-1,2,3-triazoles **3** were prepared from the corresponding alkynes and sulfonyl azides according to previously reported synthetic procedures. ¹ Attention! Sulfonyl azides are potentially explosive materials and must be handled with caution! Due to the potential danger of methane sulfonyl azide, we strongly recommend to avoid isolating this compound in large quantities.

3. Experimental procedures

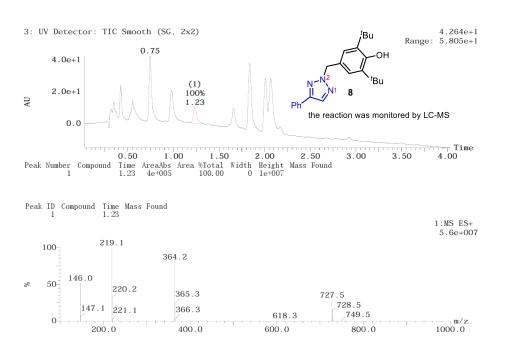
General procedures for products 4:

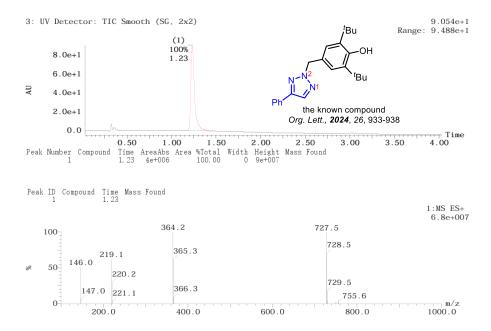
$$R^{1}SSR^{1} + R^{2} + R^{3} + R^{3} + R^{3} + R^{3} + R^{2} + R^{3} + R^{3}$$

To a flame-dried Schlenk tube was added *N*-sulfonyl-1,2,3-triazoles **3** (0.2 mmol, 1.0 equiv), then disulfides (diselenides) **1** (0.2 mmol, 1.0 equiv), alkene **2** (0.4 mmol, 2.0 equiv) were added respectively, I₂ (0.02 mmol, 0.1 equiv), and dry DCE (2 mL) was

Electronic Supporting Information

added to the tube and the mixture was stirred at $60 \, ^{\circ}$ C for 12 h. After completion as detected by TLC, the solvent was removed by rotary evaporation under vacuum, and the residue was purified by silica gel chromatography with eluent (petroleum ether/ethyl acetate = 20/1 - 15/1) to give the desired product 4.


Scheme S1 Acetonitrile to generat a carbon radical intermediate to react with Mstriazole and the unprotected triazole


Ph
$$S-S$$
 + $N=N$ + $N=N$ $N-Ts$ $N=N$ $N=$

Scheme S2 Using the sulfonyl-1,2,3-triazole without substituent and Ms-tetrazole to test this reaction.

Electronic Supporting Information

Scheme S3 Using 4-methoxy styrene **8**, 1-pentene **10**, 2-pentene **10**, and chalcone **14** as the raw material to test this reaction.

Scheme S4 The LC-MS of product 8

Scheme S5 Exclude the possibility of the reaction of intermediate **2ii** with Mstriazole

Scheme S6 Using Ms-triazole to react with carbocations

4. ¹H NMR, ¹⁹F NMR and ¹³C NMR data of compounds 4

4-phenyl-2-(1-phenyl-2-(phenylthio) ethyl)-2H-1,2,3-triazole (4a)

Following the procedure, product **4a** was obtained as a colorless oil. (82% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.84 (s, 1H), 7.76 (d, J = 7.6 Hz, 2H), 7.38 (d, J = 7.7 Hz, 6H), 7.28 (dt, J = 15.1, 8.2 Hz, 6H), 7.19 (t, J = 7.2 Hz, 1H), 5.81 – 5.76 (m, 1H), 4.16 – 4.03 (m, 1H), 3.66 (dd, J = 14.1, 4.8 Hz, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 147.9, 138.3, 134.8, 131.3, 131.2, 130.5, 129.2, 128.9, 128.7, 128.5, 127.1, 127.0, 126.1, 68.5, 40.1. HRMS (ESI) m/z: [M+Na] ⁺ Calcd for C₂₂H₁₉N₃SNa (M+Na) ⁺ 380.1192, Found: 380.1200.

4-(2-bromophenyl)-2-(1-phenyl-2-(phenylthio) ethyl)-2H-1,2,3-triazole (4b)

Following the procedure, product **4b** was obtained as a colorless oil. (80% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.14 (s, 1H), 7.73 (dd, J = 7.8, 1.6 Hz, 1H), 7.65 – 7.62 (m, 1H), 7.40 – 7.37 (m, 4H), 7.35 – 7.25 (m, 6H), 7.23 – 7.17 (m, 2H), 5.80 (dd, J = 9.6, 5.5 Hz, 1H), 4.10 (dd, J = 14.1, 9.6 Hz, 1H), 3.67 (dd, J = 14.1, 5.5 Hz, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 147.9, 141.6, 140.5, 137.2, 134.7, 131.3, 131.2, 130.5, 129.2, 128.8, 128.9, 128.5, 127.6, 127.5, 127.2, 126.1, 68.3, 40.0. **HRMS** (ESI) m/z: [M+Na] ⁺ Calcd for C₂₂H₁₈BrN₃SNa (M+Na) ⁺ 458.0297, Found: 458.0290.

4-(4-fluorophenyl)-2-(1-phenyl-2-(phenylthio) ethyl)-2H-1,2,3-triazole (4c)

Following the procedure, product **4c** was obtained as a colorless oil. (78% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.79 (s, 1H), 7.72 (dd, J = 8.6, 5.4 Hz, 2H), 7.38 (d, J = 7.5 Hz, 4H), 7.34 – 7.25 (m, 5H), 7.21 (d, J = 7.0 Hz, 1H), 7.08 (t, J = 8.6 Hz, 2H), 5.77 (dd, J = 9.7, 5.3 Hz, 1H), 4.09 (dd, J = 14.1, 9.8 Hz, 1H), 3.65 (dd, J = 14.1, 5.3 Hz, 1H). ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -113.02. ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 162.9 (d, J = 247.6 Hz), 147.0, 138.2, 134.7, 131.2, 130.9, 129.2, 128.9, 128.7, 127.8 (d, J = 8.2 Hz), 127.2, 127.0, 126.7 (d, J = 3.3 Hz), 115.8 (d, J = 21.8 Hz), 68.6, 40.0. **HRMS** (ESI) m/z: [M+H] ⁺ Calcd for C₂₂H₁₉FN₃S (M+H) ⁺ 376.4654, Found: 376.4661.

4-([1,1'-biphenyl]-4-yl)-2-(1-phenyl-2-(phenylthio) ethyl)-2H-1,2,3-triazole (4d)

Following the procedure, product **4d** was obtained as a colorless oil. (76% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.87 (s, 1H), 7.84 (d, J = 7.5 Hz, 2H), 7.63 (t, J = 8.0 Hz, 4H), 7.41 (dt, J = 23.1, 7.7 Hz, 6H), 7.35 – 7.25 (m, 6H), 7.21 (t, J = 7.1 Hz, 1H), 5.80 (dd, J = 8.9, 5.5 Hz, 1H), 4.11 (dd, J = 13.8, 9.9 Hz, 1H), 3.68 (dd, J = 14.0, 5.1 Hz, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 147.5, 141.2, 140.6, 138.3, 134.8, 131.3, 131.2, 129.4, 129.2, 128.9, 128.8, 128.6, 127.5, 127.2, 127.1, 127.0, 126.5, 68.6, 40.1. **HRMS** (ESI) m/z: [M+Na] ⁺ Calcd for C₂₈H₂₃N₃SNa (M+Na) ⁺ 456.1505, Found: 456.1508.

methyl 4-(2-(1-phenyl-2-(phenylthio) ethyl)-2H-1,2,3-triazol-4-yl) benzoate (4e)

Following the procedure, product **4e** was obtained as a colorless oil. (77% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.08 (d, J = 8.1 Hz, 2H), 7.90 (s, 1H), 7.83 (d, J = 8.1 Hz, 2H), 7.37 (d, J = 6.1 Hz, 4H), 7.33 – 7.23 (m, 5H), 7.20 (d, J = 7.2 Hz, 1H), 5.80 (dd, J = 9.6, 5.2 Hz, 1H), 4.10 (dd, J = 14.0, 9.9 Hz, 1H), 3.90 (s, 3H), 3.66 (dd, J = 14.1, 5.1 Hz, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 166.8, 146.8, 138.1, 134.8, 134.6, 131.8, 131.2, 130.2, 129.8, 129.2, 128.9, 128.7, 127.2, 127.0, 125.9, 68.8, 52.2, 40.02. **HRMS** (ESI) m/z: [M+Na] ⁺ Calcd for C₂₄H₂₁N₃O₂SNa (M+Na) ⁺ 438.1247, Found: 438.1256.

4-(tert-butyl)-2-(1-phenyl-2-(phenylthio) ethyl)-2H-1,2,3-triazole (4f)

Following the procedure, product **4f** was obtained as a colorless oil. (75% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.39 (s, 1H), 7.38 – 7.34 (m, 2H), 7.33 – 7.29 (m, 4H), 7.29 – 7.25 (m, 3H), 7.22 (d, J = 7.4 Hz, 1H), 5.69 (dd, J = 9.4, 5.6 Hz, 1H), 4.01 (dd, J = 14.0, 9.5 Hz, 1H), 3.61 (dd, J = 14.0, 5.6 Hz, 1H), 1.31 (s, 9H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 157.6, 138.7, 134.9, 131.0, 130.6, 129.1, 128.7, 128.4, 127.0, 126.9, 68.0, 40.2, 30.8, 30.4. **HRMS** (ESI) m/z: [M+Na] ⁺ Calcd for C₂₀H₂₃N₃SNa (M+Na) ⁺ 360.1505, Found: 360.1515.

4-butyl-2-(1-phenyl-2-(phenylthio) ethyl)-2H-1,2,3-triazole (4g)

Following the procedure, product **4g** was obtained as a colorless oil. (74% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.37 (d, J = 7.4 Hz, 3H), 7.33 – 7.26 (m, 7H), 7.25 – 7.22 (m, 1H), 5.69 (dd, J = 9.5, 5.6 Hz, 1H), 4.02 (dd, J = 14.0, 9.6 Hz, 1H), 3.61 (dd, J = 14.0, 5.6 Hz, 1H), 2.65 (t, J = 8.0 Hz, 2H), 1.67 – 1.58 (m, 2H), 1.42 – 1.32 (m, 2H), 0.92 (t, J = 8.0 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 148.8, 138.5, 134.8, 132.7, 131.0, 129.1, 128.7, 128.4, 127.0, 126.9, 67.9, 39.9, 31.3, 25.3, 22.4, 13.8. **HRMS** (ESI) m/z: [M+Na] ⁺ Calcd for C₂₀H₂₃N₃SNa (M+Na) ⁺ 360.1505, Found: 360.1515.

2-(1-phenyl-2-(phenylthio) ethyl)-4-(thiophen-3-yl)-2H-1,2,3-triazole (4h)

Following the procedure, product **4h** was obtained as a colorless oil. (70% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.74 (s, 1H), 7.40 – 7.34 (m, 6H), 7.33 (s, 1H), 7.30 (d, J = 6.9 Hz, 4H), 7.25 (d, J = 3.9 Hz, 1H), 7.07 (t, J = 4.0, 1H), 5.75 (dd, J = 9.6, 5.4 Hz, 1H), 4.07 (dd, J = 14.1, 9.7 Hz, 1H), 3.65 (dd, J = 14.1, 5.4 Hz, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 143.0, 138.1, 134.6, 132.7, 131.2, 130.9, 129.2, 128.8, 128.6, 127.6, 127.1, 127.0, 125.5, 124.8, 68.5, 39.9. **HRMS** (ESI) m/z: [M+Na] ⁺ Calcd for C₂₀H₁₇N₃S₂Na (M+Na) ⁺ 386.0756, Found: 386.0765.

4-(benzo[b]thiophen-2-yl)-2-(1-phenyl-2-(phenylthio) ethyl)-2H-1,2,3-triazole (4i)

Following the procedure, product **4i** was obtained as a colorless oil. (72% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.85 (s, 1H), 7.77 (d, J = 7.4 Hz, 1H), 7.59 (s, 1H), 7.40 (d, J = 7.1 Hz, 4H), 7.37 – 7.31 (m, 6H), 7.29 (d, J = 7.6 Hz, 2H), 7.25 (s, 1H), 5.78 (dd, J = 9.6, 5.4 Hz, 1H), 4.10 (dd, J = 14.1, 9.7 Hz, 1H), 3.67 (dd, J = 14.1, 5.4 Hz, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 142.9, 139.9, 139.5, 137.9, 134.5, 132.8, 131.5, 131.3, 129.2, 128.8, 128.7, 127.2, 127.1, 124.7, 124.6, 123.7, 122.4, 121.1, 68.7, 40.0. **HRMS** (ESI) m/z: [M+Na] + Calcd for C₂₄H₁₉N₃S₂ (M+Na) + 436.0913, Found: 436.0903.

4-(benzofuran-2-yl)-2-(1-phenyl-2-(phenylthio) ethyl)-2H-1,2,3-triazole (4j)

Following the procedure, product **4j** was obtained as a colorless oil. (75% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.96 (s, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.54 (d, J = 8.1 Hz, 1H), 7.39 (d, J = 7.4 Hz, 4H), 7.35 – 7.26 (m, 6H), 7.24 (d, J = 7.8 Hz, 2H), 7.08 (s, 1H), 5.83 (dd, J = 9.6, 5.4 Hz, 1H), 4.11 (dd, J = 14.1, 9.7 Hz, 1H), 3.69 (dd, J = 14.1, 5.4 Hz, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 154.8, 147.7, 140.0, 137.9, 134.4, 132.1, 131.3, 129.2, 128.9, 128.7, 128.5, 127.2, 127.0, 124.8, 123.2, 121.2, 111.4, 103.6, 68.8, 39.9. **HRMS** (ESI) m/z: [M+Na] ⁺ Calcd for C₂₄H₁₉N₃OSNa (M+Na) ⁺ 420.1141, Found: 420.1142.

2-(1-(4-fluorophenyl)-2-(phenylthio) ethyl)-4-phenyl-2H-1,2,3-triazole (4k)

Following the procedure, product **4k** was obtained as a colorless oil. (82% yield). ¹**H NMR** (400 MHz, Chloroform-d) δ 7.83 (s, 1H), 7.76 (d, J = 7.3 Hz, 2H), 7.42 – 7.33 (m, 7H), 7.27 (t, J = 7.4 Hz, 2H), 7.23 – 7.19 (m, 1H), 6.99 (t, J = 8.6 Hz, 2H), 5.76 (dd, J = 9.2, 5.9 Hz, 1H), 4.05 (dd, J = 14.0, 9.2 Hz, 1H), 3.64 (dd, J = 14.0, 5.9 Hz, 1H). ¹⁹**F NMR** (376 MHz, Chloroform-d) δ -112.98. ¹³**C NMR** (100 MHz, Chloroform-d) δ 162.7 (d, J = 247.6 Hz), 147.9, 134.5, 134.0 (d, J = 3.2 Hz), 131.3, 131.2, 130.3, 129.2, 129.0 (d, J = 8.4 Hz), 128.8, 128.5, 127.2, 126.1, 115.7 (d, J = 21.6 Hz), 67.7, 40.1. **HRMS** (ESI) m/z: [M+Na] + Calcd for C₂₂H₁₈FN₃SNa (M+Na) + 398.1098, Found: 398.1094.

2-(1-([1,1'-biphenyl]-4-yl)-2-(phenylthio) ethyl)-4-phenyl-2H-1,2,3-triazole (4l)

Following the procedure, product **4l** was obtained as a colorless oil. (77% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.86 (s, 1H), 7.78 (d, J = 7.4 Hz, 2H), 7.55 – 7.50 (m, 4H), 7.45 (d, J = 8.3 Hz, 2H), 7.43 – 7.37 (m, 6H), 7.33 (dd, J = 7.2, 3.8 Hz, 2H), 7.28 (t, J = 7.5 Hz, 2H), 7.22 (d, J = 7.1 Hz, 1H), 5.83 (dd, J = 9.5, 5.6 Hz, 1H), 4.12 (dd, J = 14.0, 9.5 Hz, 1H), 3.71 (dd, J = 14.1, 5.6 Hz, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 147.9, 141.6, 140.5, 137.2, 134.7, 131.3, 131.2, 130.5, 129.2, 128.9, 128.8, 128.5, 127.6, 127.5, 127.2, 126.1, 68.3, 40.0. **HRMS** (ESI) m/z: [M+Na] ⁺ Calcd for C₂₈H₂₃N₃SNa (M+Na) ⁺ 456.1515, Found: 456.1522.

4-phenyl-2-(2-(phenylthio) cyclohexyl)-2H-1,2,3-triazole (4m)

Following the procedure, product **4m** was obtained as a colorless oil. (71% yield). ¹**H NMR** (400 MHz, Chloroform-d) δ 7.75 (s, 1H), 7.73 (d, J = 2.8 Hz, 2H), 7.41 (t, J = 7.6 Hz, 2H), 7.36 – 7.30 (m, 3H), 7.20 – 7.13 (m, 3H), 4.47 (td, J = 11.3, 4.2 Hz, 1H), 3.64 (td, J = 11.3, 3.9 Hz, 1H), 2.33 – 2.26 (m, 1H), 2.24 – 2.16 (m, 1H), 2.05 (qd, J = 12.6, 3.6 Hz, 1H), 1.91 – 1.78 (m, 2H), 1.57 – 1.31 (m, 3H). ¹³**C NMR** (100 MHz, Chloroform-d) δ 147.2, 134.0, 132.7, 130.7, 130.5, 128.8, 128.6, 128.2, 127.5, 125.9, 68.3, 51.9, 33.8, 33.4, 25.8, 24.8. **HRMS** (ESI) m/z: [M+H] ⁺ Calcd for C₂₀H₂₂N₃S (M+H) ⁺ 336.1534, Found: 336.1530. (known product)²

4-phenyl-2-(2-(phenylthio)cyclopentyl)-2H-1,2,3-triazole (4n)

Following the procedure, product **4n** was obtained as a colorless oil. (82% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.73 (d, J = 7.7 Hz, 3H), 7.41 (t, J = 7.5 Hz, 2H), 7.37 – 7.31 (m, 3H), 7.20 (t, J = 7.4 Hz, 2H), 7.13 (t, J = 7.2 Hz, 1H), 4.95 (q, J = 6.4 Hz, 1H), 4.13 (q, J = 7.2 Hz, 1H), 2.45 – 2.34 (m, 2H), 2.33 – 2.24 (m, 1H), 2.07 – 1.96 (m, 1H), 1.96 – 1.86 (m, 1H), 1.84 – 1.74 (m, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 147.5, 134.3, 131.6, 130.8, 130.6, 128.8, 128.8, 128.3, 126.9, 125.9, 71.6, 51.9, 31.9, 31.8, 22.8. **HRMS** (ESI) m/z: [M+Na] ⁺ Calcd for C₁₉H₁₉N₃SNa (M+Na) ⁺ 344.1192, Found: 344.1201.

4-phenyl-2-(2-(phenylthio)-1,2,3,4-tetrahydronaphthalen-1-yl)-2H-1,2,3-triazole (40)

Following the procedure, product **4o** was obtained as a colorless oil. (71% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.74 (s, 1H), 7.69 (d, J = 7.3 Hz, 2H), 7.38 (d, J = 6.8 Hz, 2H), 7.32 (t, J = 7.5 Hz, 2H), 7.24 (t, J = 7.4 Hz, 1H), 7.19 – 7.11 (m, 3H), 7.09 – 7.02 (m, 2H), 6.96 (t, J = 7.3 Hz, 1H), 6.68 (d, J = 7.8 Hz, 1H), 5.78 (d, J = 8.9 Hz, 1H), 4.08 – 3.99 (m, 1H), 3.05 – 2.94 (m, 1H), 2.88 (dt, J = 17.1, 4.9 Hz, 1H), 2.41 (dq, J = 13.2, 4.8 Hz, 1H), 2.01 – 1.84 (m, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 147.8, 136.1, 133.9, 133.6, 132.3, 131.3, 130.5, 128.90, 128.9, 128.8, 128.4, 128.1, 127.9, 127.8, 126.6, 126.1, 68.2, 49.2, 28.6, 28.5. **HRMS** (ESI) m/z: [M+H] $^+$ Calcd for C₂₄H₂₂N₃S (M+H) $^+$ 384.1456, Found: 384.1451.

4-phenyl-2-(2-(phenylthio)-2,3-dihydro-1H-inden-1-yl)-2H-1,2,3-triazole (4p)

Following the procedure, product **4p** was obtained as a colorless oil. (75% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.80 (s, 1H), 7.73 (d, J = 7.5 Hz, 2H), 7.42 – 7.38 (m, 4H), 7.34 (d, J = 7.3 Hz, 1H), 7.28 (d, J = 5.2 Hz, 2H), 7.25 – 7.14 (m, 4H), 7.03 (d, J = 7.6 Hz, 1H), 6.13 (d, J = 6.7 Hz, 1H), 4.64 (q, J = 7.4 Hz, 1H), 3.68 (dd, J = 16.2, 8.0 Hz, 1H), 3.10 (dd, J = 16.2, 7.5 Hz, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 148.0, 140.9, 139.5, 133.4, 132.4, 131.5, 130.4, 129.2, 129.0, 128.8, 128.5, 127.5, 127.4, 126.0, 124.9, 124.5, 75.1, 51.9, 37.9. **HRMS** (ESI) m/z: [M+Na] ⁺ Calcd for C₂₃H₁₉N₃SNa (M+Na) ⁺ 392.1192, Found: 392.1184.

2-(2-(allylthio)-1-phenylethyl)-4-phenyl-2H-1,2,3-triazole (4q)

Following the procedure, product **4q** was obtained as a colorless oil. (71% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.89 (s, 1H), 7.80 (d, J = 7.3 Hz, 2H), 7.44 – 7.39 (m, 4H), 7.37 – 7.29 (m, 4H), 5.84 – 5.75 (m, 2H), 5.16 (d, J = 5.3 Hz, 1H), 5.12 (s, 1H), 3.65 (dd, J = 14.1, 9.7 Hz, 1H), 3.25 (dd, J = 14.1, 5.6 Hz, 1H), 3.08 (dd, J = 7.0, 4.4 Hz, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 147.8, 138.5, 134.2, 131.1, 130.5, 128.8, 128.8, 128.5, 128.4, 127.0, 126.0, 117.7, 69.2, 35.7, 35.1. **HRMS** (ESI) m/z: [M+H] ⁺ Calcd for C₁₉H₂₀N₃S (M+H) ⁺ 322.1300, Found: 322.1306.

2-(2-(methylthio)-1-phenylethyl)-4-phenyl-2H-1,2,3-triazole (4r)

Following the procedure, product **4r** was obtained as a colorless oil. (78% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.88 (s, 1H), 7.79 (d, J = 7.8 Hz, 2H), 7.44 (d, J = 7.6 Hz, 2H), 7.39 (d, J = 7.7 Hz, 2H), 7.35 – 7.27 (m, 4H), 5.82 (dd, J = 9.3, 5.8 Hz, 1H), 3.73 (dd, J = 14.0, 9.5 Hz, 1H), 3.32 (dd, J = 14.0, 5.8 Hz, 1H), 2.47 (q, J = 7.4 Hz, 2H), 1.21 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 147.8, 138.6, 131.2, 130.5, 128.9, 128.8, 128.6, 128.5, 127.1, 126.1, 69.6, 36.9, 26.5, 14.8. **HRMS** (ESI) m/z: [M+Na] $^+$ Calcd for C₁₈H₁₉N₃SNa (M+Na) $^+$ 332.1192, Found: 332.1194.

4-phenyl-2-(1-phenyl-2-(thiophen-2-ylthio) ethyl)-2H-1,2,3-triazole (4s)

Following the procedure, product **4s** was obtained as a colorless oil. (72% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.88 (s, 1H), 7.79 (d, J = 7.5 Hz, 2H), 7.41 (t, J = 7.6 Hz, 2H), 7.38 – 7.27 (m, 7H), 7.13 (d, J = 3.4 Hz, 1H), 6.97 (dd, J = 5.2, 3.7 Hz, 1H), 5.81 (dd, J = 10.0, 5.1 Hz, 1H), 3.97 (dd, J = 14.0, 10.1 Hz, 1H), 3.50 (dd, J = 14.1, 5.1 Hz, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 147.8, 138.1, 135.3, 132.7, 131.3, 130.5, 130.3, 128.8, 128.8, 128.6, 128.5, 127.8, 127.0, 126.1, 68.1, 43.8. **HRMS** (ESI) m/z: [M+Na] $^+$ Calcd for C₂₀H₁₇N₃S (M+Na) $^+$ 386.0756, Found: 386.0765.

2-(2-((2-fluorophenyl) thio)-1-phenylethyl)-4-phenyl-2H-1,2,3-triazole (4t)

Following the procedure, product **4t** was obtained as a colorless oil. (79% yield). ¹**H NMR** (400 MHz, Chloroform-d) δ 7.80 (s, 1H), 7.75 (d, J = 7.2 Hz, 2H), 7.41 – 7.34 (m, 4H), 7.34 – 7.25 (m, 5H), 7.22 – 7.15 (m, 1H), 7.01 (q, J = 7.7, 6.8 Hz, 2H), 5.78 (dd, J = 9.8, 5.2 Hz, 1H), 4.10 (dd, J = 14.1, 9.9 Hz, 1H), 3.64 (dd, J = 14.1, 5.2 Hz, 1H). ¹⁹**F NMR** (376 MHz, Chloroform-d) δ -107.85. ¹³**C NMR** (100 MHz, Chloroform-d) δ 162.2 (d, J = 246.2 Hz), 147.8, 138.2, 134.3 (d, J = 1.3 Hz), 131.2, 130.5, 129.7 (d, J = 8.0 Hz), 128.8, 128.8, 128.6, 128.4, 127.0, 126.0, 124.5 (d, J = 3.8 Hz), 121.3 (d, J = 17.7 Hz), 116.0 (d, J = 22.7 Hz), 69.2, 39.2. **HRMS** (ESI) m/z: [M+Na] $^+$ Calcd for $C_{22}H_{18}FN_3SNa$ (M+Na) $^+$ 398.1098, Found: 398.1094.

4-phenyl-2-(1-phenyl-2-(p-tolylthio) ethyl)-2H-1,2,3-triazole (4u)

Following the procedure, product **4u** was obtained as a colorless oil. (82% yield). ¹**H NMR** (400 MHz, Chloroform-d) δ 7.83 (s, 1H), 7.75 (d, J = 7.4 Hz, 2H), 7.41 – 7.33 (m, 4H), 7.33 – 7.25 (m, 6H), 7.07 (d, J = 7.9 Hz, 2H), 5.76 (dd, J = 9.7, 5.3 Hz, 1H), 4.05 (dd, J = 14.1, 9.8 Hz, 1H), 3.60 (dd, J = 14.1, 5.3 Hz, 1H), 2.27 (s, 3H). ¹³**C NMR** (100 MHz, Chloroform-d) δ 147.8, 138.4, 137.4, 132.0, 131.2, 130.9, 130.5, 129.9, 128.8, 128.8, 128.6, 128.4, 127.1, 126.1, 68.6, 40.8, 21.2. **HRMS** (ESI) m/z: [M+Na] ⁺ Calcd for C₂₃H₂₁N₃SNa (M+Na) ⁺ 394.1348, Found: 394.1357.

2-(2-methyl-1-phenyl-2-(phenylthio) propyl)-4-phenyl-2H-1,2,3-triazole (4v)

Following the procedure, product **4v** was obtained as a colorless oil. (50% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.67 (d, J = 7.6 Hz, 2H), 7.48 (s, 1H), 7.33 (t, J = 7.5 Hz, 2H), 7.24 (t, J = 7.2 Hz, 1H), 7.13 (s, 5H), 7.08 – 7.00 (m, 5H), 4.78 (s, 1H), 1.92 (s, 3H), 1.64 (s, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 146.5, 138.2, 134.6, 131.5, 130.8, 129.5, 128.8, 128.7, 128.1, 127.9, 127.7, 127.2, 125.7, 118.7, 65.3, 65.0, 26.0, 25.5. **HRMS** (ESI) m/z: [M+Na] + Calcd for C₂₄H₂₃N₃SNa (M+Na) + 408.1505, Found: 408.1515.

4-phenyl-2-(1-phenyl-2-(phenylthio) propyl)-2H-1,2,3-triazole (4w)

Following the procedure, product **4w** was obtained as a colorless oil. (53% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.78 (d, J = 7.5 Hz, 2H), 7.62 (s, 1H), 7.39 (t, J = 7.5 Hz, 3H), 7.32 (t, J = 5.4 Hz, 4H), 7.23 – 7.12 (m, 6H), 4.24 (d, J = 13.6 Hz, 1H), 3.92 (d, J = 13.6 Hz, 1H), 2.19 (s, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 147.5, 142.5, 136.1, 130.7, 130.6, 128.9, 128.8, 128.7, 128.4, 128.1, 126.8, 125.7, 125.6, 119.4, 67.8, 46.7, 26.9. **HRMS** (ESI) m/z: [M+H] ⁺ Calcd for C₂₃H₂₂N₃S (M+H) ⁺ 372.1456, Found: 372.1448.

4-phenyl-2-(2-phenyl-1-(phenylthio) propan-2-yl)-2H-1,2,3-triazole (4x)

Following the procedure, product $4\mathbf{x}$ was obtained as a colorless oil. (48% yield). $^{1}\mathbf{H}$ **NMR** (400 MHz, Chloroform-d) δ 7.78 (d, J = 7.5 Hz, 2H), 7.62 (s, 1H), 7.39 (t, J = 7.5 Hz, 2H), 7.32 (t, J = 5.5 Hz, 4H), 7.26 (d, J = 4.8 Hz, 2H), 7.23 – 7.13 (m, 5H), 4.24 (d, J = 13.6 Hz, 1H), 3.92 (d, J = 13.6 Hz, 1H), 2.19 (s, 3H). $^{13}\mathbf{C}$ **NMR** (100 MHz, Chloroform-d) δ 142.5, 136.0, 130.6, 130.6, 128.9, 128.8, 128.7, 128.4, 128.1, 126.8, 125.7, 125.7, 119.4, 67.8, 46.7, 26.9. HRMS (ESI) m/z: [M+H] $^{+}$ Calcd for C₂₃H₂₂N₃S (M+H) $^{+}$ 372.1534, Found: 372.1530. (known product) 2

2-(1,2-diphenyl-2-(phenylthio) ethyl)-4-phenyl-2H-1,2,3-triazole (4y)

Following the procedure, product **4y** was obtained as a colorless oil. (78% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.78 – 7.74 (m, 2H), 7.62 – 7.59 (m, 2H), 7.54 (s, 1H), 7.34 (t, J = 7.6 Hz, 5H), 7.29 – 7.23 (m, 3H), 7.14 – 7.02 (m, 8H), 6.08 (d, J = 11.6 Hz, 1H), 5.31 (d, J = 11.6 Hz, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 147.4, 138.9, 136.7, 133.7, 133.4, 130.7, 130.4, 128.8, 128.7, 128.6, 128.6, 128.5, 128.3, 128.1, 128.0, 127.7, 127.3, 125.9, 73.2, 58.2. **HRMS** (ESI) m/z: [M+Na] ⁺ Calcd for C₂₈H₂₃N₃SNa (M+Na) ⁺ 456.1505, Found: 456.1515.

4-phenyl-2-(1-phenyl-2-(phenylselanyl) ethyl)-2H-1,2,3-triazole (4z)

Following the procedure, product **4z** was obtained as a colorless oil. (83% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.83 (d, J = 1.5 Hz, 1H), 7.79 – 7.75 (m, 2H), 7.53 – 7.49 (m, 2H), 7.40 (t, J = 7.7 Hz, 2H), 7.37 – 7.26 (m, 6H), 7.25 – 7.22 (m, 3H), 5.86 – 5.80 (m, 1H), 4.09 – 4.01 (m, 1H), 3.66 – 3.57 (m, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 147.8, 138.9, 133.9, 131.2, 130.5, 129.2, 129.2, 128.9, 128.8, 128.6, 128.5, 127.7, 126.9, 126.1, 69.4, 32.9. **HRMS** (ESI) m/z: [M+H] ⁺ Calcd for C₂₂H₂₀N₃Se (M+H) ⁺ 406.0766, Found: 406.0760.

2-(2-((4-chlorophenyl) selanyl)-1-phenylethyl)-4-phenyl-2H-1,2,3-triazole (4aa)

Following the procedure, product **4aa** was obtained as a colorless oil. (81% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.82 (s, 1H), 7.75 (d, J = 7.5 Hz, 2H), 7.44 – 7.38 (m, 4H), 7.36 – 7.26 (m, 6H), 7.18 (d, J = 8.2 Hz, 2H), 5.81 (dd, J = 9.9, 5.3 Hz, 1H), 4.03 (dd, J = 12.7, 10.3 Hz, 1H), 3.58 (dd, J = 13.1, 5.3 Hz, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 147.8, 138.7, 135.4, 134.0, 131.2, 130.3, 129.3, 128.8, 128.6, 128.5, 127.1, 126.9, 126.0, 69.4, 33.2. **HRMS** (ESI) m/z: [M+Na] ⁺ Calcd for C₂₂H₁₈ClN₃SeNa (M+Na) ⁺ 462.0247, Found: 462.0249.

4-phenyl-2-(1-phenyl-2-((4-(trifluoromethyl) phenyl) selanyl) ethyl)-2H-1,2,3-triazole (4ab)

Following the procedure, product **4ab** was obtained as a colorless oil. (55% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.81 (s, 1H), 7.75 (d, J = 7.4 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H), 7.47 – 7.29 (m, 10H), 5.86 (dd, J = 9.8, 5.3 Hz, 1H), 4.12 (dd, J = 12.9, 10.1 Hz, 1H), 3.68 (dd, J = 13.1, 5.3 Hz, 1H). ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ - 62.69. ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 147.8, 138.5, 134.4, 132.9, 131.2, 130.2, 129.6, 129.2, 128.9, 128.8, 128.7, 128.5, 126.8, 125.9, 125.8 (q, J = 3.6 Hz), 69.5, 32.6. **HRMS** (ESI) m/z: [M+H] ⁺ Calcd for C₂₃H₁₉F₃N₃Se (M+H) ⁺ 474.0618, Found: 474.0610.

4-phenyl-2-(1-phenyl-2-(m-tolylselanyl) ethyl)-2H-1,2,3-triazole (4ac)

Following the procedure, product **4ac** was obtained as a colorless oil. (85% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.83 (s, 1H), 7.76 (d, J = 7.7 Hz, 2H), 7.42 – 7.26 (m, 10H), 7.13 (t, J = 7.5 Hz, 1H), 7.03 (d, J = 7.5 Hz, 1H), 5.84 (dd, J = 9.7, 5.6 Hz, 1H), 4.04 (dd, J = 12.6, 10.1 Hz, 1H), 3.61 (dd, J = 13.0, 5.5 Hz, 1H), 2.27 (s, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 147.7, 139.0, 138.9, 134.5, 131.1, 130.8, 130.5, 129.0, 128.9, 128.8, 128.8, 128.5, 128.4, 128.4, 126.9, 126.0, 69.5, 32.8, 21.3. HRMS (ESI) m/z: [M+Na] + Calcd for C₂₃H₂₁N₃SeNa (M+Na) + 442.0793, Found: 442.0789.

2-(2-((3-methoxyphenyl) selanyl)-1-phenylethyl)-4-phenyl-2H-1,2,3-triazole (4ad)

Following the procedure, product **4ad** was obtained as a colorless oil. (78% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.84 (s, 1H), 7.77 (d, J = 7.6 Hz, 2H), 7.44 – 7.27 (m, 9H), 7.16 (t, J = 7.8 Hz, 1H), 7.09 (d, J = 7.5 Hz, 1H), 6.78 (d, J = 8.1 Hz, 1H), 5.85 (dd, J = 9.8, 5.4 Hz, 1H), 4.05 (dd, J = 12.7, 10.2 Hz, 1H), 3.74 (s, 3H), 3.62 (dd, J = 13.2, 5.2 Hz, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 159.7, 147.7, 138.9, 131.2, 130.4, 130.1, 130.0, 128.8, 128.8, 128.6, 128.4, 126.9, 126.0, 125.8, 119.0, 113.5, 69.4, 55.3, 32.8. **HRMS** (ESI) m/z: [M+Na] + Calcd for C₂₃H₂₁N₃OSeNa (M+Na) + 458.0742, Found: 458.0739.

2-(2-(benzo[d] [1,3] dioxol-5-ylselanyl)-1-phenylethyl)-4-phenyl-2H-1,2,3-triazole (4ae)

Following the procedure, product **4ae** was obtained as a colorless oil. (68% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.83 (s, 1H), 7.76 (d, J = 7.6 Hz, 2H), 7.42 – 7.25 (m, 8H), 7.03 – 6.97 (m, 2H), 6.67 (d, J = 7.9 Hz, 1H), 5.84 (s, 2H), 5.83 – 5.79 (m, 1H), 4.02 – 3.94 (m, 1H), 3.51 (dd, J = 13.0, 5.3 Hz, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 148.0, 147.9, 147.7, 138.9, 131.1, 130.5, 129.1, 128.9, 128.8, 128.5, 128.4, 126.9, 126.0, 119.9, 115.3, 109.1, 101.3, 69.5, 33.9. **HRMS** (ESI) m/z: [M+Na] ⁺ Calcd for C₂₃H₁₉N₃O₂SeNa (M+Na) ⁺ 472.0535, Found: 472.0529.

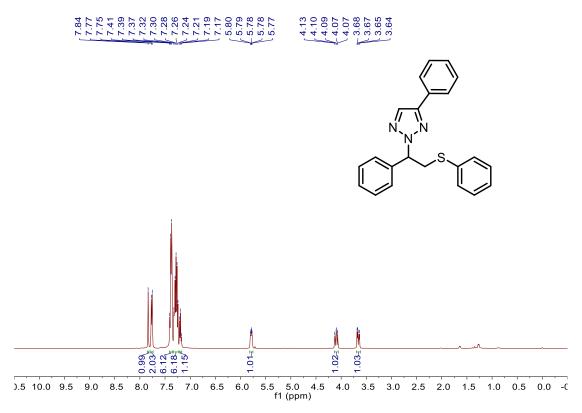
2-(2-(benzylselanyl)-1-phenylethyl)-4-phenyl-2H-1,2,3-triazole (4af)

Following the procedure, product **4af** was obtained as a colorless oil. (85% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.79 (d, J = 7.6 Hz, 2H), 7.57 (s, 1H), 7.39 (t, J = 7.5 Hz, 2H), 7.35 – 7.24 (m, 11H), 5.40 (t, J = 7.5 Hz, 1H), 3.69 (s, 2H), 3.64 (dd, J = 13.3, 8.7 Hz, 1H), 3.27 (dd, J = 13.2, 6.5 Hz, 1H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 147.5, 138.9, 138.3, 130.5, 129.1, 129.0, 128.9, 128.8, 128.7, 128.2, 127.1, 127.0, 125.7, 119.6, 66.1, 28.3, 28.1. **HRMS** (ESI) m/z: [M+H] ⁺ Calcd for C₂₃H₂₂N₃Se (M+H) ⁺ 420.0901, Found: 420.0909.

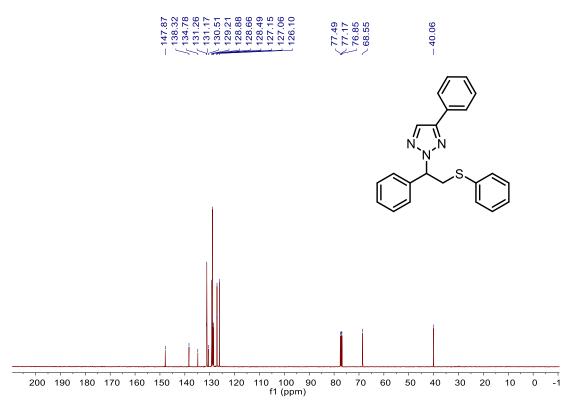
2-(2-(methylselanyl)-1-phenylethyl)-4-phenyl-2H-1,2,3-triazole (4ag)

Following the procedure, product **4ag** was obtained as a colorless oil. (86% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.87 (s, 1H), 7.79 (d, J = 7.9 Hz, 2H), 7.46 – 7.38 (m, 4H), 7.36 – 7.28 (m, 4H), 5.86 (dd, J = 9.1, 6.3 Hz, 1H), 3.71 (dd, J = 12.9, 9.6 Hz, 1H), 3.31 (dd, J = 13.0, 6.0 Hz, 1H), 1.91 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 147.7, 138.9, 131.1, 130.5, 128.8, 128.8, 128.5, 128.4, 127.0, 126.0, 70.0, 29.8, 5.1. **HRMS** (ESI) m/z: [M+Na] ⁺ Calcd for C₁₇H₁₇N₃SeNa (M+Na) ⁺ 366.0480, Found: 366.0482.

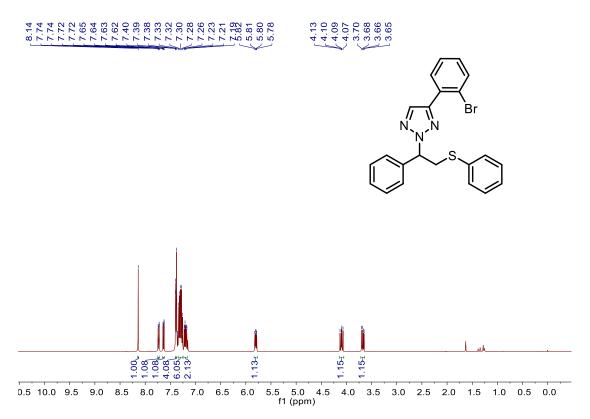
4-phenyl-2-(2-(phenylsulfonyl)-2,3-dihydro-1H-inden-1-yl)-2H-1,2,3-triazole (6)

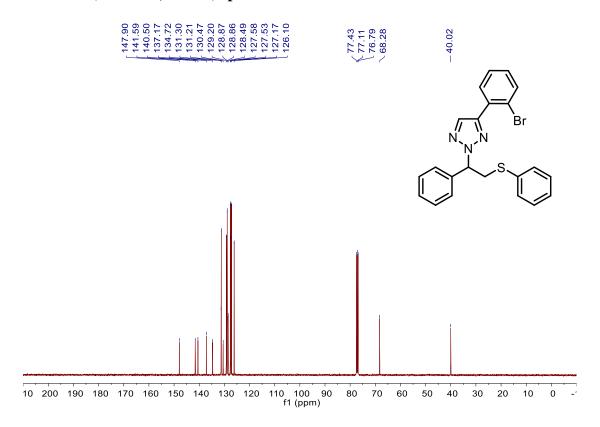

Product **6** was obtained as a white solid. (90% yield). ¹**H NMR** (400 MHz, Chloroform-d) δ 7.85 (d, J = 7.3 Hz, 2H), 7.62 (d, J = 8.7 Hz, 3H), 7.45 – 7.29 (m, 9H), 6.94 (d, J = 7.6 Hz, 1H), 6.57 (d, J = 7.6 Hz, 1H), 5.01 (q, J = 8.3 Hz, 1H), 3.74 (dd, J = 16.3, 8.4 Hz, 1H), 3.63 (dd, J = 16.4, 9.1 Hz, 1H). ¹³**C NMR** (101 MHz, Chloroform-d) δ 148.0, 138.5, 137.8, 133.8, 131.6, 129.9, 129.7, 129.1, 128.8, 128.6, 128.4, 127.9, 125.9, 125.0, 123.9, 69.9, 68.2, 31.1. **HRMS** (ESI) m/z: [M+H] ⁺ Calcd for C₂₃H₂₀N₃O₂S (M+H) ⁺ 402.1198, Found: 402.1190.

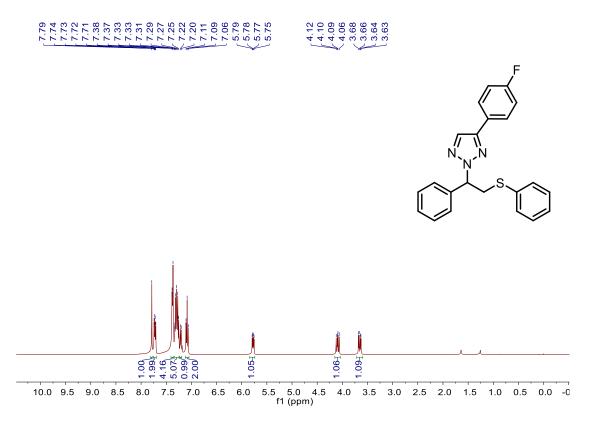
4-phenyl-2-(2-(phenylsulfinyl)-2,3-dihydro-1H-inden-1-yl)-2H-1,2,3-triazole (7)

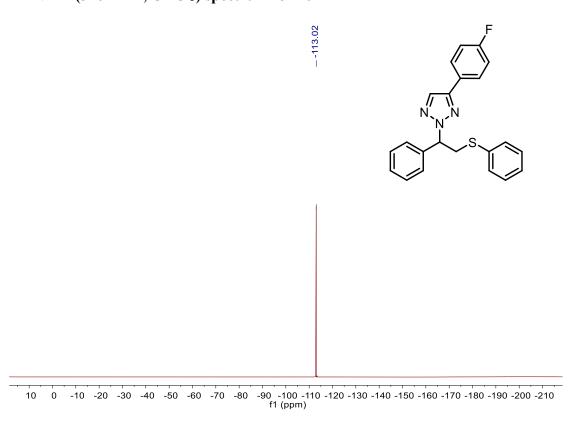

Product **7** was obtained as a white solid. (85% yield). ¹**H NMR** (400 MHz, Chloroform-d) δ 7.89 (s, 1H), 7.78 (d, J = 7.5 Hz, 2H), 7.64 (d, J = 7.1 Hz, 2H), 7.51 – 7.41 (m, 5H), 7.40 – 7.33 (m, 1H), 7.28 – 7.14 (m, 3H), 7.06 (d, J = 7.6 Hz, 1H), 6.59 (d, J = 7.7 Hz, 1H), 4.46 (q, J = 8.2 Hz, 1H), 3.59 (dd, J = 16.4, 8.1 Hz, 1H), 2.96 (dd, J = 16.4, 8.8 Hz, 1H). ¹³**C NMR** (101 MHz, Chloroform-d) δ 148.3, 141.8, 139.7, 138.7, 131.8, 131.2, 130.1, 129.4, 129.2, 128.9, 128.6, 127.6, 126.0, 125.0, 124.3, 124.2, 69.1, 68.6, 27.8. **HRMS** (ESI) m/z: [M+H] ⁺ Calcd for C₂₃H₂₀N₃OS (M+H) ⁺ 386.1249, Found: 386.1241.

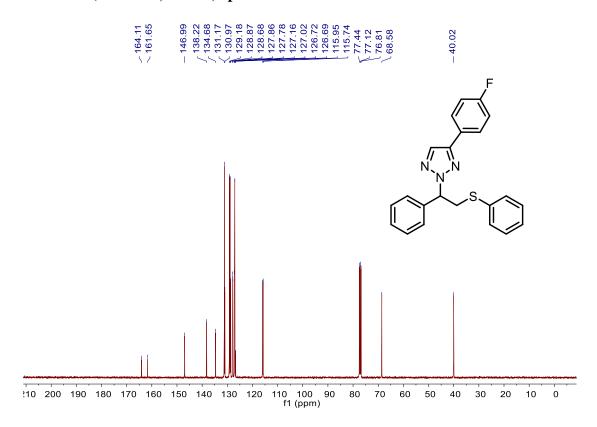
5. $^{1}\mathrm{H}$, $^{19}\mathrm{F}$ and $^{13}\mathrm{C}$ NMR Spectra of products 4

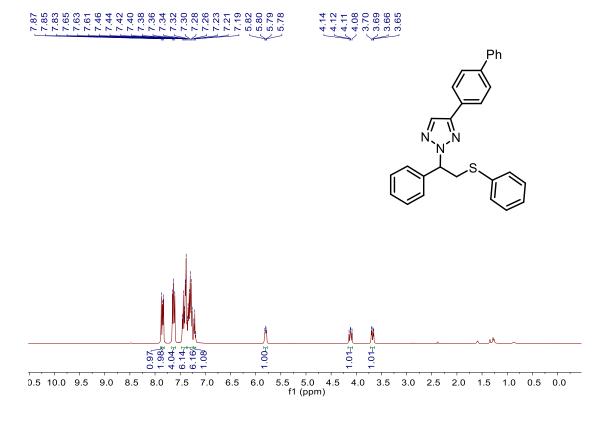

¹H NMR (400 MHz, CDCl₃) spectrum for 4a

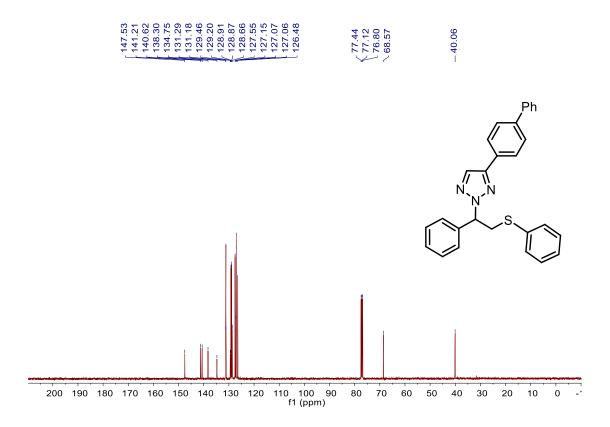

¹³C NMR (100 MHz, CDCl₃) spectrum for 4a

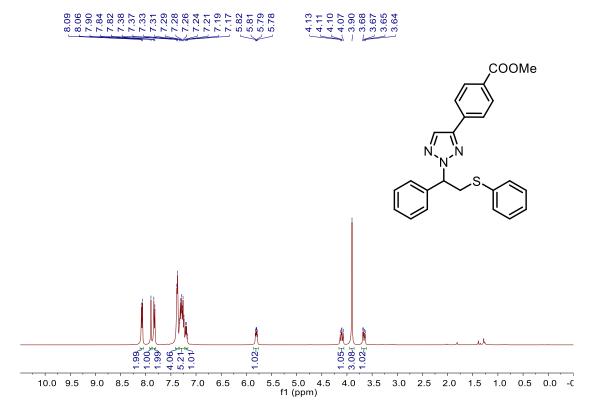

¹H NMR (400 MHz, CDCl₃) spectrum for 4b

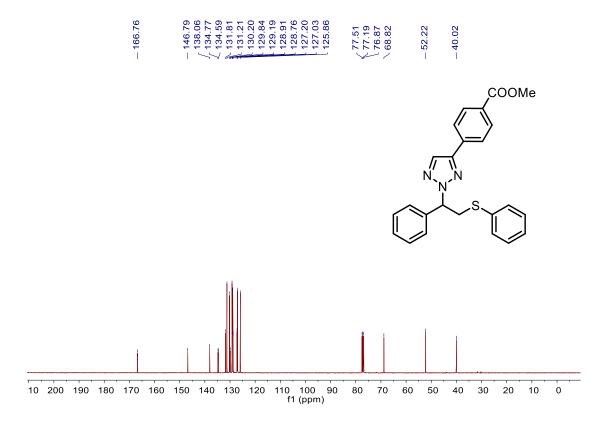

$^{13} C$ NMR (100 MHz, CDCl₃) spectrum for 4b

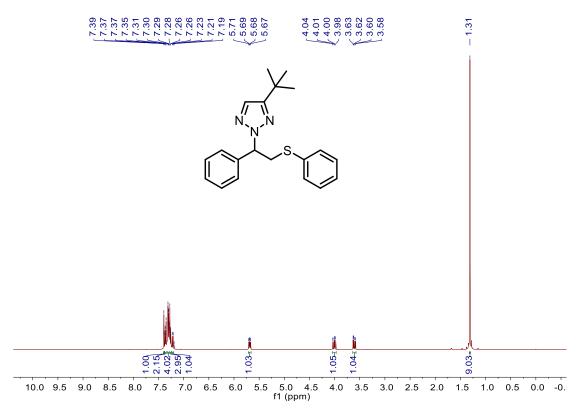

¹H NMR (400 MHz, CDCl₃) spectrum for 4c

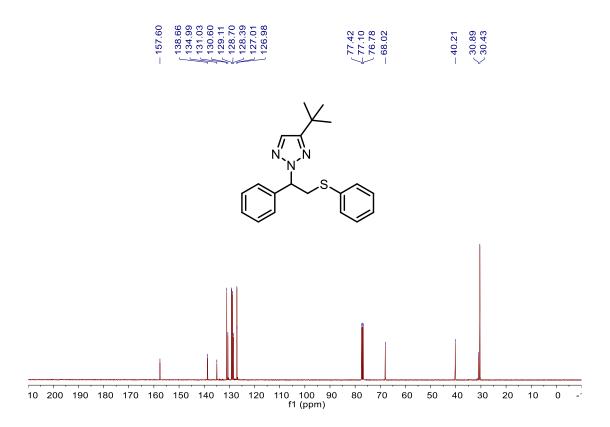

¹⁹F NMR (376 MHz, CDCl₃) spectrum for 4c

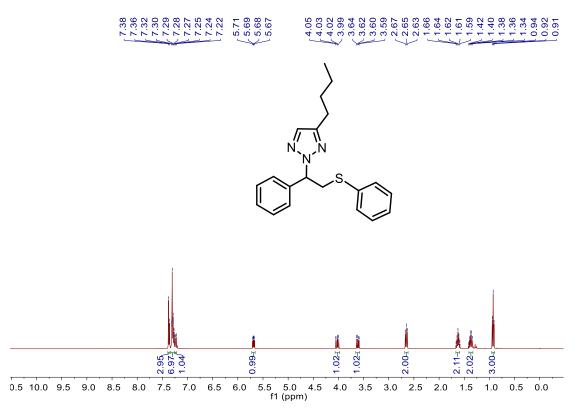

¹³C NMR (100 MHz, CDCl₃) spectrum for 4c

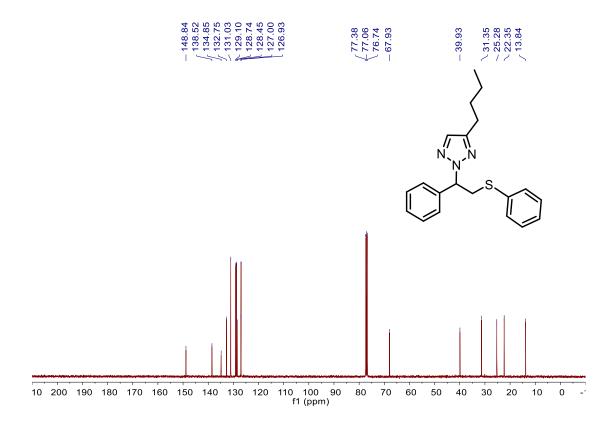

¹H NMR (400 MHz, CDCl₃) spectrum for 4d

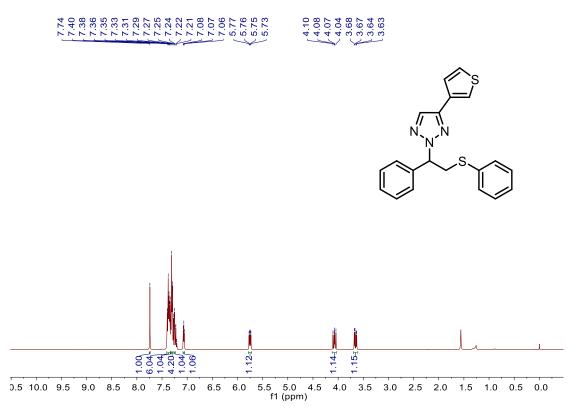

13 C NMR (100 MHz, CDCl₃) spectrum for 4d

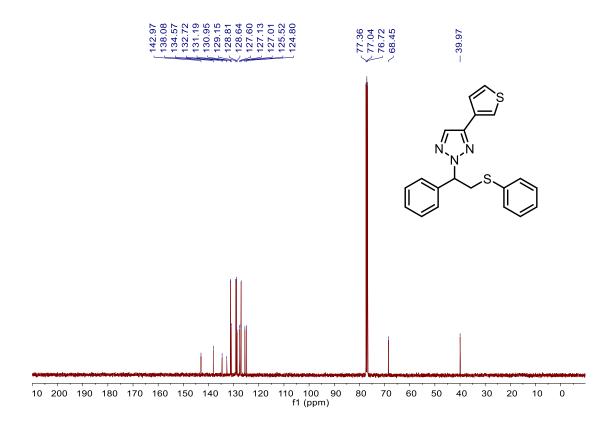

¹H NMR (400 MHz, CDCl₃) spectrum for 4e

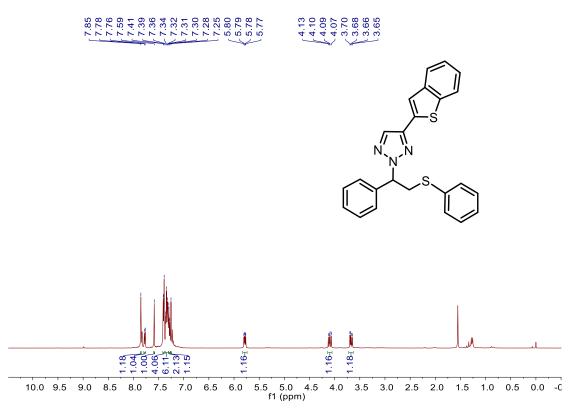

¹³C NMR (100 MHz, CDCl₃) spectrum for 4e

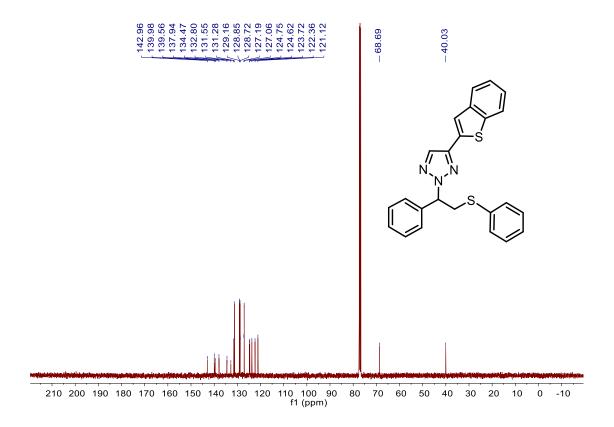

¹H NMR (400 MHz, CDCl₃) spectrum for **4f**

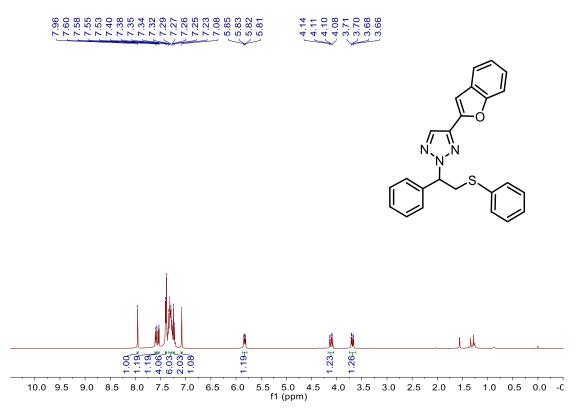

$^{13}C\ NMR\ (100\ MHz,\ CDCl_3)$ spectrum for 4f

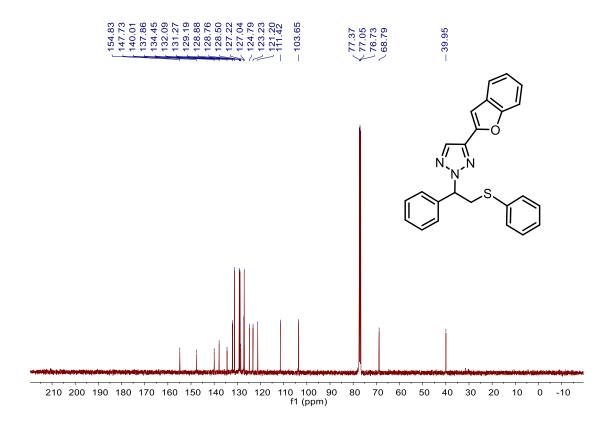

¹H NMR (400 MHz, CDCl₃) spectrum for **4g**

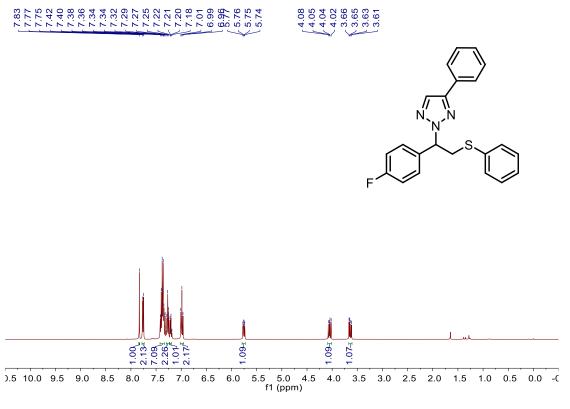

$^{13} C$ NMR (100 MHz, CDCl₃) spectrum for 4g

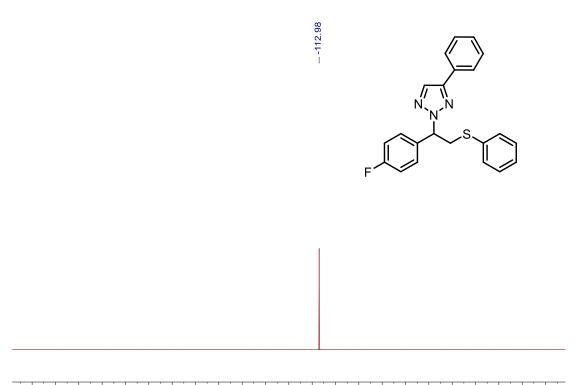

¹H NMR (400 MHz, CDCl₃) spectrum for **4h**


$^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) spectrum for 4h

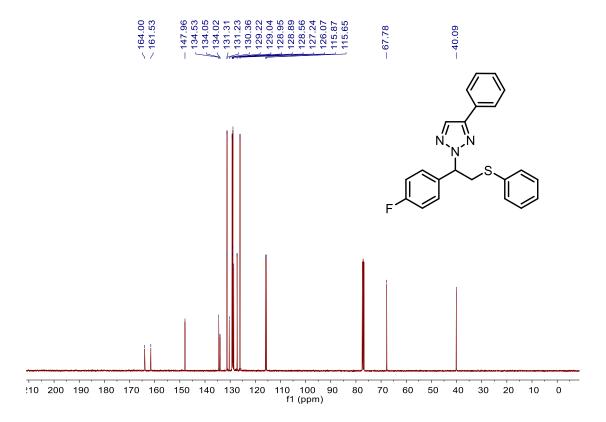

¹H NMR (400 MHz, CDCl₃) spectrum for 4i


$^{13} C$ NMR (100 MHz, CDCl₃) spectrum for 4i

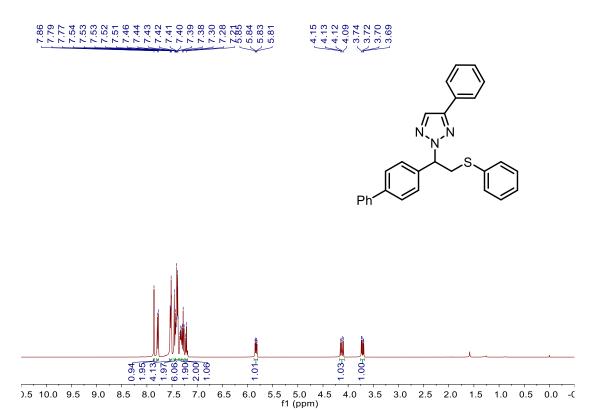

¹H NMR (400 MHz, CDCl₃) spectrum for **4j**


^{13}C NMR (100 MHz, CDCl₃) spectrum for 4j

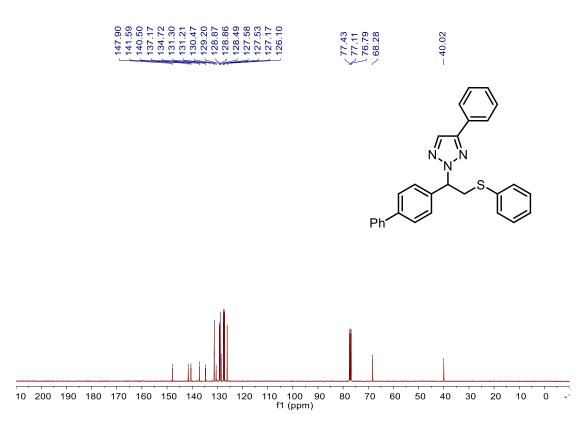
¹H NMR (400 MHz, CDCl₃) spectrum for 4k



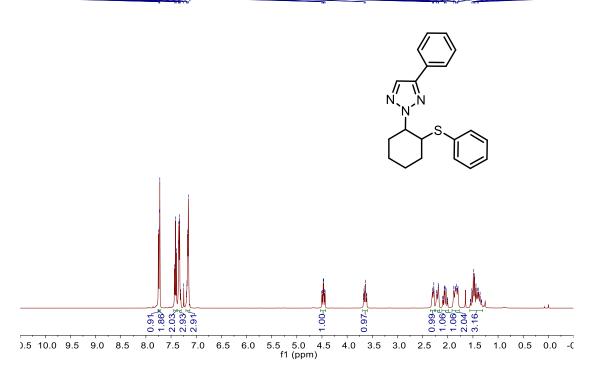
¹⁹F NMR (376 MHz, CDCl₃) spectrum for 4k



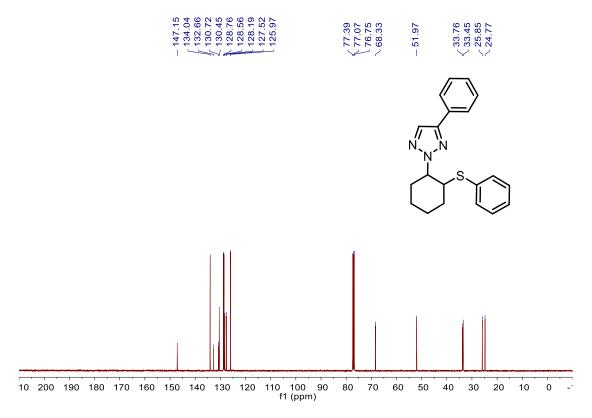
10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)


¹³C NMR (100 MHz, CDCl₃) spectrum for 4k

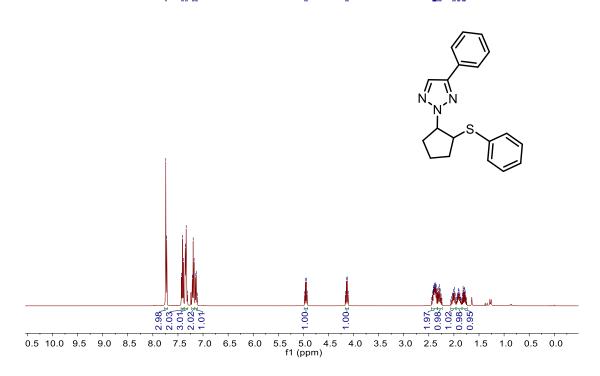
¹H NMR (400 MHz, CDCl₃) spectrum for 4l



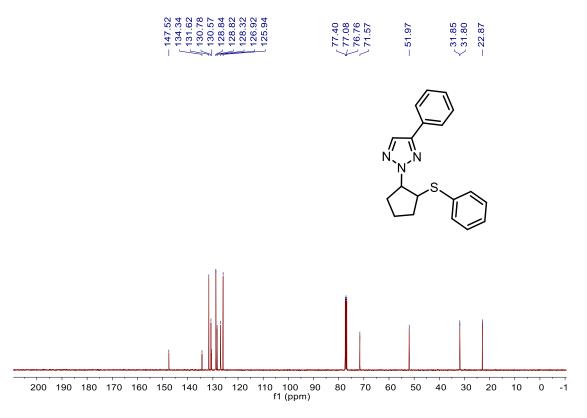
$^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) spectrum for 4l



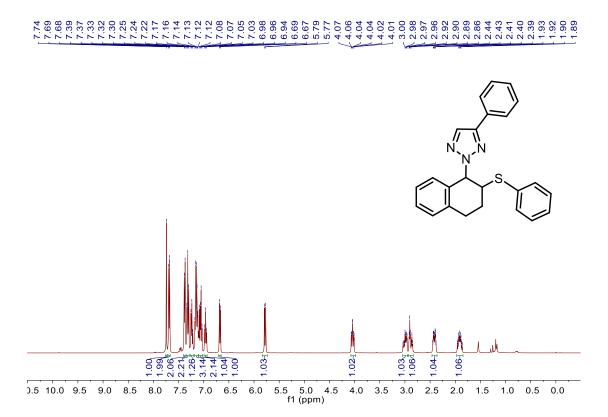
¹H NMR (400 MHz, CDCl₃) spectrum for **4m**

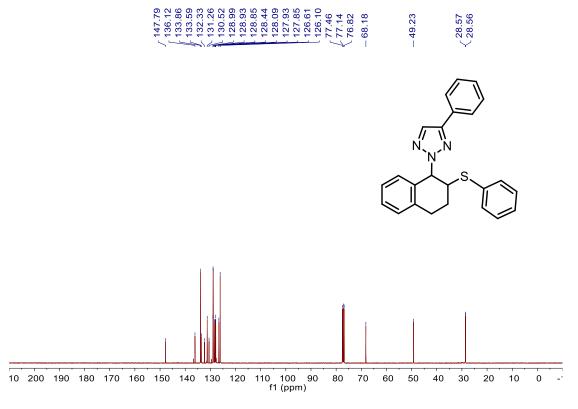


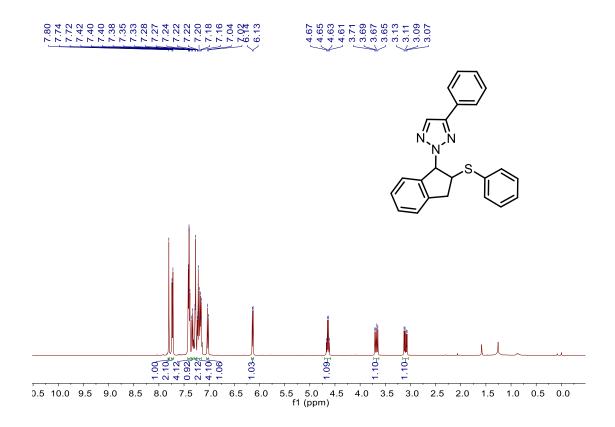
13 C NMR (100 MHz, CDCl₃) spectrum for 4m

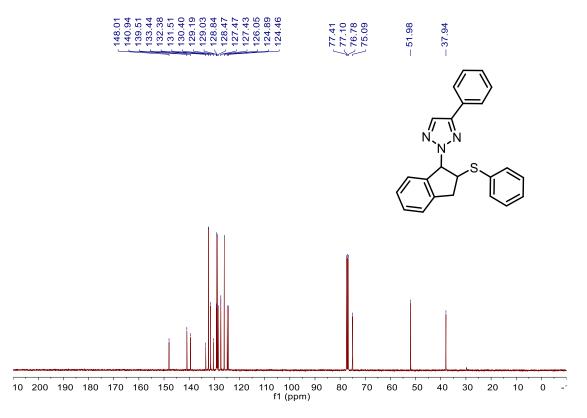


¹H NMR (400 MHz, CDCl₃) spectrum for **4n**

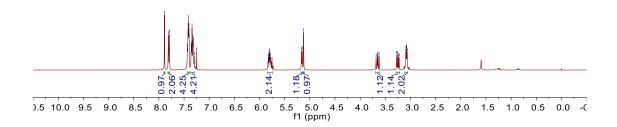


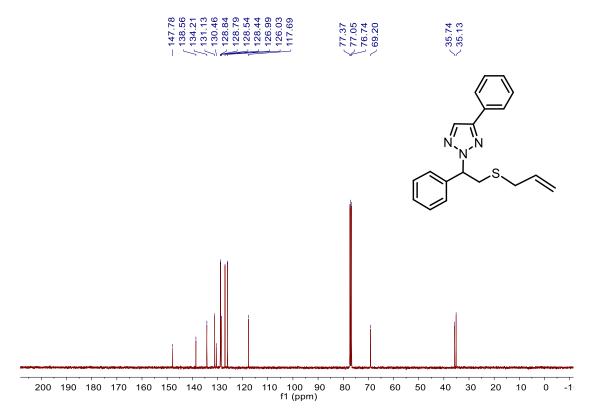

13 C NMR (100 MHz, CDCl₃) spectrum for 4n


¹H NMR (400 MHz, CDCl₃) spectrum for **40**

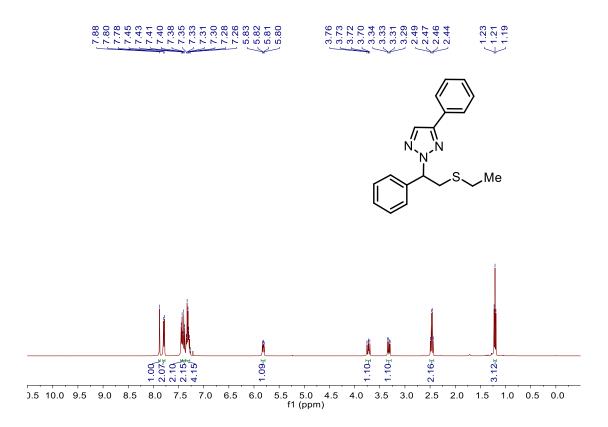

¹³C NMR (100 MHz, CDCl₃) spectrum for 40

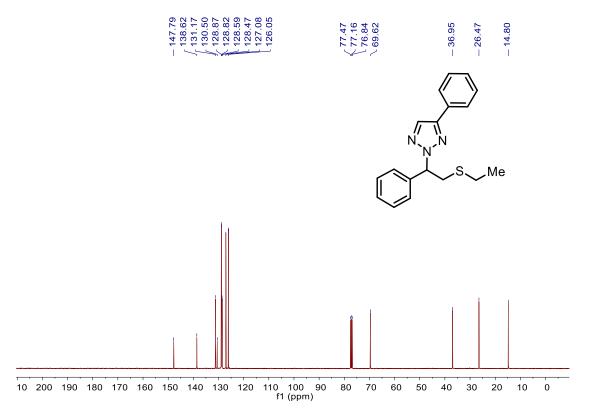
¹H NMR (400 MHz, CDCl₃) spectrum for **4p**

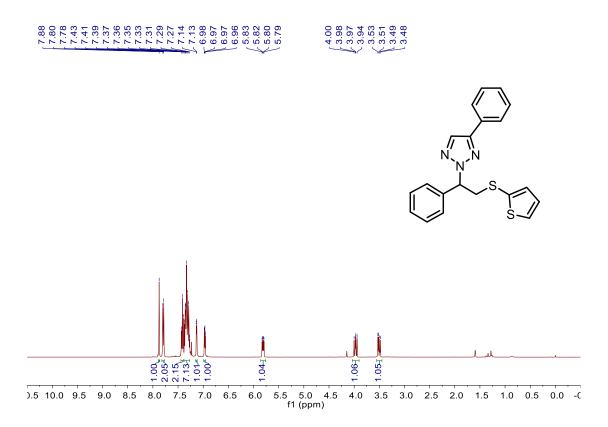

¹³C NMR (100 MHz, CDCl₃) spectrum for 4p

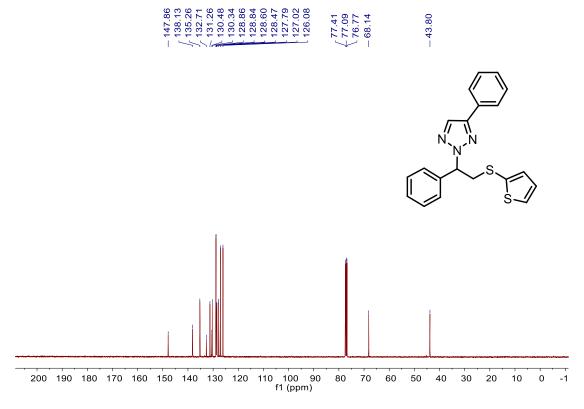

¹H NMR (400 MHz, CDCl₃) spectrum for 4q

7.7.88 7.7.7.7.7.7.89 7.7.7.7.7.86 7.7.7.7.86 7.7.7.87 7.7.87 7.

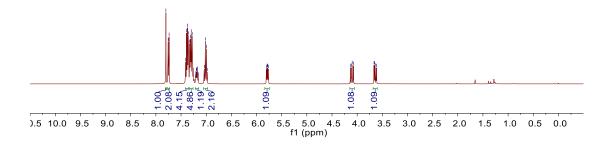



¹³C NMR (100 MHz, CDCl₃) spectrum for 4q

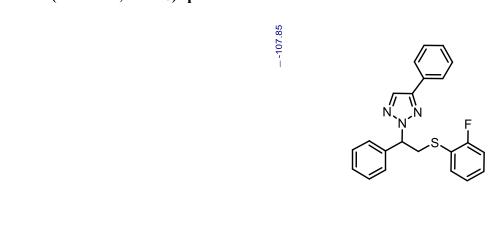

¹H NMR (400 MHz, CDCl₃) spectrum for **4r**


¹³C NMR (100 MHz, CDCl₃) spectrum for 4r

¹H NMR (400 MHz, CDCl₃) spectrum for **4s**

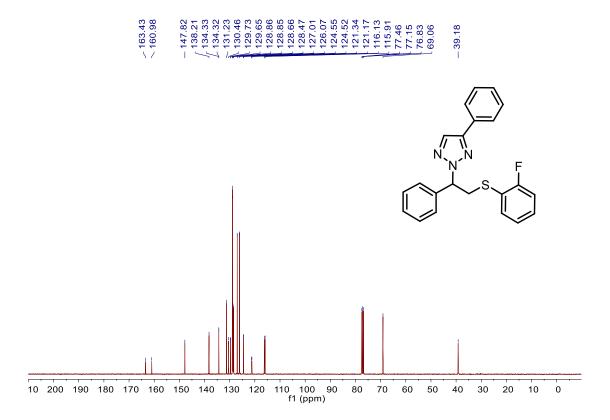


¹³C NMR (100 MHz, CDCl₃) spectrum for 4s

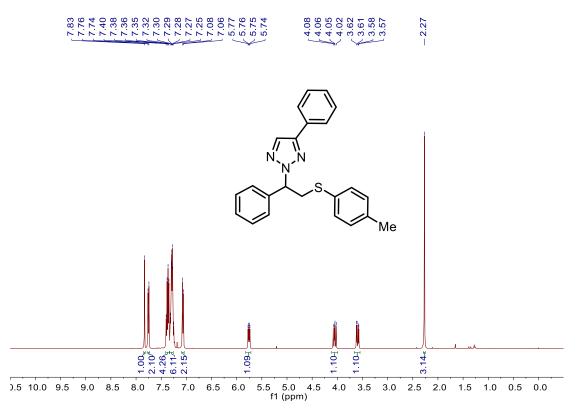


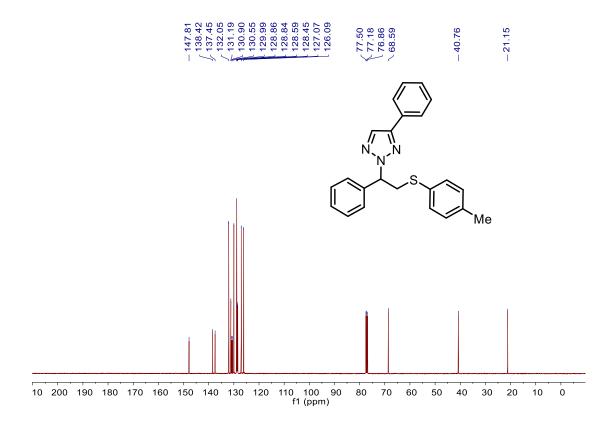
¹H NMR (400 MHz, CDCl₃) spectrum for 4t

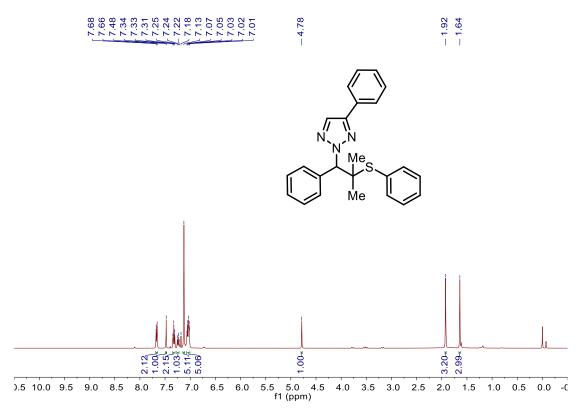
8.7.7.7.7.8.9 7.7.3.9 7.7.3.9 7.7.3.9 7.7.3.9 7.7.3.9 7.7.9 8.7.9 8.7.9 8

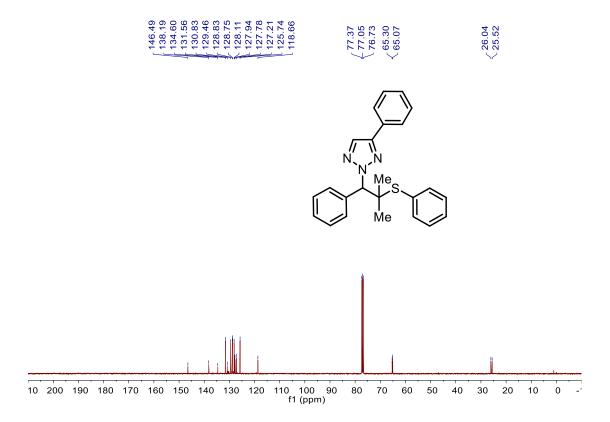


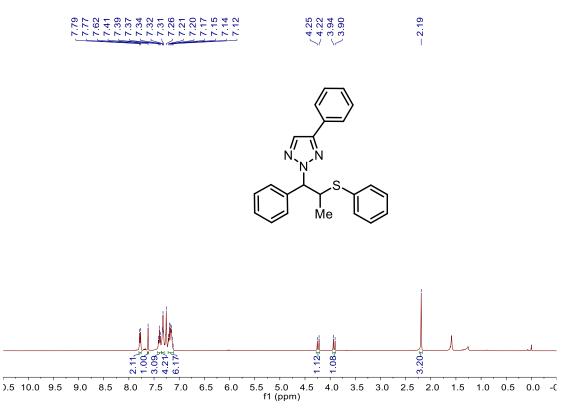
¹⁹F NMR (376 MHz, CDCl₃) spectrum for 4t

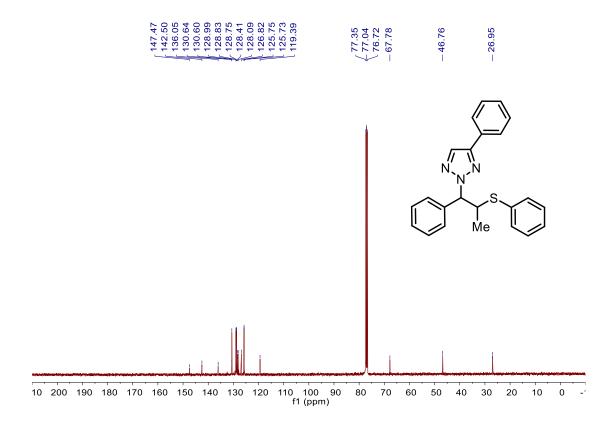


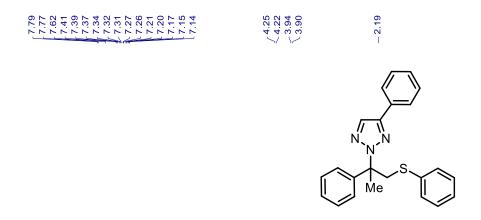

^{13}C NMR (100 MHz, CDCl₃) spectrum for 4t

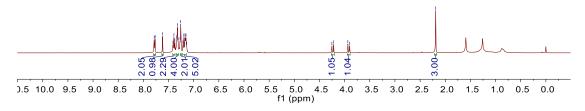

¹H NMR (400 MHz, CDCl₃) spectrum for **4u**


$^{13} C$ NMR (100 MHz, CDCl₃) spectrum for 4u

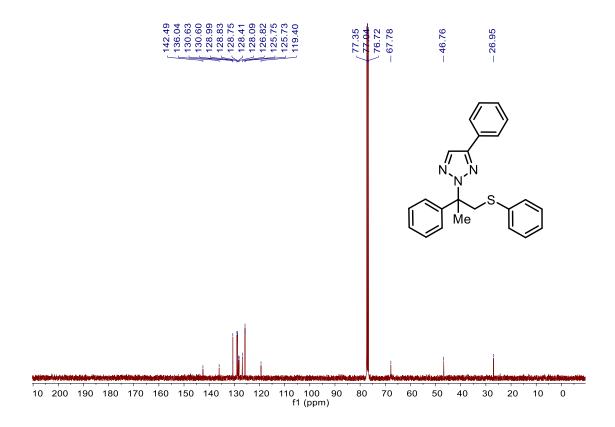

¹H NMR (400 MHz, CDCl₃) spectrum for **4v**


^{13}C NMR (100 MHz, CDCl₃) spectrum for 4v

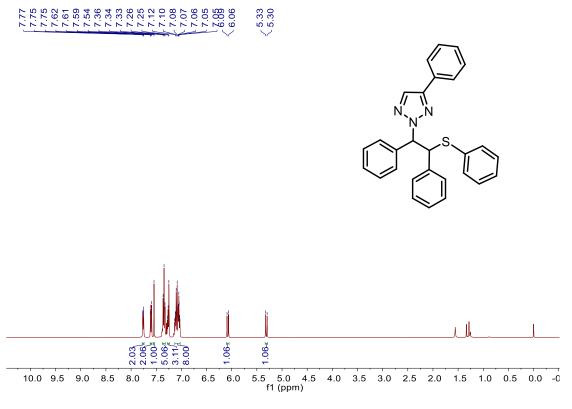

¹H NMR (400 MHz, CDCl₃) spectrum for 4w

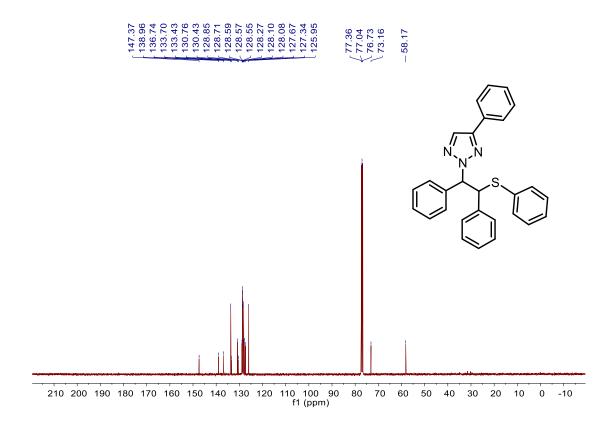


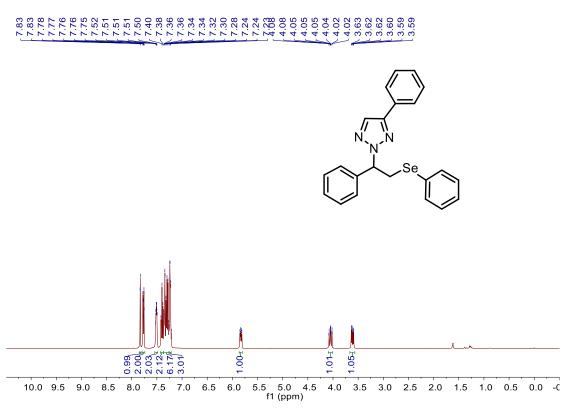
$^{13}\text{C NMR}$ (100 MHz, CDCl₃) spectrum for 4w

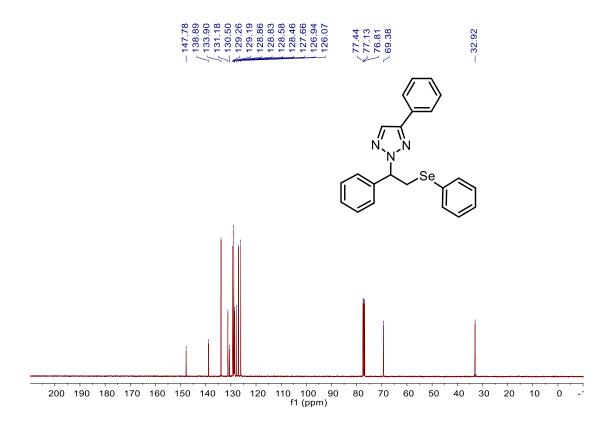


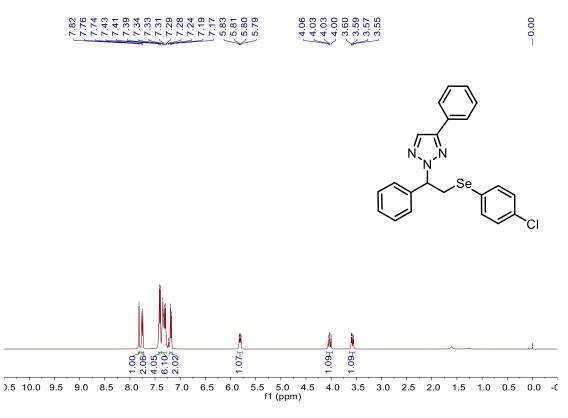
¹H NMR (400 MHz, CDCl₃) spectrum for 4x

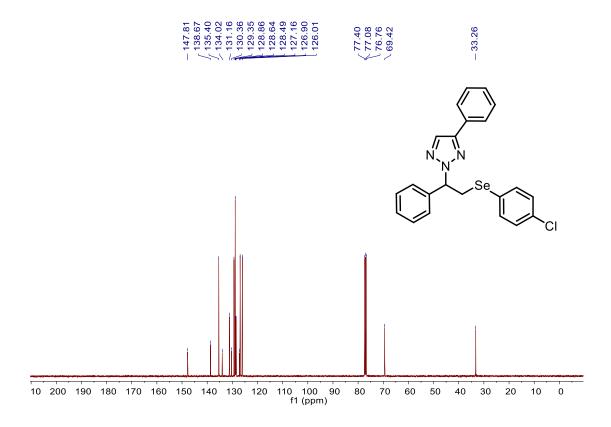


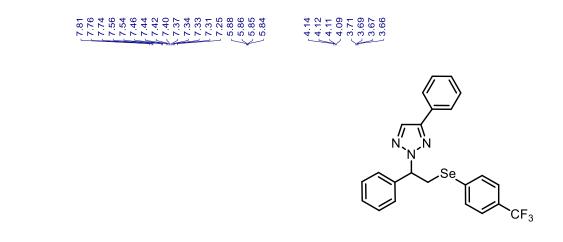

^{13}C NMR (100 MHz, CDCl₃) spectrum for 4x

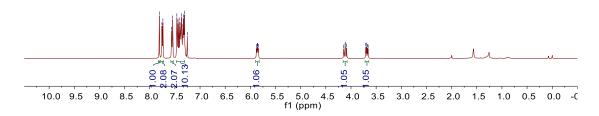

¹H NMR (400 MHz, CDCl₃) spectrum for **4y**


^{13}C NMR (100 MHz, CDCl₃) spectrum for 4y

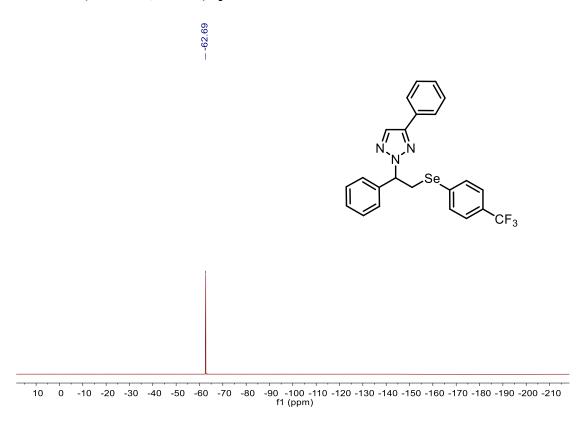

¹H NMR (400 MHz, CDCl₃) spectrum for **4z**


$^{13} C$ NMR (100 MHz, CDCl₃) spectrum for 4z

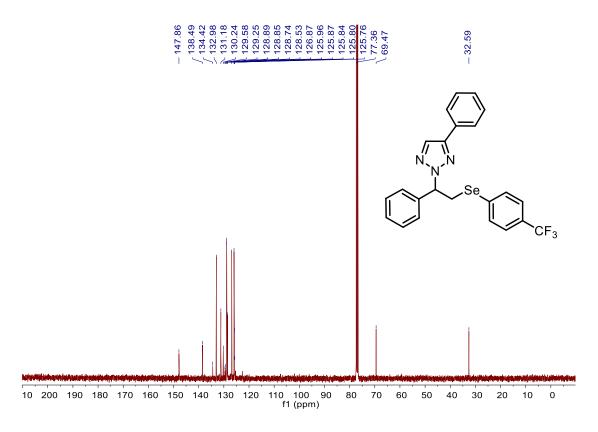

¹H NMR (400 MHz, CDCl₃) spectrum for **4aa**

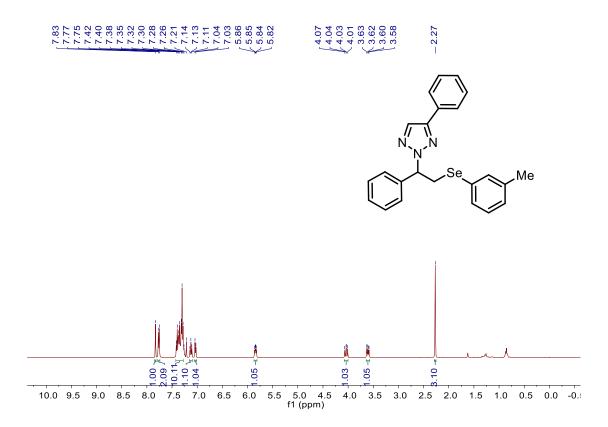


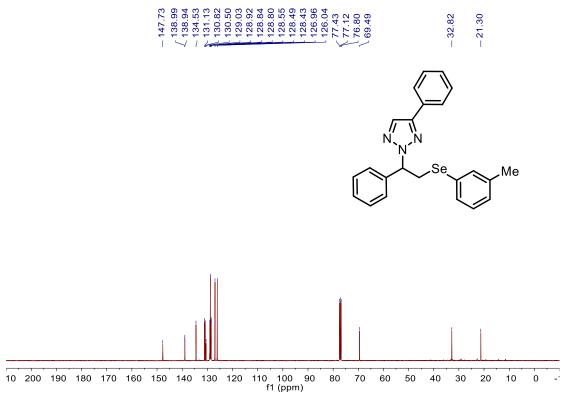
$^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) spectrum for 4aa

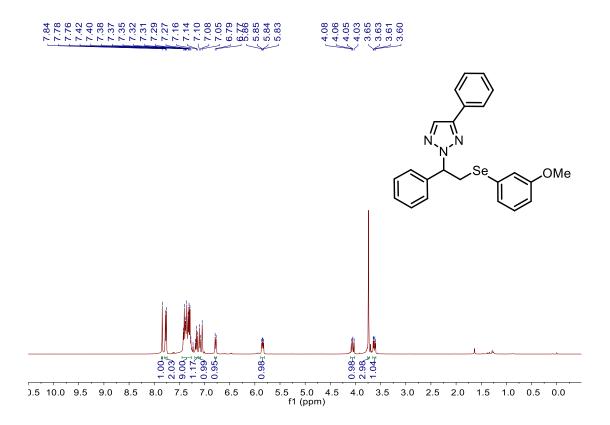


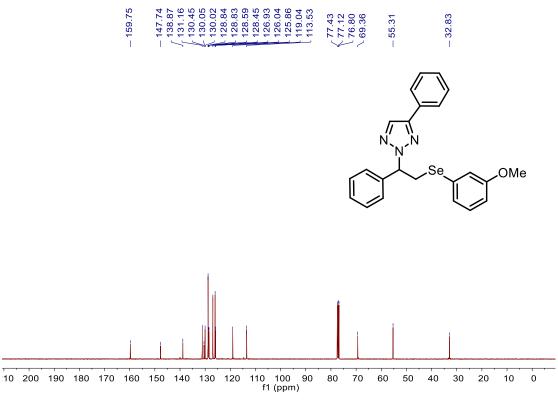
¹H NMR (400 MHz, CDCl₃) spectrum for **4ab**

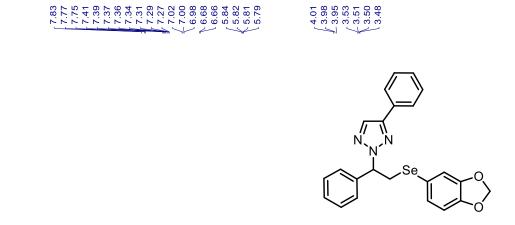


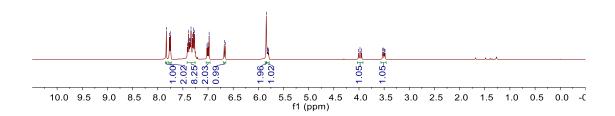

¹⁹F NMR (376 MHz, CDCl₃) spectrum for 4ab


¹³C NMR (100 MHz, CDCl₃) spectrum for 4ab

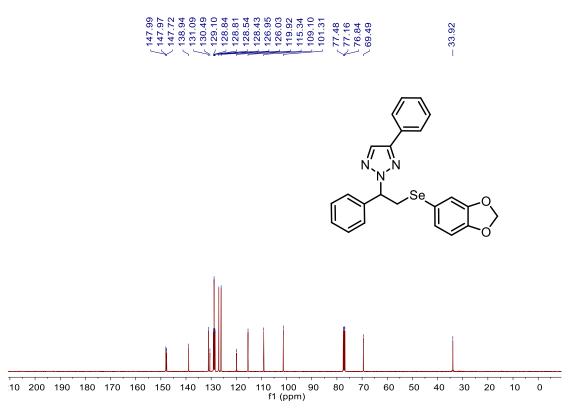

¹H NMR (400 MHz, CDCl₃) spectrum for **4ac**


13 C NMR (100 MHz, CDCl₃) spectrum for 4ac

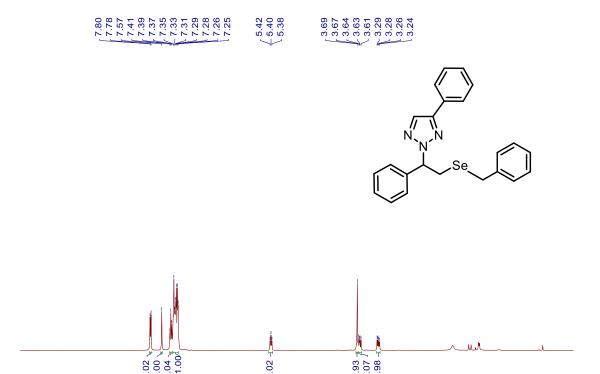

¹H NMR (400 MHz, CDCl₃) spectrum for 4ad



$^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) spectrum for 4ad



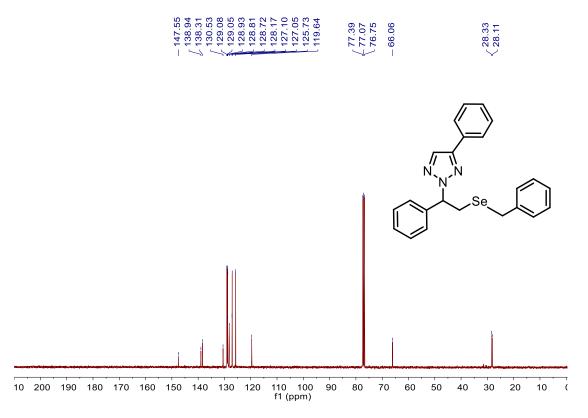
¹H NMR (400 MHz, CDCl₃) spectrum for **4ae**



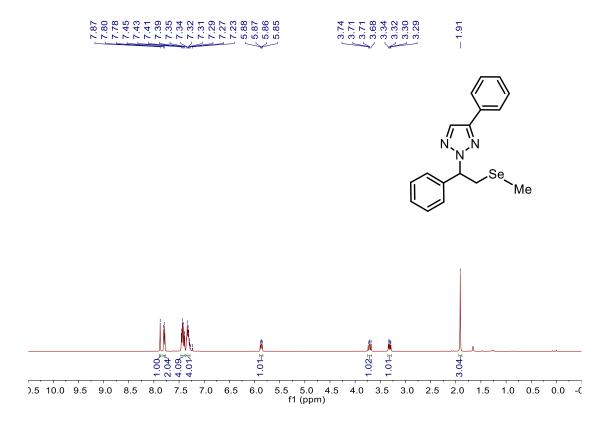
$^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) spectrum for 4ae

¹H NMR (400 MHz, CDCl₃) spectrum for **4af**

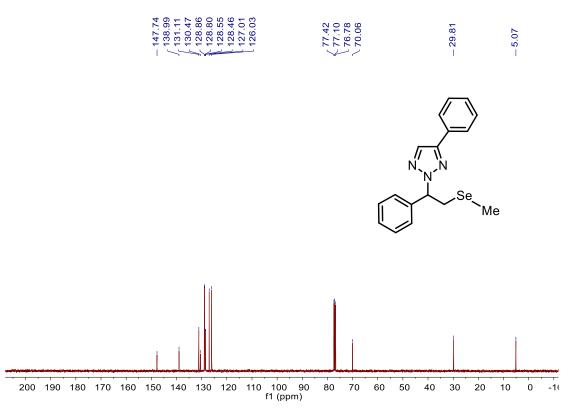
6.0 5.5 5.0 4.5 f1 (ppm)

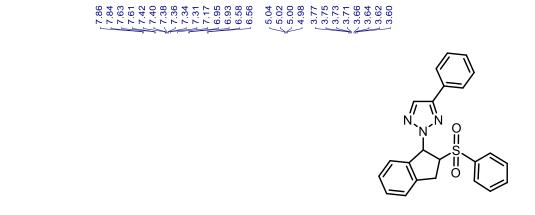

4.0

3.5 3.0 2.5

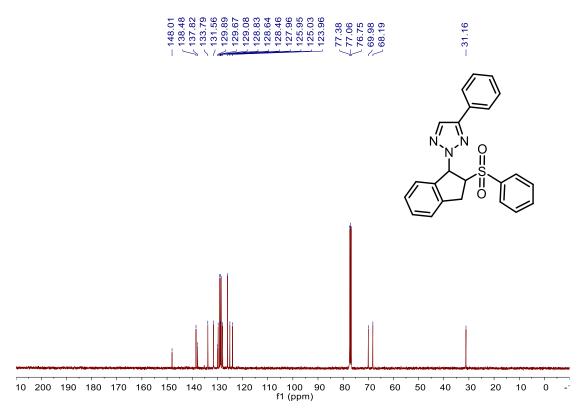

¹³C NMR (100 MHz, CDCl₃) spectrum for 4af

6.5

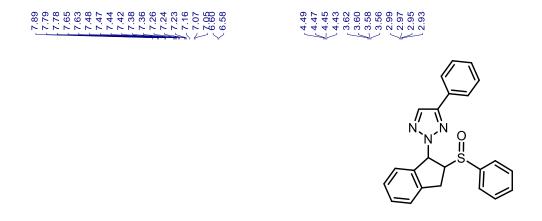

10.0 9.5 9.0 8.5 8.0 7.5 7.0

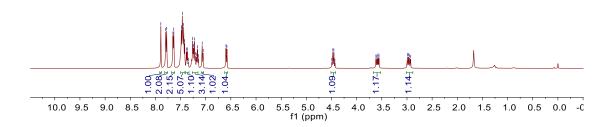

¹H NMR (400 MHz, CDCl₃) spectrum for 4ag

$^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) spectrum for 4ag

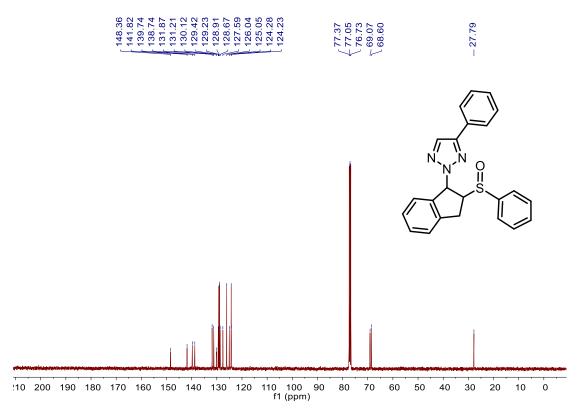


¹H NMR (400 MHz, CDCl₃) spectrum for **6**





$^{13} C$ NMR (100 MHz, CDCl₃) spectrum for 6



¹H NMR (400 MHz, CDCl₃) spectrum for **7**

¹³C NMR (100 MHz, CDCl₃) spectrum for 7

Electronic Supporting Information

Supplementary References

- (1) Kwok, S. W.; Zhang, L.; Grimster, N. P.; Fokin, V. V., Catalytic Asymmetric Transannulation of *NH*-1,2,3-Triazoles with Olefins. *Angew. Chem., Int. Ed.*, **2014**, *53*, 3452–3456.
- (2) Zhu, L.-L.; Tian, L. F.; Sun, K. H.; Li, Y. W.; Liu, G. L.; Cai, B.; Zhang, H.; Wang, Y. H. N^2 -selective β -thioalkylation of benzotriazoles with alkenes. *J. Org. Chem.* **2022**, *87*, 12963–12974.