Supplementary Information

The synthesis of isoxazolines and dihydrooxazines by Pd-

catalyzed oxyalkynylation alkenyl oximes with alkynyl bromides

Cangzhu Hu[‡] Shiji Xu[‡] Qiang Wang, Jing Sun, Ying Han, Chao-Guo Yan, Lei Wang*

School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, P. R. China; E-mail: lei.wang@yzu.edu.cn

Table of Contents

1. General information	S1
2. Synthesis and reaction	S2
3. Preliminary result of chiral ligands screening	S7
3. The examples of unsuccessful reactions	S8
4. Characterization Data	S9
5. Single Crystal X-Ray Diffraction	S50
6. References	S52
7. Copies of NMR Spectra	S54

1. General information

Unless otherwise noted, all reactions were carried out under argon atmosphere; materials obtained from commercial suppliers were used directly without further purification. ¹H NMR spectra, ¹³C NMR spectra, and ¹⁹F NMR spectra were recorded on an Agilent 400 or on a Bruker 500 MHz spectrometer in CDCl₃. NMR experiments are reported in δ units, parts per million (ppm), and were referenced to CDCl₃ (*d* 7.26 or 77.0 ppm) as the internal standard. The data is being reported as (s = singlet, d = doublet, dd = doublet of doublet, t = triplet, m = multiplet or unresolved, br = broad signal, coupling constant (s) in Hz, integration). All the solvents were used directly without further purification. Reactions were monitored by thin layer chromatography (TLC) using silicycle pre-coated silica gel plates. Flash column chromatography was performed on silica gel 60 (particle size 300-400 mesh ASTM, purchased from Yantai, China) and eluted with petroleum ether/ethyl acetate. Copies of NMR were processed with MestReNova Software. All melting points were uncorrected.

2. Synthesis and reaction

2.1 General procedure for the synthesis of isoxazolines

A sealed tube equipped with a magnetic stir bar was charged with β , γ -unsaturated ketoximes (0.30 mmol, 1.0 equiv.), bromoalkynes (0.60 mmol, 2.0 equiv.), Pd₂(dba)₃ (13.7 mg, 0.015 mmol, 0.05 equiv.), XPhos (17.2 mg, 0.036 mmol, 0.12 equiv.), NaO'Bu (43.2 mg, 0.45 mmol, 1.5 equiv.) and toluene (3.0 mL). The tube was sealed with a Teflon lined cap. Degassed solvent and backfilled with argon for 3 times at -78 °C. The reaction mixture was stirred at 80 °C for 24 h. After completion of the reaction (monitored by TLC), the mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum ether-ethyl acetate as eluent to give the desired product.

2.2 General procedure for the synthesis of dihydrooxazines

A sealed tube equipped with a magnetic stir bar was charged with γ , δ - unsaturated oximes (0.30 mmol, 1.0 equiv.), bromoalkynes (0.60 mmol, 2.0 equiv.), Pd₂(dba)₃ (13.7 mg, 0.015 mmol, 0.05 equiv.), XantPhos (20.8 mg, 0.036 mmol, 0.12 equiv.), NaO'Bu (43.2 mg, 0.45 mmol, 1.5 equiv.) and toluene (3.0 mL). The tube was sealed with a Teflon lined cap. Degassed solvent and backfilled with argon for 3 times at -78 °C. The reaction mixture was stirred at 80 °C for 24 h. After completion of the reaction (monitored by TLC), the mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum ether-ethyl acetate as eluent to give the desired product.

	N ^{OH} + Br	[Pd]/ Ligar		<
	Ph Me	NaO ^t Bu, Sol	vent Ph	Ph
	-	a 	Ja 	
Entry	Pd sources	ligand	Solvent	Yield ^b %
1	$Pd_2(dba)_3$	PPh ₃	toluene	33
2	$Pd_2(dba)_3$	Dppb	toluene	37
3	Pd ₂ (dba) ₃	DpePhos	toluene	81
4	Pd ₂ (dba) ₃	RuPhos	toluene	73
5	Pd ₂ (dba) ₃	XPhos	toluene	85(77) ^c
6	Pd ₂ (dba) ₃		toluene	trace
7^d	Pd(OAc) ₂	XPhos	toluene	trace
8^d	Pd(TFA) ₂	XPhos	toluene	trace
9^d	$Pd(acac)_2$	XPhos	toluene	9
10^d	PdCl ₂	XPhos	toluene	trace
11	[Pd(allyl)Cl] ₂	XPhos	toluene	trace
12	Pd ₂ (dba) ₃	XPhos	THF	16
13	Pd ₂ (dba) ₃	XPhos	1,4-Dioxane	23
14	Pd ₂ (dba) ₃	XPhos	MeCN	trace
15	Pd ₂ (dba) ₃	XPhos	DCE	40

2.3 Table S1. optimization of reaction conditions^a

.OH

[a] Reaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), NaO'Bu (1.5 equiv.), 5 mol% Pd₂(dba)₃ and 12 mol% Ligand in the Solvent (2.0 mL) at 80 °C under Ar for 12 h. [b] Isolated yield. [c] 1a (0.3 mmol), 2a (0.6 mmol), NaO'Bu (1.5 equiv.), 5 mol% Pd₂(dba)₃ and 12 mol% XPhos in the toluene (3.0 mL) at 80 °C under Ar for 24 h. [d] 10 mol% Pd catalyst.

2.4 Gram-scale synthesis of 5a

An oven-dried 100 mL Schlenk tube equipped with a magnetic stir bar was charged with Pd₂(dba)₃ (228.9 mg, 0.25 mmol, 0.05 equiv.), Xantphos (347.2 mg, 0.60 mmol, 0.12 equiv.), NaO'Bu (720.8 mg, 7.5 mmol, 1.5 equiv.), 4a (946.3 mg, 5 mmol), 2a (1.8103 g, 10 mmol) and toluene (50 mL) were added sequentially. Degassed solvent and backfilled with argon for 3 times at -78 °C. The reaction mixture was stirred at 80 °C for 48 h. After completion of the reaction (monitored by TLC), the mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum ether-ethyl acetate as eluent to give the desired product **5a** 1.33 g in 92% yield.

2.5.1 General procedure for preparation of substrates 1a-1n.

Step 1 A dried round bottle flask equipped with a magnetic stir bar was charged with a solution of S1 (1.0 equiv.) in dry THF under argon. A solution of Allylmagnesium Chloride (1.3 equiv.) was added slowly at 0 °C. The reaction mixture was stirred at room temperature overnight. After completion, the reaction was quenched with water, extracted with EtOAc for three times. The combined organic layer was dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue S2 was used directly in the next step without purification.

Step 2 The residue **S2** was dissolved in Et_2O , a solution of Jones reagent (2.0 equiv.) was added slowly at 0 °C. The reaction mixture was stirred at room temperature for 1 h. After completion, it was diluted with water, extracted with EtOAc for three times, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford product **S3**.

Step 3 A solution of product **S3** (1.0 equiv.) in ethanol and water was added hydroxylamine hydrochloride (5.0 equiv.) and sodium acetate (7.0 equiv.). The reaction mixture was stirred at room temperature overnight. After completion, it was diluted with water, extracted with EtOAc for three times, and then washed with water and brine, dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford target product **S4**.

2.5.2 Synthesis of β_{γ} -unsaturated ketoximes

Unless otherwise noted, all the spectra data of β , γ -unsaturated ketoximes 1 were prepared according to the following general procedure, and all the spectra data are in agreement with the reports.¹⁻⁴

2.6 General procedure for preparation of substrates 2a-2s.

$$= R \qquad \xrightarrow{\text{NBS, AgNO}_3} \qquad \text{Br} = R$$

A solution of terminal alkyne (1.0 equiv.) in acetone was added AgNO₃ (0.1 equiv.) and *N*-bromosuccinimide (NBS, 1.1 equiv.). The reaction mixture was stirred at room temperature for 3 h. After completion, concentrated under reduced pressure and extracted with petroleum ether for three times, and then dried over anhydrous Na₂SO₄, concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford target product bromoalkyne.

Unless otherwise noted, all the spectra data of allene substrates **2** were in agreement with the known literatures. ⁵⁻⁹

2.7 General procedure for preparation of substrates 4a-4h, 4p.

Step 4 A dried round bottle flask equipped with a magnetic stir bar was charged with NaH (1.0 equiv., 60% dispersion in mineral oil) in dry DMF under argon and was kept in ice bath. A solution of β -keto ester S5 (1.0 equiv.) was added slowly and the reaction mixture was stirred at room temperature for 1 h. A solution of vinyl chlorides (1.1 equiv.) was added at 0 °C and the mixture was heated at 70 °C overnight. After completion, the reaction was quenched with water, extracted with EtOAc for three times and then washed with water and brine. The combined organic layer was dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue S6 was used directly in the next step without purification.

Step 5 The residue **S6** was dissolved in THF (2.0 mL/mmol), MeOH (1.0 mL/mmol) and water (1.0 mL/mmol), and KOH (5.0 equiv.) was added slowly at 0 °C. The reaction mixture was stirred at 75 °C for 6 h. After completion, the reaction was quenched with water and acidified with HCl (1.0 M, 8.0 mL/mmol), extracted with EtOAc for three times and then washed with water and brine. The combined organic layer was dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford target product **S7**.

Step 6 A solution of product **S7** (1.0 equiv.) in methanol and water was added hydroxylamine hydrochloride (1.2 equiv.) and sodium acetate (1.2 equiv.). The reaction mixture was stirred at 75 °C for 5 h. After completion, it was diluted with water, extracted with EtOAc for three times, and then washed with water and brine, dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford target product **S8**.

Unless otherwise noted, all the spectra data of γ , δ - unsaturated oximes substrates **4** were in agreement with the known literatures.¹⁰⁻¹¹

2.8 Experimental procedure for synthesis of 6.¹²

A sealed tube equipped with a magnetic stir bar was charged with product **50** (0.2 mmol, 1.0 equiv.), activated zinc powder (5.0 equiv.), NH₄Cl (8.0 equiv.) and Dioxane/ H_2O (4 mL, 1:1 v/v). The reaction mixture was stirred at 80 °C for 12 h. The mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum ether-ethyl acetate as eluent to give the desired product **6** (21.7 mg, 39%) as a colorless oil.

2.9 Experimental procedure for synthesis of 7.13

A sealed tube equipped with a magnetic stir bar was charged with product **5a** (0.2 mmol, 1.0 equiv.), KMnO₄ (3.0 equiv.), NaHCO₃ (0.6 equiv.), MgSO₄ (2.0 equiv.) and Acetone/ H₂O (8 mL, 5:3 v/v). The reaction mixture was stirred at room temperature for 3 h. After completion, it was extracted with EtOAc for three times, and then washed with water and brine, dried over anhydrous Na₂SO₄. The mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum ether-ethyl acetate as eluent to give the desired product 7 (31.0 mg, 48%) as a yellow oil.

3. Preliminary result of chiral ligands screening

We have tested a series of commercially available chiral ligands in palladiumcatalyzed oxyalkynylation alkenyl oximes with alkynyl bromide. Unfortunately, the chiral ligands were found to be inefficient in this reaction, which provided **3a** in poor yield with low enantioselectivity.

3. The examples of unsuccessful reactions

 β , γ -unsaturated oximes containing methyl substitution on the α - or γ -carbon, γ , δ unsaturated oximes containing substituents on the α - or δ - carbon and others unsaturated oximes substrates were tested, and the corresponding products could not be obtained.

4. Characterization Data

(E)-1-(4-(tert-butyl)phenyl)-3-methylbut-3-en-1-one oxime (1d)

The general synthetic route to give the product **1d** (2.3 g, 50% yield) as white solid by the use of 4-tert butylbenzaldehyde (20 mmol); m.p.: 101-103 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 9.16 (s, 1H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 8.8 Hz, 2H), 4.86 (s, 1H), 4.79 (s, 1H), 3.58 (s, 2H), 1.85 (s, 3H), 1.35 (s, 9H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.6, 152.4, 140.4, 132.9, 126.0, 125.4, 112.1, 34.6, 34.3, 31.2, 23.1;

HRMS Calcd (ESI) m/z for C₁₅H₂₂NO [M + H]⁺: 232.1696, found: 232.1691.

(E)-1-(3,4-dimethylphenyl)-3-methylbut-3-en-1-one oxime (1h)

The general synthetic route to give the product **1h** (2.1 g, 51% yield) as white solid by the use of 3,5-dimethylbenzaldehyde (20 mmol); m.p.: 64-66 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 9.58 (s, 1H), 7.44 (s, 1H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.15 (d, *J* = 8.0 Hz, 1H), 4.85 (s, 1H), 4.78 (s, 1H), 3.57 (s, 2H), 2.30 (d, *J* = 5.6 Hz, 6H), 1.84 (s, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.9, 140.4, 137.9, 136.6, 133.3, 129.7, 127.4, 123.8, 112.0, 34.3, 23.0, 19.9, 19.6;

HRMS Calcd (ESI) m/z for C₁₃H₁₈NO [M + H]⁺: 204.1383, found: 204.1376.

(E)-3-methylene-1-phenylheptan-1-one oxime (1n)

The general synthetic route to give the product 1n (0.7 g, 40% yield) as a colorless oil by the corresponding ketone (8 mmol).

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:15) gave the product **1n** (0.7 g, 58% yield) as a colorless oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 9.36 (s, 1H), 7.64-7.62 (m, 2H), 7.38-7.37 (m, 3H), 4.83 (s, 1H), 4.75 (s, 1H), 3.55 (s, 2H), 2.13-2.10 (m, 2H), 1.52-1.45 (m, 2H), 1.39-1.31 (m, 2H), 0.95-0.90 (m, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 157.2, 144.1, 135.8, 129.2, 128.4, 126.3, 110.8, 36.5, 33.0, 29.8, 22.4, 14.0;

HRMS Calcd (ESI) m/z for C₁₄H₂₀NO [M + H]⁺: 218.1539, found: 218.1542.

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3a** (63.3 mg, 77% yield) as a brown oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.61-7.59 (m, 2H), 7.33-7.28 (m, 5H), 7.20-7.17 (m, 3H), 3.44 (d, *J* = 16.4 Hz, 1H), 3.07 (d, *J* = 16.4 Hz, 1H), 2.77 (d, *J* = 16.8 Hz, 1H), 2.71 (d, *J* = 16.8 Hz, 1H), 1.59 (s, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.5, 131.6, 129.9 (2C), 128.6, 128.2, 128.0, 126.6, 123.2, 86.3, 85.4, 82.6, 45.0, 31.2, 25.1;

HRMS Calcd (ESI) m/z for C₁₉H₁₈NO [M + H]⁺: 276.1383, found: 276.1384.

5-Methyl-3-phenyl-5-(3-(p-tolyl)prop-2-yn-1-yl)-4,5-dihydroisoxazole (3b)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3b** (61.4 mg, 71% yield) as a brown oil.

¹H NMR (CDCl₃, 400 MHz) δ 7.60-7.58 (m, 2H), 7.31-7.30 (m, 3H), 7.17 (d, J = 7.2 Hz, 2H), 6.98 (d, J = 7.6 Hz, 2H), 3.43 (d, J = 16.0 Hz, 1H), 3.05 (d, J = 16.8 Hz, 1H), 2.75 (d, J = 16.8 Hz, 1H), 2.69 (d, J = 16.8 Hz, 1H), 2.23 (s, 3H), 1.57 (s, 3H);
¹³C NMR (CDCl₃, 100 MHz) δ 156.5, 138.0, 131.5, 129.9 (2C), 128.9, 128.6, 126.5, 120.1, 86.4, 84.6, 82.6, 44.9, 31.2, 25.1, 21.4;

HRMS Calcd (ESI) m/z for $C_{20}H_{19}NNaO [M + Na]^+$: 312.1359, found: 312.1362.

5-(3-(4-(*tert*-Butyl)phenyl)prop-2-yn-1-yl)-5-methyl-3-phenyl-4,5dihydroisoxazole (3c)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3c** (79.4 mg, 80% yield) as a brown oil.

¹H NMR (CDCl₃, 400 MHz) δ 7.71-7.69 (m, 2H), 7.42-7.41 (m, 3H), 7.36-7.30 (m, 4H), 3.55 (d, J = 16.8 Hz, 1H), 3.15 (d, J = 16.8 Hz, 1H), 2.87 (d, J = 16.8 Hz, 1H), 2.80 (d, J = 16.8 Hz, 1H), 1.68 (s, 3H), 1.32 (s, 9H);
¹³C NMR (CDCl₃, 100 MHz) δ 156.5, 151.1, 131.3, 129.9, 128.6 (2C), 126.5, 125.1,

120.1, 86.4, 84.6, 82.6, 44.9, 34.6, 31.2, 31.1, 25.1;

5-(3-([1,1'-Biphenyl]-4-yl)prop-2-yn-1-yl)-5-methyl-3-phenyl-4,5dihydroisoxazole (3d)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3d** (67.4 mg, 64% yield) as a yellow solid; m.p.: 96-98 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.72-7.70 (m, 2H), 7.58 (d, *J* = 6.8 Hz, 2H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.47-7.34 (m, 8H), 3.56 (d, *J* = 16.4 Hz, 1H), 3.18 (d, *J* = 16.8 Hz, 1H), 2.90 (d, *J* = 16.8 Hz, 1H), 2.83 (d, *J* = 16.8 Hz, 1H), 1.70 (s, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.5, 140.7, 140.3, 132.0, 130.0, 129.9, 128.8, 128.7, 127.5, 126.9 (2C), 126.6, 122.1, 86.3, 86.1, 82.5, 45.0, 31.3, 25.2;

5-(3-(4-Methoxyphenyl)prop-2-yn-1-yl)-5-methyl-3-phenyl-4,5-dihydroisoxazole

(3e)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3e** (53.6 mg, 58% yield) as a yellow oil.

¹H NMR (CDCl₃, 400 MHz) δ 7.70-7.67 (m, 2H), 7.41-7.39 (m, 3H), 7.31 (d, J = 8.8 Hz, 2H), 6.80 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H), 3.52 (d, J = 16.8 Hz, 1H), 3.14 (d, J = 16.8 Hz, 1H), 2.84 (d, J = 16.8 Hz, 1H), 2.78 (d, J = 16.8 Hz, 1H), 1.66 (s, 3H);
¹³C NMR (CDCl₃, 125 MHz) δ 159.3, 156.5, 133.0, 129.9 (2C), 128.6, 126.5, 115.3, 113.8, 86.4, 83.8, 82.3, 55.2, 44.9, 31.2, 25.1;

HRMS Calcd (ESI) m/z for C₂₀H₁₉NNaO₂ [M + Na]⁺: 328.1308, found: 328.1313.

5-(3-(4-Fluorophenyl)prop-2-yn-1-yl)-5-methyl-3-phenyl-4,5-dihydroisoxazole (3f)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3f** (47.0 mg, 53% yield) as a brown oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.69-7.67 (m, 2H), 7.41-7.39 (m, 3H), 7.35-7.31 (m, 2H), 6.98-6.93 (m, 2H), 3.50 (d, *J* = 16.8 Hz, 1H), 3.16 (d, *J* = 16.8 Hz, 1H), 2.84 (d, *J* = 16.8 Hz, 1H), 2.77 (d, *J* = 16.8 Hz, 1H), 1.66 (s, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 162.2 (d, J = 247.6 Hz), 156.5, 133.5 (d, J = 8.0 Hz), 130.0, 129.8, 128.7, 126.5, 119.3 (d, J = 3.5 Hz), 115.4 (d, J = 22.0 Hz), 86.2, 85.0, 81.5, 45.0, 31.2, 25.2;

¹⁹**F NMR** (CDCl₃, 376 MHz) δ -111.4;

HRMS Calcd (ESI) m/z for $C_{19}H_{16}FNNaO [M + Na]^+$: 316.1108, found: 316.1108.

5-(3-(4-Chlorophenyl)prop-2-yn-1-yl)-5-methyl-3-phenyl-4,5-dihydroisoxazole(3g)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3g** (51.2 mg, 55% yield) as a brown solid; m.p.: 83-86 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.60-7.58 (m, 2H), 7.32-7.31 (m, 3H), 7.20-7.13 (m, 4H), 3.40 (d, *J* = 16.8 Hz, 1H), 3.07 (d, *J* = 16.8 Hz, 1H), 2.76 (d, *J* = 16.8 Hz, 1H), 2.69 (d, *J* = 16.8 Hz, 1H), 1.57 (s, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.5, 133.9, 132.8, 130.0, 129.8, 128.6, 128.5, 126.5, 121.7, 86.4, 86.1, 81.5, 45.0, 31.3, 25.2;

HRMS Calcd (ESI) m/z for C₁₉H₁₇ClNO [M + H]⁺: 310.0993, found: 310.0995.

5-Methyl-3-phenyl-5-(3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-yl)-4,5-

dihydroisoxazole (3h)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3h** (74.4 mg, 72% yield) as a brown solid; m.p.: 57-59 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.70-7.68 (m, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.45-7.40 (m, 5H), 3.50 (d, *J* = 16.8 Hz, 1H), 3.18 (d, *J* = 16.8 Hz, 1H), 2.88 (d, *J* = 16.8 Hz, 1H), 2.81 (d, *J* = 17.2 Hz, 1H), 1.68 (s, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.5, 131.9, 130.2, 129.8, 129.8 (q, J = 32.4 Hz), 128.7, 127.0, 126.5, 125.1 (q, J = 3.7 Hz), 123.9 (q, J = 270.8 Hz), 88.1, 86.1, 81.4, 45.0, 31.3, 25.2;

¹⁹**F NMR** (CDCl₃, 376 MHz) δ -62.8;

HRMS Calcd (ESI) m/z for C₂₀H₁₇F₃NO [M + H]⁺: 344.1257, found: 344.1261.

4-(3-(5-Methyl-3-phenyl-4,5-dihydroisoxazol-5-yl)prop-1-yn-1-yl)benzonitrile (3i)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3i** (61.3 mg, 68% yield) as a yellow solid; m.p.: 82-85 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.68-7.66 (m, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.41-7.39 (m, 5H), 3.47 (d, *J* = 16.8 Hz, 1H), 3.18 (d, *J* = 16.8 Hz, 1H), 2.88 (d, *J* = 16.8 Hz, 1H), 2.81 (d, *J* = 17.2 Hz, 1H), 1.66 (s, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.5, 132.1, 131.8, 130.0, 129.6, 128.7, 128.1, 126.5, 118.4, 111.2, 90.3, 85.9, 81.2, 45.0, 31.4, 25.2;

HRMS Calcd (ESI) m/z for $C_{20}H_{16}N_2NaO$ [M + Na]⁺: 323.1155, found: 323.1161.

5-Methyl-3-phenyl-5-(3-(m-tolyl)prop-2-yn-1-yl)-4,5-dihydroisoxazole (3j)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3j** (62.5 mg, 72% yield) as a brown oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.71-7.69 (m, 2H), 7.42-7.40 (m, 3H), 7.18-7.15 (m, 3H), 7.10 (d, *J* = 6.8 Hz, 1H), 3.53 (d, *J* = 16.8 Hz, 1H), 3.16 (d, *J* = 16.8 Hz, 1H), 2.86 (d, *J* = 16.8 Hz, 1H), 2.79 (d, *J* = 16.8 Hz, 1H), 2.30 (s, 3H), 1.68 (s, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.5, 137.8, 132.2, 129.9 (2C), 128.8, 128.6 (2C), 128.0, 126.5, 122.9, 86.3, 84.9, 82.7, 44.9, 31.2, 25.1, 21.1;

5-Methyl-3-phenyl-5-(3-(o-tolyl)prop-2-yn-1-yl)-4,5-dihydroisoxazole (3k)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3k** (63.2 mg, 73% yield) as a yellow oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.70-7.68 (m, 2H), 7.42-7.40 (m, 3H), 7.36 (d, *J* = 7.6 Hz, 1H), 7.22-7.17 (m, 2H), 7.13-7.09 (m, 1H), 3.57 (d, *J* = 16.4 Hz, 1H), 3.17 (d, *J* = 16.8 Hz, 1H), 2.92 (d, *J* = 16.8 Hz, 1H), 2.86 (d, *J* = 16.8 Hz, 1H), 2.41 (s, 3H), 1.69 (s, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.4, 140.0, 131.9, 129.9, 129.8, 129.3, 128.6, 127.9, 126.5, 125.4, 122.9, 89.2, 86.3, 81.4, 44.9, 31.3, 25.2, 20.7;

HRMS Calcd (ESI) m/z for C₂₀H₂₀NO $[M + H]^+$: 290.1539, found: 290.1538.

(3I)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3l** (51.9 mg, 53% yield) as a brown solid; m.p.: 105-107 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.88 (s, 1H), 7.79-7.73 (m, 5H), 7.48-7.43 (m, 6H), 3.57 (d, *J* = 16.8 Hz, 1H), 3.19 (d, *J* = 16.8 Hz, 1H), 2.95-2.84 (m, 2H), 1.72 (s, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.5, 132.8, 132.5, 131.3, 129.9, 129.8, 128.6, 128.4, 127.8, 127.6, 127.5, 126.5, 126.4 (2C), 120.4, 86.3, 85.7, 82.9, 44.9, 31.3, 25.2;
HRMS Calcd (ESI) m/z for C₂₃H₁₉NNaO [M + Na]⁺: 348.1359, found: 348.1363.

5-Methyl-3-phenyl-5-(3-(thiophen-2-yl)prop-2-yn-1-yl)-4,5-dihydroisoxazole (3m)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3m** (56.5 mg, 67% yield) as a brown oil.

¹H NMR (CDCl₃, 400 MHz) δ 7.70-7.68 (m, 2H), 7.42-7.40 (m, 3H), 7.19 (d, J = 5.2 Hz, 1H), 7.13 (d, J = 3.6 Hz, 1H), 6.94-6.92 (m, 1H), 3.49 (d, J = 16.8 Hz, 1H), 3.15 (d, J = 16.4 Hz, 1H), 2.88 (d, J = 16.8 Hz, 1H), 2.82 (d, J = 16.8 Hz, 1H), 1.66 (s, 3H);
¹³C NMR (CDCl₃, 100 MHz) δ 156.5, 131.6, 129.9, 129.7, 128.6, 126.7, 126.5 (2C), 123.1, 89.4, 86.1, 75.7, 44.9, 31.4, 25.1;

HRMS Calcd (ESI) m/z for $C_{17}H_{15}NNaOS [M + Na]^+$: 304.0767, found: 304.0766.

5-(3-(Cyclohex-1-en-1-yl)prop-2-yn-1-yl)-5-methyl-3-phenyl-4,5-dihydroisoxazole

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3n** (63.7 mg, 76% yield) as a brown oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.68-7.65 (m, 2H), 7.41-7.38 (m, 3H), 6.01 (s, 1H), 3.45 (d, *J* = 16.8 Hz, 1H), 3.09 (d, *J* = 16.4 Hz, 1H), 2.73 (d, *J* = 16.8 Hz, 1H), 2.66 (d, *J* = 16.8 Hz, 1H), 2.06-2.04 (m, 4H), 1.61-1.55 (m, 7H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.5, 134.2, 129.9, 129.8, 128.6, 126.5, 120.5, 86.4, 84.4, 82.3, 44.8, 31.1, 29.3, 25.5, 25.0, 22.2, 21.4;

HRMS Calcd (ESI) m/z for $C_{19}H_{21}NNaO [M + Na]^+$: 302.1515, found: 302.1516.

5-(3-Cyclohexylprop-2-yn-1-yl)-5-methyl-3-phenyl-4,5-dihydroisoxazole (30)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **30** (53.3 mg, 63% yield) as a yellow solid; m.p.: 35-37 °C..

¹**H NMR** (CDCl₃, 400 MHz) δ 7.67-7.65 (m, 2H), 7.39-7.38 (m, 3H), 3.46 (d, *J* = 16.8 Hz, 1H), 3.07 (d, *J* = 16.8 Hz, 1H), 2.60 (d, *J* = 16.4 Hz, 1H), 2.53 (d, *J* = 16.8 Hz, 1H), 2.33 (s, 1H), 1.72-1.65 (m, 4H), 1.58 (s, 3H), 1.46-1.35 (m, 3H), 1.26 (s, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.4, 130.0, 129.8, 128.6, 126.5, 86.9, 86.5, 75.5, 44.7, 32.8, 30.7, 29.0, 25.8, 25.1, 24.7;

HRMS Calcd (ESI) m/z for C₁₉H₂₃NNaO [M + Na]⁺: 304.1672, found: 304.1671.

5-(4,4-Dimethylpent-2-yn-1-yl)-5-methyl-3-phenyl-4,5-dihydroisoxazole (3p)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3p** (55.9 mg, 73% yield) as a yellow solid; m.p.: 54-56 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.68-7.65 (m, 2H), 7.41-7.39 (m, 3H), 3.44 (d, *J* = 16.8 Hz, 1H), 3.06 (d, *J* = 16.4 Hz, 1H), 2.57 (d, *J* = 16.8 Hz, 1H), 2.49 (d, *J* = 16.8 Hz, 1H), 1.57 (s, 3H), 1.15 (s, 9H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.3, 130.0, 129.8, 128.6, 126.5, 91.1, 86.5, 74.0, 44.6, 31.1, 30.6, 27.3, 25.1;

HRMS Calcd (ESI) m/z for $C_{17}H_{22}NO [M + H]^+$: 256.1696, found: 256.1692.

5-(4-(Benzyloxy)-4-methylpent-2-yn-1-yl)-5-methyl-3-phenyl-4,5-

dihydroisoxazole (3q)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3q** (85.5 mg, 82% yield) as a yellow solid; m.p.: 73-75 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.64-7.62 (m, 2H), 7.40-7.37 (m, 3H), 7.33-7.28 (m, 4H), 7.26-7.23 (m, 1H), 4.58 (s, 2H), 3.42 (d, *J* = 16.8 Hz, 1H), 3.07 (d, *J* = 16.8 Hz, 1H), 2.69 (d, *J* = 16.8 Hz, 1H), 2.60 (d, *J* = 16.8 Hz, 1H), 1.60 (s, 3H), 1.49 (d, *J* = 3.6 Hz, 6H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.2, 139.1, 129.9, 129.8, 128.6, 128.2, 127.5, 127.2, 126.4, 86.0, 84.7, 80.0, 70.7, 66.3, 44.7, 30.6, 29.0, 29.0, 25.3;

HRMS Calcd (ESI) m/z for C₂₃H₂₅NNaO₂ [M + Na]⁺: 370.1778, found: 370.1781.

5-Methyl-5-(oct-2-yn-1-yl)-3-phenyl-4,5-dihydroisoxazole (3r)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:30) gave the product **3r** (57.2 mg, 71% yield) as a yellow oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.67-7.65 (m, 2H), 7.40-7.38 (m, 3H), 3.45 (d, *J* = 16.8 Hz, 1H), 2.59 (d, *J* = 16.8 Hz, 1H), 2.52 (d, *J* = 16.4 Hz, 1H), 3.16 (d, *J* = 16.8 Hz, 1H), 2.15-2.10 (m, 2H), 1.57 (s, 3H), 1.46-1.41 (m, 2H), 1.34-1.24 (m, 4H), 0.89-0.85 (m, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.4, 130.0, 129.8, 128.6, 126.5, 86.4, 82.7, 75.4, 44.7, 31.0, 30.6, 28.5, 25.1, 22.1, 18.6, 13.9;

5-Methyl-5-(non-2-yn-1-yl)-3-phenyl-4,5-dihydroisoxazole (3s)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:30) gave the product **3s** (62.2 mg, 73% yield) as a yellow oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.68-7.65 (m, 2H), 7.40-7.39 (m, 3H), 3.45 (d, *J* = 16.8 Hz, 1H), 3.07 (d, *J* = 16.8 Hz, 1H), 2.59 (d, *J* = 16.4 Hz, 1H), 2.52 (d, *J* = 16.4 Hz, 1H), 2.15-2.11 (m, 2H), 1.58 (s, 3H), 1.46-1.41 (m, 2H), 1.36-1.22 (m, 6H), 0.89-0.86 (m, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.4, 130.0, 129.8, 128.6, 126.5, 86.5, 82.7, 75.5, 44.7, 31.3, 30.6, 28.8, 28.5, 25.1, 22.5, 18.7, 14.0;

HRMS Calcd (ESI) m/z for C₁₉H₂₆NO [M + H]⁺: 284.2009, found: 284.2007.

3-Phenyl-5-(3-phenylprop-2-yn-1-yl)-4,5-dihydroisoxazole (3t)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3t** (30.0 mg, 38% yield) as a brown oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.63-7.61 (m, 2H), 7.33-7.31 (m, 3H), 7.29-7.27 (m, 2H), 7.19-7.17 (m, 3H), 4.94-4.87 (m, 1H), 3.44 (dd, $J_I = 10.4$ Hz, $J_2 = 16.8$ Hz, 1H), 3.27 (dd, $J_I = 6.4$ Hz, $J_2 = 16.8$ Hz, 1H), 2.80 (dd, $J_I = 4.8$ Hz, $J_2 = 16.8$ Hz, 1H), 2.67 (dd, $J_I = 7.6$ Hz, $J_2 = 16.8$ Hz, 1H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.3, 131.6, 130.1, 129.4, 128.7, 128.2, 128.0, 126.7, 123.1, 84.5, 82.7, 79.0, 39.6, 25.8;

5-Methyl-5-(3-phenylprop-2-yn-1-yl)-3-(p-tolyl)-4,5-dihydroisoxazole (3u)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3u** (69.8 mg, 80% yield) as a brown oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.47 (d, J = 7.6 Hz, 2H), 7.28-7.27 (m, 2H), 7.18-7.14 (m, 3H), 7.10 (d, J = 7.6 Hz, 2H), 3.39 (d, J = 16.0 Hz, 1H), 3.03 (d, J = 16.8 Hz, 1H), 2.74 (d, J = 16.8 Hz, 1H), 2.68 (d, J = 16.4 Hz, 1H), 2.27 (s, 3H), 1.56 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 156.4, 140.1, 131.6, 129.3, 128.1, 127.9, 127.0, 126.4, 123.2, 86.0, 85.4, 82.5, 45.0, 31.1, 25.0, 21.4;

3-(4-(tert-Butyl)phenyl)-5-methyl-5-(3-phenylprop-2-yn-1-yl)-4,5-

3v

dihydroisoxazole (3v)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3v** (67.6 mg, 68% yield) as a brown solid; m.p.: 80-82 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.55-7.51 (m, 2H), 7.35-7.26 (m, 4H), 7.18-7.17 (m, 3H), 3.42 (d, J = 16.8 Hz, 1H), 3.05 (d, J = 16.8 Hz, 1H), 2.77-2.65 (m, 2H), 1.57 (s, 3H), 1.24 (s, 9H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.4, 153.3, 131.6, 128.1, 127.9, 127.0, 126.4, 125.6, 123.2, 86.1, 85.4, 82.5, 45.0, 34.8, 31.1 (2C), 25.0;

HRMS Calcd (ESI) m/z for C₂₃H₂₅NNaO [M + Na]⁺: 354.1828, found: 354.1834.

3-(4-Methoxyphenyl)-5-methyl-5-(3-phenylprop-2-yn-1-yl)-4,5-dihydroisoxazole

(3w)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3w** (52.5 mg, 57% yield) as a brown oil.

¹H NMR (CDCl₃, 500 MHz) δ 7.62 (d, J = 9.0 Hz, 2H), 7.38-7.37 (m, 2H), 7.28-7.26 (m, 3H), 6.92 (d, J = 8.5 Hz, 2H), 3.84 (s, 3H), 3.49 (d, J = 16.5 Hz, 1H), 3.13 (d, J = 17.0 Hz, 1H), 2.84 (d, J = 16.5 Hz, 1H), 2.78 (d, J = 17.0 Hz, 1H), 1.66 (s, 3H);
¹³C NMR (CDCl₃, 125 MHz) δ 161.0, 156.2, 131.6, 128.2, 128.1, 127.9, 123.2, 122.5, 114.1, 86.0, 85.5, 82.5, 55.3, 45.2, 31.2, 25.1;

HRMS Calcd (ESI) m/z for C₂₀H₁₉NNaO₂ [M + Na]⁺: 328.1308, found: 328.1310.

3-(4-Fluorophenyl)-5-methyl-5-(3-phenylprop-2-yn-1-yl)-4,5-dihydroisoxazole(3x)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product 3x (61.6 mg, 70% yield) as a brown solid; m.p.: 81-83 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.59-7.56 (m, 2H), 7.29-7.26 (m, 2H), 7.19-7.17 (m, 3H), 7.02-6.98 (m, 2H), 3.41 (d, *J* = 16.8 Hz, 1H), 3.04 (d, *J* = 16.8 Hz, 1H), 2.76 (d, *J* = 16.8 Hz, 1H), 2.70 (d, *J* = 16.8 Hz, 1H), 1.58 (s, 3H);

¹³**C NMR** (CDCl₃, 100 MHz) δ 163.6 (d, *J* = 249.3 Hz), 155.5, 131.6, 128.5 (d, *J* = 8.4 Hz), 128.2, 128.0, 126.1 (d, *J* = 3.4 Hz), 123.1, 115.8 (d, *J* = 21.8 Hz), 86.5, 85.3, 82.6, 45.0, 31.2, 25.1;

¹⁹**F NMR** (CDCl₃, 376 MHz) δ -110.1;

5-Methyl-5-(3-phenylprop-2-yn-1-yl)-3-(4-(trifluoromethyl)phenyl)-4,5-

dihydroisoxazole (3y)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3**y (61.8 mg, 60% yield) as a yellow solid; m.p.: 100-102 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.69 (d, *J* = 8.0 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.27-7.25 (m, 2H), 7.19-7.17 (m, 3H), 3.44 (d, *J* = 16.8 Hz, 1H), 3.07 (d, *J* = 16.8 Hz, 1H), 2.78 (d, *J* = 16.8 Hz, 1H), 2.71 (d, *J* = 16.8 Hz, 1H), 1.59 (s, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 155.4, 133.3, 131.6, 131.6 (q, J = 32.2 Hz), 128.2, 128.0, 126.8, 125.6 (q, J = 3.8 Hz), 123.8 (q, J = 270.9 Hz), 123.0, 87.1, 85.0, 82.8, 44.6, 31.3, 25.2;

¹⁹**F NMR** (CDCl₃, 376 MHz) -62.9;

HRMS Calcd (ESI) m/z for C₂₀H₁₆F₃NNaO [M + Na]⁺: 366.1076, found: 366.1080.

3-(3,4-Dimethylphenyl)-5-methyl-5-(3-phenylprop-2-yn-1-yl)-4,5-

dihydroisoxazole (3z)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3z** (71.5 mg, 78% yield) as a brown oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.47 (s, 1H), 7.39-7.37 (m, 3H), 7.28-7.25 (m, 3H), 7.15 (d, *J* = 8.0 Hz, 1H), 3.49 (d, *J* = 16.8 Hz, 1H), 3.12 (d, *J* = 16.4 Hz, 1H), 2.85-2.75 (m, 2H), 2.27 (s, 6H), 1.65 (s, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.6, 138.8, 136.9, 131.6, 129.8, 128.2, 127.9, 127.6, 127.4, 124.1, 123.2, 86.0, 85.5, 82.5, 45.1, 31.1, 25.1, 19.7 (2C);

HRMS Calcd (ESI) m/z for C₂₁H₂₁NNaO [M + Na]⁺: 326.1515, found: 326.1518.

5-Methyl-5-(3-phenylprop-2-yn-1-yl)-3-(thiophen-2-yl)-4,5-dihydroisoxazole (3aa)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3aa** (66.5 mg, 79% yield) as a yellow oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.39-7.36 (m, 3H), 7.29-7.27 (m, 3H), 7.20 (d, *J* = 3.6 Hz, 1H), 7.07-7.05 (m, 1H), 3.53 (d, *J* = 16.4 Hz, 1H), 3.16 (d, *J* = 16.4 Hz, 1H), 2.86 (d, *J* = 16.8 Hz, 1H), 2.79 (d, *J* = 16.8 Hz, 1H), 1.67 (s, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 152.4, 132.4, 131.6, 128.2 (2C), 128.1, 128.0, 127.2, 123.1, 86.7, 85.2, 82.7, 45.7, 31.1, 25.0;

HRMS Calcd (ESI) m/z for $C_{17}H_{15}NNaOS$ [M + Na]⁺: 304.0767, found: 304.0768.

5-Methyl-3-(naphthalen-2-yl)-5-(3-phenylprop-2-yn-1-yl)-4,5-dihydroisoxazole (3ab)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3ab** (86.5 mg, 88% yield) as a yellow solid; m.p.: 75-77 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.89 (d, *J* = 8.4 Hz, 1H), 7.79-7.72 (m, 4H), 7.41-7.39 (m, 2H), 7.29-7.28 (m, 2H), 7.16-7.13 (m, 3H), 3.53 (d, *J* = 16.4 Hz, 1H), 3.15 (d, *J* = 16.8 Hz, 1H), 2.81-2.70 (m, 2H), 1.60 (s, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.6, 133.9, 132.9, 131.6, 128.4, 128.3, 128.2, 127.9, 127.8, 127.5, 127.0, 126.8, 126.6, 123.4, 123.2, 86.5, 85.4, 82.6, 44.9, 31.3, 25.2;

3,5-Diphenyl-5-(3-phenylprop-2-yn-1-yl)-4,5-dihydroisoxazole (3ac)

S31

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3ac** (44.5 mg, 44% yield) as a yellow oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.61-7.59 (m, 2H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.32-7.28 (m, 5H), 7.24-7.19 (m, 3H), 7.15-7.12 (m, 3H), 3.84 (d, *J* = 16.4 Hz, 1H), 3.51 (d, *J* = 16.8 Hz, 1H), 3.07-2.97 (m, 2H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.5, 143.3, 131.5, 130.1, 129.5, 128.6, 128.4, 128.1, 127.9, 127.8, 126.6, 125.3, 123.1, 89.2, 84.9, 83.3, 45.7, 32.8;

5-Benzyl-3-phenyl-5-(3-phenylprop-2-yn-1-yl)-4,5-dihydroisoxazole (3ad)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3ad** (72.3 mg, 69% yield) as a yellow solid; m.p.: 94-96 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.55-7.53 (m, 2H), 7.33-7.26 (m, 7H), 7.24-7.14 (m, 6H), 3.3 (d, *J* = 16.8 Hz, 1H), 3.21-3.11 (m, 3H), 2.68 (s, 2H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.6, 136.0, 131.6, 130.5, 129.9, 129.6, 128.6, 128.3, 128.2, 128.0, 126.9, 126.5, 123.2, 88.7, 85.3, 83.1, 43.1, 43.0, 29.3;

HRMS Calcd (ESI) m/z for C₂₅H₂₁NNaO [M + Na]⁺: 374.1515, found: 374.1512.

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:30) gave the product **3ae** (88.2 mg, 85% yield) as a yellow solid; m.p.: 66-67 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.61-7.59 (m, 2H), 7.31-7.29 (m, 3H), 7.23-7.21 (m, 3H), 3.28-3.18 (m, 2H), 2.80 (d, *J* = 16.8 Hz, 1H), 2.71 (d, *J* = 16.8 Hz, 1H), 1.85-1.73 (m, 5H), 1.22-1.04 (m, 6H);

¹³C NMR (CDCl₃, 100 MHz) δ 155.8, 131.6, 129.9, 129.8, 128.6, 128.1, 127.7, 126.5, 123.3, 90.9, 85.4, 82.5, 44.7, 41.3, 28.2, 27.3, 27.1, 26.3 (2C), 26.2;

HRMS Calcd (ESI) m/z for C₂₄H₂₅NNaO [M + Na]⁺: 366.1828, found: 366.1829.

5-Butyl-3-phenyl-5-(3-phenylprop-2-yn-1-yl)-4,5-dihydroisoxazole (3af)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:30) gave the product **3af** (65.3 mg, 68% yield) as a brown oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.61-7.59 (m, 2H), 7.32-7.26 (m, 5H), 7.18-7.17 (m, 3H), 3.36 (d, *J* = 17.2 Hz, 1H), 3.12 (d, *J* = 17.2 Hz, 1H), 2.73 (s, 2H), 1.87-1.83 (m, 2H), 1.41-1.28 (m, 4H), 0.87-0.84 (m, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 156.2, 131.6, 129.9, 128.6, 128.1, 127.9, 126.5, 123.2, 88.6, 85.3, 82.5, 43.1, 37.6, 29.8, 25.9, 22.9, 14.0;

HRMS Calcd (ESI) m/z for C₂₂H₂₃NNaO [M + Na]⁺: 340.1672, found: 340.1674.

4-Methyl-3-phenyl-5-(3-phenylprop-2-yn-1-yl)-4,5-dihydroisoxazole (3ag)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **3ag** (29.1 mg, 35% yield) as a yellow oil. The reported peaks are for both diastereomers of title Compound. ¹**H NMR** (CDCl₃, 400 MHz) δ 7.66-7.63 (m, 2H), 7.35-7.18 (m, 8H), 4.75-4.69 (m, 0.2H), 4.51-4.47 (m, 0.8H), 3.68-3.62 (m, 1H), 2.97 (dd, $J_1 = 16.8$ Hz, $J_2 = 5.6$ Hz, 0.2H), 2.82-2.74 (m, 1H), 2.60 (dd, $J_1 = 16.4$ Hz, $J_2 = 8.4$ Hz, 0.8H), 1.31 (d, J = 7.2 Hz, 2.4H), 1.22 (d, J = 7.2 Hz, 0.6H);

¹³C NMR (CDCl₃, 100 MHz) δ 162.8, 160.5, 131.6, 130.1, 130.0, 129.2, 128.77 (2C), 128.6 (2C), 128.2 (2C), 128 (2C), 127.0 (2C), 123.1 (2C), 86.2, 84.9, 84.5, 82.7, 82.5, 82.0, 47.0, 43.5, 25.1, 19.3, 18.2, 11.3;

HRMS Calcd (ESI) m/z for C₁₉H₁₇NNaO [M + Na]⁺: 298.1202, found: 298.1200.

6-Methyl-3-phenyl-6-(3-phenylprop-2-yn-1-yl)-5,6-dihydro-4H-1,2-oxazine (5a)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **5a** (81.7 mg, 94% yield) as a yellow solid; m.p.: 79-82 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.76-7.74 (m, 2H), 7.45-7.39 (m, 5H), 7.32-7.30 (m, 3H), 2.80 (d, *J* = 16.8 Hz, 1H), 2.73-2.63 (m, 3H), 2.29-2.23 (m, 1H), 2.01-1.94 (m, 1H), 1.51 (s, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 153.7, 135.6, 131.5, 129.4, 128.4, 128.2, 127.9, 125.1, 123.3, 85.1, 82.9, 74.8, 28.9, 26.7, 23.8, 19.2;

HRMS Calcd (ESI) m/z for C₂₀H₁₉NNaO [M + Na]⁺: 312.1359, found: 312.1357.

6-(3-(4-(tert-Butyl)phenyl)prop-2-yn-1-yl)-6-methyl-3-phenyl-5,6-dihydro-4H-

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **5b** (95.9 mg, 93% yield) as a yellow solid; m.p.: 69-72 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.76-7.74 (m, 2H), 7.41-7.33 (m, 7H), 2.79 (d, *J* = 16.8 Hz, 1H), 2.72-2.63 (m, 3H), 2.30-2.23 (m, 1H), 2.00-1.93 (m, 1H), 1.51 (s, 3H), 1.33 (s, 9H);

¹³C NMR (CDCl₃, 100 MHz) δ 153.7, 151.1, 135.7, 131.3, 129.4, 128.4, 125.2 (2C), 120.3, 84.3, 82.9, 74.9, 34.6, 31.1, 28.9, 26.7, 23.8, 19.2;

6-(3-(4-Methoxyphenyl)prop-2-yn-1-yl)-6-methyl-3-phenyl-5,6-dihydro-4H-1,2-

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **5c** (84.1 mg, 88% yield) as a white solid; m.p.: 76-78 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.75-7.73 (m, 2H), 7.40-7.35 (m, 5H), 6.83 (d, *J* = 8.8 Hz, 2H), 3.80 (s, 3H), 2.77 (d, *J* = 16.8 Hz, 1H), 2.70-2.61 (m, 3H), 2.29-2.21 (m, 1H), 1.99-1.92 (m, 1H), 1.49 (s, 3H);

¹³C NMR (CDCl₃, 125 MHz) δ 159.3, 153.7, 135.7, 132.9, 129.4, 128.4, 125.2, 115.5, 113.8, 83.5, 82.7, 74.9, 55.2, 28.9, 26.7, 23.8, 19.3;

HRMS Calcd (ESI) m/z for $C_{21}H_{21}NNaO_2 [M + Na]^+$: 342.1465, found: 342.1466.

6-Methyl-3-phenyl-6-(3-(m-tolyl)prop-2-yn-1-yl)-5,6-dihydro-4H-1,2-oxazine (5d)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **5d** (78.5 mg, 86% yield) as a yellow oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.65-7.63 (m, 2H), 7.30-7.28 (m, 3H), 7.15-7.07 (m, 3H), 7.01 (d, *J* = 7.2 Hz, 1H), 2.68 (d, *J* = 16.8 Hz, 1H), 2.61-2.51 (m, 3H), 2.23 (s, 3H), 2.18-2.12 (m, 1H), 1.90-1.82 (m, 1H), 1.40 (s, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 153.7, 137.8, 135.6, 132.1, 129.4, 128.8, 128.6, 128.4, 128.1, 125.2, 123.1, 84.7, 83.0, 74.8, 28.9, 26.7, 23.8, 21.1, 19.2;

6-(3-Cyclohexylprop-2-yn-1-yl)-6-methyl-3-phenyl-5,6-dihydro-4H-1,2-oxazine

(5e)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **5e** (68.9 mg, 78% yield) as a yellow oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.73-7.70 (m, 2H), 7.38-7.36 (m, 3H), 2.61-2.57 (m, 2H), 2.55-2.40 (m, 2H), 2.37 (s, 1H), 2.21-2.14 (m, 1H), 1.92-1.84 (m, 1H), 1.79-1.75 (m, 2H), 1.70-1.66 (m, 2H), 1.50-1.39 (m, 6H), 1.33-1.29 (m, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 153.6, 135.8, 129.3, 128.4, 125.2, 87.1, 75.1, 75.0, 32.9, 29.0, 28.1, 26.5, 25.9, 24.8, 23.7, 19.2;

HRMS Calcd (ESI) m/z for $C_{20}H_{25}NNaO [M + Na]^+$: 318.1828, found: 318.1831.

6-(4,4-Dimethylpent-2-yn-1-yl)-6-methyl-3-phenyl-5,6-dihydro-4H-1,2-oxazine

(5f)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **5f** (52.0 mg, 64% yield) as a white solid; m.p.: 79-81 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.73-7.70 (m, 2H), 7.38-7.37 (m, 3H), 2.61-2.57 (m, 2H), 2.50 (d, *J* = 16.4 Hz, 1H), 2.40 (d, *J* = 16.4 Hz, 1H), 2.19-2.12 (m, 1H), 1.91-1.84 (m, 1H), 1.40 (s, 3H), 1.22 (s, 9H);

¹³C NMR (CDCl₃, 100 MHz) δ 153.6, 135.8, 129.3, 128.4, 125.2, 91.4, 75.0, 73.6, 31.2, 28.1, 27.4, 26.5, 23.6, 19.3;

HRMS Calcd (ESI) m/z for C₁₈H₂₃NNaO [M + Na]⁺: 292.1672, found: 292.1672.

6-Methyl-6-(oct-2-yn-1-yl)-3-phenyl-5,6-dihydro-4H-1,2-oxazine (5g)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **5g** (71.2 mg, 84% yield) as a brown oil.

¹H NMR (CDCl₃, 400 MHz) δ 7.73-7.70 (m, 2H), 7.38-7.36 (m, 3H), 2.61-2.57 (m, 2H), 2.51 (d, *J* = 16.8 Hz, 1H), 2.42 (d, *J* = 16.8 Hz, 1H), 2.20-2.13 (m, 3H), 1.91-1.84 (m, 1H), 1.54-1.47 (m, 2H), 1.41 (s, 3H), 1.38-1.30 (m, 4H), 0.92-0.89 (m, 3H);
¹³C NMR (CDCl₃, 100 MHz) δ 153.6, 135.8, 129.3, 128.4, 125.1, 82.9, 75.0, 74.9, 31.0, 28.6, 28.2, 26.6, 23.6, 22.1, 19.2, 18.7, 14.0;

HRMS Calcd (ESI) m/z for C₁₉H₂₅NNaO [M + Na]⁺: 306.1828, found: 306.1828.

6-Methyl-6-(non-2-yn-1-yl)-3-phenyl-5,6-dihydro-4H-1,2-oxazine (5h)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **5h** (85.2 mg, 95% yield) as a brown oil.

¹H NMR (CDCl₃, 400 MHz) δ 7.72-7.70 (m, 2H), 7.38-7.37 (m, 3H), 2.61-2.53 (m, 2H), 2.51(d, *J* = 15.6 Hz, 1H), 2.42 (d, *J* = 16.4 Hz, 1H), 2.18-2.14 (m, 3H), 1.91-1.84 (m, 1H), 1.51-1.46 (m, 2H), 1.41 (s, 3H), 1.37-1.26 (m, 6H), 0.91-0.88 (m, 3H);
¹³C NMR (CDCl₃, 100 MHz) δ 153.6, 135.8, 129.3, 128.4, 125.2, 82.9, 75.1, 74.9, 31.3, 28.9, 28.5, 28.2, 26.6, 23.7, 22.5, 19.2, 18.7, 14.0;

HRMS Calcd (ESI) m/z for $C_{20}H_{27}NNaO [M + Na]^+$: 320.1985, found: 320.1982.

3-(4-Methoxyphenyl)-6-methyl-6-(non-2-yn-1-yl)-5,6-dihydro-4H-1,2-oxazine (5i)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **5i** (84.7 mg, 86% yield) as a yellow solid; m.p.: 45-48 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.65 (d, *J* = 8.8 Hz, 2H), 6.89 (d, *J* = 8.8 Hz, 2H), 3.81 (s, 3H), 2.57-2.48 (m, 3H), 2.40 (d, *J* = 16.8 Hz, 1H), 2.17-2.11 (m, 3H), 1.89-1.82 (m, 1H), 1.52-1.45 (m, 2H), 1.39-1.26 (m, 9H), 0.91-0.87 (m, 3H);

¹³C NMR (CDCl₃, 125 MHz) δ 160.6, 153.3, 128.4, 126.5, 113.7, 82.9, 75.2, 74.7, 55.3, 31.3, 28.9, 28.5, 28.2, 26.7, 23.7, 22.5, 19.2, 18.7, 14.0;

3-(4-Fluorophenyl)-6-methyl-6-(non-2-yn-1-yl)-5,6-dihydro-4H-1,2-oxazine (5j)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **5**j (86.2 mg, 91% yield) as a brown oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.71-7.67 (m, 2H), 7.07-7.03 (m, 2H), 2.57-2.47 (m, 3H), 2.40 (d, *J* = 16.8 Hz, 1H), 2.19-2.12 (m, 3H), 1.90-1.83 (m, 1H), 1.52-1.45 (m, 2H), 1.39 (s, 3H), 1.38-1.25 (m, 6H), 0.90-0.87 (m, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 163.4 (d, J = 247.9 Hz), 152.6, 131.9 (d, J = 3.3Hz), 127.0 (d, J = 8.3 Hz), 115.3 (d, J = 21.5 Hz), 83.0, 75.0, 74.9, 31.3, 28.9, 28.5, 28.2, 26.5, 23.6, 22.5, 19.2, 18.7, 14.0;

¹⁹**F NMR** (CDCl₃, 376 MHz) δ -112.0;

HRMS Calcd (ESI) m/z for C₂₀H₂₇FNO [M + H]⁺: 316.2071, found: 316.2069.

3-(3-Methoxyphenyl)-6-methyl-6-(non-2-yn-1-yl)-5,6-dihydro-4H-1,2-oxazine (5k)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **5k** (81.5 mg, 83% yield) as a yellow oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.26 (s, 1H), 7.22-7.15 (m, 2H), 6.85 (d, *J* = 7.2 Hz, 1H), 3.74 (s, 3H), 2.52-2.48 (m, 2H), 2.43 (d, *J* = 16.4 Hz, 1H), 2.34 (d, *J* = 16.4 Hz, 1H), 2.11-2.04 (m, 3H), 1.83-1.76 (m, 1H), 1.45-1.38 (m, 2H), 1.33-1.29 (m, 5H), 1.25-1.19 (m, 4H), 0.83-0.80 (m, 3H);

¹³C NMR (CDCl₃, 125 MHz) δ 159.6, 153.4, 137.2, 129.3, 117.7, 115.8, 110.0, 83.0, 75.0 (2C), 55.3, 31.3, 28.9, 28.5, 28.3, 26.5, 23.7, 22.5, 19.3, 18.7, 14.0;

HRMS Calcd (ESI) m/z for $C_{21}H_{29}NNaO_2$ [M + Na]⁺: 350.2091, found: 350.2094.

6-Methyl-6-(non-2-yn-1-yl)-3-(o-tolyl)-5,6-dihydro-4H-1,2-oxazine (5l)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **51** (70.6 mg, 76% yield) as a yellow oil.

¹H NMR (CDCl₃, 400 MHz) δ 7.18-7.10 (m, 4H), 2.50 (d, *J* = 16.4 Hz, 1H), 2.41-2.28 (m, 6H), 2.11-2.03 (m, 3H), 1.84-1.77 (m, 1H), 1.46-1.19 (m, 11H), 0.83-0.80 (m, 3H);
¹³C NMR (CDCl₃, 100 MHz) δ 157.2, 136.7, 135.7, 130.7, 128.5, 127.7, 125.7, 82.9, 75.1, 74.3, 31.3, 28.9, 28.5, 28.4, 26.8, 23.7, 22.9, 22.5, 20.1, 18.7, 14.0;
HRMS Calcd (ESI) m/z for C₂₁H₃₀NO [M + H]⁺: 312.2322, found: 312.2322.

6-Methyl-3-(naphthalen-2-yl)-6-(non-2-yn-1-yl)-5,6-dihydro-4H-1,2-oxazine (5m)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **5m** (98.1 mg, 94% yield) as a brown oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 8.03-8.01 (m, 2H), 7.86-7.81 (m, 3H), 7.50-7.48 (m, 2H), 2.75-2.71 (m, 2H), 2.57 (d, *J* = 16.4 Hz, 1H), 2.46 (d, *J* = 16.4 Hz, 1H), 2.26-2.17 (m, 3H), 1.97-1.90 (m, 1H), 1.55-1.48 (m, 2H), 1.46 (s, 3H), 1.43-1.29 (m, 6H), 0.94-0.90 (m, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 153.3, 133.7, 133.2, 133.0, 128.4, 128.0, 127.6, 126.6, 126.3, 124.6, 122.7, 82.9, 75.1 (2C), 31.3, 28.9, 28.5, 28.3, 26.6, 23.7, 22.5, 19.1, 18.7, 14.0;

HRMS Calcd (ESI) m/z for C₂₄H₂₉NNaO [M + Na]⁺: 370.2141, found: 370.2143.

6-Methyl-6-(non-2-yn-1-yl)-3-(thiophen-2-yl)-5,6-dihydro-4H-1,2-oxazine (5n)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **5n** (67.0 mg, 74% yield) as a brown oil.

¹H NMR (CDCl₃, 400 MHz) δ 7.29-7.27 (m, 1H), 7.22-7.21 (m, 1H), 7.02-7.00 (m, 1H), 2.63-2.59 (m, 2H), 2.51 (d, *J* = 16.8 Hz, 1H), 2.40 (d, *J* = 16.8 Hz, 1H), 2.18-2.11 (m, 3H), 1.90-1.82 (m, 1H), 1.52-1.45 (m, 2H), 1.39-1.26 (m, 9H), 0.91-0.87 (m, 3H);
¹³C NMR (CDCl₃, 100 MHz) δ 150.5, 140.0, 126.9, 126.8, 125.0, 83.0, 75.5, 74.9, 31.3, 28.8, 28.5, 28.2, 26.3, 23.6, 22.5, 19.5, 18.7, 14.0;

HRMS Calcd (ESI) m/z for C₁₈H₂₅NNaOS [M + Na]⁺: 326.1549, found: 326.1544.

3-Phenyl-6-(3-phenylprop-2-yn-1-yl)-5,6-dihydro-4H-1,2-oxazine (50)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product **50** (63.1 mg, 76% yield) as a yellow solid; m.p.: 90-92 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.74-7.70 (m, 2H), 7.44-7.39 (m, 5H), 7.32-7.29 (m, 3H), 4.04-4.01 (m, 1H), 3.01-2.93 (m, 1H), 2.79-2.60 (m, 3H), 2.40-2.32 (m, 1H), 2.01-1.90 (m, 1H);

¹³C NMR (CDCl₃, 100 MHz) δ 154.6, 135.6, 131.6, 129.5, 128.4, 128.2, 127.9, 125.3, 123.3, 84.7, 82.8, 73.2, 24.7, 23.4, 21.6;

HRMS Calcd (ESI) m/z for C₁₉H₁₇NNaO [M + Na]⁺: 298.1202, found: 298.1198.

6-Cyclohexyl-3-phenyl-6-(3-phenylprop-2-yn-1-yl)-5,6-dihydro-4H-1,2-oxazine (5p)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:30) gave the product **5p** (75.3 mg, 70% yield) as a white solid; m.p.: 114-116 °C. **¹H NMR** (CDCl₃, 400 MHz) δ 7.75-7.74 (m, 2H), 7.39-7.38 (m, 5H), 7.30-7.26 (m, 3H), 2.79 (d, *J* = 16.4 Hz, 1H), 2.72-2.63 (m, 3H), 2.31-2.25 (m, 1H), 2.08-1.99 (m, 2H), 1.96-1.93 (m, 1H), 1.87-1.84 (m, 2H), 1.72-1.69 (m, 1H), 1.37-1.20 (m, 6H); **¹³C NMR** (CDCl₃, 100 MHz) δ 154.0, 135.7, 131.5, 129.4, 128.4, 128.2, 127.8, 125.1, 123.6, 85.8, 82.9, 78.6, 44.7, 27.1, 26.9, 26.7, 26.6, 26.5, 23.7, 22.7, 18.9; **HRMS** Calcd (ESI) m/z for C₂₅H₂₇NNaO [M + Na]⁺: 380.1985, found: 380.1985.

6-(3-Phenylprop-2-yn-1-yl)-3-(4-(trifluoromethyl)phenyl)-5,6-dihydro-4H-1,2oxazine (5q)

Flash column chromatography on a silica gel (acetone: petroleum ether, 1:22) gave the product **5q** (21.8 mg, 21% yield) as a yellow solid; m.p.: 73-75 °C.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.83 (d, *J* = 8.4 Hz, 2H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.44-7.42 (m, 2H), 7.31-7.29 (m, 3H), 4.08-4.02 (m, 1H), 3.01-2.95 (m, 1H), 2.80-2.62 (m, 3H), 2.42-2.36 (m, 1H), 2.03-1.94 (m, 1H);

¹³C NMR (150 MHz, CDCl₃) δ 153.4, 134.0, 131.6, 131.3 (q, *J* = 32.4 Hz), 128.2, 128.0, 125.6, 125.4 (q, *J* = 3.5 Hz), 123.9 (q, *J* = 270.6 Hz), 123.2, 84.4, 83.0, 73.5, 24.7, 23.2, 21.6.

¹⁹**F NMR** (564 MHz, CDCl₃) δ -62.8.

HRMS Calcd (ESI) m/z for C₂₀H₁₆F₃NNaO [M + Na]⁺: 366.1076, found: 366.1074.

4-Hydroxy-1,7-diphenylhept-6-yn-1-one (6)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:5) gave the product **6** (21.7 mg, 39% yield) as a yellow solid; m.p.: 63-66 °C..

¹**H NMR** (CDCl₃, 400 MHz) δ 7.91 (d, *J* = 7.2 Hz, 2H), 7.50-7.46 (m, 1H), 7.40-7.32 (m, 4H), 7.21-7.18 (m, 3H), 3.87 (s, 1H), 3.16-3.12 (m, 2H), 2.66-2.53 (m, 2H), 2.49 (s, 1H), 2.10-2.03 (m, 1H), 1.97-1.88 (m, 1H);

¹³C NMR (CDCl₃, 100 MHz) δ 200.5, 136.8, 133.1, 131.6, 128.6, 128.2, 128.1, 127.9, 123.2, 85.8, 83.2, 69.7, 34.9, 30.4, 28.6;

3-(6-Methyl-3-phenyl-5,6-dihydro-4H-1,2-oxazin-6-yl)-1-phenylpropane-1,2-

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) gave the product 7 (31.0 mg, 48% yield) as a yellow oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 8.03-7.99 (m, 2H), 7.67-7.60 (m, 3H), 7.51-7.46 (m, 2H), 7.38-7.35 (m, 3H), 3.32-3.27 (m, 1H), 3.20-3.15 (m, 1H), 2.65-2.61 (m, 2H), 2.21-2.14 (m, 1H), 2.06-2.00 (m, 1H), 1.50 (s, 3H);

¹³C NMR (CDCl₃, 100 MHz) δ 200.6, 191.2, 153.9, 135.4, 134.5, 131.5, 130.4, 129.5, 128.7, 128.4, 125.3, 74.5, 45.5, 27.9, 24.0, 19.0;

HRMS Calcd (ESI) m/z for C₂₀H₁₉NNaO₃ [M + Na]⁺: 344.1257, found: 344.1261.

5. Single Crystal X-Ray Diffraction

Crystals of **3d** were obtained by slow diffusion from a solution of the compounds in CHCl₃ layered with petroleum ether at room temperature for several days (Figure S1). Crystal data and details of the structure determination are presented in Table S2.

Figure S1. Crystal structure of 3d

Crystals of **5c** were obtained by slow diffusion from a solution of the compounds in CHCl₃ layered with petroleum ether at room temperature for several days (Figure S2). Crystal data and details of the structure determination are presented in Table S2.

Figure S2. Crystal structure of 5c

Phase	3b	5c
Identification code	XSJ20230719	XSJ20231103_a
Empirical formula	C ₂₅ H ₂₁ NO	$C_{21}H_{21}NO_2$
Formula weight	351.43	319.39
Temperature/K	296(2)	296(2)
Wavelength/ Å	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic
Space group	P2(1)/c	Cc
<i>a</i> / Å	20.259(6)	20.0023(14)
b / Å	8.444(2)	11.7633(14)
<i>c</i> / Å	11.524(3)	31.100(3)
α (°)	90	90
β (°)	98.245(9)	107.763(4)
γ (°)	90	90
Volume (Å ³)	1951.1(10)	6968.7(11)
Ζ	4	16
Calculated density (mg·m ⁻³)	1.196	1.218
Absorption coefficient (mm ⁻	0.072	0.078
F(000)	744	2720
Crystal size (mm)	0.240 x 0.220 x 0.180	0.240 x 0.220 x 0.180
θ range for data collection	2.617 to 26.000	2.041 to 26.000
Limiting indices	-24<=h<=24,	-24<=h<=24,
	-10<=k<=9,	-14<=k<=14,
Reflections collected/unique	-14<=1<=11	-38<=1<=38
	26292 / 3823	47862 / 13434
	[R(IIII) - 0.1330]	[R(IIII) - 0.0780]
Completeness to theta	99.8 %	99.9 %
Max. and min. transmission	0.7456 and 0.5849	0.7456 and 0.6689
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data/restraints/parameters	3823 / 0 / 245	13434 / 2 / 873
Goodness-of-fit on F ²	1.023	1.005
Final <i>R</i> indices[I>2sigma(I)]	R1 = 0.0755, wR2 = 0.1434	R1 = 0.0587, wR2 = 0.1164
R indices (all data)	R1 = 0.2137, wR2 = 0.1922	R1 = 0.1312, wR2 = 0.1406
Largest diff. peak and hole /	0.242 and -0.142	0.156 and -0.174

Table S2 The single crystal date of compounds 3b, 5c

6. References

1. L. Wang, K. Zhang, Y. Wang, W. Li, M. Chen and J. Zhang, Enantioselective Synthesis of Isoxazolines Enabled by Palladium-Catalyzed Carboetherification of Alkenyl Oximes, *Angew. Chem., Int. Ed.*, 2020, **59**, 4421–4427.

2. S. Wu, S. Zhang, J. Sun, Y. Han, Y. Wang, C.-G. Yan and L. Wang, Synthesis of Multisubstituted Allenes by Palladium-Catalyzed Carboetherification of β , γ -Unsaturated Ketoximes with Propargylic Acetates, *Org. Lett.*, 2023, **25**, 4682–4687.

3. M.-K. Zhu, J.-F. Zhao and T.-P. Loh, Palladium-Catalyzed Oxime Assisted Intramolecular Dioxygenation of Alkenes with 1 atm of Air as the Sole Oxidant, *J. Am. Chem. Soc.*, 2010, **132**, 6284–6285.

4. T. Rouno, T. Niwa, K. Nishibashi, N. Yamamoto, H. Egami and Y. Hamashima, Enantioselective 5-exo-Fluorocyclization of Ene-Oximes, *Molecules.*, 2019, 24, 3464.
5. L. Xie, Y. Wu, W. Yi, L. Zhu, J. Xiang and W. He, Gold-Catalyzed Hydration of

Haloalkynes to α -Halomethyl Ketones, J. Org. Chem., 2013, 78, 9190–9195.

6. Z.-W. Chen, D.-N. Ye, M. Ye, Z.-G. Zhou, S.-H. Li and L.-X. Liu, AgF/TFApromoted highly efficient synthesis of α -haloketones from haloalkynes, *Tetrahedron Lett.*, 2014, **55**, 1373-1375.

7. S. Nicolai, R. Sedigh-Zadeh and J. Waser, Pd(0)-Catalyzed Alkene Oxy- and Aminoalkynylation with Aliphatic Bromoacetylenes, *J. Org. Chem.*, 2013, **78**, 3783-3801.

8. K. Yamazaki, S. K. Mahato, Y. Ano and N. Chatani, Double 1,2-Migration of Bromine and Silicon in Directed C-H Alkynylation Reactions with Silyl-Substituted Alkynyl Bromides through an Iridium Vinylidene Intermediate, *Organometallics*, 2022, **41**, 20–28.

9. W. Shi, Y. Luo, X. Luo, L. Chao, H. Zhang, J. Wang and A. Lei, Investigation of an Efficient Palladium-Catalyzed C(sp)-C(sp) Cross-Coupling Reaction Using Phosphine-Olefin Ligand: Application and Mechanistic Aspects, *J. Am. Chem. Soc.*, 2008, **130**, 14713–14720.

10. X. Bao, Q. Wang and J. Zhu, Palladium-Catalyzed Enantioselective Narasaka–Heck Reaction/ Direct C-H Alkylation of Arenes: Iminoarylation of Alkenes, *Angew. Chem.*,

S52

Int. Ed., 2017, 56, 9577–9581.

11. R. Suresh, A. K. Simlandy and S. Mukherjee, A Catalytic Enantioselective Iodocyclization Route to Dihydrooxazines, *Org. Lett.*, 2018, **20**, 1300–1303.

 N. Li, B. Sun, S. Liu, J. Zhao and Q. Zhang, Highly Enantioselective Construction of Dihydrooxazines via Pd-Catalyzed Asymmetric Carboetherification, *Org.Lett.*, 2020, 22, 190–193.

13. L. Zhou, S. Li, B. Xu, D. Ji, L. Wu, Y. Liu, Z.-M. Zhang and J. Zhang, Enantioselective Difunctionalization of Alkenes by a PalladiumCatalyzed Heck/Sonogashira Sequence, *Angew. Chem. Int. Ed.*, 2020, **59**, 2769 – 2775.

100 90 fl (ppm) _

_ 100 90 f1 (ppm)

$$-9.35 \frac{1}{5}$$

1n ¹H NMR (400 MHz, CDCl₃)

⁻100 90 f1 (ppm) $\dot{70}$ $\frac{1}{40}$

100 90 fl (ppm) _

100 90 f1 (ppm)

100 90 f1 (ppm) $\dot{40}$

100 90 f1 (ppm) $\dot{40}$

Ме

3f¹H NMR (400 MHz, CDCl₃)

3f ¹³C NMR (100 MHz, CDCl₃)

`Me

3f ¹⁹F NMR (376 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) 7.601 7.595 7.595 7.586 7.586 7.577 7.532 7.315 7.332 7.335 7.335 7.335 7.335 7.335 7.1798 7.1798 7.1798 3. 425 3. 383 3. 092 3. 050 2. 779 2. 779 2. 713 2. 713 2. 671 - 1.571 - 0. 000

3g ¹H NMR (400 MHz, CDCl₃)

2.00⁴ 3.05 4.17

0.0 9.5 9.0 8.5 8.0 7.5 7.0

S63

5.0 4.5 4.0 f1 (ppm)

6.5 6.0 5.5

 Image: Constraint of the state of

3g ¹³C NMR (100 MHz, CDCl₃)

-0 N Me CF_3

3h ¹³C NMR (100 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

100 90 f1 (ppm)

100 90 f1 (ppm)

100 90 f1 (ppm)

100 90 f1 (ppm) . 190

100 90 f1 (ppm) . 190

-100 90 f1 (ppm)

3r¹H NMR (400 MHz, CDCl₃)

100 90 f1 (ppm) . 190

100 90 f1 (ppm)

3t ¹H NMR (400 MHz, CDCl₃)

100 90 f1 (ppm) . 190

100 90 f1 (ppm) . 190

100 90 f1 (ppm) . 190

100 90 f1 (ppm)

100 90 f1 (ppm)

3x ¹⁹F NMR (376 MHz, CDCl₃)

Ņ-Q `Me` `Ph F

--110.121

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

100 90 f1 (ppm)

3ac ¹H NMR (400 MHz, CDCl₃)

3ad ¹³C NMR (100 MHz, CDCl₃)

100 90 f1 (ppm)

3ae ¹H NMR (400 MHz, CDCl₃)

3af ¹H NMR (400 MHz, CDCl₃)

3ag ¹H NMR (400 MHz, CDCl₃)

N-Q `Ph м́е

3ag ¹³C NMR (100 MHz, CDCl₃)

100 90 f1 (ppm)

763 754 7355 7395 7395 3399 3371 250 260	200 200 200 200 200 200 200 200 200 200

0 Ъ Ph

100 90 f1 (ppm) . 190

[.] 190 100 90 f1 (ppm)

S98

5h ¹H NMR (400 MHz, CDCl₃)

663	641	097	070 070		017 170	0 0 0 0 0	5341	521	1 IC 1 IC	479	416	374	178	173	156	149	141	138	125	108	891	873	857	839	820	522	505	485	467	450	390	358	336	321	303	295	286	278	269	259	907	890	872	
7.	5		o u	o c	ο c	iς	i c'	ŝ	i «	i di	2	çi.	сi	2.	¢.	$\stackrel{\sim}{\sim}$	ç.	сi	2.	ci	1.	Ι.	Ξ.	1.	Ϊ.	1.	Ι.	1.	Γ.	Ξ.	Ŀ.	Ι.	Ŀ.	1.	Ŀ.	1.	Ι.	Ξ.	Ι.	Ŀ.	o.	o.	o.	

^{100 90} f1 (ppm)

,0. Me _C₅H₁₁ F

5j ¹⁹F NMR (376 MHz, CDCl₃)

 $\mathbf{5k}^{13}\mathbf{C}\;\mathbf{NMR}\;(125\;\mathbf{MHz},\;\mathbf{CDCI}_3)$

0 `Me _C₅H₁₁ Me

5I ¹H NMR (400 MHz, CDCl₃)

5I ¹³C NMR (100 MHz, CDCl₃)

	fl (ppm)																																															
c;	i c) -	-	2	0	IJ	G	σ	4)_e	n	3	\sim	4	6	9	0	0		· oc		σ	ט נ	o c	10	n d	ח מ	- c	1 0		> 4	· cc	-07	-D	-	ιĢ	2		ര	2	0	4	ß	\sim	⊳ .	Ω	x	-
<u>.</u>	1	1 -	-	ő	ŝ	4	<u></u> со	0	1	1 -		0	9	6	00	00	00	ပ	4	0	1 -	1 7		5 2	ťς	٩ C	S C	D O	ہ نر	οa	ρト	4	ŝ	-	0	ß	2	Ξ	00	2	4	2	Ξ	<u>о</u>	8	<u></u>	-	õ
0			، ر	w.	w.	ŝ	00	α) (X	U U	0	цj	Ţ	T	Ţ	T	Ţ	~~~				• 14	1 4	r c	10	10	V -				1 -	1 03	ω	цÇ	U)	Ţ	Ţ	Ţ	φų.	сŋ	¢υ	¢1	0	3	(1)	0, 1	J)	03
œ	ία	jο	όΙ	⊳.	⊳.	⊳.	2	1		- 1	. I	⊳.	2	⊳.	⊳.	2	⊳.	\sim	0	i c	iς	iς	iς	ic	iς	iς	ίc	iα	vіс	iς	iα	i –	-	÷	÷.	÷	÷.	÷		÷.	÷	÷.	÷	÷.	÷	o' '	o'	ö
			-	-	-	L				5	/	L	4	_	_	_							L		-	-		-			-		L.	-		_	_	-	2	4	-	_	_	_	_			_

$$\int_{-150.509}^{-150.509} \int_{-139.998}^{-139.998} \int_{-139.998}^{-139.998} \int_{-126.939}^{-126.939} \int_{-124.998}^{-126.936} \int_{-74.932}^{-126.681} \int_{-74.932}^{-26.681} \int_{-28.847}^{-26.253} \int_{-28.847}^{-28.247} \int_{-28.847}^{-28.247} \int_{-28.847}^{-28.247} \int_{-28.847}^{-28.247} \int_{-28.253}^{-28.247} \int_{-19.530}^{-28.247} \int_{-19.530}^{-28.247} \int_{-13.993}^{-28.247} \int_{-13.267}^{-28.247} \int_{-13.267}^{-28.27} \int_{-13.267}^{-28.27} \int_{-13.267}^{-28.27} \int_{-13.267}$$

5n ¹³C NMR (100 MHz, CDCl₃)

Ш `Ph Ph

50 ¹H NMR (400 MHz, CDCl₃)

5o ¹³C NMR (100 MHz, CDCl₃)

ранинания и развити и при нализирания и продаржи и продаржи и продаржи и продаржи и продаржи и продаржи и прод).0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

5p ¹³C NMR (100 MHz, CDCl₃)

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -23 f1 (ppm)

f1 (ppm)

7¹H NMR (400 MHz, CDCl₃)

