Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Platform for 3-Fluoro-3-Hydroxyoxindoles: Photocatalytic C-N Cross-Coupling and

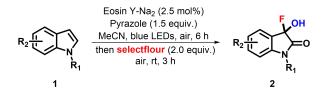
Deaminative Oxidation-Fluorohydroxylation

Letian Zhang,^{a,b} Yibin Wang,^{a,b} Jiabin Shen,^a Hao Xu^a and Chao Shen^{*a}

^a Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China. ^b College of Petroleum Chemical Industry, Changzhou University, Changzhou 213164, China.

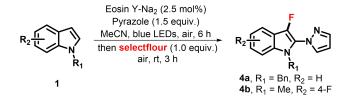
E-mail address: shenchaozju@163.com

Supporting Information

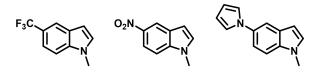

1.	General Informaton	1
2.	Experimental Section	2
3.	X-ray Structure and Data of 2a and 6	. 5
4.	Characterization of the products	. 7
5.	¹ H, ¹³ C, and ¹⁹ F NMR Spectra	17
6.	References	58

1. General Informaton

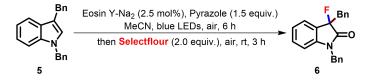
All reagents were obtained commercially and used without any prior purification. All products were separated by silica gel (200-300 mesh) column chromatography with petroleum ether (PE) (60-90°C) and ethyl acetate (EA). ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker Advance 400 and 500 MHz spectrometer at ambient temperature with CDCl₃ or CD₃SOCD₃ solvent and tetramethylsilane (TMS) as the internal standard. Melting points were determined on an X-5 Data microscopic melting point apparatus. The small-angle X-ray diffraction (SAXRD) data was taken on a German Bruker D4 X-ray diffractometer. Analytical thin layer chromatography (TLC) was performed on Merk precoated TLC (silica gel 60 F254) plates. High-resolution mass spectra were recorded on a micromass ESI-TOF MS.


2. Experimental Section

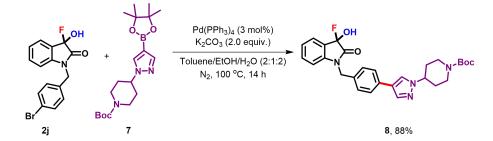
2.1 General produce for the synthesis of product 2


To a 15 mL tube was added indoles 1 (0.2 mmol, 1.0 equiv.), pyrazole (0.3 mmol, 1.5 equiv.), Eosin Y-Na₂ (2.5 mol%), and MeCN (2.0 mL). The mixture was stirred at room temperature under the irradiation of blue LEDs for 6 h; then, selectflour (0.4 mmol, 2.0 equiv.) was directly added to the reaction mixture and reacted at room temperature for another 3 h. After the completion (as indicated by TLC), the solvent was removed under reduced pressure, and the obtained residue was further purified by silica gel column chromatography (200-300 mesh silica gel, PE/EA = 20:1) to provide the products 2.

2.2 General produce for the synthesis of product 4a and 4b

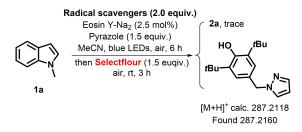

To a 15 mL tube was added indoles **1** (0.2 mmol, 1.0 equiv.), pyrazole (0.3 mmol, 1.5 equiv.), Eosin Y-Na₂ (2.5 mol%), and MeCN (2.0 mL). The mixture was stirred at room temperature under the irradiation of blue LEDs for 6 h; then, selectflour (0.2 mmol, 1.0 equiv.) was added in portions to the reaction mixture and reacted at room temperature for another 3 h. After the completion (as indicated by TLC), the solvent was removed under reduced pressure, and the obtained residue was further purified by silica gel column chromatography (200-300 mesh silica gel, PE/EA = 15:1) to provide the product **4a** or **4b**.

2.3 Other unsuccessful substrates


Indoles containing strong electron withdrawing groups such as CF₃ and NO₂ could not be smoothly converted into target products under standard conditions, and only trace amounts of target products could be detected. Therefore, no subsequent separation operation was carried out. When indole with 5-pyrrole motif was employed as a substrate, resulting in messy reaction system with no target product observed, which might due to the electron rich pyrrole motif reduce the reaction selectivity.

2.4 General produce for the synthesis of product 6

To a 15 mL tube was added indoles 4 (0.2 mmol, 1.0 equiv.), pyrazole (0.3 mmol, 1.5 equiv.), Eosin Y-Na₂ (2.5 mol%), and MeCN (2.0 mL). The mixture was stirred at room temperature under the irradiation of blue LEDs for 6 h; then, Selectflour (0.4 mmol, 2.0 equiv.) was directly added to the reaction mixture and reacted at room temperature for another 3 h. After the completion (as indicated by TLC), the solvent was removed under reduced pressure, and the obtained residue was further purified by silica gel column chromatography (200-300 mesh silica gel, PE/EA = 15:1) to provide the products **6**.


2.5 General produce for the synthesis of compound 8

To a 50 mL round-bottom flask with a nitrogen balloon was added **2j** (0.5 mmol), **6** (0.6 mmol), Pd(PPh₃)₄ (3 mol%), K₂CO₃ (1.0 mmol), and Tolune/EtOH/H₂O (2:1:2, 10 mL). The mixture was stirred at 100 °C under nitrogen for 16 h. After the completion (as indicated by TLC), the mixture

was then extracted with ethyl acetate and the collected organic layer was washed with brine, dried with MgSO₄. The solvent was evaporated to dryness under reduced pressure, and the crude product was purified by column chromatography on silica gel (*n*-hexane/EtOAc 2:1) to obtain the desired product **8**.

2.6 General produce for the radical trapping experiment

A solution of **1a** (0.2 mmol, 1.0 equiv.), pyrazole (0.3 mmol), Eosin Y-Na₂ (2.5 mol%), and radical scavengers (0.4 mmol) in MeCN (3.0 mL) was stirred at room temperature under the irradiation of blue LEDs for 6 h; then, Selectflour (0.3 mmol, 1.5 equiv.) was added slowly in portions to the reaction mixture and reacted at room temperature for another 3 h. The reaction mixture was detected by the LC-MS, and no target product **2a** was obtained in the presence of the radical scavengers including DPE (1,1-diphenylethylene) and BHT (2,6-ditert-butyl-4-methyl phenol), indicated that a radical pathway should be involved.

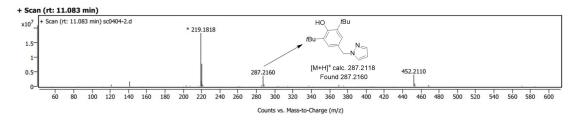
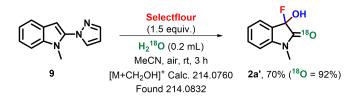



Figure S1. MS spectrum analysis of reaction in the presence of BHT.

2.7 ¹⁸O Labeling Experiment

We have performed an $H_2^{18}O$ experiment under the standard condition (98% purity of $H_2^{18}O$ was filled in the reaction system). HRMS mass showed the formation of ¹⁸O atom product. Thus, O-atom in the product is from the H_2O .

HRMS (ESI+) Calculated for C₁₀H₁₁FN¹⁸O₃ [M+CH₂OH]⁺: 214.0760, found: 214.0832.

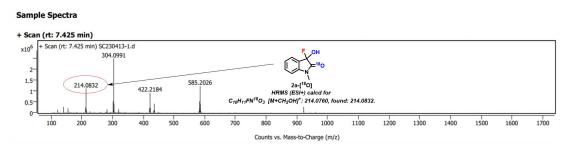


Figure S2. HRMS spectrum analysis of reaction in the presence of $H_2^{18}O$.

3. X-ray Structure and Data of 2a and 6

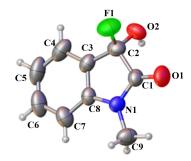


Figure S3. X-Ray crystal structure of 2a

2256847
C ₉ H ₈ FNO ₂
181.16
296.15
monoclinic
$P2_1/c$
10.8781(12), 9.1314(10), 16.6641(18)
90, 90.030(2), 90
1655.3(3)
8
1.454
0.118
752.0
MoKa ($\lambda = 0.71073$)

2Θ range for data collection, °	3.744 to 55.234
Index ranges	$-14 \le h \le 8, -10 \le k \le 11, -20 \le l \le 18$
Reflections collected	9757
Independent reflections	$3770 \; [R_{int} = 0.0828, R_{sigma} = 0.0645]$
Data/restraints/parameters	3770/0/240
Goodness-of-fit on F^2	1.003
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0574, wR_2 = 0.1601$
Final R indexes [all data]	$R_1 = 0.0942, wR_2 = 0.1887$

Compound was add to a 10 mL sample bottle, following to add DCM (2 mL) and n-hexane (6 mL), then seal the bottle with a parafilm, and poke 6 small holes on the parafilm, place the sample bottle in a safe place to allow it to volatilize and separate out the single crystal. Take out the single crystal and send it for single crystal diffraction test to obtain relevant data. Instrument model: Intensity data for single crystals of each complex were collected on a BRUKER SMART APEX II CCD detector with graphite-monochromatized Mo K α radiation (k = 0.071073 nm). The structures were solved by direct method using the program SHELXD-97 and subsequent Fourier difference techniques, and refined anisotropically by full matrix least-squares on F2 using SHELXL-97.

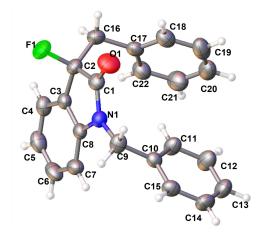


Figure S4. X-Ray crystal structure of 6 Table S2. Crystallographic data and structure refinement for 6

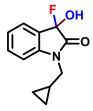
, , , , , , , , , , , , , , , , , , , ,	
CCDC	2267747
Empirical formula	C ₂₂ H ₁₈ FNO
Formula weight	331.3904
Temperature, K	296.15
Crystal system	monoclinic
Space group	P2 ₁ /c
a, b, c, Å	8.3849(14), 9.8150(16), 11.0999(18)
$\alpha, \beta, \gamma, \circ$	94.254(3), 101.852(3), 101.824(2)

Volume, Å ³	868.6(2)
Z	1
Calculated density, g/cm ³	1.267
Absorption coefficient, mm ⁻¹	0.085
F (000)	348.00
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection, °	5.096 to 55.074
Index ranges	$\textbf{-8} \leq h \leq 10, \textbf{-12} \leq k \leq 12, \textbf{-14} \leq \textbf{l} \leq 10$
Reflections collected	5177
Independent reflections	3766 [$R_{int} = 0.0210, R_{sigma} = 0.0303$]
Data/restraints/parameters	3776/0/227
Goodness-of-fit on F^2	1.049
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0424, wR_2 = 0.1086$
Final R indexes [all data]	$R_1 = 0.0550, \mathrm{wR}_2 = 0.1187$

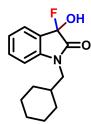
Compound was add to a 10 mL sample bottle, following to add DCM (2 mL) and n-hexane (6 mL), then seal the bottle with a parafilm, and poke 6 small holes on the parafilm, place the sample bottle in a safe place to allow it to volatilize and separate out the single crystal. Take out the single crystal and send it for single crystal diffraction test to obtain relevant data. Instrument model: Intensity data for single crystals of each complex were collected on a BRUKER SMART APEX II CCD detector with graphite-monochromatized Mo K α radiation (k = 0.071073 nm). The structures were solved by direct method using the program SHELXD-97 and subsequent Fourier difference techniques, and refined anisotropically by full matrix least-squares on F2 using SHELXL-97.

4. Characterization of the products

3-Fluoro-3-hydroxy-1-methylindolin-2-one (2a)

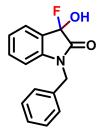

The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:20 (v/v)) as a white solid. M.p. 75 °C. (31.5 mg, 87% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 – 7.51 (m, 2H), 7.22 (t, *J* = 7.6 Hz, 1H), 6.94 (d, *J* = 7.9 Hz, 1H), 3.25 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.34 (t, *J* = 30.3 Hz), 144.00 (t, *J* = 7.0 Hz), 133.66, 124.68, 123.99, 120.15 (t, *J* = 23.0 Hz), 113.40, 110.92, 109.53, 108.45, 26.36; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -112.34; HRMS (ESI) *m/z*: [M+CH₂OH]⁺ Calcd for C₁₀H₁₁FNO₃: 212.0717, Found 212.0726.

3-Fluoro-3-hydroxy-1-propylindolin-2-one (2b)

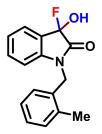

The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:20 (v/v)) as a white solid. M.p. 71 °C. (35.1 mg, 84% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (dt, *J* = 7.4, 1.7 Hz, 1H), 7.51 (ddd, *J* = 9.1, 7.3, 1.4 Hz, 1H), 7.19 (t, *J* = 7.6 Hz, 1H), 6.94 (d, *J* = 7.9 Hz, 1H), 3.69 (t, *J* = 7.3 Hz, 2H), 1.76 (h, *J* = 7.4 Hz, 2H), 1.01 (td, *J* = 7.4, 1.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.39 (t, *J* = 30.0 Hz), 143.55 (t, *J* = 7.2 Hz), 133.55, 124.81, 123.73, 120.30 (t, *J* = 23.1 Hz), 113.38, 110.90, 109.80, 108.43, 41.82, 20.51, 11.24; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -112.35; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₁₁H₁₂FNO₂Na: 232.0744, Found 232.0748.

1-(Cyclopropylmethyl)-3-fluoro-3-hydroxyindolin-2-one (2c)

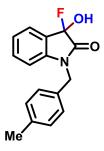
The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:30 (v/v)) as a white solid. M.p. 65 °C. (31.4 mg, 71% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 7.72 (dt, J = 7.5, 1.7 Hz, 1H), 7.63 (tt, J = 7.8, 1.3 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.25 (t, J = 7.6 Hz, 1H), 3.62 (d, J = 7.1 Hz, 2H), 1.18 (tt, J = 7.7, 4.9 Hz, 1H), 0.59 – 0.46 (m, 2H), 0.41 – 0.29 (m, 2H); ¹³C NMR (101 MHz, DMSO- d_6) δ 164.94 (t, J = 29.8 Hz), 143.90 (t, J = 7.2 Hz), 134.81, 125.15, 124.36, 119.27 (t, J = 22.8 Hz), 114.05, 111.59, 111.54, 109.13, 44.54, 9.65, 3.98; ¹⁹F NMR (376 MHz, DMSO- d_6) δ -111.06; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₂H₁₂FNO₂Na: 244.0744, Found 244.0749.


1-(Cyclohexylmethyl)-3-fluoro-3-hydroxyindolin-2-one (2d)

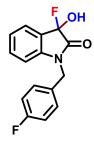
The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:30 (v/v)) as a white solid. M.p. 60 °C. (33.2 mg, 63% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 7.69 (dd, J = 7.3, 1.8 Hz, 1H), 7.61 (t, J = 7.8 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.23 (t, J = 7.6 Hz, 1H), 3.55 (d, J = 7.3 Hz, 2H), 1.75 (dtd, J = 10.9, 7.5, 3.6 Hz, 1H), 1.68 – 1.55 (m, 5H), 1.20 – 1.08 (m, 3H), 0.98 (dp, J = 12.3, 4.5, 3.3 Hz, 2H); ¹³C NMR (101 MHz, Chloroform-d) δ 165.61 (t, J = 30.1 Hz), 143.95 (t, J = 7.1 Hz), 143.95, 143.88, 133.60, 124.64, 123.68, 120.11 (t, J = 23.0


Hz), 113.41, 110.93, 110.17, 108.46, 46.47, 36.02, 30.77, 26.14, 25.64; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -110.06; **HRMS** (ESI) *m/z*: [M+Na]⁺ Calcd for C₁₅H₁₈FNO₂Na: 286.1214, Found 286.1214.

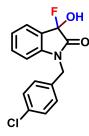
1-Benzyl-3-fluoro-3-hydroxyindolin-2-one (2e)


The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:40 (v/v)) as a white solid. M.p. 80 °C. (41.7 mg, 81% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 – 7.55 (m, 1H), 7.45 – 7.29 (m, 6H), 7.17 (t, *J* = 7.6 Hz, 1H), 6.83 (d, *J* = 8.0 Hz, 1H), 4.93 (s, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.56 (t, *J* = 30.5 Hz), 143.19 (t, *J* = 7.0 Hz), 134.36, 133.56, 129.11, 128.21, 127.34, 124.77, 124.01, 120.22 (t, *J* = 23.1 Hz), 113.50, 111.02, 110.62, 108.54, 44.03; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.64; HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₃FNO₂: 258.0925, Found 258.0929.

3-Fluoro-3-hydroxy-1-(2-methylbenzyl)indolin-2-one (2f)

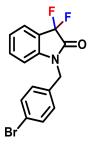

The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:40 (v/v)) as a white solid. M.p. 79 °C. (43.4 mg, 80% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 – 7.60 (m, 1H), 7.40 (t, *J* = 7.8 Hz, 1H), 7.27 (s, 1H), 7.25 – 7.10 (m, 4H), 6.72 (t, *J* = 6.2 Hz, 1H), 4.95 (s, 2H), 2.43 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.48 (t, *J* = 30.4 Hz), 143.40 (t, *J* = 7.0 Hz), 135.89, 133.59, 131.73, 130.98, 128.06, 126.53 (d, *J* = 5.6 Hz), 124.74, 124.00, 120.21 (t, *J* = 23.1 Hz), 113.46, 110.98, 110.83, 108.50, 42.34, 19.31; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.56; HRMS (ESI) *m*/*z*: [M+Na]⁺ Calcd for C₁₆H₁₄FNO₂Na: 294.0901, Found 294.0906.

3-Fluoro-3-hydroxy-1-(4-methylbenzyl)indolin-2-one (2g)

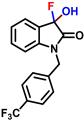

The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:30 (v/v)) as a white solid. M.p. 76 °C. (45.0 mg, 83% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (dd, J = 7.4, 1.7 Hz, 1H), 7.41 (td, J = 7.8, 1.4 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 7.21 – 7.14 (m, 3H), 6.83 (d, J = 7.9 Hz, 1H), 4.89 (s, 2H), 2.36 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.53 (t, J = 30.2 Hz), 143.25 (t, J = 7.1 Hz), 138.02, 133.55, 131.33, 129.77, 127.39, 124.71, 123.95, 120.23 (t, J = 23.1 Hz), 113.53, 111.05, 110.67, 108.57, 43.82, 21.15; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.75; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₁₆H₁₄FNO₂Na: 294.0901, Found 294.0903.

3-Fluoro-1-(4-fluorobenzyl)-3-hydroxyindolin-2-one (2h)

The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:15 (v/v)) as a white solid. M.p. 102 °C. (41.3 mg, 75% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 (d, *J* = 7.5 Hz, 1H), 7.48 – 7.40 (m, 1H), 7.33 (dd, *J* = 8.4, 5.2 Hz, 2H), 7.19 (t, *J* = 7.6 Hz, 1H), 7.06 (d, *J* = 16.9 Hz, 2H), 6.82 (d, *J* = 7.9 Hz, 1H), 4.90 (s, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.51 (t, *J* = 30.5 Hz), 163.78, 161.32, 142.96 (t, *J* = 7.0 Hz), 133.55, 130.16 (d, *J* = 3.2 Hz), 129.17 (d, *J* = 8.3 Hz), 124.90, 124.12, 120.25 (t, *J* = 23.0 Hz), 116.09 (d, *J* = 21.7 Hz), 113.38, 110.90, 110.39, 108.42, 43.36; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.69, -113.63; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₁₅H₁₁F₂NO₂Na: 298.0650, Found 298.0656.


1-(4-Chlorobenzyl)-3-fluoro-3-hydroxyindolin-2-one (2i)

The product was obtained after purification by column chromatography (EtOAc/petroleum ether =


1:20 (v/v)) as a white solid. M.p. 89 °C. (46.1 mg, 79% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 – 7.48 (m, 1H), 7.40 (p, J = 6.5, 5.1 Hz, 1H), 7.35 – 7.24 (m, 3H), 7.15 (dp, J = 21.6, 7.5, 6.5 Hz, 2H), 6.83 – 6.66 (m, 1H), 4.96 – 4.69 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.52 (t, J = 30.1 Hz), 142.87 (t, J = 7.0 Hz), 134.18, 133.59, 132.87, 129.33, 128.75, 124.93, 124.19, 120.21 (t, J = 23.1 Hz), 113.37, 110.89, 110.40, 108.41, 43.41; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.60; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₅H₁₁ClFNO₂Na: 314.0355, Found 314.0357.

1-(4-Bromobenzyl)-3-fluoro-3-hydroxyindolin-2-one (2j)

The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:20 (v/v)) as a yellow solid. M.p. 82 °C. (55.1 mg, 82% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 (dq, J = 7.5, 1.7 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.42 (td, J = 7.9, 1.4 Hz, 1H), 7.25 – 7.15 (m, 3H), 6.77 (d, J = 7.9 Hz, 1H), 4.87 (s, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.52 (t, J = 30.3 Hz), 142.83 (t, J = 7.1 Hz), 133.61, 133.38, 132.28, 129.05, 124.94, 124.21, 122.24, 120.18 (t, J = 23.2 Hz), 113.36, 110.88, 110.40, 108.40, 43.45; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.56; HRMS (ESI) *m*/*z*: [M+MeCN+H]⁺ Calcd for C₁₇H₁₅BrFN₂O₂: 379.0275, Found 379.0279.

3-Fluoro-3-hydroxy-1-(4-(trifluoromethyl)benzyl)indolin-2-one (2k)

The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:20 (v/v)) as a white solid. M.p. 110 °C. (48.1 mg, 74% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 – 7.57 (m, 3H), 7.44 (dd, J = 12.1, 8.0 Hz, 3H), 7.21 (t, J = 7.6 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H), 4.99 (s, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.55 (t, J = 30.7 Hz), 142.81 (t, J = 6.9 Hz), 138.47, 133.61, 130.65 (q, J = 32.7 Hz), 127.58, 126.11 (q, J = 3.8 Hz), 125.25, 124.98, 124.26, 122.54, 120.27 (t, J = 23.2 Hz), 113.33, 110.84, 110.21, 108.36, 43.54; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.70, -111.50; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₁₆H₁₁F₄NO₂Na: 348.0618, Found 348.0618.

3-Fluoro-3-hydroxy-1,4-dimethylindolin-2-one (2m)

The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:40 (v/v)) as a white solid. M.p. 76 °C. (32.8 mg, 84% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 (dd, J = 7.1, 2.1 Hz, 1H), 7.25 (d, J = 7.8 Hz, 1H), 7.08 (t, J = 7.6 Hz, 1H), 3.50 (s, 3H), 2.59 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.17 (t, J = 29.7 Hz), 141.57 (t, J = 6.8 Hz), 137.27, 123.94, 123.92, 123.90, 122.46, 120.97 (t, J = 22.6 Hz), 120.74, 112.98, 110.53, 108.08, 29.71, 18.77; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.25; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₁₀H₁₀FNO₂Na: 218.0588, Found 218.0589.

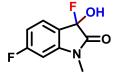
3-Fluoro-3-hydroxy-4-methoxy-1-methylindolin-2-one (2n)


The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:30 (v/v)) as a white solid. M.p. 81 °C. (36.3 mg, 86% yield); ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.58 (td, *J* = 8.3, 7.4, 1.4 Hz, 1H), 6.91 (d, *J* = 8.6 Hz, 1H), 6.80 (dd, *J* = 7.8, 1.9 Hz, 1H), 3.91 (s, 3H), 3.16 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 164.97 (t, *J* = 30.1 Hz), 157.39, 145.80 (t, *J* = 6.7 Hz), 136.50, 114.43, 112.07, 109.62, 108.46, 105.30, 104.87 (t, *J* = 23.1 Hz), 56.44, 26.92; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -112.86; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₁₀H₁₀FNO₃Na: 234.0537, Found 234.0538.

4-Chloro-3-fluoro-3-hydroxy-1-methylindolin-2-one (20)

The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:30 (v/v)) as a white solid. M.p. 116 °C. (32.8 mg, 76% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 (t, *J* = 8.1 Hz, 1H), 7.13 (d, *J* = 8.3 Hz, 1H), 6.84 (d, *J* = 7.9 Hz, 1H), 3.24 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.60 (t, *J* = 30.3 Hz), 145.66 (t, *J* = 6.1 Hz), 134.63, 132.60, 124.96, 117.61 (t, *J* = 22.5 Hz), 112.98, 110.48, 107.98, 107.87, 26.56; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -115.96; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₉H₇ClFNO₂Na: 238.0042, Found 238.0046.

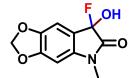
4-Bromo-3-fluoro-3-hydroxy-1-methylindolin-2-one (2p)


The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:25 (v/v)) as a white solid. M.p. 105 °C. (38.0 mg, 73% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (t, J = 7.6 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 6.88 (d, J = 7.8 Hz, 1H), 3.23 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.54 (t, J = 30.1 Hz), 145.85 (t, J = 5.9 Hz), 134.69, 127.91, 120.18 (t, J = 23.2 Hz), 113.17, 110.66, 108.41, 108.16, 26.47; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -113.10; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₉H₇BrFNO₂Na: 281.9536, Found 281.9539.

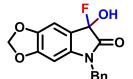
3-Fluoro-3-hydroxy-5-methoxy-1-methylindolin-2-one (2q)

The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:30 (v/v)) as a white solid. M.p. 82 °C. (34.2 mg, 81% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.15 (q, J = 2.0 Hz, 1H), 7.03 (ddt, J = 8.5, 2.5, 1.2 Hz, 1H), 6.84 (dt, J = 8.6, 1.5 Hz, 1H), 3.84 (s, 3H), 3.21 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.17 (t, J = 30.5 Hz), 156.78, 137.02 (t, J = 7.1 Hz), 120.96 (t, J = 22.9 Hz), 118.37, 113.61, 111.19, 111.12, 110.33, 108.63, 55.99, 26.39; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -112.88; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₀H₁₀FNO₃Na: 234.0537, Found 234.0539.

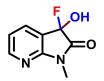
3,6-Difluoro-3-hydroxy-1-methylindolin-2-one (2r)


The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:25 (v/v)) as a white solid. M.p. 116 °C. (23.3 mg, 64% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (ddt, J = 8.5, 5.2, 1.8 Hz, 1H), 6.88 (td, J = 8.7, 2.2 Hz, 1H), 6.68 (ddd, J = 8.5, 2.4, 1.2 Hz, 1H), 3.25 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.49, 165.44 (t, J = 29.6 Hz), 146.24 (t, J = 5.8 Hz), 126.61 (d, J = 10.6 Hz), 115.90 (t, J = 22.1 Hz), 112.78, 110.34 (d, J = 6.8 Hz), 110.14, 107.82, 98.74, 98.46, 26.43; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -102.65, -111.38; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₉H₇F₂NO₂Na: 222.0337, Found 222.0339.

3-Fluoro-3-hydroxy-1,7-dimethylindolin-2-one (2s)


The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:30 (v/v)) as a white solid. M.p. 77 °C. (32.0 mg, 82% yield); ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.51 (d, *J* = 2.4 Hz, 1H), 7.42 (d, *J* = 8.1 Hz, 1H), 7.11 (dd, *J* = 8.1, 1.5 Hz, 1H), 3.16 (s, 3H), 2.33 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 164.75 (t, *J* = 30.1 Hz), 142.02 (t, *J* = 7.3 Hz), 134.74, 133.89, 125.27, 119.25 (t, *J* = 22.3 Hz), 114.27, 111.81, 110.91, 109.34, 26.77, 20.77; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -111.03; HRMS (ESI) *m*/*z*: [M+Na]⁺ Calcd for C₁₀H₁₀FNO₂Na: 218.0588, Found 218.0589.

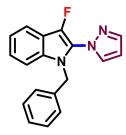
7-Fluoro-7-hydroxy-5-methyl-5,7-dihydro-6*H*-[1,3]dioxolo[4,5-f]indol-6-one (2t)


The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:30 (v/v)) as a white solid. M.p. 86 °C. (23.4 mg, 52% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.04 (t, J = 1.5 Hz, 1H), 6.50 (s, 1H), 6.06 (s, 2H), 3.20 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.95 (t, J = 30.3 Hz), 152.10, 144.41, 140.17 (t, J = 7.3 Hz), 113.85, 111.62 (t, J = 23.9 Hz), 108.92, 105.81, 102.32, 93.38, 26.67; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -110.60; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₀H₈FNO₄Na: 248.0330, Found 248.0335.

5-Benzyl-7-fluoro-7-hydroxy-5,7-dihydro-6*H*-[1,3]dioxolo[4,5-f]indol-6-one (2u)

The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:30 (v/v)) as a white solid. M.p. 92 °C. (29.5 mg, 49% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.28 (m, 5H), 7.03 (d, *J* = 2.1 Hz, 1H), 6.35 (s, 1H), 5.99 (s, 2H), 4.87 (s, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.99 (t, *J* = 30.5 Hz), 151.72, 144.29, 139.04 (t, *J* = 7.8 Hz), 134.31, 129.16, 128.24, 127.23, 113.75, 111.51 (t, *J* = 24.1 Hz), 108.81, 105.54, 102.07, 94.24, 44.08; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -109.95; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₁₆H₁₂FNO₄Na: 324.0643, Found 324.0646.

3-Fluoro-3-hydroxy-1-methyl-1,3-dihydro-2*H*-pyrrolo[2,3-b]pyridin-2-one (2v)


The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:20 (v/v)) as a white solid. M.p. 112 °C. (17.1 mg, 47% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.50 – 8.34 (m, 1H), 7.83 (dq, *J* = 7.3, 1.6 Hz, 1H), 7.13 (dd, *J* = 7.4, 5.3 Hz, 1H), 3.34 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.18 (t, *J* = 29.6 Hz), 157.23 (t, *J* = 6.8 Hz), 152.23, 132.58, 119.27, 115.05 (t, *J* = 23.2 Hz), 112.69, 110.19, 107.69, 25.35; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -113.23; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₈H₈FN₂O₂Na: 205.0384, Found 205.0389.

2-Bromo-7-fluoro-7-hydroxy-5-methyl-5,7-dihydro-6H-pyrrolo[2,3-b]pyrazin-6-one (2w)

The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:20 (v/v)) as a yellow solid. M.p. 131 °C. (23.5 mg, 45% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.49 (s, 1H), 3.35 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.86 (t, *J* = 29.0 Hz), 148.79, 146.90 (t, *J* = 6.0 Hz), 134.18, 106.75, 104.18, 25.48; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -119.80; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₇H₅BrFN₃O₂Na: 283.9441, Found 283.9446.

1-Benzyl-3-fluoro-2-(1*H*-pyrazol-1-yl)-1*H*-indole (4a)

The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:40 (v/v)) as a white solid. M.p. 136 °C. (10.0 mg, 17% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (d, J = 1.9 Hz, 1H), 7.73 (d, J = 7.9 Hz, 1H), 7.64 (d, J = 2.5 Hz, 1H), 7.34 – 7.29 (m, 2H), 7.27 – 7.20 (m, 4H), 7.00 (dd, J = 7.1, 2.5 Hz, 2H), 6.48 (t, J = 2.1 Hz, 1H), 5.33 (s, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 142.38, 137.94, 137.15, 135.46, 133.32, 130.60 (d, J = 5.5 Hz), 128.69, 127.56, 126.61, 124.06, 120.61, 119.08 (d, J = 19.6 Hz), 117.50 (d, J = 2.5 Hz), 115.67 (d, J = 14.5 Hz), 110.39, 107.31, 46.84; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -175.49; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₁₈H₁₄FN₃Na: 314.1064, Found 314.1068.

3,4-Difluoro-1-methyl-2-(1H-pyrazol-1-yl)-1H-indole (4b)

The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:20 (v/v)) as a white solid. M.p. 150 °C. (7.0 mg, 15% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (d, J = 2.0 Hz, 1H), 7.83 (t, J = 2.9 Hz, 1H), 7.33 – 7.08 (m, 2H), 6.98 – 6.84 (m, 1H), 6.59 (t, J = 2.2 Hz, 1H), 3.62 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.78, 155.29, 142.49, 138.18 (d, J = 9.2 Hz), 136.73, 133.46, 133.16, 124.03 (d, J = 8.1 Hz), 123.99, 116.90 (d, J = 17.3 Hz), 107.41, 107.14, 106.48, 106.31, 106.29, 106.27, 105.70, 30.83; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -125.53, -174.31; HRMS (ESI) *m*/*z*: [M+Na]⁺ Calcd for C₁₂H₉F₂N₃Na: 256.0657, Found 256.0658.

1,3-Dibenzyl-3-fluoroindolin-2-one (6)

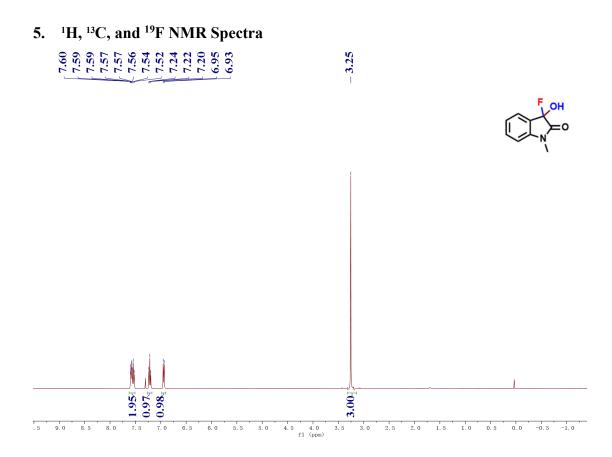
The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:20 (v/v)) as a white solid. M.p. 128 °C. (53.7 mg, 81% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 – 7.30 (m, 1H), 7.28 (d, *J* = 7.5 Hz, 1H), 7.24 (d, *J* = 7.0 Hz, 3H), 7.21 (s, 2H), 7.19 (s, 1H), 7.08 (d, *J* = 7.8 Hz, 3H), 6.80 (d, *J* = 7.0 Hz, 2H), 6.52 (d, *J* = 7.9 Hz, 1H), 5.09 (d, *J* = 16.0 Hz, 1H), 4.53 (d, *J* = 15.8 Hz, 1H), 3.73 – 3.45 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.62 (d, *J* = 21.1 Hz), 143.37 (d, *J* = 5.4 Hz), 134.70, 132.40 (d, *J* = 9.9 Hz), 131.19 (d, *J* = 2.9 Hz), 130.79, 128.79, 128.38, 127.54, 127.33, 126.72, 125.39, 125.26, 125.20, 123.03 (d, *J* = 2.4 Hz), 109.84, 94.59, 92.70, 43.72, 41.19 (d, *J* = 28.7 Hz); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -152.00; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₂₂H₁₈FNONa: 354.1265, Found 354.1267.

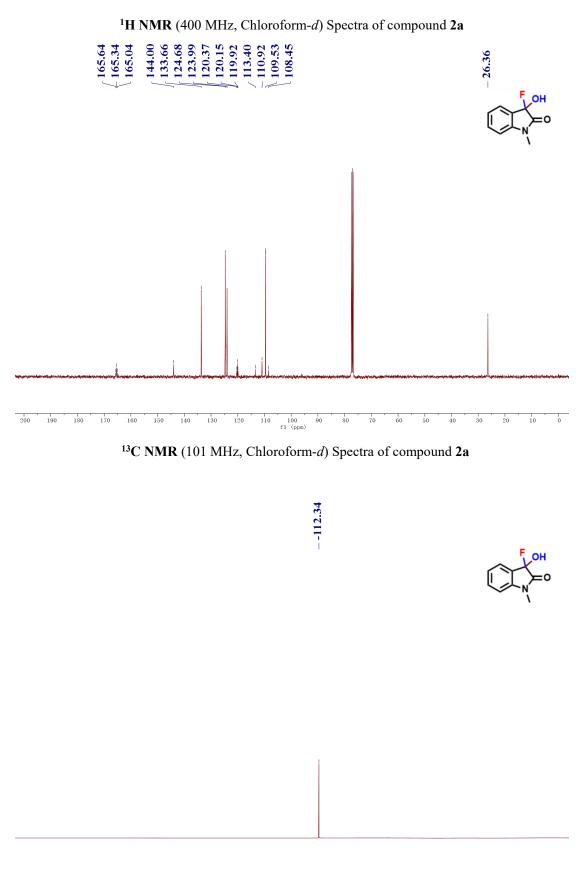

Tert-butyl 4-(4-((3-fluoro-3-hydroxy-2-oxoindolin-1-yl)methyl)phenyl)-1*H*-pyrazol-1-yl) piperidine-1-carboxylate (8)

The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:3 (v/v)) as a white solid. M.p. 139 °C. (200.1 mg, 79% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 8.25 (s, 1H), 7.88 (s, 1H), 7.75 (d, J = 7.6 Hz, 1H), 7.58 (t, J = 9.1 Hz, 3H), 7.35 (d, J = 7.9 Hz, 2H), 7.23 (q, J = 7.8 Hz, 2H), 4.95 (s, 2H), 4.37 (dq, J = 15.4, 4.0 Hz, 1H), 4.06 (d, J = 13.1 Hz, 2H), 2.93 (s, 2H), 2.09 – 1.95 (m, 2H), 1.82 (tt, J = 12.4, 6.3 Hz, 2H), 1.44 (s, 9H); ¹³C NMR (101 MHz, DMSO- d_6) δ 165.07 (t, J = 30.2 Hz), 154.33, 143.44 (t, J = 7.3 Hz), 136.33, 134.76, 133.05,

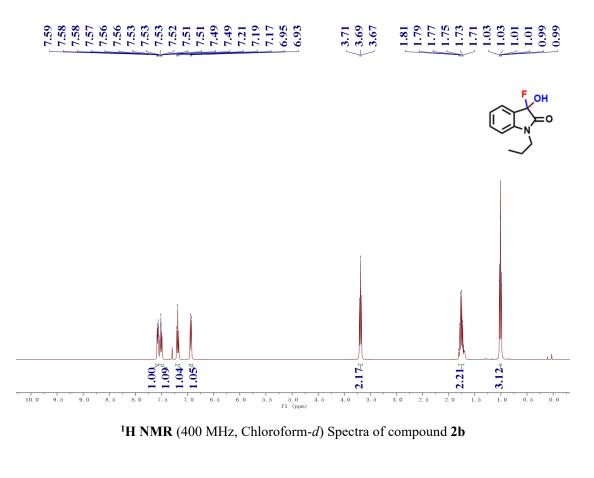
132.91, 128.45, 125.93, 125.72, 125.25, 124.64, 121.57, 119.33, 111.82, 79.35, 58.74, 43.43, 32.47, 28.58; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -111.65; **HRMS** (ESI) *m/z*: [M+Na]⁺ Calcd for C₂₈H₃₁FN₄O₄Na: 529.2222, Found 529.2226.

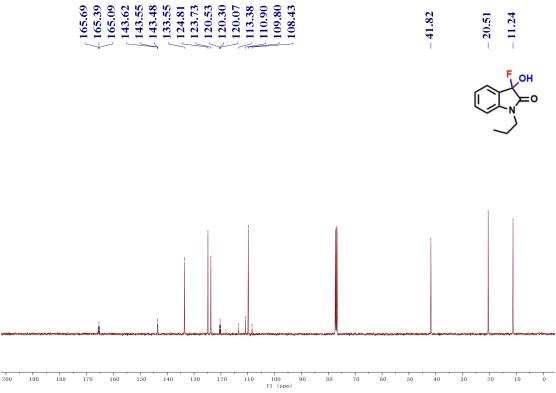
1-Methyl-2-(1*H*-pyrazol-1-yl)-1*H*-indole¹ (9)

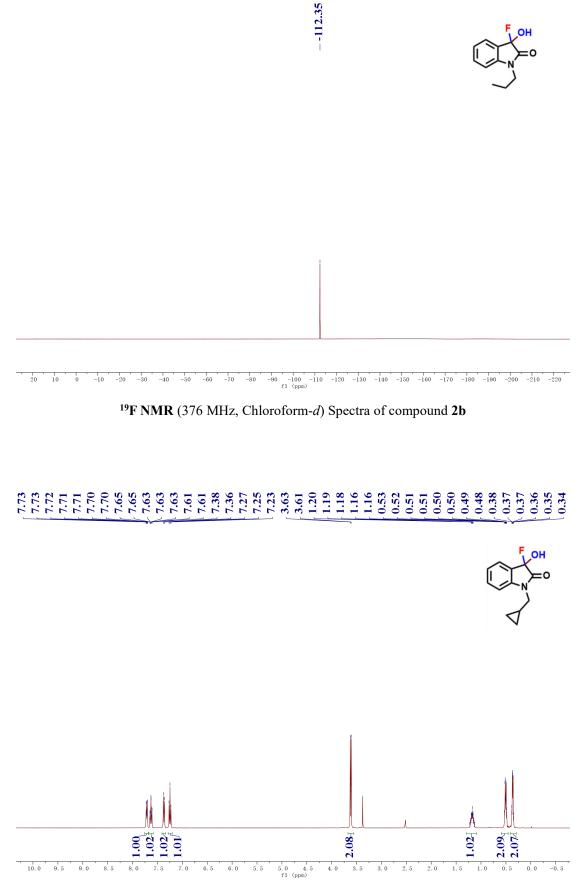



The product was obtained after purification by column chromatography (EtOAc/petroleum ether = 1:20 (v/v)) as a white solid. M.p. 59 °C. (35.1 mg, 89% yield); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.80 (d, *J* = 1.6 Hz, 1H), 7.70 (d, *J* = 2.3 Hz, 1H), 7.62 (d, *J* = 7.9 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.16 (ddd, *J* = 7.9, 7.0, 1.1 Hz, 1H), 6.50 (s, 1H), 6.45 (t, *J* = 2.1 Hz, 1H), 3.65 (s, 3H); HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₁₂H₁₁N₃Na: 220.0845, Found 220.0849.

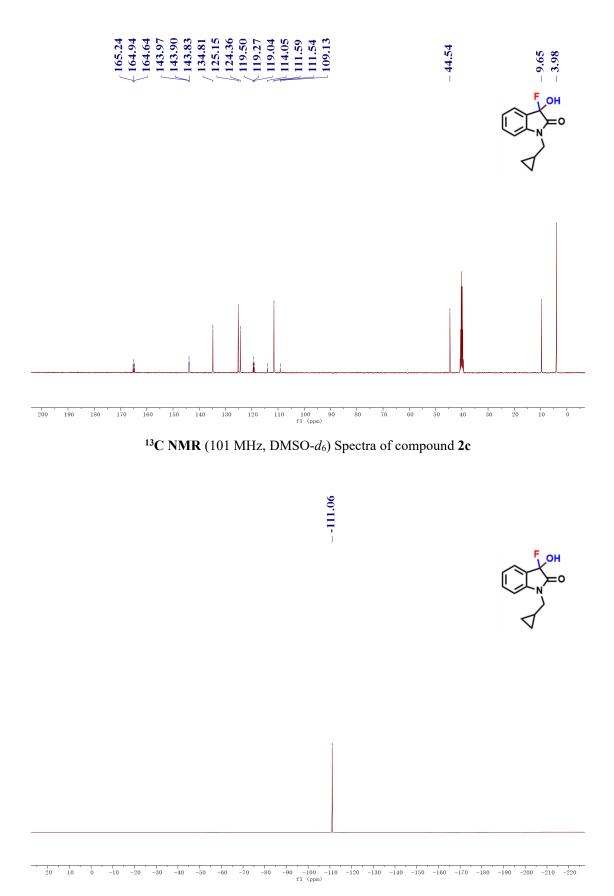
1-(Chloromethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium (E)

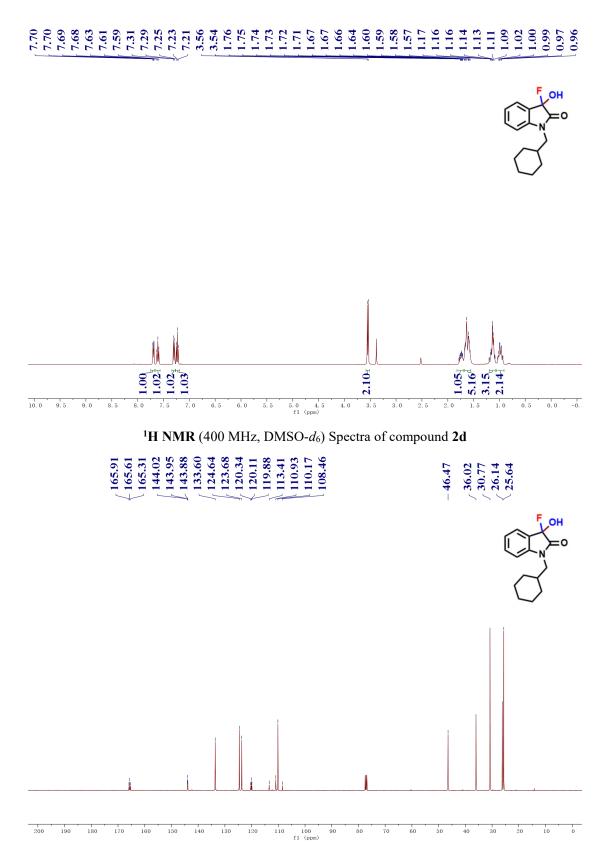

The product was obtained by recrystallization from acetonitrileas a yellow solid; ¹H NMR (400 MHz, DMSO- d_6) δ 5.34 (s, 2H), 3.49 (dd, J = 8.9, 6.2 Hz, 6H), 3.25 (dd, J = 8.9, 6.1 Hz, 6H); ¹³C NMR (101 MHz, DMSO- d_6) δ 68.17, 50.99, 44.58.

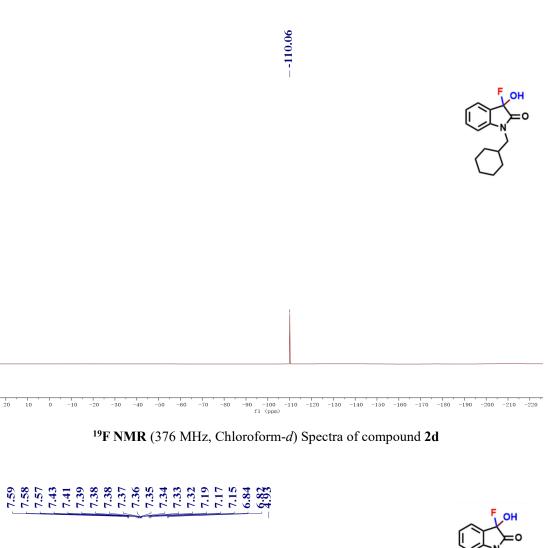


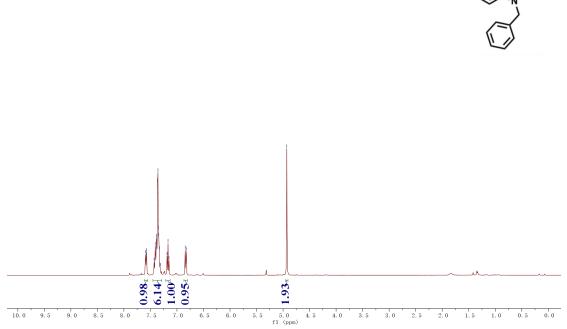

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

¹⁹F NMR (376 MHz, Chloroform-*d*) Spectra of compound 2a

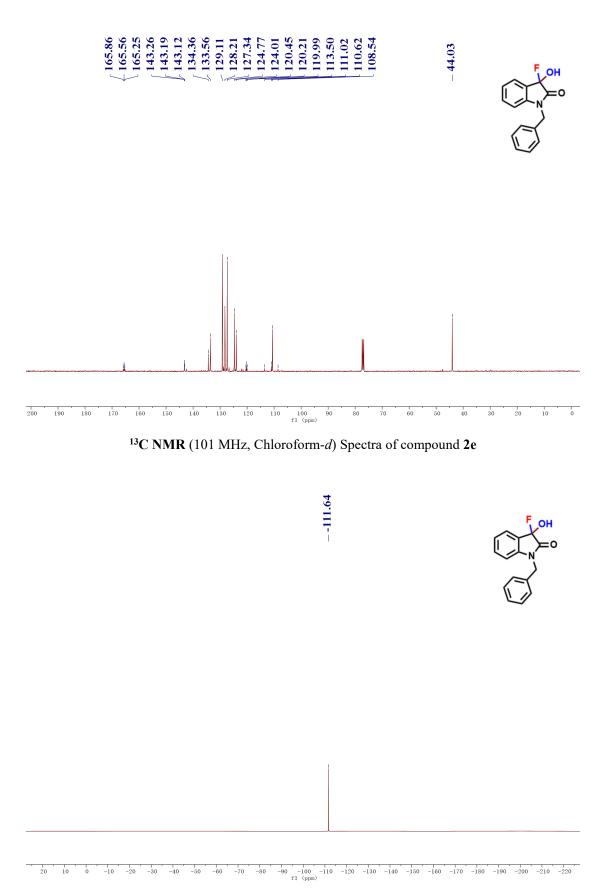



¹³C NMR (101 MHz, Chloroform-*d*) Spectra of compound 2b

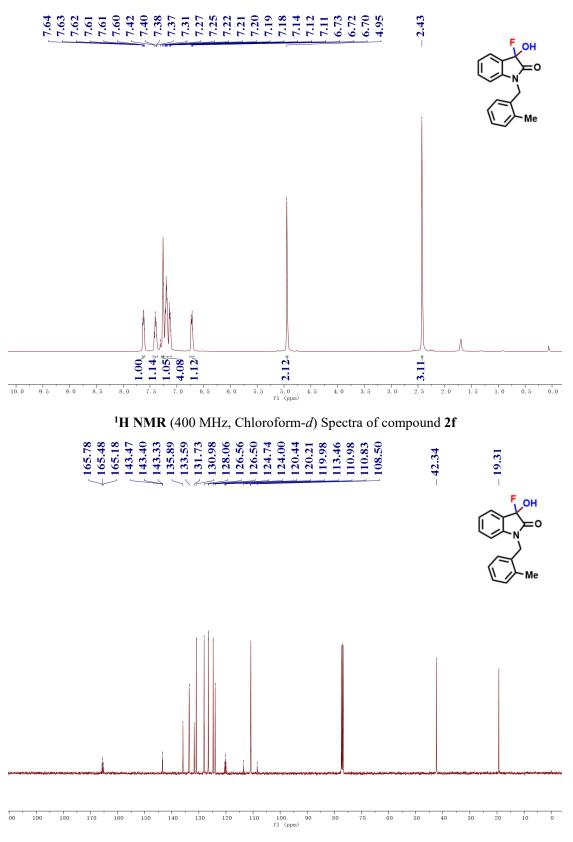

¹H NMR (400 MHz, DMSO-*d*₆) Spectra of compound **2c**

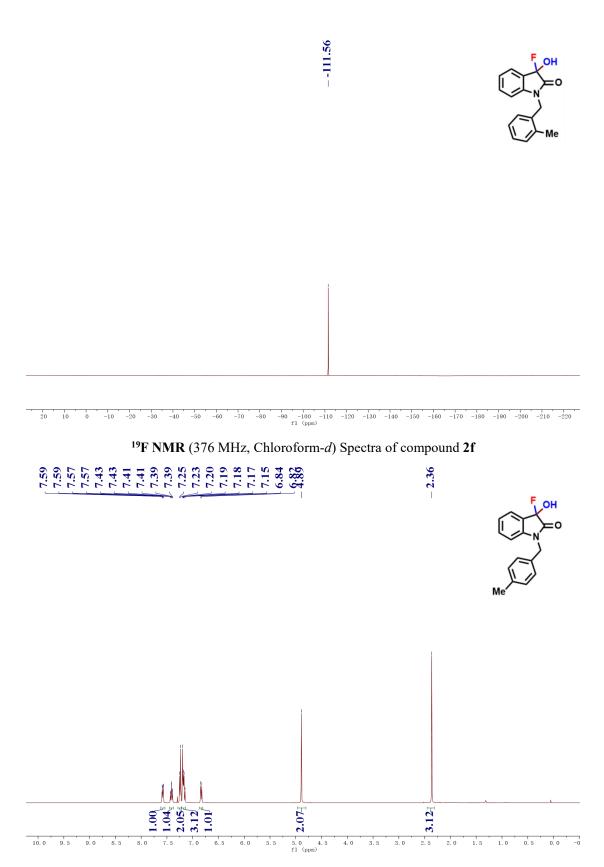


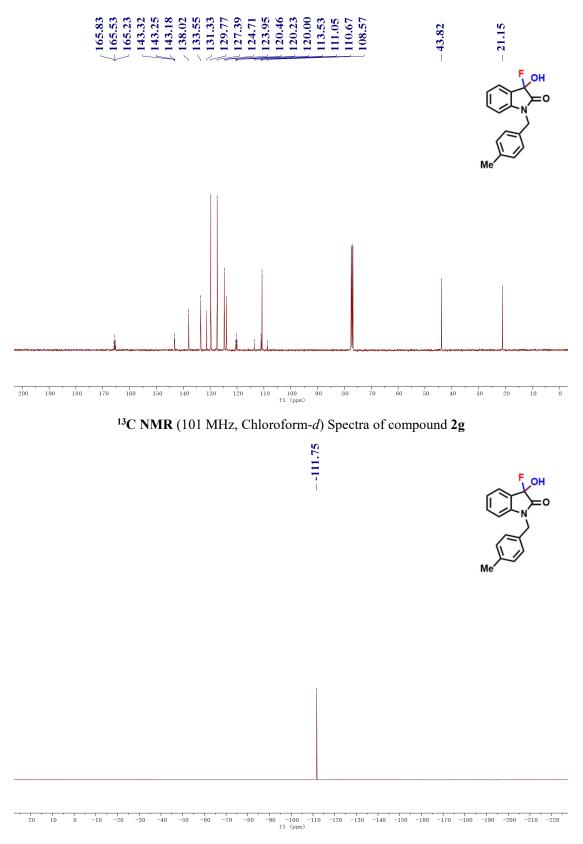
¹⁹F NMR (376 MHz, DMSO-*d*₆) Spectra of compound **2c**

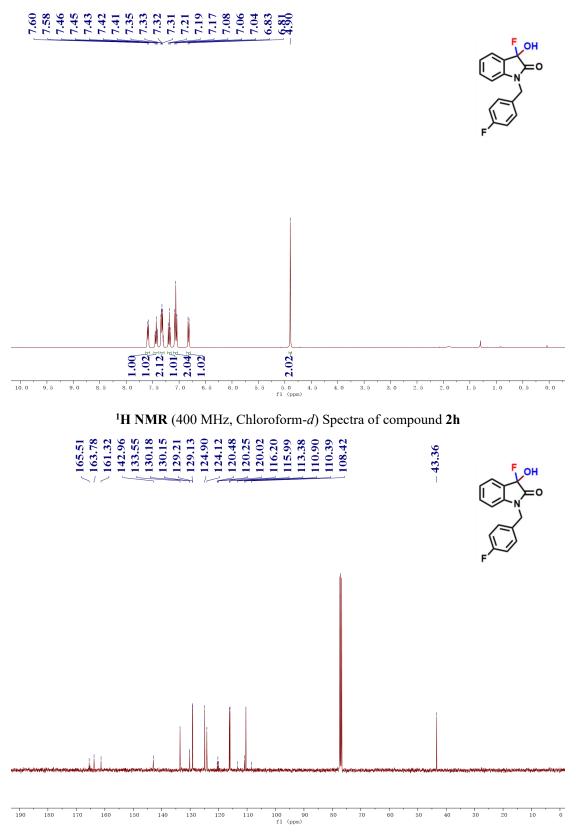


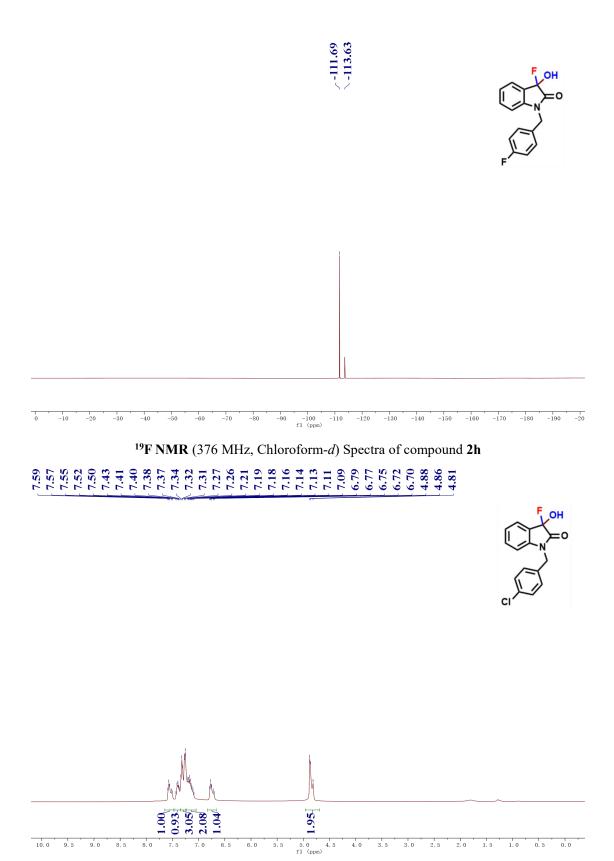
¹³C NMR (101 MHz, Chloroform-*d*) Spectra of compound 2d

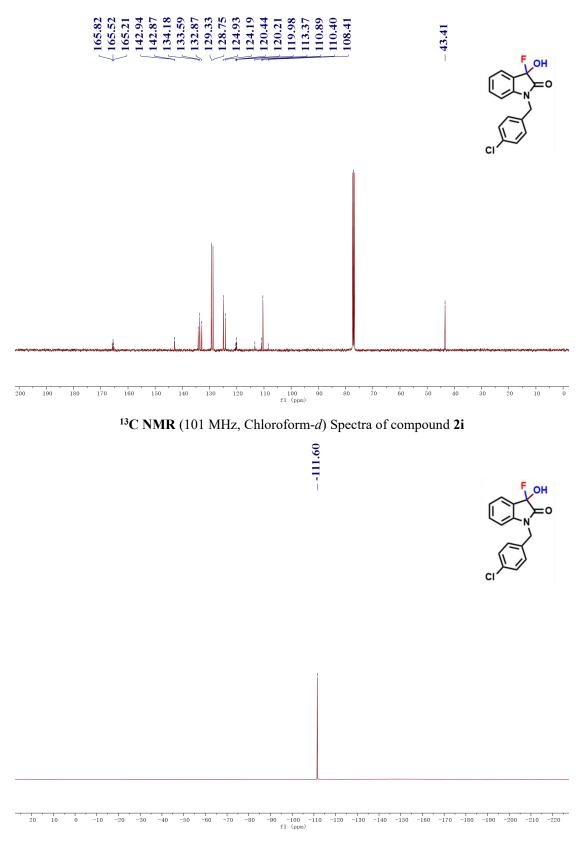


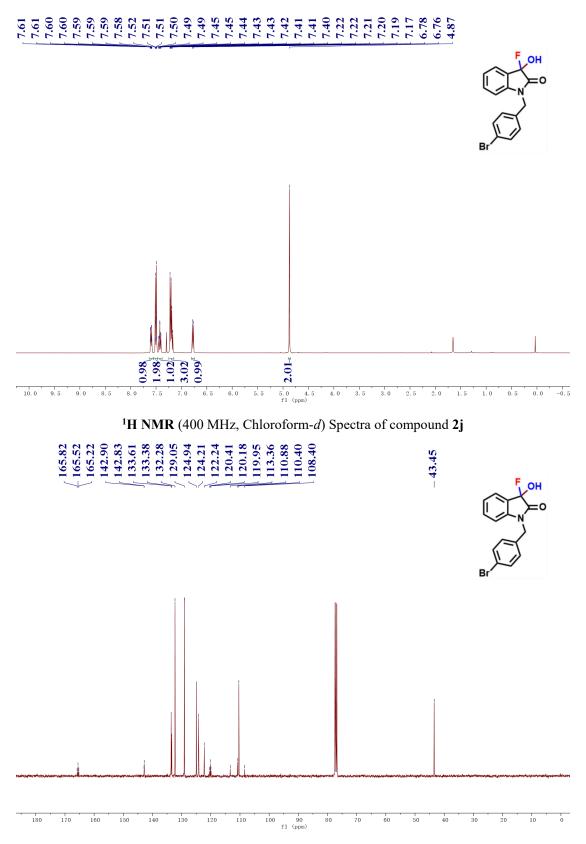

¹H NMR (400 MHz, Chloroform-*d*) Spectra of compound 2e

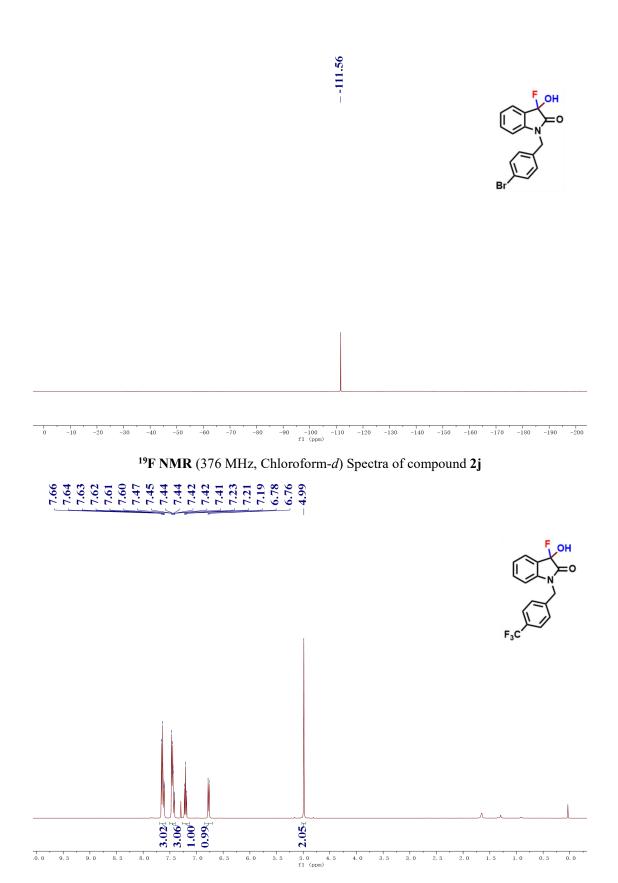

¹⁹F NMR (376 MHz, Chloroform-*d*) Spectra of compound 2e

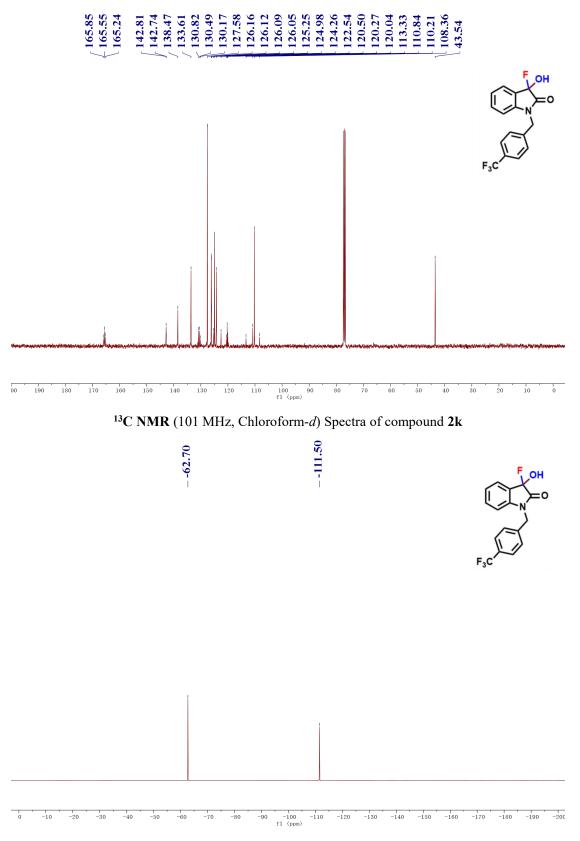

¹³C NMR (101 MHz, Chloroform-*d*) Spectra of compound 2f

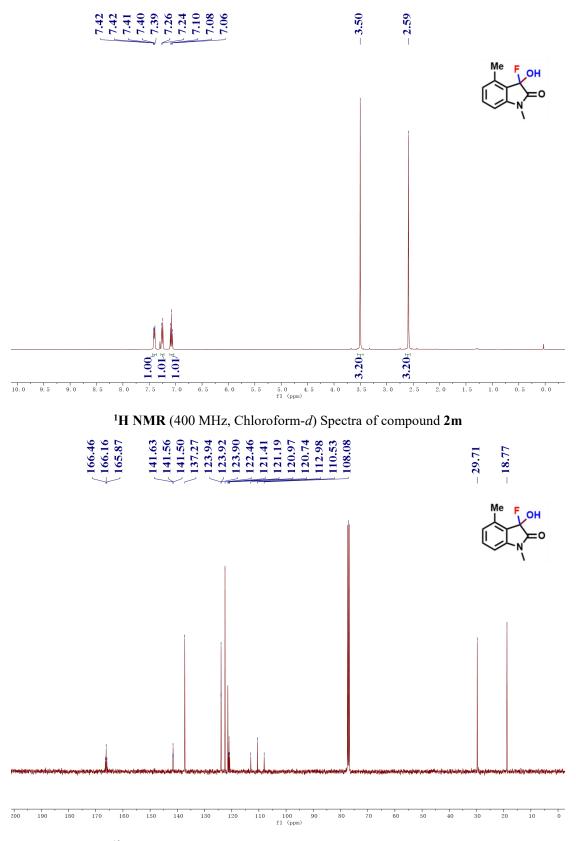

¹H NMR (400 MHz, Chloroform-d) Spectra of compound **2g**

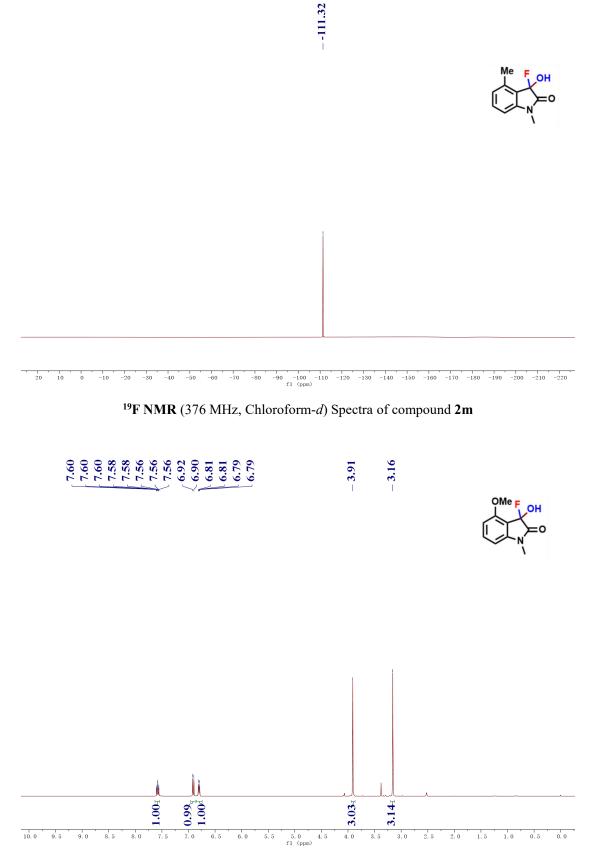

¹⁹F NMR (376 MHz, Chloroform-*d*) Spectra of compound **2g**

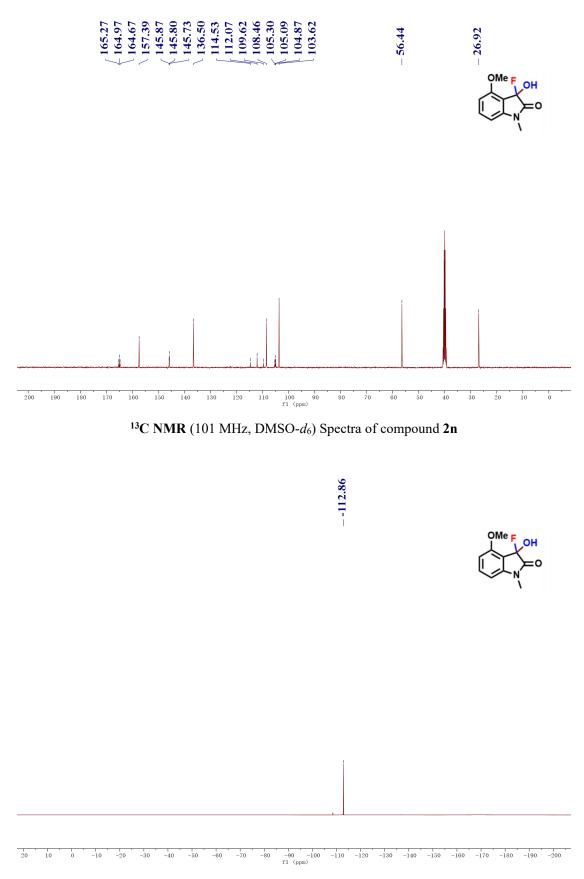

¹³C NMR (101 MHz, Chloroform-*d*) Spectra of compound 2h

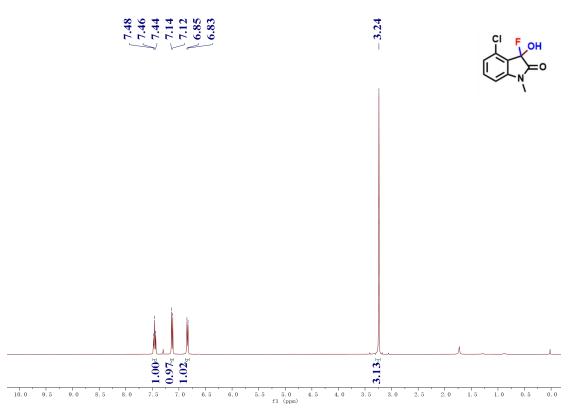

¹H NMR (400 MHz, Chloroform-*d*) Spectra of compound **2i**

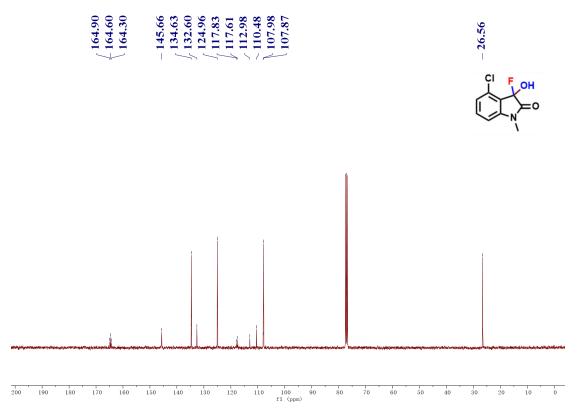

¹⁹F NMR (376 MHz, Chloroform-*d*) Spectra of compound 2i

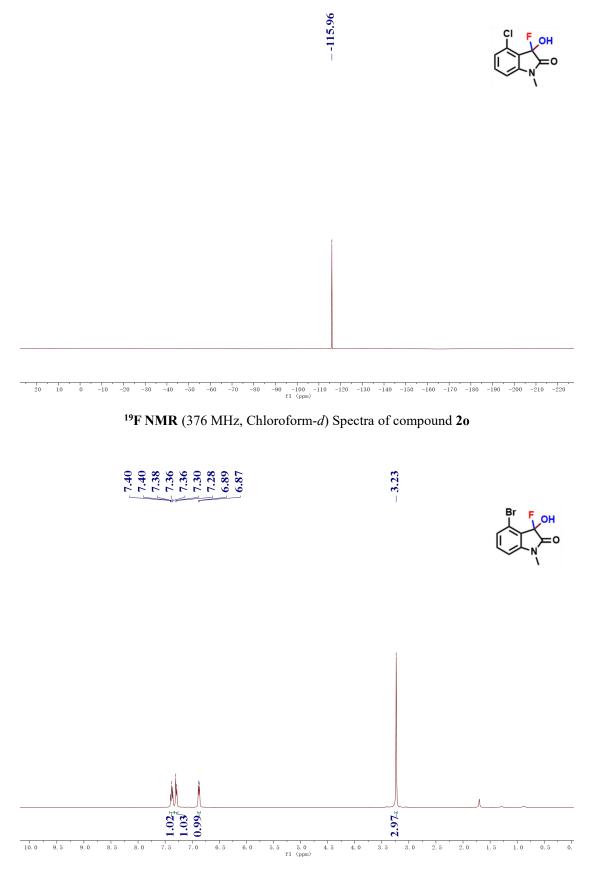

¹³C NMR (101 MHz, Chloroform-d) Spectra of compound 2j

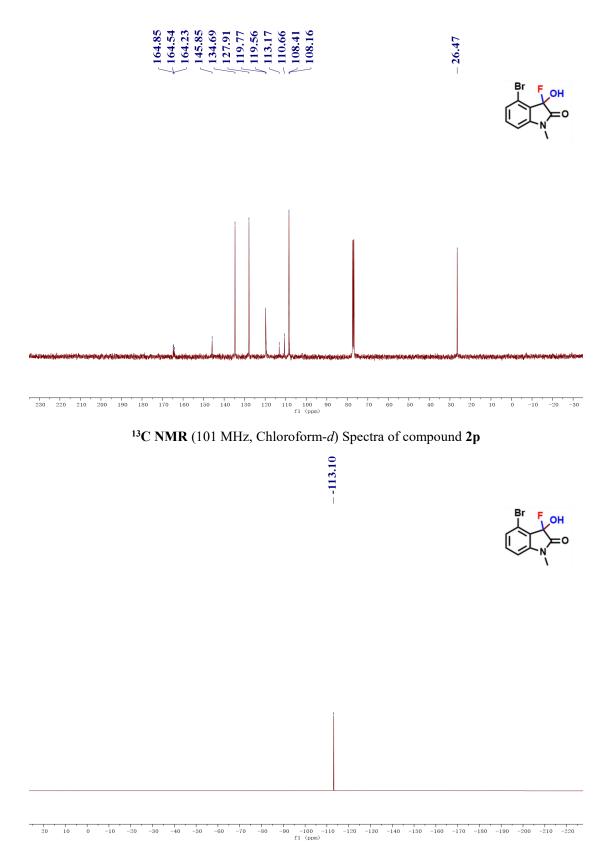

¹H NMR (400 MHz, Chloroform-*d*) Spectra of compound **2**k

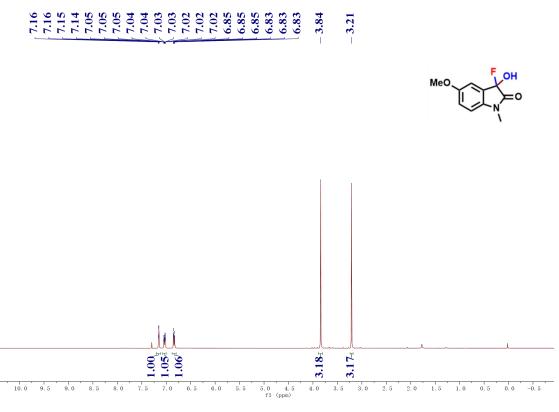

¹⁹F NMR (376 MHz, Chloroform-*d*) Spectra of compound 2k


¹³C NMR (101 MHz, Chloroform-*d*) Spectra of compound **2m**

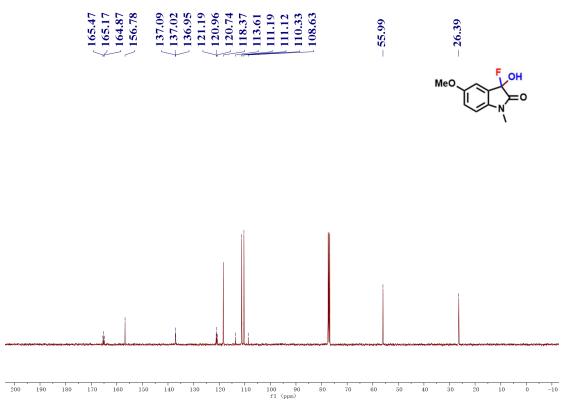

¹H NMR (400 MHz, DMSO-*d*₆) Spectra of compound **2n**


¹⁹F NMR (376 MHz, DMSO- d_6) Spectra of compound **2n**

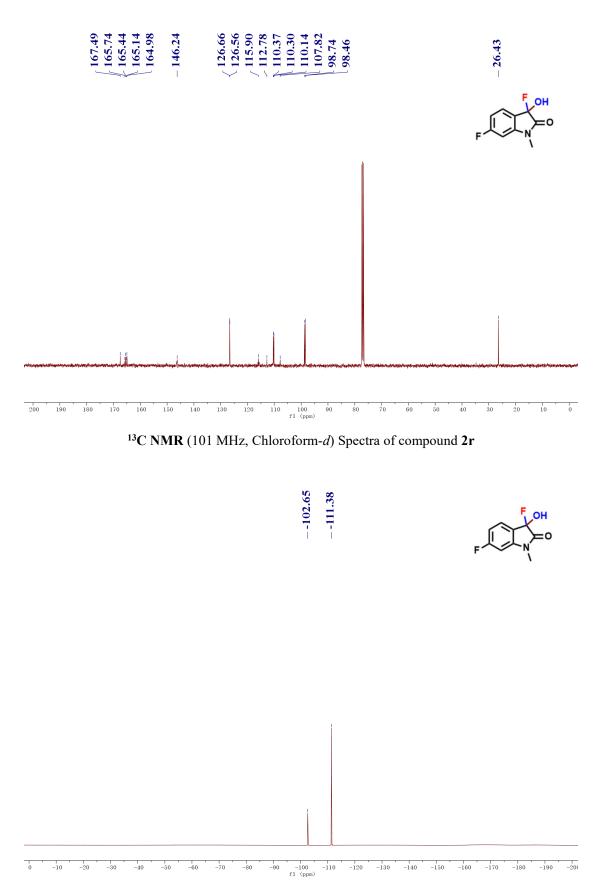

¹H NMR (400 MHz, Chloroform-*d*) Spectra of compound **20**

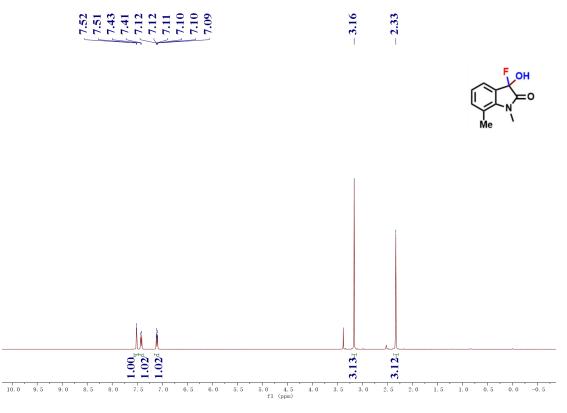

¹³C NMR (101 MHz, Chloroform-*d*) Spectra of compound **20**

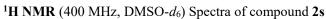


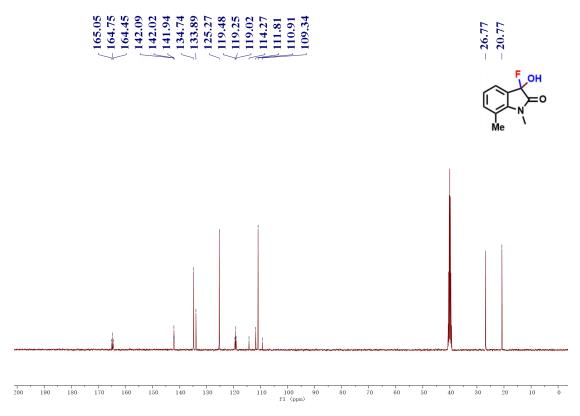

¹H NMR (400 MHz, Chloroform-*d*) Spectra of compound **2**p

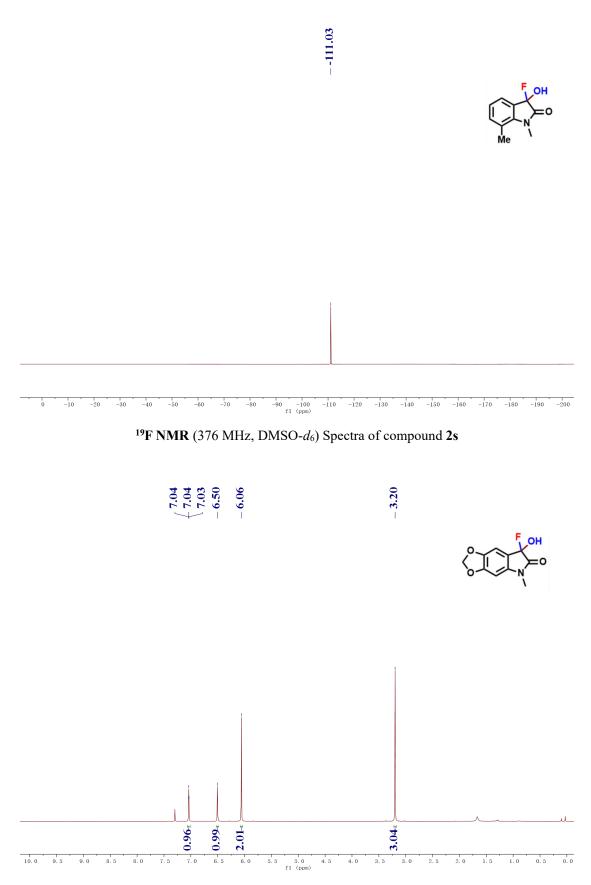

¹⁹F NMR (376 MHz, Chloroform-*d*) Spectra of compound **2p**

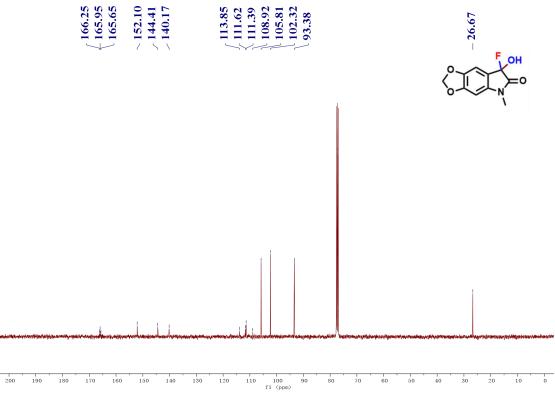


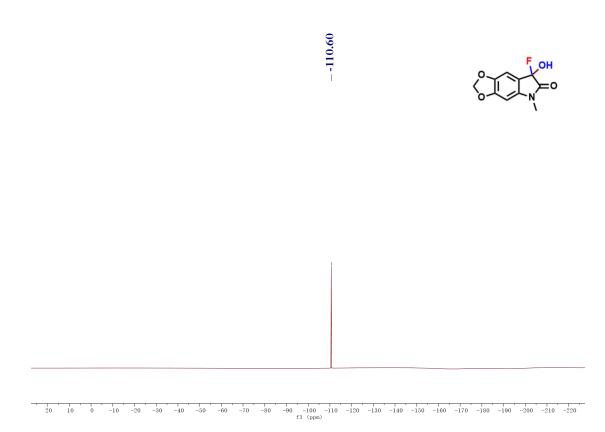

¹³C NMR (101 MHz, Chloroform-*d*) Spectra of compound 2q

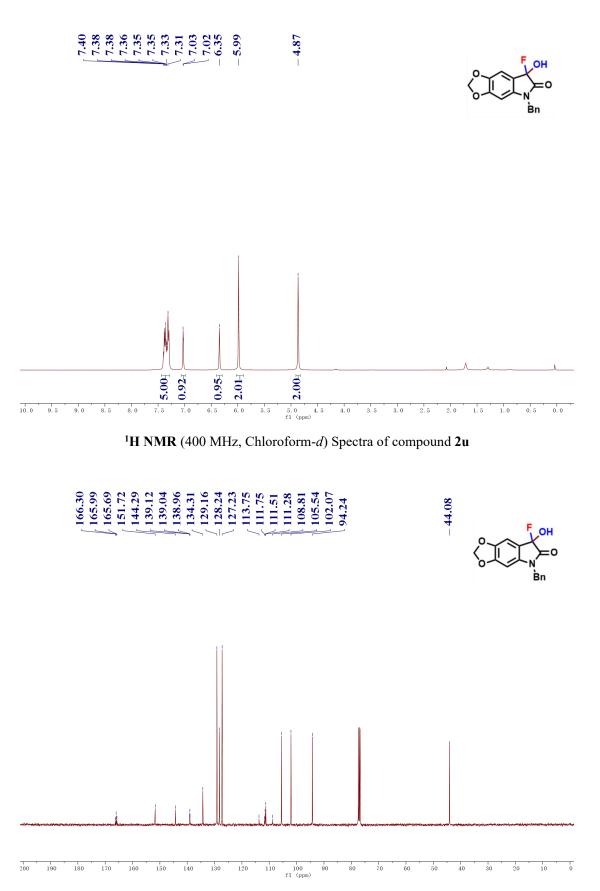


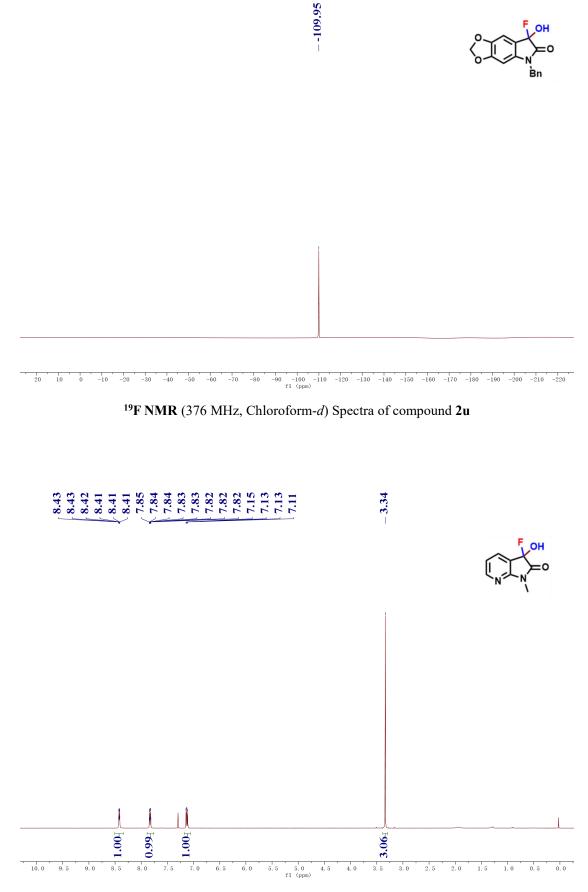

¹H NMR (400 MHz, Chloroform-d) Spectra of compound 2r

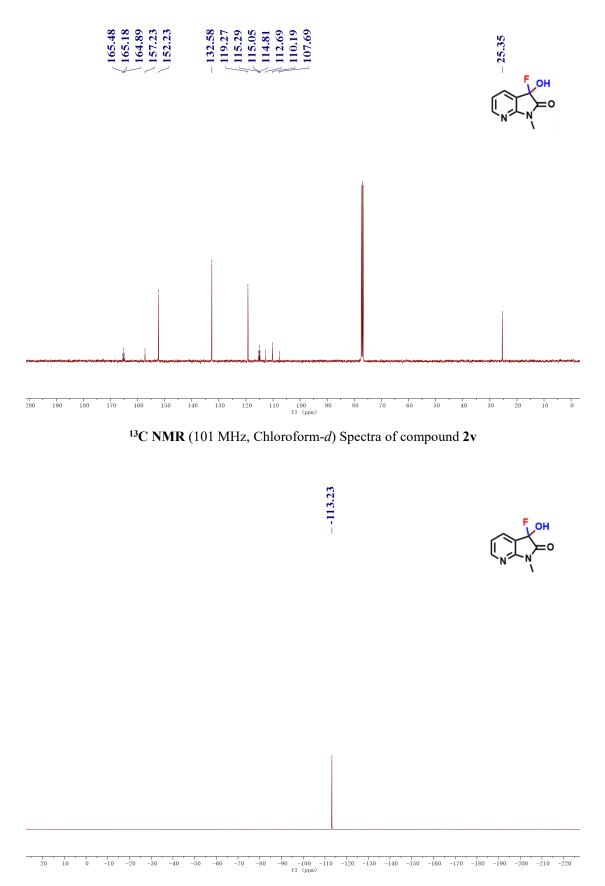

¹⁹F NMR (376 MHz, Chloroform-*d*) Spectra of compound **2r**

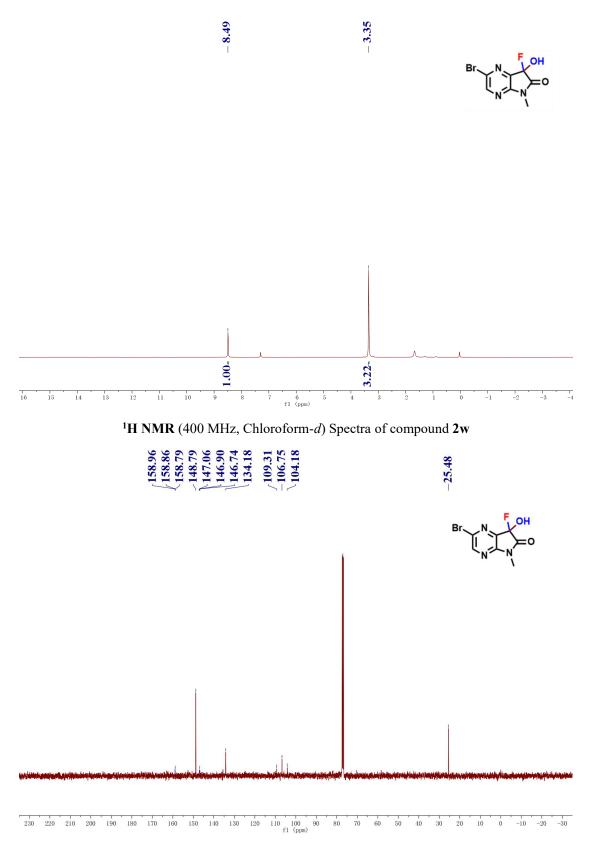


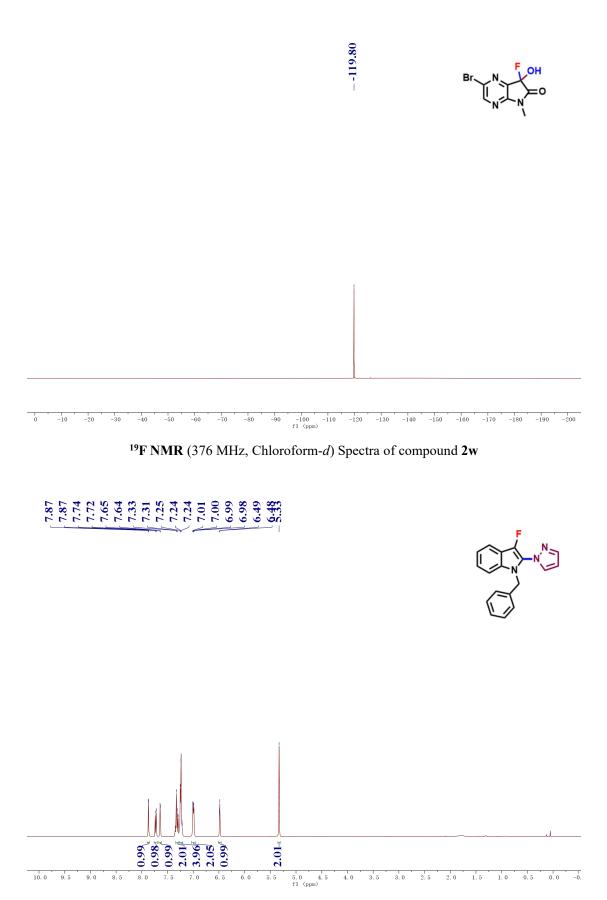

¹³C NMR (101 MHz, DMSO-*d*₆) Spectra of compound 2s

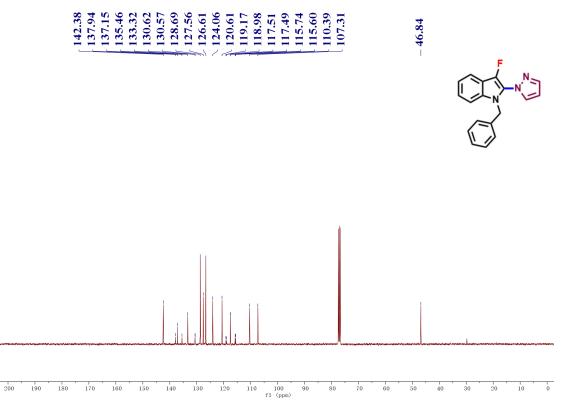

¹H NMR (400 MHz, Chloroform-*d*) Spectra of compound **2**t

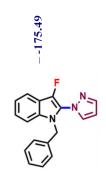

¹³C NMR (101 MHz, Chloroform-*d*) Spectra of compound 2t


¹⁹F NMR (376 MHz, Chloroform-*d*) Spectra of compound 2t


¹³C NMR (101 MHz, Chloroform-*d*) Spectra of compound 2u

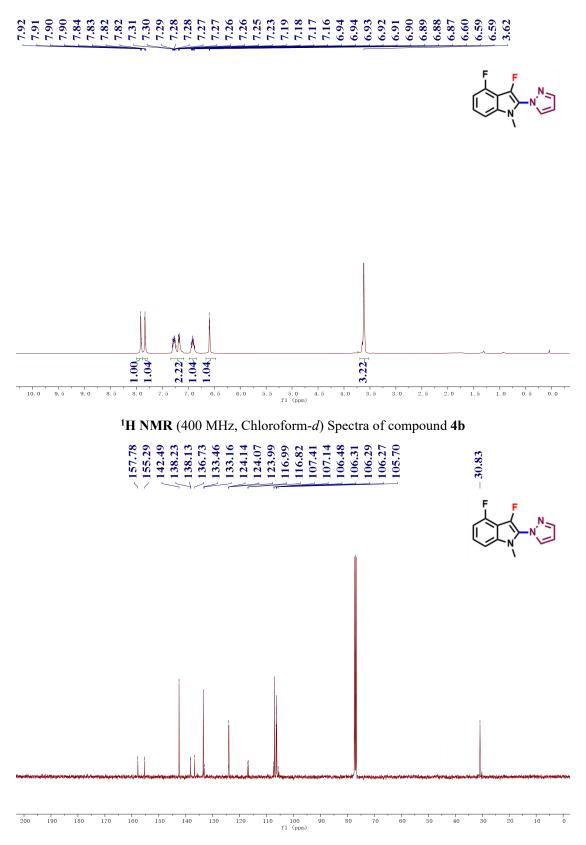

¹H NMR (400 MHz, Chloroform-*d*) Spectra of compound 2v


¹⁹F NMR (376 MHz, Chloroform-*d*) Spectra of compound 2v

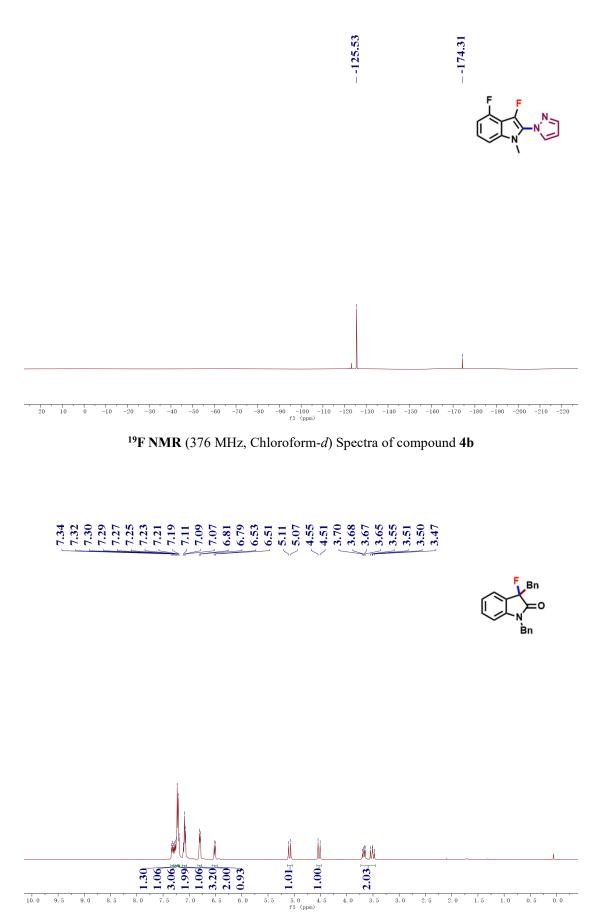

¹³C NMR (101 MHz, Chloroform-*d*) Spectra of compound **2**w

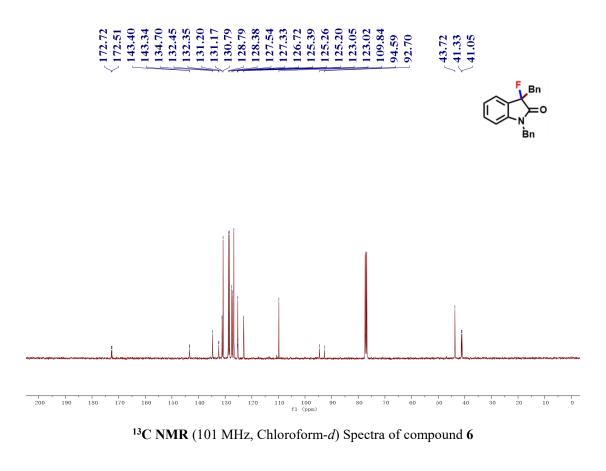


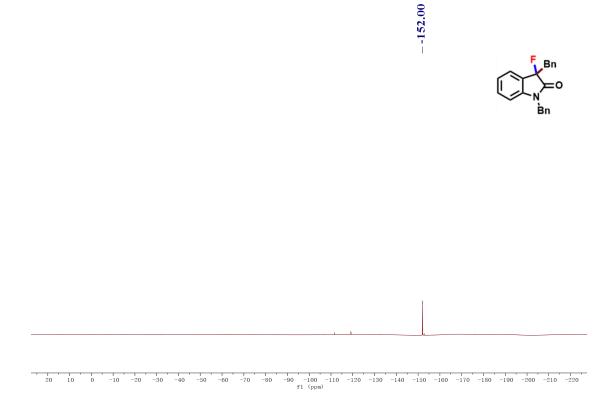
¹H NMR (400 MHz, Chloroform-*d*) Spectra of compound 4a

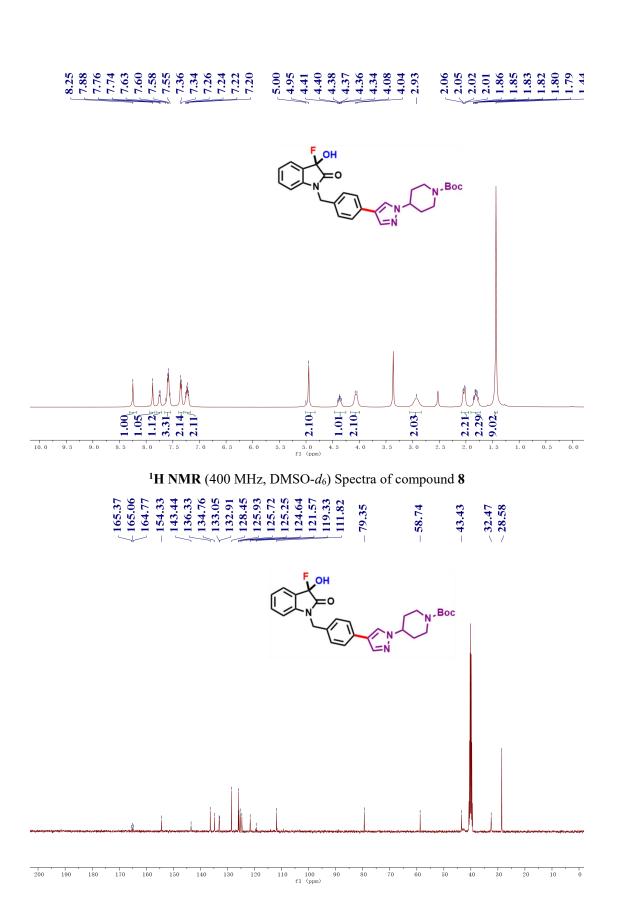


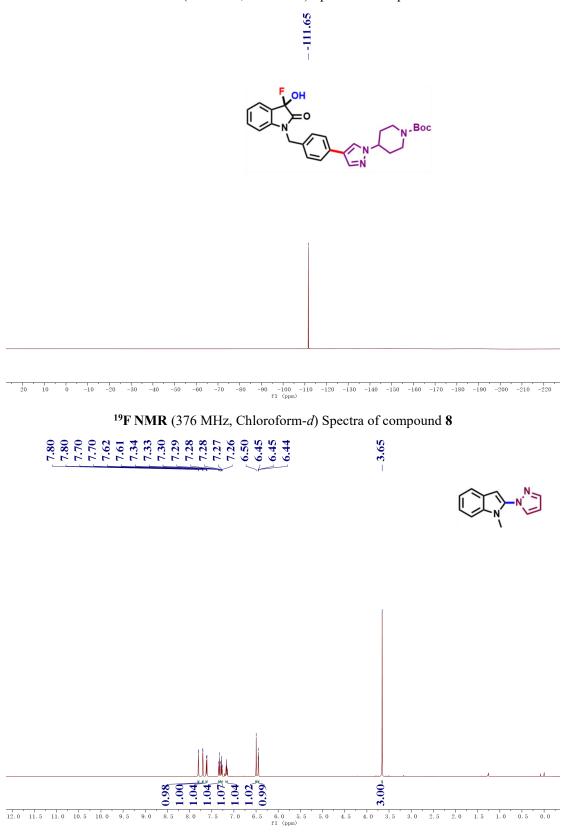
¹³C NMR (101 MHz, Chloroform-*d*) Spectra of compound 4a

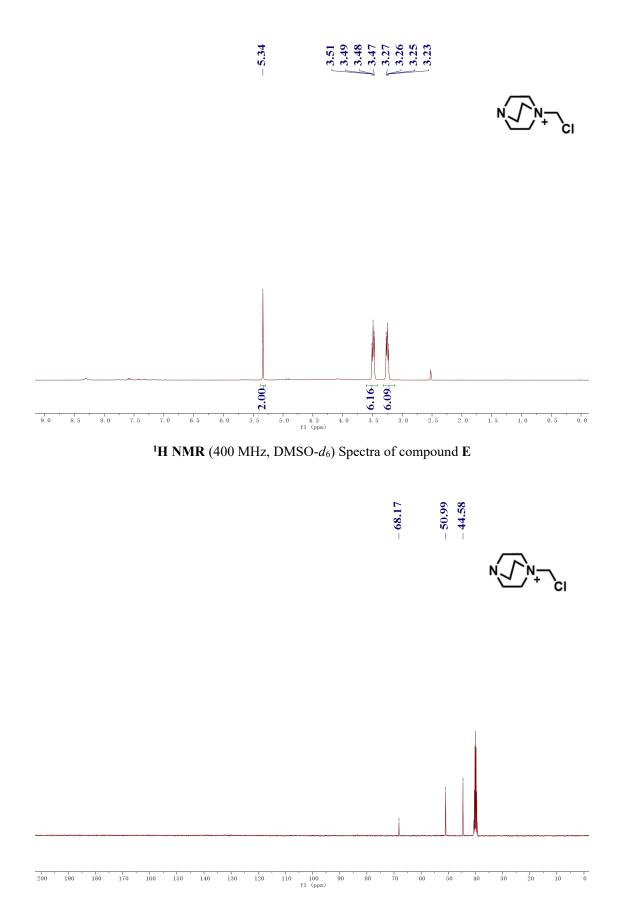



¹⁹F NMR (376 MHz, Chloroform-*d*) Spectra of compound 4a




¹³C NMR (101 MHz, Chloroform-*d*) Spectra of compound 4b


¹H NMR (400 MHz, Chloroform-*d*) Spectra of compound 6



¹³C NMR (101 MHz, DMSO-*d*₆) Spectra of compound 8

¹H NMR (500 MHz, Chloroform-*d*) Spectra of compound 9

¹³C NMR (101 MHz, DMSO-*d*₆) Spectra of compound E

6. References

 [1] Beukeaw D.; Udomsasporn K.; Yotphan S. Iodine-Catalyzed Oxidative Cross-Coupling of Indoles and Azoles: Regioselective Synthesis of *N*-Linked 2-(Azol-1-yl)indole Derivatives. *J. Org. Chem.* 2015, *80*, 3447–3454.