Supporting Information

Nickel Metallaphotoredox-Catalyzed C-O Bond Activation/Csp²-Csp³ Coupling Enabled by Phosphine

Jiaxi Fang,^a Ziheng Jian,^a Huan Liu,^a Yuting Wang,^a Xianbo Yu,^a Zehuai Mou^{*a,c} and Huifei Wang^{*a,b}

- ^a Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- ^b Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
- ^c State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China

E-mail: mouzehuai@nbu.edu.cn, wanghuifei@nbu.edu.cn

Table of Contents

1.	General Information	S3
2.	Experimental Procedures and Spectral Data of Benzyl Alcohol Substrates	S5
3.	Experimental Procedures and Spectral Data of Products	S8
4.	Gram-Scale Synthesis	S26
5.	Unsuccessful Substrates	S27
6.	Mechanistic Studies	S28
	6.1 Experiment with Benzyl Halide	S28
	6.2 GC-MS Analysis for Probing Benzyl Bromide Intermediacy	S28
	6.3 TEMPO Radical-Trapping Experiment	S30
	6.4 Benzylic Radical Probe Experiment with Cyclopropanemethanol	S31
	6.5 Stern-Volmer Quenching Experiments	S33
7.	References	S36
8.	NMR Spectra	S37

1. General Information

A. Materials

All reactions were carried out in oven-dried glassware and under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. All the chemicals were purchased commercially and used without further purification. $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$ was purchased from Laajoo. NiBr₂•diglyme and dtbbpy were purchased from Energy Chemical or Adamas. Triphenylphosphine, 2-bromobenzothiazole and 2,6-lutidine were purchased from Adamas. (*S*)-(+)-Ibuprofen, adapalene, indomethacin, vitamin E, estrone and benzyl alcohols were purchased from Accela. *N*,*N*-Dimethylacetamide (DMA) was purchased from J&K (99.8%, SuperDry, with molecular sieves, J&K Seal) and stored under an argon atmosphere without additional drying. All other solvents were purchased as ACS reagents and used without further purification.

B. Analytic Methods

Thin-layer chromatography (TLC) was conducted with 0.25 mm Tsingdao silica gel plates (60F-254) and visualized by exposure to UV light (254 nm) or chemical stained with basic potassium permanganate solution. Flash column chromatography was performed using Tsingdao silica gel (200-300 mesh) under a positive pressure of air. NMR spectra were recorded on Bruker Advance 500 (¹H: 500 MHz, ¹³C: 125 MHz). ¹H NMR data are reported as follows: chemical shift (multiplicity, coupling constants, number of protons). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. High-resolution mass spectra (HRMS) analysis was performed using a Thermo Scientific Q Exactive Focus Orbitrap mass spectrometer equipped with an ESI source. Gas chromatography-mass spectra (GC-MS) were detected on an Agilent 8890-5977A

gas chromatography-mass spectrometry. Fluorescence quenching experiments were conducted on a Hitachi F-7100 Fluorescence Spectrophotometer using a quartz cuvette with 1 cm path length equipped with a septum cap. UV-Vis spectra were recorded on a TU-1950 UV-Vis Spectrophotometer.

2. Experimental Procedures and Spectral Data of Benzyl Alcohol Substrates

Synthesis of Benzyl Alcohol 2ab

The title compound was prepared according to known literature procedure.^[1] To an oven-dried 50 mL RBF placed with a solution of carboxylic acid (1.031 g, 2.5 mmol, 1 equiv.) in THF (25 mL) at 0 °C was added LiAlH₄ (0.142 g, 3.75 mmol, 1.5 equiv.) slowly. Then the reaction mixture was heated and stirred at 50 °C in the oil-bath and monitored by TLC. After the reaction was complete, the reaction was cooled to 0 °C and carefully quenched by the dropwise addition of H₂O (0.14 mL, 1 mL per 1 g LiAlH₄), 10% NaOH (0.14 mL, 1 mL per 1 g LiAlH₄), and H₂O (0.28 mL, 2 mL per 1 g LiAlH₄) under stirring. Filtrated and the filtrate was concentrated *in vacuo* to give the crude product that purified by flash column chromatography on silica gel (hexane/EtOAc = 5:1) to give the corresponding product **2ab** (0.866 g, 87%) as white solid. The corresponding product **2ab** was known compound and spectral data match that reported in the previous literature.^[1]

Synthesis of Benzyl Alcohols 2ac, 2ad

General Procedure A:

The title compound was prepared according to known literature procedure.^[2] 1,4-Benzenedimethanol (0.331 g, 2.4 mmol, 1.5 equiv.), 4-dimethylaminopyridine (0.029 g, 0.24 mmol, 15 mol%) were added to a 25 mL RBF. CH₂Cl₂ (5 mL) and anhydrous DMF (2 mL) were added and the resulting solution was cooled to 0 °C. A solution of carboxylic acid (1.6 mmol, 1 equiv.) and N,N'-diisopropylcarbodiimide (0.25 mL, 1.6 mmol, 1 equiv.) in CH₂Cl₂ (1 mL) were then added to the reaction. Over the course of six hours the reaction turned from a colorless homogeneous solution to heterogeneous mixture containing a white precipitate. The precipitate was removed by filtration and the filtrate was subsequently removed by rotary evaporation. The crude mixture was diluted with EtOAc (10 mL) and water (20 mL), and the aqueous and organic layers were separated. The aqueous layer was extracted with EtOAc (10 mL×2). The combined organic layers were washed with water (20 mL×2) and brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel to give product.

4-(hydroxymethyl)benzyl (S)-2-(4-isobutylphenyl)propanoate (**2ac**): Prepared according to General Procedure A. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 10:1) to give the corresponding product **2ac** as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, *J* = 7.8 Hz, 2H), 7.20 (dd, *J* = 7.9, 4.3 Hz, 4H), 7.08 (d, *J* = 7.8 Hz, 2H), 5.32 – 4.80 (m, 2H), 4.64 (s, 2H), 3.73 (d, *J* = 7.2 Hz, 1H), 2.44 (d, *J* = 7.2 Hz, 2H), 1.84 (dt, *J* = 13.6, 6.7 Hz, 1H), 1.49 (d, *J* = 7.2 Hz, 3H), 0.89 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 174.7, 140.8, 140.7, 137.6, 135.5, 129.4, 128.1, 127.3, 127.1, 66.2, 65.0, 45.2, 45.1, 30.3, 22.5, 18.5. ESI-MS calc'd for C₂₁H₂₆NaO₃ [M+Na]⁺: 349.1774, found 349.1772.

4-(hydroxymethyl)benzyl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl) acetate (**2ad**): Prepared according to General Procedure A. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 10:1) to give the corresponding product **2ad** as white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.70 – 7.60 (m, 2H), 7.53 – 7.43 (m, 2H), 7.32 (d, *J* = 7.8 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 6.97 – 6.82 (m, 2H), 6.66 (dd, *J* = 9.1, 2.5 Hz, 1H), 5.13 (s, 2H), 4.69 (d, *J* = 4.2 Hz, 2H), 4.00 – 3.66 (m, 5H), 2.36 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 168.4, 156.1, 141.2, 139.4, 136.0, 135.2, 133.9, 131.3, 130.9, 130.6, 129.2, 128.6, 127.2, 115.1, 112.6, 111.9, 101.3, 66.7, 65.1, 55.8, 30.6, 13.5. ESI-MS calc'd for C₂₇H₂₄³⁵CINNaO₅ [M+Na]⁺: 500.1235, found 500.1236.

Synthesis of Benzyl Alcohols 2ae, 2af

General Procedure B:

The title compound was prepared according to known literature procedure.^[3] A solution of 4-(bromomethyl)benzyl alcohol (0.402 g, 2.0 mmol, 1 equiv.), phenolic compound (2.4 mmol, 1.2 equiv.), and potassium carbonate (0.553 g, 4.0 mmol, 2 equiv.) in DMF (4 mL) were stirred at room temperature for 9 h. The mixture was diluted with CH_2Cl_2 (10 mL) and water (20 mL), and the aqueous and organic layers were separated. The aqueous layer was extracted with CH_2Cl_2 (10 mL×2). The combined organic layers were washed with water (20 mL×2) and brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel to give product.

(4-((((S)-2,5,7,8-tetramethyl-2-((4S,8S)-4,8,12-trimethyltridecyl)chroman-6-yl)oxy) methyl)phenyl)methanol (**2ae**): Prepared according to General Procedure B. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 15:1) to give the corresponding product **2ae** as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, *J* = 7.7 Hz, 2H), 7.39 (d, *J* = 7.7 Hz, 2H), 4.70 (d, *J* = 10.1 Hz, 4H), 2.59 (t, *J* = 6.9 Hz, 2H), 2.27 – 2.01 (m, 9H), 1.82 – 1.77 (m, 2H), 1.57 – 1.47 (m, 3H), 1.39 (dt, *J* = 13.0, 5.6 Hz, 4H), 1.27 (d, *J* = 20.6 Hz, 11H), 1.17 – 1.03 (m, 6H), 0.85 (dd, *J* = 11.1, 6.4 Hz, 12H). ¹³C NMR (125 MHz, CDCl₃) δ 148.2, 148.0, 140.6, 137.6, 128.1, 128.0, 127.2, 126.1, 123.1, 117.7, 75.0, 74.6, 65.3, 40.2, 39.5, 37.6, 37.6, 37.5, 37.4, 32.9, 32.8, 31.4, 28.1, 25.0, 24.6, 24.0, 22.9, 22.8, 21.2, 20.8, 19.9, 19.8, 13.0, 12.2, 12.0. ESI-MS calc'd for C₃₇H₅₈NaO₃ [M+Na]⁺: 573.4278, found 573.4277.

(8R,9S,13S,14S)-3-((4-(hydroxymethyl)benzyl)oxy)-13-methyl-6,7,8,9,11,12,13,14, 15,16-decahydro-17*H*-cyclopenta[*a*]phenanthren-17-one (**2af**): Prepared according to General Procedure B. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 2:1) to give the corresponding product **2af** as white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.48 – 7.35 (m, 4H), 7.20 (d, *J* = 8.6 Hz, 1H), 6.81 – 6.75 (m, 1H), 6.73 (s, 1H), 5.03 (s, 2H), 4.70 (s, 2H), 2.95 – 2.76 (m, 2H), 2.53 – 2.43 (m, 1H), 2.39 (d, *J* = 10.7 Hz, 1H), 2.30 – 2.17 (m, 1H), 2.18 – 1.91 (m, 4H), 1.64 – 1.37 (m, 6H), 0.90 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 221.3, 156.9, 140.7, 137.9, 136.7, 132.4, 127.8, 127.3, 126.5, 115.0, 112.4, 69.8, 65.2, 50.5, 48.1, 44.1, 38.4, 36.0, 31.6, 29.8, 26.6, 26.0, 21.7, 14.0. ESI-MS calc'd for C₂₆H₃₀NaO₃ [M+Na]⁺: 413.2087, found 413.2086.

3. Experimental Procedures and Spectral Data of Products

The photoreactors used in this research were bought from GeAo Chem (**Fig. S1**: blue LEDs, 1 W for every light bulb; every vial was irradiated by 6 light bulbs from the side). Gram-scale reaction was performed under irradation of two 15 W blue LEDs, which is bought from Taobao (<u>www.taobao.com</u>) (**Fig. S2**) The metallaphotoredox reaction temperature was controlled between 22 °C and 30 °C by cooling with fans and air conditioner.

Fig. S1 Reaction Set-up

General Procedure C:

In an Ar-filled glovebox, dtbbpy (0.011 g, 0.04 mmol, 20 mol%), NiBr₂•diglyme (0.007 g, 0.02 mmol, 10 mol%) were added to a 10 mL vial with a magnetic stir, then DMA (2.0 mL) was added via syringe. The reaction mixture was stirred for 0.5 h at room temperature. To another vial with a magnetic stir, 2-bromobenzothiazole **1** (0.2 mmol, 1 equiv.), benzyl alcohol **2** (0.6 mmol, 3 equiv.), triphenylphosphine (0.063 g, 0.24

mmol, 1.2 equiv.), tetrabutylammonium iodide (0.015 g, 0.04 mmol, 20 mol%) and $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$ (0.004 g, 0.004 mmol, 2 mol%) were added in the glovebox. The vial was capped and removed from the glovebox, 2,6-lutidine (0.004 mL, 0.04 mmol, 20 mol%) was added via micro-syringe and the above-mentioned freshly prepared solvent of nickel/ligand in DMA was added via syringe immediately. The resulting mixture was stirred under irradiation at a distance of ~1 cm from 4 x 6 W blue LEDs ($\lambda = 450-465$ nm) for 3 h. The mixture was diluted with EtOAc (5 mL) and water (15 mL), and the aqueous and organic layers were separated. The aqueous layer was extracted with EtOAc (10 mL×2). The combined organic layers were washed with water (20 mL×2) and brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash chromatography to give corresponding product **3**.

General Procedure D:

In an Ar-filled glovebox, dtbbpy (0.011 g, 0.04 mmol, 20 mol%), NiBr₂•diglyme (0.007 g, 0.02 mmol, 10 mol%) were added to a 10 mL vial with a magnetic stir, then DMA (2.0 mL) was added via syringe. The reaction mixture was stirred for 0.5 h at room temperature. To another vial with a magnetic stir, 2-bromobenzothiazole 1 (0.2 mmol, 1 equiv.), triphenylphosphine (0.063 g, 0.24 mmol, 1.2 equiv.), tetrabutylammonium iodide (0.015 g, 0.04 mmol, 20 mol%) and [Ir(dFCF₃ppy)₂dtbbpy]PF₆ (0.004 g, 0.004 mmol, 2 mol%) were added in the glovebox. The vial was capped and removed from the glovebox, benzyl alcohol 2 (0.6 mmol, 3 equiv.) and 2,6-lutidine (0.004 mL, 0.04 mmol, 20 mol%) were added via micro-syringe, then the above-mentioned freshly prepared solvent of nickel/ligand in DMA was added via syringe immediately. The resulting mixture was stirred under irradiation at a distance of ~1 cm from 4 x 6 W blue LEDs ($\lambda = 450-465$ nm) for 3 h. The mixture was diluted with EtOAc (5 mL) and water (15 mL), and the aqueous and organic layers were separated. The aqueous layer was extracted with EtOAc (10 mL×2). The combined organic layers were washed with water (20 mL×2) and brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash chromatography to give corresponding product 3.

General Procedure E:

In an Ar-filled glovebox, dtbbpy (0.011 g, 0.04 mmol, 20 mol%), NiBr₂•diglyme (0.007 g, 0.02 mmol, 10 mol%) were added to a 10 mL vial with a magnetic stir, then DMA (2.0 mL) was added via syringe. The reaction mixture was stirred for 0.5 h at room temperature. Then benzyl alcohol 2 (0.4 mmol, 2 equiv.) was added via micro-syringe. To another vial with a magnetic stir, 2-bromobenzothiazole 1 (0.2 mmol, 1 equiv.), triphenylphosphine (0.063 g, 0.24 mmol, 1.2 equiv.), tetrabutylammonium iodide (0.015 g, 0.04 mmol, 20 mol%) and [Ir(dFCF₃ppy)₂dtbbpy]PF₆ (0.004 g, 0.004 mmol, 2 mol%) were added in the glovebox. The vial was capped and removed from the glovebox, and 2,6-lutidine (0.004 mL, 0.04 mmol, 20 mol%) was added via microsyringe. Then the above-mentioned freshly prepared solvent of nickel/ligand and benzyl alcohol in DMA was added via syringe to the reaction vial immediately. The resulting mixture was stirred under irradiation at a distance of ~1 cm from 4 x 6 W blue LEDs ($\lambda = 450-465$ nm) for 3 h. The mixture was diluted with EtOAc (5 mL) and water (15 mL), and the aqueous and organic layers were separated. The aqueous layer was extracted with EtOAc (10 mL×2). The combined organic layers were washed with water (20 mL×2) and brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash chromatography to give corresponding product 3.

2-(4-methylbenzyl)benzo[*d*]thiazole (**3a**): Prepared according to General Procedure C. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 120:1) to yield product **3a** (0.032 g, 67%) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.52 – 7.38 (m, 1H), 7.37 -7.28 (m, 1H), 7.25 (d, J = 7.8 Hz, 2H), 7.15 (d, J = 7.8 Hz, 2H), 4.39 (s, 2H), 2.33 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.8, 153.4, 137.2, 135.8, 134.3, 129.7, 129.2, S11

126.0, 124.9, 122.9, 121.6, 40.4, 21.2. ESI-MS calc'd for C₁₅H₁₄NS [M+H]⁺: 240.0841, found 240.0840.

2-(4-ethylbenzyl)benzo[*d*]thiazole (**3b**): Prepared according to General Procedure D. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 130:1) to yield product **3b** (0.035 g, 69%) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (dd, *J* = 8.4, 1.0 Hz, 1H), 7.76 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.49 – 7.38 (m, 1H), 7.35 – 7.26 (m, 3H), 7.20 – 7.15 (m, 2H), 4.40 (s, 2H), 2.63 (q, *J* = 7.6 Hz, 2H), 1.22 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.7, 153.4, 143.5, 135.8, 134.5, 129.2, 128.5, 126.0, 124.9, 122.9, 121.6, 40.4, 28.6, 15.6. ESI-MS calc'd for C₁₆H₁₆NS [M+H]⁺: 254.0998, found 254.0998.

2-(4-(tert-butyl)benzyl)benzo[*d*]thiazole (**3c**): Prepared according to General Procedure E. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 140:1) to yield product **3c** (0.037 g, 66%) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, *J* = 8.2 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.51 – 7.41 (m, 1H), 7.37 (d, *J* = 8.1 Hz, 2H), 7.31 (dd, *J* = 8.2, 6.2 Hz, 3H), 4.41 (s, 2H), 1.31 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 171.6, 153.4, 150.4, 135.8, 134.3, 128.9, 126.1, 125.9, 124.9, 122.9, 121.6, 40.3, 34.6, 31.5. ESI-MS calc'd for C₁₈H₂₀NS [M+H]⁺: 282.1311, found 282.1310.

2-benzylbenzo[*d*]thiazole (**3d**): Prepared according to General Procedure D. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 130:1) to yield product **3d** (0.027 g, 60%) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 8.2 Hz, 1H), 7.78 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.49 – 7.42 (m, 1H), 7.39 – 7.32 (m, 5H), 7.32 – 7.25 (m, 1H), 4.44 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 171.3, 153.4, 137.3, 135.8, 129.3, 129.0, 127.5, 126.1, 124.9, 122.9, 121.6, 40.8. ESI-MS calc'd for C₁₄H₁₂NS [M+H]⁺: 226.0685, found 226.0684.

2-(3-methylbenzyl)benzo[*d*]thiazole (**3e**): Prepared according to General Procedure D. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 130:1) to yield product **3e** (0.031 g, 64%) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 8.2 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.48 – 7.41 (m, 1H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.28 – 7.21 (m, 1H), 7.17 (d, *J* = 8.8 Hz, 2H), 7.10 (d, *J* = 7.5 Hz, 1H), 4.40 (s, 2H), 2.34 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.5, 153.4, 138.7, 137.2, 135.8, 130.0, 128.9, 128.2, 126.3, 126.1, 124.9, 122.9, 121.6, 40.7, 21.5. ESI-MS calc'd for C₁₅H₁₄NS [M+H]⁺: 240.0841, found 240.0841.

2-(3,4-dimethylbenzyl)benzo[*d*]thiazole (**3f**): Prepared according to General Procedure C. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 150:1) to yield product **3f** (0.032 g, 63%) as viscous oil. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, J = 8.2 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.49 – 7.36 (m, 1H), 7.38 – 7.27 (m, 1H), 7.12 (d, J = 15.4 Hz, 3H), 4.36 (s, 2H), 2.24 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 172.0, 153.4, 137.2, 135.8, 135.8, 134.7, 130.5, 130.2, 126.6, 126.0, 124.8, 122.9, 121.6, 40.4, 19.9, 19.6. ESI-MS calc'd for C₁₆H₁₆NS [M+H]⁺: 254.0998, found 254.0997.

2-(4-methoxybenzyl)benzo[*d*]thiazole (**3g**): Prepared according to General Procedure D. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 70:1) to yield product **3g** (0.028 g, 55%) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, *J* = 8.1 Hz, 1H), 7.80 – 7.76 (m, 1H), 7.55 – 7.38 (m, 1H), 7.35 – 7.26 (m, 3H), 6.99 – 6.80 (m, 2H), 4.38 (s, 2H), 3.80 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.2, 159.0, 153.4, 135.8, 130.4, 129.4, 126.1, 124.9, 122.8, 121.6, 114.4, 55.4, 39.9. ESI-MS calc'd for C₁₅H₁₄NOS [M+H]⁺: 256.0791, found 256.0792.

2-(3,5-dimethoxybenzyl)benzo[*d*]thiazole (**3h**): Prepared according to General Procedure C. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 20:1) to yield product **3h** (0.029 g, 51%) as viscous oil. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, *J* = 8.2 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.48 – 7.42 (m, 1H), 7.37 – 7.30 (m, 1H), 6.52 (d, *J* = 2.2 Hz, 2H), 6.39 (t, *J* = 2.3 Hz, 1H), 4.37 (s, 2H), 3.77 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 171.0, 161.2, 153.3, 139.4, 135.8, 126.1, 125.0, 122.9, 121.7, 107.3, 99.4, 55.5, 41.0. ESI-MS calc'd for C₁₆H₁₆NO₂S [M+H]⁺: 286.0896, found 286.0895.

2-(3,4,5-trimethoxybenzyl)benzo[*d*]thiazole (**3i**): Prepared according to General Procedure D. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 8:1) to yield product **3i** (0.041 g, 65%) as white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 8.1 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.50 – 7.43 (m, 1H), 7.38 – 7.31 (m, 1H), 6.59 (s, 2H), 4.37 (s, 2H), 3.84 (d, *J* = 4.2 Hz, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 153.6, 153.3, 137.3, 135.7, 132.8, 126.1, 125.0, 122.8, 121.7, 106.2, 61.0, 56.2, 41.0. ESI-MS calc'd for C₁₇H₁₇NNaO₃S [M+Na]⁺: 338.0821, found 338.0819.

2-(4-fluorobenzyl)benzo[*d*]thiazole (**3j**): Prepared according to General Procedure D. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 150:1) to yield product **3j** (0.035 g, 72%) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, *J* = 8.2 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.52 – 7.40 (m, 1H), 7.36-7.32 (m, 3H), 7.09 – 6.99 (m, 2H), 4.41 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 170.9, 162.2 (d, *J* = 245.0 Hz), 153.4, 135.7, 133.0 (d, *J* = 2.5 Hz), 130.8 (d, *J* = 7.5 Hz), 126.2, 125.0, 123.0, 121.7, 115.9 (d, *J* = 21.2 Hz), 39.9. ¹⁹F NMR (470 MHz, CDCl₃) δ - 115.18. ESI-MS calc'd for C₁₄H₁₁FNS [M+H]⁺: 244.0591, found 244.0592.

2-(4-chlorobenzyl)benzo[*d*]thiazole (**3k**): Prepared according to General Procedure C. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 20:1) to yield product **3k** (0.029 g, 56%) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 8.04 – 7.88 (m, 1H), 7.80 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.49 – 7.42 (m, 1H), 7.38 – 7.28 (m, 5H), 4.40 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 170.4, 153.4, 135.7, 135.7, 133.4, 130.6, 129.1, 126.2, 125.1, 123.0, 121.7, 40.0. ESI-MS calc'd for C₁₄H₁₁³⁵ClNS [M+H]⁺: 260.0295, found 260.0296.

2-(4-(trifluoromethyl)benzyl)benzo[*d*]thiazole (**31**): Prepared according to General Procedure D. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 150:1) to yield product **31** (0.043 g, 73%) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 8.2 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.52 – 7.48 (m, 3H), 7.42 – 7.36 (m, 1H), 4.49 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 169.4, 153.4, 141.2, 135.7, 129.8 (q, *J* = 32.5 Hz), 129.6, 126.3, 125.9 (q, *J* = 3.8 Hz), 125.2, 124.2 (q, *J* = 270.0 Hz), 123.1, 121.7, 40.4. ¹⁹F NMR (470 MHz, CDCl₃) δ -62.50. ESI-MS calc'd for C₁₅H₁₁F₃NS [M+H]⁺: 294.0559, found 294.0558.

2-(4-(trifluoromethoxy)benzyl)benzo[*d*]thiazole (**3m**): Prepared according to General Procedure D. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 160:1) to yield product **3m** (0.038 g, 61%) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 8.1 Hz, 1H), 7.83 – 7.73 (m, 1H), 7.55 – 7.42 (m, 1H), 7.43 – 7.29 (m, 3H), 7.19 (d, *J* = 8.2 Hz, 2H), 4.43 (s, 2H). ¹³C NMR (125

MHz, CDCl₃) δ 170.1, 153.4, 148.6 (q, *J* = 1.25 Hz), 136.0, 135.7, 130.6, 126.2, 125.1, 123.0, 121.7, 121.5, 120.6 (q, *J* = 255.0 Hz), 39.9. ¹⁹F NMR (470 MHz, CDCl₃) δ - 57.86. ESI-MS calc'd for C₁₅H₁₁F₃NOS [M+H]⁺: 310.0508, found 310.0510.

2-([1,1'-biphenyl]-4-ylmethyl)benzo[*d*]thiazole (**3n**): Prepared according to General Procedure C. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 130:1) to yield product **3n** (0.044 g, 73%) as white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 8.2 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.65 – 7.53 (m, 4H), 7.47 – 7.40 (m, 5H), 7.37 – 7.32 (m, 2H), 4.48 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 171.1, 153.4, 140.8, 140.4, 136.3, 135.8, 129.7, 128.9, 127.7, 127.5, 127.2, 126.1, 125.0, 122.9, 121.7, 40.4. ESI-MS calc'd for C₂₀H₁₆NS [M+H]⁺: 302.0998, found 302.0996.

2-(2-methylbenzyl)benzo[*d*]thiazole (**30**): Prepared according to General Procedure C. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 130:1) to yield product **30** (0.028 g, 58%) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 8.2 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 1H), 7.31 (t, *J* = 7.3 Hz, 2H), 7.21 (q, *J* = 8.2, 7.4 Hz, 3H), 4.43 (s, 2H), 2.33 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.7, 153.4, 137.1, 135.8, 135.7, 130.8, 130.3, 127.9, 126.6, 126.0, 124.8, 122.8, 121.6, 38.6, 19.8. ESI-MS calc'd for C₁₅H₁₄NS [M+H]⁺: 240.0841, found 240.0838.

2-(naphthalen-2-ylmethyl)benzo[*d*]thiazole (**3p**): Prepared according to General Procedure C. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 140:1) to yield product **3p** (0.034 g, 62%) as viscous oil. ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 8.2 Hz, 1H), 7.84 – 7.74 (m, 5H), 7.51 – 7.42 (m, 4H), 7.36 – 7.29 (m, 1H), 4.59 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 153.4, 135.8, 134.8, 133.7, 132.7, 128.8, 128.0, 127.9, 127.8, 127.3, 126.4, 126.1, 126.1, 125.0, 122.9, 121.7, 40.9. ESI-MS calc'd for C₁₈H₁₄NS [M+H]⁺: 276.0841, found 276.0842.

2-(benzo[*b*]thiophen-2-ylmethyl)benzo[*d*]thiazole (**3q**): Prepared according to General Procedure C. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 150:1) to yield product **3q** (0.034 g, 61%) as viscous oil. ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 8.2 Hz, 1H), 7.87 – 7.74 (m, 2H), 7.74 – 7.67 (m, 1H), 7.53 – 7.43 (m, 1H), 7.39 – 7.27 (m, 3H), 7.25 (d, *J* = 3.6 Hz, 1H), 4.71 (d, *J* = 1.1 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 169.2, 153.3, 140.2, 139.9, 139.9, 135.8, 126.3, 125.2, 124.6, 124.4, 123.6, 123.5, 123.1, 122.4, 121.8, 35.6. ESI-MS calc'd for C₁₆H₁₂NS₂ [M+H]⁺: 282.0406, found 282.0403.

2-(benzofuran-5-ylmethyl)benzo[d]thiazole (3r): Prepared according to General

Procedure C. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 120:1) to yield product **3r** (0.032 g, 60%) as white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 8.2 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.60 (dd, *J* = 11.2, 2.0 Hz, 2H), 7.51 – 7.41 (m, 2H), 7.36 – 7.25 (m, 2H), 6.72 (d, *J* = 2.1 Hz, 1H), 4.52 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 172.0, 154.4, 153.4, 145.7, 135.8, 131.9, 128.0, 126.0, 125.6, 124.9, 122.9, 121.8, 121.6, 111.8, 106.6, 40.6. ESI-MS calc'd for C₁₆H₁₂NOS [M+H]⁺: 266.0634, found 266.0634.

2-(benzofuran-3-ylmethyl)benzo[*d*]thiazole (**3s**): Prepared according to General Procedure C. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 120:1) to yield product **3s** (0.033 g, 62%) as white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 8.2 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.67 (s, 1H), 7.54 (d, *J* = 7.8 Hz, 1H), 7.51 – 7.43 (m, 2H), 7.31 (dt, *J* = 16.6, 7.8 Hz, 2H), 7.21 (t, *J* = 7.5 Hz, 1H), 4.51 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 169.9, 155.6, 153.4, 143.0, 135.7, 127.4, 126.2, 125.1, 124.8, 123.0, 122.9, 121.7, 119.9, 116.4, 111.8, 29.1. ESI-MS calc'd for C₁₆H₁₂NOS [M+H]⁺: 266.0634, found 266.0635.

2-(thiophen-3-ylmethyl)benzo[*d*]thiazole (**3t**): Prepared according to General Procedure D. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 120:1) to yield product **3t** (0.024 g, 52%) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 8.04 – 7.91 (m, 1H), 7.80 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.53 – 7.37 (m, 1H), 7.37 – 7.30 (m, 2H), 7.22 (dd, *J* = 3.0, 1.3 Hz, 1H), 7.08 (dd, *J* = 5.0, 1.3 Hz,

1H), 4.46 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 153.4, 137.1, 135.7, 128.4, 126.5, 126.1, 125.0, 123.2, 122.9, 121.7, 35.2. ESI-MS calc'd for C₁₂H₁₀NS₂ [M+H]⁺: 232.0249, found 232.0249.

2-(benzo[*d*][1,3]dioxol-5-ylmethyl)benzo[*d*]thiazole (**3u**): Prepared according to General Procedure C. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 80:1) to yield product **3u** (0.031 g, 57%) as white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (dd, *J* = 8.1, 1.0 Hz, 1H), 7.78 (dt, *J* = 8.0, 0.9 Hz, 1H), 7.51 – 7.37 (m, 1H), 7.37 – 7.29 (m, 1H), 6.90 – 6.69 (m, 3H), 5.94 (s, 2H), 4.34 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 171.6, 153.4, 148.1, 147.0, 135.8, 131.0, 126.1, 125.0, 122.9, 122.5, 121.6, 109.7, 108.6, 101.2, 40.4. ESI-MS calc'd for C₁₅H₁₂NO₂S [M+H]⁺: 270.0583, found 270.0582.

6-methoxy-2-(4-methylbenzyl)benzo[*d*]thiazole (**3v**): Prepared according to General Procedure C. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 80:1) to yield product **3v** (0.033 g, 61%) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.9 Hz, 1H), 7.40 – 7.20 (m, 3H), 7.15 (d, *J* = 7.8 Hz, 2H), 7.03 (dd, *J* = 8.9, 2.6 Hz, 1H), 4.34 (s, 2H), 3.82 (s, 3H), 2.33 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 169.1, 157.5, 147.8, 137.1, 137.0, 134.4, 129.6, 129.1, 123.3, 115.1, 104.3, 55.9, 40.2, 21.2. ESI-MS calc'd for C₁₆H₁₆NOS [M+H]⁺: 270.0947, found 270.0946.

2-(4-ethylbenzyl)-6-(trifluoromethoxy)benzo[*d*]thiazole (**3w**): Prepared according to General Procedure D. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 170:1) to yield product **3w** (0.036 g, 54%) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, *J* = 8.9 Hz, 1H), 7.70 – 7.59 (m, 1H), 7.31 (dd, *J* = 8.9, 2.4 Hz, 1H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 4.40 (s, 2H), 2.64 (q, *J* = 7.6 Hz, 2H), 1.23 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.2, 152.0, 146.3 (q, *J* = 1.2 Hz), 143.7, 136.6, 134.1, 129.2, 128.6, 123.7, 120.6 (q, *J* = 256.2 Hz), 120.0, 114.3, 40.4, 28.6, 15.6. ¹⁹F NMR (470 MHz, CDCl₃) δ -58.06. ESI-MS calc'd for C₁₇H₁₅F₃NOS [M+H]⁺: 338.0821, found 338.0820.

6-fluoro-2-(4-methylbenzyl)benzo[*d*]thiazole (**3x**): Prepared according to General Procedure C. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 130:1) to yield product **3x** (0.026 g, 51%) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.91 (dd, *J* = 8.9, 4.8 Hz, 1H), 7.44 (dd, *J* = 8.2, 2.6 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.20 – 7.14 (m, 3H), 4.37 (s, 2H), 2.34 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.5 (d, *J* = 3.7 Hz), 160.3 (d, *J* = 243.7 Hz), 150.0 (d, *J* = 2.5 Hz), 137.3, 136.7 (d, *J* = 11.2 Hz), 134.0, 129.7, 129.2, 123.7 (d, *J* = 10.0 Hz), 114.6 (d, *J* = 25.0 Hz), 107.8 (d, *J* = 26.3 Hz), 40.3, 21.2. ¹⁹F NMR (470 MHz, CDCl₃) δ -116.67. ESI-MS calc'd for C₁₅H₁₃FNS [M+H]⁺: 258.0747, found 258.0748.

2-(4-ethylbenzyl)-6-(trifluoromethyl)benzo[*d*]thiazole (**3y**): Prepared according to General Procedure D. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 160:1) to yield product **3y** (0.031 g, 48%) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 8.07 (dd, *J* = 5.1, 3.4 Hz, 2H), 7.69 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 7.9 Hz, 2H), 4.43 (s, 2H), 2.65 (q, *J* = 7.6 Hz, 2H), 1.24 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 175.3, 155.5, 143.8, 135.9, 134.0, 129.3, 128.6, 127.1 (q, *J* = 32.5 Hz), 124.3 (q, *J* = 270.0 Hz), 123.3, 123.1 (q, *J* = 3.7 Hz), 119.3 (q, *J* = 5.0 Hz), 40.5, 28.6, 15.6. ¹⁹F NMR (470 MHz, CDCl₃) δ -61.37. ESI-MS calc'd for C₁₇H₁₅F₃NS [M+H]⁺: 322.0872, found 322.0873.

6-chloro-2-(4-ethylbenzyl)benzo[*d*]thiazole (**3z**): Prepared according to General Procedure D. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 170:1) to yield product **3z** (0.034 g, 59%) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, *J* = 8.7 Hz, 1H), 7.74 (d, *J* = 2.1 Hz, 1H), 7.40 (dd, *J* = 8.7, 2.1 Hz, 1H), 7.31 – 7.21 (m, 2H), 7.19 (d, *J* = 7.8 Hz, 2H), 4.38 (s, 2H), 2.64 (q, *J* = 7.6 Hz, 2H), 1.23 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.4, 152.0, 143.7, 137.0, 134.2, 130.8, 129.2, 128.6, 126.8, 123.6, 121.2, 40.4, 28.6, 15.6. ESI-MS calc'd for C₁₆H₁₅³⁵CINS [M+H]⁺: 288.0608, found 288.0608.

5-chloro-2-(4-ethylbenzyl)benzo[*d*]thiazole (**3aa**): Prepared according to General Procedure D. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 170:1) to yield product **3aa** (0.036 g, 63%) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 2.0 Hz, 1H), 7.66 (d, *J* = 8.5 Hz, 1H), 7.31 – 7.24 (m, 3H), 7.18 (d, *J* = 7.8 Hz, 2H), 4.38 (s, 2H), 2.64 (q, *J* = 7.6 Hz, 2H), 1.23 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.9, 154.3, 143.7, 134.2, 134.1, 132.0, 129.2, 128.5, 125.4, 122.8, 122.3, 40.4, 28.6, 15.6. ESI-MS calc'd for C₁₆H₁₅³⁵ClNS [M+H]⁺: 288.0608, found 288.0607.

2-((6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)naphthalen-2-yl)methyl) benzo [*d*]thiazole (**3ab**): Prepared according to General Procedure C. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 50:1) to yield product **3ab** (0.055 g, 53%) as white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 8.2 Hz, 1H), 7.97 (d, *J* = 1.9 Hz, 1H), 7.89 – 7.80 (m, 3H), 7.78 – 7.71 (m, 2H), 7.58 (d, *J* = 2.4 Hz, 1H), 7.52 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.49 – 7.43 (m, 2H), 7.37 – 7.30 (m, 1H), 6.98 (d, *J* = 8.4 Hz, 1H), 4.61 (s, 2H), 3.89 (s, 3H), 2.18 (d, *J* = 2.9 Hz, 6H), 2.11 – 1.99 (m, 3H), 1.80 (d, *J* = 3.5 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 158.7, 153.4, 139.3, 139.0, 135.9, 134.4, 133.2, 133.1, 132.5, 128.9, 128.2, 127.8, 127.6, 126.3, 126.1, 126.0, 125.7, 125.0, 122.9, 121.7, 112.2, 55.3, 41.0, 40.7, 37.3, 37.3, 29.2. ESI-MS calc'd for C₃₅H₃₄NOS [M+H]⁺: 516.2356, found 516.2356.

4-(benzo[*d*]thiazol-2-ylmethyl)benzyl (S)-2-(4-isobutylphenyl)propanoate (**3ac**): Prepared according to General Procedure C. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 30:1) to yield product **3ac** (0.062 g, 70%) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, *J* = 8.2 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 1H), 7.31 (dd, *J* = 19.8, 7.7 Hz, 3H), 7.24 – 7.13 (m, 4H), 7.07 (d, *J* = 7.8 Hz, 2H), 5.08 (d, *J* = 2.9 Hz, 2H), 4.41 (s, 2H), 3.74 (q, *J* = 7.1 Hz, 1H), 2.42 (d, *J* = 7.2 Hz, 2H), 1.82 (dt, *J* = 13.5, 6.8 Hz, 1H), 1.50 (d, *J* = 7.2 Hz, 3H), 0.88 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 174.6, 170.8, 153.4, 140.7, 137.7, 137.1, 135.8, 135.3, 129.4, 129.3, 128.4, 127.3, 126.1, 125.0, 122.9, 121.6, 66.0, 45.2, 45.1, 40.4, 30.3, 22.5, 18.5. ESI-MS calc'd for C₂₈H₂₉NNaO₂S [M+Na]⁺: 466.1811, found 466.1810.

4-(benzo[*d*]thiazol-2-ylmethyl)benzyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)acetate (**3ad**): Prepared according to General Procedure C. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 8:1) to yield product **3ad** (0.057 g, 48%) as yellow viscous oil. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, *J* = 8.2 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.44 (dd, *J* = 8.4, 2.3 Hz, 3H), 7.37 – 7.30 (m, 3H), 7.28 (d, *J* = 8.0 Hz, 2H), 6.92 (d, *J* = 2.5 Hz, 1H), 6.87 (d, *J* = 9.0 Hz, 1H), 6.66 (dd, *J* = 9.0, 2.5 Hz, 1H), 5.13 (s, 2H), 4.43 (s, 2H), 3.72 (d, *J* = 21.6 Hz, 5H), 2.36 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 170.7, 168.4, 156.2, 153.4, 139.4, 137.5, 136.1, 135.7, 135.0, 134.0, 131.3, 130.9, 130.7, 129.5, 129.2, 128.8, 126.2, 125.0, 123.0, 121.7, 115.1, 112.6, 112.0, 101.3, 66.5, 55.8, 40.4, 30.5, 13.5. ESI-MS calc'd for $C_{34}H_{27}^{35}ClN_2NaO_4S$ [M+Na]⁺: 617.1272, found 617.1275.

2-(4-((((S)-2,5,7,8-tetramethyl-2-((4S,8S)-4,8,12-trimethyltridecyl)chroman-6-yl)oxy) methyl)benzyl)benzo[*d*]thiazole (**3ae**): Prepared according to General Procedure C. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 50:1) to yield product **3ae** (0.081 g, 61%) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 8.2 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.50 – 7.42 (m, 3H), 7.40 (d, *J* = 7.8 Hz, 2H), 7.32 (t, *J* = 7.6 Hz, 1H), 4.68 (s, 2H), 4.45 (s, 2H), 2.58 (t, *J* = 6.9 Hz, 2H), 2.33 – 1.98 (m, 9H), 1.89 – 1.67 (m, 2H), 1.53 (dd, *J* = 13.6, 6.7 Hz, 3H), 1.39 (td, *J* = 11.0, 5.0 Hz, 4H), 1.25 (d, *J* = 9.5 Hz, 11H), 1.17 – 1.03 (m, 6H), 0.85 (dd, *J* = 10.5, 6.3 Hz, 12H). ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 153.4, 148.2, 148.1, 137.4, 136.8, 135.8, 129.4, 128.3, 128.0, 126.1, 126.0, 124.9, 123.1, 122.9, 121.6, 117.7, 74.9, 74.4, 40.5, 40.2, 39.5, 37.6, 37.6, 37.5, 37.4, 32.9, 32.8, 31.4, 28.1, 24.9, 24.7, 24.0, 22.9, 22.8, 21.2, 20.8, 19.9, 19.8, 13.0, 12.1, 12.0. ESI-MS calc'd for C₄₄H₆₁NNaO₂S [M+Na]⁺: 690.4315, found 690.4315.

(8R,9S,13S,14S)-3-((4-(benzo[*d*]thiazol-2-ylmethyl)benzyl)oxy)-13-methyl-6,7,8,9, 11,12,13,14,15,16-decahydro-17*H*-cyclopenta[*a*]phenanthren-17-one (**3af**): Prepared according to General Procedure C. The residue was purified by flash column

chromatography on silica gel (hexane/EtOAc = 7:1) to yield product **3af** (0.059 g, 58%) as white viscous oil. ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 8.2 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.40 (d, *J* = 7.0 Hz, 4H), 7.20 (d, *J* = 8.6 Hz, 1H), 7.15 (d, *J* = 8.5 Hz, 1H), 6.78 (d, *J* = 8.7 Hz, 1H), 6.72 (s, 1H), 6.69 – 6.59 (m, 1H), 5.02 (s, 2H), 4.45 (s, 2H), 2.94 – 2.82 (m, 2H), 2.38 (dd, *J* = 10.2, 5.1 Hz, 1H), 2.24 (d, *J* = 9.7 Hz, 1H), 2.15 (dt, *J* = 18.5, 8.7 Hz, 1H), 2.10 – 1.86 (m, 4H), 1.63 – 1.42 (m, 6H), 0.91 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 221.4, 171.2, 156.9, 153.2, 138.0, 136.9, 136.5, 135.7, 132.5, 129.5, 128.1, 126.5, 126.2, 125.0, 122.9, 121.7, 115.0, 112.4, 69.7, 50.5, 48.2, 44.1, 40.4, 38.4, 36.0, 31.6, 29.8, 26.6, 26.0, 21.7, 14.0. ESI-MS calc'd for C₃₃H₃₃NNaO₂S [M+Na]⁺: 530.2124, found 530.2127.

4. Gram-Scale Synthesis

In an Ar-filled glovebox, dtbbpy (0.107 g, 0.4 mmol, 20 mol%), NiBr₂-diglyme (0.070 g, 0.2 mmol, 10 mol%) were added to a 50 mL RBF with a magnetic stir, then DMA (20.0 mL) was added via syringe. The reaction mixture was stirred for 0.5 h at room temperature. To another RBF with a magnetic stir, 2-bromobenzothiazole **1a** (0.428 g, 2 mmol, 1 equiv.), biphenyl-4-methanol **2n** (1.105 g, 6 mmol, 3 equiv.), triphenylphosphine (0.629 g, 2.4 mmol, 1.2 equiv.), tetrabutylammonium iodide (0.148 g, 0.4 mmol, 20 mol%) and [Ir(dFCF₃ppy)₂dtbbpy]PF₆ (0.045 g, 0.04 mmol, 2 mol%) were added in the glovebox. The RBF was capped and removed from the glovebox, 2,6-lutidine (0.047 mL, 0.4 mmol, 20 mol%) was added via micro-syringe and the above-mentioned freshly prepared solvent of nickel/ligand in DMA was added via syringe immediately. The mixture was stirred under irradiation at a distance of ~5 cm from two 15 W blue LEDs for 3 h, and the temperature was controlled at approximately 30 °C by cooling with a fan and air conditioner. The mixture was diluted with EtOAc

(25 mL) and water (50 mL), and the aqueous and organic layers were separated. The aqueous layer was extracted with EtOAc (25 mL×2). The combined organic layers were washed with water (50 mL×2) and brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 120:1) to give the corresponding product **3n** (0.401 g, 67%) as white solid.

Fig. S2 Reaction setup for gram-scale synthesis

5. Unsuccessful Substrates

A) reaction using phenyl bromide:

B) reaction using inactive alkyl alcohol (primary or secondary):

The phenyl bromide and inactive primary or secondary alkyl alcohols were individually explored under standard conditions, however, all of them failed to give a product.

6. Mechanistic Studies

6.1 Experiment with Benzyl Halide

In an Ar-filled glovebox, dtbbpy (0.011 g, 0.04 mmol, 20 mol%), NiBr₂•diglyme (0.007 g, 0.02 mmol, 10 mol%) were added to a 10 mL vial with a magnetic stir, then DMA (2.0 mL) was added via syringe. The reaction mixture was stirred for 0.5 h at room temperature. To another vial with a magnetic stir, 2-bromobenzothiazole **1a** (0.043 g, 0.2 mmol, 1 equiv.), benzyl halide **4** (0.6 mmol, 3 equiv.), **[A][C]** triphenylphosphine (0.063 g, 0.24 mmol, 1.2 equiv.)/**[B][D]** without triphenylphosphine, and $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$ (0.004 g, 0.004 mmol, 2 mol%) were added in the glovebox. The vial was capped and removed from the glovebox, 2,6-lutidine (0.004 mL, 0.04 mmol, 20 mol%) was added via micro-syringe and the above-mentioned freshly prepared solvent of nickel/ligand in DMA was added via syringe immediately. The resulting mixture was stirred under irradiation at a distance of ~1 cm from 4 x 6 W blue LEDs ($\lambda = 450-465$ nm) for 3 h.

No desired product **3a** formed when benzyl iodide **4a** was employed, thereby excluding the involvement of benzyl iodide species in the catalysis.

When benzyl bromide **4b** was employed, the desired product **3a** was formed in yields of 16% and 8%, respectively, alluding that it might be involved as an intermediate.

6.2 GC-MS Analysis for Probing Benzyl Bromide Intermediacy

In an Ar-filled glovebox, dtbbpy (0.011 g, 0.04 mmol, 20 mol%), NiBr₂•diglyme (0.007 g, 0.02 mmol, 10 mol%) were added to a 10 mL vial with a magnetic stir, then DMA (2.0 mL) was added via syringe. The reaction mixture was stirred for 0.5 h at room temperature. To another vial with a magnetic stir, 2-bromobenzothiazole **1a** (0.043 g, 0.2 mmol, 1 equiv.), 4-methylbenzyl alcohol **2a** (0.073 g, 0.6 mmol, 3 equiv.), triphenylphosphine (0.063 g, 0.24 mmol, 1.2 equiv.), tetrabutylammonium iodide (0.015 g, 0.04 mmol, 20 mol%) and [Ir(dFCF₃ppy)₂dtbbpy]PF₆ (0.004 g, 0.004 mmol, 2 mol%) were added in the glovebox. The vial was capped and removed from the glovebox, and 2,6-lutidine (0.004 mL, 0.04 mmol, 20 mol%) was added via microsyringe and the above-mentioned freshly prepared solvent of nickel/ligand in DMA was added via syringe immediately. The resulting mixture was stirred under irradiation at a distance of ~1 cm from 4 x 6 W blue LEDs ($\lambda = 450-465$ nm) for 1.5 h. *The reaction mixture was analyzed by GC-MS, and benzyl bromide was detected, further supporting that benzyl bromide might be a crucial intermediate in the catalysis.*

6.3 TEMPO Radical-Trapping Experiment

5, detected by HRMS

To probe the radical intermediate in our metallaphotoredox reaction, a TEMPO radicaltrapping experiment was performed. In an Ar-filled glovebox, dtbbpy (0.011 g, 0.04 mmol, 20 mol%), NiBr₂•diglyme (0.007 g, 0.02 mmol, 10 mol%) were added to a 10 mL vial with a magnetic stir, then DMA (2.0 mL) was added via syringe. The reaction mixture was stirred for 0.5 h at room temperature. To another vial with a magnetic stir, 2-bromobenzothiazole 1a (0.043 g, 0.2 mmol, 1 equiv.), 4-methylbenzyl alcohol 2a (0.073 g, 0.6 mmol, 3 equiv.), triphenylphosphine (0.063 g, 0.24 mmol, 1.2 equiv.), (0.015 tetrabutylammonium iodide 0.04 20 g, mmol. mol%). [Ir(dFCF₃ppy)₂dtbbpy]PF₆ (0.004 g, 0.004 mmol, 2 mol%) and TEMPO (0.062 g, 0.4

mmol, 2 equiv.) were added in the glovebox. The vial was capped and removed from the glovebox, and 2,6-lutidine (0.004 mL, 0.04 mmol, 20 mol%) was added via microsyringe and the above-mentioned freshly prepared solvent of nickel/ligand in DMA was added via syringe immediately. The resulting mixture was stirred under irradiation at a distance of ~1 cm from 4 x 6 W blue LEDs ($\lambda = 450-465$ nm) for 3 h. The mixture was diluted with EtOAc (5 mL) and water (15 mL), and the aqueous and organic layers were separated. The aqueous layer was extracted with EtOAc (10 mL×2). The combined organic layers were washed with water (20 mL×2) and brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 120:1) to give the corresponding product **3a** (0.004 g, 8%) as colorless liquid. The TEMPO radical-trapping experiment daramatically halted the generation of the product, whereas benzyl-trapped TEMPO adduct **5** was detected by HRMS (ESI, m/z). Calcd for C₁₇H₂₈NO [M+H]⁺: 262.2165, found: 262.2163. *The result implied that benzyl radical might be invovled in the reaction*.

6.4 Benzylic Radical Probe Experiment with Cyclopropanemethanol

In an Ar-filled glovebox, dtbbpy (0.011 g, 0.04 mmol, 20 mol%), NiBr₂•diglyme (0.007 g, 0.02 mmol, 10 mol%) were added to a 10 mL vial with a magnetic stir, then DMA (2.0 mL) was added via syringe. The reaction mixture was stirred for 0.5 h at room temperature. To another vial with a magnetic stir, 2-bromobenzothiazole 1a (0.043 g, 0.2 mmol, 1 equiv.), triphenylphosphine (0.063 g, 0.24 mmol, 1.2 equiv.), tetrabutylammonium iodide 0.04 mmol, 20 mol%) (0.015 and g, [Ir(dFCF₃ppy)₂dtbbpy]PF₆ (0.004 g, 0.004 mmol, 2 mol%) were added in the glovebox. The vial was capped and removed from the glovebox, cyclopropanemethanol 6 (0.085) mL, 0.6 mmol, 3 equiv.) and 2,6-lutidine (0.004 mL, 0.04 mmol, 20 mol%) were added via micro-syringe, then the above-mentioned freshly prepared solvent of nickel/ligand in DMA was added via syringe immediately. The resulting mixture was stirred under irradiation at a distance of ~1 cm from 4 x 6 W blue LEDs ($\lambda = 450-465$ nm) for 3 h. The mixture was diluted with EtOAc (5 mL) and water (15 mL), and the aqueous and organic layers were separated. The aqueous layer was extracted with EtOAc ($10 \text{ mL} \times 2$). The combined organic layers were washed with water (20 mL×2) and brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 200:1) to give the corresponding product 7. ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.48 – 7.37 (m, 3H), 7.33 (q, J = 7.5 Hz, 3H), 7.26 (q, J = 5.4, 3.6 Hz, 1H), 5.79 (ddt, J = 17.2, 10.7, 6.9 Hz, 1H), 5.11 (dd, J = 17.1, 2.2 Hz, 1H), 4.99 (d, J = 10.2 Hz, 1H), 4.48 (t, J = 7.8 Hz, 1H), 3.19 (dt, J = 14.4, 7.1 Hz, 1H), 2.95 (dt, J = 14.7, 7.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 174.6, 153.3, 141.3, 135.5, 135.4, 128.9, 128.3, 127.6, 126.0, 124.9, 123.1, 121.6, 117.4, 51.0, 39.9. ESI-MS calc'd for C₁₇H₁₆NS [M+H]⁺: 266.0998, found 266.0998.

6.5 Stern-Volmer Quenching Experiments

Formulation Solution:

All solutions and samples were prepared in an Ar-filled glovebox, sealed well with electrical tape and analyzed immediately. A stock solution of $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$ (14 mg in 5 mL DMA, 2.5 x 10⁻³ M) was diluted 0.5 mL into DMA (4.5 mL) for a concentration of [Ir] (2.5 x 10⁻⁴ M). This stock solution (2.5 x 10⁻⁴ M) was diluted 2 mL into DMA (18 mL) for an active concentration of [Ir] (2.5 x 10⁻⁵ M).

Stock solutions of PPh₃, 2,6-lutidine, 2-bromobenzothiazole, 4-methylbenzyl alcohol and TBAI were all dissolved in DMA (2 mL) to set the concentration to be 0.1 M.

Experimental Procedure:

The resulting [Ir(dFCF₃ppy)₂dtbbpy]PF₆ solution (2.5 x 10⁻⁵ M, 2 mL) was added to cuvette, and into this solution, 10.0 μ L of quencher solution was successively added and uniformly mixed. For the emission quenching, the solutions were irradiated at 320 nm and fluorescence was measured from 420 nm to 620 nm. The emission intensities at the maximum emission wavelength ($\lambda = 477$ nm) were recorded for different concentrations of quencher (Q), where [Q] = 0-2.5 mM. Fluorescence emission spectra were recorded (3 trials per sample). Follow this method and make changes to the amount to obtain the Stern–Volmer relationship in turn.

Fig. S3 Fluorescence quenching of [Ir[dF(CF₃)ppy]₂[dtbbpy]]PF₆ by 2,6-lutidine

Fig. S4 Fluorescence quenching of $[Ir[dF(CF_3)ppy]_2[dtbbpy]]PF_6$ by 4-methylbenzyl alcohol

Fig. S5 Fluorescence quenching of [Ir[dF(CF₃)ppy]₂[dtbbpy]]PF₆ by 2-bromobenzothiazole

Fig. S6 Fluorescence quenching of [Ir[dF(CF₃)ppy]₂[dtbbpy]]PF₆ by PPh₃

Fig. S7 Fluorescence quenching of [Ir[dF(CF₃)ppy]₂[dtbbpy]]PF₆ by TBAI

7. References

- [1] Yue, G.; Liu, Q.; Wei, J.; Pi, Y.; Qiu, D.; Mo, F. J. Org. Chem., 2023, 88, 2735-2741.
- [2] Oakdale, J.S.; Sit, R.K.; Fokin, V. V. Chem. Eur. J. 2014, 20, 11101-11110.
- [3] Hanson, S.K.; Wu, R.; Silks, L.A. Angew. Chem. Int. Ed. 2012, 51, 3410–3413.
8. NMR Spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

7.43 7.39 7.37 7.39 7.37 7.39 7.39 6.79 6.79 6.73 6.73

¹H NMR (500 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S59

S61

f1 (ppm)

f1 (ppm)

S73

S74

¹H NMR (500 MHz, CDCl₃)

S76