Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information

Fully Atom-economic Access to Spiro-cyclic Skeletons through Photoredox-induced Hydrogen Transfer/Giese Addition/ Dearomative Cyclization/Protonation Cascade

Guohui Zeng,^a Hui Luo,^b Kai Jiang,^a Jianpeng Cai,^a and Biaolin Yin^{*a}

^aKey Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), Guangzhou 510640, China

^bGuangzhou Addenda Chemical Corp. Ltd, Guangzhou 510663, China

*E-mail: blyin@scut.edu.cn

Table of contents

I. General information	S1
II. General procedure for preparing enamide materials	S1
III. Investigations of reaction conditions	S12
IV. General procedure for the dearomatization reactions	S13
V. Synthesis of multicyclic <i>N</i> -containing skeletons	
VI. Mechanism studies	
vii-1. Radical trapping experiment	S35
vii-2. Electrochemical measurements	
vii-3. Stern–Volmer luminescence quenching studies	
VII. Computational details	S38
VIII. Crystallographic data	S47
IX. Reference	
X. NMR spectra	S55

I. General information

Unless specified otherwise, all experiments were performed under N₂ atmosphere. All reagents and starting materials were purchased from commercial suppliers and used as received. FT-IR spectra were obtained with thin film samples or KBr pellets on a Bruker Vector 22 spectrometer, and data are expressed in cm⁻¹. ¹H, ¹³C, ¹⁹F spectra were recorded on Bruker AVANCE 400 (400 MHz for ¹H; 100 MHz for ¹³C; 376 MHz for ¹⁹F) and Bruker AVANCE 500 (500 MHz for ¹H; 126 MHz for ¹³C; 471 MHz for ¹⁹F), ¹H NMR and ¹³C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0. Chemical shifts (δ) are reported in ppm and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet. The HRMS measurements were recorded on a TOF analyzer using an ESI source in the positive mode. The crystal data was collected on a Agilent Gemini E diffractometer (Mo, 50kV 40mA)and reduced by CrysAlisPro (Rigaku). Melting points were determined using a hot stage apparatus. Column chromatography was performed on silica gel (200–300 mesh) with mixtures of petroleum ether and ethyl acetate as the eluent or other solvents.

II. General procedure for preparing enamide materials

Step 1:

To a solution of commercially available compound benzaldehyde derivatives **A** (5 mmol, 1.0 eq) and the corresponding amine **B** (20 mmol, 4.0 eq) in MeOH (50 mL) was stirred at RT for overnight. After cooled the reaction solution to 0 °C, NaBH₄ (285 mg, 7.5 mmol, 1.5 eq) was added slowly in portions, then this reaction mixture was stirred at RT for another 4 hours. Then the reaction was quenched with water and extracted with EtOAc after removing MeOH under reduced pressure. The combined organic layer was dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under reduced pressure to give crude product **C** which was used directly in the next step without purification.

Step 2:

To a solution of crude product **C** in CH_2Cl_2 (100 mL) was added **TEA** (760 mg, 7.5 mmol, 1.5 eq) and stirred at 0 °C for 10 mins, then acryloyl chloride **D** (452 mg, 5 mmol, 1.0 eq) was added dropwise to the reaction solution and continuously stirred for another 1 hour. The reaction mixture was quenched with saturated aqueous ammonium chloride and extracted with CH_2Cl_2 three times. The combined organic layers were washed with brine, dried over sodium sulfate, filtered, concentrated, and purified by column chromatography on silica gel (15 : 1 petroleum ether : EtOAc) to give the starting material **P**.

Method b:

Step 1:

To a solution of commercially available compound **A** (5 mmol, 1.0 eq) and 2-methylpropan-2-amine **B** (1.46 g, 20 mmol, 4.0 eq) in Ti(OⁱPr)₄ (20 mL) was stirred at RT for 24 hours. After cooled the reaction solution to 0 °C, MeOH (20 mL) was added dropwise and followed by NaBH₄ (285 mg, 7.5 mmol, 1.5 eq) slowly in portions, then this reaction mixture was stirred at RT for another 4 hours. Then the reaction was quenched by excess water and filtered with silica gel, the filter cake washed with EtOAc three times. The organic filtrate washed by H₂O and dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under reduced pressure to give crude product **D** which was used directly in the next step without purification.

Step 2:

To a solution of the above crude product **D** in CH_2Cl_2 (100 mL) was added **TEA** (760 mg, 7.5 mmol, 1.5 eq) and stirred at 0 °C for 10 mins, then acryloyl chloride **E** (452 mg, 5 mmol, 1.0eq) was added

dropwise to the reaction solution and continuously stirred for another 2 hours. The reaction mixture was quenched with saturated aqueous ammonium chloride and extracted with CH_2Cl_2 three times. The combined organic layers were washed with brine, dried over sodium sulfate, filtered, concentrated, and purified by column chromatography on silica gel (15 : 1 petroleum ether : EtOAc) to give the starting material **P**.

N-benzyl-N-(tert-butyl)acrylamide (1a)

Prepared according to **method a** which benzaldehyde, tert-butylamine and acryloyl chloride were used. The title compound was obtained as a write solid (8.6 g, 40 mmol, 80% over two steps, m.p. = $61.3 \sim 63.6 \text{ °C}$).

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 (t, *J* = 7.5 Hz, 2H), 7.29 – 7.21 (m, 3H), 6.42 – 6.26 (m, 2H), 5.56 – 5.50 (m, 1H), 4.63 (s, 2H), 1.45 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.5, 139.4, 131.5, 128.7, 127.2, 127.0, 125.7, 57.7, 48.9, 28.5.

IR (KBr, cm⁻¹): 2813, 1651, 1603, 1487, 1413, 1387, 1195, 988, 794, 747, 716.

HRMS (ESI): calcd for $C_{14}H_{20}NO^+$ [M + H]⁺: 218.1539; found: 218.1535.

N-(tert-butyl)-N-(4-(tert-butyl)benzyl)acrylamide (1b)

Prepared according to **method a** which 4-(tert-butyl)benzaldehyde, tert-butylamine and acryloyl chloride were used. The title compound was obtained as a colorless viscous liquid (1.1 g, 4.1 mmol, 82% over two steps).

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 (d, J = 8.6 Hz, 2H), 7.21 – 7.13 (m, 2H), 6.42 (dd, J = 16.6, 10.0 Hz, 1H), 6.32 (dd, J = 16.6, 2.4 Hz, 1H), 5.54 (dd, J = 10.0, 2.3 Hz, 1H), 4.62 (s, 2H), 1.48 (s, 9H), 1.34 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.6, 150.0, 136.3, 131.7, 127.0, 125.7, 125.4, 57.7, 48.7, 34.5, 31.4, 28.6.

IR (KBr, cm⁻¹): 1656, 1580, 1515, 1349, 1112, 990, 882, 791, 550.

HRMS (ESI): calcd for C₁₈H₂₈NO⁺ [M + H]⁺: 274.2165; found: 274.2161.

N-(tert-butyl)-N-(2-methoxybenzyl)acrylamide (1c)

Prepared according to **method a** which 2-methoxybenzaldehyde, tert-butylamine and acryloyl chloride were used. The title compound was obtained as a brown oil.

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 – 7.20 (m, 2H), 6.96 (t, *J* = 7.5 Hz, 1H), 6.86 (d, *J* = 8.6 Hz, 1H), 6.28 (s, 1H), 6.27 (d, *J* = 1.7 Hz, 1H), 5.47 (dd, *J* = 7.0, 5.4 Hz, 1H), 4.55 (s, 2H), 3.84 (s, 3H), 1.45 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 168.6, 155.8, 131.5, 127.9, 127.4, 126.9, 126.7, 120.5, 109.7, 57.4, 55.1, 44.2, 28.2.

IR(KBr, cm⁻¹): 2715, 1660, 1586, 1470 1345, 1202, 1065, 785, 731.

HRMS (ESI): calcd for $C_{15}H_{22}NO_2^+$ [M + H]⁺: 248.1645; found: 248.1641.

N-(2-bromo-5-methoxybenzyl)-N-(tert-butyl)acrylamide (1d)

Prepared according to **method a** which 2-bromo-5-methoxybenzaldehyde, tert-butylamine and acryloyl chloride were used. The title compound was obtained as a write solid (1.3 g, 4.1 mmol, 82% over two steps. m.p. = $101.1 \sim 103.6$. °C).

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 (dd, *J* = 8.7, 1.1 Hz, 1H), 6.91 (d, *J* = 3.1 Hz, 1H), 6.73 (dd, *J* = 8.7, 3.1 Hz, 1H), 6.38 – 6.30 (m, 1H), 6.25 (dd, *J* = 16.6, 10.0 Hz, 1H), 5.61 – 5.53 (m, 1H), 4.55 (s, 2H), 3.78 (s, 3H), 1.49 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.5, 159.5, 139.2, 133.5, 131.1, 127.8, 114.2, 113.9, 111.6, 57.8, 55.5, 49.8, 28.4.

IR (KBr, cm⁻¹): 2718, 1655, 1584, 1354, 1295, 1194, 1054, 778, 607.

HRMS (ESI): calcd for C₁₅H₂₁BrNO₂⁺ [M + H]⁺: 326.0750; found: 326.0745.

N-([1,1'-biphenyl]-4-ylmethyl)-N-(tert-butyl)acrylamide (1e)

Prepared according to **method a** which [1,1'-biphenyl]-4-carbaldehyde, tert-butylamine and acryloyl chloride were used. The title compound was obtained as a write solid (1.0 g, 3.6 mmol, 73% over two steps, m.p. = $75.1 \sim 77.9$ °C).

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 – 7.60 (m, 4H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.40 – 7.35 (m, 1H), 7.34 (d, *J* = 8.4 Hz, 2H), 6.45 (dd, *J* = 16.6, 10.0 Hz, 1H), 6.36 (dd, *J* = 16.6, 2.4 Hz, 1H), 5.58 (dd, *J* = 10.0, 2.4 Hz, 1H), 4.70 (s, 2H), 1.52 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.6, 140.6, 140.1, 138.5, 131.6, 128.8, 127.5, 127.4, 127.3, 127.0, 126.2, 57.8, 48.8, 28.6.

IR (KBr, cm⁻¹): 2716, 1611, 1485, 1362, 1072, 989, 771, 697.

HRMS (ESI): calcd for C₂₀H₂₄NO⁺ [M + H]⁺: 294.1852; found: 294.1850.

N-(tert-butyl)-N-(3,5-difluorobenzyl)acrylamide (1f)

Prepared according to **method a** which 3,5-difluorobenzaldehyde, tert-butylamine and acryloyl chloride were used. The title compound was obtained as a brown oil (1.0 g, 4.2 mmol, 84% over two steps).

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 6.76 – 6.70 (m, 2H), 6.69 – 6.60 (m, 1H), 6.25 (d, *J* = 6.1 Hz, 2H), 5.52 (t, *J* = 6.2 Hz, 1H), 4.55 (s, 2H), 1.39 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.4, 163.4 (dd, *J* = 249.6, 12.7 Hz), 144.2, 130.9, 127.8, 109.7 – 107.3 (dd, *J*=18.8 Hz, 7.0 Hz), 102.6 (t, *J* = 25.4 Hz), 57.8, 48.4 (t, *J* = 2.2 Hz), 28.5. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -108.6.

IR (KBr, cm⁻¹): 2716, 1622, 1456, 1363, 1196, 992, 885, 798, 777, 672.

HRMS (ESI): calcd for $C_{14}H_{18}F_2NO^+$ [M + H]⁺: 254.1351; found: 254.1346.

N-(3,5-bis(trifluoromethyl)benzyl)-N-(tert-butyl)acrylamide (1g)

Prepared according to **method a** which 3,5-bis(trifluoromethyl)benzaldehyde, tert-butylamine and acryloyl chloride were used. The title compound was obtained as a brown oil (1.4 g, 4.1 mmol, 82% over two steps).

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (s, 1H), 7.70 (s, 2H), 6.37 – 6.31 (m, 1H), 6.26 (dd, *J* = 16.6, 9.8 Hz, 1H), 5.60 (dd, *J* = 9.8, 2.4 Hz, 1H), 4.74 (s, 2H), 1.45 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.6, 142.6, 132.3 (q, *J* = 33.4 Hz), 130.6, 128.4, 126.0 – 125.9 (m), 123.1 (d, *J* = 272.9 Hz), 121.3 (t, *J* = 4.2 Hz), 57.9, 48.4, 28.6. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.0.

IR (KBr, cm⁻¹): 2716, 1616, 1465, 1366, 1177, 992, 848, 796 707, 604.

HRMS (ESI): calcd for $C_{16}H_{18}F_6NO^+$ [M + H]⁺: 354.1287; found: 354.1281.

N-(tert-butyl)-N-(4-(trifluoromethyl)benzyl)acrylamide (1h)

Prepared according to **method a** which 4-(trifluoromethyl)benzaldehyde, tert-butylamine and acryloyl chloride were used. The title compound was obtained as a yellow oil (1.1 g, 4.0 mmol, 80% over two steps).

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 (d, J = 8.1 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 6.32 – 6.24 (m, 2H), 5.56 – 5.49 (m, 1H), 4.66 (s, 2H), 1.42 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.4, 143.7, 131.0, 129.4 (d, J = 32.6 Hz), 127.7, 126.0, 125.7 (q, J = 3.8 Hz), 128.2 – 119.5 (m), 57.7, 48.6, 28.4. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.5.

IR (KBr, cm⁻¹): 2718, 1652, 1585, 1362, 1196, 1067, 883, 773.

HRMS (ESI): calcd for C₁₅H₁₉F₃NO⁺ [M + H]⁺: 286.1413; found: 286.1409.

N-(tert-butyl)-N-(2,6-dimethoxybenzyl)acrylamide (1i)

Prepared according to **method a** which 2,6-dimethoxybenzaldehyde, tert-butylamine and acryloyl chloride were used. The title compound was obtained as a write solid (960 mg, 3.45 mmol, 69% over two steps. m.p. = $92.3 \sim 94. \text{ °C}$).

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.18 (t, *J* = 8.3 Hz, 1H), 6.75 (dd, *J* = 17.0, 10.6 Hz, 1H), 6.51 (d, *J* = 8.4 Hz, 2H), 6.06 (dd, *J* = 16.9, 2.1 Hz, 1H), 5.44 (dd, *J* = 10.6, 2.1 Hz, 1H), 4.71 (s, 2H), 3.76 (s, 6H), 1.32 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.8, 158.6, 134.1, 128.6, 123.0, 115.0, 103.8, 57.2, 55.2, 40.7, 28.3.

IR (KBr, cm⁻¹): 2716, 1612, 1472, 1363, 1203, 1113, 777, 724.

HRMS (ESI): calcd for $C_{16}H_{24}NO_3^+$ [M + H]⁺: 278.1751; found: 278.1746.

N-benzyl-N-(tert-butyl)methacrylamide (1j)

Prepared according to **method a** which benzaldehyde, tert-butylamine and methacryloyl chloride were used. The title compound was obtained as a off-write solid (960 mg, 3.45 mmol, 73% over two steps. m.p. = $96.0 \sim 97.9 \text{ °C}$).

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 (t, *J* = 7.3 Hz, 2H), 7.26 – 7.18 (m, 3H), 5.04 – 4.99 (m, 1H), 4.92 (p, *J* = 1.7 Hz, 1H), 4.67 (s, 2H), 1.92 (s, 3H), 1.42 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 174.7, 143.0, 140.1, 128.5, 126.9, 126.0, 113.4, 57.6, 50.7, 28.6, 20.8.

IR (KBr, cm⁻¹): 2716, 1618, 1451, 1362, 1191, 907, 779, 704.

HRMS (ESI): calcd for $C_{15}H_{22}NO^+$ [M + H]⁺: 232.1696; found: 232.1691.

N-(tert-butyl)-N-(naphthalen-1-ylmethyl)acrylamide (1k)

Prepared according to **method a** which 1-naphthaldehyde, tert-butylamine and acryloyl chloride were used. The title compound was obtained as a colorless viscous liquid (970 mg, 3.6 mmol, 72% over two steps).

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (dd, *J* = 7.2, 2.4 Hz, 2H), 7.83 (dd, *J* = 6.2, 3.4 Hz, 1H), 7.63 – 7.49 (m, 4H), 6.39 – 6.23 (m, 2H), 5.49 (dd, *J* = 9.7, 2.8 Hz, 1H), 5.07 (s, 2H), 1.56 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.7, 134.3, 133.6, 131.4, 129.8, 129.0, 127.6, 127.3, 126.4, 126.0, 125.6, 123.6, 121.8, 57.7, 46.8, 28.3.

IR (KBr, cm⁻¹): 2716, 1615, 1483, 1362, 1196, 989, 796, 731, 601.

HRMS (ESI): calcd for C₁₈H₂₂NO⁺ [M + H]⁺: 268.1696; found: 268.1691.

N-(adamantan-1-yl)-N-benzylacrylamide (11)

Prepared according to **method a** which benzaldehyde, amantadine and acryloyl chloride were used. The title compound was obtained as a yellow solid (1.1 g, 3.9 mmol, 78% over two steps. m.p. = 138.0 \sim 139.1 °C).

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.34 (m, 2H), 7.32 – 7.25 (m, 4H), 6.39 (dd, *J* = 16.6, 9.9 Hz, 1H), 6.29 (dd, *J* = 16.6, 2.6 Hz, 1H), 5.53 (dd, *J* = 10.0, 2.5 Hz, 1H), 4.67 (s, 2H), 2.26 (d, *J* = 3.4 Hz, 6H), 2.11 – 2.05 (m, 3H), 1.71 – 1.61 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.6, 139.8, 132.1, 128.7, 127.0, 125.8, 59.2, 47.7, 39.6, 36.4, 30.1.

IR (KBr, cm⁻¹): 2716, 1647, 1606, 1452, 1361, 1196, 1105, 998, 776, 698.

HRMS (ESI): calcd for C₂₀H₂₆NO⁺ [M + H]⁺: 296.2009; found: 296.2005.

N-benzyl-N-(1-((tert-butyldiphenylsilyl)oxy)-2-methylpropan-2-yl)acrylamide (1m)

Prepared according to **method a** which benzaldehyde, 1-((tert-butyldiphenylsilyl)oxy)-2methylpropan-2-amine and acryloyl chloride were used. The title compound was obtained as a colorless oil (1.6 g, 3.5 mmol, 70% over two steps).

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 – 7.60 (m, 4H), 7.44 – 7.29 (m, 8H), 7.29 – 7.21 (m, 3H), 6.38 (dd, *J* = 16.6, 9.8 Hz, 1H), 6.30 (dd, *J* = 16.7, 2.7 Hz, 1H), 5.53 (dd, *J* = 9.8, 2.7 Hz, 1H), 4.81 (s, 2H), 4.00 (s, 2H), 1.43 (s, 6H), 1.09 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.6, 139.7, 135.6, 133.4, 131.6, 129.6, 128.7, 127.6, 127.2, 126.9, 125.6, 68.8, 61.2, 50.2, 26.9, 24.2, 19.3.

IR (KBr, cm⁻¹): 2717, 1601, 1361, 1108, 777, 611, 505.

HRMS (ESI): calcd for C₃₀H₃₈NO₂Si⁺ [M + H]⁺: 472.2666; found: 472.2661.

methyl 2-(N-benzylacrylamido)-2-methylpropanoate (1n)

Prepared according to **method a** which benzaldehyde, methyl 2-amino-2-methylpropanoate and acryloyl chloride were used. The title compound was obtained as a beige solid (1.6 g, 3.5 mmol, 70% over two steps. m.p. = $56.6 \sim 58.6 \circ C$).

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.41 (d, *J* = 7.5 Hz, 2H), 7.37 (t, *J* = 7.5 Hz, 2H), 7.28 (d, *J* = 7.1 Hz, 1H), 6.40 – 6.30 (m, 2H), 5.61 (dd, *J* = 8.5, 3.8 Hz, 1H), 4.66 (s, 2H), 3.75 (s, 3H), 1.42 (s, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 174.6, 167.3, 138.3, 129.1, 128.8, 128.5, 127.3, 125.8, 61.4, 52.2, 47.1, 23.6.

IR (KBr, cm⁻¹): 2718, 1660, 1613, 1355, 1284, 1200, 1066, 983, 779, 697.

HRMS (ESI): calcd for $C_{15}H_{20}NO_3^+$ [M + H]⁺: 262.1438; found: 262.1433.

N-(tert-butyl)-N-(2,3-dihydro-1H-inden-1-yl)acrylamide (10)

Prepared according to **method b** which 2,3-dihydro-1H-inden-1-one was used. The title compound was obtained as a brown oil (1.6 g, 3.5 mmol, 70% over two steps).

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.20 (q, *J* = 6.2, 5.7 Hz, 3H), 7.10 (s, 1H), 5.99 (d, *J* = 16.5 Hz, 1H), 5.83 – 5.72 (m, 1H), 5.29 (t, *J* = 8.0 Hz, 1H), 5.09 (d, *J* = 9.6 Hz, 1H), 3.08 (dd, *J* = 16.2, 10.2 Hz, 1H), 2.96 – 2.87 (m, 1H), 2.52 (q, *J* = 9.7 Hz, 1H), 2.26 (q, *J* = 11.1, 10.2 Hz, 1H), 1.60 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 168.3, 144.8, 140.7, 132.6, 127.3, 126.9, 125.1, 124.2, 123.0, 60.2, 58.3, 34.0, 29.7, 29.5.

IR(KBr, cm⁻¹): 2719, 1650, 1480, 1354, 1133, 777, 645.

HRMS(ESI): calcd for C₁₆H₂₂NO⁺ [M + H]⁺: 244.1696; found: 244.1693.

N-(tert-butyl)-N-(6-chloro-2,3-dihydro-1H-inden-1-yl)acrylamide (1p)

Prepared according to **method b** which 6-chloro-2,3-dihydro-1H-inden-1-one was used. The title compound was obtained as a brown oil (1.6 g, 3.5 mmol, 70% over two steps).

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.14 – 7.08 (m, 2H), 7.01 (s, 1H), 6.01 (d, *J* = 16.4 Hz, 1H), 5.78 (dd, *J* = 16.5, 10.2 Hz, 1H), 5.22 (t, *J* = 9.2 Hz, 1H), 5.14 (d, *J* = 10.3 Hz, 1H), 3.06 – 2.98 (m, 1H), 2.88 – 2.79 (m, 1H), 2.55 – 2.46 (m, 1H), 2.31 – 2.19 (m, 1H), 1.56 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.9, 146.7, 139.2, 132.7, 132.5, 127.4, 126.1, 124.8, 123.0, 59.9, 58.3, 34.1, 29.5, 29.2.

IR(KBr, cm⁻¹): 2812, 1652, 1608, 1474, 1360, 1164, 980, 878, 736, 662.

HRMS(ESI): calcd for $C_{16}H_{21}CINO^+$ [M + H]⁺: 278.1306; found: 278.1302.

N-(4-bromo-2,3-dihydro-1H-inden-1-yl)-N-(tert-butyl)acrylamide (1q)

Prepared according to **method b** which 4-bromo-2,3-dihydro-1H-inden-1-one was used. The title compound was obtained as a brown oil (1.6 g, 3.5 mmol, 70% over two steps).

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.34 (d, *J* = 7.5 Hz, 1H), 7.03 (dd, *J* = 13.6, 5.7 Hz, 2H), 6.00 (d, *J* = 16.5 Hz, 1H), 5.85 – 5.73 (m, 1H), 5.30 (q, *J* = 11.8, 10.1 Hz, 1H), 5.15 (d, *J* = 9.8 Hz, 1H), 3.10 (dd, *J* = 16.9, 10.3 Hz, 1H), 2.90 – 2.81 (m, 1H), 2.53 (q, *J* = 9.9, 9.3 Hz, 1H), 2.26 (p, *J* = 9.5 Hz, 1H), 1.57 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 168.1, 146.8, 141.1, 132.5, 130.3, 128.7, 124.8, 121.8, 120.7, 60.9, 58.3, 33.0, 31.1, 29.5.

IR(KBr, cm⁻¹): 2818, 1652, 1569, 1451, 1389, 1201, 995, 769.

HRMS(ESI): calcd for $C_{16}H_{21}BrNO^+$ [M + H]⁺: 322.0801; found: 322.0797.

N-(tert-butyl)-N-(5-fluoro-2,3-dihydro-1H-inden-1-yl)acrylamide (1r)

Prepared according to **method b** which 5-fluoro-2,3-dihydro-1H-inden-1-one was used. The title compound was obtained as a brown oil (1.6 g, 3.5 mmol, 70% over two steps).

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.00 (s, 1H), 6.86 (dd, J = 22.6, 8.6 Hz, 2H), 5.98 (d, J = 16.5 Hz, 1H), 5.86 – 5.68 (m, 1H), 5.23 (s, 1H), 5.11 (d, J = 9.1 Hz, 1H), 3.06 (dd, J = 16.4, 10.3 Hz, 1H), 2.93 – 2.84 (m, 1H), 2.54 (q, J = 10.0, 9.3 Hz, 1H), 2.33 – 2.22 (m, 1H), 1.58 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 168.2, 162.5 (d, J = 244.7 Hz), 143.1 (d, J = 8.1 Hz), 140.3, 132.6, 124.4, 124.1 (d, J = 8.8 Hz), 114.0 (d, J = 22.8 Hz), 112.0 (d, J = 22.1 Hz), 59.5, 58.3, 34.2, 29.7, 29.5. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -115.9.

IR(KBr, cm⁻¹): 2716, 1609, 1485, 1362, 1128, 976, 777, 616.

HRMS(ESI): calcd for C₁₆H₂₁FNO⁺ [M + H]⁺: 262.1602; found: 262.1598.

N-(5-bromo-2,3-dihydro-1H-inden-1-yl)-N-(tert-butyl)acrylamide (1s)

Prepared according to **method b** which 5-bromo-2,3-dihydro-1H-inden-1-one was used. The title compound was obtained as a brown oil (1.6 g, 3.5 mmol, 70% over two steps).

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.36 (s, 1H), 7.29 (d, *J* = 7.9 Hz, 1H), 6.95 (d, *J* = 7.2 Hz, 1H), 6.02 (d, *J* = 16.5 Hz, 1H), 5.89 – 5.69 (m, 1H), 5.28 – 5.06 (m, 2H), 3.07 (dd, *J* = 16.3, 10.3 Hz, 1H), 2.94 – 2.86 (m, 1H), 2.52 (q, *J* = 9.8, 9.3 Hz, 1H), 2.34 – 2.21 (m, 1H), 1.58 (s, 9H). ¹³C NMR

(126 MHz, Chloroform-*d*) δ 168.1, 143.9, 143.2, 132.5, 130.0, 128.3, 124.8, 124.4, 121.0, 59.8, 58.3, 34.0, 29.6, 29.5.

IR(KBr, cm⁻¹): 2717, 1651, 1471, 1360, 1267, 1138, 980, 863, 772, 673.

HRMS(ESI): calcd for $C_{16}H_{21}BrNO^+$ [M + H]⁺: 322.0801; found: 322.0796.

N-(tert-butyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)acrylamide (1t)

Prepared according to **method b** which 3,4-dihydronaphthalen-1(2H)-one was used. The title compound was obtained as a colorless oil (1.6 g, 3.5 mmol, 70% over two steps).

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.26 – 7.19 (m, 1H), 7.18 – 7.12 (m, 2H), 7.11 – 7.08 (m, 1H), 6.09 (dd, *J* = 16.5, 2.4 Hz, 1H), 5.96 (dd, *J* = 16.5, 10.1 Hz, 1H), 5.18 (dd, *J* = 10.0, 2.4 Hz, 1H), 4.98 (t, *J* = 9.0 Hz, 1H), 2.90 – 2.77 (m, 2H), 2.18 – 2.10 (m, 2H), 2.07 – 2.00 (m, 1H), 1.88 – 1.78 (m, 1H), 1.63 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.6, 139.3, 136.3, 132.7, 129.1, 126.7, 126.4, 126.1, 124.8, 58.6, 55.0, 32.7, 29.4, 29.4, 23.3.

IR(KBr, cm⁻¹): 2716, 1608, 1486, 1362, 1264, 1095, 777, 612.

HRMS(ESI): calcd for C₁₇H₂₄NO⁺ [M + H]⁺: 258.1852; found: 258.1849.

N-(tert-butyl)-N-(chroman-4-yl)acrylamide (1u)

Prepared according to **method b** which chroman-4-one was used. The title compound was obtained as a brown oil (1.6 g, 3.5 mmol, 70% over two steps).

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.17 – 7.11 (m, 2H), 6.89 (t, J = 7.4 Hz, 1H), 6.81 (d, J = 8.1 Hz, 1H), 6.09 (d, J = 16.4 Hz, 1H), 5.95 (dd, J = 16.4, 10.2 Hz, 1H), 5.23 (d, J = 10.1 Hz, 1H), 5.10 (dd, J = 11.6, 6.5 Hz, 1H), 4.39 (d, J = 11.5 Hz, 1H), 4.19 (t, J = 12.0 Hz, 1H), 2.63 – 2.53 (m, 1H), 2.08 (dd, J = 13.5, 6.4 Hz, 1H), 1.62 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 167.8, 154.6, 132.3, 128.3, 126.9, 125.6, 125.5, 121.5, 117.1, 66.4, 58.8, 50.5, 31.0, 29.4.

IR(KBr, cm⁻¹): 2718, 1606, 1487, 1360, 1215, 1112, 773, 605.

HRMS(ESI): calcd for $C_{16}H_{22}NO_2^+$ [M + H]⁺: 260.1645; found: 260.1641.

N-(tert-butyl)-N-(6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-yl)acrylamide (1v)

Prepared according to **method b** which 6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one was used. The title compound was obtained as a brown oil (1.6 g, 3.5 mmol, 70% over two steps).

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.35 (d, *J* = 7.5 Hz, 1H), 7.23 – 7.18 (m, 1H), 7.16 (d, *J* = 4.0 Hz, 2H), 6.36 (dd, *J* = 16.5, 9.9 Hz, 1H), 6.27 (dd, *J* = 16.6, 2.4 Hz, 1H), 5.42 (dd, *J* = 9.9, 2.4 Hz, 1H), 4.90 (d, *J* = 9.8 Hz, 1H), 2.89 (dd, *J* = 14.6, 6.5 Hz, 1H), 2.78 (t, *J* = 13.5 Hz, 1H), 2.10 – 1.92 (m, 4H), 1.73 (d, *J* = 13.6 Hz, 1H), 1.45 (s, 9H), 1.34 (q, *J* = 12.6 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 168.8, 142.5, 139.8, 134.5, 130.2, 126.7, 126.3, 126.1, 125.0, 59.3, 59.1, 39.3, 36.8, 32.2, 28.7, 27.1.

IR(KBr, cm⁻¹): 2717, 1606, 1423, 1361, 1197, 1066, 777, 610.

HRMS(ESI): calcd for C₁₈H₂₆NO⁺ [M + H]⁺: 272.2009; found: 272.2004.

N-(tert-butyl)-N-(pyridin-3-ylmethyl)acrylamide (1w)

Prepared according to **method a** which nicotinaldehyde, tert-butylamine and acryloyl chloride were used. The title compound was obtained as a brown-yellow oil (1.6 g, 3.5 mmol, 70% over two steps).

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.56 – 8.47 (m, 2H), 7.60 – 7.49 (m, 1H), 7.33 – 7.23 (m, 1H), 6.38 – 6.26 (m, 2H), 5.56 (dd, *J* = 8.4, 3.8 Hz, 1H), 4.64 (s, 2H), 1.43 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.3, 148.6, 147.7, 134.9, 133.4, 130.9, 127.7, 123.5, 57.7, 46.7, 28.5.

IR (KBr, cm⁻¹): 2715, 1647, 1507, 1361, 1195, 996, 798, 635.

HRMS (ESI): calcd for $C_{13}H_{19}N_2O^+$ [M + H]⁺: 219.1492; found: 219.1489.

4-((N-(tert-butyl)acrylamido)methyl)phenethyl 4-methylbenzenesulfonate(1x)

Prepared according to **method a** which 4-formylphenethyl 4-methylbenzenesulfonate, tert-butylamine and acryloyl chloride were used. The title compound was obtained as a write solid (1.3 g, 4.1 mmol, 82% over two steps. m.p. = $78.1 \sim 79.9$. °C).

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.77 – 7.70 (m, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 7.16 – 7.12 (m, 4H), 6.36 (dd, *J* = 16.7, 9.7 Hz, 1H), 6.29 (dd, *J* = 16.6, 2.7 Hz, 1H), 5.56 – 5.50 (m, 1H), 4.60 (s, 2H), 4.22 (t, *J* = 7.1 Hz, 2H), 2.96 (t, *J* = 7.1 Hz, 2H), 2.44 (s, 3H), 1.44 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 168.3, 144.7, 138.0, 135.0, 132.9, 131.4, 129.7, 129.2, 127.7, 127.1, 125.8, 70.3, 57.6, 48.5, 34.7, 28.4, 21.5.

IR (KBr, cm⁻¹): 2719, 1650, 1585, 1352, 1178, 1059, 904, 779, 663.

HRMS (ESI): calcd for $C_{23}H_{30}NO_4S^+$ [M + H]⁺: 416.1890; found: 416.1882.

III. Investigations of reaction conditions

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), PC (3 mol%), Base (0.24 mmol), Visible-light irradiation with blue LEDs (2 × 15 W, 445 nm) under Argon atmosphere for 7 h. ^{*b*} Determined by ¹H NMR using CH₂Br₂ as the internal standard. Yield of the **3-1'** is shown in parentheses. ^{*c*} Ratio of volume is MeCN/H₂O = 8/2. ^{*d*} Ratio of volume is DMA/H₂O = 8/2. ^{*e*} Ratio of volume is DMA/H₂O = 9/1. ^{*f*} Ratio of volume is DMA/H₂O = 7/3. ^{*g*} with 1.0 equiv. of **2a**. ^{*h*} with 2.0 equiv. of **2a**. ^{*i*} without bule light. ^{*j*} without PC. DMA = *N*,*N*-dimethylacetamide. DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene.

IV. General procedure for the dearomatization reactions

Standard Conditions:

To a 5-mL scintillation vial equipped with a stirrer bar and the requisite acrylamide **1** (0.3 mmol, 1.0 eq) was then added to the vial. The vial then charged with *N*-methyl amine **2** (0.6 mmol, 2.0 eq), sodium acetate (30 mg, 0.36 mmol, 1.2 eq) and 3DPAFIPN (PC) (6 mg, 0.009 mmol, 3 mol%), followed by made up to a total of 3.0 mL by addition of DMA and H₂O (v / v = 4 / 1). The reaction mixture was thoroughly degassed with argon via freeze-pump-thaw for 3 cycles, after degassed the vial was sealed and positioned approximately 10 cm from 2×15W blue LEDs. The mixture was stirred at room temperature for 7 hours under argon atmosphere. Afterwards, the reaction solution was washed by H₂O and extracted with EA for 3 times, the organic layer was concentrated by rotary evaporation. The crude product was purified by silica gel column chromatography (PE / EA = 20 / 1 for Ar, PE / EA = 1 / 1 for Heter and other cases) to obtain the desired product **3**. the details data of the products are summarized below.

2-(tert-butyl)-4-(2-(methyl(phenyl)amino)ethyl)-2-azaspiro[4.5]deca-6,9-dien-3-one (3-1)

brown oil, 73 mg, 72% yield.

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.19 (t, J = 8.0 Hz, 2H), 6.71 (d, J = 8.2 Hz, 2H), 6.65 (t, J = 7.4 Hz, 1H), 5.94 – 5.86 (m, 2H), 5.65 (dd, J = 10.4, 2.2 Hz, 1H), 5.53 (dd, J = 10.1, 2.2 Hz, 1H), 3.50 – 3.32 (m, 2H), 3.25 (d, J = 9.8 Hz, 1H), 3.19 (d, J = 9.8 Hz, 1H), 2.89 (s, 3H), 2.76 – 2.68 (m, 2H), 2.17 (t, J = 6.8 Hz, 1H), 1.95 – 1.87 (m, 1H), 1.60 – 1.52 (m, 1H), 1.39 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.8, 149.4, 130.1, 129.0, 127.1, 126.7, 125.6, 115.7, 112.1, 56.6, 53.8, 51.4, 51.1, 41.4, 37.6, 27.6, 26.6, 23.1.

IR(KBr, cm⁻¹): 2718, 1677, 1635, 1507, 1361, 1064, 946, 766, 606, 459.

HRMS(ESI): calcd for $C_{22}H_{31}N_2O^+$ [M + H]⁺: 339.2431; found: 339.2426.

2,8-di-tert-butyl-4-(2-(methyl(phenyl)amino)ethyl)-2-azaspiro[4.5]deca-6,9-dien-3-one (3-2)

Brownish yellow oil, 80 mg, 68% yield, d.r. > 20:1.

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.19 (t, J = 7.9 Hz, 2H), 6.74 (d, J = 8.2 Hz, 2H), 6.64 (t, J = 7.2 Hz, 1H), 5.91 (t, J = 12.1 Hz, 2H), 5.68 (d, J = 10.3 Hz, 1H), 5.57 (d, J = 10.2 Hz, 1H), 3.69 – 3.60 (m, 1H), 3.45 – 3.36 (m, 1H), 3.25 – 3.13 (m, 2H), 2.87 (s, 3H), 2.45 (q, J = 2.6 Hz, 1H), 2.18 – 2.13 (m, 1H), 1.72 – 1.59 (m, 2H), 1.39 (s, 9H), 0.91 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.6, 149.5, 131.0, 129.0, 128.9, 128.2, 128.0, 115.8, 112.3, 56.5, 53.8, 51.2, 50.8, 46.3, 41.7, 37.6, 34.0, 27.7, 23.3.

IR(KBr, cm⁻¹): 2717, 1594, 1507, 1472, 1223, 1083, 915, 749, 528.

HRMS(ESI): calcd for $C_{26}H_{39}N_2O^+$ [M + H]⁺: 395.3057; found: 395.3051.

2-(tert-butyl)-6-methoxy-4-(2-(methyl(phenyl)amino)ethyl)-2-azaspiro[4.5]deca-6,9-dien-3-one (3-3)

P1 41 mg, 40% yield, as a gray solid. P2 23 mg, 27% yield, as a brown oil. d.r. = 1.5:1

NMR:

[**P1**] ¹H NMR (400 MHz, Chloroform-*d*) δ 7.20 (t, *J* = 8.1 Hz, 2H), 6.69 (d, *J* = 8.8 Hz, 2H), 6.65 (t, *J* = 7.2 Hz, 1H), 5.93 – 5.86 (m, 1H), 5.64 – 5.58 (m, 1H), 4.88 – 4.83 (m, 1H), 3.75 (d, *J* = 9.3 Hz, 1H), 3.56 (s, 3H), 3.47 – 3.38 (m, 1H), 3.32 – 3.23 (m, 1H), 3.07 (d, *J* = 9.3 Hz, 1H), 2.93 – 2.84 (m, 6H), 2.03 – 1.93 (m, 1H), 1.61 – 1.53 (m, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.6, 152.6, 149.3, 128.9, 127.0, 124.9, 115.6, 112.1, 94.2, 54.1, 53.8, 53.6, 50.8, 46.5, 43.9, 37.6, 27.6, 26.6, 23.1.

[**P2**] NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.20 (t, *J* = 8.1 Hz, 2H), 6.72 (d, *J* = 8.2 Hz, 2H), 6.66 (t, *J* = 7.2 Hz, 1H), 5.88 – 5.80 (m, 1H), 5.54 – 5.46 (m, 1H), 4.81 (t, *J* = 3.8 Hz, 1H), 2.23 (t, *J* = 6.7 Hz, 1H), 2.05 – 1.94 (m, 1H), 1.61 – 1.50 (m, 1H), 1.40 (s, 9H). ¹³C NMR (101 MHz, Chloroform*d*) δ 174.63, 155.68, 149.41, 131.12, 128.90, 125.65, 115.61, 112.12, 92.32, 77.32, 77.00, 76.68, 55.54, 53.81, 53.44, 51.41, 50.47, 43.39, 37.56, 27.49, 26.50, 22.86.

IR(KBr, cm⁻¹): 2821, 1674, 1598, 1504, 1360, 1218, 1023, 943, 754, 692.

HRMS(ESI): calcd for $C_{23}H_{33}N_2O_2^+$ [M + H]⁺: 369.2537; found: 369.2531.

6-bromo-2-(tert-butyl)-9-methoxy-4-(2-(methyl(phenyl)amino)ethyl)-2-azaspiro[4.5]deca-6,9-dien-3-one (**3-4**)

Beige solid, 90 mg, 68% yield, d.r. > 20:1, m.p. = 117.2 - 119.3 °C

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.20 – 7.16 (m, 2H), 6.67 – 6.62 (m, 3H), 6.22 (t, *J* = 3.8 Hz, 1H), 4.63 (s, 1H), 3.81 (d, *J* = 9.6 Hz, 1H), 3.54 (s, 3H), 3.51 – 3.43 (m, 1H), 3.35 – 3.28 (m, 1H), 3.13 (d, *J* = 9.6 Hz, 1H), 2.90 (s, 3H), 2.87 (t, *J* = 4.6 Hz, 2H), 1.99 – 1.90 (m,

1H), 1.61 – 1.51 (m, 1H), 1.41 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 174.0, 153.2, 149.2, 129.6, 129.0, 126.5, 115.8, 112.0, 94.6, 56.0, 54.3, 54.1, 50.5, 49.2, 48.5, 37.8, 31.7, 27.7, 23.1.

IR(KBr, cm⁻¹): 2717, 1594, 1471, 1218, 1026, 925, 750, 694.

HRMS(ESI): calcd for $C_{23}H_{32}BrN_2O_2^+$ [M + H]⁺: 447.1642; found: 447.1636.

2-(tert-butyl)-4-(2-(methyl(phenyl)amino)ethyl)-8-phenyl-2-azaspiro[4.5]deca-6,9-dien-3-one (3-5)

Brown oil, 75 mg, 60% yield, d.r. > 20:1.

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 – 7.13 (m, 7H), 6.73 (d, J = 8.2 Hz, 2H), 6.66 (t, J = 7.2 Hz, 1H), 5.96 – 5.83 (m, 2H), 5.75 – 5.68 (m, 1H), 5.65 – 5.58 (m, 1H), 4.02 – 3.95 (m, 1H), 3.68 – 3.57 (m, 1H), 3.51 – 3.39 (m, 1H), 3.32 (d, J = 9.7 Hz, 1H), 3.24 (d, J = 9.8 Hz, 1H), 2.88 (s, 3H), 2.26 (dd, J = 8.6, 4.5 Hz, 1H), 1.86 – 1.75 (m, 1H), 1.72 – 1.60 (m, 1H), 1.42 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.2, 149.4, 143.0, 131.0, 129.7, 129.6, 129.1, 128.7, 127.7, 126.6, 126.5, 115.9, 112.3, 56.3, 53.9, 51.2, 50.7, 42.4, 41.6, 37.8, 27.8, 23.4.

IR(KBr, cm⁻¹): 2718, 1621, 1503, 1363, 1230, 1070, 909, 749, 605.

HRMS(ESI): calcd for $C_{28}H_{35}N_2O^+$ [M + H]⁺: 415.2744; found: 415.2737.

2-(tert-butyl)-7,9-difluoro-4-(2-(methyl(phenyl)amino)ethyl)-2-azaspiro[4.5]deca-6,9-dien-3-one (3-6)

Brown oil, 75 mg, 67% yield.

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.22 (t, J = 7.5 Hz, 2H), 6.72 (d, J = 7.9 Hz, 2H), 6.68 (t, J = 6.9 Hz, 1H), 5.26 (d, J = 16.2 Hz, 1H), 5.13 (d, J = 15.4 Hz, 1H), 3.52 – 3.39 (m, 2H), 3.31 (d, J = 10.0 Hz, 1H), 3.24 (d, J = 9.8 Hz, 1H), 3.17 – 3.07 (m, 2H), 2.90 (s, 3H), 2.22 (t, J = 5.9 Hz, 1H), 1.88 – 1.81 (m, 1H), 1.53 – 1.46 (m, 1H), 1.39 (s, 9H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -103.7 (d, J = 17.3 Hz), -105.5 (d, J = 15.6 Hz).

IR(KBr, cm⁻¹): 2719, 1613, 1362, 1203, 1102, 1067, 858, 771, 692, 619.

HRMS(ESI): calcd for $C_{22}H_{29}F_2N_2O^+$ [M + H]⁺: 375.2242; found: 375.2236.

2-(tert-butyl)-4-(2-(methyl(phenyl)amino)ethyl)-7,9-bis(trifluoromethyl)-2-azaspiro[4.5]deca-6,9-dien-3-one (**3-7**)

Brown oil, 99 mg, 70% yield.

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.21 (t, *J* = 7.9 Hz, 2H), 6.72 – 6.67 (m, 3H), 6.26 (s, 1H), 6.19 (s, 1H), 3.46 – 3.35 (m, 3H), 3.26 (d, *J* = 10.4 Hz, 1H), 3.03 (s, 2H), 2.86 (s, 3H), 2.41 (t, *J* = 6.7 Hz, 1H), 1.94 – 1.85 (m, 1H), 1.47 – 1.43 (m, 1H), 1.42 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 173.4, 149.4, 131.3 (q, *J* = 5.5 Hz), 129.2, 128.7 (q, *J* = 5.5 Hz), 126.8 (dd, *J* = 74.9, 31.7 Hz), 127.5 – 125.9 (m), 123.8 (d, *J* = 16.0 Hz), 121.7 (d, *J* = 15.7 Hz), 116.6, 112.4, 54.6, 54.5, 50.8, 50.6, 43.1, 37.6, 27.6, 23.2, 21.6. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -69.5, -69.7.

IR(KBr, cm⁻¹): 2722, 1594, 1506, 1362, 1274, 1188, 898, 760, 660.

HRMS(ESI): calcd for C₂₄H₂₉F₆N₂O⁺ [M + H]⁺: 475.2179; found: 475.2173.

2-(tert-butyl)-8-(1-fluoro-2-(methyl(phenyl)amino)ethylidene)-4-(2-(methyl(phenyl)amino)ethyl)-2azaspiro[4.5]deca-6,9-dien-3-one (**3-8**)

Brown oil, 32 mg, 22% yield.

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.2 (t, *J* = 8.0 Hz, 2H), 7.2 (t, *J* = 8.0 Hz, 2H), 6.8 (dd, *J* = 16.9, 8.0 Hz, 3H), 6.7 (d, *J* = 11.3 Hz, 1H), 6.6 (dd, *J* = 15.0, 7.7 Hz, 3H), 6.4 (d, *J* = 10.1 Hz, 1H), 5.8 (d, *J* = 10.4 Hz, 1H), 5.7 (d, *J* = 10.1 Hz, 1H), 4.2 (d, *J* = 3.2 Hz, 1H), 4.2 (d, *J* = 2.3 Hz, 1H), 3.5 – 3.4 (m, 1H), 3.3 – 3.3 (m, 2H), 3.2 (d, *J* = 9.9 Hz, 1H), 2.9 (s, 3H), 2.8 (s, 3H), 2.3 (t, *J* = 6.9 Hz, 1H), 2.0 – 1.9 (m, 1H), 1.5 – 1.5 (m, 1H), 1.4 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 174.3, 155.7, 153.6, 149.3, 132.6, 129.5, 129.5, 129.1, 129.0, 121.9, 121.8, 120.2, 117.8, 115.9, 113.5, 113.4, 113.4,

112.3, 112.3, 55.5, 55.5, 54.0, 51.3, 51.3, 50.8, 49.9 (d, J = 26.8 Hz), 44.4, 38.2, 37.6, 27.7, 23.5. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -112.8.

IR(KBr, cm⁻¹): 2718, 1604, 1509, 1362, 1203, 1047, 943, 809, 691.

HRMS(ESI): calcd for $C_{31}H_{39}FN_3O^+$ [M + H]⁺: 488.3072; found: 488.3066.

2-(tert-butyl)-6,10-dimethoxy-4-(2-(methyl(phenyl)amino)ethyl)-2-azaspiro[4.5]deca-6,9-dien-3-one (3-9)

Brown oil, 60 mg, 50% yield.

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.16 (t, *J* = 8.0 Hz, 2H), 6.69 – 6.58 (m, 3H), 4.86 – 4.78 (m, 2H), 3.69 (d, *J* = 9.5 Hz, 1H), 3.55 (s, 3H), 3.46 (s, 3H), 3.45 – 3.32 (m, 1H), 3.28 (d, *J* = 9.5 Hz, 1H), 3.24 – 3.11 (m, 1H), 2.92 – 2.87 (m, 3H), 2.86 (s, 3H), 2.06 – 1.95 (m, 1H), 1.55 – 1.42 (m, 1H), 1.38 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.8, 155.2, 152.6, 149.4, 128.9, 115.6, 112.1, 93.8, 92.0, 54.6, 53.9, 52.1, 51.3, 46.1, 45.6, 37.6, 27.5, 24.1, 23.0.

IR(KBr, cm⁻¹): 2717, 1601, 1506, 1413, 1265, 1161, 991, 742, 612.

HRMS(ESI): calcd for $C_{24}H_{35}N_2O_3^+$ [M + H]⁺: 399.2642; found: 399.2638.

2-(tert-butyl)-4-methyl-4-(2-(methyl(phenyl)amino)ethyl)-2-azaspiro[4.5]deca-6,9-dien-3-one (3-10)

brown oil, 70 mg, 67% yield.

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.19 (t, *J* = 7.8 Hz, 2H), 6.69 – 6.62 (m, 3H), 5.91 (t, *J* = 10.0 Hz, 2H), 5.68 (d, *J* = 10.3 Hz, 1H), 5.62 (d, *J* = 10.1 Hz, 1H), 3.53 – 3.42 (m, 1H), 3.38 – 3.27 (m, 1H), 3.21 (s, 2H), 2.87 (s, 3H), 2.72 (s, 2H), 1.84 – 1.73 (m, 1H), 1.64 – 1.55 (m, 1H), 1.41 (s, 9H), 1.09 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.8, 149.0, 129.0, 127.7, 126.3, 126.1, 115.6, 111.9, 54.8, 53.6, 50.6, 47.7, 43.1, 37.6, 29.1, 27.5, 26.8, 16.2.

IR(KBr, cm⁻¹): 2719, 1600, 1509, 1392, 1058, 948, 816, 694.

HRMS(ESI): calcd for $C_{23}H_{33}N_2O^+$ [M + H]⁺: 353.2587; found: 353.2582.

2-(tert-butyl)-4-(2-(methyl(phenyl)amino)ethyl)-2-azaspiro[4.5]deca-6,9-dien-3-one (3-11)

Brown yellow oil, 40 mg (**P1**, small polarity), 35% yield and 41mg (**P2**, big polarity), 35% yield, d.r. = 1:1.

NMR:

[**P1**] ¹H NMR (500 MHz, Chloroform-*d*) δ 7.45 (d, J = 7.7 Hz, 1H), 7.24 – 7.13 (m, 3H), 7.11 (dd, J = 9.0, 7.2 Hz, 2H), 6.60 (t, J = 7.2 Hz, 1H), 6.52 (d, J = 8.1 Hz, 2H), 6.10 – 6.03 (m, 1H), 5.80 – 5.74 (m, 1H), 3.75 (d, J = 9.9 Hz, 1H), 3.48 (t, J = 3.1 Hz, 2H), 3.38 (d, J = 9.9 Hz, 1H), 3.10 – 2.97 (m, 2H), 2.83 (t, J = 6.7 Hz, 1H), 2.69 (s, 3H), 2.03 – 1.94 (m, 1H), 1.56 – 1.50 (m, 1H), 1.42 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 174.3, 149.3, 137.0, 134.6, 128.9, 128.8, 127.6, 126.7, 126.6, 126.1, 124.9, 115.8, 112.1, 59.1, 54.0, 53.2, 51.0, 43.6, 37.4, 29.8, 27.7, 23.5.

[**P2**] ¹H NMR (500 MHz, Chloroform-*d*) δ 7.38 (d, J = 8.1 Hz, 1H), 7.25 (dd, J = 6.7, 1.2 Hz, 1H), 7.22 – 7.18 (m, 2H), 7.09 – 7.04 (m, 2H), 6.58 (t, J = 7.2 Hz, 1H), 6.33 (d, J = 8.2 Hz, 2H), 6.03 – 5.97 (m, 1H), 5.69 – 5.65 (m, 1H), 3.63 (d, J = 10.2 Hz, 1H), 3.53 (d, J = 10.2 Hz, 1H), 3.45 (t, J = 3.1 Hz, 2H), 3.28 – 3.21 (m, 1H), 3.19 – 3.12 (m, 1H), 2.73 (s, 3H), 2.51 (dd, J = 7.9, 6.1 Hz, 1H), 1.86 – 1.78 (m, 1H), 1.46 (s, 9H), 1.39 – 1.32 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 175.4, 149.2, 137.8, 133.5, 132.8, 128.9, 128.8, 127.0, 126.9, 125.9, 125.0, 115.6, 111.9, 59.2, 54.3, 53.4, 50.9, 42.3, 37.5, 29.8, 27.6, 23.7.

IR(KBr, cm⁻¹):

[P1] 2719, 1681, 1599, 1456, 1396, 1268, 1194, 1035, 951, 753, 694.

[P2] 2720, 1593, 1504, 1363, 1298, 1223, 1155, 1035, 990, 750, 696.

HRMS(ESI): calcd for $C_{26}H_{33}N_2O^+$ [M + H]⁺: 389.2587; found: 389.2581.

methyl 4-((2-(tert-butyl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-4l)ethyl)(methyl)amino)benzoate (**3-12**)

Brown oil, 82 mg, 59% yiled.

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 8.9 Hz, 2H), 6.61 (d, *J* = 9.0 Hz, 2H), 5.94 – 5.84 (m, 2H), 5.66 – 5.59 (m, 1H), 5.53 – 5.47 (m, 1H), 3.82 (s, 3H), 3.54 – 3.37 (m, 2H), 3.26 – 3.15 (m, 2H), 2.95 (s, 3H), 2.70 (s, 2H), 2.11 (t, *J* = 6.8 Hz, 1H), 1.93 – 1.83 (m, 1H), 1.59 – 1.49 (m, 1H), 1.37 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.5, 167.4, 152.3, 131.2, 129.9, 127.0, 127.0, 125.8, 116.3, 110.4, 56.6, 53.9, 51.3, 51.3, 50.7, 41.4, 37.7, 27.6, 26.6, 23.2.

IR(KBr, cm⁻¹): 2711, 1674, 1529, 1470, 1366, 1227, 1111, 974, 768, 592.

HRMS(ESI): calcd for $C_{24}H_{33}N_2O_3^+$ [M + H]⁺: 397.2486; found: 397.2482.

4-((2-(2-(tert-butyl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-4-yl)ethyl)(methyl)amino)benzoic acid (3-13)

Brown oil, 75 mg, 66% yield.

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, J = 8.8 Hz, 2H), 6.63 (d, J = 8.8 Hz, 2H), 5.90 (t, J = 7.9 Hz, 2H), 5.63 (d, J = 10.3 Hz, 1H), 5.51 (d, J = 9.1 Hz, 1H), 3.53 – 3.38(m, 2H), 3.25 (d, J = 9.8 Hz, 1H), 3.18 (d, J = 9.8 Hz, 1H), 2.97 (s, 3H), 2.71 (s, 2H), 2.14 (t, J = 6.7 Hz, 1H), 1.97 – 1.84 (m, 1H), 1.61 – 1.51 (m, 1H), 1.38 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.6, 172.1, 152.8, 131.9, 129.9, 127.0, 126.9, 125.9, 115.5, 110.4, 56.6, 53.9, 51.3, 50.7, 41.4, 37.7, 27.6, 26.6, 23.2.

IR(KBr, cm⁻¹): 2702, 1670, 1532, 1389, 1184, 945, 831, 739, 561.

HRMS(ESI): calcd for $C_{23}H_{31}N_2O_3^+$ [M + H]⁺: 383.2329; found: 383.2324.

4-(2-((2-bromophenyl)(methyl)amino)ethyl)-2-(tert-butyl)-2-azaspiro[4.5]deca-6,9-dien-3-one (**3-14**) Brown oil, 83 mg, 67% yield. NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.50 (dd, J = 7.9, 1.4 Hz, 1H), 7.21 – 7.17 (m, 1H), 7.04 (dd, J = 8.0, 1.3 Hz, 1H), 6.86 – 6.82 (m, 1H), 5.81 – 5.76 (m, 1H), 5.66 – 5.61 (m, 1H), 5.57 (dd, J = 10.3, 1.9 Hz, 1H), 5.48 (dd, J = 10.1, 2.0 Hz, 1H), 3.20 (d, J = 9.8 Hz, 1H), 3.12 (d, J = 9.7 Hz, 1H), 3.11 – 3.00 (m, 2H), 2.70 (s, 3H), 2.63 – 2.53 (m, 2H), 2.37 (dd, J = 7.9, 5.8 Hz, 1H), 2.00 – 1.92 (m, 1H), 1.51 – 1.44 (m, 1H), 1.36 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 175.2, 151.2, 133.6, 130.3, 127.8, 127.0, 126.0, 125.5, 123.8, 122.2, 120.4, 56.6, 53.7, 53.3, 50.8, 41.4, 41.3, 27.7, 26.6, 23.6.

IR(KBr, cm⁻¹): 2724, 1597, 1473, 1361, 1117, 1028, 917, 764, 567.

HRMS(ESI): calcd for $C_{22}H_{30}BrN_2O^+$ [M + H]⁺: 417.1536; found: 417.1530.

2-(tert-butyl)-4-(2-(methyl(p-tolyl)amino)ethyl)-2-azaspiro[4.5]deca-6,9-dien-3-one (3-15)

Brown oil, 72 mg, 69% yield.

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.00 (d, J = 8.4 Hz, 2H), 6.64 (d, J = 8.8 Hz, 2H), 5.93 – 5.85 (m, 2H), 5.67 – 5.61 (m, 1H), 5.55 – 5.49 (m, 1H), 3.47 – 3.38 (m, 1H), 3.37 – 3.28 (m, 1H), 3.26 – 3.16 (m, 2H), 2.85 (s, 3H), 2.76 – 2.68 (m, 2H), 2.24 (s, 3H), 2.17 (t, J = 6.8 Hz, 1H), 1.94 – 1.86 (m, 1H), 1.60 – 1.49 (m, 1H), 1.39 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.9, 147.4, 130.2, 129.5, 127.2, 126.7, 125.6, 125.0, 112.5, 56.6, 53.8, 51.4, 51.4, 41.4, 37.7, 27.6, 26.6, 23.0, 20.1.

IR(KBr, cm⁻¹): 2811, 1683, 1611, 1521, 1362, 1224, 775.

HRMS(ESI): calcd for C₂₃H₃₃N₂O⁺ [M + H]⁺: 353.2587; found: 353.2583.

2-(tert-butyl)-4-(2-(methyl(m-tolyl)amino)ethyl)-2-azaspiro[4.5]deca-6,9-dien-3-one (3-16)

Brown oil, 73 mg, 70% yield.

NMR: 1H NMR (400 MHz, Chloroform-*d*) δ 7.12 – 7.04 (m, 1H), 6.56 – 6.49 (m, 2H), 6.48 (d, *J* = 8.1 Hz, 1H), 5.95 – 5.84 (m, 2H), 5.70 – 5.61 (m, 1H), 5.57 – 5.49 (m, 1H), 3.53 – 3.41 (m, 1H), 3.38 – 3.26 (m, 1H), 3.28 – 3.15 (m, 2H), 2.88 (s, 3H), 2.76 – 2.69 (m, *J* = 2.0 Hz, 2H), 2.29 (s, 3H), 2.17 (t, *J*

= 6.8 Hz, 1H), 1.96 – 1.86 (m, 1H), 1.62 – 1.51 (m, 1H), 1.39 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.9, 149.5, 138.6, 130.2, 128.8, 127.2, 126.7, 125.6, 116.7, 112.9, 109.4, 56.6, 53.8, 51.4, 51.1, 41.4, 37.6, 27.7, 26.6, 23.2, 21.8.

IR(KBr, cm⁻¹): 2782, 1682, 1600, 1500, 1356, 1225, 1086, 769.

HRMS(ESI): calcd for $C_{23}H_{33}N_2O^+$ [M + H]⁺: 353.2587; found: 353.2583.

2-(tert-butyl)-4-(2-((2-hydroxyethyl)(phenyl)amino)ethyl)-2-azaspiro[4.5]deca-6,9-dien-3-one (3-17)

Brown oil, 75 mg, 68% yield.

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 – 7.17 (m, 2H), 6.77 (d, *J* = 8.3 Hz, 2H), 6.67 (t, *J* = 7.3 Hz, 1H), 5.95 – 5.86 (m, 2H), 5.68 – 5.62 (m, 1H), 5.57 – 5.50 (m, 1H), 3.77 (t, *J* = 6.1 Hz, 2H), 3.53 – 3.40 (m, 4H), 3.30 – 3.17 (m, 2H), 2.77 – 2.68 (m, 2H), 2.17 (t, *J* = 6.7 Hz, 1H), 1.97 – 1.86 (m, 1H), 1.65 – 1.55 (m, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.8, 148.3, 129.9, 129.0, 127.0, 126.9, 125.7, 116.1, 112.4, 59.9, 56.6, 53.8, 52.7, 51.6, 49.9, 41.4, 27.6, 26.5, 23.4.

IR(KBr, cm⁻¹): 2832, 1664, 1598, 1506, 1361, 1226, 775.

HRMS(ESI): calcd for C₂₃H₃₃N₂O₂⁺ [M + H]⁺: 369.2537; found: 369.2534.

3-((2-(2-(tert-butyl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-4-yl)ethyl)(phenyl)amino)-N-methoxy-N-methylpropanamide (**3-18**)

Brown oil, 81 mg, 62% yield.

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.17 (t, *J* = 7.8 Hz, 2H), 6.72 (d, *J* = 8.2 Hz, 2H), 6.62 (t, *J* = 7.1 Hz, 1H), 5.92 – 5.84 (m, 2H), 5.63 (d, *J* = 10.1 Hz, 1H), 5.51 (d, *J* = 8.7 Hz, 1H), 3.66 – 3.56 (m, 5H), 3.54 – 3.42 (m, 1H), 3.43 – 3.31 (m, 1H), 3.27 – 3.16 (m, 2H), 3.16 (s, 3H), 2.73 – 2.63 (m, 4H), 2.15 (t, *J* = 6.7 Hz, 1H), 1.97 – 1.83 (m, 1H), 1.60 – 1.51 (m, 1H), 1.38 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.7, 147.4, 130.0, 129.1, 127.0, 126.8, 125.6, 115.5, 111.8, 61.2, 56.5, 53.7, 51.5, 49.3, 45.9, 41.4, 27.6, 26.5, 23.9.

IR(KBr, cm⁻¹): 2710, 1620, 1502, 1359, 1214, 1043, 992, 872, 744, 569.

HRMS(ESI): calcd for $C_{26}H_{38}N_3O_3^+$ [M + H]⁺: 440.2908; found: 440.2904.

2-(tert-butyl)-4-(2-(diphenylamino)ethyl)-2-azaspiro[4.5]deca-6,9-dien-3-one (3-19)

Brown oil, 72 mg, 60% yield.

NMR: 1H NMR (400 MHz, Chloroform-*d*) δ 7.22 (t, *J* = 7.7 Hz, 4H), 6.98 (d, *J* = 7.8 Hz, 4H), 6.90 (t, *J* = 7.2 Hz, 2H), 5.85 (dd, *J* = 18.5, 10.2 Hz, 2H), 5.64 (d, *J* = 10.1 Hz, 1H), 5.48 (d, *J* = 9.4 Hz, 1H), 3.88 – 3.73 (m, 2H), 3.26 – 3.14 (m, 2H), 2.66 (s, 2H), 2.20 (t, *J* = 6.8 Hz, 1H), 2.09 – 1.98 (m, 1H), 1.73 – 1.61 (m, 1H), 1.38 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.7, 147.8, 130.2, 129.2, 127.2, 126.8, 125.8, 121.0, 120.9, 56.7, 53.9, 51.7, 50.6, 41.4, 27.7, 26.6, 24.2.

IR(KBr, cm⁻¹): 2720, 1681, 1594, 1494, 1392, 1244, 1067, 988, 878, 696.

HRMS(ESI): calcd for $C_{27}H_{33}N_2O^+$ [M + H]⁺: 401.2587; found: 401.2582.

2-(adamantan-1-yl)-4-(2-((4-bromophenyl)(methyl)amino)ethyl)-2-azaspiro[4.5]deca-6,9-dien-3-one (3-20)

Brown oil, 97 mg, 66% yield.

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 (d, J = 9.1 Hz, 2H), 6.56 (d, J = 9.1 Hz, 2H), 5.92 – 5.83 (m, 2H), 5.67 – 5.60 (m, 1H), 5.53 – 5.45 (m, 1H), 3.39 (dd, J = 9.3, 6.7 Hz, 2H), 3.21 (s, 2H), 2.85 (s, 3H), 2.69 (d, J = 5.5 Hz, 2H), 2.09 (d, J = 9.6 Hz, 10H), 1.89 – 1.76 (m, 1H), 1.70 (d, J = 13.8 Hz, 7H), 1.56 – 1.42 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.7, 148.3, 131.6, 130.0, 127.2, 126.9, 125.6, 113.7, 107.5, 55.5, 55.1, 51.6, 51.1, 41.6, 39.7, 37.7, 36.3, 29.6, 26.7, 22.9.

IR(KBr, cm⁻¹): 2710, 1670, 1594, 1455, 1345, 1196, 923, 802, 578.

HRMS(ESI): calcd for $C_{28}H_{36}BrN_2O^+$ [M + H]⁺: 495.2006; found: 495.2001.

2-(1-((tert-butyldiphenylsilyl)oxy)-2-methylpropan-2-yl)-4-(2-(methyl(phenyl)amino)ethyl)-2azaspiro[4.5]deca-6,9-dien-3-one (**3-21**)

Brown oil, 100 mg, 60% yield.

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.69 (d, J = 7.3 Hz, 4H), 7.46 – 7.39 (m, 6H), 7.22 (t, J = 7.6 Hz, 2H), 6.75 (d, J = 8.2 Hz, 2H), 6.68 (t, J = 7.2 Hz, 1H), 5.93 – 5.84 (m, 2H), 5.76 (d, J = 10.2 Hz, 1H), 5.53 (d, J = 9.9 Hz, 1H), 3.99 (d, J = 10.0 Hz, 1H), 3.81 (d, J = 10.0 Hz, 1H), 3.46 (t, J = 8.0 Hz, 2H), 3.40 (d, J = 9.6 Hz, 1H), 3.34 (d, J = 9.6 Hz, 1H), 2.93 (s, 3H), 2.74 (s, 2H), 2.16 (t, J = 6.7 Hz, 1H), 1.99 – 1.90 (m, 1H), 1.64 – 1.55 (m, 1H), 1.39 (s, 6H), 1.12 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 174.9, 149.3, 135.6, 133.4, 130.2, 129.6, 129.0, 127.6, 127.5, 126.8, 125.3, 115.7, 112.1, 68.5, 57.8, 57.6, 51.4, 51.1, 41.7, 37.7, 26.9, 26.6, 23.4, 23.1, 19.3.

IR(KBr, cm⁻¹): 2715, 1602, 1504, 1392, 1194, 994, 817, 612.

HRMS(ESI): calcd for $C_{38}H_{49}N_2O_2Si^+$ [M + H]⁺: 593.3558; found: 593.3550.

methyl 2-methyl-2-(4-(2-(methyl(phenyl)amino)ethyl)-3-oxo-2-azaspiro[4.5]deca-6,9-dien-2yl)propanoate (**3-22**)

Brown oil, 41 mg, 36% yield.

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.18 (t, *J* = 7.6 Hz, 2H), 6.69 (d, *J* = 7.7 Hz, 2H), 6.65 (t, *J* = 7.0 Hz, 1H), 5.91 (dd, *J* = 9.1, 3.3 Hz, 2H), 5.70 (d, *J* = 10.3 Hz, 1H), 5.57 (d, *J* = 10.0 Hz, 1H), 3.74 (s, 3H), 3.52 – 3.44 (m, 1H), 3.38 (dd, *J* = 10.4, 4.4 Hz, 1H), 3.33 (d, *J* = 9.2 Hz, 1H), 3.20 (d, *J* = 9.4 Hz, 1H), 2.87 (s, 3H), 2.73 (s, 2H), 2.23 (t, *J* = 6.9 Hz, 1H), 1.92 – 1.83 (m, 1H), 1.61 – 1.54 (m, 1H), 1.49 (s, 3H), 1.45 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 174.7, 174.4, 149.4, 129.7, 129.0, 127.1, 127.0, 125.8, 115.8, 112.2, 58.1, 55.7, 52.4, 50.9, 50.2, 42.3, 37.6, 26.6, 23.9, 23.4, 22.9.

IR(KBr, cm⁻¹): 2718, 1613, 1508, 1362, 1199, 947, 850, 696.

HRMS(ESI): calcd for $C_{23}H_{31}N_2O_3^+$ [M + H]⁺: 383.2329; found: 383.2323.

3-(tert-butyl)-1-(2-(methyl(phenyl)amino)ethyl)-3a,4,5,7-tetrahydro-1H-indeno[1,7a-b]pyrrol-2(3H)-one (**3-23**)

Brown oil, 75mg, 69 % yield (d.r. > 20:1).

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.14 (m, 2H), 6.70 (d, J = 8.2 Hz, 2H), 6.65 (t, J = 7.2 Hz, 1H), 6.01 – 5.95 (m, 1H), 5.71 (d, J = 9.9 Hz, 1H), 5.59 (s, 1H), 3.64 (dd, J = 9.1, 4.4 Hz, 1H), 3.38 – 3.21 (m, 2H), 2.87 (s, 3H), 2.76 – 2.70 (m, 2H), 2.73 – 2.64 (m, 2H), 2.47 (dd, J = 8.1, 5.8 Hz, 1H), 2.35 (dd, J = 14.6, 9.8 Hz, 1H), 2.08 – 1.91 (m, 2H), 1.80 – 1.74 (m, 1H), 1.50 (dd, J = 16.1, 7.3 Hz, 2H), 1.41 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.7, 149.4, 140.7, 128.9, 126.7, 126.4, 117.7, 115.8, 112.2, 65.8, 53.8, 51.2, 50.4, 47.3, 37.7, 31.0, 30.0, 28.2, 27.4, 23.9.

KR(KBr, cm⁻¹): 2718, 1601, 1505, 1362, 1221, 1118, 948, 693.

HRMS(ESI): calcd for C₂₄H₃₃N₂O⁺ [M + H]⁺: 365.2587; found: 365.2583.

3-(tert-butyl)-8-chloro-1-(2-(methyl(phenyl)amino)ethyl)-3a,4,5,7-tetrahydro-1H-indeno[1,7a-b]pyrrol-2(3H)-one (**3-24**)

Brown oil, 75 mg, 63 % yield (d.r. = 2.33:1).

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 – 7.17 (m, 2H), 6.69 (d, J = 8.4 Hz, 3H), 6.65 (d, J = 7.2 Hz, 2H), 5.82 (d, J = 1.7 Hz, 1H), 5.54 – 5.48 (m, 1H), 3.70 (dd, J = 9.2, 4.4 Hz, 1H), 3.37 – 3.21 (m, 2H), 3.15 – 3.10 (m, 0.3H), 3.10 – 3.05 (m, 0.7H), 2.98 – 2.92 (m, 0.7H), 2.93 – 2.88 (m, 0.3H), 2.88 (s, 3H), 2.73 – 2.61 (m, 1H), 2.50 (dd, J = 8.7, 5.4 Hz, 1H), 2.39 – 2.29 (m, 1H), 2.13 – 1.95 (m, 2H), 1.85 – 1.72 (m, 1H), 1.63 – 1.50 (m, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.9, 149.3, 140.4, 132.3, 129.1, 123.9, 116.8, 116.0, 112.3, 65.2, 54.0, 53.7, 51.1, 47.4, 37.7, 34.7, 31.6, 29.5, 28.2, 24.0.

KR(KBr, cm⁻¹): 2718, 1601, 1505, 1362, 1221, 1118, 948, 756, 693.

HRMS(ESI): calcd for C₂₄H₃₂ClN₂O⁺ [M + H]⁺: 399.2198; found: 399.2193.

6-bromo-3-(tert-butyl)-1-(2-(methyl(phenyl)amino)ethyl)-3a,4,5,7-tetrahydro-1H-indeno[1,7a-b]pyrrol-2(3H)-one (**3-25**)

Brown oil, 96 mg, 73 % yield (d.r. > 20:1).

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.21 (t, *J* = 7.8 Hz, 2H), 6.71 (d, *J* = 8.1 Hz, 2H), 6.67 (t, *J* = 7.1 Hz, 1H), 5.87 – 5.79 (m, 1H), 5.68 (d, *J* = 9.7 Hz, 1H), 3.71 (dd, *J* = 8.8, 5.8 Hz, 1H), 3.46 – 3.36 (m, 1H), 3.32 – 3.22 (m, 1H), 3.18 (d, *J* = 22.2 Hz, 1H), 3.11 – 3.03 (m, 1H), 2.87 (s, 3H), 2.71 – 2.61 (m, 2H), 2.49 (t, *J* = 6.7 Hz, 1H), 2.21 – 2.09 (m, 1H), 1.99 – 1.88 (m, 1H), 1.87 – 1.77 (m, 1H), 1.53 – 1.45 (m, 1H), 1.41 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 174.0, 149.4, 139.4, 129.1, 126.2, 126.2, 116.1, 114.0, 112.4, 65.2, 55.1, 53.9, 51.1, 47.5, 37.7, 37.5, 30.7, 30.2, 28.2, 23.7.

IR(KBr, cm⁻¹): 2718, 1678, 1605, 1506, 1362, 1222, 1039, 749, 645.

HRMS(ESI): calcd for $C_{24}H_{32}BrN_2O^+$ [M + H]⁺: 443.1693; found: 443.1688.

3-(tert-butyl)-7-hydroxy-1-(2-(methyl(phenyl)amino)ethyl)-3a,4,5,7-tetrahydro-1H-indeno[1,7a-b]pyrrol-2(3H)-one (**3-26**)

Brown oil, 67 mg, 59 % yield (From 4-F) (d.r. > 20:1); 78 mg, 68 % yield (From 4-Br) (d.r. > 20:1)

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.18 (t, J = 7.4 Hz, 2H), 6.73 (d, J = 8.0 Hz, 2H), 6.65 (t, J = 6.9 Hz, 1H), 6.01 (dd, J = 9.9, 4.4 Hz, 1H), 5.86 (d, J = 9.9 Hz, 1H), 5.78 (s, 1H), 4.55 (t, J = 4.9 Hz, 1H), 3.60 (dd, J = 8.7, 4.1 Hz, 1H), 3.56 – 3.48 (m, 1H), 3.46 – 3.38 (m, 1H), 2.87 (s, 3H), 2.78 – 2.69 (m, 1H), 2.49 (t, J = 6.3 Hz, 1H), 2.37 – 2.29 (m, 1H), 2.12 – 2.03 (m, 1H), 1.84 – 1.78 (m, 2H), 1.56 – 1.50 (m, 1H), 1.41 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 174.7, 149.5, 129.1, 129.0,

129.0, 121.7, 121.6, 116.2, 116.2, 112.7, 64.4, 63.1, 63.0, 54.0, 51.4, 51.0, 51.0, 46.0, 38.2, 38.2, 31.6, 30.1, 28.3, 23.8.

IR(KBr, cm⁻¹): 2967, 1659, 1594, 1507, 1358, 1001, 876, 692.

HRMS(ESI): calcd for $C_{24}H_{33}N_2O_2^+$ [M + H]⁺: 381.2537; found: 381.2532.

3-(tert-butyl)-1-(2-(methyl(phenyl)amino)ethyl)-3,3a,4,5,6,8-hexahydrobenzo[d]indol-2(1H)-one (**3-27**)

Brown oil, 83 mg, 73 % yield (d.r. > 20:1).

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.19 (t, J = 7.9 Hz, 2H), 6.71 (d, J = 8.2 Hz, 2H), 6.65 (t, J = 7.2 Hz, 1H), 5.88 (dd, J = 10.1, 4.4 Hz, 1H), 5.63 (t, J = 3.5 Hz, 1H), 5.58 – 5.51 (m, 1H), 3.41 (t, J = 7.9 Hz, 2H), 3.30 (dd, J = 10.6, 5.9 Hz, 1H), 2.88 (s, 3H), 2.74 (d, J = 6.5 Hz, 1H), 2.72 – 2.67 (m, 2H), 2.22 – 2.12 (m, 3H), 1.94 – 1.84 (m, 1H), 1.79 – 1.73 (m, 1H), 1.55 – 1.46 (m, 2H), 1.43 (s, 9H), 1.28 – 1.22 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.3, 149.5, 136.5, 128.9, 128.0, 126.2, 121.9, 115.8, 112.2, 63.0, 53.7, 51.2, 45.7, 45.6, 37.6, 32.0, 31.9, 28.1, 27.1, 24.1, 23.3.

IR(KBr, cm⁻¹): 2711, 1675, 1504, 1394, 1266, 1027, 954, 750, 698.

HRMS(ESI): calcd for $C_{25}H_{35}N_2O^+$ [M + H]⁺: 379.2744; found: 379.2738

3-(tert-butyl)-1-(2-(methyl(phenyl)amino)ethyl)-3,3a,4,5-tetrahydro-8H-chromeno[4,4a-b]pyrrol-2(1H)-one (**3-28**)

White solid, 80 mg, 70 % yield (d.r. = 6.62:1).

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.15 (m, 2H), 6.72 (d, *J* = 8.1 Hz, 2H), 6.64 (t, *J* = 7.2 Hz, 1H), 5.92 – 5.83 (m, 1H), 5.56 – 5.48 (m, 1H), 5.47 – 5.40 (m, 1H), 4.15 – 4.06 (m, 1H), 3.60 – 3.46 (m, 3H), 3.43 – 3.30 (m, 1H), 2.89 (s, 4H), 2.86 (t, *J* = 6.6 Hz, 5H), 2.83 – 2.68 (m, 2H), 2.09 –

1.84 (m, 4H), 1.60 – 1.48 (m, 1H), 1.44 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.3, 151.7, 149.2, 128.9, 126.6, 115.6, 112.1, 108.1, 66.7, 59.6, 53.9, 51.3, 46.0, 43.7, 37.7, 31.6, 28.1, 26.7, 23.1.

IR(KBr, cm⁻¹): 2824, 1667, 1598, 1507, 1359, 1219, 1073, 950, 751, 690.

HRMS(ESI): calcd for $C_{24}H_{33}N_2O_2^+$ [M + H]⁺: 381.2537; found: 381.2531

3-(tert-butyl)-1-(2-(methyl(phenyl)amino)ethyl)-3a,4,5,6,7,9-hexahydro-1H-benzo[2,3]cyclohepta[1,2-b]pyrrol-2(3H)-one (**3-29**)

Brown oil, 100 mg, 85 % yield (d.r. = 1.27:1).

NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.18 (dd, J = 8.7, 7.3 Hz, 2H), 6.68 (d, J = 8.1 Hz, 2H), 6.64 (t, J = 7.2 Hz, 1H), 5.88 – 5.81 (m, 1H), 5.76 – 5.69 (m, 1H), 5.61 – 5.53 (m, 1H), 3.54 – 3.42 (m, 1H), 3.36 – 3.24 (m, 1H), 3.20 (dd, J = 10.7, 4.2 Hz, 1H), 2.92 – 2.83 (m, 4H), 2.77 – 2.66 (m, 2H), 2.42 – 2.29 (m, 1H), 2.14 – 2.08 (m, 1H), 1.96 – 1.83 (m, 2H), 1.73 – 1.62 (m, 3H), 1.61 – 1.48 (m, 2H), 1.43 (s, 9H), 1.36 – 1.26 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.6, 149.4, 135.4, 129.5, 128.9, 125.9, 124.6, 115.7, 112.1, 69.0, 53.9, 51.0, 47.6, 45.4, 37.5, 29.4, 29.2, 28.1, 27.6, 27.3, 23.2, 20.0.

IR(KBr, cm⁻¹): 2818, 1739, 1625, 1398, 1259, 1032, 989, 860, 752, 695.

HRMS(ESI): calcd for $C_{26}H_{37}N_2O^+$ [M + H]⁺: 393.2900; found: 393.2894

1-(2-(benzyl(methyl)amino)ethyl)-3-(tert-butyl)-3a,4,5,7-tetrahydro-1H-indeno[1,7a-b]pyrrol-2(3H)-one (**3-30**)

Brown oil, 85 mg, 75 % yield (d.r. > 20:1)

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.30 – 7.18 (m, 5H), 5.86 – 5.80 (m, 1H), 5.62 (dd, *J* = 9.9, 2.7 Hz, 1H), 5.47 – 5.42 (m, 1H), 3.59 (dd, *J* = 9.1, 4.4 Hz, 1H), 3.47 (d, *J* = 13.0 Hz, 1H), 3.36 (d, *J* = 9.1, 4.4 Hz, 1H), 3.47 (d, *J* = 13.0 Hz, 1H), 3.46 (d, J = 13.0 Hz, 1H)

J = 13.0 Hz, 1H), 2.76 – 2.67 (m, 1H), 2.63 – 2.54 (m, 2H), 2.45 – 2.39 (m, 1H), 2.35 – 2.27 (m, 3H), 2.12 (s, 3H), 2.07 – 1.94 (m, 3H), 1.78 – 1.71 (m, 1H), 1.39 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 175.1, 140.8, 139.3, 129.0, 128.0, 126.7, 126.4, 126.3, 117.3, 65.8, 62.1, 55.0, 53.7, 50.2, 47.0, 41.7, 30.9, 30.1, 28.2, 27.2, 24.3.

IR(KBr, cm⁻¹): 2823, 1601, 1461, 1389, 1264, 1133, 978, 815, 649.

HRMS(ESI): calcd for C₂₅H₃₅N₂O⁺ [M + H]⁺: 379.2744; found: 379.2738

3-(tert-butyl)-1-(2-(methyl(2-phenoxyethyl)amino)ethyl)-3a,4,5,7-tetrahydro-1H-indeno[1,7a-b]pyrrol-2(3H)-one (**3-31**)

Brown oil, 86 mg, 70 % yield (d.r. > 20:1).

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.26 (t, *J* = 7.9 Hz, 2H), 6.92 (t, *J* = 7.3 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 2H), 5.91 (d, *J* = 9.7 Hz, 1H), 5.65 (d, *J* = 9.8 Hz, 1H), 5.51 (s, 1H), 4.01 (t, *J* = 6.0 Hz, 2H), 3.60 (dd, *J* = 9.1, 4.5 Hz, 1H), 2.76 (t, *J* = 6.0 Hz, 2H), 2.74 – 2.69 (m, 1H), 2.67 (s, 2H), 2.61 (dd, *J* = 9.0, 5.0 Hz, 1H), 2.47 – 2.40 (m, 2H), 2.34 – 2.28 (m, 4H), 2.04 – 1.93 (m, 2H), 1.78 – 1.70 (m, 1H), 1.40 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 175.0, 141.0, 129.3, 126.6, 126.3, 120.5, 117.4, 114.5, 65.9, 65.8, 56.1, 55.6, 53.8, 50.4, 46.9, 42.5, 30.9, 30.0, 28.3, 27.3, 24.2.

IR(KBr, cm⁻¹): 2719, 1612, 1496, 1361, 1233, 1070, 885, 771, 691.

HRMS(ESI): calcd for $C_{26}H_{37}N_2O_2^+$ [M + H]⁺: 409.2850; found: 409.2845.

3-(tert-butyl)-1-(2-((2,2-dimethoxyethyl)(methyl)amino)ethyl)-3a,4,5,7-tetrahydro-1H-indeno[1,7a-b]pyrrol-2(3H)-one (**3-32**)

Brown oil, 77 mg, 69 % yield (d.r. > 20:1)

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 5.87 (d, J = 9.7 Hz, 1H), 5.61 (d, J = 9.8 Hz, 1H), 5.50 (s, 1H), 4.39 (t, J = 5.2 Hz, 1H), 3.57 (dd, J = 9.1, 4.4 Hz, 1H), 3.29 (s, 6H), 2.74 – 2.67 (m, 1H), 2.65 (s, 2H), 2.51 (dd, J = 8.9, 5.0 Hz, 1H), 2.43 (d, J = 5.2 Hz, 2H), 2.35 (t, J = 7.6 Hz, 2H), 2.33 – 2.24 (m, 2H), 2.20 (s, 3H), 2.01 – 1.84 (m, 2H), 1.76 – 1.67 (m, 1H), 1.36 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 174.9, 140.9, 126.5, 126.2, 117.4, 102.7, 65.7, 58.5, 56.2, 53.7, 53.1, 53.0, 50.3, 47.0, 42.6, 30.9, 30.0, 28.2, 27.3, 23.9.

IR(KBr, cm⁻¹): 2832, 1603, 1470, 1361, 1209, 1070, 822, 771, 652.

HRMS(ESI): calcd for $C_{22}H_{37}N_2O_3^+$ [M + H]⁺: 377.2799; found: 377.2794.

ethyl N-(2-(3-(tert-butyl)-2-oxo-2,3,3a,4,5,7-hexahydro-1H-indeno[1,7a-b]pyrrol-1-yl)ethyl)-Nmethylglycinate (**3-33**)

Brown oil, 81 mg, 72 % yield (d.r. > 20:1)

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 5.91 – 5.86 (m, 1H), 5.62 (d, *J* = 9.9 Hz, 1H), 5.51 (s, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.58 (dd, *J* = 9.2, 4.5 Hz, 1H), 3.17 (d, *J* = 3.7 Hz, 2H), 2.77 – 2.67 (m, 1H), 2.69 – 2.64 (m, 2H), 2.56 (dd, *J* = 9.0, 5.0 Hz, 1H), 2.52 – 2.39 (m, 2H), 2.35 – 2.26 (m, 4H), 2.05 – 1.95 (m, 1H), 1.95 – 1.85 (m, 1H), 1.78 – 1.68 (m, 1H), 1.45 – 1.32 (m, 10H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 175.0, 171.1, 141.0, 126.5, 126.3, 117.3, 65.7, 60.2, 58.1, 54.6, 53.7, 50.3, 46.9, 41.9, 30.9, 30.0, 28.2, 27.3, 24.3, 14.2.

IR(KBr, cm⁻¹): 2835, 1737, 1595, 1460, 1360, 1184, 1038, 769, 681, 570.

HRMS(ESI): calcd for $C_{22}H_{35}N_2O_3^+$ [M + H]⁺: 375.2642; found: 375.2638

3-(tert-butyl)-1-(2-(7-hydroxy-3-azabicyclo[3.3.2]decan-3-yl)ethyl)-3a,4,5,7-tetrahydro-1H-indeno[1,7a-b]pyrrol-2(3H)-one (**3-34**)

Brown oil, 80 mg, 70 % yield (d.r. > 20:1).

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 5.87 (d, *J* = 9.7 Hz, 1H), 5.61 (d, *J* = 9.6 Hz, 1H), 5.50 (s, 1H), 3.96 (s, 1H), 3.56 (dd, *J* = 8.4, 3.7 Hz, 1H), 3.11 (s, 2H), 2.72 – 2.62 (m, 4H), 2.36 – 2.23 (m, 3H), 2.09 – 1.93 (m, 6H), 1.87 – 1.79 (m, 3H), 1.79 – 1.68 (m, 2H), 1.59 (d, *J* = 14.3 Hz, 2H), 1.35 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 175.3, 140.7, 126.4, 126.4, 117.3, 65.7, 64.7, 58.3, 57.9, 53.7, 50.4, 49.8, 47.1, 38.9, 30.9, 30.0, 28.2, 27.3, 26.2, 26.1, 25.8.

IR(KBr, cm⁻¹): 2831, 1594, 1357, 1073, 953, 896, 772, 693.

HRMS(ESI): calcd for C₂₄H₃₇N₂O₂⁺ [M + H]⁺: 385.2850; found: 385.2845.

4,4'-((phenylazanediyl)bis(ethane-2,1-diyl))bis(2-(tert-butyl)-2-azaspiro[4.5]deca-6,9-dien-3-one) (3-35)

Brown oil, 48mg, 58 yield (d.r. = 1.44:1).

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.12 (q, J = 7.4 Hz, 2H), 6.70 (d, J = 8.2 Hz, 1.18H), 6.66 (d, J = 8.1 Hz, 0.82H), 6.56 (t, J = 6.9 Hz, 1H), 5.93 – 5.82 (m, 4H), 5.63 (t, J = 9.3 Hz, 2H), 5.51 (d, J = 9.9 Hz, 2H), 3.42 – 3.28 (m, 4H), 3.23 (d, J = 9.8 Hz, 2H), 3.17 (d, J = 9.8 Hz, 2H), 2.76 – 2.64 (m, 4H), 2.12 (q, J = 6.4 Hz, 2H), 1.91 – 1.81 (m, 2H), 1.57 – 1.49 (m, 2H), 1.38 (s, 18H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 174.8, 174.7, 148.1, 130.2, 130.0, 128.9, 128.9, 127.2, 127.1, 126.8, 126.6, 125.6, 114.8, 111.7, 111.7, 56.6, 53.7, 51.8, 51.6, 48.7, 48.7, 41.4, 41.3, 27.6, 27.6, 26.6, 23.7, 23.7.

IR(KBr, cm⁻¹): 2814, 1615, 1463, 1264, 1037, 916, 791, 640.

HRMS(ESI): calcd for C₃₆H₅₀N₃O₂⁺ [M + H]⁺: 556.3898; found: 556.3893

2-(tert-butyl)-4-(2-(methyl(phenyl)amino)ethyl)-2,7-diazaspiro[4.5]deca-6,9-dien-3-one (3-36)

Brown oil, 70 mg, 69% yield, d.r. = 1:1.

NMR:
[**P1**] ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (q, J = 2.7 Hz, 1H), 7.19 (dd, J = 8.8, 7.2 Hz, 2H), 6.70 (d, J = 7.8 Hz, 2H), 6.66 (t, J = 7.3 Hz, 1H), 6.00 – 5.92 (m, 1H), 5.60 – 5.53 (m, 1H), 4.26 – 4.13 (m, 2H), 3.53 – 3.43 (m, 2H), 3.33 (d, J = 10.5 Hz, 1H), 3.23 (d, J = 10.4 Hz, 1H), 2.87 (s, 3H), 2.26 (dd, J = 7.7, 5.9 Hz, 1H), 2.00 – 1.90 (m, 1H), 1.59 – 1.49 (m, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.0, 161.7, 149.3, 129.1, 127.6, 125.9, 116.1, 112.3, 54.2, 53.5, 50.9, 50.1, 50.0, 40.6, 37.7, 27.6, 23.3.

[**P2**] ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (q, J = 2.7 Hz, 1H), 7.21 (t, J = 8.0 Hz, 2H), 6.73 (d, J = 7.9 Hz, 2H), 6.68 (t, J = 7.2 Hz, 1H), 6.05 – 5.97 (m, 1H), 5.78 – 5.69 (m, 1H), 4.23 (q, J = 2.5 Hz, 2H), 3.50 – 3.35 (m, 3H), 3.21 (d, J = 10.1 Hz, 1H), 2.90 (s, 3H), 2.41 (t, J = 6.8 Hz, 1H), 2.00 – 1.88 (m, 1H), 1.58 – 1.50 (m, 1H), 1.42 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.6, 163.4, 149.3, 129.1, 126.4, 123.7, 116.2, 112.3, 54.1, 53.6, 50.8, 50.0, 48.9, 41.2, 37.7, 27.6, 23.3.

IR(KBr, cm⁻¹): 1684, 1600, 1506, 1403, 1364, 1225, 945, 749.

P1 P2

HRMS(ESI): calcd for $C_{21}H_{30}N_3O^+$ [M + H]⁺: 340.2383; found: 340.2378.

2-(tert-butyl)-4-(2-(methyl(p-tolyl)amino)ethyl)-2,7-diazaspiro[4.5]deca-6,9-dien-3-one (3-37)

Brown oil, 76 mg, 71% yield. (d.r. = 1:1).

NMR:

[P1] ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (s, 1H), 7.01 (d, *J* = 8.3 Hz, 2H), 6.64 (d, *J* = 8.6 Hz, 2H), 5.97 (d, *J* = 10.3 Hz, 1H), 5.57 (dd, *J* = 10.5, 2.3 Hz, 1H), 4.27 – 4.15 (m, 2H), 3.43 (t, *J* = 7.6 Hz, 2H), 3.33 (d, *J* = 10.4 Hz, 1H), 3.23 (d, *J* = 10.4 Hz, 1H), 2.83 (s, 3H), 2.28 (t, *J* = 6.8 Hz, 1H), 2.23 (s, 3H), 2.00 – 1.91 (m, 1H), 1.57 – 1.49 (m, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.0, 161.7, 147.4, 129.6, 127.5, 125.9, 125.4, 112.7, 54.2, 53.5, 51.2, 50.0, 40.6, 37.8, 27.6, 23.2, 20.1.

[**P2**] ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (q, J = 2.7 Hz, 1H), 7.01 (d, J = 8.1 Hz, 2H), 6.64 (d, J = 8.2 Hz, 2H), 6.03 – 5.94 (m, 1H), 5.75 – 5.66 (m, 1H), 4.21 (q, J = 2.5 Hz, 2H), 3.43 (d, J = 10.0 Hz, 1H), 3.41 – 3.27 (m, 2H), 3.18 (d, J = 10.0 Hz, 1H), 2.83 (s, 3H), 2.40 (t, J = 6.8 Hz, 1H), 2.23 (s, 3H), 1.97 – 1.87 (m, 1H), 1.56 – 1.46 (m, 1H), 1.39 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.6, 163.5, 147.3, 129.6, 126.4, 125.4, 123.7, 112.8, 54.1, 53.6, 51.1, 50.0, 48.9, 41.2, 37.9, 27.6, 23.2, 20.1.

IR(KBr, cm⁻¹): 2703, 1686, 1650, 1520, 1476, 1363, 1221, 989, 803, 732.

HRMS(ESI): calcd for $C_{22}H_{32}N_3O^+$ [M + H]⁺: 354.2540; found: 354.2535.

2-(tert-butyl)-4-(2-(diphenylamino)ethyl)-2,7-diazaspiro[4.5]deca-6,9-dien-3-one (3-38)

Brown oil, 81 mg, 67% yield. (d.r. = 1:1).

NMR:

[P1] ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (s, 1H), 7.22 (t, *J* = 7.8 Hz, 4H), 6.97 (d, *J* = 8.0 Hz, 4H), 6.91 (t, *J* = 7.4 Hz, 2H), 5.90 – 5.80 (m, 1H), 5.52 – 5.43 (m, 1H), 4.15 (d, *J* = 23.3 Hz, 1H), 4.05 – 3.96 (m, 1H), 3.97 – 3.81 (m, 2H), 3.32 (d, *J* = 10.3 Hz, 1H), 3.21 (d, *J* = 10.4 Hz, 1H), 2.31 (t, *J* = 6.7 Hz, 1H), 2.07 – 2.00 (m, 1H), 1.64 – 1.56 (m, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.9, 161.6, 147.6, 129.2, 127.5, 125.6, 121.1, 120.9, 54.2, 53.5, 50.2, 50.1, 49.9, 40.6, 27.6, 24.1.

[**P2**] NMR: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 (s, 1H), 7.25 (t, *J* = 7.7 Hz, 4H), 6.99 (d, *J* = 8.0 Hz, 4H), 6.94 (t, *J* = 7.3 Hz, 2H), 6.00 – 5.92 (m, 1H), 5.75 – 5.68 (m, 1H), 4.20 (d, *J* = 22.4 Hz, 1H), 4.08 (d, *J* = 23.5 Hz, 1H), 3.92 – 3.83 (m, 1H), 3.81 – 3.72 (m, 1H), 3.45 (d, *J* = 10.1 Hz, 1H), 3.20 (d, *J* = 10.1 Hz, 1H), 2.44 (t, *J* = 6.9 Hz, 1H), 2.13 – 2.02 (m, 1H), 1.67 – 1.58 (m, 1H), 1.42 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.3, 163.3, 147.6, 129.2, 126.4, 123.5, 121.1, 120.8, 54.1, 53.6, 50.1, 49.9, 48.9, 41.1, 27.5, 24.2.

IR(KBr, cm⁻¹): 2805, 1687, 1643, 1590, 1496, 1364, 1246, 1188, 1068, 992, 749, 697.

HRMS(ESI): calcd for $C_{26}H_{32}N_3O^+$ [M + H]⁺: 402.2540; found: 402.2535.

2-(tert-butyl)-4-(2-(methyl(m-tolyl)amino)ethyl)-2,7-diazaspiro[4.5]deca-6,9-dien-3-one (**3-39**) Brown oil, 75 mg, 70% yield. (d.r. = 1:1). NMR:

[**P1**] ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (s, 1H), 7.08 (t, J = 8.1 Hz, 1H), 6.57 – 6.45 (m, 3H), 5.97 (d, J = 10.3 Hz, 1H), 5.57 (d, J = 10.3 Hz, 1H), 4.26 – 4.11 (m, 2H), 3.52 – 3.40 (m, 2H), 3.33 (d, J = 10.5 Hz, 1H), 3.23 (d, J = 10.4 Hz, 1H), 2.86 (s, 3H), 2.32 – 2.25 (m, 4H), 2.01 – 1.91 (m, 1H), 1.59 – 1.50 (m, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.0, 161.7, 149.5, 138.7, 128.9, 127.5, 125.9, 117.0, 113.0, 109.5, 54.2, 53.5, 50.9, 50.0, 50.0, 40.6, 37.6, 27.6, 23.3, 21.8.

[**P2**] ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 (q, J = 2.7 Hz, 1H), 7.08 (dd, J = 9.1, 7.3 Hz, 1H), 6.52 (d, J = 6.0 Hz, 3H), 6.50 (d, J = 7.5 Hz, 1H), 6.03 – 5.94 (m, 1H), 5.76 – 5.67 (m, 1H), 4.22 (q, J = 2.5 Hz, 2H), 3.43 (d, J = 10.0 Hz, 1H), 3.38 (t, J = 7.8 Hz, 2H), 3.18 (d, J = 10.0 Hz, 1H), 2.86 (s, 3H), 2.39 (t, J = 6.9 Hz, 1H), 2.29 (s, 3H), 1.97 – 1.87 (m, 1H), 1.56 – 1.48 (m, 1H), 1.39 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.5, 163.7, 149.3, 138.6, 128.9, 126.3, 123.6, 117.1, 113.0, 109.5, 54.1, 53.6, 50.7, 49.9, 48.9, 41.2, 37.7, 27.6, 23.3, 21.8.

IR(KBr, cm⁻¹): 2713, 1686, 1646, 1499, 1363, 1224, 1180, 994, 769, 726.

HRMS(ESI): calcd for $C_{22}H_{32}N_3O^+$ [M + H]⁺: 354.2540; found: 354.2535.

4-(2-((4-bromophenyl)(methyl)amino)ethyl)-2-(tert-butyl)-2,7-diazaspiro[4.5]deca-6,9-dien-3-one (**3-40**)

Brown oil, 90 mg, 72% yield, d.r. = 1:1.

NMR:

[P1] ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (s, 1H), 7.25 (d, J = 9.0 Hz, 2H), 6.57 (d, J = 9.2 Hz, 2H), 6.03 – 5.93 (m, 1H), 5.56 (dd, J = 10.3, 2.3 Hz, 1H), 4.25 – 4.11 (m, 2H), 3.56 – 3.46 (m, 1H), 3.46 – 3.37 (m, 1H), 3.34 (d, J = 10.4 Hz, 1H), 3.24 (d, J = 10.5 Hz, 1H), 2.85 (s, 3H), 2.25 – 2.18 (m, 1H), 1.96 – 1.87 (m, 1H), 1.57 – 1.48 (m, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.8, 161.5, 148.1, 131.6, 127.6, 125.7, 113.7, 107.8, 54.2, 53.4, 50.7, 49.9, 40.5, 37.7, 27.6, 23.0.

[P2] ¹H NMR (500 MHz, Chloroform-*d*) δ 7.59 (s, 1H), 7.18 (d, *J* = 9.0 Hz, 2H), 6.50 (d, *J* = 9.2 Hz, 2H), 5.96 – 5.87 (m, 1H), 5.67 – 5.59 (m, 1H), 4.18 – 4.08 (m, 2H), 3.41 – 3.32 (m, 2H), 3.29 – 3.22 (m, 1H), 3.12 (d, *J* = 10.1 Hz, 1H), 2.77 (s, 3H), 2.28 (t, *J* = 6.8 Hz, 1H), 1.85 – 1.76 (m, 1H), 1.45 –

1.38 (m, 1H), 1.32 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 173.4, 163.3, 148.2, 131.7, 126.5, 123.6, 113.9, 108.0, 54.2, 53.6, 50.7, 50.0, 48.8, 41.2, 37.8, 27.6, 23.2.

IR(KBr, cm⁻¹): 1677, 1599, 1501, 1362, 1075, 774.

HRMS(ESI): calcd for $C_{21}H_{29}N_3BrO^+$ [M + H]⁺: 418.1489; found: 418.1484.

2-(tert-butyl)-4-(2-((3,5-dimethylphenyl)(methyl)amino)ethyl)-2,7-diazaspiro[4.5]deca-6,9-dien-3-one (3-41)

Brown oil, 76 mg, 69% yield. (d.r. = 1:1).

NMR:

[P1] ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, *J* = 3.0 Hz, 1H), 6.35 (s, 3H), 6.01 – 5.93 (m, 1H), 5.62 – 5.54 (m, 1H), 4.25 – 4.14 (m, 2H), 3.55 – 3.43 (m, 1H), 3.45 – 3.35 (m, 1H), 3.33 (d, *J* = 10.4 Hz, 1H), 3.23 (d, *J* = 10.4 Hz, 1H), 2.85 (s, 3H), 2.31 – 2.26 (m, 2H), 2.25 (s, 6H), 2.01 – 1.89 (m, 1H), 1.60 – 1.50 (m, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.0, 161.9, 149.7, 138.6, 127.4, 126.0, 118.2, 110.3, 54.2, 53.5, 50.9, 50.0, 49.9, 40.7, 37.6, 27.6, 23.5, 21.7.

[**P2**] ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 (d, *J* = 3.2 Hz, 1H), 6.34 (s, 3H), 6.03 – 5.96 (m, 1H), 5.76 – 5.69 (m, 1H), 4.22 (q, *J* = 2.5 Hz, 2H), 3.43 (d, *J* = 10.0 Hz, 1H), 3.41 – 3.27 (m, 2H), 3.18 (d, *J* = 10.0 Hz, 1H), 2.85 (s, 3H), 2.40 (t, *J* = 6.8 Hz, 1H), 2.25 (s, 6H), 1.96 – 1.87 (m, 1H), 1.56 – 1.47 (m, 1H), 1.39 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.6, 163.7, 149.5, 138.5, 126.3, 123.7, 118.2, 110.3, 54.1, 53.6, 50.7, 49.9, 48.9, 41.2, 37.7, 27.6, 23.4, 21.7.

IR(KBr, cm⁻¹): 2709, 1687, 1644, 1598, 1484, 1400, 1227, 992, 765, 727.

HRMS(ESI): calcd for C₂₃H₃₄N₃O⁺ [M + H]⁺: 368.2696; found: 368.2691.

8-(tert-butyl)-10-(2-(methyl(phenyl)amino)ethyl)-8-azadispiro[2.2.4⁶.2³]dodeca-4,11-dien-9-one (**3-42**)

Brown oil, 70 mg, 64% yield.

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.18 (t, *J* = 8.0 Hz, 2H), 6.73 (d, *J* = 8.1 Hz, 2H), 6.65 (t, *J* = 7.2 Hz, 1H), 5.59 (dd, *J* = 10.0, 2.0 Hz, 1H), 5.46 (dd, *J* = 9.8, 2.1 Hz, 1H), 5.27 – 5.19 (m, 2H), 3.61 – 3.53 (m, 1H), 3.34 – 3.27 (m, 1H), 3.26 (s, 2H), 2.90 (s, 3H), 2.18 (dd, *J* = 7.8, 6.0 Hz, 1H), 2.01 – 1.93 (m, 1H), 1.69 – 1.60 (m, 1H), 1.39 (s, 9H), 0.93 – 0.84 (m, 4H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 174.7, 149.3, 134.3, 133.2, 128.9, 128.6, 125.5, 115.7, 112.2, 57.0, 53.8, 51.8, 51.0, 42.4, 37.6, 27.6, 23.2, 20.8, 16.6, 16.3.

IR(KBr, cm⁻¹): 2720, 1601, 1505, 1362, 1239, 1046, 925, 747, 649.

HRMS(ESI): calcd for $C_{24}H_{33}N_2O^+$ [M + H]⁺: 365.2587; found: 365.2582.

V. Synthesis of multicyclic N-containing skeletons

To a solution of **3** (0.1 mmol, 1.0 eq) in HOAc (2 mL) was stirred at 100 °C under argon atmosphere for 4 hours. Then the reaction was quenched with water and adjusted pH to 7 - 8, followed by extracting with EtOAc for 3 times. The combined organic layer was dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under reduced pressure to give crude product **4**, which was purified by silica gel column chromatography (PE / EA = $2 / 1 \sim 1 / 1$) to obtain product **4**. the details data of the products are summarized below.

2-(tert-butyl)-5-methyl-1,2,4,4a,5,10,10a,11-octahydro-10,11a-(epiminomethano)pyrrolo[3,4-b]acridin-3(3aH)-one (**4-1**)

White solid, 20.3 mg, 60% yield, m.p. = 207.9 – 209.2 °C.

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.14 (t, *J* = 7.8 Hz, 1H), 7.06 (d, *J* = 7.3 Hz, 1H), 6.60 (t, *J* = 7.3 Hz, 1H), 6.56 (d, *J* = 8.2 Hz, 1H), 3.85 (d, *J* = 3.1 Hz, 1H), 3.35 – 3.28 (m, 1H), 3.09 – 3.04 (m, 2H), 2.98 (d, *J* = 9.5 Hz, 1H), 2.97 – 2.93 (m, 4H), 2.54 (dd, *J* = 13.9, 7.6 Hz, 1H), 2.48 (d, *J* = 9.9 Hz, 1H), 2.18 (p, *J* = 4.0 Hz, 1H), 1.98 – 1.90 (m, 1H), 1.87 – 1.82 (m, 1H), 1.70 – 1.64 (m, 2H), 1.40 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 175.2, 143.4, 129.5, 128.9, 123.4, 115.5, 111.0, 56.7, 55.0, 54.0, 53.7, 53.3, 49.1, 36.8, 35.5, 34.5, 31.7, 27.7, 25.5.

IR(KBr, cm⁻¹): 2830, 1598, 1356, 1088, 774, 742, 530.

HRMS(ESI): calcd for $C_{21}H_{30}N_3O^+$ [M + H]⁺: 340.2383; found: 340.2380.

2-(tert-butyl)-5-phenyl-1,2,4,4a,5,10,10a,11-octahydro-10,11a-(epiminomethano)pyrrolo[3,4-b]acridin-3(3aH)-one (**4-2**)

White solid, 30.5 mg, 76% yield.

NMR: ¹H NMR (500 MHz, Methanol- d_4) δ 7.45 (t, J = 7.4 Hz, 3H), 7.31 (d, J = 7.9 Hz, 2H), 7.27 (t, J = 7.4 Hz, 1H), 7.10 (t, J = 7.9 Hz, 1H), 6.80 (t, J = 7.5 Hz, 1H), 6.62 (d, J = 8.5 Hz, 1H), 4.58 (d, J = 5.0 Hz, 1H), 3.75 – 3.67 (m, 1H), 3.47 (d, J = 12.4 Hz, 1H), 3.42 – 3.35 (m, 2H), 3.34 – 3.26 (m, 2H), 2.71 (d, J = 8.5 Hz, 2H), 2.54 (dd, J = 15.6, 7.6 Hz, 1H), 2.10 – 2.00 (m, 2H), 1.93 (d, J = 13.9 Hz, 1H), 1.41 (s, 9H). ¹³C NMR (126 MHz, Methanol- d_4) δ 173.8, 146.0, 142.6, 130.5, 130.1, 129.7, 126.7, 125.7, 118.0, 116.4, 116.3, 56.1, 54.2, 52.2, 51.7, 50.4, 47.2, 33.0, 31.1, 30.1, 26.5, 24.4.

IR(KBr, cm⁻¹): 2830, 1596, 1358, 1241, 1071, 774, 543.

HRMS(ESI): calcd for $C_{26}H_{32}N_3O [M + H]^+$: 402.2540; found: 402.2536.

2-(tert-butyl)-5,7-dimethyl-1,2,4,4a,5,10,10a,11-octahydro-10,11a-(epiminomethano)pyrrolo[3,4-b]acridin-3(3aH)-one (**4-3**)

White-off solid, 24.4 mg, 69% yield.

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 6.97 (d, J = 7.6 Hz, 1H), 6.44 (d, J = 7.8 Hz, 1H), 6.38 (s, 1H), 3.84 (s, 1H), 3.36 – 3.23 (m, 1H), 3.06 (d, J = 10.4 Hz, 2H), 3.00 – 2.90 (m, 5H), 2.53 (dd, J = 14.0, 7.5 Hz, 1H), 2.48 (d, J = 9.3 Hz, 1H), 2.28 (s, 3H), 2.16 (s, 1H), 1.92 (q, J = 10.1 Hz, 1H), 1.84 (d, J = 13.6 Hz, 1H), 1.69 (t, J = 14.3 Hz, 2H), 1.39 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 175.2, 143.3, 138.7, 129.5, 120.6, 116.4, 111.6, 56.7, 54.9, 53.7, 53.6, 53.3, 49.1, 36.8, 35.5, 34.6, 31.9, 27.7, 25.4, 21.7.

IR(KBr, cm⁻¹): 2732, 1675, 1607, 1510, 1360, 1221, 1143, 963, 784.

HRMS(ESI): calcd for C₂₂H₃₂N₃O⁺ [M + H]⁺: 354.2540; found: 354.2536.

2-(tert-butyl)-5,8-dimethyl-1,2,4,4a,5,10,10a,11-octahydro-10,11a-(epiminomethano)pyrrolo[3,4b]acridin-3(3aH)-one (**4-4**) White-off solid, 25 mg, 71% yield.

NMR: ¹H NMR (500 MHz, Chloroform-*d*) δ 6.97 (d, *J* = 8.7 Hz, 1H), 6.94 (s, 1H), 6.50 (d, *J* = 8.4 Hz, 1H), 3.86 (s, 1H), 3.30 (p, *J* = 6.0 Hz, 1H), 3.11 – 3.04 (m, 2H), 3.01 – 2.94 (m, 2H), 2.93 (s, 3H), 2.24 – 2.16 (m, 4H), 1.94 – 1.76 (m, 6H), 1.73 – 1.66 (m, 1H), 1.39 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 175.1, 141.2, 130.3, 129.6, 124.7, 123.0, 111.3, 56.6, 54.7, 53.8, 53.7, 53.2, 48.9, 36.8, 35.4, 34.5, 31.9, 27.7, 24.9, 20.0.

IR(KBr, cm⁻¹): 2832, 1674, 1606, 1510, 1361, 1211, 1108, 993, 774.

HRMS(ESI): calcd for $C_{22}H_{32}N_3O^+$ [M + H]⁺: 354.2540; found: 354.2536.

VI. Mechanism studies

HRMS(ESI): calcd for C31H48N3O2⁺ [M + H]⁺: 494.3741; found: 494.3736.

vii-2. Electrochemical measurements

In a nitrogen atmosphere, a standard three-electrode cell configuration was used to collect cyclic voltammograms (CVs) at room temperature with a CHI660e electrochemical workstation. A 3 mm glassy carbon electrode, an Ag/AgCl (3 M KCl) electrode, and a platinum sheet auxiliary electrode were used as the working electrode, reference electrode, and counter electrode, respectively. The electrolyte cell contains 0.1 M tetrabutylammonium hexafluorophosphate (Bu₄NPF₆) and 1 mM substrates in MeCN. The scan rate is 0.1 V/s and the range is -2.0 V to 2.0 V. For comparison with reported redox potentials of the photosensitizers, the reference electrode potential was converted to the saturated calomel electrode (SCE) scale. According to the CVs results about **1a** (Fig S1) and **2a** (Fig S2), it's clear that the single electron transfer between **2a** and 3DPAFIPN (Ep/2 = +1.09 V vs SCE)^[1] could be smoothly occurred, while **1a** substrate can neither be oxidized nor reduced.

Fig S1 Cyclic voltammogram of 1a in MeCN

Fig S2 Cyclic voltammogram of 2a in MeCN

vii-3. Stern-Volmer luminescence quenching studies

Stern-Volmer experiments were conducted on a Hitachi F7000 Fluorescence Spectrophotometer. Each component was prepared in DCE prior to each set of experiments. The solutions were irradiated at 365 nm and the luminescence measured at 470 nm. Linear regression of I⁰/I against concentration was performed in Origin.

species	Concentration (mM)
3DPAFIPN	0.01
2a	varied
1a	varied

substr (mN	rate (1)	0.03	0.06	0.09	0.12	0.15
I ₀ /I ₁	2a	1.606	2.194	2.576	3.030	3.731
	1 a	0.992	1.051	1.073	0.964	1.008

Fig S3 Stern-Volmer experiments for 1a and 2a

VII. Computational details

All calculations were carried out with the Gaussian 09 programs.^[2] The geometries of all the species were fully optimized by using density functional theory (DFT) of the B3LYP functional^[3] with the dispersion correction (Grimme's D3).^[4] For these optimizations, the basis set was used 6-31G(d,p) for all the atoms. Vibrational frequency calculations done at the B3LYP-D3/6-31G(d,p) level of theory were used to characterize all the stationary points as either minima (the number of imaginary frequencies (NIMAG=0) or transition states (NIMAG=1)). In order to get more accurate electronic energies, the single point energy was calculated under M062x/SMD/6-311G(d,p) level in *N*,*N*-dimethylacetamide with SMD^[5] model. The 3D images of the calculated structures were prepared using VMD program.^[6]

cis-init_1

С	0.20376000	3.36445700	-0.18513700
С	0.84956000	2.91839500	-1.34138900
С	0.35600000	1.81748100	-2.04990000
С	-0.78186300	1.14211100	-1.60234400
С	-1.40899000	1.58002200	-0.43863100
С	-0.93301600	2.69226100	0.26053700
С	-2.65788100	1.02294000	0.22342600
			S47

С	-2.69353200	1.73432300	1.60882200
С	-1.80871300	2.99780600	1.45767900
N	-2.78458000	-0.44116500	0.25005200
С	-4.05812300	-1.08816500	-0.21965300
С	-3.90045200	-1.55246500	-1.67802100
С	-4.40273600	-2.26960400	0.70856400
С	-5.24032800	-0.10527500	-0.13320400
С	-1.65832600	-1.23926600	0.43642600
0	-1.61733900	-2.42730600	0.06615600
С	-0.49437000	-0.67670600	1.10419500
С	0.78539600	-1.42705300	1.09286900
С	1.36372800	-1.58507900	-0.35205000
Ν	2.77994000	-1.88923500	-0.37626200
С	3.70011400	-0.88296600	-0.08602700
С	3.15747700	-3.27354700	-0.15406400
С	5.05933300	-1.18438400	0.14688900
С	5.98436200	-0.17260000	0.39143800
С	5.59712200	1.16623900	0.42723900
С	4.25242400	1.47292400	0.21631900
С	3.31475800	0.47614500	-0.02989700
Н	0.58970100	4.22002700	0.36216100
Н	1.74470800	3.42383300	-1.68996100
Н	0.86937000	1.47871100	-2.94424400
Н	-1.15634100	0.27214400	-2.13362000
Н	-3.49885600	1.38872400	-0.36438600
Н	-2.28566900	1.06148100	2.36667800
Н	-3.71644000	1.97050100	1.91208600

Н	-1.23006700	3.21975800	2.36041500
Н	-2.42471500	3.88375400	1.25606000
Н	-3.09664500	-2.28406100	-1.75512100
Н	-3.66981900	-0.69796800	-2.32410200
Н	-4.83100700	-2.00449600	-2.03733100
Н	-3.62913800	-3.03304700	0.68730100
Н	-5.34905300	-2.71618800	0.38845800
Н	-4.52386200	-1.91326100	1.73661000
Н	-5.20702300	0.68172100	-0.89149900
Н	-5.31367500	0.35700800	0.85559700
Н	-6.16110400	-0.66827400	-0.30569000
Н	0.64091200	-2.43521600	1.49938800
Н	1.52479100	-0.90807200	1.70828800
Н	1.18316200	-0.67393100	-0.92243300
Н	0.81531000	-2.38234500	-0.85527100
Н	2.30722900	-3.91155900	-0.39944200
Н	3.45369900	-3.47637000	0.88650600
Н	3.99042000	-3.56301600	-0.80418400
Н	5.40060200	-2.21157100	0.13333800
Н	7.02298500	-0.44274300	0.56075800
Н	6.32265100	1.94913200	0.62177400
Н	3.91509500	2.50543300	0.24879700
Н	2.28382900	0.76680900	-0.17664500
Н	-0.51406700	0.30635700	1.54941900

trans-init_1

C -2.67313400 -3.57301400 0.54112900

С	-1.75360500	-3.65870600	1.58933200
С	-1.21398200	-2.49980000	2.15730000
С	-1.58177200	-1.24180300	1.67828600
С	-2.48259900	-1.16320500	0.61722000
С	-3.03750500	-2.31761200	0.05849000
С	-3.05210000	0.07899400	-0.04730400
С	-3.74981700	-0.47471800	-1.32207100
С	-4.02554300	-1.97096400	-1.03461100
Ν	-2.11177500	1.19164900	-0.26771900
С	-2.54340800	2.57219200	0.12654800
С	-2.28551200	2.79192400	1.62644100
С	-1.79255900	3.61760000	-0.72037500
С	-4.04079800	2.76097000	-0.18539300
С	-0.75455700	0.90627100	-0.38361500
0	0.12841400	1.67604800	0.04003600
С	-0.36950800	-0.32891800	-1.04652000
С	1.02602700	-0.81223500	-0.93187900
С	2.01540700	0.00425700	-1.82533400
Ν	3.40553900	-0.35240300	-1.62556700
С	4.04669000	0.01508600	-0.44009900
С	3.90109300	-1.50268300	-2.35886800
С	5.30379700	-0.52862200	-0.10040700
С	5.96472900	-0.12924100	1.05845000
С	5.39888300	0.80697400	1.92190500
С	4.14723700	1.33483700	1.60254200
С	3.47091200	0.95189200	0.44851900
Н	-3.09277400	-4.47541300	0.10485800

Н	-1.45386300	-4.63219000	1.96531300
Н	-0.49955300	-2.57902100	2.97072100
Н	-1.14928800	-0.34054700	2.10208500
Н	-3.81914700	0.46034500	0.63091300
Н	-3.06948900	-0.36305200	-2.17050100
Н	-4.65618000	0.08454100	-1.56496700
Н	-3.91618200	-2.60058000	-1.92384700
Н	-5.05238800	-2.11577200	-0.67378900
Н	-1.21876200	2.70014600	1.83546300
Н	-2.82871900	2.05162200	2.22451700
Н	-2.62398000	3.78634300	1.93563100
Н	-0.72571000	3.61573900	-0.51398700
Н	-2.19587600	4.61039100	-0.49984800
Н	-1.94679800	3.41695000	-1.78545400
Н	-4.70022300	2.16758000	0.45236500
Н	-4.25702600	2.52166100	-1.23055900
Н	-4.29950200	3.80980100	-0.01905000
Н	1.08903400	-1.87029500	-1.20531300
Н	1.37093700	-0.70604400	0.10181800
Н	1.86790500	1.06355700	-1.61458300
Н	1.77211800	-0.15418900	-2.87959100
Н	3.26962600	-1.66094700	-3.23475100
Н	3.90274100	-2.42764300	-1.76162500
Н	4.92287400	-1.33084400	-2.71426400
Н	5.77463300	-1.26286600	-0.74144900
Н	6.93409600	-0.56424300	1.28560600
Н	5.91616900	1.11164900	2.82581900

Н	3.67614300	2.05581800	2.26473200
Н	2.48991000	1.36955100	0.25882500
Н	-1.07464400	-0.86201900	-1.67048900

cis-TS

С	0.22422600	3.28532500	0.64955400
С	0.03600400	3.95406700	-0.56928000
С	-1.00706900	3.57060500	-1.43265500
С	-1.81363400	2.48761600	-1.12923900
С	-1.51033900	1.69189600	0.01631000
С	-0.57685700	2.20071500	0.96673100
С	-2.48495900	0.74559200	0.70854100
С	-1.78025300	0.39411500	2.05632000
С	-0.66604400	1.45151400	2.27581700
Ν	-2.79313500	-0.41625500	-0.13244100
С	-4.01228300	-1.25689100	0.08876700
С	-4.66137300	-1.56309500	-1.27278600
С	-3.61653800	-2.55798400	0.81079100
С	-5.03807200	-0.50184600	0.94548400
С	-1.75155100	-0.87984900	-0.89408100
0	-1.74534000	-1.95257100	-1.50551300
С	-0.55932800	0.02696000	-0.93375900
С	0.68465700	-0.44488800	-0.23686500
С	1.49030300	-1.44177600	-1.10495500
Ν	2.69004700	-1.94247100	-0.44974600
С	3.75797700	-1.07927000	-0.20822700
С	2.51245800	-3.09029900	0.42155700

С	4.75816300	-1.39972500	0.73509700
С	5.84411700	-0.55294000	0.94334400
С	5.97272500	0.64205800	0.23809400
С	4.98386200	0.97490800	-0.68847400
С	3.89492400	0.13935000	-0.91108500
Н	0.97019700	3.64132600	1.35521000
Н	0.66191800	4.80366300	-0.82224500
Н	-1.19074000	4.14333400	-2.33692500
Н	-2.62293300	2.18784900	-1.78901600
Н	-3.41302000	1.28562800	0.89806600
Н	-1.35249200	-0.60738700	1.97234100
Н	-2.49125800	0.36621200	2.88605200
Н	0.28603800	0.98602900	2.55553100
Н	-0.92365000	2.14065800	3.08896800
Н	-3.98169200	-2.12641100	-1.90971600
Н	-4.93034900	-0.63067500	-1.77909500
Н	-5.57464600	-2.14677700	-1.12100800
Н	-2.88414400	-3.11086900	0.22236000
Н	-4.49901400	-3.18894000	0.95623200
Н	-3.19201900	-2.33782600	1.79541400
Н	-5.36634000	0.42585500	0.46738600
Н	-4.66177500	-0.27127300	1.94600500
Н	-5.91739800	-1.13996800	1.06569700
Н	0.43969000	-0.93522000	0.71167300
Н	1.32125300	0.41506000	0.00017700
Н	1.75608500	-0.96904600	-2.05550100
Н	0.85156800	-2.29013700	-1.35617100

Н	1.64577800	-3.65856600	0.08087000
Н	2.35283100	-2.81530100	1.47639500
Н	3.38412100	-3.75129300	0.37544700
Н	4.69238100	-2.31307800	1.31179200
Н	6.59517900	-0.83575400	1.67567700
Н	6.81830100	1.30001600	0.40850900
Н	5.05420100	1.90253400	-1.24953900
Н	3.15085400	0.43820400	-1.63814800
Н	-0.38128000	0.44684900	-1.92301600

trans-TS

С	1.80256800	3.66626300	0.54128600
С	0.90332400	3.62841100	1.61939900
С	0.60718600	2.40482900	2.25078000
С	1.14475500	1.21959800	1.78498200
С	1.91757700	1.22634700	0.58225500
С	2.34722400	2.48832700	0.06232100
С	2.92751800	0.14655300	0.18701900
С	3.69641600	0.77414300	-1.01639000
С	3.43879500	2.30526700	-0.96799200
Ν	2.23549900	-1.11087600	-0.10314500
С	2.83968100	-2.45989700	0.11399700
С	2.06666600	-3.18434900	1.22999700
С	2.77644200	-3.25453700	-1.20286800
С	4.31206700	-2.33085000	0.52952100
С	0.95122600	-0.96364000	-0.56110900
0	0.14991700	-1.89358600	-0.71460300

С	0.59027500	0.45936600	-0.83107000
С	-0.82653700	0.87934900	-0.59786200
С	-1.77913400	0.41140900	-1.72718300
Ν	-3.18312400	0.65418100	-1.43747200
С	-3.82619200	-0.12578200	-0.47377400
С	-3.67870800	1.99397900	-1.69238500
С	-5.08761400	0.24908100	0.03602900
С	-5.75058500	-0.55058800	0.96392300
С	-5.18331500	-1.73614500	1.42678200
С	-3.92767700	-2.10470700	0.94167200
С	-3.24972500	-1.32174600	0.01286100
Н	2.09683500	4.62129200	0.11352100
Н	0.47350800	4.54973400	1.99860000
Н	-0.03707900	2.39697800	3.12485400
Н	0.92065600	0.27449000	2.27113900
Н	3.60929100	-0.01668500	1.02293400
Н	3.30950500	0.33924800	-1.94140800
Н	4.76218400	0.53645000	-0.97674500
Н	3.15551300	2.70026500	-1.95125000
Н	4.33908900	2.85402700	-0.66703400
Н	1.02013100	-3.30448800	0.95107900
Н	2.12129100	-2.61077300	2.16124400
Н	2.50364900	-4.17162200	1.41108600
Н	1.74586000	-3.36627500	-1.53771200
Н	3.20919300	-4.24905100	-1.05706400
Н	3.35042900	-2.74266200	-1.98209900
Н	4.43076800	-1.86686400	1.51249100

Н	4.89742000	-1.76577800	-0.20148800
Н	4.73926500	-3.33509400	0.59125500
Н	-0.87373800	1.97119800	-0.51051200
Н	-1.18452500	0.46482600	0.34812300
Н	-1.61918100	-0.65141000	-1.90937800
Н	-1.53249700	0.93272400	-2.65797800
Н	-3.04530800	2.46603400	-2.44565300
Н	-3.68335700	2.63318500	-0.79552900
Н	-4.69920300	1.96607400	-2.08962700
Н	-5.56012600	1.16594200	-0.29244200
Н	-6.72306300	-0.23252700	1.32975000
Н	-5.70197500	-2.35357900	2.15290800
Н	-3.45526000	-3.01739800	1.29425900
Н	-2.26772400	-1.63963400	-0.31491700
Н	1.05909400	0.87284200	-1.72439300

cis-init_2

С	1.40682300	3.67089600	0.39128100
С	0.81183300	3.73487400	1.67450600
С	0.71077300	2.55613500	2.46031700
С	1.06127200	1.33632700	1.95758400
С	1.41423500	1.16633800	0.50924800
С	1.75396900	2.46809300	-0.15845600
С	2.65560300	0.27124800	0.22443200
С	3.26155300	0.81333500	-1.10619300
С	2.66043200	2.22957500	-1.33874200
N	2.12393800	-1.08689700	0.15176500

С	2.95957300	-2.32084300	0.15596500
С	2.35105100	-3.32765300	1.14766900
С	3.00085400	-2.91679900	-1.26244500
С	4.38394800	-1.98139900	0.61311500
С	0.79444900	-1.09951800	-0.16804000
0	0.13291100	-2.09802400	-0.45448500
С	0.25078700	0.32463800	-0.15964400
С	-0.21579600	0.74947000	-1.56210800
С	-1.60759800	0.19450700	-1.89664600
Ν	-2.63856700	0.72192400	-1.00524100
С	-3.51053200	-0.14574400	-0.33065800
С	-3.11163600	2.04722800	-1.35218100
С	-4.83658600	0.23076600	-0.04185800
С	-5.67942100	-0.61870400	0.67469500
С	-5.23756500	-1.86416000	1.11278400
С	-3.92433000	-2.24435000	0.82592100
С	-3.06610600	-1.40638200	0.12286900
Н	1.65735000	4.59424800	-0.12645500
Н	3.37537200	0.35646900	1.03937800
Н	2.99512800	0.13716700	-1.92211500
Н	4.35313200	0.84375100	-1.05931500
Н	2.11161100	2.25844300	-2.28841200
Н	3.43142000	3.00383800	-1.40504600
Н	1.33989700	-3.60135600	0.84903200
Н	2.31735900	-2.89454900	2.15224900
Н	2.96899100	-4.23016200	1.18279800
Н	1.99014800	-3.13416600	-1.60983300

Н	3.58012700	-3.84545400	-1.26262200
Н	3.47642700	-2.22113500	-1.96081100
Н	4.39787700	-1.57723100	1.62943500
Н	4.87551300	-1.26949100	-0.05552800
Н	4.97738100	-2.89940000	0.61243100
Н	0.49099200	0.41859900	-2.33236000
Н	-0.23920300	1.84335600	-1.60168100
Н	-1.58876300	-0.89182900	-1.83051700
Н	-1.85365600	0.44842200	-2.93969400
Н	-2.27311500	2.64108200	-1.72189400
Н	-3.51110200	2.55576400	-0.47068000
Н	-3.89245500	2.03950300	-2.13160100
Н	-5.22409500	1.18204400	-0.38411100
Н	-6.69730000	-0.29817200	0.87924400
Н	-5.89785400	-2.52347600	1.66688500
Н	-3.55139800	-3.20740700	1.16345900
Н	-2.04494900	-1.72637400	-0.05266900
Н	0.98826000	0.43622400	2.56264700
Н	0.52334600	4.69284400	2.09311200
Н	0.36804700	2.63568300	3.48818400
Н	-0.63088500	0.36450500	0.48622600

$trans\text{-}init_2$

С	2.12436500	3.61037100	0.38516600
С	1.38411900	3.72929600	1.58899500
С	0.95368100	2.56035800	2.27057300
С	1.13991800	1.31530500	1.74067800

С	1.70573300	1.13824400	0.36657000
С	2.32540500	2.38719300	-0.18674500
С	2.84252100	0.07497700	0.25036700
С	3.77794900	0.58862700	-0.89221400
С	3.27422800	2.00878600	-1.29109600
Ν	2.14479400	-1.18200600	-0.01027500
С	2.75029700	-2.53631300	0.13314100
С	1.89388600	-3.36282000	1.10808700
С	2.80459600	-3.21165200	-1.24846500
С	4.17270800	-2.41742200	0.69557200
С	0.88014000	-0.98573100	-0.49012400
0	0.07998700	-1.86549500	-0.80386300
С	0.63078200	0.51753400	-0.60543800
С	-0.81674500	0.93995100	-0.37104300
С	-1.72848600	0.58339500	-1.55698100
N	-3.14106000	0.82582400	-1.30229900
С	-3.83552000	-0.02545600	-0.44096100
С	-3.60456800	2.19234500	-1.45383600
С	-5.10775000	0.32896600	0.05697800
С	-5.82030200	-0.53807200	0.88197200
С	-5.29442600	-1.77438400	1.25146700
С	-4.02935500	-2.12517000	0.77780300
С	-3.30205900	-1.27492100	-0.04891600
Н	2.58394400	4.49508300	-0.04935300
Н	3.39110900	0.01035300	1.19042200
Н	3.75489700	-0.10168500	-1.73862800
Н	4.81122000	0.63371100	-0.53806600

Н	2.76047500	1.96537800	-2.26133400
Н	4.08695200	2.73197900	-1.40286300
Н	0.87763400	-3.46950600	0.72954400
Н	1.85648700	-2.87384300	2.08675400
Н	2.33199500	-4.35735300	1.23773700
Н	1.80408100	-3.28588200	-1.67545700
Н	3.22357000	-4.21853100	-1.15681200
Н	3.44074200	-2.63900700	-1.93099500
Н	4.18085400	-1.98960700	1.70194000
Н	4.82196300	-1.81667900	0.05274700
Н	4.60461200	-3.41952400	0.75973200
Н	-0.84727900	2.02090700	-0.19438100
Н	-1.20321000	0.46085300	0.53261300
Н	-1.58000000	-0.46149300	-1.83081300
Н	-1.44092200	1.17829900	-2.43160800
Н	-2.93439900	2.71768800	-2.13685500
Н	-3.63465700	2.74962000	-0.50419700
Н	-4.60894200	2.22018700	-1.89040500
Н	-5.54938100	1.28328700	-0.19999900
Н	-6.79918500	-0.23282200	1.24168400
Н	-5.85184800	-2.44453400	1.89774600
Н	-3.58897800	-3.07799800	1.05856300
Н	-2.31680500	-1.58496600	-0.37415500
Н	0.81706600	0.42563300	2.27450300
Н	1.21798700	4.70602700	2.02986900
Н	0.48477200	2.66341800	3.24530900
Н	0.91250300	0.78780100	-1.63363100

VIII. Crystallographic data

The crystal data was collected on a Agilent Gemini E diffractometer (Mo, 50kV 40 mA) and reduced by CrysAlisPro (Rigaku). The structures were solved by direct methods using SHELXS-97. Refinements were performed with SHELXL-2013 using full matrix least-squares calculations on F2, with anisotropic displacement parameters for all the nonhydrogen atoms.

X-ray crystallographic data for **3-2** (CCDC 2310087)

Identification code	exp_13794_auto
Empirical formula	$C_{26}H_{38}N_2O$
Formula weight	394.58
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	21.1618(17)
b/Å	12.6995(9)
c/Å	18.3176(14)
α'°	90
β/°	100.330(8)
$\gamma/^{\circ}$	90
Volume/Å ³	4843.0(6)
Z	8
$\rho_{calc}g/cm^3$	1.082
µ/mm ⁻¹	0.065
F(000)	1728.0
Crystal size/mm ³	$0.18 \times 0.12 \times 0.07$
Radiation	Mo Ka ($\lambda = 0.71073$)

 2Θ range for data collection/° 4.562 to 48.996

Index ranges	$-24 \le h \le 21, -9 \le k \le 14, -21 \le l \le 21$	
Reflections collected	18399	
Independent reflections	7997 [$R_{int} = 0.0542, R_{sigma} = 0.1373$]	
Data/restraints/parameters	7997/17/519	
Goodness-of-fit on F ²	0.955	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0908, wR_2 = 0.2398$	
Final R indexes [all data]	$R_1 = 0.1890, wR_2 = 0.3041$	
Largest diff. peak/hole / e Å-3 0.74/-0.59		

X-ray crystallographic data for **3-3**-major (CCDC 2189219)

Crystal data and structure refinement

Identification code	exp_11661
Empirical formula	$C_{23}H_{32}N_2O_2$
Formula weight	368.50
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	13.8978(19)
b/Å	9.9999(9)
c/Å	14.9001(18)
α/°	90
β/°	93.852(13)
$\gamma/^{\circ}$	90

Volume/Å ³	2066.1(4)		
Z	4		
$\rho_{calc}g/cm^3$	1.185		
µ/mm ⁻¹	0.075		
F(000)	800.0		
Crystal size/mm ³	$0.2\times0.18\times0.12$		
Radiation	Mo Ka ($\lambda = 0.71073$)		
2Θ range for data collection/° 4.15 to 48.998			
Index ranges	$\begin{array}{l} \text{-16} \leq h \leq 15, \text{-11} \leq k \leq 8, \text{-13} \leq l \leq \\ 17 \end{array}$		
Reflections collected	7792		
Independent reflections	$3424 [R_{int} = 0.0316, R_{sigma} = 0.0529]$		
Data/restraints/parameters	3424/0/249		
Goodness-of-fit on F ²	1.084		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0668, wR_2 = 0.1217$		
Final R indexes [all data]	$R_1 = 0.1093, wR_2 = 0.1404$		
Largest diff. peak/hole / e Å ⁻³ 0.17/-0.15			

X-ray crystallographic data for **3-4** (CCDC 2141716)

Identification code	exp_10035
Empirical formula	$C_{23}H_{31}BrN_2O_2$
Formula weight	446.40

Temperature/K	293(2)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	14.2363(17)
b/Å	12.6108(8)
c/Å	13.0773(13)
a/°	90
β/°	104.172(11)
$\gamma^{/\circ}$	90
Volume/Å ³	2276.3(4)
Ζ	4
$\rho_{calc}g/cm^3$	1.303
µ/mm ⁻¹	1.825
F(000)	932.0
Crystal size/mm ³	$0.28\times0.2\times0.12$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/° 4.374 to 49	
Index ranges	$\begin{array}{l} \text{-16} \leq h \leq 16, \text{-14} \leq k \leq 11, \text{-10} \leq l \leq \\ 15 \end{array}$
Reflections collected	9067
Independent reflections	3741 [$R_{int} = 0.0420, R_{sigma} = 0.0689$]
Data/restraints/parameters	3741/1/246
Goodness-of-fit on F ²	1.025
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0637, wR_2 = 0.1401$
Final R indexes [all data]	$R_1 = 0.1029, wR_2 = 0.1619$
Largest diff. peak/hole / e Å ⁻³ 1.30/-0.86	

X-ray crystallographic data for 3-28 (2182835)

Identification code	exp_10391
Empirical formula	$C_{24}H_{32}N_2O_2$
Formula weight	380.51
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	13.2226(17)
b/Å	13.177(2)
c/Å	12.2423(16)
α/°	90
β/°	91.432(11)
$\gamma/^{\circ}$	90
Volume/Å ³	2132.3(5)
Z	4
$\rho_{calc}g/cm^3$	1.185
µ/mm ⁻¹	0.075
F(000)	824.0
Crystal size/mm ³	$0.22\times0.14\times0.12$
Radiation	Mo Ka ($\lambda = 0.71073$)

 2Θ range for data collection/° 4.364 to 53.998

Index ranges	$-16 \le h \le 12, -16 \le k \le 15, -13 \le l \le 15$
Reflections collected	10492
Independent reflections	4595 [$R_{int} = 0.0505, R_{sigma} = 0.0973$]
Data/restraints/parameters	4595/0/257
Goodness-of-fit on F ²	1.041
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0774, wR_2 = 0.1225$
Final R indexes [all data]	$R_1 = 0.1705, wR_2 = 0.1572$
Largest diff. peak/hole / e Å ⁻³ 0.16/-0.18	

X-ray crystallographic data for trans-3-41 (CCDC 2207806)

Identification code	exp_11890
Empirical formula	$C_{23}H_{33}N_3O$
Formula weight	367.52
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	9.9111(8)
b/Å	17.4811(13)
c/Å	12.6792(13)
α/°	90
β/°	95.028(9)
γ/°	90

Volume/Å ³	2188.3(3)	
Z	4	
$\rho_{calc}g/cm^3$	1.116	
µ/mm ⁻¹	0.069	
F(000)	800.0	
Crystal size/mm ³	$0.31 \times 0.18 \times 0.11$	
Radiation	Mo Ka ($\lambda = 0.71073$)	
2Θ range for data collection/	^o 3.978 to 49.996	
Index ranges	$\begin{array}{l} \text{-11} \leq h \leq 11, \text{-15} \leq k \leq 20, \text{-15} \leq l \leq \\ 14 \end{array}$	
Reflections collected	9602	
Independent reflections	$3802 \ [R_{int} = 0.0425, R_{sigma} = 0.0734]$	
Data/restraints/parameters	3802/0/238	
Goodness-of-fit on F ²	1.034	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0993, wR_2 = 0.2205$	
Final R indexes [all data]	$R_1 = 0.1693, wR_2 = 0.2649$	
Largest diff. peak/hole / e Å ⁻³ 0.53/-0.58		

X-ray crystallographic data for 4-1 (CCDC 2207807)

Identification code	exp_11891
Empirical formula	$C_{21}H_{29}N_3O$
Formula weight	339.47
Temperature/K	293(2)
	S69

Crystal system	monoclinic
Space group	P2 ₁
a/Å	6.5960(10)
b/Å	9.6411(12)
c/Å	14.4759(16)
α/°	90
β/°	90.818(13)
γ/°	90
Volume/Å ³	920.5(2)
Ζ	2
$\rho_{calc}g/cm^3$	1.225
µ/mm ⁻¹	0.076
F(000)	368.0
Crystal size/mm ³	$0.32 \times 0.22 \times 0.15$
Radiation	Mo Kα (λ = 0.71073)
2Θ range for data collection/° 5.076 to 58.878	
Index ranges	$-5 \le h \le 9, -13 \le k \le 13, -18 \le l \le 19$
Reflections collected	7820
Independent reflections	4069 [$R_{int} = 0.0383, R_{sigma} = 0.0771$]
Data/restraints/parameters	4069/1/233
Goodness-of-fit on F ²	1.016
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0585, wR_2 = 0.1051$
Final R indexes [all data]	$R_1 = 0.0950, wR_2 = 0.1209$
Largest diff. peak/hole / e Å ⁻³ 0.20/-0.29	
Flack parameter	-0.3(10)

IX. Reference

[1] Elisabeth, S.; Tillmann, G. F.; Kirsten, Z. A toolbox approach to construct broadly applicable metal-free catalysts for photoredox chemistry: Deliberate tuning of redox potentials and importance of halogens in Donor–Acceptor cyanoarenes. J. Am. Chem. Soc. 2018, 140, 15353-15365.
- [2] Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09, Revision D.01 (Gaussian, Inc.: Wallingford, CT, 2009).
- [3] (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785. (c) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.
- [4] (a) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. (b) Grimme,
 S.; Ehrlich, S.; Goerigk, L. J. Comp. Chem. 2011, 32, 1456.
- [5] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal. Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B. 2009, 113, 6378.
- [6] Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecu-lar dynamics. J. Mol. Graphics 1996, 14, 33.

X. NMR Spectra

¹H NMR of **1a**

¹³C NMR of **1a** S72

¹H NMR of **1b**

¹³C NMR of **1b** S73

¹H NMR of **1c**

¹³C NMR of **1c** S74

¹H NMR of **1d**

¹³C NMR of **1d**

¹H NMR of **1e**

¹³C NMR of **1e**

¹H NMR of **1**f

 $^{13}\mathrm{C}$ NMR of 1f

 1 H NMR of **1**g

 $^{13}\mathrm{C}$ NMR of $1\mathrm{g}$

¹⁹F NMR of **1g**

¹H NMR of **1h**

¹³C NMR of **1h**

¹⁹F NMR of **1h**

¹H NMR of **1i**

¹³C NMR of **1i**

¹H NMR of **1**j

¹³C NMR of **1j** S84

¹H NMR of **1**k

S85

¹H NMR of **1**I

¹³C NMR of **11**

¹H NMR of **1m**

 13 C NMR of 1m

¹H NMR of **1n**

¹³C NMR of **1n**

¹H NMR of **10** S90

¹³C NMR of **10**

¹H NMR of **1p** S91

¹³C NMR of **1p**

¹H NMR of **1q**

¹³C NMR of **1q** S93

S94

¹³C NMR of **1**r

¹H NMR of **1s**

¹³C NMR of **1s**

¹⁹F NMR of **1s**

¹ H NMR	of	1	t
--------------------	----	---	---

¹³C NMR of **1**t

 1 H NMR of 1u

¹³C NMR of **1u**

 1 H NMR of 1v

 13 C NMR of 1v

¹H NMR of $\mathbf{1w}$

¹³C NMR of **1**w

¹H NMR of 1x

 13 C NMR of 1x

¹H NMR of **3-1**

¹H NMR of **3-2**

¹³ C NMR	of 3-2
---------------------	---------------

¹H NMR of **3-3** (P1, trans)

¹³C NMR of **3-3** (P1, trans)

¹H NMR of **3-3** (P2, cis)

¹³C NMR of **3-3** (P2, cis)

¹³C NMR of **3-4**

¹³C NMR of **3-5**

¹ H NMR	of 3-6
--------------------	---------------

¹³C NMR of **3-6**

¹⁹F NMR of **3-6**

¹H NMR of **3-7**

¹³C NMR of **3-7**

¹⁹F NMR of **3-8**

¹³C NMR of **3-9**

¹ H NMR	of 3-10
--------------------	----------------

¹³C NMR of **3-10**

¹H NMR of **3-11** (small polarity)

¹³C NMR of **3-11** (small polarity) S118

¹H NMR of **3-11** (big polarity)

¹H NMR of **3-11** (big polarity) S119

¹H NMR of **3-12**

¹H NMR of **3-13**

¹³C NMR of **3-13**

¹³C NMR of **3-14**

¹³C NMR of **3-15**

¹³C NMR of **3-16**

¹ H NMR	of 3-18
--------------------	----------------

¹ H NMR	of 3-19
--------------------	----------------

¹H NMR of **3-19**

¹H NMR of **3-20**

¹³C NMR of **3-20**

¹³C NMR of **3-21**

¹³C NMR of **3-22**

¹H NMR of **3-24**

¹H NMR of **3-26**

¹³C NMR of **3-26**

¹³C NMR of **3-27**

¹ H NMR o	f 3-28
----------------------	---------------

¹H NMR of **3-29**

¹H NMR of **3-32**

¹H NMR of **3-33**

¹³ C NMR	of 3-33
---------------------	----------------

¹H NMR of **3-34**

¹³C NMR of **3-34**

¹H NMR of **3-35**

¹³C NMR of **3-35**

¹H NMR of **3-36** (cis)

¹H NMR of **3-36** (trans)

¹³C NMR of **3-36** (trans)

¹H NMR of **3-37** (cis)

¹³C NMR of **3-37** (cis)

¹H NMR of **3-37** (trans)

¹³C NMR of **3-37** (trans)

¹H NMR of **3-38** (cis)

¹H NMR of **3-38** (trans)

¹H NMR of **3-39** (cis)

¹³C NMR of **3-39** (cis)

¹³C NMR of **3-39** (trans)

¹H NMR of **3-40** (cis)

¹H NMR of **3-40** (trans)

¹³C NMR of **3-40** (trans)

¹³C NMR of **3-41** (cis)

¹H NMR of **3-41** (trans)

³C NMR of **3-41** (trans)

¹H NMR of **3-42**

 1 H NMR of **4-1**

¹³C NMR of **4-1**

 1 H NMR of **4-2**

 1 H NMR of **4-3**

¹³ C NMR	of 4-3
---------------------	---------------

¹H NMR of **4-4**

¹³C NMR of **4-4**