Supporting Information

Iridium-Catalyzed Asymmetric Hydrogenation of 5-Hydroxypicolinate Pyridinium Salts under Batch and Flow: Stereodefined Access to *Cis*-Configurated Hydroxypiperidine Esters

Zhi Yang, a Shangxian Luan, Linxi Wan, Jingxi Chen, Xiaofang Wei, Pei Tang*a and Fen-Er Chen*abcd

^aSichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China

^bCollege of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China

^cEngineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China

^dShanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China

*Corresponding Author: Pei Tang, E-mail: peitang@scu.edu.cn; Fen-Er Chen, E-mail: rfchen@fudan.edu.cn

Table of Contents

1.General Information	1
2. Experimental Procedures	1
3. References	
4. NMR Spectra	
5. HPLC Spectra	
6. Crystallographic Data	

1. General Information

All commercially available reagents were used without further purification. Tetrahydrofuran and toluene were dried with sodium chips and indicated by benzophenone, other anhydrous solvents were purchased from Aladdin. Chromatography was conducted by using 300–400 mesh silica gel. All new compounds were characterized by NMR spectroscopy, high resolution mass spectrometry (HRMS) and melting point (if solids). NMR spectra were recorded on a 400 MHz NMR spectrometer. Reference values for residual solvents were taken as $\delta = 7.26$ (CDCl₃) ppm, $\delta = 2.50$ (DMSO-*d*₆) ppm for ¹H NMR and $\delta = 77.16$ (CDCl₃) ppm, $\delta = 39.52$ (DMSO-*d*₆) ppm for ¹³C NMR. Coupling constants (*J*) were given in Hz and multiplicities for coupled signals were denoted as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad and dd = doublet doublet etc. Infrared (IR) spectra were recorded on a Bruker microTOF Q III by the ESI method. Melting points (m.p.) were recorded on an SRS-optic melting point apparatus. Chiral HPLC was performed using a Daicel Chiralcel AD-H column, OJ-H column, IC column and OD-H column.

2. Experimental Procedures

2.1 General Procedures for 5-hydroxypicolinate esters

Picolinic acid esters were synthesized from 5-hydroxypicolinic acid with the corresponding alcohols via esterification. Methyl-5-hydroxypiperidine-2-carboxylate **S1m** was commercially available.

5-hydroxypicolinic acid (500.0 mg, 3.6 mmol, 1.0 equiv.), 4-DMAP (219.6 mg, 1.8 mmol, 0.5 equiv.) and EDCI (1.0 g, 5.4 mmol, 1.5 equiv.) were dissolved in dichloromethane (15 mL) and stirred at 0 °C for 15 min. Alcohol (4.0 mmol, 1.1 equiv.) was added to the reaction mixture that was then stirred at room temperature for 12 h. Water was added and the solution was extracted with dichloromethane. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (dichloromethane/methanol = 100:1) to give the desired products (81% - 95% yields).

benzyl 5-hydroxypicolinate (S1a): 758.0 mg, 92% yield, white solid, m.p. = $171.1 - 171.9 \degree C$. ¹H NMR HO (400 MHz, DMSO-*d*₆) δ 10.84 (s, 1H), 8.23 (d, *J* = 2.8 Hz, 1H), 7.98 (d, *J* = 8.4 Hz, 1H), 7.48 - 7.31 (m, 5H), 7.27 (dd, *J* = 8.4, 2.8 Hz, 1H), 5.32 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 164.3, 156.9, 138.4, 138.2, 136.2, 128.5, 128.2, 128.1, 126.9, 122.1, 66.1. HRMS (ESI) m/z calcd for

 $C_{13}H_{11}NNaO_3 [M + Na]^+: 252.0631$, found: 252.0630.

4-(methoxycarbonyl)benzyl 5-hydroxypicolinate (S1b): 918.9 mg, 89% yield, white solid, m.p. =

133.3 – 134.8 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.88 (s, 1H), 8.24 (d, J = 2.8 Hz, 1H), 7.99 (m, 3H), 7.58 (d, J = 8.0 Hz, 2H), 7.28 (dd, J = 8.8, 2.8 Hz, 1H), 5.40 (s, 2H), 3.85 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.0, 164.2, 157.0, 141.7, 138.5, 138.0, 129.4,

129.2, 127.9, 127.0, 122.1, 65.4, 52.2. HRMS (ESI) m/z calcd for C₁₅H₁₃NNaO₅ [M + Na]⁺: 310.0686, found: 310.0689.

4-(trifluoromethyl)benzyl 5-hydroxypicolinate (S1c): 918.7 mg, 86% yield, white solid, m.p. = 158.7 HO

- 159.6 °C. ¹H NMR (400 MHz, DMSO-d₆) δ 10.90 (s, 1H), 8.24 (d, J = 2.8 Hz, 1H), 8.00 (d, J = 8.8 Hz, 1H), 7.80 - 7.65 (m, 4H), 7.28 (dd, J = 8.8, 2.8 Hz, 1H), 5.42 (s, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ

164.2, 157.1, 141.0, 138.5, 138.0, 128.7 (q, J = 31.7 Hz), 128.4, 126.9, 125.3 (q, J = 3.6 Hz), 124.2 (q, J = 270.4 Hz), 122.1, 65.2. HRMS (ESI) m/z calcd for $C_{14}H_{10}F_3NNaO_3$ [M + Na]⁺: 320.0505, found: 320.0504.

4-nitrobenzyl 5-hydroxypicolinate (S1d): 877.2 mg, 89% yield, white solid, m.p. = 211.7 - 213.0 °C.

¹H NMR (400 MHz, DMSO- d_6) δ 10.92 (s, 1H), 8.29 – 8.21 (m, 3H), 8.01 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 8.8 Hz, 2H), 7.28 (dd, J = 8.4, 2.8 Hz, 1H), 5.47 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 164.1, 157.1, 147.1, 144.0, 138.5, 137.8, 128.6, 127.0, 123.7, 122.1, 64.9. HRMS (ESI) m/z calcd for C₁₃H₁₀N₂NaO₅ [M + Na]⁺: 297.0482, found: 297.0480.

4-cyanobenzyl 5-hydroxypicolinate (S1e): 840.7 mg, 92% yield, white solid, m.p. = 208.6 - 209.5 °C. HO ¹H NMR (400 MHz, DMSO- d_6) δ 10.90 (s, 1H), 8.24 (d, J = 2.8 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 8.0Hz, 2H), 7.28 (dd, J = 8.8, 3.2 Hz, 1H), 5.41 (s, 2H). ¹³C NMR (100

MHz, DMSO-d₆) δ 164.1, 157.1, 141.9, 138.5, 137.9, 132.5, 128.4, 127.0, 122.1, 118.7, 110.7, 65.2. HRMS (ESI) m/z calcd for C₁₄H₁₀N₂NaO₃ [M + Na]⁺: 277.0584, found: 277.0577.

4-bromobenzyl 5-hydroxypicolinate (S1f): 996.7 mg, 90% yield, white solid, m.p. = 163.0 - 164.2 °C. HO ¹H NMR (400 MHz, DMSO- d_6) δ 10.87 (s, 1H), 8.22 (d, J = 2.8 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.60 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4

Hz, 2H), 7.27 (dd, J = 8.4, 2.8 Hz, 1H), 5.29 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 164.2, 157.0, 138.4, 138.1, 135.7, 131.4, 130.3, 126.9, 122.1, 121.3, 65.3. HRMS (ESI) m/z calcd for C₁₃H₁₀BrNNaO₃ [M + Na]⁺: 329.9736, found: 329.9741.

4-fluorobenzyl 5-hydroxypicolinate (S1g): 854.6 mg, 91% yield, white solid, m.p. = 160.4 - 161.8 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.86 (s, 1H), 8.22 (d, J = 2.8 Hz, 1H), 7.97 (d, J = 8.8 Hz, 1H), 7.56 – 7.46 (m, 2H), 7.30 – 7.16 (m, 3H), 5.30 (s, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 164.3, 162.0 (d, J = 242.6

Hz) 156.9, 138.4, 138.2, 132.5 (d, J = 3.0 Hz), 130.6 (d, J = 8.3 Hz), 126.9, 122.1, 115.3 (d, J = 21.4 Hz), 65.4. HRMS (ESI) m/z calcd for C₁₃H₁₀FNNaO₃ [M + Na]⁺: 270.0537, found: 270.0537.

4-chlorobenzyl 5-hydroxypicolinate (S1h): 843.4 mg, 89% yield, white solid, m.p. = 154.8 - 155.2 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.87 (s, 1H), 8.23 (d, J = 2.8 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.52 – 7.42 (m, 4H), 7.27 (dd, J = 8.8, 2.8Hz, 1H), 5.31 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 164.2, 157.0,

138.4, 138.1, 135.3, 132.8, 130.0, 128.5, 126.9, 122.1, 65.3. HRMS (ESI) m/z calcd for C₁₃H₁₀ClNNaO₃ [M + Na]⁺: 286.0241, found: 286.0243.

4-methylbenzyl 5-hydroxypicolinate (S1i): 795.6 mg, 91% yield, white solid, m.p. = 167.7 - 169.2 °C.

¹H NMR (400 MHz, DMSO- d_6) δ 10.85 (s, 1H), 8.23 (d, J = 2.8 Hz, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.33 (d, J = 8.0 Hz, 2H), 7.26 (dd, J = 8.8, 2.8 Hz, 1H), 7.18 (d, J = 8.0 Hz, 2H), 5.27 (s, 2H), 2.29 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 164.3, 156.9, 138.4, 138.3, 137.5,

133.2, 129.0, 128.4, 126.8, 122.1, 66.0, 20.8. HRMS (ESI) m/z calcd for $C_{14}H_{13}NNaO_3$ [M + Na]⁺: 266.0788, found: 266.0789.

3-methylbenzyl 5-hydroxypicolinate (S1j): 813.1 mg, 93% yield, white solid, m.p. = 161.0 - 162.5 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.85 (s, 1H), 8.23 (d, *J* = 2.8 Hz, 1H), 7.97 (d, *J* = 8.4 Hz, 1H), 7.34 – 7.19 (m, 4H), 7.15 (d, *J* = 7.6 Hz, 1H), 5.27 (s, 2H), 2.31 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 164.3, 156.9, 138.4, 138.2, 137.7, 136.1, 128.8, 128.8, 128.4, 126.8, 125.3,

122.1, 66.1, 21.0. HRMS (ESI) m/z calcd for $C_{14}H_{13}NNaO_3 [M + Na]^+$: 266.0788, found: 266.0787. **3-bromobenzyl 5-hydroxypicolinate (S1k):** 1.0 g, 92% yield, white solid, m.p. = 148.0 - 149.5 °C. ¹H

NMR (400 MHz, DMSO- d_6) δ 10.89 (s, 1H), 8.23 (d, J = 2.8 Hz, 1H), 7.98 (d, J = 8.8 Hz, 1H), 7.66 (t, J = 1.2 Hz, 1H), 7.56 – 7.53 (m, 1H), 7.48 – 7.45 (m, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.27 (dd, J = 8.4, 2.8 Hz,

1H), 5.31 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 164.2, 157.0, 139.0, 138.5, 138.0, 131.0, 130.8, 130.7, 127.1, 126.9, 122.1, 121.7, 65.2. HRMS (ESI) m/z calcd for C₁₃H₁₀BrNNaO₃ [M + Na]⁺: 329.9736, found: 329.9749.

2,3-dimethoxybenzyl 5-hydroxypicolinate (S1I): 883.7 mg, 85% yield, white solid, m.p. = 137.2 - 138.9 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.84 (s, 1H), 8.22 (d, *J* = 2.8 Hz, 1H), 7.96 (d, *J* = 8.8 Hz, 1H), 7.26 (dd, *J* = 8.4, 2.8 Hz, 1H), 7.12 - 6.98 (m, 3H), 5.30 (s, 2H), 3.82 (s, 3H), 3.76 (s, 3H). ¹³C NMR

(100 MHz, DMSO- d_6) δ 164.2, 156.9, 152.4, 147.0, 138.4, 138.3, 129.5, 126.8, 124.1, 122.1, 121.4, 113.3, 61.7, 60.5, 55.7. HRMS (ESI) m/z calcd for C₁₅H₁₅NNaO₅ [M + Na]⁺: 312.0842, found: 312.0844. ethyl 5-hydroxypicolinate (S1n): 570.7 mg, 95% yield, white solid, m.p. = 162.0 – 163.3 °C. ¹H NMR

HO N CO₂Et

(400 MHz, DMSO- d_6) δ 10.81 (s, 1H), 8.22 (d, J = 2.8 Hz, 1H), 7.92 (d, J = 8.8 Hz, 1H), 7.25 (dd, J = 8.8, 2.8 Hz, 1H), 4.27 (q, J = 7.2 Hz, 2H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 164.5, 156.8, 138.5, 138.3, 126.6, 122.1, 60.6,

14.2. HRMS (ESI) m/z calcd for $C_8H_9NNaO_3$ [M + Na]⁺: 190.0475, found: 190.0475. isopropyl 5-hydroxypicolinate (S10): 527.5mg, 81% yield, white solid, m.p. = 157.2 - 158.7 °C. ¹H

NMR (400 MHz, DMSO- d_6) δ 10.79 (s, 1H), 8.21 (d, J = 2.8 Hz, 1H), 7.91 (d, J = 8.8 Hz, 1H), 7.25 (dd, J = 8.4, 2.8 Hz, 1H), 5.15 – 5.06 (m, 1H), 1.29 (d, J = 6.4 Hz, 6H). ¹³C NMR (100 MHz, DMSO- d_6) δ 164.0, 156.7, 138.8, 138.2, 126.5, 122.0, 67.9, 21.7. HRMS (ESI) m/z calcd for C₉H₁₁NNaO₃ [M + Na]⁺: 204.0631,

found: 204.0630.

tert-butyl 5-hydroxypicolinate (S1p): 610.4 mg, 87% yield, white solid, m.p. = 173.5 - 174.6 °C. ¹H HO NMR (400 MHz, DMSO-*d*₆) δ 10.71 (s, 1H), 8.20 (d, *J* = 2.8 Hz, 1H), 7.87 (d, *J* = 8.8 Hz, 1H), 7.23 (dd, *J* = 8.8, 2.9 Hz, 1H), 1.52 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.6, 156.5, 139.7, 138.1, 126.3, 122.0, 80.4, 27.9. HRMS (ESI) m/z

calcd for $C_{10}H_{13}NNaO_3 [M + Na]^+$: 218.0788, found: 218.0793.

cyclopropylmethyl 5-hydroxypicolinate (S1q): 618.0 mg, 89% yield, white solid, m.p. = 133.7 -

134.5 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.82 (s, 1H), 8.22 (d, J = 2.8 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.26 (dd, J = 8.8, 2.8 Hz, 1H), 4.07 (d, J = 7.6 Hz, 2H), 1.26 – 1.13 (m, 1H), 0.60 – 0.50 (m, 2H), 0.32 (m, 2H). ¹³C NMR

(100 MHz, DMSO-d₆) & 164.6, 156.8, 138.5, 138.3, 126.7, 122.1, 69.2, 9.9, 3.2. HRMS (ESI) m/z calcd for $C_{10}H_{11}NNaO_3 [M + Na]^+$: 216.0631, found: 216.0634.

122.1 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.80 (s, 1H), 8.23 (d, J = 2.8Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.26 (dd, J = 8.8, 2.8 Hz, 1H), 4.11 (d, J = 7.2 Hz, 2H), 2.32 – 2.17 (m, 1H), 1.71 (m, 2H), 1.63 – 1.44 (m, 4H), 1.28 (m, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 164.5, 156.7, 138.5, 138.4,

126.6, 122.0, 68.2, 38.2, 28.9, 24.9. HRMS (ESI) m/z calcd for C₁₂H₁₅NNaO₃ [M + Na]⁺: 244.0944, found: 244.0946.

cyclohexylmethyl 5-hydroxypicolinate (S1s): 786.4 mg, 93% yield, white solid, m.p. = 145.8 -146.9 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.80 (s, 1H), 8.23 (d, J = 2.8HO. Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.26 (dd, J = 8.4, 2.8 Hz, 1H), 4.05 (d, J = 6.0 Hz, 2H), 1.81 - 1.55 (m, 6H), 1.30 - 0.90 (m, 5H). ¹³C NMR (100 MHz, DMSO-d₆) δ 164.4, 156.7, 138.5, 138.3, 126.6, 122.0, 69.3, 36.7,

29.1, 25.9, 25.2. HRMS (ESI) m/z calcd for $C_{13}H_{17}NNaO_3$ [M + Na]⁺: 258.1101, found: 258.1104.

2.2 General Procedures for the synthesis of pyridinium salts¹

A mixture of 5-hydroxypicolinate ester (1.0 mmol), benzyl bromide (1.2 mmol) and acetone (10.0 mL) was stirred at 50 °C for 24 h. Ether was added, the resulting precipitate was collected and rinsed with ethyl acetate to give the solid product which was directly used for the hydrogenation. If the desired product was not precipitated, the reaction mixture was purified by column chromatography on silica gel using CH₂Cl₂/MeOH (20:1) to give the desired products (86%–98% yields).

1-benzyl-2-((benzyloxy)carbonyl)-5-hydroxypyridin-1-ium (1a): 392.3 mg, 98% yield, white solid, m.p. = 134.6 – 136.0 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.97 (d, *J* = 9.6 Hz, 1H), 7.90 (d, J = 2.8 Hz, 1H), 7.34 – 7.32 (m, 8H), 7.19 (dd, J = 7.6, 2.4 Hz, 2H), 6.89 (dd, J = 9.6, 2.8 Hz, 1H), 5.97 (s, 2H), 5.23 (s, 2H). ¹³C NMR Br (100 MHz, DMSO-*d*₆) δ 170.6, 160.2, 141.6, 135.6, 135.6, 131.9, 130.2,

128.8, 128.5, 128.3, 128.2, 128.1, 127.0, 116.7, 66.6, 60.8. HRMS (ESI) m/z calcd for C₂₀H₁₈NO₃ [M -Br]+: 320.1281, found: 320.1280.

1-benzyl-5-hydroxy-2-(((4-(methoxycarbonyl)benzyl)oxy)carbonyl)pyridin-1-ium (1b): 403.3 mg,

88% yield, white solid, m.p. = 115.7 - 117.3 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.02 (d, J = 2.4 Hz, 1H), 8.51 (d, J = 8.8 Hz, 1H), 8.15 (dd, J = 8.8, 2.4 Hz, 1H), 7.94 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 7.6 Hz, 2H), 7.41 - 7.23 (m, 5H), 6.18 (s, 2H), 5.43 (s, 2H), 3.85 (s,

3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.9, 159.3, 139.8, 138.3, 134.2, 132.4, 132.3, 131.3, 129.6, 129.3, 129.0, 128.8, 128.3, 127.7, 67.7, 62.1, 52.3. HRMS (ESI) m/z calcd for C₂₂H₂₀NO₅ [M - Br]⁺: 378.1336, found: 378.1336.

HO

Br

yield, white solid, m.p. = 151.4 - 152.7 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.98 (d, *J* = 2.4 Hz, 1H), 8.50 (d, *J* = 8.8 Hz, 1H), 8.10 (dd, J = 9.2, 2.8 Hz, 1H), 7.74 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.0 Hz,

2H), 7.43 – 7.18 (m, 5H), 6.16 (s, 2H), 5.44 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 159.6, 159.2, 139.2, 138.3, 134.2, 132.3, 132.0, 131.2, 128.90 (q, J = 31.7 Hz), 128.88 (2C), 128.7, 127.6, 125.3 (q, J = 3.9 Hz), 124.1 (q, J = 270.6 Hz), 67.5, 62.1. HRMS (ESI) m/z calcd for $C_{21}H_{17}F_{3}NO_{3}$ [M - Br]⁺: 388.1155, found: 388.1154.

1-benzyl-5-hydroxy-2-(((4-nitrobenzyl)oxy)carbonyl)pyridin-1-ium (1d): 423.0mg, 95% yield, white solid, m.p. = 147.9 - 149.9 °C. ¹H NMR (400 MHz, DMSO-*d*₆) NO₂ δ 8.20 (d, J = 8.0 Hz, 2H), 8.05 (d, J = 9.2 Hz, 1H), 7.92 (t, J = 2.4

Hz, 1H), 7.60 (d, J = 8.0 Hz, 2H), 7.40 – 7.28 (m, 3H), 7.18 (d, J = 6.8, 2H), 6.90 (dd, J = 11.6, 2.8 Hz, 1H), 5.96 (s, 2H), 5.37 (s, 2H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 170.7, 159.9, 147.1, 143.3, 141.9, 135.5, 132.0, 130.1, 128.8, 128.6, 128.2, 126.9, 123.5, 116.2, 65.3, 60.9. HRMS (ESI) m/z calcd for C20H17N2O5 [M - Br]⁺: 365.1132, found: 365.1128.

1-benzyl-2-(((4-cyanobenzyl)oxy)carbonyl)-5-hydroxypyridin-1-ium (1e): 399.8 mg, 94% yield, HC white solid, m.p. = 144.1 - 145.2 °C. ¹H NMR (400 MHz, DMSO-*d*₆)

δ 8.98 (d, J = 2.4 Hz, 1H), 8.51 (d, J = 8.9 Hz, 1H), 8.11 (dd, J = 9.0, 2.6 Hz, 1H), 7.85 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.44 -7.21 (m, 5H), 6.16 (s, 2H), 5.43 (s, 2H). ¹³C NMR (100 MHz, DMSO-

d₆) δ 159.5, 159.2, 140.1, 138.3, 134.2, 132.5, 132.4, 132.1, 131.2, 129.0, 128.8 (2C), 127.6, 118.6, 111.1, 67.4, 62.2. HRMS (ESI) m/z calcd for $C_{21}H_{17}N_2O_3$ [M – Br]⁺: 345.1234, found: 345.1234.

1-benzyl-2-(((4-bromobenzyl)oxy)carbonyl)-5-hydroxypyridin-1-ium (1f): 431.3 mg, 90% yield, white solid, m.p. = $135.7 - 137.2 \,^{\circ}$ C. ¹H NMR (400 MHz, DMSO-*d*₆) δ HO 8.96 (d, J = 2.8 Hz, 1H), 8.44 (d, J = 8.8 Hz, 1H), 8.08 (dd, J = 8.8, 2.4 Hz, 1H), 7.59 – 7.23 (m, 9H), 6.15 (s, 2H), 5.31 (s, 2H). ¹³C NMR (100 Br Ŕn MHz, DMSO-*d*₆) δ 170.6, 160.1, 141.7, 135.6, 135.1, 131.9, 131.4,

130.23, 130.16, 128.8, 128.2, 126.9, 121.4, 116.5, 65.8, 60.8. HRMS (ESI) m/z calcd for C₂₀H₁₇BrNO₃ [M – Br]⁺: 398.0386, found: 398.0386.

1-benzyl-2-(((4-fluorobenzyl)oxy)carbonyl)-5-hydroxypyridin-1-ium (1g): 401.5 mg, 96% yield,

HC

Br

white solid, m.p. = $136.1 - 137.7 \,^{\circ}$ C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.00 (d, J = 2.4 Hz, 1H), 8.43 (d, J = 8.8 Hz, 1H), 8.10 (dd, J = 8.8, 2.4 Hz, 1H), 7.44 – 7.21 (m, 9H), 6.16 (s, 2H), 5.32 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.2 (d, *J* = 243.5 Hz), 159.4, 159.3, 138.2, 134.2,

132.3, 132.2, 131.2, 131.0 (d, *J* = 8.4 Hz), 130.7 (d, *J* = 3.1 Hz), 128.9, 128.8, 127.7, 115.4 (d, *J* = 21.4 Hz), 67.8, 62.1. HRMS (ESI) m/z calcd for C₂₀H₁₇FNO₃ [M - Br]⁺: 338.1187, found: 338.1184.

1-benzyl-2-(((4-chlorobenzyl)oxy)carbonyl)-5-hydroxypyridin-1-ium (1h): 391.2 mg, 90% yield, white solid, m.p. = $136.9 - 138.3 \,^{\circ}$ C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.97 (d, J = 9.6 Hz, 1H), 7.91 (d, J = 2.8 Hz, 1H), 7.48 – 7.28 (m, 7H), 7.22 - 7.14 (m, 2H), 6.89 (dd, J = 9.2, 2.8 Hz, 1H), 5.96 (s, 2H), 5.22 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 170.5, 160.1, 141.7, 135.6,

134.6, 132.9, 131.9, 130.2, 130.0, 128.8, 128.5, 128.2, 126.9, 116.6, 65.8, 60.8. HRMS (ESI) m/z calcd for C₂₀H₁₇ClNO₃ [M – Br]⁺: 354.0891, found: 354.0894.

white solid, m.p. = 122.8 - 124.1 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.93 (d, J = 9.6 Hz, 1H), 7.89 (d, J = 2.8 Hz, 1H), 7.39 – 7.30 (m, 3H), 7.26 - 7.14 (m, 6H), 6.88 (dd, J = 9.6, 2.8 Hz, 1H), 5.96 (s, 2H), 5.18 (s, 2H), 2.30 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 170.5, 160.2,

141.5, 137.6, 135.6, 132.5, 131.8, 130.2, 129.0, 128.8, 128.5, 128.2, 127.0, 116.8, 66.6, 60.7, 20.8. HRMS (ESI) m/z calcd for $C_{21}H_{20}NO_3 [M - Br]^+$: 334.1438, found: 334.1434.

1-benzyl-5-hydroxy-2-(((3-methylbenzyl)oxy)carbonyl)pyridin-1-ium (1j): 389.4 mg, 94% yield, white solid, m.p. = 97.8 - 99.2 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.95 (d, J = 9.2 Hz, 1H), 7.90 (d, J = 2.8 Hz, 1H), 7.40 – 7.09 (m, 9H), 6.88 (dd, J = 9.6, 2.8 Hz, 1H), 5.97 (s, 2H), 5.19 (s, 2H), 2.29 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 170.5, 160.2, 141.6, 137.7, 135.6,

135.5, 131.9, 130.2, 128.9, 128.8, 128.7, 128.4, 128.2, 127.0, 125.2, 116.7, 66.6, 60.8, 20.9. HRMS (ESI) m/z calcd for $C_{21}H_{20}NO_3$ [M – Br]⁺: 334.1438, found: 334.1437.

1-benzyl-2-(((3-bromobenzyl)oxy)carbonyl)-5-hydroxypyridin-1-ium (1k): 436.0 mg, 91% yield, white solid, m.p. = $127.8 - 129.2 \,^{\circ}\text{C}$. ¹H NMR (400 MHz, DMSO-*d*₆) δ HO 7.98 (d, J = 9.6 Hz, 1H), 7.91 (d, J = 2.8 Hz, 1H), 7.59 (t, J = 1.6 Hz, 1H), 7.54 (dt, J = 7.2, 2.0 Hz, 1H), 7.33 (m, 5H), 7.24 – 7.14 (m, 2H), Br 6.89 (dd, J = 9.6, 2.8 Hz, 1H), 5.96 (s, 2H), 5.22 (s, 2H). ¹³C NMR (100

MHz, DMSO-d₆) δ 170.6, 160.1, 141.7, 138.3, 135.6, 132.0, 131.1, 130.8, 130.7, 130.2, 128.8, 128.3, 127.1, 126.9, 121.7, 116.4, 65.7, 60.8. HRMS (ESI) m/z calcd for C₂₀H₁₇BrNO₃ [M - Br]⁺: 398.0386, found: 398.0392.

1-benzyl-2-(((2,3-dimethoxybenzyl)oxy)carbonyl)-5-hydroxypyridin-1-ium (11): 395.9 mg, 86%

yield, white solid, m.p. = 129.7 - 131.1 °C. ¹H NMR (400 MHz, DMSO-d₆) δ 7.94 - 7.89 (m, 2H), 7.37 - 7.31 (m, 3H), 7.22 - 7.17 (m, 2H), 7.08 - 7.02 (m, 2H), 6.91 - 6.86 (m, 2H), 5.97 (s, 2H), 5.22 (s, 2H), 3.81 (s, 3H), 3.68 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ

170.4, 160.1, 152.3, 146.9, 141.5, 135.5, 131.8, 130.2, 128.8, 128.7, 128.2, 127.0, 124.0, 121.3, 116.8, 113.4, 62.1, 60.7, 60.4, 55.7. HRMS (ESI) m/z calcd for C₂₂H₂₂NO₅ [M - Br]⁺: 380.1492, found: 380.1492.

1-benzyl-5-hydroxy-2-(methoxycarbonyl)pyridin-1-ium (1m): 314.4 mg, 97% yield, white solid, m.p. = 125.2- - 126.5 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.93 (d, J = 9.2 Hz, 1H), HO 7.87 (d, J = 2.8 Hz, 1H), 7.39 – 7.33 (m, 3H), 7.26 – 7.19 (m, 2H), 6.89 (dd, J = 9.2, CO₂Me Br 2.8 Hz, 1H), 5.95 (s, 2H), 3.74 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 170.4, Β'n

160.8, 141.4, 135.7, 131.8, 130.2, 128.8, 128.3, 127.0, 116.9, 60.8, 52.5. HRMS (ESI) m/z calcd for $C_{14}H_{14}NO_3$ [M – Br]⁺: 244.0968, found: 244.0967.

1-benzyl-2-(ethoxycarbonyl)-5-hydroxypyridin-1-ium (1n): 321.3mg, 95% yield, white solid, m.p. =

126.0 – 126.9 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.92 (d, *J* = 9.2 Hz, 1H), 7.87 (d, J = 2.8 Hz, 1H), 7.39 - 7.32 (m, 3H), 7.22 - 7.20 (m, 2H), 6.89 (dd, J = 9.6, 2.8 Hz, 1H), 5.95 (s, 2H), 4.18 (q, J = 7.2 Hz, 2H), 1.19 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆) § 170.5, 160.4, 141.3, 135.7, 131.7, 130.3, 128.8, 128.2,

127.0, 117.1, 61.3, 60.7, 13.9. HRMS (ESI) m/z calcd for $C_{15}H_{16}NO_3$ [M - Br]⁺: 258.1125, found: 258.1122.

1-benzyl-5-hydroxy-2-(isopropoxycarbonyl)pyridin-1-ium (10): 313.5 mg, 89% yield, white solid,

HO

Br

Br

Br

Ŕη

m.p. = 122.9 - 124.3 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.94 (d, J = 2.8 Hz, 1H), 8.36 (d, *J* = 9.2Hz, 1H), 8.07 (dd, *J* = 8.8, 2.8Hz, 1H), 7.46 – 7.19 (m, 5H), 6.13 (s, 2H), 5.07 (m, 1H), 1.18 (d, J = 6.4 Hz, 6H). ¹³C NMR (100 MHz, DMSO-

d₆) δ 170.5, 160.0, 141.1, 135.7, 131.6, 130.3, 128.8, 128.2, 126.9, 117.5, 69.1, 60.8, 21.3. HRMS (ESI) m/z calcd for $C_{16}H_{18}NO_3 [M - Br]^+: 272.1281$, found: 272.1281.

1-benzyl-2-(tert-butoxycarbonyl)-5-hydroxypyridin-1-ium (1p): 333.3 mg, 91% yield, white solid, HO m.p. = 136.3 - 137.2 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.88 (d, *J* = 2.8 Hz, 1H), 8.33 (d, J = 8.8 Hz, 1H), 8.01 (dd, J = 8.8, 2.4 Hz, 1H), 7.40 (m, 3H), 7.26 - 7.18 ℃O₂^tBu Br (m, 2H), 6.10 (s, 2H), 1.39 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 170.3, 160.0,

140.7, 135.7, 131.6, 130.4, 128.8, 128.3, 127.0, 118.6, 82.5, 60.7, 27.5. HRMS (ESI) m/z calcd for $C_{17}H_{20}NO_3 [M - Br]^+$: 286.1438, found: 286.1433.

1-benzyl-2-((cyclopropylmethoxy)carbonyl)-5-hydroxypyridin-1-ium (1q): 331.5 mg, 91% yield, white solid, m.p. = $125.9 - 127.4 \,^{\circ}$ C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.99 (d, J = 2.8 Hz, 1H), 8.40 (d, J = 8.8 Hz, 1H), 8.13 (dd, J = 8.8, 2.8 Hz, 1H), Br 7.44 – 7.24 (m, 5H), 6.15 (s, 2H), 4.11 (d, J = 7.2 Hz, 2H), 1.09 (m, 1H), 0.57 . Bn

-0.45 (m, 2H), 0.29 (m, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 159.7, 159.1, 138.0, 134.2, 133.0, 131.9, 131.3, 129.0, 128.8, 127.8, 72.0, 62.1, 9.2, 3.3. HRMS (ESI) m/z calcd for $C_{17}H_{18}NO_3$ [M - Br]⁺: 284.1281, found: 284.1280.

1-benzyl-2-((cyclopentylmethoxy)carbonyl)-5-hydroxypyridin-1-ium (1r): 364.8 mg, 93% yield, white solid, m.p. = 147.8 - 148.5 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.00 (d, *J* = 2.8 Hz, 1H), 8.39 (d, *J* = 8.8 Hz, 1H), 8.14 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.43 - 7.22 (m, 5H), 6.16 (s, 2H), 4.14 (d, J = 7.2 Hz, 2H), 2.18 - 2.07 (m, Ŕn 1H), 1.67 – 1.41 (m, 6H), 1.21 – 1.08 (m, 2H). ¹³C NMR (100 MHz, DMSO-

d₆) δ 159.6, 159.1, 138.1, 134.2, 132.8, 131.9, 131.3, 128.9, 128.8, 127.7, 70.6, 62.1, 37.6, 28.6, 24.8. HRMS (ESI) m/z calcd for C₁₉H₂₂NO₃ [M – Br]⁺: 312.1594, found: 312.1597.

1-benzyl-2-((cyclohexylmethoxy)carbonyl)-5-hydroxypyridin-1-ium (1s): 386.0 mg, 95% yield, white solid, m.p. = $147.4 - 148.9 \circ C.^{1}H NMR (400 MHz, DMSO-d_6) \delta 8.98$ (d, J = 2.4 Hz, 1H), 8.40 (d, J = 9.2 Hz, 1H), 8.11 (dd, J = 8.4, 2.4 Hz, 1H), 7.44 - 7.20 (m, 5H), 6.15 (s, 2H), 4.07 (d, J = 6.0 Hz, 2H), 1.69 - 1.50 (m, 6H), 1.14 (m, 3H), 0.97 – 0.79 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ

159.5, 159.3, 138.2, 134.3, 132.5, 132.0, 131.3, 128.9, 128.7, 127.5, 71.7, 62.1, 36.2, 28.7, 25.7, 25.1. HRMS (ESI) m/z calcd for C₂₀H₂₄NO₃ [M – Br]⁺: 326.1751, found: 326.1752.

2-((benzyloxy)carbonyl)-1-(4-cyanobenzyl)-5-hydroxypyridin-1-ium (1t): 399.8 mg, 94% yield, white solid, m.p. = 139.7 - 142.6 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.02 HC (s, 1H), 8.49 (d, J = 8.8 Hz, 1H), 8.13 (d, J = 9.2 Hz, 1H), 7.82 (d, J = 7.6 Hz, °CO₂Bn Br 2H), 7.41 – 7.32 (m, 7H), 6.25 (s, 2H), 5.31 (s, 2H) ¹³C NMR (100 MHz, DMSO-*d*₆) δ 159.7, 159.1, 139.9, 138.9, 134.4, 132.6, 132.5, 132.2, 131.5, 128.6, 128.5, 128.5, 128.0, 118.4, 111.1, 68.5, 61.9. HRMS (ESI) m/z calcd

for $C_{21}H_{17}N_2O_3 [M - Br]^+$: 345.1234, found: 345.1232.

2-((benzyloxy)carbonyl)-5-hydroxy-1-(4-(methoxycarbonyl)benzyl)pyridin-1-ium (1u): 412.5 mg,

90% yield, white solid, m.p. = 114.8 - 116.1 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.94 (d, *J* = 2.8 Hz, 1H), 8.44 (d, *J* = 9.2 Hz, 1H), 8.05 (dd, *J* = 9.2, 2.4 Hz, 1H), 7.91 (d, J = 8.0 Hz, 2H), 7.34 (m, 7H), 6.21 (s, 2H), 5.29 (s, 2H), 3.86 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.7, 160.0, 159.2, 139.6, 138.9, 134.4, 132.3, 131.7, 131.4, 129.6, 128.6, 128.5, 128.5, 127.5

(2C), 68.4, 62.0, 52.3. HRMS (ESI) m/z calcd for C₂₂H₂₀NO₅ [M + Na]⁺: 378.1336, found: 378.1344.

2-((benzyloxy)carbonyl)-5-hydroxy-1-(4-nitrobenzyl)pyridin-1-ium (1v): 427.5 mg, 96% yield,

white solid, m.p. = 141.6 - 143.4 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.08 (d, J = 2.8 Hz, 1H), 8.52 (d, J = 9.2 Hz, 1H), 8.16 (m, 3H), 7.47 (d, J = 8.4 Hz)Hz, 2H), 7.32 (m, 5H), 6.32 (s, 2H), 5.30 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 159.9, 159.1, 147.2, 141.9, 139.1, 134.4, 132.5, 132.0, 131.6, 128.5, 128.5, 128.4, 128.3, 123.7, 68.5, 61.8. HRMS (ESI) m/z calcd for

 $C_{20}H_{17}N_2O_5 [M - Br]^+$: 365.1132, found: 365.1132.

2-((benzyloxy)carbonyl)-5-hydroxy-1-(4-(trifluoromethyl)benzyl)pyridin-1-ium (1w): 416.8 mg, 89%

yield, white solid, m.p. = 132.9 - 134.6 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.00 (d, J = 2.4 Hz, 1H), 8.48 (d, J = 9.2 Hz, 1H), 8.11 (dd, J = 9.2, 2.8 Hz, 1H), 7.72 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.35 (m, 5H), 6.25 (s, 2H), 5.32 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 159.8, 159.2, 139.1, 138.9, 134.4, 132.4, 132.0, 131.5, 128.9 (q, J = 32.0 Hz), 128.6, 128.5 (2C), 128.1, 125.7 (q, J = 3.8 Hz), 124.0 (q, J = 270.5 Hz), 68.5, 61.8. HRMS (ESI)

m/z calcd for $C_{21}H_{17}F_3NO_3 [M - Br]^+$: 388.1155, found: 388.1154.

2-((benzyloxy)carbonyl)-5-hydroxy-1-(4-methylbenzyl)pyridin-1-ium (1x): 372.9 mg, 90% yield, white solid, m.p. = 135.8 - 137.3 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.96 (d, J = 2.4 Hz, 1H), 8.41 (d, J = 8.8 Hz, 1H), 8.07 (dd, J = 8.8, 2.4 Hz, 1H), CO₂Bn Br 7.38 (m, 5H), 7.17 (m, 4H), 6.10 (s, 2H), 5.34 (s, 2H), 2.28 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 159.5, 159.3, 138.4, 138.0, 134.4, 132.4, 132.0, 131.1, Me 131.1, 129.5, 128.6, 128.5 (2C), 128.0, 68.6, 61.9, 20.7. HRMS (ESI) m/z calcd

for C₂₁H₂₀NO₃ [M – Br]⁺: 334.1438, found: 334.1443.

2-((benzyloxy)carbonyl)-1-(4-bromobenzyl)-5-hydroxypyridin-1-ium (1y): 460.0 mg, 96% yield, white solid, m.p. = 122.5 - 124.0 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.96 (d, J = 2.8 Hz, 1H), 8.44 (d, J = 8.8 Hz, 1H), 8.08 (dd, J = 9.2, 2.8 Hz, 1H),7.57 (d, J = 8.4 Hz, 2H), 7.41 – 7.31 (m, 5H), 7.22 (d, J = 8.2 Hz, 2H), 6.12 (s, 2H), 5.34 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 159.5, 159.3, 138.5, 134.4, 133.7, 132.2, 132.1, 131.8, 131.3, 129.9, 128.6, 128.5, 128.5, 122.1, 68.5, 61.6.

HRMS (ESI) m/z calcd for C₂₀H₁₇BrNO₃ [M – Br]⁺: 398.0386, found: 398.0395.

2-((benzyloxy)carbonyl)-1-(4-chlorobenzyl)-5-hydroxypyridin-1-ium (1z): 400.0 mg, 92% yield,

white solid, m.p. = 128.4 - 129.7 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.99 (d, J = 2.4 Hz, 1H), 8.44 (d, J = 8.8 Hz, 1H), 8.10 (dd, J = 8.8, 2.4 Hz, 1H), 7.47 - 7.25 (m, 9H), 6.15 (s, 2H), 5.34 (s, 2H). ¹³C NMR (100 MHz, DMSO*d*₆) δ 159.6, 159.3, 138.5, 134.4, 133.5, 133.2, 132.3, 132.0, 131.3, 129.7, 128.9, 128.6, 128.5, 128.5, 68.5, 61.5. HRMS (ESI) m/z calcd for C₂₀H₁₇ClNO₃ [M -

Br]⁺: 354.0891, found: 354.0889.

2-((benzyloxy)carbonyl)-1-(2-bromobenzyl)-5-hydroxypyridin-1-ium (1aa): 440.8 mg, 92% yield,

white solid, m.p. = $124.7 - 125.9 \,^{\circ}$ C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.85 (s, 1H), 8.53 (dd, *J* = 9.2, 2.8 Hz, 1H), 8.12 (d, *J* = 8.8 Hz, 1H), 7.75 – 7.72 (m, 1H), 7.37 - 7.31 (m, 7H), 6.74 (q, J = 4.0 Hz, 1H), 6.16 (s, 2H), 5.29 (s, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 159.9, 158.9, 140.3, 138.9, 134.4, 134.2, 132.9, 132.5, 132.2, 131.8, 130.1, 128.54, 128.51, 128.3, 127.3, 121.3, 68.4, 62.9. HRMS (ESI)

m/z calcd for $C_{20}H_{17}BrNO_3 [M - Br]^+$: 398.0386, found: 398.0390.

2-((benzyloxy)carbonyl)-1-(3,5-dimethylbenzyl)-5-hydroxypyridin-1-ium (1ab): 389.8 mg, 91% HO CO₂Bn Br Me

yield, white solid, m.p. = $132.4 - 133.9 \,^{\circ}$ C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.96 (d, J = 9.2 Hz, 1H), 7.88 – 7.81 (d, J = 2.8 Hz, 1H), 7.35 (m, 5H), 6.95 (s, 1H), 6.88 (dd, J = 9.2, 2.4 Hz, 1H), 6.80 (s, 2H), 5.89 (s, 2H), 5.25 (s, 2H), 2.20 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 170.5, 160.3, 141.5, 137.9, 135.6, 135.5, 131.9, 130.2, 129.7, 128.5, 128.2, 128.0, 124.7, 116.7, 66.6, 60.6, 20.8. HRMS (ESI) m/z calcd for C₂₂H₂₂NO₃ [M - Br]⁺: 348.1594, found:

348.1592.

Br]⁺: 380.1492, found: 380.1492.

2.3 General Procedure for Hydrogenation of pyridinium salts

A mixture of [Ir(COD)Cl]₂ (0.7 mg, 1.0 µmol, 1.0 mol%) and (S)-ZhaoPhos (L5) (1.8 mg, 2.0 µmol, 2.0 mol%) were dissolved in degassed solvent (2.0 mL) at argon atmosphere, and the resulting solution was allowed to stirred for 20 min, followed by the addition of the substrate 1 (0.1 mmol, 1.0 equiv.) and NaHCO₃ (8.4 mg, 0.1 mmol, 1.0 equiv.). The resulting mixture was transferred to an autoclave, which was purged (3 \times 50 psi) and charged with H₂ (600 psi), then the reaction mixtures were stirred at room temperature for 48 h. After careful release of the hydrogen gas, the reaction mixture was filtrated and concentrated in vacuo. Flash chromatography on silica gel using petroleum ether/ethyl acetate as the eluent gave the products. The enantiomeric excesses were determined by chiral HPLC.

Asymmetric hydrogenation of 2-methyl ester-5-hydroxypyridinium salt (1m) at gram scale: A mixture of $[Ir(COD)CI]_2$ (4.1 mg, 6.2 µmol, 0.1 mol%) and (S)-ZhaoPhos (L5) (10.8 mg, 12.4 µmol, 0.2 mol%) were dissolved in degassed solvent (80.0 mL) at argon atmosphere, and the resulting solution was allowed to stirred for 20 min, followed by the addition of the substrate 1m (2.0 g, 6.2 mmol, 1.0 equiv.) and NaHCO₃ (520.9 mg, 6.2 mmol, 1.0 equiv.). The resulting mixture was transferred to an autoclave, which was purged (3 × 50 psi) and charged with H₂ (600 psi), then the reaction mixtures were stirred at room temperature for 48 h. After careful release of the hydrogen gas, the reaction mixture was filtrated and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (petroleum ether/ethyl acetate = 20:1) to give compound 2m (1.45 g, 94% yield, 11.8:1 *dr*, 97% *ee*) as a colorless oil.

benzyl (2S,5S)-1-benzyl-5-hydroxypiperidine-2-carboxylate (2a): 31.2 mg, 96% yield, 16.7:1 dr, 95%

ee, $[\alpha]_D^{25} = -58.9$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.19 (m, 10H), 5.17 (s, 2H), 3.81 (d, *J* = 13.2 Hz, 1H), 3.77 – 3.72 (m, 1H), 3.51 (d, *J* = 13.6 Hz, 1H), 3.25 (dd, *J* = 7.2, 4.4 Hz, 1H), 2.87 (dd, *J* = 11.6, 6.8 Hz, 1H), 2.49 (s, 1H), 2.45 (dd, *J* = 11.2, 1.2)

3.2 Hz, 1H), 2.13 – 2.00 (m, 1H), 1.86 – 1.72 (m, 1H), 1.72 – 1.53 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.0, 137.9, 135.8, 129.1, 128.7, 128.4, 128.4, 128.4, 127.3, 66.4, 65.9, 62.8, 59.7, 55.7, 30.1, 25.5. HRMS (ESI) m/z calcd for C₂₀H₂₃NNaO₃ [M + Na]⁺: 348.1570, found: 348.1566. HPLC: Chiralcel AD-H column, 254 nm, 30 °C, *n*-hexane/ethanol = 90/10, flow = 0.5 mL/min, retention time 15.6 min (maj) and 18.9 min.

4-(methoxycarbonyl)benzyl (25,55)-1-benzyl-5-hydroxypiperidine-2-carboxylate (2b): 36.0 mg, 94%

yield, 15.1:1 *dr*, 95% *ee*, $[\alpha]_D^{25} = -49.7$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 (d, *J* = 7.2 Hz, 2H), 7.42 (d, *J* = 7.6 Hz, 2H), 7.28 - 7.23 (m, 5H), 5.21 (s, 2H), 3.91 (s, 3H), 3.81 (d, *J* = 13.2 Hz, 1H), 3.78 - 3.70 (m, 1H), 3.54 (d, *J* = 13.2

Hz, 1H), 3.30 (t, J = 5.6 Hz, 1H), 2.88 (dd, J = 11.2, 6.4 Hz, 1H), 2.56 – 2.41 (m, 2H), 2.14 – 2.03 (m, 1H), 1.85 – 1.78 (m, 1H), 1.74 – 1.53 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.8, 166.7, 140.9, 137.9, 130.1, 130.0, 129.0, 128.4, 127.9, 127.4, 66.0, 65.5, 62.5, 59.7, 55.7, 52.3, 30.1, 25.6. HRMS (ESI) m/z calcd for C₂₂H₂₅NNaO₅ [M + Na]⁺: 406.1625, found: 406.1624. HPLC: Chiralcel IA-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 90/10, flow = 0.7 mL/min, retention time 21.3 min (maj) and 27.0 min. **4-(trifluoromethyl)benzyl (2***S***,***SS***)-1-benzyl-5-hydroxypiperidine-2-carboxylate (2c): 35.4 mg, 90%**

yield, 13.6:1 *dr*, 94% *ee*, $[\alpha]_D^{25} = -46.4$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.30 – 7.21 (m, *J* = 6.0, 5.4 Hz, 5H), 5.21 (s, 2H), 3.81 (d, *J* = 13.2 Hz, 1H), 3.79 – 3.72 (m, 1H), 3.53 (d, *J* = 13.2 Hz, 1H),

3.29 (dd, J = 6.8, 4.4 Hz, 1H), 2.88 (dd, J = 11.2, 6.4 Hz, 1H), 2.50 – 2.46 (m, 2H), 2.12 – 2.03 (m, 1H), 1.87 – 1.77 (m, 1H), 1.73 – 1.54 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.8, 139.9, 137.9, 130.6 (q, J = 32.4 Hz), 129.0, 128.43, 128.39, 127.4, 125.7 (q, J = 3.6 Hz), 124.7 (q, J = 270.5 Hz), 65.9, 65.4, 62.7, 59.7, 55.8, 30.1, 25.6. HRMS (ESI) m/z calcd for C₂₁H₂₂F₃NNaO₃ [M + Na]⁺: 416.1444,

found: 416.1439. HPLC: Chiralcel IA-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 90/10, flow = 0.7 mL/min, retention time 12.4 min (maj) and 15.7 min.

4-nitrobenzyl (2S,5S)-1-benzyl-5-hydroxypiperidine-2-carboxylate (2d): 34.4 mg, 93% yield, 14.2:1

dr, 94% *ee*, $[\alpha]_D^{25} = -61.3$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (d, *J* = 8.4 Hz, 2H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.37 - 7.33 (m, 5H), 5.22 - 5.13 (m, 2H), 3.89 - 3.92 (m, 1H), 3.81 - 3.73 (m, 1H), 3.65 - 3.61 (m, 1H), 3.37 - 3.28 (m, 1H),

2.84 (dd, J = 11.6, 6.4 Hz, 1H), 2.53 – 2.50 (m, 1H), 2.24 (s, 1H), 2.18 – 2.07 (m, 1H), 1.92 – 1.79 (m, 1H), 1.79 – 1.69 (m, 1H), 1.60 – 1.51 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.6, 147.4, 135.7, 129.4, 128.8, 128.6, 128.5, 123.7, 66.6, 66.2, 62.5, 59.0, 55.8, 30.0, 25.7. HRMS (ESI) m/z calcd for C₂₀H₂₂N₂NaO₅ [M + Na]⁺: 393.1421, found: 393.1418. HPLC: Chiralcel IA-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 90/10, flow = 0.7 mL/min, retention time 66.9 min (maj) and 89.9 min.

4-cyanobenzyl (2S,5S)-1-benzyl-5-hydroxypiperidine-2-carboxylate (2e): 31.9 mg, 91% yield, 12.6:1

dr, 95% *ee*, $[\alpha]_D^{25} = -51.3$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 (d, *J* = 7.6 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.31 – 7.25 (m, 5H), 5.20 (s, 2H), 3.80 (d, *J* = 13.6 Hz, 1H), 3.77 – 3.74 (m, 1H), 3.53 (d, *J* = 13.2 Hz, 1H), 3.30 (t, *J* = 6.0 Hz, 1H), 2.88

(dd, J = 11.6, 6.4 Hz, 1H), 2.51 - 2.43 (m, 2H), 2.17 - 2.02 (m, 1H), 1.86 - 1.80 (m, 1H), 1.72 - 1.69 (m, 1H), 1.68 - 1.54 (m, 1H). 13 C NMR (100 MHz, Chloroform-*d*) δ 172.7, 141.1, 137.8, 132.5, 128.9, 128.5, 128.4, 127.4, 118.5, 112.3, 65.9, 65.1, 62.6, 59.7, 55.7, 30.0, 25.6. HRMS (ESI) m/z calcd for $C_{21}H_{22}N_2NaO_3$ [M + Na]⁺: 373.1523, found: 373.1520. HPLC: Chiralcel IA-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 95/5, flow = 0.7 mL/min, retention time 70.6 min (maj) and 92.3 min.

4-bromobenzyl (2S,5S)-1-benzyl-5-hydroxypiperidine-2-carboxylate (2f): 35.6 mg, 88% yield, HO N Br NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.47 (m, 2H), 7.33 – 7.18 (m, 7H), 5.10 (s, 2H), 3.79 (d, *J* = 13.2 Hz, 1H), 3.76 – 3.72 (m, 1H), 3.51 (d, *J* = 13.6 Hz, 1H), 3.25 (dd, *J* = 6.8, 4.4 Hz, 1H), 2.86 (dd, *J* = 11.2,

6.8 Hz, 1H), 2.49 (s, 1H), 2.46 (dd, J = 11.2, 3.3 Hz, 1H), 2.12 – 2.01 (m, 1H), 2.09 – 2.01 (m, 1H), 1.73 – 1.50 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.9, 137.9, 134.9, 131.8, 130.1, 129.0, 128.4, 127.4, 122.5, 65.9, 65.5, 62.7, 59.7, 55.7, 30.0, 25.5. HRMS (ESI) m/z calcd for C₂₀H₂₃BrNO₃ [M + H]⁺: 404.0856, found: 404.0857. HPLC: Chiralcel IA-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 90/10, flow = 0.7 mL/min, retention time 18.8 min (maj) and 23.7 min.

6.4 Hz, 1H), 2.47 (s, 1H), 2.45 (dd, J = 11.2, 3.2 Hz, 1H), 2.12 – 1.98 (m, 1H), 1.79 (m, 1H), 1.71 – 1.53 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.9, 162.8 (d, J = 245.6 Hz), 137.8, 131.7 (d, J = 3.3 Hz), 130.5 (d, J = 8.2 Hz), 129.0, 128.4, 127.4, 115.7 (d, J = 21.5 Hz), 65.9, 65.7, 62.8, 59.7, 55.8, 30.1, 25.5. HRMS (ESI) m/z calcd for C₂₀H₂₂FNNaO₃ [M + Na]⁺: 366.1476, found: 366.1477. HPLC: Chiralcel IA-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 95/5, flow = 0.5 mL/min, retention time 30.9 min (maj) and 41.9 min.

11.6:1 dr, 94% ee, $[\alpha]_D^{25} = -52.1$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-d) δ 7.38 - 7.15 (m, 9H), 5.12 (s, 2H), 3.79 (d, J = 13.6 Hz, 1H), 3.75 - 3.72 (m, 1H), 3.51 (d, J = 13.2Hz, 1H), 3.25 (dd, J = 7.2, 4.4 Hz, 1H), 2.86 (dd, J = 11.6, 6.8 Hz, 1H),

2.52 (s, 1H), 2.46 (dd, J = 11.6, 3.6 Hz, 1H), 2.12 - 1.99 (m, 1H), 1.86 - 1.72 (m, 1H), 1.71 - 1.51 (m, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ 172.9, 137.9, 134.4, 134.3, 129.8, 129.0, 128.9, 128.4, 127.3, 65.9, 65.5, 62.7, 59.7, 55.7, 30.0, 25.5. HRMS (ESI) m/z calcd for C₂₀H₂₂ClNNaO₃ [M + Na]⁺: 382.1180, found: 382.1185. HPLC: Chiralcel AD-H column, 254 nm, 30 °C, n-hexane/i-propanol = 95/5, flow = 0.5 mL/min, retention time 49.4 min (maj) and 67.1 min.

4-methylbenzyl (25,55)-1-benzyl-5-hydroxypiperidine-2-carboxylate (2i): 31.2 mg, 92% yield,

HO

14.2:1 dr, 97% ee, $[\alpha]_D^{25} = -59.6$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-d) & 7.30 - 7.13 (m, 9H), 5.12 (s, 2H), 3.80 (d, J = 13.2 Hz, 1H), 3.75 - 3.70 (m, 1H), 3.51 (d, J = 13.6 Hz, 1H), 3.23 (dd, J = 7.2, 4.4 Hz, 1H), 2.86 (dd, J = 11.2, 6.4 Hz, 1H), 2.50

(s, 1H), 2.44 (dd, J = 11.6, 3.6 Hz, 1H), 2.33 (s, 3H), 2.14 – 1.99 (m, 1H), 1.85 – 1.71 (m, 1H), 1.71 – 1.53 (m, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ 173.0, 138.3, 138.0, 132.9, 129.3, 129.1, 128.5, 128.3, 127.3, 66.3, 66.0, 62.8, 59.7, 55.7, 30.1, 25.5, 21.3. HRMS (ESI) m/z calcd for C₂₁H₂₅NNaO₃ [M + Na]⁺: 362.1727, found: 362.1725. HPLC: Chiralcel OD-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 95/5, flow = 0.5 mL/min, retention time 25.9 min (maj) and 28.0 min.

3-methylbenzyl (25,55)-1-benzyl-5-hydroxypiperidine-2-carboxylate (2j): 31.6 mg, 93% yield, 12.8:1 dr, 96% ee, $[\alpha]_D^{25} = -56.2$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.19 (m, 6H), 7.21 – 7.12 (m, 3H), 5.13 (s, 2H), 3.82 (d, J = 13.2 Hz, 1H), 3.77 – 3.72 (m, 1H), 3.51 (d, J = 13.2 Hz, 1H), 3.25 (t, J = 6.0 Hz, 1H), 2.88 (dd, J = 11.6, 6.4 Hz, 10.6 Hz)

1H), 2.55 (s, 1H), 2.44 (dd, J = 11.2, 3.2 Hz, 1H), 2.34 (s, 3H), 2.12 - 2.03 (m, 1H), 1.85 - 1.75 (m, 1H), 1.68 – 1.59(m, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ 173.0, 138.4, 137.9, 135.7, 129.2, 129.1, 129.1, 128.6, 128.4, 127.3, 125.5, 66.5, 65.9, 62.9, 59.7, 55.8, 30.1, 25.5, 21.4. HRMS (ESI) m/z calcd for C₂₁H₂₅NNaO₃ [M + Na]⁺: 362.1727, found: 362.1730. HPLC: Chiralcel IA-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 95/5, flow = 0.7 mL/min, retention time 16.1 min (maj) and 20.6 min.

3-bromobenzyl (2S,5S)-1-benzyl-5-hydroxypiperidine-2-carboxylate (2k): 34.3 mg, 85% yield,

16.7:1 dr, 95% ee, $[\alpha]_D^{25} = -43.2$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 (t, *J* = 2.0 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.33 – 7.18 (m, 7H), 5.11 (s, 2H), 3.80 (d, J = 13.2 Hz, 1H), 3.77 – 3.71 (m, 1H), 3.52 (d, J = 13.6 Hz, 1H), 3.27 (dd, J = 7.2, 4.4 Hz,

1H), 2.87 (dd, J = 11.6, 6.8 Hz, 1H), 2.48 (dd, J = 11.6, 3.6 Hz, 1H), 2.43 (s, 1H), 2.13 – 2.02 (m, 1H), 1.85 – 1.74 (m, 1H), 1.74 – 1.53 (m, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ 172.8, 138.1, 137.9, 131.5, 131.3, 130.3, 129.0, 128.4, 127.4, 126.8, 122.7, 66.0, 65.3, 62.6, 59.7, 55.8, 30.1, 25.6. HRMS (ESI) m/z calcd for C₂₀H₂₃BrNO₃ [M + H]⁺: 404.0856, found: 404.0856. HPLC: Chiralcel AD-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 90/10, flow = 0.7 mL/min, retention time 17.6 min (maj) and 25.0 min.

2,3-dimethoxybenzyl (2S,5S)-1-benzyl-5-hydroxypiperidine-2-carboxylate (2l): 33.2 mg, 86% yield,

8.4:1 *dr*, 93% *ee*, $[\alpha]_D^{25} = -72.1$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.19 – 7.15 (m, 5H), 6.99 – 6.95 (m, 1H), 6.90 – 6.83 (m, 2H), 5.16 (s, 2H), 3.87 – 3.75 (m, 7H), 3.67 – 3.65 (m, 1H), 3.43 (d, *J* = 13.2 Hz, 1H), 3.16 (dd, *J* = 8.0, 4.4 Hz,

1H), 2.80 (t, J = 9.6 Hz, 1H), 2.36 (d, J = 11.2 Hz, 1H), 2.25 (s, 1H), 2.05 – 1.96 (m, 1H), 1.79 – 1.66 (m, 1H), 1.62 – 1.48 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.1, 152.8, 147.7, 138.1, 129.7, 129.1, 128.4, 127.3, 124.2, 121.8, 113.0, 66.0, 63.1, 61.7, 61.1, 59.7, 55.9, 55.8, 30.2, 25.5. HRMS (ESI) m/z calcd for C₂₂H₂₇NNaO₅ [M + H]⁺: 408.1781, found: 408.1779. HPLC: Chiralcel AD-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 90/10, flow = 0.7 mL/min, retention time 22.4 min (maj) and 24.4 min. **methyl (25,55)-1-benzyl-5-hydroxypiperidine-2-carboxylate (2m):** 23.2 mg, 93% yield, 11.8:1 *dr*, 97%

ee, $[\alpha]_D^{25} = -59.2$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform*d*) δ 7.33 – 7.20 (m, 5H), 3.80 (d, *J* = 13.2 Hz, 1H), 3.76 – 3.73 (m, 1H), 3.71 (s, 3H), 3.51 (d, *J* = 13.2 Hz, 1H), 3.23 (dd, *J* = 7.2, 4.4 Hz, 1H), 2.85 (dd, *J* = 11.2, 6.4 Hz, 1H), 2.66 (s, 1H), 2.45 (dd, *J* = 11.2, 3.2 Hz, 1H), 2.12 – 1.99 (m, 1H), 1.84

-1.72 (m, 1H), 1.72 - 1.54 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.8, 138.0, 129.0, 128.3, 127.3, 65.9, 62.8, 59.7, 55.6, 51.6, 30.0, 25.5. HRMS (ESI) m/z calcd for C₁₄H₁₉NNaO₃ [M + Na]⁺: 272.1257, found: 272.1259. HPLC: Chiralcel AD-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 90/10, flow = 0.7 mL/min, retention time 11.9 min (maj) and 14.2 min.

ethyl (2S,5S)-1-benzyl-5-hydroxypiperidine-2-carboxylate (2n): 24.8 mg, 94% yield, 11.4:1 dr, 94%

ee, $[\alpha]_D^{25} = -80.3$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform*d*) δ 7.33 – 7.20 (m, 5H), 4.19 (q, *J* = 7.2 Hz, 2H), 3.82 (d, *J* = 13.6 Hz, 1H), 3.78 – 3.69 (m, 1H), 3.50 (d, *J* = 13.6 Hz, 1H), 3.19 (dd, *J* = 7.6, 4.4 Hz, 1H), 2.86 (dd, *J* = 11.2, 6.4 Hz, 1H), 2.66 (s, 1H), 2.43 (dd, *J* = 11.2, 2.8 Hz, 1H), 2.10 – 2.02 (m,

1H), 1.82 - 1.75 (m, 1H), 1.68 - 1.58 (m, 2H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroformd) δ 173.3, 138.0, 129.0, 128.3, 127.3, 65.9, 63.1, 60.5, 59.7, 55.7, 30.1, 25.6, 14.4. HRMS (ESI) m/z calcd for C₁₅H₂₁NNaO₃ [M + Na]⁺: 286.1414, found: 286.1415. HPLC: Chiralcel AD-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 90/10, flow = 0.7 mL/min, retention time 11.3 min (maj) and 16.4 min. **isopropyl (25,55)-1-benzyl-5-hydroxypiperidine-2-carboxylate (20):** 23.6 mg, 85% yield, 13.8:1 *dr*,

92% *ee*, $[\alpha]_D^{25} = -69.1$ (c = 1.0, CHCl₃) colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.19 (m, 5H), 5.13 – 5.04 (m, 1H), 3.83 (d, *J* = 13.6 Hz, 1H), 3.76 – 3.72 (m, 1H), 3.49 (d, *J* = 13.2 Hz, 1H), 3.15 (dd, *J* = 7.6, 4.4 Hz, 1H), 2.86 (dd, *J* = 11.2, 6.4 Hz, 1H), 2.64 (s, 1H), 2.41 (dd, *J* = 11.2, 2.8 Hz, 1H,

2.09 – 2.00 (m, 1H), 1.83 – 1.71 (m, 1H), 1.68 – 1.60 (m, 2H), 1.28 (d, J = 6.4 Hz, 3H), 1.26 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.8, 138.1, 129.0, 128.3, 127.3, 68.0, 65.9, 63.2, 59.6, 55.7, 30.1, 25.4, 22.0, 21.9. HRMS (ESI) m/z calcd for C₁₆H₂₃NNaO₃ [M + Na]⁺: 300.1570, found: 300.1568. HPLC: Chiralcel AD-H column, 254 nm, 30 °C, *n*-hexane/ethanol = 95/5, flow = 0.7 mL/min, retention time 15.5 min (maj) and 23.4 min.

tert-butyl (2S,5S)-1-benzyl-5-hydroxypiperidine-2-carboxylate (2p): 26.5 mg, 91% yield, 19.3:1 dr,

94% *ee*, $[\alpha]_D^{25} = -59.6$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 – 7.20 (m, 5H), 3.86 (d, *J* = 13.2 Hz, 1H), 3.73 (m, 1H), 3.48 (d, *J* = 13.6 Hz, 1H), 3.06 (dd, *J* = 7.6, 4.4 Hz, 1H), 2.85 (dd, *J* = 11.6, 6.4 Hz, 1H), 2.68 (s, 1H), 2.38 (dd, *J* = 11.6, 3.2 Hz, 1H), 2.08 – 2.00 (m, 1H), 1.82 – 1.69 (m, 1H), 1.82 –

1H), 1.63 (m, 2H), 1.49 (s, 9H). ¹³C NMR (100 MHz, Chloroform-d) & 172.7, 138.3, 129.0, 128.4, 127.3,

81.1, 65.9, 63.9, 59.6, 55.7, 30.1, 28.2, 25.5. HRMS (ESI) m/z calcd for $C_{17}H_{25}NNaO_3$ [M + Na]⁺: 314.1727, found: 314.1731. HPLC: Chiralcel IA-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 95/5, flow = 0.5 mL/min, retention time 14.3 min (maj) and 16.6 min.

cyclopropylmethyl (28,58)-1-benzyl-5-hydroxypiperidine-2-carboxylate (2q): 25.8 mg, 89% yield,

17.8:1 *dr*, 96% *ee*, $[\alpha]_D^{25} = -58.6$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.20 (m, 5H), 4.04 – 3.92 (m, 2H), 3.84 (d, *J* = 13.6 Hz, 1H), 3.78 – 3.73 (m, 1H), 3.52 (d, *J* = 13.2 Hz, 1H), 3.22 (dd, *J* = 7.6, 4.0 Hz, 1H), 2.87 (dd, *J* = 11.2, 6.4 Hz, 1H), 2.65 (s, 1H), 2.44 (dd, *J* =

11.6, 3.2 Hz, 1H), 2.15 - 2.01 (m, 1H), 1.85 - 1.74 (m, 1H), 1.70 - 1.58 (m, 2H), 1.22 - 1.10 (m, 1H), 0.62 - 0.52 (m, 2H), 0.35 - 0.26 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.4, 138.0, 129.1, 128.3, 127.3, 69.3, 65.9, 63.1, 59.7, 55.7, 30.1, 25.5, 10.0, 3.43, 3.41. HRMS (ESI) m/z calcd for $C_{17}H_{23}NNaO_3$ [M + Na]⁺: 312.1570, found: 312.1572. HPLC: Chiralcel AD-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 95/5, flow = 0.7 mL/min, retention time 19.1 min (maj) and 36.1 min. **cyclopentylmethyl (2S,5S)-1-benzyl-5-hydroxypiperidine-2-carboxylate (2r):** 29.2 mg, 92% yield,

13.8:1 *dr*, 96% *ee*, $[\alpha]_D^{25} = -48.2$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 – 7.20 (m, 5H), 4.04 (d, *J* = 6.4 Hz, 2H), 3.83 (d, *J* = 13.6 Hz, 1H), 3.77 – 3.72 (m, 1H), 3.54 (d, *J* = 13.2 Hz, 1H), 3.22 (dd, *J* = 8.0, 3.6 Hz, 1H), 2.86 (dd, *J* = 11.6, 6.8 Hz, 1H), 2.48 – 2.44

(m, 2H), 2.25 (m, 1H), 2.13 – 2.01 (m, 1H), 1.83 – 1.80 (m, 3H), 1.68 – 1.52 (m, 6H), 1.31 – 1.22 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.4, 138.2, 129.0, 128.4, 127.3, 68.6, 66.1, 62.9, 59.7, 55.7, 38.7, 30.2, 29.6, 25.7, 25.5. HRMS (ESI) m/z calcd for C₁₉H₂₇NNaO₃ [M + Na]⁺: 340.1883, found: 340.1887. HPLC: Chiralcel AS-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 95/5, flow = 0.5 mL/min, retention time 20.0 min (maj) and 23.5 min.

(m, 2H), 2.16 - 2.00 (m, 1H), 1.87 - 1.53 (m, 9H), 1.33 - 1.12 (m, 3H), 1.04 - 0.95 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.4, 138.2, 129.0, 128.4, 127.3, 69.8, 66.0, 63.0, 59.7, 55.8, 37.3, 30.2, 29.9, 26.4, 25.8, 25.7. HRMS (ESI) m/z calcd for C₂₀H₂₉NNaO₃ [M + Na]⁺: 354.2040, found: 354.2035. HPLC: Chiralcel AS-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 95/5, flow = 0.5 mL/min, retention time 18.1 min (maj) and 21.2 min.

1.42 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.7, 144.2, 135.7, 132.2, 129.3, 128.7, 128.6, 128.4, 119.0, 111.1, 66.5, 66.1, 62.5, 59.3, 55.7, 30.0, 25.6. HRMS (ESI) m/z calcd for C₂₁H₂₂N₂NaO₃ [M + Na]⁺: 373.1523, found: 373.1521. HPLC: Chiralcel AD-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 90/10, flow = 0.7 mL/min, retention time 45.9 min (maj) and 52.4 min.

benzyl (2S,5S)-5-hydroxy-1-(4-(methoxycarbonyl)benzyl)piperidine-2-carboxylate (2u): 36.4 mg,

95% yield, 13.7:1 dr, 95% ee, $[\alpha]_D^{25} = -80.7$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 7.6 Hz, 2H), 7.35 – 7.26 (m, 7H), 5.24 – 5.10 (m, 2H), 3.89 (s, 3H), 3.85 (d, J = 14.0 Hz, 1H), 3.75 -3.73 (m, 1H), 3.56 (d, J = 14.0 Hz, 1H), 3.33 - 3.23 (m, 1H), 2.89 - 2.79(m, 1H), 2.47 (d, J = 11.2 Hz, 1H), 2.39 – 2.31 (m, 1H), 2.11 – 2.05 (m,

1H), 1.85 – 1.77 (m, 1H), 1.73 – 1.66 (m, 1H), 1.61 – 1.53 (m, 1H). ¹³C NMR (100 MHz, Chloroformd) 8 172.9, 167.1, 143.7, 135.8, 129.7, 129.2, 128.8, 128.7, 128.5, 128.4, 66.4, 66.1, 62.7, 59.4, 55.8, 52.1, 30.0, 25.6. HRMS (ESI) m/z calcd for C₂₂H₂₅NNaO₅ [M + Na]⁺: 406.1625, found: 406.1620. HPLC: Chiralcel IA-H column, 254 nm, 30 °C, n-hexane/i-propanol = 90/10, flow = 0.7 mL/min, retention time 26.3 min (maj) and 31.6 min.

benzyl (2S,5S)-5-hydroxy-1-(4-nitrobenzyl)piperidine-2-carboxylate (2v): 32.6 mg, 88% yield,

12.5:1 dr, 91% ee, $[\alpha]_{D}^{25} = -59.2$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (d, *J* = 8.4 Hz, 2H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.34 -7.33 (m, 5H), 5.22 - 5.13 (m, 2H), 3.91 (d, J = 14.4 Hz, 1H), 3.81 - 3.73 (m, 1H), 3.63 (d, J = 14.4 Hz, 1H), 3.32 t, J = 5.6 Hz, 1H), 2.84 (dd, J = 11.2, 6.4 Hz, 1H), 2.52 (dd, J = 10.8, 3.2 Hz, 1H), 2.25 (s, 1H), 2.18 – 2.07 (m, 1H),

1.92 – 1.79 (m, 1H), 1.79 – 1.69 (m, 1H), 1.61 – 1.52 (m, 1H). ¹³C NMR (100 MHz, Chloroform-d) δ 172.6, 147.4, 146.2, 135.7, 129.4, 128.8, 128.6, 128.5, 123.7, 66.6, 66.2, 62.5, 59.0, 55.8, 30.0, 25.7. HRMS (ESI) m/z calcd for C₂₀H₂₂N₂NaO₅ [M + Na]⁺: 393.1421, found: 393.1425. HPLC: Chiralcel AD-H column, 254 nm, 30 °C, n-hexane/i-propanol = 90/10, flow = 0.7 mL/min, retention time 53.0 min (maj) and 56.7 min.

benzyl (25,55)-5-hydroxy-1-(4-(trifluoromethyl)benzyl)piperidine-2-carboxylate (2w): 35.8 mg, 91%

HO

yield, 14.5:1 dr, 88% ee, $[\alpha]_D^{25} = -69.7$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-d) δ 7.53 (d, J = 8.0 Hz, 2H), 7.52 – 7.36 (m, 7H), 5.19 – 5.17 (m, 2H), 3.86 (d, *J* = 14.0 Hz, 1H), 3.76 – 3.74 (m, 1H), 3.56 (dd, J = 13.6, 2.4 Hz, 1H), 3.31 – 3.27 (m, 1H), 2.91 – 2.80 (m, 1H), 2.53 – 2.43 (m, 1H), 2.29 (s, 1H), 2.18 - 2.04 (m, 1H), 1.86 - 1.79 (m, 1H), 1.75 -1.66 (m, 1H), 1.63 – 1.54 (m, 1H). ¹³C NMR (100 MHz, Chloroform-d) δ

172.9, 142.5, 135.8, 129.6 (q, J = 32.1 Hz), 129.1, 128.8, 128.6, 128.5, 125.3 (q, J = 3.8 Hz), 124.3 (q, J = 270.3 Hz), 66.5, 66.1, 62.8, 59.2, 55.8, 30.1, 25.6. HRMS (ESI) m/z calcd for C₂₁H₂₂F₃NNaO₃ [M + Na]⁺: 416.1444, found: 416.1438. HPLC: Chiralcel AD-H column, 254 nm, 30 °C, n-hexane/i-propanol = 90/10, flow = 0.7 mL/min, retention time 10.8 min (maj) and 12.1 min.

benzyl (25,55)-5-hydroxy-1-(4-methylbenzyl)piperidine-2-carboxylate (2x): 30.9 mg, 91% yield, 16.5:1 dr, 97% ee, $[\alpha]_{D}^{25} = -51.7$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-d) & 7.34 - 7.30 (m, 5H), 7.17 - 7.02 (m, 4H), 5.17 (s, 2H), ℃O₂Bn 3.78 – 3.72 (m, 2H), 3.47 (dd, J = 12.8, 2.0 Hz, 1H), 3.25 – 3.21 (m, 1H), 2.91 - 2.82 (m, 1H), 2.54 - 2.39 (m, 2H), 2.31 (s, 3H), 2.09 - 2.02 (m, 1H), 1.82 -1.74 (m, 1H), 1.67 – 1.53 (m, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ 173.1,

136.9, 135.9, 134.7, 129.1, 129.0, 128.7, 128.4 (2C), 66.3, 65.9, 62.8, 59.4, 55.7, 30.1, 25.5, 21.2. HRMS (ESI) m/z calcd for $C_{21}H_{25}NNaO_3$ [M + Na]⁺: 362.1727, found: 362.1733. HPLC: Chiralcel AD-H column, 254 nm, 30 °C, n-hexane/i-propanol = 90/10, flow = 0.7 mL/min, retention time 15.0 min (maj) and 20.9 min.

15.7:1 *dr*, 91% *ee*, $[\alpha]_D^{25} = -71.9$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.23 (m, 7H), 7.12 (d, *J* = 8.0 Hz, 2H), 5.16 (s, 2H), 3.76 – 3.73 (m, 2H), 3.45 (d, *J* = 13.6 Hz, 1H), 3.24 (t, *J* = 6.0 Hz, 1H), 2.84 (dd, *J* = 11.2, 6.4 Hz, 1H), 2.44 (d, *J* = 11.6 Hz, 1H), 2.36 (s, 1H), 2.14 – 1.99 (m, 1H), 1.83 – 1.76 (m, 1H), 1.74 – 1.52 (m, 2H). ¹³C NMR (100 MHz, 125 -

Chloroform-*d*) δ 172.9, 137.1, 135.8, 131.5, 130.7, 128.7, 128.54, 128.47, 121.2, 66.5, 66.0, 62.7, 59.0, 55.7, 30.0, 25.5. HRMS (ESI) m/z calcd for C₂₀H₂₃BrNO₃ [M + H]⁺: 404.0856, found: 404.0853. HPLC: Chiralcel AD-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 90/10, flow = 0.7 mL/min, retention time 20.9 min (maj) and 24.5 min.

benzyl (2S,5S)-1-(4-chlorobenzyl)-5-hydroxypiperidine-2-carboxylate (2z): 33.5 mg, 93% yield,

15.4:1 *dr*, 93% *ee*, $[\alpha]_D^{25} = -70.1$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.24 (m, 5H), 7.26 – 7.14 (m, 4H), 5.16 (s, 2H), 3.80 – 3.68 (m, 2H), 3.48 (dd, *J* = 13.6, 2.4 Hz, 1H), 3.25 (t, *J* = 6.0 Hz, 1H), 2.84 (dd, *J* = 11.6, 6.4 Hz, 1H), 2.51 – 2.36 (m, 2H), 2.11 – 2.01 (m, 1H), 1.83 – 1.76 (m, 1H), 1.70 – 1.66 (m, 1H), 1.59 – 1.54 (m, 1H). ¹³C NMR (100 MHz,

Chloroform-*d*) δ 172.9, 136.6, 135.8, 133.0, 130.3, 128.7, 128.52 (2C), 128.45, 66.4, 66.0, 62.6, 59.0, 55.7, 30.1, 25.6. HRMS (ESI) m/z calcd for C₂₀H₂₂ClNNaO₃ [M + Na]⁺: 382.1180, found: 382.1189. HPLC: Chiralcel AD-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 90/10, flow = 0.7 mL/min, retention time 19.1 min (maj) and 22.7 min.

benzyl (2S,5S)-1-(2-bromobenzyl)-5-hydroxypiperidine-2-carboxylate (2aa): 34.4 mg, 85% yield,

11.9:1 *dr*, 90% *ee*, $[\alpha]_D^{20} = -57.7$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (d, *J* = 8.0 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.28 – 7.26 (m, 5H), 7.21 – 7.14 (m, 1H), 7.04 – 7.00 (m, 1H), 5.15 – 5.05 (m, 2H), 3.76 (d, *J* = 14.4 Hz, 1H), 3.71 – 3.59 (m, 2H), 3.35 – 3.31 (m, 1H), 2.80 (t, *J* = 10.0 Hz, 1H), 2.53 – 2.49 (m, 1H), 2.12 – 1.93 (m, 2H), 1.79 – 1.64 (m, 2H), 1.49 – 1.42 (m, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 173.0, 137.8, 135.9, 132.9, 130.8, 128.7, 128.7, 128.5, 128.4, 127.4, 124.7, 66.50, 66.46, 62.6, 59.1, 55.4, 30.2, 25.8. HRMS (ESI) m/z calcd for C₂₀H₂₃BrNO₃ [M + H]⁺: 404.0856, found: 404.0854. HPLC: Chiralcel AD-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 90/10, flow = 0.7 mL/min, retention time 18.9 min (maj) and 24.1 min.

benzyl (2S,5S)-1-(3,5-dimethylbenzyl)-5-hydroxypiperidine-2-carboxylate (2ab): 32.2 mg, 91%

yield, 13.6:1 *dr*, 94% *ee*, $[\alpha]_D^{25} = -65.1$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 – 7.35 (m, 5H), 6.93 – 6.83 (m, 3H), 5.19 (s, 2H), 3.77 –3.73 (m, 2H), 3.42 (d, *J* = 13.2 Hz, 1H), 2.91 – 2.88 (m, 1H), 2.94 – 2.84 (m, 1H), 243 – 2.27 (m, 2H), 2.27 (s, 6H), 2.11 – 2.06 (m, 1H), 1.88 – 1.75 (m, 1H), 1.64 (q, *J* = 6.3, 5.6 Hz, 2H). ¹³C NMR (100 MHz, Chloroform*d*) δ 173.2, 137.8, 137.7, 135.9, 129.0, 128.7, 128.5 (2C), 127.0, 66.4, 65.9,

63.2, 59.7, 55.9, 30.2, 25.5, 21.4. HRMS (ESI) m/z calcd for $C_{22}H_{27}NNaO_3 [M + Na]^+$: 376.1883, found: 376.1878. HPLC: Chiralcel IA-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 95/5, flow = 0.5 mL/min, retention time 21.3 min (maj) and 29.7 min.

yield, >20:1 *dr*, 95% *ee*, $[\alpha]_D^{25} = -49.1$ (c = 1.0, CHCl₃), colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 – 7.17 (m, 5H), 6.36 (s, 2H), 6.26 (s, 1H), 5.08 (s, 2H), 3.73 – 3.60 (m, 8H), 3.39 (dd, *J* = 13.2, 2.0 Hz, 1H), 3.25 – 3.15 (m, 1H), 2.84 – 2.74 (m, 1H), 2.40 – 2.38 (m, 2H), 2.06 – 1.96 (m, 1H), 1.78 – 1.67 (m, 1H), 1.65 – 1.44 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.1, 160.8, 140.6, 135.9, 128.7, 128.42, 128.36, 106.7,

99.3, 66.4, 66.1, 62.6, 59.8, 55.7, 55.3, 30.1, 25.6. HRMS (ESI) m/z calcd for C₂₂H₂₇NNaO₅ [M + Na]⁺: 408.1781, found: 408.1790 HPLC: Chiralcel AD-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 90/10, flow = 0.7 mL/min, retention time 15.9 min (maj) and 27.7 min.

2.4 Result of deuterium labeling experiments

Following standard hydrogenation procedure, deuterium labeling experiment was conducted with specific modification.

2.5 General procedure for asymmetric hydrogenation under continuous flow

All process parts, including fittings, tubes, valves and junctions that hold pressure were purchased from SHENZHEN INSFTECH CO,. Ltd. The specification of the reaction coil is 0.5 ml/m. The information of other main components is summarized in Table S1.

Name	Information
Pump	Sanotac high pressure HPLC pump AP0030 (0-10 mL/min; 20 MPa)
MFC	SHENZHEN INSFTECH CO,. Ltd. FCM-1050 (0-500 sccm,10 MPa)
BPR	SHENZHEN INSFTECH CO,. Ltd. FAV-1500B (0-500 mL/min, 10 MPa)
Mixer	Shanghai X-tec Fluid technology CO,. Ltd. SS-CUT-K1FF

 Table S1 Components details of reactor system

A mixture of $[Ir(COD)Cl]_2$ (1.0 mol%) and Zhaophos (2.0 mol%) was dissolved in a degassed solvent DCE at argon atmosphere, and the resulting solution was allowed to be stirred at room temperature for 30.0 min. Then, 2-methyl ester-5-hydroxypyridinium salt **1m** (1.0 equiv.) and Et₃N (1.0 equiv.) were added. The process was washed by DCE at a liquid flow rate of 5 mL/min and gas flow rate of 10.0 sccm (avoid back flow of liquid to gas flow meter) for 10.0 minutes and then pressurized the BPR. After the reactor was pressurized to 8.0 MPa, the aforehand reaction medium was pumped instead of solvent. Liquid flow rate was set at 0.5 mL/min and gas flow rate was keeping 40.0 sccm. The liquid holding capacity of the reaction coil can be adjusted according to the needs. When reaction finished, system was depressurized by releasing the gas slowly, and washed the whole system by pumping ethanol for 10.0 minutes. The reaction mixture was filtrated and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 100:1) to give the desired product **2m** (95% yield, 13.1:1 *dr*, 93% *ee*) as a pale-yellow oil.

Figure S1 AH of 1m under continuous flow.

Figure S2 Set-up for asymmetric hydrogenation under continuous flow in a fix-bed.

Figure S3 Set-up for asymmetric hydrogenation under continuous flow in a coil.

2.6 General Procedures for Products Transformations

A solution of the methyl ester **2m** (100.0 mg, 0.40 mmol, 1.0 equiv.) in THF (2.5 mL) was added dropwise to a stirred suspension of LiAlH₄ (22.9 mg, 0.60 mmol, 1.5 equiv.) in THF (2.5 mL) at 0 °C under an argon atmosphere. The resulting mixture was stirred at room temperature for 8 h and then 2 M NaOH(aq) (1 µL per 1 mg of LiAlH₄), Et₂O (5 mL) and Na₂SO₄ were carefully added. The solids were removed by filtration through Celite and evaporated under reduced pressure to give the crude product. The residue was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 50:1) to give compound **3** (80.8 mg, 91% yield, 96% *ee*) as a pale-yellow oil. $[\alpha]_D^{25} = -35.1$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.22 (m, 5H), 4.11 (d, *J* = 13.6 Hz, 1H), 3.89 – 3.85 (m, 2H), 3.64 (dd, *J* = 11.2, 4.4 Hz, 1H), 3.44 (d, *J* = 13.2 Hz, 1H), 2.86 (dd, *J* = 12.4, 5.2 Hz, 1H), 2.51 – 2.46 (m, 1H), 2.38 (dd, *J* = 12.4, 2.4 Hz, 1H), 2.30 (s, 2H), 1.99 – 1.89 (m, 1H), 1.82 – 1.75 (m, 1H), 1.73 – 1.58 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 138.6, 128.9, 128.6, 127.4, 64.7, 62.8, 61.3, 58.2, 56.7, 30.5, 23.1. HRMS (ESI) m/z calcd for C₁₃H₂₀NO₂ [M + H]⁺: 222.1489, found: 222.1492. HPLC: Chiralcel OJ-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 90/10, flow = 0.5 mL/min, retention time 28.5 min and 30.9 min (maj).

To a solution of the methyl ester **2m** (100.0 mg, 0.4 mmol, 1.0 equiv.) in anhydrous THF (5.0 mL) was added methyl magnesium bromide (1.0 M in THF, 1.2 ml, 1.2 mmol, 3.0 equiv.) dropwise under argon atmosphere at 0 °C. The resulting mixture was stirred at room temperature for 7 h and then quenched with aqueous NH₄Cl solution, extracted with ethyl acetate. Organic phases were combined and dried over

anhydrous Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The residue was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 50:1) to give compound **4** (84.8 mg, 85% yield, 95% *ee*) as a pale-yellow oil. $[\alpha]_D^{25} = -23.4$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.20 (m, 5H), 4.13 (d, *J* = 13.6 Hz, 1H), 3.95 – 3.90 (m, 1H), 3.69 (d, *J* = 13.2 Hz, 1H), 2.70 – 2.61 (m, 2H), 2.47 (t, *J* = 6.0 Hz, 1H), 1.82 – 1.68 (m, 4H), 1.29 (s, 3H), 1.21 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 139.7, 128.7, 128.6, 127.3, 73.3, 67.5, 63.2, 61.2, 53.6, 30.9, 29.6, 26.0, 20.4. HRMS (ESI) m/z calcd for C₁₅H₂₄NO₂ [M + H]⁺: 250.1802, found: 250.1804. HPLC: Chiralcel OD-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 90/10, flow = 0.5 mL/min, retention time 16.6 min and 20.0 min (maj).

To a stirred solution of the methyl ester **2m** (100.0 mg, 0.4 mmol, 1.0 equiv.) in dry DCM (5.0 mL) was added TMSOTf (144.8 μ L, 0.8 mmol, 2.0 equiv.). The resulting mixture was stirred overnight at room temperature, then quenched with aqueous NH₄Cl solution, extracted with ethyl acetate. Organic phases were combined and dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The residue was purified by silica gel flash column chromatography (petroleum ether/ethyl acetate = 50:1) to give compound **5** (76.5 mg, 88% yield, 96% *ee*) as a pale-yellow oil. $[\alpha]_D^{25} = -21.7$ (c = 0.3, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.24 (m, 5H), 4.70 – 4.67 (m, 1H), 3.78 (d, *J* = 12.8 Hz, 1H), 3.61 (d, *J* = 13.2 Hz, 1H), 3.32 – 3.30 (m, 1H), 3.16 (dd, *J* = 11.6, 1.2 Hz, 1H), 2.70 – 2.65 (m, 1H), 2.25 – 2.14 (m, 1H), 1.98 – 1.86 (m, 2H), 1.79 – 1.69 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.9, 137.8, 129.0, 128.6, 127.6, 74.7, 62.1, 56.0, 54.7, 24.7, 23.5. HRMS (ESI) m/z calcd for C₁₃H₁₆NO₂ [M + H]⁺: 218.1176, found: 218.1175. HPLC: Chiralcel IC-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 90/10, flow = 0.5 mL/min, retention time 13.7 min and 15.2 min (maj).

An oven-dried vial equipped with a stir bar was charged with the methyl ester **2m** (100.0 mg, 0.4 mmol, 1.0 equiv.), aniline (45.6 µL, 0.5 mmol, 1.2 equiv.) placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles. Toluene (5.0 mL) and LiHMDS (1.0 M in THF, 0.8 mL, 0.8 mmol, 2.0 equiv.) were sequentially added with vigorous stirring at room temperature, and the reaction mixture was stirred at room temperature overnight. The reaction mixture was quenched with aqueous NH₄Cl solution, diluted with ethyl acetate (5.0 mL), the organic layer was washed with water, brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 100:1) to give compound **6** (99.3 mg, 80% yield, 95% *ee*) as a white solid, m.p. = 154.6 – 155.9 °C. [α]_D²⁵ = -55.1 (c = 0.5, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.97 (s, 1H), 7.56 – 7.54 (m, 2H), 7.34 – 7.21 (m, 7H), 7.10 – 7.06 (m, 1H), 3.98 – 3.88 (m, 2H), 3.36 (d, *J* = 12.8, 2.8 Hz, 1H), 2.21 – 2.11 (m, 1H), 1.94 – 1.88 (m, 1H), 1.81 – 1.70 (m, 1H), 1.67 – 1.60 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.0, 137.9, 137.3, 129.1, 128.9, 128.7, 127.7, 124.3, 119.8, 66.8, 64.3, 60.5, 56.4, 30.2, 23.6. HRMS (ESI) m/z calcd for

 $C_{19}H_{23}N_2O_2 [M + H]^+$: 311.1754, found: 311.1759. HPLC: Chiralcel OD-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 90/10, flow = 0. 5 mL/min, retention time 18.5 min and 19.7 min (maj).

Under nitrogen atmosphere, to a stirred solution of **2m** (100.0 mg, 0.4 mmol, 1.0 equiv.) in dichloromethane (5.0 mL) was added (*N*,*N*-diethylamino)sulfurtrifluoride (95.1 µL, 0.72 mmol, 1.8 equiv.) at -78 °C, and the resulted mixture was slowly warmed to rt. Then, the reaction was quenched with saturated sodium bicarbonate solution and extracted with ethyl acetate. Organic phases were combined and dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The residue was purified by silica gel flash column chromatography (petroleum ether/ethyl acetate = 30:1) to give compound 7 (61.3 mg, 61% yield, 97% *ee*) as a pale-yellow oil. $[\alpha]_D^{25} = -55.9$ (c = 0.5, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.25 (m, 5H), 4.67 – 4.50 (m, 1H), 3.84 (d, *J* = 13.6 Hz, 1H), 3.74 – 3.70 (m, 4H), 3.36 – 3.34 (m, 1H), 3.09 – 3.02 (m, 1H), 2.82 – 2.67 (m, 1H), 2.17 – 2.10 (m, 1H), 1.96 – 1.85 (m, 1H), 11.85 – 1.75 (m, 1H), 1.75 – 1.63 (m, 1H). ¹³C NMR (100 MHz, Methanol-*d*₄) δ 173.3, 138.2, 128.9, 128.5, 127.4, 87.8 (d, *J* = 171.8 Hz), 60.7, 59.7, 52.2 (d, *J* = 24.7 Hz), 51.6, 27.8 (d, *J* = 19.5 Hz), 25.5 (d, *J* = 8.7 Hz). HRMS (ESI) m/z calcd for C₁₄H₁₉FNO₂ [M + H]⁺: 252.1394, found: 252.1398. HPLC: Chiralcel AD-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 90/10, flow = 0.5 mL/min, retention time 14.0 min and 15.4 min (maj).

To a stirred solution of the methyl ester **2m** (100.0 mg, 0.4 mmol, 1.0 equiv.) in MeOH (5.0 mL) were added 10% Pd/C (10.0 mg, 10.0 wt%). The resulting mixture was stirred overnight at room temperature under H2 (1 atm, balloon) and then filtered, washed with MeOH and concentrated under reduced pressure. The crude was dissolved in DMSO, o-fluoronitrobenzene (21.1 µL, 0.20 mmol, 0.5 equiv.) was added. The mixture was heated to 110 °C overnight. After cooled to room temperature, The mixture was extracted with ethyl acetate, the combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The resulting residue was next dissolved in methanol (5.0 mL), zinc powder (392.3 mg, 6.0 mmol, 15.0 equiv.) and ammonium chloride (320.9 mg, 6.0 mmol, 15.0 equiv.) was added to this solution, and the mixture was stirred at room temperature overnight. The mixture solution was then filtered, concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 100:1) to give compound 8 (58.5 mg, 67% yield over 3 steps, 95% ee) as a white solid, m.p. = 198.3 - 200.4 °C. $[\alpha]_{D}^{25} = -12.3$ (c = 0.1, CHCl₃). ¹H NMR (400 MHz, Methanol-d₄) δ 6.98 – 6.74 (m, 4H), 4.12 – 4.09 (m, 1H), 3.80 – 3.75 (m, 1H), 3.45 – 3.38 (m, 1H), 2.80 (dd, J = 12.4, 2.0 Hz, 1H), 2.15 – 2.07 (m, 2H), 2.01 – 1.94 (m, 1H), 1.78 -1.68 (m, 1H). ¹³C NMR (100 MHz, Methanol-d₄) δ 170.8, 137.9, 128.3, 124.9, 120.7, 116.2, 113.4, 65.0, 59.6, 53.1, 30.5, 22.4. HRMS (ESI) m/z calcd for $C_{12}H_{15}N_2O_2$ [M + H]⁺: 219.1128, found: 219.1129. HPLC: Chiralcel OD-H column, 254 nm, 30 °C, n-hexane/i-propanol = 90/10, flow = 0.7 mL/min, retention time 14.9 min and 16.6 min (maj).

To a solution of compound **2m** (100.0 mg, 0.4 mmol, 1.0 equiv.) and triphenylphosphine (161.8 mg, 0.8 mmol, 2.0 equiv.) in THF (5.0 mL) were added DIAD (158.6 μ L, 0.8 mmol, 2.0 equiv.) and DPPA (103.4 μ L, 0.48 mmol, 1.2 equiv.) at 0 °C. The reaction mixture was stirred for 7 h at room temperature and extracted with ethyl acetate. Organic phases were combined and dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The residue was purified by silica gel flash column chromatography (petroleum ether/ethyl acetate = 50:1) to give compound **9** as a yellow oil. To a solution of CuSO₄·5H₂O (1.0 mg, 4.0 μ mol, 1.0 mol%) and sodium ascorbate (1.6 mg, 8.0 μ mol, 2.0 mol%) in *t*-BuOH/H₂O (1:1 by v/v, 6.0 mL) was added a mixture of phenylethyne (43.9 mg, 0.4 mmol, 1.0 equiv.) and **9** (109.7 mg, 0.4 mmol, 1.0 equiv.) at room temperature. The resultant mixture

was stirred continuously overnight. Then CH₂Cl₂ was added to dissolve the crude product. The organic layer was washed with H₂O and brine, and dried over anhydrous Na₂SO₄. Removal of the solvent yielded a residue, which was purified by silica gel flash column chromatography (petroleum ether/ethyl acetate = 40:1) to give compound **10** (106.9 mg, 71% yield, 96% *ee*) as a white solid, m.p. = 178.4 – 180.2 °C. $[\alpha]_D^{25} = 93.73$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 (s, 1H), 7.80 (d, *J* = 8.0 Hz, 2H), 7.45 – 7.23 (m, 8H), 4.79 – 4.73 (m, 1H), 3.94 – 3.66 (m, 5H), 3.53 (t, *J* = 4.4 Hz, 1H), 3.37 (dd, *J* = 116, 9.2 Hz, 1H), 2.98 (dd, *J* = 11.6, 4.4 Hz, 1H), 2.20 – 1.93 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.2, 147.4, 138.0, 130.9, 128.9 (2C), 128.6, 128.1, 127.6, 125.7, 118.6, 60.4, 59.8, 56.8, 52.3, 51.6, 27.9, 26.5. HRMS (ESI) m/z calcd for C₂₂H₂₅N₄O₂ [M + H]⁺: 377.1972, found: 377.1966. HPLC: Chiralcel IA-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 90/10, flow = 0.5 mL/min, retention time 18.6 min (maj) and 25.2 min.

To a solution of **2m** (100.0 mg, 0.4 mmol, 1.0 equiv.) and (S)-ibuprofen (99.0 mg, 0.48 mmol, 1.2 equiv.) in CH₂Cl₂ (7.0 mL) were added DMAP (4.9 mg, 0.04 mmol, 10.0% mmol) and DIC (74.3 µL, 0.48 mmol, 1.2 equiv.). The resulting suspension was stirred at rt overnight. After adding H₂O, the reaction mixture was extracted with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure to give the residue, which was purified by flash column chromatography (petroleum ether/ethyl acetate = 50:1) to afford compound **11** (106.9 mg, 86% yield, >20:1 *dr*, 95% *ee*) as a pale-yellow oil. $[\alpha]_D^{25} = -1.5$ (c = 2.0, CHCl₃). ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.25 – 7.04 (m, 9H), 4.80 – 4.70 (m, 1H), 3.75 – 3.57 (m, 6H), 3.33 – 3.29 (m, 1H), 2.84 (dd, *J* = 11.2, 8.4 Hz, 1H), 2.53 (dd, *J* = 11.6, 4.4 Hz, 1H), 2.43 (d, *J* = 7.2 Hz, 2H), 2.03 – 1.97 (m, 1H), 1.88 – 1.72 (m, 3H), 1.55 – 1.46 (m, 1H), 1.40 (d, *J* = 7.2 Hz, 3H), 0.87 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (100 MHz, Methanol-*d*₄) δ 175.6, 174.5, 139.5, 139.2, 130.3, 129.7, 129.3, 128.20, 128.17, 70.8, 61.5, 60.4, 52.3, 51.8, 46.4, 46.0, 31.4, 27.6, 26.8, 22.8, 18.9. HRMS (ESI) m/z calcd for C₂₇H₃₆NO₄ [M + H]⁺: 438.2639, found: 438.2644. HPLC: Chiralcel OD-H column, 254 nm, 30 °C, *n*-hexane/*i*-propanol = 90/10, flow = 0.5 mL/min, retention time 24.4 min (maj) and 31.9 min.

An oven-dried vial equipped with a stir bar was charged with the methyl ester **2m** (100.0 mg, 0.4 mmol, 1.0 equiv.), sulfamethoxazole (121.6 mg, 0.48 mmol, 1.2 equiv.) placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles. Toluene (5.0 mL) and LiHMDS (1.0 M in THF, 0.8 mL, 0.8 mmol, 2.0 equiv.) were sequentially added with vigorous stirring at room temperature, and the reaction mixture was stirred at room temperature overnight. The reaction mixture was quenched with aqueous NH₄Cl solution, diluted with ethyl acetate (5.0 mL), the organic layer was washed with water, brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (petroleum ether/ethyl acetate = 20:1) to give compound 12 (135.5 mg, 72% yield, 96% *ee*) as a yellow oil. $[\alpha]_D^{25} = -30.51$ (c = 0.3, CHCl₃). ¹H NMR (400 MHz, Methanol-d₄) δ 7.88 – 7.78 (m, 4H), 7.37 – 7.21 (m, 5H), 6.13 (s, 1H), 3.90 – 3.86 (m, 1H), 3.84 - 3.81 (m, 1H), 3.34 - 3.32 (m, 1H), 3.01 (dd, J = 10.0, 3.6 Hz, 1H), 2.94 (dd, J = 12.4, 4.4 Hz, 1H), 2.30 - 2.26 (m, 4H), 2.13 - 2.02 (m, 1H), 1.88 - 1.71 (m, 2H), 1.69 - 1.58 (m, 1H). ¹³C NMR (100 MHz, Methanol-d₄) δ 175.4, 172.1, 159.3, 144.3, 138.4, 135.5, 130.3, 129.5, 129.4, 128.4, 120.4, 96.5, 68.7, 65.5, 61.6, 57.0, 30.6, 25.3, 12.3. HRMS (ESI) m/z calcd for C₂₃H₂₇N₄O₅S [M + H]⁺: 471.1697, found: 471.1695. HPLC: Chiralcel AD-H column, 254 nm, 30 °C, n-hexane/i-propanol = 95/5, flow = 0.7 mL/min, retention time 14.6 min (maj) and 21.4 min.

To a stirred solution of the methyl ester **2m** (100.0 mg, 0.4 mmol, 1.0 equiv.) and Boc₂O (104.8 mg, 0.48 mmol, 1.2 equiv.) in MeOH (5.0 mL) were added 10% Pd/C (10.0 mg, 10.0 wt%). The resulting mixture was stirred overnight at room temperature under H₂ (50 psi) and then filtered, washed with MeOH and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (petroleum ether/ethyl acetate = 10:1) to give compound **13** (93.3 mg, 90% yield) as a pale-yellow oil. $[\alpha]_D^{20} = -19.7$ (c = 1.0, MeOH) [Lit.² $[\alpha]_D^{20} = -17.7$ (c = 1.3, MeOH), Lit.³ $[\alpha]_D^{20} = -20.4$ (c = 1.0, MeOH)].

To a stirred solution of the methyl ester **2m** (100.0 mg, 0.4 mmol, 1.0 equiv.) in MeOH (5.0 mL) were added 10% Pd/C (10.0 mg, 10.0 wt%). The resulting mixture was stirred for 6 h at room temperature under H₂ (1 atm, balloon) and then filtered, washed with MeOH and concentrated under reduced pressure. The crude was dissolved in DCM, 2-Nitrobenzenesulfonyl chloride and Et₃N were added. The resultant mixture was stirred for 3 h, then extracted with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure to give the residue, which was purified by flash column chromatography (petroleum ether/ethyl acetate = 50:1) to afford compound **14** as a yellow oil. ¹H NMR (400 MHz, Methanol-*d*₄) δ 8.10 – 8.04 (m, 1H), 7.84 – 7.73 (m, 3H), 4.69 – 4.67 (m, 1H), 3.94 – 3.89 (m, 1H), 3.59 (s, 3H), 3.58 – 3.50 (m, 1H), 2.99 (dd, *J* = 12.4, 10.8 Hz, 1H), 2.33 – 2.25 (m, 1H), 1.98 –

 $1.80 \text{ (m, 2H)}, 1.23 - 1.10 \text{ (m, 1H)}. {}^{13}\text{C NMR} (100 \text{ MHz}, \text{Methanol-}d_4) \\ \delta 171.9, 149.1, 135.3, 133.8, 133.1, 131.7, 125.4, 67.1, 56.2, 52.8, 50.0, 30.6, 27.3. \text{ HRMS (ESI) m/z calcd for } C_{13}H_{17}N_2O_7S \text{ [M + H]}^+: 345.0751, \text{ found: } 345.0755.$

To a stirred solution of the methyl ester 14 (137.7 mg, 0.4 mmol, 1.0 equiv.) in dry DCM (6.0 mL) was added TMSOTf (144.8 μ L, 0.8 mmol, 2.0 equiv.). The resulting mixture was stirred overnight at room temperature, then quenched with aqueous NH₄Cl solution, extracted with ethyl acetate. Organic phases were combined and dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The residue was purified by silica gel flash column chromatography (petroleum ether/ethyl acetate = 50:1) to give compound 15 (85.2 mg, 68% yield over 2 steps) as a white crystal, m.p. = 130.6 – 132.5 °C.

3. References

1. W.-X. Huang, C.-B. Yu, Y. Ji, L.-J. Liu, Y.-G. Zhou, ACS Catal. 2016, 6, 2368–2371.

2. Z. Edoo, L. Iannazzo, F. Compain, I. Li de la Sierra Gallay, H. van Tilbeurgh, M. Fonvielle, F. Bouchet,

E. Le Run, J. L. Mainardi, M. Arthur, M. Etheve-Quelquejeu, J. E. Hugonnet, *Chem. Eur. J.* 2018, 24, 8081–8086.

3. Z. Yang, Y. Chen, L. Wan, X. Cen, P. Tang, F. Chen, Chem. Commun. 2022, 58, 10869–10872.

4. NMR Spectra

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound S1a

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound S1a

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound S1b

¹³C-NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound S1b

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound S1c

¹³C-NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound S1c

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound S1d

¹³C-NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound S1d

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound S1e

¹³C-NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound S1e

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound S1f

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound S1f

¹H-NMR Spectrum (400 MHz, DMSO-d₆) of Compound S1g

¹³C-NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound S1g

¹H-NMR Spectrum (400 MHz, DMSO-d₆) of Compound S1h

¹³C-NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound S1h

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound S1i

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound S1i

¹H-NMR Spectrum (400 MHz, DMSO-d₆) of Compound S1j

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound S1j

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound S1k

¹³C-NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound S1k

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound S11

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound S11

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound S1n

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound S1n

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound S10

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound S10

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound S1p

¹³C-NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound S1p

¹H-NMR Spectrum (400 MHz, DMSO-d₆) of Compound S1q

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound S1q

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound S1r

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound S1r

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound S1s

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound S1s

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1a

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1a

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1b

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1b

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1c

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1c

¹H-NMR Spectrum (400 MHz, DMSO-d₆) of Compound 1d

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1d

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1e

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1e

¹H-NMR Spectrum (400 MHz, DMSO-d₆) of Compound 1f

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1f

¹H-NMR Spectrum (400 MHz, DMSO-d₆) of Compound 1g

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1g

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1h

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1h

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1i

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1i

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1j

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1j

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1k

¹³C-NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound 1k

¹H-NMR Spectrum (400 MHz, DMSO-d₆) of Compound 11

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 11

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1m

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1m

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1n

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1n

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 10

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 10

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1p

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1p

¹H-NMR Spectrum (400 MHz, DMSO-d₆) of Compound 1q

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1q

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1r

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1r

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1s

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1s

¹H-NMR Spectrum (400 MHz, DMSO-d₆) of Compound 1t

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1t

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1u

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1u

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1v

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1v

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1w

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1w

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1x

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1x

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1y

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1y

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1z

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1z

¹H-NMR Spectrum (400 MHz, DMSO-d₆) of Compound 1aa

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1aa

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1ab

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1ab

¹H-NMR Spectrum (400 MHz, DMSO-*d*₆) of Compound 1ac

¹³C-NMR Spectrum (100 MHz, DMSO-d₆) of Compound 1ac

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2a

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2a

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2b

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2b

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2c

¹³C-NMR Spectrum (100 MHz, Chloroform-*d*) of Compound 2c

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound 2d

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2d

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2e

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2e

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2f

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2f

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2g

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2g

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2h

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2h

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound 2i

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2i

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2j

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2j

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound 2k

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2k

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound 21

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 21

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2m

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2m

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2n

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2n

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 20

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 20

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound 2p

¹³C-NMR Spectrum (100 MHz, Chloroform-*d*) of Compound 2p

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2q

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2q

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2r

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2r

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2s

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2s

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2t

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2t

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound 2u

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2u

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2v

¹³C-NMR Spectrum (100 MHz, Chloroform-*d*) of Compound 2v

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2w

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2w

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2x

¹³C-NMR Spectrum (100 MHz, Chloroform-*d*) of Compound 2x

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2y

¹³C-NMR Spectrum (100 MHz, Chloroform-*d*) of Compound 2y

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2z

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2z

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2aa

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2aa

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 2ab

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 2ab

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound 2ac

¹³C-NMR Spectrum (100 MHz, Chloroform-*d*) of Compound 2ac

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 3

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 3

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 4

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 4

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 5

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 5

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 6

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 6

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 7

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 7

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 8

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 8

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 10

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 10

¹H-NMR Spectrum (400 MHz, Chloroform-d) of Compound 11

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 11

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound 12

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 12

¹H-NMR Spectrum (400 MHz, Chloroform-*d*) of Compound 14

¹³C-NMR Spectrum (100 MHz, Chloroform-d) of Compound 14

5. HPLC Spectra

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
10.910	MM m	0.24	554.22	35.01	5.25
11.792	MM m	0.27	560.83	31.93	5.32
12.816	MM m	0.30	4703.55	237.69	44.59
16.009	MM m	0.37	4729.33	194.75	44.84

5.85

2.88

0.31

MM m

15.665

53.078	MM m	1.36	1776.60	15.37	9.88
59.035	MM m	1.38	1870.11	16.11	10.40
70.892	MM m	1.55	7210.49	54.60	40.10
91.322	MM m	1.98	7126.14	42.54	39.63

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
15.601	MM m	0.46	1253.46	42.28	12.87
17.020	MM m	0.50	1259.55	39.24	12.94
18.560	MM m	0.52	3659.21	109.94	37.59
23.214	MM m	0.63	3563.59	89.07	36.60

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
15.873	MM m	0.49	205.99	6.24	2.77
17.325	MM m	0.44	246.85	9.00	3.32
18.783	MM m	0.51	6772.57	208.95	91.06
23.668	MM m	0.56	211.68	5.71	2.85

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
26.057	MM m	0.46	1524.28	50.05	14.70
28.383	MM m	0.59	1577.53	40.43	15.22
31.259	MM m	0.66	3640.61	83.21	35.12
41.706	MM m	0.86	3624.36	61.79	34.96

253.68

282.51

4.78

91.52

1.72

0.70

0.62

30.941

41.860

MM m

MM m

1	1	O
Т	т	C

93.29

40.18

1.35

66.651

MM m

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
25.870	MM m	0.61	2468.37	57.24	34.49
27.789	MM m	0.59	2501.64	61.76	34.95
32.809	MM m	0.68	1094.38	20.66	15.29
38.906	MM m	0.71	1093.31	18.36	15.27

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
25.945	MM m	0.68	2248.26	46.36	91.99
28.000	MM m	0.36	34.91	1.14	1.43
32.997	MM m	0.57	115.18	2.43	4.71
39.372	MM m	0.60	45.68	0.90	1.87

Ret Time [min] Type	Width [min]	Area [mAU * s]	Height [mAU]	Area%	
15.409	MM m	0.30	2227.17	113.65	9.63	
16.392	MM m	0.33	2271.30	106.36	9.82	
17.561	MM m	0.40	9284.10	352.86	40.14	
24.615	MM m	0.62	9345.55	230.59	40.41	
						1

15 15 5 16 16 5 17 17 5 18 18 5 19 19 5 20 20 5 21 21 5 22 22 5 23 23 5 24 24 5 25 25 5 26 26 5 27 27 5 28 28 5 29 29 5 30 时间 [min]

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
16.897	MM m	0.32	491.64	23.78	11.68
19.944	MM m	0.39	497.01	20.37	11.81
22.539	MM m	0.43	1608.13	57.35	38.21
24.358	MM m	0.47	1612.10	52.82	38.30

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
16.883	MM m	0.34	199.26	9.22	3.05
19.933	MM m	0.40	492.97	19.43	7.56
22.386	MM m	0.47	5641.28	184.44	86.47
24.404	MM m	0.46	190.58	6.18	2.92

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
9.889	MM m	0.15	187.35	18.72	6.23
11.006	MM m	0.20	191.46	14.61	6.37
11.945	MM m	0.24	1304.70	84.03	43.40
14.256	MM m	0.29	1322.61	69.06	44.00

 - 1. D	8	- 8. D	9	9. D	10-10.5	11	-11. ə 12	12. ə	Ιð.	13.5	-14	14. D	10	15.5	10	16. D	17	17.5	18	18. ə
							时间	[min]												

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
9.867	MM m	0.16	104.58	10.23	2.13
10.957	MM m	0.20	278.87	21.27	5.67
11.853	MM m	0.24	4459.27	279.88	90.67
14.224	MM m	0.23	75.44	5.29	1.53

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 时间 [min]

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
10.188	MM m	0.23	68.42	4.81	1.78
11.353	MM m	0.26	204.21	12.67	5.31
12.237	MM m	0.30	3458.96	180.46	89.90
14.455	MM m	0.27	116.06	6.68	3.02

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
13.818	MM m	0.33	358.07	16.31	8.95
14.639	MM m	0.35	364.05	15.69	9.10
15.981	MM m	0.45	1643.38	54.37	41.07
17.997	MM m	0.41	1635.44	59.74	40.88

12.622	MM m	0.27	60.50	2.76	2.36
13.304	MM m	0.27	65.84	3.03	2.57
14.326	MM m	0.44	2364.38	81.98	92.37
16.622	MM m	0.32	69.03	2.66	2.70

时间	[min]
----	-------

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
16.180	MM m	0.26	408.55	24.14	9.21
17.565	MM m	0.33	415.95	19.33	9.38
19.101	MM m	0.38	1809.51	73.12	40.81
35.796	MM m	0.72	1799.96	37.75	40.59

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
16.178	MM m	0.23	27.12	1.72	2.16
17.539	MM m	0.31	39.69	1.83	3.16
19.085	MM m	0.40	1162.67	45.06	92.58
36.109	MM m	0.49	26.42	0.65	2.10

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
20.428	MM m	0.57	2482.85	67.84	39.59
21.791	MM m	0.60	660.02	16.62	10.52
23.976	MM m	0.62	2478.44	60.33	39.52
28.066	MM m	0.62	650.44	14.94	10.37

20.83

14.21

0.74

25.955

MM m

Ret Time [min]	Type	Width [min]	Area [mAU * s]	Height [mAU]	Area%
31.377	MM m	0.66	2080.10	47.08	9.71
38.888	MM m	0.78	2043.97	38.51	9.54
46.018	MM m	0.96	8611.10	133.97	40.19
52.082	MM m	1.10	8693.21	116.95	40.57

0 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 时间 [min]

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
20.647	MM m	0.50	5252.59	160.76	13.61
23.837	MM m	0.57	5056.26	134.56	13.10
26.377	MM m	0.66	14057.19	309.79	36.41
31.286	MM m	0.73	14238.86	286.42	36.88

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
20.761	MM m	0.43	439.02	13.75	1.72
23.985	MM m	0.53	1296.10	34.74	5.06
26.321	MM m	0.71	23298.98	483.48	91.03
31.592	MM m	0.57	560.10	12.01	2.19

44.109	MM m	0.93	5965.96	98.63	6.77
53.157	MM m	1.17	37994.58	499.56	43.10
56.788	MM m	1.23	38234.70	475.45	43.37

14.996	MM m	0.32	504.53	24.29	7.02
17.712	MM m	0.37	501.86	20.60	6.98
20.961	MM m	0.45	3101.72	104.72	43.13
24.435	MM m	0.53	3083.43	89.05	42.88

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 时间 [min]

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
17.469	MM m	0.42	569.31	19.43	12.28
20.002	MM m	0.44	597.82	18.93	12.89
21.136	MM m	0.50	1763.07	51.09	38.02
29.280	MM m	0.63	1706.97	38.88	36.81

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
17.631	MM m	0.33	98.51	3.65	3.83
20.179	MM m	0.37	77.03	2.51	3.00
21.306	MM m	0.52	2329.00	67.24	90.60
29.665	MM m	0.46	66.12	1.71	2.57

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
12.611	BV	0.88	510.27	31.24	12.43
14.691	BB	1.33	512.23	27.01	12.48
15.924	BB	1.61	1535.15	73.93	37.40
27.422	BB	2.56	1547.46	41.46	37.70

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
12.598	MM m	0.24	70.89	4.47	2.06
14.685	MM m	0.29	81.19	4.39	2.36
15.877	BB	1.79	3209.14	152.77	93.19
27.677	MM m	0.46	82.27	2.64	2.39

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
28.661	MM m	0.65	1715.80	32.57	49.08
31.688	MM m	0.73	1780.13	29.24	50.92

Ret Time [min]	Туре	width [min]	Area [mAU * s]	Height [mAU]	Area%
28.477	MM m	0.50	34.82	0.82	1.93
30.881	MM m	0.82	1766.92	28.47	98.07

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
16.259	MM m	0.49	12474.32	396.57	49.97
19.692	MM m	0.64	12491.48	284.37	50.03

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
16.598	MM m	0.35	99.96	3.47	2.28
20.014	MM m	0.60	4276.06	104.37	97.72

4402.65

183.37

49.99

VB

15.336

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
19.434	MM m	0.58	13248.74	354.33	49.53
21.228	MM m	0.67	13502.23	302.71	50.47

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
18.533	MM m	0.50	825.58	25.24	2.56
19.716	MM m	0.64	31370.24	736.04	97.44

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
14.139	BB	1.63	6429.54	298.08	50.18
15.648	BB	1.93	6382.45	268.23	49.82

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
14.890	BB	1.34	566.23	25.51	49.86
16.731	BM m	0.37	569.32	23.34	50.14

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
14.891	MM m	0.31	14.57	0.65	2.47
16.638	MM m	0.39	574.77	22.88	97.53

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
18.755	MM m	0.49	1242.84	39.90	49.23
25.257	MM m	0.60	1281.66	29.43	50.77

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
18.588	MM m	0.53	4089.28	122.21	97.99
25.179	MM m	0.50	84.08	2.01	2.01

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
24.600	BV	3.39	8259.47	169.54	50.22
31.351	VV	3.64	8188.42	125.30	49.78

Ret Time [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
14.667	MM m	0.27	1134.19	64.07	50.34
21.278	MM m	0.40	1118.73	42.54	49.66

6. Crystallographic Data

Figure S4. ORTEP of the molecular structure of 1m.

Diffraction-quality crystal of compound 1mwas obtained in MeOH and DCM.

CCDC 2347205 contains the	supplementary	crystallographic	data for compound 1	m.
	11 2	2 2 1	1	

Empirical formula	C ₁₄ H ₁₄ BrNO ₃
Formula weight	324.17
Temperature/K	150.0
Crystal system	monoclinic
Space group	P21/c
a/Å	10.2580(8)
b/Å	12.5884(9)
c/Å	21.5327(18)
$\alpha / ^{\circ}$	90
β/°	96.556(3)
$\gamma/^{\circ}$	90
Volume/Å ³	2762.4(4)
Ζ	8
$\rho_{calc}g/cm^3$	1.559
µ/mm ⁻¹	2.979
F(000)	1312.0
Crystal size/mm ³	0.38 imes 0.26 imes 0.12
Radiation	MoKa ($\lambda = 0.71073$)
2θ range for data collection/°	3.996 to 55.202
Index ranges	$\textbf{-13} \leqslant \textbf{h} \leqslant \textbf{13}, \textbf{-16} \leqslant \textbf{k} \leqslant \textbf{16}, \textbf{-28} \leqslant \textbf{1} \leqslant \textbf{23}$
Reflections collected	31343
Independent reflections	$6314 [R_{int} = 0.1055, R_{sigma} = 0.0793]$
Data/restraints/parameters	6314/0/347
Goodness-of-fit on F ²	1.007
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0417, wR_2 = 0.0733$
Final R indexes [all data]	$R_1 = 0.1003, wR_2 = 0.0885$
Largest diff. peak/hole / e Å ⁻³	0.35/-0.50