# Palladium-catalyzed [4+4] cycloaddition of 2-pyrones with 2-alkylidenetrimethylene carbonates: access to bridged eight-membered oxygen heterocycles 

Huawei Lin, $\ddagger^{\mathrm{a}}$ Biming Mao, $\ddagger^{\mathrm{c}}$ Bing Han, ${ }^{\text {a }}$ Jiayi Luo, ${ }^{\text {a }}$ Yanqing Ge, ${ }^{a}$ Xuerui Zhang, ${ }^{\text {c }}$ Chang Wang, ${ }^{\text {c }}$ Hongchao Guo,*b Chunhao Yuan*a<br>${ }^{a}$ School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University \& Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China. E-mail: yuanchunhao2017@163.com.<br>${ }^{b}$ Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China. E-mail: hchguo@cau.edu.cn.<br>${ }^{c}$ School of Pharmaceutical Sciences \& Institute of Materia Medica, Shandong First Medical University \& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, P. R. China. E-mail: wangchangxues@163.com.

$\ddagger$ These three authors contributed equally to this work.

## Contents

General Information ..... S2
Table S1. Optimization of Reaction Conditions ..... S2
Preparation of 2-alkylidenetrimethylene carbonates 1a-1n ..... S3
Preparation of 2-pyrones $\mathbf{2 a - 2 k}$ ..... S3
General Procedure for the reaction ..... S4
Characterization Data for $\mathbf{3 , 4}$ and $\mathbf{5}$ ..... S4-S15
NMR Spectra of $\mathbf{3}, \mathbf{4}$ and $\mathbf{5}$ ..... S16-S41
X-Ray Crystallographic Data of 3ha ..... S42-S43

## General Information

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in $\mathrm{CDCl}_{3}$ using a 400 MHz NMR instrument (referenced internally to $\mathrm{Me}_{4} \mathrm{Si}$ ). Proton chemical shifts are reported in parts per million ( $\delta$ scale). Organic solutions were concentrated under reduced pressure on a rotary evaporator. Reactions were monitored through thin layer chromatography (TLC) on silica gel-precoated glass plates. Chromatograms were visualized by fluorescence quenching with UV light at 254 nm . Flash column chromatography was performed using Qingdao Haiyang flash silica gel (200-300 mesh). Accurate mass measurements were performed using Agilent 1260/1290infinty II-6546QTOF. Melting points were determined on a Stuard $\mathrm{SMP}_{3}$ melting point apparatus. X-ray crystallographic data were collected using a Bruker APEX-II CCD. Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All heating reactions are performed by using an oil bath.

## Table S1. Optimization of the reaction conditions ${ }^{\text {a }}$



| 7 | $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ | $\mathbf{L 3}$ | $\mathrm{CH}_{3} \mathrm{CN}$ | NR | $>20: 1$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ | $\mathbf{L 3}$ | DCE | 90 | $>20: 1$ |
| 9 | $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ | $\mathbf{L 3}$ | toluene | NR | $>20: 1$ |

${ }^{a}$ Unless noted otherwise, reactions were performed with 1a $(0.18 \mathrm{mmol}), \mathbf{2 f}(0.15 \mathrm{mmol})$, palladium ( $5 \mathrm{~mol} \%$ ), and ligand ( $15 \mathrm{~mol} \%$ ) in solvent at $25{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Isolated yield. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis, Z/E > 20:1.

## General procedure for the Synthesis of matrerails

Preparation of 2-alkylidenetrimethylene carbonates 1a-1n. ${ }^{[1]}$
2-Alkylidenetrimethylene carbonates 1a-1n was prepared by the reported procedure.















Preparation of 2-pyrones 2a-2k. ${ }^{[2],[3]}$
2-Pyrones $\mathbf{2 a - 2 k}$ was prepared by the reported procedure.



2b







$2 i$



## General procedure for the reaction

Under a nitrogen atmosphere, an oven-dried 10 mL of Schlenk tube was charged with palladium catalyst ( $5 \mathrm{~mol} \%, 0.0075 \mathrm{mmol}$ ), ligand ( $15 \mathrm{~mol} \%, 0.0225 \mathrm{mmol}$ ) and 2-pyrones 2 ( 0.15 mmol ) in 1 mL of solvent $25{ }^{\circ} \mathrm{C}$, then a solution of 2-alkylidenetrimethylene carbonates $\mathbf{1}$ ( $0.18 \mathrm{mmol}, 1.2$ equiv) in 1 mL of solvent was added after 30 min . The resulting mixture was stirred until the starting materials were completely consumed (monitored by TLC) and then was concentrated to dryness. The residue was purified through flash column chromatography to afford the corresponding products 3aa-3na, 3ab-3ak.

## Characterization Data for 3, 4 and 5



Methyl
(Z)-4-benzylidene-7-oxo-2,8-dioxabicyclo[4.2.2]dec-9-ene-6-car boxylate (3aa)

The product mixture was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=7: 1)$ to afford 3aa as a white solid ( $44.5 \mathrm{mg}, 92 \%$ yield). m.p. $147-149{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , C D C l} 3$ ) $\delta 7.47-7.40(\mathrm{~m}$, 2H), $7.34-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.11-6.05(\mathrm{~m}, 1 \mathrm{H}), 6.06-5.98(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ (d, $J=12.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{dd}, J=10.2,0.03 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=11.3,1.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ( $101 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 168.3,167.9,138.7,134.6,131.9,130.0,128.5,127.2$, 127.0, 120.0, 97.3, 61.7, 54.6, 52.5, 43.4. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NaO}_{5}{ }^{+}$: 323.0890; Found: 323.0898.


Methyl
4-methylene-7-oxo-2,8-dioxabicyclo[4.2.2]dec-9-ene-6-carboxyl ate (3ba)

The product mixture was purified by silica gel column chromatography ( $\mathrm{PE} / \mathrm{EtOAc}=$ 7:1) to afford 3ba as a white solid ( $30.7 \mathrm{mg}, 83 \%$ yield). m.p. $102-104{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 6.37-6.30(\mathrm{~m}, 1 \mathrm{H}), 6.00-5.92(\mathrm{~m}, 2 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 5.32-$ $5.27(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.05(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{dd}, J=$
$13.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=13.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 168.2, 167.8, 138.6, 131.6, 125.7, 119.8, 97.0, 66.0, 54.3, 52.4, 41.5. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NaO}_{5}{ }^{+}$: 247.0577; Found: 247.0585.


## Methyl

(Z)-4-(2-methoxybenzylidene)-7-oxo-2,8-dioxabicyclo[4.2.2]dec -9-ene-6-carboxylate (3ca)

The product mixture was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=7: 1)$ to afford 3ca as a white solid ( $38.6 \mathrm{mg}, 73 \%$ yield). m.p. $147-149{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.70-7.65$ $(\mathrm{m}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.40-6.33$ $(\mathrm{m}, 1 \mathrm{H}), 6.09-6.04(\mathrm{~m}, 1 \mathrm{H}), 6.04-5.96(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}$, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{dd}, J=10.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}$, $J=13.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 168.4,167.9,156.2,134.5$, $132.0,130.8,129.5,128.6,123.6,120.0,119.3,109.0,97.3,61.9,54.6,54.4,52.4$, 43.7. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}_{6}{ }^{+}$: 353.0996; Found: 353.1003.


## Benzyl

(Z)-4-(2-fluorobenzylidene)-7-oxo-2,8-dioxabicyclo[4.2.2]dec-9-ene-6-carboxylate (3de)

The product mixture was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=7: 1)$ to afford 3de as a white solid $(45.0 \mathrm{mg}, 76 \%$ yield). m.p. $79-81{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.73(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32-7.19(\mathrm{~m}, 6 \mathrm{H}), 7.09(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.36$ $(\mathrm{d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.13-5.84(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{q}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~d}, J=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=13.8,1.8$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 167.6,167.5,159.3(\mathrm{~d}, J=248.7 \mathrm{~Hz}), 134.0$, 132.0, 131.9, $131.2(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 129.0(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 127.6$, $127.5,127.2,122.9(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 122.4(\mathrm{~d}, J=13.2 \mathrm{~Hz}), 120.0,114.0(\mathrm{~d}, J=21.6$ Hz ), 97.2, 67.1, 61.3, 54.5, 43.4. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{FNaO}_{5}{ }^{+}$: 417.1109; Found: 417.1118.


Methyl
(Z)-4-(3-methylbenzylidene)-7-oxo-2,8-dioxabicyclo[4.2.2]dec-9-ene-6-carboxylate (3ea)

The product mixture was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=7: 1)$ to afford 3ea as a white solid (40.9 mg, 81\% yield). m.p. 93-95 ${ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.27-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}$, $1 \mathrm{H}), 6.36(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.05-5.97(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J$ $=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{dd}, J=13.7,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.54(\mathrm{dd}, J=13.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right) \delta$ $168.4,167.9,138.8,136.8,134.6,131.9,129.9,129.1,127.8,127.1,125.6,120.1$, 97.3, $61.4,54.6,52.4,43.5,20.4$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}_{5}{ }^{+}$: 337.1046; Found: 337.1043.


Methyl
(Z)-4-(3-methoxybenzylidene)-7-oxo-2,8-dioxabicyclo[4.2.2]dec -9-ene-6-carboxylate (3fa)

The product mixture was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=7: 1)$ to afford $\mathbf{3 f a}$ as a white solid ( $42.3 \mathrm{mg}, 80 \%$ yield). m.p. $156-158{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 7.22-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{dt}, J=2.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 1 \mathrm{H})$, $6.82-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.41-6.34(\mathrm{~m}, 1 \mathrm{H}), 6.10-6.04(\mathrm{~m}, 1 \mathrm{H}), 6.05-$ $5.97(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.75$ $(\mathrm{s}, 3 \mathrm{H}), 3.33(\mathrm{dd}, J=10.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=13.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}$ (101 MHz, CDCl3) $\delta 168.3,167.9,158.4,138.5,136.0,131.9,130.4,128.2,121.0$, $120.1,113.8,112.9,97.3,61.4,54.6,54.2,52.5,43.4$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}_{6}{ }^{+}$: 353.0996 ; Found: 353.1005 .


## Methyl

(Z)-4-(3-fluorobenzylidene)-7-oxo-2,8-dioxabicyclo[4.2.2]dec-9-e ne-6-carboxylate (3ga)

The product mixture was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=7: 1)$ to afford 3ga as a white solid ( $43.4 \mathrm{mg}, 85 \%$ yield). m.p. $156-158{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.29-7.16$
(m, 3H), $6.97-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.06-5.98(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.78 (s, 3H), 3.33 (dd, $J=10.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.54(\mathrm{dd}, J=13.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3 ) $\delta 168.2,167.8,161.6(\mathrm{~d}, ~ J=245.5 \mathrm{~Hz}), 137.3(\mathrm{~d}, J=2.2$ $\mathrm{Hz}), 136.7(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 131.9,131.5,128.7(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 124.3(\mathrm{~d}, J=2.9 \mathrm{~Hz})$, 120.0, 115.4, 115.2, 114.0, 113.8, 97.3, 61.1, 54.5, 52.5, 43.3. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FNaO}_{5}^{+}$: 341.0796; Found: 341.0803.


## Methyl

(Z)-4-(3-chlorobenzylidene)-7-oxo-2,8-dioxabicyclo[4.2.2]dec-9 -ene-6-carboxylate (3ha)

The product mixture was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=7: 1)$ to afford 3ha as a white solid ( $43.9 \mathrm{mg}, 82 \%$ yield). m.p. $149-151{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$ ) $\delta 7.46-7.43$ $(\mathrm{m}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.42-6.35(\mathrm{~m}, 1 \mathrm{H})$, $6.11-6.06(\mathrm{~m}, 1 \mathrm{H}), 6.06-5.98(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=12.5$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 3.78 (s, 3H), 3.33 (dd, $J=10.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.54(\mathrm{dd}, J=13.6,1.7 \mathrm{~Hz}$, 1H). ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 168.2, 167.7, 137.1, 136.3, 133.2, 131.9, 131.7, 128.5, 128.4, 127.1, 126.7, 120.0, 97.2, 61.07, 54.5, 52.5, 43.3. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClNaO}_{5}{ }^{+}$: 357.0500; Found: 357.0505.


## Methyl

(Z)-4-(3-bromobenzylidene)-7-oxo-2,8-dioxabicyclo[4.2.2]dec-9 -ene-6-carboxylate (3ia)

The product mixture was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=7: 1)$ to afford 3ia as a white solid ( $52.2 \mathrm{mg}, 87 \%$ yield). m.p. $161-163{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.59(\mathrm{~s}, 1 \mathrm{H})$, $7.38-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.11$ - $6.06(\mathrm{~m}, 1 \mathrm{H}), 6.06-5.98(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, 1 H ), 3.78 (s, 3H), 3.32 (dd, $J=9.7,0.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.54 (dd, $J=13.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathbf{~ M H z , ~ C D C l} 3$ ) $\delta 168.2,167.7,137.0,136.6,131.9,131.8,131.2,130.0$, $128.8,127.2,121.3,120.0,97.2,61.1,54.5,52.5,43.2$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$
calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrNaO}_{5}^{+}$: 400.9995 ; Found: 401.0000.


Methyl
(Z)-4-(4-methylbenzylidene)-7-oxo-2,8-dioxabicyclo[4.2.2]d ec-9-ene-6-carboxylate (3ja)

The product mixture was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=7: 1)$ to afford $\mathbf{3 j a}$ as a white solid (39.9 mg, 79\% yield). m.p. 178-180 ${ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.35-$ $7.29(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.40-6.33(\mathrm{~m}, 1 \mathrm{H}), 6.09-6.04(\mathrm{~m}$, $1 \mathrm{H}), 6.05-5.97(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 3.33(\mathrm{dd}, J=10.2,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=13.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 168.4,167.9,138.6,136.9,131.9,131.9,129.2,128.5$, 128.0, 120.0, 97.3, 61.5, 54.7, 52.4, 43.5, 20.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}_{5}{ }^{+}: 337.1046$; Found: 337.1054.


## Methyl

(Z)-4-(4-methoxybenzylidene)-7-oxo-2,8-dioxabicyclo[4.2. 2]dec-9-ene-6-carboxylate (3ka)

The product mixture was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=7: 1)$ to afford 3ka as a white solid (41.8 mg, 79\% yield). m.p. 164-166 ${ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-$ $7.34(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.39-6.34(\mathrm{~m}, 1 \mathrm{H}), 6.09-6.03(\mathrm{~m}$, $1 \mathrm{H}), 6.05-5.97(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{dd}, J=10.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=13.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 168.4,168.0,158.5,138.2,131.9,130.0,128.2,127.4$, 120.0, 112.7, 97.3, 61.6, 54.8, 54.3, 52.4, 43.6. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}_{6}{ }^{+}: 353.0996$; Found: 353.1005.


Methyl
(Z)-4-(4-fluorobenzylidene)-7-oxo-2,8-dioxabicyclo[4.2.2]dec-

## 9-ene-6-carboxylate (31a)

The product mixture was purified by silica gel column
chromatography ( $\mathrm{PE} / \mathrm{EtOAc}=7: 1$ ) to afford 3la as a white solid ( $41.4 \mathrm{mg}, 81 \%$ yield). m.p. 176-178 ${ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.45-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.94(\mathrm{~m}$, $2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.09-6.04(\mathrm{~m}, 1 \mathrm{H}), 6.06-5.98(\mathrm{~m}, 1 \mathrm{H})$, $4.21(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{dd}, J=10.2$, $0.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=13.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 168.3$, $167.8,161.5(\mathrm{~d}, J=247.8 \mathrm{~Hz}), 137.5,131.9,130.7(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=8.1$ $\mathrm{Hz}), 130.1(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 120.0,114.2(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 97.3,61.3,54.6,52.5,43.4$. HRMS (ESI) m/z: [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FNaO}_{5}^{+}$: 341.0796; Found: 341.0805.


## Methyl

## (Z)-4-(4-chlorobenzylidene)-7-oxo-2,8-dioxabicyclo[4.2.2]dec -9-ene-6-carboxylate (3ma)

The product mixture was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=7: 1)$ to afford $\mathbf{3 m a}$ as a white solid ( $43.4 \mathrm{mg}, 81 \%$ yield). m.p. $150-152{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.40-$ 7.33 (m, 2H), $7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10-6.04$ $(\mathrm{m}, 1 \mathrm{H}), 6.06-5.98(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.78 (s, 3H), 3.33 (dd, $J=13.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.54 (dd, $J=13.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3 ) $\delta 168.2,167.8,137.3,133.0,133.0,131.9,130.9,129.9$, 127.5, 120.0, 97.2, 61.2, 54.6, 52.5, 43.3. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClNaO}_{5}^{+}: 357.0500$; Found: 357.0508.


## Methyl

## (Z)-4-(4-bromobenzylidene)-7-oxo-2,8-dioxabicyclo[4.2.2]dec -9-ene-6-carboxylate (3na)

The product mixture was purified by silica gel column chromatography ( $\mathrm{PE} / \mathrm{EtOAc}=7: 1$ ) to afford 3na as a white solid ( $49.8 \mathrm{mg}, 83 \%$ yield). m.p. $150-152{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3\right) \delta 7.43-$ 7.39 (m, 2H), $7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.09-6.04$ $(\mathrm{m}, 1 \mathrm{H}), 6.05-5.97(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.77 (s, 3H), $3.32(\mathrm{dd}, J=13.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=13.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl 3 ) $\delta 168.2,167.8,137.3,133.5,131.9,131.0,130.4,130.1$, 121.3, 119.9, 97.2, 61.1, 54.5, 52.5, 43.3. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrNaO}_{5}{ }^{+}$: 400.9995; Found: 401.0003.


3ab

Phenethyl
(Z)-4-benzylidene-7-oxo-2,8-dioxabicyclo[4.2.2]dec-9-ene-6-carboxylate (3ab)

The product mixture was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=7: 1)$ to afford 3ab as a yellow solid ( $50.1 \mathrm{mg}, 81 \%$ yield). m.p. $97-99{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}, \mathbf{C D C l} 3) \delta$ $7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 3 \mathrm{H})$, $6.71(\mathrm{~s}, 1 \mathrm{H}), 6.24-6.17(\mathrm{~m}, 1 \mathrm{H}), 6.09-6.03(\mathrm{~m}, 1 \mathrm{H}), 6.01-5.93(\mathrm{~m}, 1 \mathrm{H}), 4.43-$ $4.34(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=13.8$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{dd}, J=13.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 167.9,167.7,138.6,136.3,134.7,131.9,130.1,128.5,128.0,127.5$, 127.2, 127.0, 125.7, 119.9, 97.2, 65.8, 61.4, 54.7, 43.4, 33.8. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NaO}_{5}^{+}$: 413.1359; Found: 413.1368 .


Isopropyl
(Z)-4-benzylidene-7-oxo-2,8-dioxabicyclo[4.2.2]dec-9-ene-6-c arboxylate (3ac)

The product mixture was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=7: 1)$ to afford 3ac as a yellow solid ( $34.5 \mathrm{mg}, 73 \%$ yield). m.p. $115-117{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathbf{~ M H z}, \mathbf{C D C l} 3) \delta 7.46-$ $7.41(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.37-6.30(\mathrm{~m}$, $1 \mathrm{H}), 6.09-6.03(\mathrm{~m}, 1 \mathrm{H}), 6.04-5.96(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=12.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=13.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=13.7$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.26-1.19(\mathrm{~m}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, CDCl3) $\delta 167.9,167.3,138.5$, $134.7,132.2,130.3,128.5,127.2,126.9,119.9,97.2,69.3,61.4,54.6,43.4,20.6,20.3$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NaO}_{5}{ }^{+}$: 351.1203; Found: 351.1205.


## Ethyl

(Z)-4-benzylidene-7-oxo-2,8-dioxabicyclo[4.2.2]dec-9-ene-6-c arboxylate (3ad)

The product mixture was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=7: 1)$ to afford 3ad as a yellow solid (36.3 mg, 72\% yield). m.p. 120-122 ${ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.46-$
$7.40(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.40-6.33(\mathrm{~m}$, $1 \mathrm{H}), 6.09-6.04(\mathrm{~m}, 1 \mathrm{H}), 6.04-5.97(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.17(\mathrm{~m}, 3 \mathrm{H}), 4.03(\mathrm{~d}, J=12.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=13.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=10.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 167.9,167.8,138.6,134.7,132.1,130.2$, 128.5, 127.2, 127.0, 120.0, 97.2, 61.6, 61.4, 54.6, 43.4, 13.0. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}_{5}^{+}$: 337.1046; Found: 337.1054


## Benzyl

(Z)-4-benzylidene-7-oxo-2,8-dioxabicyclo[4.2.2]dec-9-en e-6-carboxylate (3ae)

The product mixture was purified by silica gel column chromatography ( $\mathrm{PE} / \mathrm{EtOAc}=7: 1$ ) to afford 3ae as a yellow solid ( $38.6 \mathrm{mg}, 76 \%$ yield). m.p. $117-119{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.37-$ $6.30(\mathrm{~m}, 1 \mathrm{H}), 6.07-6.02(\mathrm{~m}, 1 \mathrm{H}), 6.02-5.94(\mathrm{~m}, 1 \mathrm{H}), 5.27-5.19(\mathrm{~m}, 1 \mathrm{H}), 5.20-$ $5.13(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=8.4$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=13.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 167.8$, 167.7, 138.7, 134.7, 134.1, 131.8, 130.1, 128.5, 127.6, 127.5, 127.2, 127.2, 127.0, 120.1, 97.3, 67.1, 61.4, 54.7, 43.5. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NaO}_{5}{ }^{+}$: 399.1203; Found: 399.1210.


Methyl
(Z)-4-benzylidene-7-oxo-2,8-dioxabicyclo[4.2.2]dec-9-ene-9-carbo xylate (3af)
chromatography $(\mathrm{PE} / \mathrm{EtOAc}=7: 1)$ to afford 3af as a yellow solid $(43.6 \mathrm{mg}, 90 \%$ yield). m.p. 170-172 ${ }^{\circ} \mathrm{C}$; $\mathbf{}^{\mathbf{H}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$ ) $\delta 7.46-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.32-$ $7.24(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.91-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.66(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=13.6,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.56(\mathrm{dd}, J=10.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 169.7,161.9$, $141.3,137.9,134.5,130.3,128.5,127.3,127.0,124.9,95.9,61.4,51.6,40.7,39.9$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NaO}_{5}^{+}$: 323.0890; Found:.323.0899.


Ethyl
(Z)-4-benzylidene-7-oxo-2,8-dioxabicyclo[4.2.2]dec-9-ene-9-carbox ylate (3ag)

The product mixture was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=7: 1)$ to afford 3ag as a yellow solid ( $39.3 \mathrm{mg}, 79 \%$ yield). m.p. 150-152 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.45-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.25-$ $7.21(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 4.30-4.18(\mathrm{~m}, 3 \mathrm{H}), 3.91-3.85(\mathrm{~m}, 1 \mathrm{H})$, $3.73-3.65(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=13.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=13.6,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 169.9,161.5,141.0,137.8$, 134.5, 130.4, 128.5, 127.3, 127.0, 125.2, 95.9, 61.3, 60.7, 40.7, 39.9, 13.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}_{5}{ }^{+}$: 337.1046; Found: 337.1055.


Benzyl
(Z)-4-benzylidene-7-oxo-2,8-dioxabicyclo[4.2.2]dec-9-ene-9-carbox ylate (3ah)

3ah Ph The product mixture was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=7: 1)$ to afford 3ah as a yellow solid ( $39.7 \mathrm{mg}, 78 \%$ yield). m.p. 121-123 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ( $400 \mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.44-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.31$ $7.25(\mathrm{~m}, 7 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.52-6.45(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.17(\mathrm{~m}$, 2H), $4.31-4.19$ (m, 1H), 3.87 (d, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.72-3.63$ (m, 1H), 2.95 (dd, $J=$ $13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=13.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $169.8,161.3,141.5,137.9,134.5,134.1,130.3,128.5,127.7,127.6,127.3,127.3$, 127.0, 125.1, 95.8, 66.3, 61.3, 40.7, 40.0. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NaO}_{5}^{+}$: 399.1203; Found: 399.1209.


4-chlorobutyl
(Z)-4-benzylidene-7-oxo-2,8-dioxabicyclo[4.2.2]dec-9-ene-9-ca rboxylate (3ai)
The product mixture was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=7: 1)$ to afford 3ai as a yellow solid (39.7 mg, 78\% yield). m.p. $116-118{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$ ) $\delta 7.44-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.31-$ $7.26(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=12.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.23-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.44$ (m, 2H), 2.97 (dd, $J=13.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=13.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.76$ (m, 4H). ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z , ~ C D C l} 3$ ) $\delta 169.8,161.4,141.2,137.9,134.5,130.3$, 128.5, 127.3, 127.0, 125.2, 95.8, 63.8, 61.4, 43.3, 40.7, 40.1, 28.0, 24.9. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClNaO}_{5}{ }^{+}$: 399.0970; Found: 399.0978.


3aj
(Z)-4-benzylidene-9-(4-methylbenzoyl)-2,8-dioxabicyclo [4.2.2]dec-9-en-7-one (3aj)

The product mixture was purified by silica gel column chromatography ( $\mathrm{PE} / \mathrm{EtOAc}=7: 1$ ) to afford 3aj as a yellow solid ( $51.1 \mathrm{mg}, 89 \%$ yield). m.p. $116-118{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$ ) $\delta 7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.24$ (m, 3H), $7.27-7.19$ (m, 2H), 7.02 - $6.95(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 4.36-$ $4.26(\mathrm{~m}, 1 \mathrm{H}), 4.03-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=13.7,6.5 \mathrm{~Hz}$, $\left.1 \mathrm{H}), 2.63(\mathrm{dd}, J=13.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ ( 1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}\right) \delta$ $190.4,170.2,143.1,141.2,137.8,134.4,132.6,132.0,130.5,128.5,128.4,127.3$, 127.1, 96.3, 61.4, 40.8, 40.5, 20.6. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NaO}_{4}{ }^{+}$: 383.1254; Found: 383.1263.

(Z)-4-benzylidene-9-(4-ethylbenzoyl)-2,8-dioxabicyclo[4.

## 2.2]dec-9-en-7-one (3ak)

The product mixture was purified by silica gel column chromatography ( $\mathrm{PE} / \mathrm{EtOAc}=7: 1$ ) to afford 3ak as a yellow solid ( $47.6 \mathrm{mg}, 80 \%$ yield). m.p. $95-97{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl 3 ) $\delta 7.66-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.25(\mathrm{~m}$, $2 H), 7.26-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.36-4.27$ $(\mathrm{m}, 1 \mathrm{H}), 4.04-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=13.7,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.71-2.60(\mathrm{~m}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 190.4$, $170.2,149.2,141.2,137.8,134.5,132.8,132.0,130.6,128.6,128.5,127.3,127.2$, 127.1, 96.3, 61.4, 40.8, 40.5, 27.9, 14.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NaO}_{4}{ }^{+}$: 397.1410; Found: 397.1419.

## Transformations of products 3aa and 3na

1. Oxidation of 3aa with $\boldsymbol{m}$-chloroperoxybenzoic acid ( $m$-CPBA)


To a solution of 3aa ( $0.1 \mathrm{mmol}, 1.0$ equiv) in $1 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $m$-CPBA ( 2.0 equiv), $\mathrm{NaHCO}_{3}$ (4.0 equiv) and $0.5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. The resulting reaction mixture was stirred at room temperature. and the reaction process was monitored by TLC. Upon full conversion, the crude product was purified by FC in silica (PE/EtOAc 4:1) to yield the product 4 ( $27.1 \mathrm{mg}, 80 \%$ yield).

## Methyl

8-oxo-3'-phenyl-5,7-dioxaspiro[bicyclo[4.2.2]decane-3,2'-oxiran]-9-ene-1-carboxy late (4)

The product mixture was purified by silica gel column chromatography (PE/EtOAc 4:1) to afford $\mathbf{4}$ as a yellow oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.40-7.34(\mathrm{~m}, \mathbf{2 H})$, $7.33-7.24(\mathrm{~m}, 3 \mathrm{H}), 6.44-6.37(\mathrm{~m}, 1 \mathrm{H}), 5.99-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.81-5.76(\mathrm{~m}, 1 \mathrm{H})$, $4.05(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}$, 2H). ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z , ~ C D C l} 3$ ) $\delta 167.7,167.5,133.1,131.9,127.0,126.9,125.5$, 120.2, 96.7, 65.2, 63.5, 59.3, 52.7, 51.1, 41.3. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NaO}_{6}{ }^{+}$: 339.0839; Found: 339.0844

## 2. Nucleophilic addition of 3na



To a solution of 3na ( 0.1 mmol ) in 1 mL THF was added dropwisely a solution of methylmagnesium bromide ( 0.5 M in THF, 5.0 equiv) at $0^{\circ} \mathrm{C}$. The resulting reaction
mixture was stirred at room temperature for 4 h and the reaction process was monitored by TLC. Upon full conversion, the crude product was purified by FC in silica (PE/EtOAc 7:1) to yield the product 5 ( $38.1 \mathrm{mg}, 95 \%$ yield).
(Z)-4-(4-bromobenzylidene)-6-(2-hydroxypropan-2-yl)-2,8-dioxabicyclo[4.2.2]dec -9-en-7-one (5)

The product mixture was purified by silica gel column chromatography ( $\mathrm{PE} / \mathrm{EtOAc}=$ 7:1) to afford 5 as a white solid. m.p. $161-163{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta$ $7.46-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.05$ $-6.00(\mathrm{~m}, 1 \mathrm{H}), 6.01-5.93(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J$ $=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=12.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=12.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.23$ (s, 6H). ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 174.9,136.4,133.8,133.7,132.6,130.4$, 130.2, 121.1, 120.2, 96.8, 72.2, 61.5, 53.4, 41.8, 26.6, 21.7. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrNaO}_{4}^{+}$: 401.0359; Found: 401.0358.

## References:

[1] R. Shintani, K. Moriya and T. Hayashi, Guiding the nitrogen nucleophile to the middle: palladium-catalyzed decarboxylative cyclopropanation of 2-alkylidenetrimethylene carbonates with isocyanates, Chem. Commun., 2011, 47, 3057-3059.
[2] X. G. Si, Z. M. Zhang, C. G. Zheng, Z. T. Li and Q. Cai, Enantioselective Synthesis of cis-Decalin Derivatives by the Inverse-Electron-Demand Diels-Alder Reaction of 2-Pyrones, Angew. Chem., Int. Ed., 2020, 59, 18412-18417.
[3] X. Gao, M. Xia, C. Yuan, L. Zhou, W. Sun, C. Li, B. Wu, D. Zhu, C. Zhang, B. Zheng, D. Wang and H. Guo, Enantioselective Synthesis of Chiral Medium-Sized Cyclic Compounds via Tandem Cycloaddition/Cope Rearrangement Strategy, ACS Catal., 2019, 9, 1645-1654.


${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{aa}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 3aa $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{ba}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



3ba

${ }^{13}$ C NMR of 3ba ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR of 3de $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 3de $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ea


${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{ea}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{fa}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{fa}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ga


${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{ga}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR of 3ha $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 j a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

엉…
$\underbrace{}_{-1} \underbrace{-1 / \underbrace{\circ}}$


${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{ka}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 3ka ( $\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{1} \mathrm{H}$ NMR of 3la $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{13} \mathrm{C}$ NMR of 3la $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{ma}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{na}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 3na ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




${ }^{1} \mathrm{H}$ NMR of 3ab $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{ac}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{ad}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{ae}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$





${ }^{1} \mathbf{H}$ NMR of 3af $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{ag}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

EtOOC



${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{ag}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{ah}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




${ }^{1} \mathrm{H}$ NMR of 3ai $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 3ai ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a j}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


3aj

$\overrightarrow{0}$
$\stackrel{0}{0}$
1
1




${ }^{13}$ C NMR of 3aj ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



3ak

${ }^{1} \mathrm{H}$ NMR of 3ak ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

3ak

${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{ak}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $4\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR of $4\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR of $5\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $5\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

## X-Ray single crystal data of product 3ha

The X-ray crystallographic structures for 3ha. ORTEP view of the molecules of complex 3ha, showing ellipsoids at $50 \%$ probability level. Crystal data have been deposited to CCDC, number 3ha (2330507). A summary of the fundamental crystal and refinement data are given in the Table 1 of the Supporting Information. White crystals suitable for X-ray diffraction were grown by $\mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{3 h a}$ in a 4 mL bottle.


Table 1 Crystal data and structure refinement for 3ha.

| Identification code | 3 ha |
| :--- | :--- |
| Empirical formula | $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClO}_{5}$ |
| Formula weight | 334.74 |
| Temperature $/ \mathrm{K}$ | 296.15 |
| Crystal system | monoclinic |
| Space group | $\mathrm{P} 21 / \mathrm{l}^{2}$ |
| $\mathrm{a} / \AA$ | $18.4419(16)$ |
| $\mathrm{b} / \AA$ | $7.0128(6)$ |
| $\mathrm{c} / \AA$ | $12.0067(11)$ |
| $\alpha /{ }^{\circ}$ | 90 |
| $\beta /{ }^{\circ}$ | $93.703(2)$ |
| $\gamma /{ }^{\circ}$ | 90 |
| Volume $/ \AA^{3}$ | $1549.6(2)$ |
| Z | 4 |
| $\rho_{\text {calcg }} / \mathrm{cm}^{3}$ | 1.435 |
| $\mu / \mathrm{mm}^{-1}$ | 0.270 |
| $\mathrm{~F}(000)$ | 696.0 |
| Crystal size $/ \mathrm{mm}^{3}$ | $0.2 \times 0.15 \times 0.1$ |

Radiation $\quad \operatorname{MoK} \alpha(\lambda=0.71073)$
$2 \Theta$ range for data collection $/{ }^{\circ} 2.212$ to 54.868
Index ranges
$-23 \leq \mathrm{h} \leq 22,-8 \leq \mathrm{k} \leq 9,-13 \leq 1 \leq 15$

Reflections collected
8964
Independent reflections $\quad 3460\left[\mathrm{R}_{\mathrm{int}}=0.0235, \mathrm{R}_{\text {sigma }}=0.0288\right]$
Data/restraints/parameters 3460/0/209
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.028$
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0401, \mathrm{wR}_{2}=0.0978$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0603, \mathrm{wR}_{2}=0.1096$
Largest diff. peak/hole / e $\AA^{-3} 0.22 /-0.27$

