Supporting Information

NHC-Catalyzed Stereoselective Synthesis of Spirooxindole Lactones by in situ Generated Oxindole-embedded \boldsymbol{o}-Quinone Methides and

Aldehydes

Zhengqiang Cao, Fang Hu, Yunpeng Chu, Jiaxue Pei and Xin-Ping Hui*
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China

*Corresponding author: Prof. Xin-Ping Hui
E-mail: huixp@lzu.edu.cn

Contents

\qquad2. Preparation of substratesS1
3. General procedure S2
4. Scale-up synthesis of product 3a S19
5. Synthetic transformations of product 3a S19
6. Control experiments S23
7. Procedure for the recrystallization of compound $\mathbf{3 b}$ S24
8. Single crystal XRD data of compound $\mathbf{3 b}$ S24
9. References S26
10. NMR Spectra of compounds $\mathbf{3 a - 3 v}, \mathbf{4 a - 4 0}, \mathbf{4 q}$ and $\mathbf{5 a - 5 d}$ S27
11. HPLC Spectra of compounds $\mathbf{3 a - 3 v}, \mathbf{4 a - 4 0}, \mathbf{4 q}$ and $\mathbf{5 a - 5 d}$ S78

1. General Information

All ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AVANCE III 400 spectrometer and Bruker AVANCE NEO 600 spectrometer using tetramethylsilane as internal reference, and chemical shifts (δ) and coupling constants (J) were expressed in ppm and Hz , respectively. ${ }^{19} \mathrm{~F}$ NMR spectra were collected on Bruker AVANCE III HD 400 spectrometer and and Bruker AVANCE NEO 600 spectrometer at room temperature. Optical rotation was measured by the Perkin Elmer 341 polarimeter. The X-ray data was detected by SMART APEX II ($\mathrm{Cu}-K \alpha$ radiation, $\lambda=1.54184$) which was purchased from Bruker. The HRMS analyses were obtained on a Bruker Apex II FT-ICR mass spectrometer with ESI ionization method. The ee value determination was carried out using HPLC with chiral Chirapak column on Agilent 1260 with a UVdetector. Melting points were taken on an X-4 melting point apparatus and were uncorrected. Dichloromethane was freshly distilled from phosphorous pentoxide. THF and toluene were freshly distilled from a deep-blue solution of sodium-benzophenone under nitrogen. PhCl was dried by calcium hydride and freshly distilled under nitrogen atmosphere. $\mathrm{DABCO}, \mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ were purchased from commercial suppliers and used directly. All syntheses and manipulations were carried out under a dry nitrogen atmosphere. Flash column chromatography was carried out utilizing 200-300 mesh silica gel.
N-Heterocyclic carbene catalysts $\mathbf{A}-\mathbf{F}$ were synthesized according to the literatures. ${ }^{[1]}$

2. Preparation of substrates

2.1 General procedure for the preparation of $1^{[2]}$

A round-bottom flask was charged with isatin $\mathbf{S} 1(12 \mathrm{mmol})$, phenol $\mathbf{S} \mathbf{2}\left(18 \mathrm{mmol}, 1.5\right.$ equiv.) and $\mathrm{H}_{2} \mathrm{O}$ $(50 \mathrm{~mL})$. The reaction mixture was stirred vigorously at $50^{\circ} \mathrm{C}$ and monitored by TLC. After the consumption of S1, the reaction mixture was extracted with ethyl acetate, and the combined organic layers were dried over anhydrous sodium sulfate. The solvent was concentrated in vacuo, and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate $=5 / 1$) to afford product $\mathbf{S 3}$.
$\mathrm{TolSO}_{2} \mathrm{Na}(1.66 \mathrm{~g}, 12 \mathrm{mmol}, 1.2$ equiv.) and $\mathrm{TsOH}(3.10 \mathrm{~g}, 18 \mathrm{mmol}, 1.8$ equiv.) were placed in a dried round-bottom flask, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added and the mixture was stirred at room temperature for 10 min. Then, a solution of $\mathbf{S 3}(10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added and stirred for 5 h . The reaction mixture was quenched and adjusted to $\mathrm{pH}=8$ by saturated NaHCO_{3}. After extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic phases were washed with 1 M HCl and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude mixture was filtered by a short silica gel column (hexane/ethyl acetate) to afforded 1.
2.2 General procedure for the preparation of α-chloroaldehyde $\mathbf{2}^{[3]}$

To the stirred solution of saturated acid $\mathbf{S 4}(10 \mathrm{mmol})$ in anhydrous THF $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added LiAlH_{4} ($30 \mathrm{mmol}, 3.0$ equiv.) in portions. Then, the solution was warmed to room temperature until completion of the reaction (monitored by TLC). After cooling down in ice-bath, a solution of aqueous saturated ammonium chloride was added carefully until H_{2} evolvement ceased. The mixture was extracted with ethyl acetate and washed with brine. The combined organic phases were dried over by anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through celite followed by evaporation under reduced pressure which was used in the next step without further purification.

PCC (Pyridinium chlorochromate, $15 \mathrm{mmol}, 1.5$ equiv.) was added slowly to the solution of alcohol $\mathbf{~ S 5}$ $(10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The reaction was stirred for 3 h at room temperature until full conversion of $\mathbf{S 5}$ (monitored by TLC). Then, the reaction mixture was filtered through celite, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated under reduced pressure to afford the crude product $\mathbf{S 6}$, which was purified by silica gel flash column chromatography (petroleum ether/ethyl acetate $=10 / 1$) to afford aldehyde.

To a stirred solution of aldehyde $\mathbf{S 6}(1.34 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added $D L$-proline (230.0 $\mathrm{mg}, 2 \mathrm{mmol}, 0.2$ equiv.) and $\mathrm{NCS}\left(1.33 \mathrm{~g}, 10 \mathrm{mmol}, 1.0\right.$ equiv.) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , and then warmed to rt and stirred for additional 1.5 h . The reaction was quenched by pentane $(50 \mathrm{~mL})$ and filtered through a short plug of celite. The organic phase was concentrated under reduced pressure and the residue was subjected to flash column chromatography (petroleum ether/ethyl acetate:15:1) to furnish α-chloroaldehyde $\mathbf{2}$ as a colorless oil $(1.09 \mathrm{~g}, 65 \%$ yield $)$.

3. General procedure

Under argon atmosphere, a flame-dried 25 mL Schlenk tube was charged with $\mathbf{1}(0.1 \mathrm{mmol}), \mathbf{2}(0.25 \mathrm{mmol}$, 2.5 equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(97.7 \mathrm{mg}, 0.3 \mathrm{mmol}, 3.0$ equiv.) and Cat. D ($7.6 \mathrm{mg}, 0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was evacuated, filled with argon for 3 times and dry toluene (1.5 mL) was added at $-40^{\circ} \mathrm{C}$. Subsequently, the resulting solution was continuously stirred at $-40^{\circ} \mathrm{C}$ for 24 h (monitored by TLC). The reaction mixture
was filtered through silica gels column and the solvent was removed in vacuo. The crude residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=7: 1-3: 1$) to obtain the products 3 or 4.
(3S,7'S)-1,7'-dibenzylspiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (3a)

White solid, $38.7 \mathrm{mg}, 79 \%$ yield, $>20: 1 \mathrm{dr}, 96 \%$ ee, m.p. $130.1-131.7^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{18}+127\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} N \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.32-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 5 \mathrm{H}), 6.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H})$, $5.92(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=8.2$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=13.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=13.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $175.3,167.9,148.5,147.2,144.3,144.2,139.5,135.4,129.8,129.0,128.9,128.7,128.3,128.2,128.0,127.7$, $127.5,126.3,124.5,123.8,115.5,110.1,105.7,101.9,99.7,54.6,48.1,44.1,31.5$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd. for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Na}$: 512.1468; Found: 512.1468. HPLC (Chiralpak OD-H column, n-hexane $/ i$-PrOH $=83 / 17$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=31.053 \mathrm{~min}($ minor $), 35.370 \mathrm{~min}$ (major) .
(3S,7'S)-1,7'-dibenzyl-5-fluorospiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (3b)

Yellow solid, $46.7 \mathrm{mg}, 92 \%$ yield, $>20: 1 \mathrm{dr}, 99 \%$ ee, m.p. $228.3-229.2^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{18}+192\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.38-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.17-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{td}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.72$ $(\mathrm{m}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{q}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{dd}, J=7.6,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=13.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=13.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $175.1,167.5,160.9,158.4,148.7,147.1,144.4,140.0,140.0,139.0,135.1,129.7,129.6,129.0,128.7,128.3$, $128.1,127.5,126.5,116.4,116.2,114.8,112.7,112.4,110.8,110.7,105.3,102.0,99.9,54.9,54.9,47.8,44.3$, 31.6. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.34$ (s). HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{FNO}_{5} \mathrm{Na}:$ 530.1374; Found: 530.1382. HPLC (Chiralpak AD-H column, n-hexane $/ i-\operatorname{PrOH}=50 / 50$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=15.726 \mathrm{~min}$ (minor), 29.175 min (major).

(3S,7'S)-1,7'-dibenzyl-5-chlorospiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (3c)

White solid, $37.2 \mathrm{mg}, 71 \%$ yield, $>20: 1 \mathrm{dr}$, 91% ee, m.p. $146.3-147.7^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+202\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} N M R\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.31-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.97(\mathrm{~m}, 2 \mathrm{H})$, $6.66(\mathrm{~s}, 1 \mathrm{H}), 5.91-5.89(\mathrm{~m}, 3 \mathrm{H}), 5.32(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=8.1,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=14.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, J=14.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $176.0,167.5,148.7,147.1,144.4,140.4,139.0,137.1,132.4,131.2,128.9,128.7,128.3,127.5,126.8,126.5$, $124.6,123.2,116.3,115.1,105.5,102.0,99.8,54.2,48.0,45.2,31.5$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{ClNO}_{5} \mathrm{Na}$: 546.1078 ; Found: 546.1078 . HPLC (Chiralpak AD-H column, n-hexane $/ i$ - $\mathrm{PrOH}=50 / 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=9.085 \mathrm{~min}$ (minor), 36.592 min (major).
(3S,7'S)-1,7'-dibenzyl-5-bromospiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (3d)

White solid, $35.8 \mathrm{mg}, 63 \%$ yield, $>20: 1 \mathrm{dr}$, 87% ee, m.p. $223.4-234.6^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+178\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.39-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.88-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.92$ $(\mathrm{s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=7.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34$ $(\mathrm{dd}, J=13.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=13.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.8,167.5,148.7$, $147.1,144.4,143.0,138.8,134.9,132.6,130.0,129.0,128.6,128.3,128.2,127.9,127.5,126.5,116.4,114.8$, 111.3, 105.3, 102.0, 99.9, 54.6, 47.7, 44.2, 31.6. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{BrNO} 5 \mathrm{Na}$: 590.0573; Found: 590.0589. HPLC (Chiralpak AD-H column, n-hexane $/ i$ - $\mathrm{PrOH}=75 / 25$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=37.534 \mathrm{~min}$ (minor), 41.221 min (major).

(3S,7'S)-1,7'-dibenzyl-5-nitrospiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (3e)

White solid, $32.0 \mathrm{mg},>20: 1 \mathrm{dr}, 60 \%$ yield, $>99 \%$ ee, m.p. $156.3-157.6^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}+242\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.13(\mathrm{dd}, J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.99-6.97(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 5.88(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.88(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=14.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=14.6,6.2 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.5,167.2,149.2,149.0,147.1,144.5,143.9,138.4,134.4,129.3$, 128.7, 128.6, 128.4, 128.2, 127.7, 126.4, 126.3, 120.9, 114.0, 109.4, 104.8, 102.1, 100.1, 54.2, 47.3, 44.6, 31.9. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{7}$: 535.1500; Found: 535.1491. HPLC (Chiralpak AD-

H column, n-hexane $/ i-\mathrm{PrOH}=55 / 45$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=15.603 \mathrm{~min}($ minor $), 19.308$ \min (major).
(3S,7'S)-1,7'-dibenzyl-5-methylspiro[indoline-3, $8^{\prime}-[1,3]$ dioxolo $[4,5-g]$ chromene]-2,6'(7'H)-dione (3f)

White solid, $45.8 \mathrm{mg}, 91 \%$ yield, $>20: 1 \mathrm{dr}$, 90% ee, m.p. $234.1-235.3^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+215\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.33-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68$ $(\mathrm{s}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J$ $=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=7.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{dd}, J=$ $14.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.3,168.0,148.4,147.2,144.2,141.7,139.5,135.5$, $133.5,130.0,129.0,128.9,128.7,128.5,128.2,128.0,127.9,127.5,126.2,125.3,115.7,109.7,105.7,101.8$, 99.7, 54.6, 48.0, 44.1, 31.5, 21.1. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na}: 526.1624$; Found: 526.1637. HPLC (Chiralpak AD-H column, n-hexane $/ i-\mathrm{PrOH}=50 / 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=12.628 \mathrm{~min}$ (minor), 18.135 min (major).
(3S,7'S)-1,7'-dibenzyl-5-methoxyspiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (3g)

White solid, $48.7 \mathrm{mg}, 92 \%$ yield, $>20: 1 \mathrm{dr}, 90 \%$ ee, m.p. $225.1-226.2^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{18}+183\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=4: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.33-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.81-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J$ $=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{dd}, J=7.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=13.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=$ 13.7, $2.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.1,167.9,156.7,148.5,147.1,144.3,139.5,137.4$, $135.5,129.2,128.9,128.8,128.2,127.9,127.5,126.2,115.5,114.5,111.3,110.6,105.7,101.9,99.7,55.8$, 55.0, 48.0, 44.2, 31.5. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{Na}: 542.1574$; Found: 542.1576. HPLC (Chiralpak AD-H column, n-hexane $/ i-\mathrm{PrOH}=50 / 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=20.042 \mathrm{~min}$ (minor), $34.554 \min$ (major).
(3S,7'S)-1,7'-dibenzyl-5-phenylspiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (3h)

White solid, $43.9 \mathrm{mg},>20: 1 \mathrm{dr}, 78 \%$ yield, 88% ee, m.p. $121.4-122.9^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}+245\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.49(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.26(\mathrm{~m}, 10 \mathrm{H}), 7.20(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.93-$ $6.89(\mathrm{~m}, 3 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 5.85-5.82(\mathrm{~m}, 2 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 3.42-3.34(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{dd}, J=$ $13.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.4,168.0,148.5,147.2,144.3,143.4,140.1,139.5$, $137.2,135.4,129.0,128.9,128.8,128.6,128.5,128.3,128.1,127.6,127.4,126.8,126.4,123.5,115.4,110.2$, 105.6, 101.9, 99.8, 54.7, 48.1, 44.3, 31.6. HRMS (ESI) $m / z: ~[M+H]^{+}$Calcd. for $\mathrm{C}_{37} \mathrm{H}_{28} \mathrm{NO}_{5}$: 566.1962; Found: 566.1955. HPLC (Chiralpak IC column, n-hexane $/ i-\mathrm{PrOH}=30 / 70$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): t_{R} $=31.188 \mathrm{~min}$ (minor), 42.298 min (major).
(3S,7'S)-1,7'-dibenzyl-6-fluorospiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (3i)

White solid, $43.6 \mathrm{mg},>20: 1 \mathrm{dr}, 86 \%$ yield, 95% ee, m.p. $110.1-112.6^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}+228\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=6: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.77-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.60-6.58(\mathrm{~m}, 1 \mathrm{H}), 5.93-5.90(\mathrm{~m}, 3 \mathrm{H}), 4.87(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.80(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=14.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=14.0,3.3 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.6,167.7,148.6,147.1,145.6,145.6,144.3,139.2,134.8,129.1$, $128.8,128.3,128.2,127.5,126.4,125.8,125.7,123.3,123.3,115.2,110.2,110.0,105.4,101.9,99.8,98.9$, 98.7, 54.2, 48.1, 44.3, 31.5. ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-108.93$ (s). HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{Calcd}$. for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{FNO}_{5}$: 508.1555; Found: 508.1550. HPLC (Chiralpak AD-H column, n-hexane $/ i$ - $\mathrm{PrOH}=50 / 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=13.582 \mathrm{~min}$ (minor), 16.532 min (major).

(3S,7'S)-1,7'-dibenzyl-6-chlorospiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (3j)

White solid, $48.9 \mathrm{mg}, 78 \%$ yield, $>20: 1,94 \%$ ee, m.p. $236.9-237.7^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{18}+186\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.36-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.92(\mathrm{~m}$, $2 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=7.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=13.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=13.9,3.1 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 175.3,167.6,148.7,147.1,145.2,144.4,139.1,135.6,134.8,129.1$, $128.8,128.3,128.2,127.4,126.4,125.5,123.7,114.9,110.6,105.4,102.0,99.9,54.2,47.9,44.3,31.5$.

HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{ClNO}_{5} \mathrm{Na}$: 546.1078 ; Found: 546.1076. HPLC (Chiralpak AD-H column, n-hexane $/ i$ - $\operatorname{PrOH}=50 / 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=11.605 \mathrm{~min}($ major $), 14.283$ \min (minor).
(3S,7'S)-1,7'-dibenzyl-6-bromospiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (3k)

White solid, $39.8 \mathrm{mg}, 70 \%$ yield, $>20: 1 \mathrm{dr}$, 93% ee, m.p. $245.7-247 .{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{18}+238\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.36-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.20(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-$ $6.91(\mathrm{~m}, 3 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=7.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=13.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=13.9,3.3 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 175.1,167.5,148.7,147.1,145.4,144.4,139.1,134.8,129.1,128.7,128.3$, $128.2,127.4,127.0,126.6,126.4,125.8,123.4,114.8,113.3,105.4,102.0,99.9,54.3,47.9,44.2,31.5$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{BrNO}_{5} \mathrm{Na}: 590.0573$; Found: 339.0559. HPLC (Chiralpak AD-H column, n-hexane $/ i-\mathrm{PrOH}=50 / 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=11.288 \mathrm{~min}($ minor $), 14.784$ \min (major).
(3S,7'S)-1,7'-dibenzyl-6-phenylspiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (3I)

White solid, $48.0 \mathrm{mg},>20: 1 \mathrm{dr}, 85 \%$ yield, 96% ee, m.p. $133.3-1347{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}+219\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.50-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.09(\mathrm{~m}$, $4 \mathrm{H}), 7.04(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.93-5.91(\mathrm{~m}, 2 \mathrm{H}), 4.95$ $(\mathrm{d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}) 3.44-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=14.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}$, $J=14.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.5,167.9,148.5,147.2,144.7,144.3,143.2,140.4$, $139.4,135.4,129.0,129.0,128.8,128.3,128.0,128.0,127.5,127.2,126.9,126.3,124.8,122.7,115.5,108.7$, 105.7, 101.9, 99.8, 54.5, 48.2, 44.2, 31.6. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{37} \mathrm{H}_{28} \mathrm{NO}_{5}$: 566.1962; Found: 566.1954. HPLC (Chiralpak IC column, n-hexane $/ i-\operatorname{PrOH}=35 / 65$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): t_{R} $=36.503 \mathrm{~min}$ (minor), 39.938 min (major).
(3S,7'S)-1,7'-dibenzyl-7-fluorospiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (3m)

White solid, $44.7 \mathrm{mg}, 88 \%$ yield, $>20: 1 \mathrm{dr}, 92 \%$ ee, m.p. $237.1-238.4^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{18}+54\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.35-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.14-7.01(\mathrm{~m}, 5 \mathrm{H}), 6.92-6.86(\mathrm{~m}, 3 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{dd}, J=6.5,1.2 \mathrm{~Hz}, 2 \mathrm{H})$, $5.86(\mathrm{~s}, 1 \mathrm{H}), 5.03-4.95(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{dd}, J=7.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=14.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J$ $=14.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.1,167.5,148.9,148.7,147.1,146.4,144.3,139.1$, $136.6,131.1,131.1,131.0,130.9,128.8,128.7,128.3,127.9,127.8,127.8,126.4,124.6,124.5,120.5,120.5$, $118.0,117.8,115.0,105.5,102.0,99.8,54.8,54.8,48.0,45.7,45.7 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-131.94$ (s). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{FNO}_{5} \mathrm{Na}$: 530.1374; Found: 530.1347. HPLC (Chiralpak $\mathrm{AD}-\mathrm{H}$ column, n-hexane $/ i-\mathrm{PrOH}=50 / 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=10.182 \mathrm{~min}($ minor $)$, 29.873 min (major).
(3S,7'S)-1,7'-dibenzyl-7-chlorospiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (3n)

White solid, $49.3 \mathrm{mg}, 94 \%$ yield, $>20: 1 \mathrm{dr}$, 86% ee, m.p. $156.8-157.5^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+194\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} N M R\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.32-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.18-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.93-$ $5.91(\mathrm{~m}, 3 \mathrm{H}), 5.33(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=8.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J$ $=14.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, J=14.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.0,167.5,148.7$, $147.1,144.4,140.4,139.0,137.1,132.4,131.2,128.9,128.7,128.3,127.5,126.8,126.5,124.6,123.2,116.3$, $115.2,105.5,102.0,99.8,54.3,48.0,45.2,31.5$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{ClNO}_{5} \mathrm{Na}:$ 546.1078; Found: 546.1078. HPLC (Chiralpak AD-H column, n-hexane $/ i$ - $\mathrm{PrOH}=40 / 60$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=8.280 \mathrm{~min}($ minor $), 30.610 \mathrm{~min}$ (major).
(3S,7'S)-1,7'-dibenzyl-7-bromospiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (3o)

White solid, $47.7 \mathrm{mg}, 84 \%$ yield, $>20: 1 \mathrm{dr}$, $88 \% \mathrm{ee}$, m.p. $196.3-198.1^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{18}+179\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.07(\mathrm{~m}, 9 \mathrm{H}), 7.00(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 5.90(\mathrm{~s}$, $1 \mathrm{H}), 5.37(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=8.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=13.9$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=13.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.1,167.4,148.7,147.1,144.4$, $141.8,139.0,137.0,135.8,131.6,128.9,128.7,128.3,127.4,126.6,126.5,125.0,123.8,115.2,105.4,103.4$, 102.0, 99.8, 54.2, 48.1, 44.8, 31.5. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{BrNO}_{5} \mathrm{Na}: 590.0573$; Found: 590.0575. HPLC (Chiralpak AD-H column, n-hexane $/ i-\mathrm{PrOH}=40 / 60$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=8.294 \mathrm{~min}($ minor $), 30.418 \mathrm{~min}$ (major).
(3S,7'S)-1,7'-dibenzyl-7-(trifluoromethyl)spiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)dione (3p)

White solid, $36.5 \mathrm{mg},>20: 1 \mathrm{dr}$, 66% yield, 98% ee, m.p. $107.5-108.9^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}+102\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=6: 1) \cdot{ }^{1} \mathrm{H} N \mathrm{NRR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.06(\mathrm{~m}, 11 \mathrm{H}), 6.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.94-5.89(\mathrm{~m}, 3 \mathrm{H})$, $5.21(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=14.2,7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.31(\mathrm{dd}, J=14.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.5,167.2,148.8,147.2,144.4,142.5$, 138.7, 135.8, 131.1, 128.8, 128.4, 128.4, 127.2, 126.5, 126.0, 123.2, 114.8, 105.2, 102.0, 100.0, 52.9, 47.9, 45.9, 31.6. ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-54.91$ (s). HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{5}$: 558.1523; Found: 558.1518. HPLC (Chiralpak IC column, n-hexane $/ i-\mathrm{PrOH}=50 / 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=6.272 \mathrm{~min}$ (minor), 17.414 min (major).
(3S,7'S)-1,7'-dibenzyl-7-methylspiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (3q)

Yellow solid, $45.3 \mathrm{mg}, 90 \%$ yield, $>20: 1 \mathrm{dr},>99 \%$ ee, m.p. $106.3-107.9^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{18}+268\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.31-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.03(\mathrm{~m}, 10 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J$ $=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=13.7,8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.36 - $2.34(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3,167.9,148.4,147.2,144.2,142.5,139.4,137.3$, $133.8,129.1,129.0,128.3,127.4,126.4,125.7,123.9,122.4,120.8,116.1,105.8,101.9,99.7,54.1,48.3$, 45.3, 31.5, 18.9. HRMS (ESI): [M+Na] Calcd. for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na}$: 526.1624; Found: 526.1637. HPLC
(Chiralpak AD-H column, n-hexane $/ i-\mathrm{PrOH}=60 / 40$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=11.684 \mathrm{~min}$ (minor), 50.528 min .(major)

(3S,7'S)-1,7'-dibenzyl-5,7-dimethylspiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione

 (3r)

White solid, $43.5 \mathrm{mg}, 84 \%$ yield, $>20: 1 \mathrm{dr}, 92 \%$ ee, m.p. $124.3-125.6^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{18}+208\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.30-7.10(\mathrm{~m}, 8 \mathrm{H}), 7.04-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{dd}, J$ $=10.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.17(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=8.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ $(\mathrm{dd}, J=13.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=13.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.3,168.0,148.4,147.2,144.2,140.0,139.6,137.4,134.2,133.5,129.0,128.9,128.8,128.2$, 127.4, 126.3, 125.8, 123.1, 120.5, 116.3, 105.8, 101.9, 99.7, 54.1, 48.2, 45.2, 31.5, 20.8, 18.7. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{Na}$: 540.1781 ; Found: 540.1775. HPLC (Chiralpak IC column, n-hexane $/ i$ $\operatorname{PrOH}=40 / 60$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=36.632 \mathrm{~min}($ minor $), 50.335 \mathrm{~min}$ (major)
(3S,7'S)-7'-benzyl-1-methylspiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (3s)

Yellow solid, $26.9 \mathrm{mg}, 65 \%$ yield, $>20.1 \mathrm{dr}, 97 \%$ ee, m.p. $223.9-224.3^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+222\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=6: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.08(\mathrm{~m}, 5 \mathrm{H}), 6.99-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 3.35$ (dd, $J=8.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.12(\mathrm{~m}, 4 \mathrm{H}), 2.23(\mathrm{dd}, J=13.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.2,168.0,148.4,147.1,145.1,144.1,139.2,130.0,129.0,128.2,128.1,126.3,124.5,123.8,115.5$, 108.9, 105.8, 101.8, 99.7, 54.6, 47.8, 31.3, 26.5. HRMS (ESI): [M+Na] ${ }^{+}$Calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{Na}: 436.1155$; Found: 436.1155. HPLC (Chiralpak AD-H column, n-hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ 254 nm): $\mathrm{t}_{\mathrm{R}}=14.382 \mathrm{~min}$ (minor), 17.281 min (major).
(3S,7'S)-7'-benzyl-1-hexylspiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (3t)

Reddish brown liquid, $40.1 \mathrm{mg}, 83 \%$ yield, $>20: 1 \mathrm{dr}, 91 \% \mathrm{ee},[\alpha]_{\mathrm{D}}^{19}+236\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=7: 1$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-$ $7.39(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.06(\mathrm{~m}, 5 \mathrm{H}), 7.01-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=16.9,1.1 \mathrm{~Hz}$, 2H), $3.73-7.61(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{dd}, J=8.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=13.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=13.8$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.26(\mathrm{~m}, 6 \mathrm{H}), 0.85-0.82(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $175.1,168.0,148.4,147.1,144.6,144.2,139.5,129.9,128.9,128.3,128.3,126.3,124.6,123.6,115.6,109.3$, $105.7,101.9,99.6,54.6,47.9,40.3,31.4,31.3,27.4,26.5,22.5,14.0$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{Na}$: 546.1078 ; Found: 546.1076. HPLC (Chiralpak IC column, n-hexane $/ i$ - $\mathrm{PrOH}=50 / 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=33.486 \mathrm{~min}$ (minor), 43.341 min (major).

(3S,7'S)-1-allyl-7'-benzylspiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (3u)

Yellow solid, $28.1 \mathrm{mg}, 64 \%$ yield, $>20: 1 \mathrm{dr}, 84 \%$ ee, m.p. $182.7-184.6^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+303\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=7: 1$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.08(\mathrm{~m}, 5 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 3 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 5.87$ (s, 1H), $5.85-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.22(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{dd}, J=8.3,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.18(\mathrm{dd}, J=13.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=13.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.9,167.9$, $148.5,147.2,144.3,144.2,139.4,130.9,129.8,128.9,128.3,128.1,126.3,124.5,123.8,118.2,115.4,109.9$, 105.7, 101.9, 99.7, 54.6, 48.0, 42.5, 31.4. HRMS (ESI): [M+Na] ${ }^{+}$Calcd. for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{Na}: 462.1311$; Found: 462.1310. HPLC (Chiralpak AD-H column, n-hexane $/ i-\mathrm{PrOH}=48 / 52$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=9.128 \mathrm{~min}$ (minor), 11.622 min (major).

(3S,7'S)-7'-benzyl-1-tritylspiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (3v)

White solid, $33.4 \mathrm{mg}, 52 \%$ yield, $>20: 1 \mathrm{dr}, 91 \%$ ee, m.p. $278.9-280.3^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+115\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=4: 1$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.46-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 9 \mathrm{H}), 7.08-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.98-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.71(\mathrm{~m}, 2 \mathrm{H})$, $6.64(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=12.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{dd}, J=7.8,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.87(\mathrm{dd}, J=14.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{dd}, J=14.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.2$, $167.8,148.3,147.1,144.7,144.2,141.8,139.9,128.9,128.8,128.6,128.1,127.8,127.0,126.0,123.9,123.3$, 116.4, 115.7, 105.4, 101.9, 99.8, 74.9, 54.9, 48.1, 31.3. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{43} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{Na}$:
664.2094; Found: 664.2094. HPLC (Chiralpak IC column, n-hexane $/ i-\operatorname{PrOH}=50 / 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=10.506 \mathrm{~min}$ (minor), 15.852 min (major).
(3S,7'S)-1-benzyl-7'-(2-fluorobenzyl)spiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (4a)

White solid, $35.0 \mathrm{mg}, 69 \%$ yield, $5: 1 \mathrm{dr}$, 91% ee, m.p. $105.2-106.7^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+254\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} N \mathrm{NRR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.34-7.25(\mathrm{~m}, 6 \mathrm{H}$, major + minor $), 7.22-7.05(\mathrm{~m}, 4 \mathrm{H}$, major + minor $), 6.99-6.80(\mathrm{~m}, 3 \mathrm{H}$, major + minor), $6.68(\mathrm{~s}, 1 \mathrm{H}), 5.93-5.89(\mathrm{~m}, 3 \mathrm{H}$, major + minor $), 4.95-4.82(\mathrm{~m}, 2 \mathrm{H}$, major + minor $), 3.56(\mathrm{dd}, J=$ 8.7, $3.3 \mathrm{~Hz}, 1 \mathrm{H}$, major), 3.39 (dd, $J=8.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 3.22 (dd, $J=13.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 3.10 (dd, $J=13.9,8.8 \mathrm{~Hz}, 1 \mathrm{H}$, major), $2.40(\mathrm{dd}, J=13.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}$, major), 2.21 ($\mathrm{d}, J=13.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, minor). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (major + minor) $175.4,168.0,167.8,162.2,159.7,148.5,147.2,147.1,144.3$, $144.2,143.9,139.4,135.4,132.3,132.3,129.8,129.7,129.0,128.9,128.3,128.3,128.2,128.1,128.0,127.6$, $127.5,126.3,125.9,125.8,124.9,124.5,123.9,123.9,123.8,123.7,115.5,115.5,114.9,114.7,110.1,109.8$, $105.7,101.9,99.7,54.6,48.1,45.7,44.1,31.4,29.7,26.0 .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.20$ (s). HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{FNO}_{5} \mathrm{Na}$: 530.1374; Found: 530.1374. HPLC (Chiralpak IC column, n-hexane $/ i-\mathrm{PrOH}=40 / 60$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=41.119 \mathrm{~min}$ (minor), 56.525 min (major).
(3S,7'S)-1-benzyl-7'-(2-chlorobenzyl)spiro[indoline-3, $\mathbf{8}^{\prime}-[1,3]$ dioxolo $[4,5-g]$ chromene $]-2,6^{\prime}\left(7^{\prime} H\right)$-dione (4b)

White solid, $37.7 \mathrm{mg}, 72 \%$ yield, $10: 1 \mathrm{dr}$, $>99 \%$ ee, m.p. $216.4-217.6^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+285\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} N \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.33-7.22(\mathrm{~m}, 6 \mathrm{H}$, major + minor $), 7.16-7.09(\mathrm{~m}, 3 \mathrm{H}$, major + minor $), 7.05-6.96(\mathrm{~m}, 3 \mathrm{H}$, major + minor), $6.87-6.82(\mathrm{~m}, 1 \mathrm{H}$, major + minor $), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.92-5.90(\mathrm{~m}, 3 \mathrm{H}$, major + minor $), 4.98-4.82$ ($\mathrm{m}, 2 \mathrm{H}$, major + minor), 3.73 (dd, $J=8.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}$, major), $3.39(\mathrm{dd}, J=8.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $3.28-$ $3.20(\mathrm{~m}, 1 \mathrm{H}$, major + minor), $2.49(\mathrm{dd}, J=14.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}$, major), 2.21 (dd, $J=13.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (major + minor) $175.4,167.6,148.5,147.2,144.2,143.9,136.0,135.4,133.5$, 132.7, 129.7, 129.1, 129.0, 128.9, 128.3, 128.0, 127.9, 127.5, 127.4, 127.4, 126.5, 125.4, 123.4, 115.4, 109.8, 105.7, 101.9, 99.7, 54.6, 44.6, 44.2, 30.3. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{ClNO}_{5} \mathrm{Na}: 546.1078$;

Found: 546.1075. HPLC (Chiralpak IC column, n-hexane $/ i-\mathrm{PrOH}=50 / 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}): \mathrm{t}_{\mathrm{R}}=38.842 \mathrm{~min}$ (major).
(3S,7'S)-1-benzyl-7'-(2-bromobenzyl)spiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (4c)

White solid, $35.8 \mathrm{mg}, 63 \%$ yield, $>20.1 \mathrm{dr}$, 92% ee, m.p. $222.2-224.0^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+176\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.35-7.21(\mathrm{~m}, 7 \mathrm{H}), 7.07-6.91(\mathrm{~m}, 5 \mathrm{H}), 6.83(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 5.92-5.90(\mathrm{~m}, 3 \mathrm{H}), 4.97$ $(\mathrm{d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=8.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=14.4,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50(\mathrm{dd}, J=14.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.4,167.6,148.5,147.1,144.3,143.8$, $137.6,135.4,132.6,132.4,129.7,129.0,128.1,128.0,127.6,127.3,127.1,125.4,123.9,123.4,115.4,109.8$, 105.7, 101.9, 99.7, 54.5, 44.6, 44.2, 32.6. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{BrNO} 5 \mathrm{Na}: 590.0573$; Found: 590.0582. HPLC (Chiralpak IC column, n-hexane $/ i-\mathrm{PrOH}=50 / 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ nm): $\mathrm{t}_{\mathrm{R}}=26.192 \mathrm{~min}$ (minor), 39.859 min (major).
(3S,7'S)-1-benzyl-7'-(2-methylbenzyl)spiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (4d)

White solid, $48.3 \mathrm{mg}, 96 \%$ yield, $>20: 1 \mathrm{dr}, 95 \%$ ee, m.p. $224.7-225.8^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+185\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.32-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.86(\mathrm{~m}, 5 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 5.88$ $(\mathrm{s}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=8.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=$ $14.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=14.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.4,167.7$, $148.5,147.3,144.3,144.0,137.2,136.1,135.4,130.2,129.8,129.2,129.0,128.0,128.0,127.6,126.3,125.8$, $124.8,123.7,115.3,110.0,105.8,101.9,99.7,54.7,46.5,44.2,28.4,19.6$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$. for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na}$: 526.1624 ; Found: 526.1605. HPLC (Chiralpak IC column, n-hexane $/ i$ - $\mathrm{PrOH}=30 / 70$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=22.512 \mathrm{~min}($ minor $), 28.566 \mathrm{~min}$ (major).
(3S,7'S)-1-benzyl-7'-(2-methoxybenzyl)spiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)dione (4e)

Yellow solid, $41.0 \mathrm{mg}, 79 \%$ yield, $>20: 1 \mathrm{dr}, 95 \%$ ee, m.p. $227.4-229.1^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+290\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=3: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.34-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.16-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.64(\mathrm{~m}$, 2H), 5.91 (s, 2H), $5.89(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.64(\mathrm{~m}, 4 \mathrm{H})$, $3.05(\mathrm{dd}, J=13.5,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=13.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.6,168.1$, $157.0,148.4,147.3,144.1,144.0,135.5,132.1,129.5,128.9,128.1,127.9,127.7,127.5,126.9,125.2,123.0$, 120.3, 115.8, 109.7, 109.6, 105.7, 101.8, 99.6, 54.7, 54.7, 44.7, 44.1, 27.5. HRMS (ESI): [M+Na] ${ }^{+}$Calcd. for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{Na}$: 542.1574; Found: 542.1573. HPLC (Chiralpak IC column, n-hexane $/ i-\operatorname{PrOH}=40 / 60$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=30.027 \mathrm{~min}($ minor $), 44.550 \mathrm{~min}($ major $)$.
(3S,7'S)-1-benzyl-7'-(3-chlorobenzyl)spiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (4f)

White solid, $39.8 \mathrm{mg}, 76 \%$ yield, $4: 1 \mathrm{dr}, 91 \%$ ee, m.p. $171.6-172.9^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+222\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ (major + minor) $7.37-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.18-7.01(\mathrm{~m}, 4 \mathrm{H}), 7.01-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.03-5.75(\mathrm{~m}, 3 \mathrm{H}), 4.95-4.78(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{dd}, J=7.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=14.0,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=14.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (major + minor) 175.3, 175.2, 167.9, $167.8,148.6,148.5,147.2,147.1,144.4,144.3,144.2,144.1,141.3,139.4,135.4,133.9,130.0,129.8,129.5$, $129.0,129.0,128.9,128.3,128.1,128.0,128.0,127.8,127.6,127.5,127.1,126.5,126.3,124.5,123.8,115.5$, $115.4,110.1,110.0,105.7,105.6,101.9,101.9,99.8,54.6,54.4,48.1,47.8,44.1,31.4,31.3$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{ClNO}_{5} \mathrm{Na}$: 546.1078; Found: 546.1077. HPLC (Chiralpak IC column, n-hexane/i$\operatorname{PrOH}=50 / 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=27.774 \mathrm{~min}($ minor $), 30.624 \mathrm{~min}$ (major) .
(3S,7'S)-1-benzyl-7'-(3-bromobenzyl)spiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (4g)

White solid, $41.5 \mathrm{mg}, 73 \%$ yield, $>20: 1 \mathrm{dr}$, 97% ee, m.p. $219.1-220.7^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+268\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} N \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 7.33-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 5 \mathrm{H}), 6.98-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 5.92$ (s, 1H), $5.91-5.88(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=8.2,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.22(\mathrm{dd}, J=13.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=13.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.3$, $167.9,148.5,147.2,144.3,144.2,139.4,135.4,129.8,128.9,128.9,128.3,128.1,128.0,127.5,126.3,124.5$, $123.8,115.5,110.0,105.7,101.9,99.7,54.6,48.1,44.1,31.4$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{BrNO}_{5} \mathrm{Na}$: 590.0573; Found: 590.0573. HPLC (Chiralpak IC column, n-hexane $/ i$ - $\operatorname{PrOH}=40 / 60$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=27.388 \mathrm{~min}($ minor $), 34.310 \mathrm{~min}($ major $)$.
(3S,7'S)-1-benzyl-7'-(4-fluorobenzyl)spiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (4h)

White solid, $38.1 \mathrm{mg}, 75 \%$ yield, $>20: 1 \mathrm{dr}$, 99% ee, m.p. $132.2-134.1^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}+36\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.34-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.79(\mathrm{~m}, 5 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.92-5.90(\mathrm{~m}, 3 \mathrm{H}), 4.88(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=8.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=14.0,8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.20(\mathrm{dd}, J=14.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.2,167.9,162.7,160.2,148.5,147.1$, $144.3,144.2,135.3,135.0,135.0,130.5,130.4,129.9,129.0,128.1,128.0,127.5,124.4,123.8,115.4,115.1$, $114.9,110.1,105.6,101.9,99.8,54.5,48.2,44.1,30.7 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.69$ (s). HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{FNO}_{5}$: 530.1374; Found: 530.1386. HPLC (Chiralpak IC column, $n-$ hexane $/ i-\mathrm{PrOH}=50 / 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=25.812 \mathrm{~min}$ (minor), 30.158 min (major).

(3S,7'S)-1-benzyl-7'-(4-chlorobenzyl)spiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione

(4i)

White solid, $44.0 \mathrm{mg}, 84 \%$ yield, $>20: 1 \mathrm{dr}$, 90% ee, m.p. $219.6-220.6^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+231\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.31-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H})$, $4.89-4.81(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{dd}, J=7.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=13.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=13.8,2.2$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.2,167.9,148.6,147.1,144.4,144.1,137.8,135.3,132.1,130.3$, $129.9,129.0,128.3,128.0,128.0,127.5,124.4,123.9,115.4,110.1,105.6,101.9,99.7,54.5,47.9,44.1,30.9$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{ClNO}_{5} \mathrm{Na}$: 546.1078; Found: 546.1078. HPLC (Chiralpak IC
column, n-hexane $/ i$ - $\operatorname{PrOH}=50 / 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=26.579 \mathrm{~min}(\mathrm{minor}), 32.572$ \min (major).
(3S,7'S)-1-benzyl-7'-(4-bromobenzyl)spiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (4j)

White solid, $48.9 \mathrm{mg}, 86 \%$ yield, $>20: 1 \mathrm{dr}$, 93% ee, m.p. $205.3-206.4^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+243\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.34-7.21(\mathrm{~m}, 8 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H})$, $5.91-5.88(\mathrm{~m}, 3 \mathrm{H}), 4.89-4.80(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{dd}, J=8.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=14.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.19$ $(\mathrm{dd}, J=14.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.2,167.8,148.6,147.1,144.4,144.1,138.3$, $135.3,131.3,130.7,129.9,129.0,128.0,127.9,127.5,124.5,123.9,120.2,115.4,110.1,105.6,101.9,99.7$, 54.5, 47.9, 44.1, 31.0. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{BrNO}_{5} \mathrm{Na}$: 590.0573; Found: 590.0577. HPLC (Chiralpak IC column, n-hexane $/ i-\mathrm{PrOH}=50 / 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=28.066$ \min (minor), 34.420 min (major).
(3S,7'S)-1-benzyl-7'-(4-methylbenzyl)spiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)-dione (4k)

Yellow solid, $48.3 \mathrm{mg}, 96 \%$ yield, $>20: 1 \mathrm{dr}, 91 \%$ ee, m.p. $211.3-212.6^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+278\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} N \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.33-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 3 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.92$ $(\mathrm{s}, 1 \mathrm{H}), 5.89-5.86(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=8.3,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.16(\mathrm{dd}, J=13.9,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{dd}, J=13.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 175.4,168.0,148.5,147.2,144.3,144.2,136.4,135.8,135.4,129.8,129.0,129.0,128.8,128.2$, $128.0,127.5,124.5,123.8,115.5,110.0,105.7,101.9,99.7,54.6,48.2,44.1,31.0,21.0$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na}$: 526.1624; Found: 526.1624. HPLC (Chiralpak IC column, n-hexane/i$\operatorname{PrOH}=30 / 70$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=26.385 \mathrm{~min}($ minor $), 44.382 \mathrm{~min}$ (major) .
(3S,7'S)-1-benzyl-7'-(4-methoxybenzyl)spiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)dione (4I)

White solid, $47.8 \mathrm{mg}, 92 \%$ yield, $>20: 1 \mathrm{dr}$, 96% ee, m.p. $131.1-132.6^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+222\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=4: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.34-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.13(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.90-6.84(\mathrm{~m}, 3 \mathrm{H}), 6.69-6.66(\mathrm{~m}, 3 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 5.90$ (dd, $J=8.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{dd}, J=8.2$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=13.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dd}, J=13.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $175.3,168.0,158.1,148.5,147.2,144.2,144.2,135.4,131.5,130.0,129.8,128.9,128.3,127.9,127.4,124.4$, 123.8, 115.6, 113.7, 110.0, 105.7, 101.9, 99.7, 55.2, 54.6, 48.3, 44.1, 30.6. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{Na}$: 542.1574; Found: 542.1571. HPLC (Chiralpak IC column, n-hexane $/ i-\operatorname{PrOH}=50 / 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=40.512 \mathrm{~min}($ minor $), 62.047 \mathrm{~min}($ major $)$.
(3S,7'S)-1-benzyl-7'-(3,4-dimethoxybenzyl)spiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)dione (4 m)

White solid, $41.7 \mathrm{mg}, 76 \%$ yield, $>20: 1 \mathrm{dr}$, 91% ee, m.p. $175.6-176.7^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+167\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=3: 1) .{ }^{1} \mathrm{H} N \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.34-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.46-6.43(\mathrm{~m}, 2 \mathrm{H}), 5.92-5.90(\mathrm{~m}, 3 \mathrm{H}), 4.91(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{dd}, J=7.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=14.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dd}, J=14.0,3.2 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 175.3,168.2,148.5,148.5,147.4,147.1,144.3,144.1,135.4,132.1,129.7$, $129.0,128.1,128.0,127.5,124.6,123.6,120.5,115.6,112.4,111.0,110.0,105.6,101.9,99.7,55.9,55.6$, 54.5, 48.3, 44.1, 31.1. HRMS (ESI): [M+Na] Calcd. for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{NO}_{7} \mathrm{Na}: 572.1679$; Found: 572.1693. HPLC (Chiralpak AD-H column, n-hexane $/ i-\mathrm{PrOH}=60 / 40$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=30.667 \mathrm{~min}$ (minor), 35.297 min (major).
(3S,7'S)-1-benzyl-7'-(furan-2-ylmethyl)spiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)dione (4n)

White solid, $32.6 \mathrm{mg},>20: 1 \mathrm{dr}$, 68% yield, 89% ee, m.p. $103.6-104.4^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}-132\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 7.34-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.06-6.05(\mathrm{~m}, 1 \mathrm{H}), 5.93-5.88(\mathrm{~m}, 3 \mathrm{H}), 5.70(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=15.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=15.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.2,167.5,151.7,148.5,147.1,144.3,143.8,140.8,135.4,129.5,128.9,128.0,127.8$, $127.5,124.4,123.9,115.5,110.5,109.7,106.9,105.6,101.9,99.8,54.1,44.4,44.1,24.6$. HRMS (ESI) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{NO}_{6}$: 480.1442; Found: 480.1439. HPLC (Chiralpak AD-H column, n-hexane $/ i$ $\operatorname{PrOH}=50 / 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=15.442 \mathrm{~min}($ minor $), 41.772 \mathrm{~min}$ (major) .
(3S,7'S)-1-benzyl-7'-(thiophen-2-ylmethyl)spiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-2,6'(7'H)dione (40)

Deep red solid, $37.6 \mathrm{mg},>20: 1 \mathrm{dr}, 76 \%$ yield, 91% ee, m.p. $114.3-115.8^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}+89\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=5: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.33-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.77-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.93-5.91(\mathrm{~m}, 3 \mathrm{H}), 4.94-4.78(\mathrm{~m}, 2 \mathrm{H})$, $3.45-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.42(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.1,167.7,148.5,147.1,144.3$, $144.1,141.5,135.3,129.9,129.0,128.0,127.7,127.4,126.7,126.1,124.5,124.1,123.9,115.5,110.0,105.6$, 101.9, 99.8, 54.3, 48.3, 44.1, 31.6, 26.0, 22.7, 14.1. HRMS (ESI) $m / z:[M+H]^{+}$Calcd. for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{~S}$: 496.1213; Found: 496.1214. HPLC (Chiralpak AD-H column, n-hexane $/ i$ - $\mathrm{PrOH}=35 / 65$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=14.424 \mathrm{~min}$ (minor), 36.406 min (major).
(3S,4S)-1',3-dibenzylspiro[benzo[h]chromene-4,3'-indoline]-2,2'(3H)-dione (4q)

White solid, $48.7 \mathrm{mg}, 98 \%$ yield, $>20: 1 \mathrm{dr}, 98 \%$ ee, m.p. $107.1-108.2^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+246\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=7: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.32(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.22(\mathrm{~m}$, $6 \mathrm{H}), 7.16-7.07(\mathrm{~m}, 5 \mathrm{H}), 7.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.91$ $(\mathrm{d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=8.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=13.9,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.31(\mathrm{dd}, J=13.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.3,167.9,147.9,144.4,139.5,135.4$, $134.3,129.8,129.0,128.9,128.4,128.3,128.0,127.5,127.4,127.4,126.8,126.4,124.5,124.1,124.0,123.9$, 123.0, 121.9, 117.7, 110.1, 55.2, 48.2, 44.2, 31.5. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{NO}_{3}: 496.1907$;

Found: 496.1903. HPLC (Chiralpak IC column, n-hexane $/ i-\mathrm{PrOH}=60 / 40$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $n m) t_{R}=17.716 \mathrm{~min}$ (minor), 26.064 min (major).

4. Scale-up synthesis of product 3a

Under argon atmosphere, a flame-dried 50 mL Schlenk tube was charged with $1 \mathrm{a}(513.6 \mathrm{mg}, 1.0 \mathrm{mmol})$, $\mathbf{2 a}\left(421.6 \mathrm{mg}, 2.5 \mathrm{mmol}, 2.5\right.$ equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(977.5 \mathrm{mg}, 3.0 \mathrm{mmol}, 3.0$ equiv.) and Cat. D ($76 \mathrm{mg}, 0.02 \mathrm{mmol}$, $20 \mathrm{~mol} \%$). The tube was evacuated and backfilled with nitrogen for 3 times. Then, dry toluene (15 mL) was added to the mixture at $-40^{\circ} \mathrm{C}$. The resulting solution was continuously stirred at $-40^{\circ} \mathrm{C}$ for 24 h (monitored by TLC). The reaction mixtures were filtrated through flash silica gels to remove the inorganic salt and the solvent was removed in vacuo. The crude residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to obtain the product $\mathbf{3 a}(372.0 \mathrm{mg}, 76 \%$ yield, $>20: 1 \mathrm{dr}, 95 \% \mathrm{ee})$.

5. General procedure for the synthetic transformations of 3a

5.1 General procedure for the synthesis of 5a

To a 25 mL Schlenk reaction flask equipped with a magnetic stir bar, which was added $\mathrm{LiAlH}_{4}(15.2 \mathrm{mg}$, $0.4 \mathrm{mmol}, 2.0$ equiv.). The flask was sealed, evacuated, and backfilled with argon three times using standard Schlenk techniques, dry THF (2.0 mL) was added via syringe at $-20^{\circ} \mathrm{C}$. Then, a solution of $\mathbf{3 a}(97.9 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ in THF (1.0 mL) was slowly added via syringe. The reaction mixture was stirred for 2 h . After completion of the reaction (monitored by TLC), the reaction mixture was quenched with wet $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solid. The mixture was stirred for 1 h , filtered by celite and washed with ethyl acetate. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to afford the crude product which was used directly for next step.

To a 25 mL Schlenk reaction flask equipped with a magnetic stir bar, was added the above crude product ($\sim 0.20 \mathrm{mmol}$), PPh_{3} ($94.3 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.8$ equiv.). The flask was sealed, evacuated, and backfilled with argon three times using standard Schlenk techniques. Then, dry THF (2.0 mL) and diethyl azodicarboxylate
($52.3 \mathrm{mg}, 0.3 \mathrm{mmol}, 3.0$ equiv.) were added slowly at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 12 h . After completion of the reaction, the reaction mixture was concentrated under reduced pressure and the product was purified by column chromatography (petroleum ether/ethyl acetate $=10 / 1$) to afford the product $5 \mathbf{a}$ as a white solid ($29.5 \mathrm{mg}, 62 \%$ yield, $>20: 1 \mathrm{dr}, 94 \%$ ee).

(3S,7'S)-1,7'-dibenzyl-6',7'-dihydrospiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromen]-2-one (5a)

White solid, $29.5 \mathrm{mg}, 62 \%$ yield, $>20: 1 \mathrm{dr}$, 94% ee, m.p. $82.9-84.1^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}+182\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=10: 1$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.36-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.79-5.77(\mathrm{~m}, 3 \mathrm{H}), 5.00-4.91(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J$ $=10.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.60(\mathrm{~m}, 3 \mathrm{H}), 2.34-2.21(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.8,150.8$, $147.9,143.8,141.9,138.7,136.0,133.0,128.9,128.7,128.5,127.8,127.5,126.5,123.7,123.5,112.7,109.2$, 106.5, 101.1, 99.0, 64.5, 52.6, 44.1, 42.9, 32.7. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{31} \mathrm{H}_{2} \mathrm{NO}_{4} \mathrm{Na}: 498.1675$; Found: 498.1675. HPLC (Chiralpak IC column, n-hexane $/ i-\mathrm{PrOH}=60 / 40$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ nm): $\mathrm{t}_{\mathrm{R}}=12.825 \mathrm{~min}$ (minor), 17.415 min (major).
5.2 General procedure for the synthesis of $\mathbf{5 b}$

Under an argon atmosphere, a solution of $\mathrm{LiAlH}_{4}(22.8 \mathrm{mg}, 0.4 \mathrm{mmol}, 6.0$ equiv. $)$ in anhydrous THF (1.0 $\mathrm{mL})$ was added dropwise to a solution of $\mathbf{3 a}(49.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ in anhydrous THF $(1.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at room temperature under an argon atmosphere for 6 h . The reaction mixture was quenched with wet $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solid, filtered and extracted with ethyl acetate. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by column chromatography (petroleum ether/ethyl acetate $=7 / 1$) on silica to give the product $\mathbf{5 b}$ as a white solid (35.8 $\mathrm{mg}, 75 \%$ yield, $>20: 1 \mathrm{dr}, 94 \%$ ee).

6-((3S,3aS,8aS)-3,8-dibenzyl-2,3,8,8a-tetrahydro-3aH-furo[2,3-b]indol-3a-yl)benzo[d][1,3]dioxol-5-ol (5b)

White solid, $35.8 \mathrm{mg}, 75 \%$ yield, $>20: 1 \mathrm{dr}, 94 \%$ ee, m.p. $56.1-57.9^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}-30\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=7: 1$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68$ $-7.31(\mathrm{dd}, J=16.1,7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.04$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.88(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60$ $(\mathrm{d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.51(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.5$, $149.0,147.7,142.2,140.5,137.7,132.3,129.1,128.6,128.5,128.4,127.3,127.3,126.2,122.1,121.7,118.5$, 106.3, 104.2, 103.3, 101.3, 93.8, 62.1, 60.7, 49.2, 47.9, 32.7. HRMS (ESI): [M+Na] ${ }^{+}$Calcd. for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Na}$: 500.1832; Found: 500.1832. HPLC (Chiralpak OD-H column, n-hexane $/ i-\mathrm{PrOH}=87 / 13$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=17.823 \mathrm{~min}$ (minor), 22.594 min (major).

5.3 General procedure for the syntheses of $\mathbf{5 c}$ and $\mathbf{5 d}$

To a 25 mL Schlenk reaction flask equipped with a magnetic stir bar was added $\mathrm{LiAlH}_{4}(15.2 \mathrm{mg}, 0.4$ mmol, 2.0 equiv.). The flask was sealed, evacuated, and backfilled with argon three times using standard Schlenk techniques. Then, dry THF (2.0 mL) was added at $-20^{\circ} \mathrm{C}$ and a solution of $\mathbf{3 a}(97.9 \mathrm{mg}, 0.2 \mathrm{mmol})$ in THF (1.0 mL) was added. The reaction mixture was stirred for 2 h . After completion of the reaction (monitored by TLC), the reaction mixture was quenched with wet $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solid and was stirred for 1 h . The mixture was filtered by celite and washed with ethyl acetate. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to afford the crude product which was used directly for the next step.

To a solution of $\mathrm{NaH}(60 \%, 2.4$ equiv.) in DMF $(0.4 \mathrm{~mL})$ was slowly added a solution of the compound $3 \mathbf{3}(49.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ in DMF $(0.6 \mathrm{~mL})$ under the atmosphere of argon at $0^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and then a solution of allyl bromide ($36.3 \mathrm{mg}, 0.3 \mathrm{mmol}, 3.0$ equiv.) in DMF (0.5 mL) was added dropwise. The mixture was stirred at room temperature for 6 h . After the reaction was completed, the reaction was quenched with saturated brine and extracted with ethyl acetate three times. The organic layer was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel
(petroleum ether/ethyl acetate $=6 / 1$) to furnish the product $\mathbf{5 c}(51.6 \mathrm{mg}, 90 \%$ yield, $>20: 1 \mathrm{dr}, 93 \%$ ee) as a colorless oil

A stirred solution of $\mathbf{5 c}(39 \mathrm{mg}, 0.1 \mathrm{mmol})$ in toluene $(15 \mathrm{~mL})$ was degassed by three freeze-thaw cycles under argon atmosphere and Grubbs reagent Cat. $\mathrm{Ru}(4.6 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.05$ equiv.) was added at room temperature. The reaction mixture was degassed again by three freeze-thaw cycles and then was refluxed for 12 h . The reaction mixture was extracted with ethyl acetate three times. The organic layer was washed with water and saturated brine, dried over sodium sulfate, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1$) to afford the product $\mathbf{5 d}(24.0$ $\mathrm{mg}, 44 \%$ yield, $>20: 1 \mathrm{dr}, 94 \%$ ee) as a yellow oil.
(S)-3-((S)-1-(allyloxy)-3-phenylpropan-2-yl)-3-(6-(allyloxy)benzo[d][1,3]dioxol-5-yl)-1-benzylindolin-2-one (5c)

Colorless oil, $51.6 \mathrm{mg}, 90 \%$ yield, $>20: 1 \mathrm{dr}, 93 \%$ ee, $[\alpha]_{\mathrm{D}}^{19}-81\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=6: 1$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.95-6.93(\mathrm{~m}, 3 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 2 \mathrm{H}), 5.63-5.53(\mathrm{~m}, 2 \mathrm{H}), 5.14-5.05(\mathrm{~m}, 3 \mathrm{H}), 5.00-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.71$ $(\mathrm{d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.49(\mathrm{~m}, 1 \mathrm{H})$, $3.20(\mathrm{~s}, 1 \mathrm{H}), 2.51-2.42(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.8,152.1,147.1,143.7,141.8,140.9$, $136.6,134.9,133.4,133.0,128.9,128.7,128.0,128.0,127.6,127.5,125.6,123.7,122.4,121.5,117.8,116.3$, 108.4, 108.3, 101.4, 97.4, 71.6, 71.4, 70.8, 56.9, 46.1, 44.5, 35.5. HRMS (ESI): [M+Na] ${ }^{+}$Calcd. for $\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{Na}: 596.2407$; Found: 596.2407. HPLC (Chiralpak OD-H column, n-hexane $/ i-\mathrm{PrOH}=97 / 3$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=32.091 \mathrm{~min}($ minor $), 38.225 \mathrm{~min}($ major $)$.
(3R,12'S,Z)-1,12'-dibenzyl-6',9',11',12'-tetrahydrospiro[indoline-3,13'-[1,3]dioxolo[4',5':4,5]benzo-[1,2-g][1,6]dioxacycloundecin]-2-one (5d)

Yellow oil, $24.0 \mathrm{mg}, 44 \%$ yield, $>20: 1 \mathrm{dr}, 95 \% \mathrm{ee},[\alpha]_{\mathrm{D}}^{19}-16\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=10: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.97-6.90$ (m, 3H), $6.71(\mathrm{dd}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 6.54(\mathrm{~s}, 2 \mathrm{H}), 6.17-611(\mathrm{~m}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 5.74-5.67$
(m, 1H), $5.09(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J=12.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J=$ $12.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=12.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=$ $12.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=12.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=13.3,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=13.3,2.9 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.0,151.8,147.1,141.9,141.6,141.6,135.9,135.5,134.7,129.0$, $128.8,127.8,127.8,127.8,127.6,125.5,124.2,123.3,120.7,109.0,108.8,101.4,96.9,69.6,62.0,61.6,60.1$, 43.9, 41.1, 36.5. HRMS (ESI): [M+Na] Calcd. for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{Na}$: 568.2091; Found: 568.2091. HPLC (Chiralpak IC column, n-hexane $/ i-\mathrm{PrOH}=60 / 40$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=12.912 \mathrm{~min}$ (minor), 28.246 min (major).

6. Control experiments

6.1 Isolation and preparation of the ortho-quinone methides (o-QMs) 5e

Under an argon atmosphere, a flame-dried 25 mL Schlenk tube was charged with 1 a ($154.1 \mathrm{mg}, 0.3 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($879.3 \mathrm{mg}, 0.9 \mathrm{mmol}, 3.0$ equiv.). The tube was evacuated and backfilled with argon for 3 times. Then, dry toluene (5 mL) was added at $-40^{\circ} \mathrm{C}$. The resulting solution was stirred at $-40^{\circ} \mathrm{C}$ for 4 h (monitored by TLC). The reaction mixture was filtrated through flash silica gels to remove inorganic salt and the solvent was removed in vacuo. The crude residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=6: 1)$ to furnish the product $\mathbf{5 e}(321.6 \mathrm{mg}, 90 \%$ yield, $)$ as a purple solid.
(\boldsymbol{E})-1-benzyl-3-(6-oxobenzo[d][1,3]dioxol-5(6H)-ylidene)indolin-2-one (5e). Purple solid, 321.6 mg , $E / Z>20: 1,90 \%$ yield, m.p. $152.7-153.9^{\circ} \mathrm{C}$, purified by column chromatography on silica gel (petroleum ether/EtOAc $=6: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.18(\mathrm{~m}$, $6 \mathrm{H}), 6.91(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.8,169.2,159.5,150.3,144.2,136.5,135.8,132.7,130.6,128.8,127.8,127.6,127.4$, 127.2, 122.4, 122.0, 108.7, 102.8, 101.5, 101.1, 43.5. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{Na}$: 380.0892; Found: 380.0893.
6.2 Control experiment with isolated o-QMs 5e

Under an argon atmosphere, a flame-dried 25 mL Schlenk tube was charged with 5e ($35.7 \mathrm{mg}, 0.1 \mathrm{mmol}$, 2 ($42.2 \mathrm{mg}, 0.25 \mathrm{mmol}, 2.5$ equiv.) $\mathrm{Cs}_{2} \mathrm{CO}_{3}(48.9 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv.) and Cat. D ($7.6 \mathrm{mg}, 0.02 \mathrm{mmol}$, $20 \mathrm{~mol} \%$). The tube was evacuated and backfilled with argon for 3 times. Then, dry toluene (1.5 mL) was added quickly at $-40^{\circ} \mathrm{C}$. The resulting solution was stirred at $-40^{\circ} \mathrm{C}$ for 24 h (monitored by TLC). The reaction mixture was filtrated through flash silica gels to remove inorganic salt and the solvent was removed in vacuo. The crude residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to yield the product $\mathbf{3 a}(34.3 \mathrm{mg}, 70 \%$ yield, $>20: 1 \mathrm{dr}, 93 \%$ ee $)$.

7. Preparation for the Single Crystal of Compound 3b

In a 5 mL glass vial, the compound $\mathbf{3 b}(20 \mathrm{mg})$ was dissolved in $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ and then n-hexane $(4 \mathrm{~mL})$ was added slowly. The solution was kept aside for overnight, and the crystal was formed. The crystal was subjected for single-crystal XRD to determine the absolute configuration.

8. Single Crystal XRD Data of Compound 3b

Figure S1. ORTEP representation (20% thermal probability ellipsoids) of the crystal structure of compound 3b (CCDC 2324543)

Table S1. Crystallographic data and refinement details for compound 3b

Identification code	Compound 3b
Empirical formula	$\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{FNO}_{5}$
Formula weight	507.49
Temperature/K	150.00(10)
Crystal system	orthorhombic
Space group	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$
a / \AA	9.67378(10)
b / \AA	9.99752(9)
c / \AA	25.0687(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	2424.49(4)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.390
μ / mm^{-1}	0.824
$F(000)$	1056.0
Crystal size/mm ${ }^{3}$	$0.18 \times 0.14 \times 0.12$
Radiation	$\mathrm{Cu} K \alpha(\lambda=1.54184)$
2θ range for data collection $/{ }^{\circ}$	7.052 to 152.62
Index ranges	$-11 \leq h \leq 11,-12 \leq k \leq 11,-31 \leq l \leq 22$
Reflections collected	13770
Independent reflections	$4746\left[R_{\text {int }}=0.0257, R_{\text {sigma }}=0.0262\right]$
Data/restraints/parameters	4746/0/344
Goodness-of-fit on F^{2}	1.072
Final R indexes [$1>=2 \sigma(I)]$	$R_{1}=0.0291, w R_{2}=0.0741$
Final R indexes [all data]	$R_{1}=0.0317, w R_{2}=0.0752$
Largest diff. peak/hole / e \AA^{-3}	0.19/-0.13
Flack parameter	0.03(6)

9. References

[1] a) M. S. Kerr, J. Read de Alaniz and T. Rovis, J. Org. Chem. 2005, 70, 5725; b) P. C. Chiang, M. Rommel and J. W. Bode, J. Am. Chem. Soc. 2009, 131, 8714; c) S. Kobayashi, T. Kinoshita, H. Uehara, T. Sudo and I. Ryu, Org. Lett. 2009, 11, 3934; d) C. D. Campbell, C. J. Collett, J. E. Thomson, A. M. Slawin and A. D. Smith, Org. Biomol. Chem. 2011, 9, 4205; e) I. Piel, M. Steinmetz, K. Hirano, R. Frohlich, S. Grimme and F. Glorius, Angew. Chem. Int. Ed. 2011, 50, 4983; f) C. Zhao, F. Li and J. Wang, Angew. Chem. Int. Ed. 2016, 55, 1820; g) L. Dai, Z. H. Xia, Y. Y. Gao, Z. H. Gao and S. Ye, Angew. Chem. Int. Ed. 2019, 58, 18124; h) Y. Wu, M. Li, J. Sun, G. Zheng and Q. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202117340.
[2] a) W. Guo, B. Wu, X. Zhou, P. Chen, X. Wang, Y. G. Zhou, Y. Liu and C. Li, Angew. Chem. Int. Ed., 2015, 54, 4522; b) N. Kumar, J. Kaur, A. Kumar, N. Islam and S. S. Chimni, Asian J. Org. Chem., 2016, 5, 1334; c) P. Chen, K. Wang, W. Guo, X. Liu, Y. Liu and C. Li, Angew. Chem. Int. Ed., 2017, 56, 3689; d) L. Wang, Z. Huang, X. Guo, J. Liu, J. Dong and X. Xu, Chem. Commun., 2022, 58, 6433.
[3] a) T. Borg, J. Danielsson, M. Mohiti, P. Restorp and P. Somfai, Adv. Synth. Catal., 2011, 353, 2022; b) Y. Jing, C. G. Daniliuc, A. Studer, Org. Lett., 2014, 16, 4932; c) S. Wang, J. Izquierdo, C. RodríguezEscrich and M. A. Pericàs, ACS Catal., 2017, 7, 2780.
10. NMR Spectra of compounds $3 a-3 v, 4 a-4 o, 4 q$ and $5 a-5 e$
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 a}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 a}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 b}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{3 b}\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$

| | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | |

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 c}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 d}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 d}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 e}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 e}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 f}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 f}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 g}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 h}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 h}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 i}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 i}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{3 i}\left(\mathrm{CDCl}_{3}, 565 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 j}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 j}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 k}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $31\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 1}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 m}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 m}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{3 m}\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$

| | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | |

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 n}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 n}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 o}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 o}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 p}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 p}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$
${ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{3 p}\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$

| | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 q}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 q}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 r}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 r}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 s}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 t}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 u}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 v}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 v}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 a}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 a}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

$\left.\right|^{\text {ूigm }}$

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{4 a}\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 b}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 b}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 c}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

$\begin{array}{llllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 d}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 d}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

$\begin{array}{lllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 e}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 e}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

$\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 f}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 f}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 g}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

$\begin{array}{llllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 h}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 h}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{4 h}\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 i}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 i}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 j}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4} \mathbf{j}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 k}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 1}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 1}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 m}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$
 $\xrightarrow{\text { rariririraring }}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 m}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

V/|

$\begin{array}{llllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 n}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 n}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 o}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 o}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 q}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 q}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 a}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 a}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 b}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

$$
{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \text { COSY correlation of compound } \mathbf{5 b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)
$$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 c}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 d}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 e}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

11. HPLC Spectra of compounds 3a-3v, 4a-4o, 4q and 5a-5d

WWD1 A, Wavelength=220 nm (CZQ-QICZQ-5NO2-SHOU-0410-AD-45.D)					
mAU				\%	
$140-$					
$120-$					
$100-3 \mathrm{e}$					
$80-$					
$60-$					
$40-$					
20-1					
0	5	10	15	20	25
Peak	Processed	Retention	Peak area	Peak height	Peak area
	channel	time (min)	$\left(\mathrm{mAU}^{*} \mathrm{~s}\right)$	(mAU)	(\%)
1	PDA 220.0 nm	15.603	8.94669	$2.26344 \mathrm{e}-1$	0.0994
2	PDA 220.0 nm	19.308	8993.23828	152.75951	99.9006

Peak	Processed channel	Retention time (min)	Peak area $\left(\mathrm{mAU}^{*}\right)$	Peak height (mAU)	Peak area $(\%)$
1	PDA 254.0 nm	14.939	1.43572 e 4	421.01617	47.9185
2	PDA 254.0 nm	16.792	1.56045 e 4	384.70831	52.0815

Peak	Processed channel	Retention time (min)	Peak area $\left(\mathrm{mAU}^{*}\right)$	Peak height (mAU)	Peak area $(\%)$
1	PDA 254.0 nm	27.376	2.17413 e 4	307.34335	47.5057
2	PDA 254.0 nm	34.005	2.40244 e 4	4228.61296	52.4943

Peak	Processed channel	Retention time (min)	Peak area $\left(\mathrm{mAU}^{*}\right)$	Peak height (mAU)	Peak area $(\%)$
1	PDA 254.0 nm	26.579	1012.61975	14.10623	5.1156
2	PDA 254.0 nm	32.572	1.87822 e 4	195.06737	94.8844

(CZQ-9ICZQ-3-4-OME-RACE-0429-1.D)

Peak	Processed channel	Retention time (min)	Peak area $\left(\mathrm{mAU}^{*}\right)$	Peak height (mAU)	Peak area $(\%)$
1	PDA 254.0 nm	17.716	239.68336	5.38165	1.1145
2	PDA 254.0 nm	26.064	2.12658 e 4	321.20316	98.8855

