Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information

Rh-Catalyzed Asymmetric Hydrogenation of Allylic Sulfones for Synthesis of

Chiral β -Ester Sulfones

Xiaoxue Wu,^a Qianling Guo,^a Guofu Zi,^a Yuping Huang,^{*b} and Guohua Hou^{*a}

[a]Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China

[b]Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China

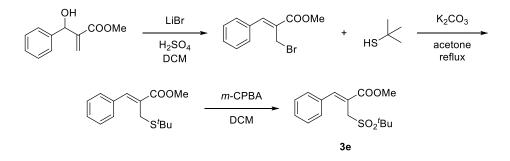
*E-mails: Guohua Hou: ghhou@bnu.edu.cn; Yuping Huang: huangyuping.ripp@sinopec.com.

Contents:

1. Experimental Section	. S2
2. General procedure for the synthesis of substrates 1, 3 and coumpounds 4i'	and
4 j '	S2
3. The characterization data for substrates 1 and 3	.85
4. General procedure for asymmetric hydrogenation of compound 1 and 3	S15
5. NMR, HPLC or SFC and HPLC, optical rotation and HRMS data of compound	ınds
2, 4 and coumpounds 4i' and 4j'	S17
6. References	.832
7. NMR, SFC and HPLC spectra	S34
8. X-ray crystallographic analysis of compound 2i S	135

1. Experimental Section

General Information: All the air or moisture sensitive reactions and manipulations were performed by using standard Schlenk techniques and in a nitrogen-filled glovebox. THF, dioxane and toluene were distilled from sodium benzophenone ketyl. DCM and DCE was distilled from calcium hydride. Anhydrous MeOH was distilled from magnesium. ¹H NMR and ¹³C NMR spectra were recorded on Bruker AV (400 MHz) spectrometers and JEOL JNM-ECX600P and JNM-ECS600 (400 MHz or 600 MHz) spectrometers. (CDC1₃ was the solvent used for the NMR analysis, with TMS as the internal standard). Optical rotation was determined using Autopol III Automatic polarimeter (Rudolph research Analyical). HPLC analysis was conducted on Agilent 1260 series instrument. SFC analysis was conducted on Agilent 1260 series instrument. HRMS were recorded on a Waters LCT Premier XE mass spectrometer with TOF.

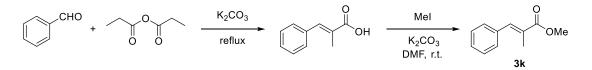

2. General procedure for the synthesis of substrates 1 and 3

General Procedure 1 and 3^[1-5]

$$\begin{array}{c} O \\ R^{1} \\ H \end{array} + \begin{array}{c} O \\ COOR^{2} \end{array} \xrightarrow{\text{DABCO}} \\ r.t. \end{array} \xrightarrow{\text{OH}} \\ R^{1} \\ \end{array} \xrightarrow{\text{COOR}^{2}} \begin{array}{c} R^{3}SO_{2}H \\ \hline EtOH/H_{2}O(1:1) \end{array} \xrightarrow{\text{R}^{1}} \begin{array}{c} COOR^{2} \\ SO_{2}R^{3} \\ 1 \text{ and } 3 \end{array}$$

Take the aldehydes (5.0 mmol), methyl acrylates (2.5 equiv.) and DABCO (1.0 equiv) in a 25 mL oven dried round bottom flask and seal with a rubber septum. Stir the resultant reaction mixture at room temperature under solvent free condition for 7-14 hours. Monitor the progress of the reaction was monitored by TLC. Admix the reaction mixture with ethyl acetate (50 mL). Wash the mixture successively with saturated solution of sodium bicarbonate (2 x 25 mL) and brine solution (2 x 25 mL). Dry the organic layer over anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by flash column chromatography to (PE:EA = 5:1) yield the Morita-Baylis-Hillman alcohols.

Dissolve phenyl- or methyl-substituted sulfinic acid (1.5 equiv) and Morita-Baylis-Hillman alcohols (1.0 equiv) in aqueous media 10.0 mL (ethanol/deionized water, V/V = 1/1). Stir the reaction mixture vigorously for 48 hours at 30 °C. After complete conversion, precipitate the product from the solvent. Extract the aqueous media with ethyl acetate (3 x 30 mL). Dry the combined organic layers over Na₂SO₄. Concentrate the combined organic layers by rotary evaporation. Purify the crude product via column chromatography (PE:EA = 3:1) to afford the corresponding allyl sulfones 1 and 3. General Procedure 3e, 3f, 3i, 3j and $3k^{[6-9]}$


Morita-Baylis-Hillman alcohols (1.0 equiv), LiBr (3.0 equiv) and H₂SO₄ (1.5 equiv) were stirred in dichloromethane for 16 hours. Na₂CO₃ (aq. sat.) was added and the mixture was extracted with DCM. The combined organic layers were dried over MgSO₄. Concentrate the combined organic layers by rotary evaporation. Purify the crude product via column chromatography (PE:EA = 20:1) to afford the corresponding allylic bromide.

To a solution of allylic bromide (1.0 equiv), *tert*-butyl mercaptan (2.0 equiv) and K_2CO_3 (2.0 equiv) in acetone were stirred by reflux for 3 hours. Monitor the progress of the reaction was monitored by TLC. NH₄Cl (aq. sat.,) was added and the mixture was extracted with DCM. The combined organic layers were dried over MgSO₄ and the volatiles were removed under reduced pressure. Purify the crude product via column chromatography (PE:EA = 20:1) to afford the corresponding allylic sulfide.

85% *m*-CPBA (3.0 equiv.) is added to a solution of allylic sulfide (1.0 mmol) in CH₂Cl₂ (15 mL), and the reaction is left under magnetic stirring at 20 °C for 18 hours. The solution is diluted with water (10 mL) and extracted with a 10% w/v solution of NaHCO₃ (3 x 20 mL) and NaCl saturated solution (20 mL), dried Na₂SO₄ and and the volatiles were removed under reduced pressure. Purify the crude product via column chromatography (PE:EA = 3:1) to afford the corresponding vinylic sulfone **3e**.

To a solution of allylic bromide (1.0 equiv), phenol (2.0 equiv) and K_2CO_3 (2.0 equiv) in acetone were stirred by reflux for 3 hours. Monitor the progress of the reaction was monitored by TLC. NH₄Cl (aq. sat.,) was added and the mixture was extracted with DCM. The combined organic layers were dried over MgSO₄ and the volatiles were removed under reduced pressure. Purify the crude product via column chromatography (PE:EA = 20:1) to afford the corresponding allyl phenyl ether **3f**.

Methyl (*Z*)-3-phenyl-2-((phenylsulfonyl)methyl)acrylate **1a** (3.0 mmol, 1.0 equiv) was dissolved in a mixture of 6 ml of tetrahydrofuran and 6 ml of water, and mixed with LiOH (5.0 equiv). The mixture was then stirred at 80°C. After 3 hours, the reaction mixture was acidified by adding one molar hydrochloric acid solution and extracted with EA (3×20 mL). The combined organic phases were dried over MgSO₄ and subsequently the solvent was removed in vacuum to obtain the acid as a white solid. Treat dropwise a solution of acid (1.0 equiv) in CH₂Cl₂ with EDCI (1.2 equiv) and DMAP (0.2 equiv) at 0 °C. Stir the resulting mixture at this temperature for 4 hours. Concentrate the reaction mixture in vacuo. Dissolve the residue in CH₂Cl₂. Separate the layers and extract the aqueous phase with CH₂Cl₂ (3 x 30 mL). Dry the combined organics over MgSO₄ and concentrate in vacuo. Purify the crude product via column chromatography (PE:EA = 3:1) to afford the corresponding sulfone **3i** or **4i**'.

Add appropriate anhydride (30.0 mmol, 1.6 equiv) to potassium carbonate (22.4 mmol, 1.2 equiv) at 0 °C. Add appropriate aromatic aldehyde (18.6 mmol, 1.0 equiv) after stirring for 5 min to mix up. Heat the mixture to reflux for 12 h. Add water and solid

Na₂CO₃ (3.0 g) to the above reaction mixture after cooling with an ice bath. Acidify the reaction mixture to pH 6.0 using concentrated HCl to obtain 2-methyl-3-phenylacrylic acid after filter the resultant yellow precipitate.

To a dried 50 mL flask, cinnamic acid (5.0 mmol, 1.0 equiv) was added to a stirred suspension of potassium carbonate (10.0 mmol, 2.0 equiv) in 15 mL DMF at room temperature. After 10 min, CH₃I (7.5 mmol, 1.5 equiv) was added slowly at ambient temperature while stirring, the reaction was stirred at room temperature under TLC analysis. After 5 h, water (20 mL) was added, and aqueous layer was extracted with ethyl acetate (3×50 mL). The combined organic layers were sequentially washed with 4 N hydrochloric acid and brine, dried over anhydrous MgSO₄ and concentrated in vacuo. The residue was purified by chromatography on silica gel (PE:EA = 10:1) to afford the desired product **3k**.

3. The characterization data for substrates 1 and 3

Methyl (*Z*)-3-phenyl-2-((phenylsulfonyl)methyl)acrylate (1a)

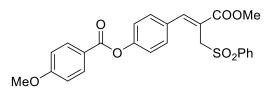
Purification by column chromatography (silica gel, PE:EA = 3:1, SO₂Ph Purification by column chromatography (silica gel, PE:EA = 3:1, $5 \times 22 \text{ cm}$) and recrystallization afforded the product as white solid; 1.23 g, yield: 78% (two steps); m.p. 64-66 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.95 (s, 1H), 7.87 – 7.85 (m, 2H), 7.63 – 7.60 (m, 1H), 7.51 – 7.47 (m, 4H), 7.39 – 7.37 (m, 3H), 4.49 (s, 2H), 3.59 (s, 3H). The analytical data are consistent with the literature.⁵

Methyl (*Z*)-2-((phenylsulfonyl)methyl)-3-(*p*-tolyl)acrylate (1b)

COOMe Purification by column chromatography (silica gel, PE:EA = SO_2Ph 3:1, 5 x 22 cm) and recrystallization afforded the product as white solid; 1.17g, yield: 71% (two steps); m.p. 96-98 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.93 (s, 1H), 7.88 – 7.86 (m, 2H), 7.63 – 7.60 (m, 1H), 7.52 – 7.49 (m, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 7.9 Hz, 2H), 4.50 (s, 2H), 3.56 (s, 3H), 2.38 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.0, 146.6, 140.3, 139.5, 133.7, 130.8, 129.5, 129.5, 129.0, 128.6, 119.8, 55.3, 52.3, 21.4. The analytical data are consistent with the literature.¹⁰

Methyl (*Z*)-3-(4-methoxyphenyl)-2-((phenylsulfonyl)methyl)acrylate (1c)

 $\begin{array}{l} \begin{array}{l} \label{eq:source} & \mbox{Purification by column chromatography (silica gel, PE:EA} \\ \mbox{MeO} & \mbox{SO}_2 \mbox{Ph} & = 3:1, 5 \ x \ 22 \ cm) \ afforded \ the \ product \ as \ pale \ yellow \ oil; \\ 1.20 \ g, \ yield: \ 0.69 \ g \ (two \ steps). \ ^1 \mbox{H NMR} \ (600 \ MHz, \ Chloroform-d) \ \delta \ 7.93 - 7.88 \ (m, \ 3H), \ 7.63 - 7.57 \ (m, \ 3H), \ 7.53 - 7.50 \ (m, \ 2H), \ 6.94 - 6.91 \ (m, \ 2H), \ 4.50 \ (s, \ 2H), \ 3.84 \ (s, \ 3H), \ 3.51 \ (s, \ 3H). \ ^{13} \ C \ NMR \ (151 \ MHz, \ Chloroform-d) \ \delta \ 167.3, \ 161.2, \ 146.4, \ 139.7, \ 133.8, \ 131.7, \ 129.1, \ 128.7, \ 126.3, \ 118.2, \ 114.4, \ 55.6, \ 55.5, \ 52.3. \ The \ analytical \ data \ are \ consistent \ with \ the \ literature. \ ^{10} \end{array}$


Methyl (Z)-3-(4-(benzyloxy)phenyl)-2-((phenylsulfonyl)methyl)acrylate (1d)

COOMe Purification by column chromatography (silica gel, PE:EA BnO SO₂Ph = 3:1, 5 x 22 cm) and recrystallization afforded the product as white solid; 1.27 g, yield: 60% (two steps); m.p. 104-105 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.91 (s, 1H), 7.89 – 7.87 (m, 2H), 7.61 – 7.56 (m, 3H), 7.51 – 7.48 (m, 2H), 7.45 – 7.43 (m, 2H), 7.42 – 7.40 (m, 2H), 7.37 – 7.34 (m, 1H), 7.01 – 6.98 (m, 2H), 5.11 (s, 2H), 4.52 (s, 2H), 3.52 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.1, 160.2, 146.2, 139.5, 136.4, 133.7, 131.6, 129.0, 128.7, 128.6, 128.2, 127.4, 126.4, 118.2, 115.2, 70.0, 55.4, 52.2. TOF-HRMS Calcd. for C₂₄H₂₃O₅S [M+H⁺]: 423.1261, found 423.1257.

(Z)-4-(3-methoxy-3-oxo-2-((phenylsulfonyl)methyl)prop-1-en-1-yl)phenyl benzoate (1e)

(Z)-4-(3-methoxy-3-oxo-2-((phenylsulfonyl)methyl)prop-1-en-1-yl)phenyl 4-

methoxybenzoate (1f)

Purification by column chromatography (silica gel, PE:EA = 3:1, 5 x 22 cm) and recrystallization afforded the product as

white solid; 1.45 g, yield: 62% (two steps); m.p. 123-124 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.22 – 8.21 (m, 2H), 7.96 (s, 1H), 7.88 – 7.87 (m, 2H), 7.68 – 7.62 (m, 2H), 7.60 – 7.58 (m, 2H), 7.55 – 7.52 (m, 4H), 7.26 – 7.24 (m, 2H), 4.51 (s, 2H), 3.61 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.8, 164.8, 152.0, 145.4, 139.2, 133.8, 131.3, 130.6, 130.2, 129.2, 129.1, 128.7, 128.5, 122.2, 121.0, 55.1, 52.4. TOF-HRMS Calcd. for C₂₅H₂₃O₇S [M+H⁺]: 467.1159, found 467.1157.

Methyl (Z)-3-(4-(((benzyloxy)carbonyl)oxy)phenyl)-2-((phenylsulfonyl)methyl)acrylate (**1g**)

CooMe Purification by column chromatography (silica gel, SO₂Ph PE:EA = 3:1, 5 x 22 cm) and recrystallization afforded the product as white solid; 1.33 g, yield: 57% (two steps); m.p. 112-113 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (s, 1H), 7.87 – 7.84 (m, 2H), 7.68 – 7.58 (m, 1H), 7.55 – 7.48 (m, 4H), 7.47 – 7.36 (m, 5H), 7.23 – 7.19 (m, 2H), 5.29 (s, 2H), 4.47 (s, 2H), 3.60 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.7, 153.2, 152.0, 145.1, 139.2, 134.5, 133.8, 131.4, 130.6, 129.1, 128.9, 128.7, 128.6, 128.5, 121.5, 121.2, 70.6, 55.0, 52.4. TOF-HRMS Calcd. for C₂₅H₂₃O₇S [M+H⁺]: 467.1159, found 467.1156. Methyl (*Z*)-3-(4-hydroxyphenyl)-2-((phenylsulfonyl)methyl)acrylate (**1h**)

COOMe Purification by column chromatography (silica gel, PE:EA $BO_2Ph = 3:1, 5 \times 22 \text{ cm}$) and recrystallization afforded the product as white solid; 1.25 g, yield: 75% (two steps); m.p. 74-75 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.92 (s, 1H), 7.90 – 7.88 (m, 2H), 7.64 – 7.62 (m, 1H), 7.54 – 7.51 (m, 4H), 6.87 (d, J = 8.6 Hz, 2H), 5.47 (br s, 1H), 4.55 (s, 2H), 3.51 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.3, 158.0, 146.8, 139.2, 133.9, 131.9, 129.1, 128.6, 125.9, 117.4, 115.9, 55.5, 52.3. TOF-HRMS Calcd. for C₁₇H₁₇O₅S [M+H⁺]: 333.0791, found 333.0791. Methyl (Z)-3-(4-bromophenyl)-2-((phenylsulfonyl)methyl)acrylate (1i)

COOMe Purification by column chromatography (silica gel, PE:EA Br = 3:1, 5 x 22 cm) and recrystallization afforded the product as white solid; 1.72 g, yield: 87% (two steps); m.p. 96-98 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.87 (s, 1H), 7.86 – 7.85 (m, 2H), 7.65 – 7.62 (m, 1H), 7.53 – 7.50 (m, 4H), 7.40 – 7.38 (m, 2H), 4.43 (s, 2H), 3.58 (s, 3H). ¹³C NMR (151 MHz, Chloroform *d*) δ 166.6, 145.1, 139.3, 133.9, 132.5, 132.0, 130.7, 129.1, 128.5, 124.3, 121.5, 55.1, 52.5. The analytical data are consistent with the literature.⁵

Methyl (Z)-3-(4-nitrophenyl)-2-((phenylsulfonyl)methyl)acrylate (1j)

COOMe Purification by column chromatography (silica gel, PE:EA O_2N = 3:1, 5 x 22 cm) and recrystallization afforded the product as white solid; 1.25 g, yield: 69% (two steps); m.p. 154-156 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.25 – 8.23 (m, 2H), 7.98 (s, 1H), 7.87 – 7.85 (m, 2H), 7.68 – 7.64 (m, 3H), 7.55 – 7.52 (m, 2H), 4.40 (s, 2H), 3.63 (s, 3H). ¹³C NMR (151 MHz, Chloroform *d*) δ 166.0, 148.1, 143.5, 140.0, 139.1, 134.1, 129.9, 129.2, 128.5, 124.2, 123.9, 54.9, 52.7. The analytical data are consistent with the literature.¹¹

Methyl (*Z*)-2-((phenylsulfonyl)methyl)-3-(*m*-tolyl)acrylate (1k)

COOMe Purification by column chromatography (silica gel, PE:EA = 3:1, SO₂Ph $5 \times 22 \text{ cm}$) and recrystallization afforded the product as white solid; 1.04 g, yield: 63% (two steps); m.p. 74-76 °C. ¹H NMR

(600 MHz, Chloroform-*d*) δ 7.90 (s, 1H), 7.84 (d, J = 8.0 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 7.28 – 7.23 (m, 2H), 7.19 (s, 1H), 7.16 (d, J = 7.4 Hz, 1H), 4.49 (s, 2H), 3.60 (s, 3H), 2.34 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.9, 146.5, 139.3, 138.4, 133.6, 133.6, 130.4, 129.8, 128.9, 128.6, 128.5, 126.1, 120.7, 55.1, 52.3, 21.3. The analytical data are consistent with the literature.¹⁰

Methyl (Z)-3-(3-methoxyphenyl)-2-((phenylsulfonyl)methyl)acrylate (11)

COOMe Purification by column chromatography (silica gel, PE:EA = 3:1, SO₂Ph $5 \times 22 \text{ cm}$) and recrystallization afforded the product as white solid; 1.37 g, yield: 79% (two steps); m.p. 60-70 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.93 (s, 1H), 7.87 – 7.85 (m, 2H), 7.61 (tt, *J* = 7.0, 1.2 Hz, 1H), 7.52 – 7.49 (m, 2H), 7.29 (t, *J* = 8.0 Hz, 1H), 7.14 (t, *J* = 2.1 Hz, 1H), 7.04 – 7.02 (m, 1H), 6.93 (ddd, *J* = 8.3, 2.6, 0.9 Hz, 1H), 4.50 (s, 2H), 3.85 (s, 3H), 3.59 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.8, 159.8, 146.4, 139.4, 134.9, 133.7, 129.8, 129.0, 128.5, 121.6, 121.1, 116.1, 113.9, 55.5, 55.3, 52.4. The analytical data are consistent with the literature.¹⁰

Methyl (*Z*)-3-(3-fluorophenyl)-2-((phenylsulfonyl)methyl)acrylate (1m)

F COOMe Purification by column chromatography (silica gel, PE:EA = 3:1, SO₂Ph 5 x 22 cm) and recrystallization afforded the product as white solid; 1.35 g, yield: 81% (two steps); m.p. 96-98 °C. ¹H NMR

(600 MHz, Chloroform-*d*) δ 7.88 (s, 1H), 7.84 (d, J = 7.7 Hz, 2H), 7.63 – 7.61 (m, 1H), 7.50 (t, J = 7.7 Hz, 2H), 7.34 (td, J = 7.9, 5.8 Hz, 1H), 7.26 – 7.25 (m, 1H), 7.11 (dt, J = 9.7, 2.1 Hz, 1H), 7.06 (td, J = 8.4, 2.6 Hz, 1H), 4.45 (s, 2H), 3.62 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.5, 162.7 (d, J = 247.6 Hz), 144.7, 139.1, 135.7 (d, J = 7.7 Hz), 133.8, 130.4 (d, J = 8.4 Hz), 128.8 (d, J = 86.5 Hz), 124.7 (d, J = 3.1 Hz), 122.3, 116.5 (d, J = 21.1 Hz), 115.8 (d, J = 22.5 Hz), 54.9, 52.5. TOF-HRMS Calcd. for C₁₇H₁₆FO₄S [M+H⁺]: 335.0748, found 335.0740.

Methyl (Z)-3-(3-bromophenyl)-2-((phenylsulfonyl)methyl)acrylate (1n)

COOMePurification by column chromatography (silica gel, PE:EA = 3:1,
5 x 22 cm) and recrystallization afforded the product as white
solid; 1.48 g, yield: 71% (two steps); m.p. 84-85 °C. ¹H NMR

(600 MHz, Chloroform-*d*) δ 7.84 – 7.82 (m, 3H), 7.65 – 7.62 (m, 1H), 7.51 – 7.47 (m, 3H), 7.45 (d, *J* = 1.8 Hz, 1H), 7.42 – 7.40 (m, 1H), 7.24 (t, *J* = 7.9 Hz, 1H), 4.44 (s, 2H), 3.66 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.5, 144.4, 138.9, 135.6, 133.9, 132.5, 131.7, 130.3, 129.1, 128.5, 127.3, 122.8, 122.5, 54.8, 52.6. The analytical data are consistent with the literature.¹⁰

Methyl (*Z*)-3-(2-fluorophenyl)-2-((phenylsulfonyl)methyl)acrylate (10)

F SO₂Ph $5 \times 22 \text{ cm}$ and recrystallization afforded the product as white

solid; 1.12 g, yield: 67% (two steps); m.p. 134-136 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 – 7.95 (m, 1H), 7.82 – 7.80 (m, 2H), 7.66 – 7.58 (m, 2H), 7.50 – 7.46 (m, 2H), 7.38 – 7.32 (m, 1H), 7.16 (td, *J* = 7.5, 1.2 Hz, 1H), 7.06 – 7.01 (m, 1H), 4.45 (s, 2H), 3.63 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.3, 160.1 (d, *J* = 250.8 Hz), 139.0 (d, *J* = 7.5 Hz), 133.8, 131.5 (d, *J* = 8.3 Hz), 130.0, 129.0, 128.5, 124.5 (d, *J* = 3.7 Hz), 123.1, 121.7 (d, *J* = 13.2 Hz), 115.7 (d, *J* = 21.3 Hz), 55.1, 52.5. TOF-HRMS Calcd. for C₁₇H₁₆FO₄S [M+H⁺]: 335.0748, found 335.0747.

Methyl (*Z*)-3-(2-bromophenyl)-2-((phenylsulfonyl)methyl)acrylate (1p)

COOMe Purification by column chromatography (silica gel, PE:EA = 3:1, Br SO₂Ph 5 x 22 cm) and recrystallization afforded the product as white solid; 1.64 g, yield: 83% (two steps); m.p. 98-99 °C. ¹H NMR (600 MHz, Chloroformd) δ 7.96 (s, 1H), 7.85 – 7.83 (m, 2H), 7.63 – 7.60 (m, 2H), 7.57 (dd, J = 8.0, 1.2 Hz, 1H), 7.52 – 7.49 (m, 2H), 7.35 (td, J = 7.6, 1.2 Hz, 1H), 7.24 – 7.21 (m, 1H), 4.36 (s, 2H), 3.62 (s, 3H). ¹³C NMR (151 MHz, Chloroform-d) δ 166.3, 145.2, 139.4, 134.0, 133.7, 132.9, 130.7, 130.1, 129.1, 128.4, 127.6, 124.0, 122.8, 54.9, 52.5. The analytical data are consistent with the literature.¹⁰

Methyl (*Z*)-3-(3,4-dichlorophenyl)-2-((phenylsulfonyl)methyl)acrylate (1q)

¹H NMR (600 MHz, Chloroform-*d*) δ 7.85 – 7.83 (m, 2H), 7.82 (s, 1H), 7.66 – 7.63 (m, 1H), 7.53 – 7.50 (m, 2H), 7.49 (dd, J = 2.1, 0.7 Hz, 1H), 7.45 (d, J = 8.3 Hz, 1H), 7.37 (ddd, J = 8.3, 2.1, 0.7 Hz, 1H), 4.42 (s, 2H), 3.64 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.3, 143.4, 139.0, 134.0, 133.5, 133.1, 130.8, 130.8, 129.1, 128.5, 128.1, 122.8, 54.9, 52.6. TOF-HRMS Calcd. for C₁₇H₁₅³⁵Cl₂O₄S [M+H⁺]: 385.0063, found 385.0061; TOF-HRMS Calcd. for C₁₇H₁₅³⁷Cl₂O₄S [M+H⁺]: 387.0033, found 387.0027.

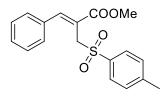
Methyl (Z)-3-(naphthalen-2-yl)-2-((phenylsulfonyl)methyl)acrylate (1r) Purification by column chromatography (silica gel, $PE:EA = 3:1, 5 \ge 22$ cm) and COOMe recrystallization afforded the product as white solid; 1.54 g, SO₂Ph yield: 84% (two steps); m.p. 124-126 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.10 (s, 1H), 8.04 – 8.03 (m, 1H), 7.87 – 7.86 (m, 3H), 7.84 – 7.82 (m, 2H), 7.57 – 7.51 (m, 4H), 7.46 – 7.43 (m, 2H), 4.58 (s, 2H), 3.64 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.9, 146.4, 139.4, 133.7, 133.5, 133.0, 131.1, 129.5, 129.0, 128.7, 128.6, 128.5, 127.6, 127.4, 126.7, 126.0, 121.0, 55.3, 52.4. The analytical data are consistent with the literature.¹¹

Methyl (Z)-2-((phenylsulfonyl)methyl)-3-(thiophen-2-yl)acrylate (1s)

COOMe Purification by column chromatography (silica gel, PE:EA = 3:1, SO₂Ph 5 x 22 cm) and recrystallization afforded the product as white solid; 1.24 g, yield: 77% (two steps); m.p. 119-120 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 (s, 1H), 7.93 – 7.90 (m, 2H), 7.63 – 7.59 (m, 1H), 7.54 – 7.49 (m, 4H), 7.12 – 7.10 (m, 1H), 4.64 (s, 2H), 3.52 (s, 3H). ¹³C NMR (101 MHz, Chloroform*d*) δ 166.8, 139.4, 138.3, 136.8, 134.2, 133.8, 130.9, 129.0, 128.7, 127.8, 116.2, 56.0, 52.3. The analytical data are consistent with the literature.¹⁰

Methyl (Z)-3-(furan-2-yl)-2-((phenylsulfonyl)methyl)acrylate (1t)

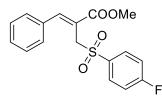
COOMe Purification by column chromatography (silica gel, PE:EA = 3:1, SO₂Ph 5 x 22 cm) and recrystallization afforded the product as white solid; 1.12 g, yield: 73% (two steps); m.p. 98-100 °C. ¹H NMR (600 MHz, Chloroformd) δ 7.86 – 7.84 (m, 2H), 7.54 – 7.52 (m, 2H), 7.45 – 7.43 (m, 2H), 7.41 (d, J = 1.8 Hz, 1H), 6.69 (d, J = 3.5 Hz, 1H), 6.42 (dd, J = 3.5, 1.8 Hz, 1H), 4.80 (s, 2H), 3.61 (s, 3H). ¹³C NMR (151 MHz, Chloroform-d) δ 166.9, 150.1, 145.8, 139.4, 133.5, 130.7, 128.7, 128.6, 119.0, 115.5, 112.2, 55.4, 52.4. The analytical data are consistent with the literature.¹¹


Methyl (Z)-2-((phenylsulfonyl)methyl)-3-(pyridin-3-yl)acrylate (1u)

COOMe Purification by column chromatography (silica gel, PE:EA = 3:1, N SO₂Ph 5 x 22 cm) afforded the product as colorless oil; 0.95 g, yield: 60% (two steps). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.61 – 8.60 (m, 2H), 8.05 (d, *J* = 7.6 Hz, 1H), 7.91 (s, 1H), 7.86 – 7.84 (m, 2H), 7.65 – 7.62 (m, 1H), 7.53 – 7.50 (m, 2H), 7.37 (dd, J = 7.9, 4.8 Hz, 1H), 4.43 (s, 2H), 3.62 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.2, 150.0, 149.8, 142.3, 139.0, 136.3, 134.0, 129.9, 129.2, 128.5, 123.7, 123.5, 54.9, 52.6. TOF-HRMS Calcd. for C₁₆H₁₆NO₄S [M+H⁺]: 318.0795, found 318.0789.

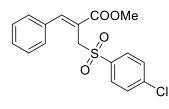
Methyl (*Z*)-4-methyl-2-((phenylsulfonyl)methyl)pent-2-enoate (1v)

COOMe Purification by column chromatography (silica gel, PE:EA = 3:1, 5 SO₂Ph x 22 cm) afforded the product as yellow oil; 0.73 g, yield: 52% (two steps). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.86 – 7.84 (m, 2H), 7.64 – 7.51 (m, 1H), 7.54 – 7.51 (m, 2H), 6.89 (dt, J = 10.9, 1.3 Hz, 1H), 4.23 (s, 2H), 3.46 (s, 3H), 1.01 (d, J = 1.5 Hz, 3H), 1.00 (d, J = 1.5 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.2, 157.5, 138.9, 133.7, 128.9, 128.7, 118.0, 53.9, 52.0, 29.0, 21.5. The analytical data are consistent with the literature.¹²


Methyl (*Z*)-3-phenyl-2-(tosylmethyl)acrylate (**3a**)

Purification by column chromatography (silica gel, PE:EA = 3:1, 5 x 22 cm) and recrystallization afforded the product as white solid; 1.37 g, yield: 83% (two steps); m.p. 116-118 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.93 (s, 1H), 7.72 –

7.70 (m, 2H), 7.47 – 7.45 (m, 2H), 7.38 – 7.36 (m, 3H), 7.27 – 7.26 (m, 3H), 4.47 (s, 2H), 3.61 (s, 3H), 2.42 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.0, 146.2, 144.7, 136.4, 133.7, 129.6, 129.2, 128.7, 128.6, 121.1, 55.1, 52.4, 21.6. The analytical data are consistent with the literature.¹⁰


Methyl (*Z*)-2-(((4-fluorophenyl)sulfonyl)methyl)-3-phenylacrylate (**3b**)

Purification by column chromatography (silica gel, PE:EA = 3:1, 5 x 22 cm) and recrystallization afforded the product as white solid; 1.42 g, yield: 85% (two steps); m.p. 92-93 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.94 (s, 1H), 7.84 –

7.82 (m, 2H), 7.45 – 7.43 (m, 2H), 7.39 – 7.37 (m, 3H), 7.15 – 7.12 (m, 2H), 4.51 (s, 2H), 3.66 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.8, 165.9 (d, *J* = 256.5 Hz), 146.4, 135.2, 133.6, 131.4 (d, *J* = 9.6 Hz), 129.8, 129.1, 128.8, 120.8, 116.2 (d, *J* = 22.6

Hz), 55.1, 52.1. The analytical data are consistent with the literature.¹⁰ Methyl (*Z*)-2-(((4-chlorophenyl)sulfonyl)methyl)-3-phenylacrylate (3c)

Purification by column chromatography (silica gel, PE:EA = 3:1, 5 x 22 cm) and recrystallization afforded the product as white solid; 1.37 g, yield: 78% (two steps); m.p. 96-98 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.93 (s, 1H), 7.74 –

7.71 (m, 2H), 7.42 – 7.37 (m, 7H), 4.51 (s, 2H), 3.67 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.8, 146.4, 140.6, 137.5, 133.5, 130.0, 129.7, 129.3, 129.0, 128.8, 120.8, 54.9, 52.5. The analytical data are consistent with the literature.¹⁰

(Z)-2-((methylsulfonyl)methyl)-3-phenylacrylate (**3d**)

COOMe Purification by column chromatography (silica gel, PE:EA = 3:1, SO₂Me 5 x 22 cm) and recrystallization afforded the product as white solid; 1.09 g, yield: 86% (two steps); m.p. 92-94 °C. ¹H NMR

(600 MHz, Chloroform-*d*) δ 8.13 (s, 1H), 7.60 – 7.58 (m, 2H), 7.46 – 7.40 (m, 3H), 4.35 (s, 2H), 3.89 (s, 3H), 2.97 (s, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.2, 147.1, 133.6, 130.1, 129.4, 129.0, 120.7, 54.2, 52.7, 42.5. The analytical data are consistent with the literature.¹³

Methyl (*Z*)-2-((*tert*-butylsulfonyl)methyl)-3-phenylacrylate (**3e**)

COOMe Purification by column chromatography (silica gel, PE:EA = 3:1, SO₂^tBu 5 x 22 cm) and recrystallization afforded the product as white solid; 1.10 g, yield: 74% (three steps); m.p. 79-80 °C. ¹H NMR (600 MHz, Chloroformd) δ 8.08 (s, 1H), 7.70 – 7.68 (m, 2H), 7.44 – 7.38 (m, 3H), 4.30 (s, 2H), 3.88 (s, 3H), 1.46 (s, 9H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.4, 146.2, 133.9, 129.7, 129.2, 128.7, 120.1, 60.4, 52.6, 45.4, 23.3. TOF-HRMS Calcd. for C₁₅H₂₁O₄S [M+H⁺]: 297.1155, found 297.1147.

Methyl (*E*)-2-(phenoxymethyl)-3-phenylacrylate (**3f**)

COOMe Purification by column chromatography (silica gel, PE:EA = 3:1, OPh 5 x 22 cm) afforded the product as pale yellow oil; 0.87 g, yield: 65% (three steps); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.07 (s, 1H), 7.51 – 7.48 (m, 2H), 7.38 – 7.37 (m, 3H), 7.34 – 7.30 (m, 2H), 7.02 – 6.98 (m, 3H), 4.84 (s, 2H), 3.86 (s, 3H). The analytical data are consistent with the literature.⁷

Ethyl (Z)-3-phenyl-2-((phenylsulfonyl)methyl)acrylate (**3g**)

COOEt Purification by column chromatography (silica gel, PE:EA = 3:1, SO₂Ph 5 x 22 cm) afforded the product as colorless oil; 1.44 g, yield: 87% (two steps). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.93 (s, 1H), 7.86 – 7.84 (m, 2H), 7.61 – 7.58 (m, 1H), 7.49 – 7.46 (m, 4H), 7.37 – 7.35 (m, 3H), 4.49 (s, 2H), 4.05 (q, *J* = 7.2 Hz, 2H), 1.23 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.4, 146.0, 139.3, 133.7, 129.6, 129.1, 129.0, 128.7, 128.5, 121.2, 61.5, 55.0, 14.0. The analytical data are consistent with the literature.¹⁴

Tert-butyl (*Z*)-3-phenyl-2-((phenylsulfonyl)methyl)acrylate (**3h**)

COO^tBu Purification by column chromatography (silica gel, PE:EA = 3:1, SO₂Ph 5 x 22 cm) and recrystallization afforded the product as white solid; 1.58 g, yield: 88% (two steps); m.p. 76-78 °C. ¹H NMR (400 MHz, Chloroformd) δ 7.86 – 7.82 (m, 3H), 7.61 – 7.56 (m, 1H), 7.49 – 7.45 (m, 2H), 7.42 – 7.38 (m, 2H), 7.36 – 7.32 (m, 3H), 4.47 (s, 2H), 1.44 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.4, 145.3, 139.4, 133.9, 133.6, 129.3, 129.0, 129.0, 128.7, 128.5, 122.5, 81.9, 54.9, 27.9. TOF-HRMS Calcd. for C₂₀H₂₃O₄S [M+H⁺]: 359.1312, found 359.1310.

(Z)-3-phenyl-2-((phenylsulfonyl)methyl)acrylic acid (3i)

COOH By recrystallization the product as white solid; 0.91 g, yield: 90%; SO₂Ph m.p. 180-182 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.07 (s, 1H), 7.89 – 7.88 (m, 2H), 7.65 – 7.62 (m, 1H), 7.56 – 7.54 (m, 2H), 7.53 – 7.50 (m, 2H), 7.42 – 7.40 (m, 3H), 4.50 (s, 2H). The analytical data are consistent with the literature.¹⁵

(Z)-N,3-diphenyl-2-((phenylsulfonyl)methyl)acrylamide (3j)

CONHPh Purification by column chromatography (silica gel, PE:EA = SO_2Ph 3:1, 5 x 22 cm) and recrystallization afforded the product as white solid; 0.74 g, yield: 65% (two steps); m.p. 148-144 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.52 (br s, 1H), 7.87 – 7.85 (m, 2H), 7.75 – 7.74 (m, 1H), 7.59 – 7.54

(m, 3H), 7.46 – 7.43 (m, 4H), 7.39 – 7.33 (m, 5H), 7.15 (tt, J = 7.4, 1.1 Hz, 1H), 4.51 (s, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.7, 142.4, 138.6, 137.9, 134.1, 133.8, 129.3, 129.3, 129.0, 128.8, 128.7, 128.2, 125.9, 124.6, 120.1, 55.8. TOF-HRMS Calcd. for C₂₂H₂₀NO₃S [M+H⁺]: 378.1158, found 378.1149.

Methyl (*E*)-2-methyl-3-phenylacrylate (**3**k)

COOMe Purification by column chromatography (silica gel, PE:EA = $10:1, 5 \ge 22$ cm) afforded the product as colorless oil; 0.87 g, yield: 99%; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.70 (s, 1H), 7.40 (d, *J* = 4.3 Hz, 4H), 7.34 - 7.31 (m, 1H), 3.82 (s, 3H), 2.13 (d, *J* = 1.5 Hz, 3H). The analytical data are consistent with the literature.⁹

4. General procedure for asymmetric hydrogenation of 1 and 3

General procedure: A stock solution was made by mixing 1.0 mol % $[Rh(COD)Cl]_2$ with 2.2 mol % (*R*,*R*)-f-spiroPhos in solvent (MeOH) at room temperature for 20 min in a nitrogen-filled glovebox. An aliquot of the catalyst solution (2.0 mL, 0.0025 mmol) was transferred by syringe into the vials charged with different substrates (0.125 mmol for each). The vials were subsequently transferred into which hydrogen gas was charged. The reaction was then stirred under H₂ (10 atm) at 90 °C for 48 h. The hydrogen gas was released slowly and carefully. The solution was passed through a short column of silica gel to remove the metal complex. The conversion of products were determined by GC or ¹H NMR analysis. The crude products were concentrated and purified by flash column chromatography and the ee values were determined by HPLC, SFC analysis on a chiral stationary phase.

Gram scale experiment: A stock solution was made by mixing 1.0 mol % $[Rh(COD)Cl]_2$ with 2.2 mol % (*R*,*R*)-f-spiroPhos in solvent (MeOH) at room temperature for 20 min in a nitrogen-filled glovebox. An aliquot of the catalyst solution (0.064 mmol) was transferred by syringe into the vials charged with substrates **1a** (3.2 mmol). The vials were subsequently transferred into which hydrogen gas was charged. The reaction was then stirred under H₂ (10 atm) at 90 °C for 48 h. The hydrogen gas was released slowly and carefully. The solution was passed through a short column of

silica gel to remove the metal complex. The solid was washed with CH_2Cl_2 , and filtered to give the product **2a** as a white solid (0.99 g, 97% yield) with 96% ee determined by HPLC with a chiral column.

A stock solution was made by mixing 1.0 mol % $[Rh(COD)Cl]_2$ with 2.2 mol % (*R*,*R*)-f-spiroPhos in solvent (MeOH) at room temperature for 20 min in a nitrogenfilled glovebox. An aliquot of the catalyst solution (0.0035 mmol) was transferred by syringe into the vials charged with substrates **3e** (3.5 mmol). The vials were subsequently transferred into which hydrogen gas was charged. The reaction was then stirred under H₂ (80 atm) at 90 °C for 5 d. The hydrogen gas was released slowly and carefully. The solution was passed through a short column of silica gel to remove the metal complex. The solid was washed with CH₂Cl₂, and filtered to give the product **4e** as a white solid (1.00 g, 96% yield) with 97% ee determined by SFC with a chiral column.

Deuteration experiment: A stock solution was made by mixing 1.0 mol % $[Rh(COD)Cl]_2$ with 2.2 mol % (*R*,*R*)-f-spiroPhos in solvent (MeOH) at room temperature for 20 min in a nitrogen-filled glovebox. An aliquot of the catalyst solution (2.0 mL, 0.0025 mmol) was transferred by syringe into the vials charged with substrates **1a** (0.125 mmol). The vials were subsequently transferred into which D₂ gas was charged. The reaction was then stirred under D₂ (10 atm) at 90 °C for 48 h. The hydrogen gas was released slowly and carefully. The solution was passed through a short column of silica gel to remove the metal complex. The product was analyzed by ¹H NMR analysis. **2a-D-1**: ¹H NMR (600 MHz, Chloroform-*d*) δ 7.85 – 7.83 (m, 2H), 7.66 – 7.63 (m, 1H), 7.55 – 7.52 (m, 2H), 7.26 – 7.20 (m, 3H), 7.05 – 7.04 (m, 2H), 3.65 – 3.61 (m, 1H), 3.53 (m, 3H), 3.13 – 3.10(m, 1H), 2.85 – 2.81 (m, 1H).

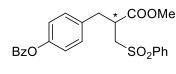
A stock solution was made by mixing 1.0 mol % $[Rh(COD)Cl]_2$ with 2.2 mol % (R,R)-f-spiroPhos in solvent (CD₃OD) at room temperature for 20 min in a nitrogenfilled glovebox. An aliquot of the catalyst solution (2.0 mL, 0.0025 mmol) was transferred by syringe into the vials charged with substrates **1a** (0.125 mmol). The vials were subsequently transferred into which H₂ gas was charged. The reaction was then stirred under H₂ (10 atm) at 90 °C for 48 h. The hydrogen gas was released slowly and carefully. The solution was passed through a short column of silica gel to remove the metal complex. The product was analyzed by ¹H NMR analysis. **2a-D-2**: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 – 7.83 (m, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.26 – 7.19 (m, 3H), 7.06 – 7.04 (m, 2H), 3.64 (dd, *J* = 14.2, 9.2 Hz, 1H), 3.53 (s, 3H), 3.23 – 3.09 (m, 2H), 3.03 (dd, *J* = 13.7, 6.9 Hz, 1H), 2.83 (dd, *J* = 13.7, 7.8 Hz, 1H).

5. NMR, HPLC or SFC and HPLC, optical rotation and HRMS data of compounds2 and 4

Methyl 2-benzyl-3-(phenylsulfonyl)propanoate (2a)

Purification by flash column chromatography (silica gel, PE:EA SO₂Ph = 3:1) afforded the product as white solid; 39.4 mg, yield: 99%; 98% ee; HPLC condition: Lux 5u Cellulose-2 (250 × 4.60 mm), ipa:hex = 50:50, 1 mL/min, 210 nm; t_R = 12.0 min (major), t_R = 14.7 min (minor); m.p. 102-104 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.84 – 7.83 (m, 2H), 7.66 – 7.63 (m, 1H), 7.55 – 7.52 (m, 2H), 7.26 – 7.20 (m, 3H), 7.05 – 7.04 (m, 2H), 3.66 – 3.62 (m, 1H), 3.53 (m, 3H), 3.21 – 3.17 (m, 1H), 3.11 (ddd, *J* = 14.4, 3.4, 1.2 Hz, 1H), 3.03 (dd, *J* = 13.7, 7.0 Hz, 1H), 2.82 (dd, *J* = 13.7, 7.9 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.8, 138.8, 136.5, 133.8, 129.2, 128.8, 128.7, 128.7, 128.1, 127.1, 56.2, 52.1, 41.7, 38.0. TOF-HRMS Calcd. for C₁₇H₁₉O₄S [M+H⁺]: 319.0999, found 319.0994.

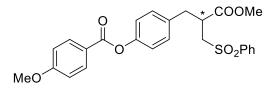
Methyl 2-(4-methylbenzyl)-3-(phenylsulfonyl)propanoate (2b)


Purification by flash column chromatography (silica gel, SO₂Ph PE:EA = 3:1) afforded the product as pale yellow solid; 40.7 mg, yield: 98%; 97% ee; $[\alpha]_D{}^{30} = +10.7$ (c = 1.0, CH₂Cl₂); HPLC condition: Lux 5u Cellulose-2 (250 × 4.60 mm), ipa:hex = 50:50, 1 mL/min, 210 nm; t_R = 13.9 min (major), t_R = 16.9 min (minor); m.p. 67-68 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.84 (d, *J* = 7.8 Hz, 2H), 7.64 (t, *J* = 7.3 Hz, 1H), 7.53 (t, *J* = 7.8 Hz, 2H), 7.05 (d, *J* = 7.8 Hz, 2H), 6.93 (d, *J* = 7.6 Hz, 2H), 3.62 (dd, *J* = 14.2, 9.2 Hz, 1H), 3.54 (s, 3H), 3.19 – 3.15 (m, 1H), 3.11 (dd, *J* = 14.0, 3.4 Hz, 1H), 2.99 (dd, *J* = 13.8, 6.8 Hz, 1H), 2.78 (dd, *J* = 13.8, 8.1 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.9, 138.9, 136.7, 133.8, 133.3, 129.4, 129.2, 128.7, 128.1, 56.2, 52.1, 41.8, 37.6, 21.0. TOF-HRMS Calcd. for C₁₈H₂₁O₄S [M+H⁺]: 333.1155, found 333.1150.

Methyl 2-(4-methoxybenzyl)-3-(phenylsulfonyl)propanoate (2c)

Purification by flash column chromatography (silica gel, MeO SO_2Ph PE:EA = 3:1) afforded the product as pale yellow oil; 43.1 mg, yield: 99%; 92% ee; $[\alpha]_D{}^{30} = +16.2$ (c = 1.0, CH₂Cl₂); HPLC condition: Lux 5u Cellulose-2 (250 × 4.60 mm), ipa:hex = 50:50, 1 mL/min, 210 nm; t_R = 19.2 min (major), t_R = 24.3 min (minor). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.84 – 7.82 (m, 2H), 7.64 – 7.61 (m, 1H), 7.52 (t, *J* = 7.7 Hz, 2H), 6.96 – 6.94 (m, 2H), 6.78 – 6.76 (m, 2H), 3.76 (s, 3H), 3.61 (dd, *J* = 14.1, 9.0 Hz, 1H), 3.52 (s, 3H), 3.18 – 3.08 (m, 2H), 2.96 (dd, *J* = 13.8, 6.9 Hz, 1H), 2.76 (dd, *J* = 13.9, 7.7 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.9, 158.6, 138.8, 133.7, 129.8, 129.2, 128.4, 128.1, 114.0, 56.1, 55.1, 52.1, 41.9, 37.1. TOF-HRMS Calcd. for C₁₈H₂₁O₅S [M+H⁺]: 349.1104, found 349.1101. Methyl 2-(4-(benzyloxy)benzyl)-3-(phenylsulfonyl)propanoate (**2d**)

Purification by flash column chromatography (silica gel, BnO SO_2Ph PE:EA = 3:1) afforded the product as white solid; 51.5 mg, yield: 97%; 92% ee; $[\alpha]_D^{30} = +11.7$ (c = 1.0, CH₂Cl₂); SFC condition: Lux 5u Amylose-2 (250 × 4.60 mm), CO₂:MeOH = 80:20, 3 mL/min, 230 nm; t_R = 5.7 min (major), t_R = 7.4 min (minor); m.p. 98-99 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.85 – 7.83 (m, 2H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.53 (t, *J* = 7.7 Hz, 2H), 7.43 (d, *J* = 6.9 Hz, 2H), 7.39 (t, *J* = 7.5 Hz, 2H), 7.35 – 7.32 (m, 1H), 6.97 – 6.96 (m, 2H), 6.87 – 6.85 (m, 2H), 5.03 (s, 2H), 3.62 (dd, *J* = 14.1, 9.0 Hz, 1H), 3.53 (s, 3H), 3.18 – 3.10 (m, 1H), 2.97 (dd, *J* = 13.9, 6.8 Hz, 1H), 2.77 (dd, *J* = 13.9, 7.7 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.9, 157.8, 138.9, 136.9, 133.8, 129.9, 129.2, 128.7, 128.6, 128.1, 128.0, 127.4, 115.1, 70.0, 56.2, 52.2, 41.9, 37.2. TOF-HRMS Calcd. for C₂₄H₂₅O₅S [M+H⁺]: 425.1417, found 425.1417.


4-(3-Methoxy-3-oxo-2-((phenylsulfonyl)methyl)propyl)phenyl benzoate (2e)

Purification by flash column chromatography (silica gel, PE:EA = 3:1) afforded the product as yellow solid; 52.6 mg, yield: 96%; 96% ee; $[\alpha]_D^{30} = +8.4$ (c = 1.0, CH₂Cl₂);

SFC condition: Lux 5u Cellulose-1 (250 × 4.60 mm), CO₂:MeOH = 80:20, 3 mL/min, 210 nm; $t_R = 6.3 \text{ min (major)}$, $t_R = 6.9 \text{ min (minor)}$; m.p. 156-158 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 – 8.18 (m, 2H), 7.88 – 7.85 (m, 2H), 7.68 – 7.62 (m, 2H), 7.58 – 7.49 (m, 4H), 7.13 – 7.11 (m, 4H), 3.65 (dd, *J* = 14.0, 8.7 Hz, 1H), 3.56 (s, 3H), 3.25 – 3.13 (m, 2H), 3.06 (dd, *J* = 13.8, 7.1 Hz, 1H), 2.90 (dd, *J* = 13.8, 7.5 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.7, 165.0, 150.0, 138.8, 134.2, 133.9, 133.6, 130.1, 129.9, 129.4, 129.3, 128.6, 128.1, 122.0, 56.2, 52.3, 41.7, 37.3. TOF-HRMS Calcd. for C₂₄H₂₃O₆S [M+H⁺]: 439.1210, found 439.1207.

4-(3-Methoxy-3-oxo-2-((phenylsulfonyl)methyl)propyl)phenyl 4-methoxybenzoate (2f)

Purification by flash column chromatography (silica gel, PE:EA = 3:1) afforded the product as yellow solid; 56.2 mg, yield: 96%; 92% ee; $[\alpha]_D^{30} = +$ 9.6 (c = 1.0,

CH₂Cl₂); SFC condition: Lux 5u Amylose-1 (250 × 4.60 mm), CO₂:MeOH = 70:30, 3 mL/min, 210 nm; $t_R = 9.8$ min (minor), $t_R = 11.3$ min (major); m.p. 120-121 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.15 – 8.13 (m, 2H), 7.87 – 7.85 (m, 2H), 7.67 – 7.64 (m, 1H), 7.57 – 7.54 (m, 2H), 7.11 – 7.09 (m, 4H), 7.00 – 6.97 (m, 2H), 3.90 (s, 3H), 3.65 (dd, *J* = 14.3, 8.9 Hz, 1H), 3.56 (s, 3H), 3.23 – 3.19 (m, 1H), 3.15 (dd, *J* = 14.3, 3.7 Hz, 1H), 3.05 (dd, *J* = 13.8, 7.2 Hz, 1H), 2.89 (dd, *J* = 13.8, 7.6 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.8, 164.8, 163.9, 150.1, 138.8, 134.0, 133.9, 132.3, 129.9, 129.3, 128.2, 122.1, 121.7, 113.9, 56.2, 55.5, 52.3, 41.7, 37.3.TOF-HRMS Calcd. for C₂₅H₂₅O₇S [M+H⁺]: 469.1316, found 469.1310.

Methyl 2-(4-(((benzyloxy)carbonyl)oxy)benzyl)-3-(phenylsulfonyl)propanoate (2g)

Purification by flash column chromatography (silica gel, BE:EA = 3:1) afforded the product as yellow solid; 56.8 mg, yield: 97%; 93% ee; $[\alpha]_D^{30} = +4.5$ (c = 1.0, CH₂Cl₂); SFC condition: Lux 5u Cellulose-1 (250 × 4.60 mm), CO₂:MeOH = 80:20, 3 mL/min, 210 nm; t_R = 6.7 min (major), t_R = 7.3 min (minor); m.p. 90-92 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 – 7.81 (m, 2H), 7.68 – 7.60 (m, 1H), 7.55 – 7.51 (m, 2H), 7.45 – 7.36 (m, 5H), 7.11 – 7.03 (m, 4H), 5.26 (s, 2H), 3.66 – 3.60 (m, 1H), 3.53 (s, 3H), 3.21 – 3.10 (m, 2H), 3.01 (dd, *J* = 13.8, 7.1 Hz, 1H), 2.86 (dd, *J* = 13.8, 7.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.6, 153.4, 150.1, 138.7, 134.6, 134.3, 133.8, 129.8, 129.2, 128.7, 128.6, 128.4, 128.0, 121.2, 70.3, 56.1, 52.2, 41.6, 37.1. TOF-HRMS Calcd. for C₂₅H₂₅O₇S [M+H⁺]: 469.1316, found 469.1314.

Methyl 2-(4-hydroxybenzyl)-3-(phenylsulfonyl)propanoate (2h)

Purification by flash column chromatography (silica gel, BO_2Ph PE:EA = 3:1) afforded the product as white solid; 39.7 mg, yield: 95%; 92% ee; $[\alpha]_D{}^{30} = + 5.9$ (c = 1.0, CH₂Cl₂); HPLC condition: Lux 5u Cellulose-2 (250 × 4.60 mm), ipa:hex = 50:50, 1 mL/min, 210 nm; t_R = 8.3 min (major), t_R = 9.5 min (minor); m.p. 136-138 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.84 – 7.82 (m, 2H), 7.64 (t, *J* = 7.7 Hz, 1H), 7.53 (t, *J* = 7.7 Hz, 2H), 6.90 – 6.89 (m, 2H), 6.70 – 6.69 (m, 2H), 3.61 (dd, *J* = 14.0, 9.0 Hz, 1H), 3.52 (s, 3H), 3.16 – 3.09 (m, 2H), 2.95 (dd, *J* = 13.9, 6.8 Hz, 1H), 2.75 (dd, *J* = 13.9, 7.6 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 173.1, 154.8, 138.8, 133.9, 130.1, 129.3, 128.4, 128.2, 115.6, 56.2, 52.2, 41.9, 37.2. TOF-HRMS Calcd. for C₁₇H₁₉O₅S [M+H⁺]: 335.0948, found 335.0942. (*S*)-Methyl 2-(4-bromobenzyl)-3-(phenylsulfonyl)propanoate (**2i**)

Br COOMe Br SO₂Ph Purification by flash column chromatography (silica gel, PE:EA = 3:1) afforded the product as white solid; 48.2 mg, yield: 97%; 99% ee; $\lceil \alpha \rceil_D^{30} = +11.0$ (c = 1.0, CH₂Cl₂); HPLC

condition: Lux 5u Cellulose-2 ($250 \times 4.60 \text{ mm}$), ipa:hex = 50:50, 1 mL/min, 210 nm; t_R = 18.4 min (major), t_R = 22.9 min (minor); m.p. 88-90 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.86 – 7.84 (m, 2H), 7.68 – 7.65 (m, 1H), 7.56 – 7.53 (m, 2H), 7.39 – 7.36 (m, 2H), 6.96 – 6.93 (m, 2H), 3.61 (dd, *J* = 14.3, 8.7 Hz, 1H), 3.54 (s, 3H), 3.20 – 3.16 (m, 1H), 3.09 (dd, *J* = 14.3, 4.0 Hz, 1H), 2.99 (dd, *J* = 13.9, 7.3 Hz, 1H), 2.84 (dd, J = 13.9, 7.4 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.6, 138.8, 135.6, 133.9, 131.8, 130.6, 129.3, 128.1, 121.1, 56.2, 52.3, 41.5, 37.3. TOF-HRMS Calcd. for C₁₇H₁₈⁷⁹BrO₄S [M+H⁺]: 397.0104, found 397.0103; TOF-HRMS Calcd. for C₁₇H₁₈⁸¹BrO₄S [M+H⁺]: 399.0090, found 399.0083.

Methyl 2-(4-nitrobenzyl)-3-(phenylsulfonyl)propanoate (2j)

Purification by flash column chromatography (silica gel, SO₂N PE:EA = 3:1) afforded the product as yellow solid; 41.8 mg, yield: 92%; 98% ee; $[\alpha]_D{}^{30} = + 22.8$ (c = 1.0, CH₂Cl₂); HPLC condition: Lux 5u Cellulose-2 (250 × 4.60 mm), ipa:hex = 30:70, 1 mL/min, 210 nm; t_R = 54.2 min (major), t_R = 63.4 min (minor); m.p. 116-118 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.84 – 7.82 (m, 2H), 7.65 – 7.62 (m, 1H), 7.54 – 7.51 (m, 2H), 6.82 – 6.81 (m, 2H), 6.57 – 6.56 (m, 2H), 3.60 (dd, *J* = 15.0, 10.1 Hz, 1H), 3.52 (s, 3H), 3.13 – 3.08 (m, 2H), 2.91 (dd, *J* = 13.9, 6.6 Hz, 1H), 2.69 (dd, *J* = 13.9, 7.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.1, 145.3, 138.8, 133.8, 129.7, 129.2, 128.1, 126.1, 115.3, 56.1, 52.1, 41.9, 37.3. TOF-HRMS Calcd. for C₁₇H₁₈NO₆S [M+H⁺]: 364.0849, found 364.0842.

Methyl 2-(3-methylbenzyl)-3-(phenylsulfonyl)propanoate (2k)

* COOMe Purification by flash column chromatography (silica gel, PE:EA SO₂Ph = 3:1) afforded the product as yellow oil; 40.7 mg, yield: 98%; 98% ee; $[\alpha]_D^{30} = +1.3$ (c = 1.0, CH₂Cl₂); HPLC condition: Lux

5u Cellulose-2 (250 × 4.60 mm), ipa:hex = 50:50, 1 mL/min, 210 nm; t_R = 13.3 min (major), t_R = 16.5 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 7.6 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.5 Hz, 2H), 7.13 (t, *J* = 7.5 Hz, 1H), 7.02 (d, *J* = 7.6 Hz, 1H), 6.83 (d, *J* = 8.7 Hz, 2H), 3.63 (dd, *J* = 14.0, 9.2 Hz, 1H), 3.54 (s, 3H), 3.19 – 3.10 (m, 2H), 2.99 (dd, *J* = 13.6, 6.5 Hz, 1H), 2.76 (dd, *J* = 13.7, 8.0 Hz, 1H), 2.28 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.9, 138.8, 138.3, 136.4, 133.7, 129.6, 129.2, 128.5, 128.1, 127.8, 125.8, 56.1, 52.1, 41.8, 37.9, 21.3. TOF-HRMS Calcd. for C₁₈H₂₁O₄S [M+H⁺]: 333.1155, found 333.1147.

Methyl 2-(3-methoxybenzyl)-3-(phenylsulfonyl)propanoate (21)

COOMe SO₂Ph OMe
Purification by flash column chromatography (silica gel, PE:EA = 3:1) afforded the product as yellow oil; 41.4 mg, yield: 95%; 95% ee; $[\alpha]_D^{30} = -3.4$ (c = 1.0, CH₂Cl₂); SFC condition: Lux 5u

Amylose-2 (250 × 4.60 mm), CO₂:MeOH = 80:20, 3 mL/min, 210 nm; t_R = 4.6 min (minor), t_R = 4.9 min (major). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.84 – 7.82 (m, 2H), 7.64 (td, *J* = 7.4, 1.3 Hz, 1H), 7.54 – 7.52 (m, 2H), 7.17 – 7.14 (m, 1H), 6.76 – 6.75 (m, 1H), 6.62 (d, *J* = 7.5 Hz, 1H), 6.59 – 6.58 (m, 1H), 3.75 (s, 3H), 3.63 (dd, *J* = 14.6, 9.4 Hz, 1H), 3.55 (s, 3H), 3.20 – 3.15 (m, 1H), 3.14 – 3.11 (m, 1H), 3.01 (dd, *J* = 13.8, 6.8 Hz, 1H), 2.80 – 2.77 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.8, 159.8, 138.0, 133.8, 129.7, 129.2, 128.1, 121.1, 114.4, 112.5, 56.1, 55.1, 52.2, 41.6, 37.9. TOF-HRMS Calcd. for C₁₈H₂₁O₅S [M+H⁺]: 349.1104, found 349.1102.

Methyl 2-(3-fluorobenzyl)-3-(phenylsulfonyl)propanoate (2m)

F COOMe Purification by flash column chromatography (silica gel, PE:EA SO₂Ph = 3:1) afforded the product as yellow solid; 40.8 mg, yield: 97%; 99.2% ee; $[\alpha]_D^{30} = +2.7$ (c = 1.0, CH₂Cl₂); SFC condition: Lux

5u Amylose-1 (250 × 4.60 mm), CO₂:MeOH = 80:20, 3 mL/min, 210 nm; t_R = 2.8 min (minor), t_R = 3.6 min (major); m.p. 70-72 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 7.7 Hz, 2H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 2H), 7.24 – 7.19 (m, 1H), 6.91 (td, *J* = 8.5, 2.5 Hz, 1H), 6.85 (d, *J* = 7.6 Hz, 1H), 6.75 (d, *J* = 9.6 Hz, 1H), 3.62 (dd, *J* = 14.2, 8.7 Hz, 1H), 3.54 (s, 3H), 3.21 – 3.15 (m, 1H), 3.13 – 3.08 (m, 1H), 3.02 (dd, *J* = 13.8, 7.1 Hz, 1H), 2.86 (dd, *J* = 13.8, 7.5 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.5, 162.7 (d, *J* = 246.9 Hz), 139.0 (d, *J* = 7.3 Hz), 138.6, 133.9, 130.2 (d, *J* = 8.4 Hz), 129.3, 128.1, 124.6 (d, *J* = 2.9 Hz), 115.7 (d, *J* = 21.1 Hz), 114.1 (d, *J* = 20.9 Hz), 56.1, 52.2, 41.5, 37.5. TOF-HRMS Calcd. for C₁₇H₁₈FO₄S [M+H⁺]: 337.0904, found 337.0896.

Methyl 2-(3-bromobenzyl)-3-(phenylsulfonyl)propanoate (2n)

Br COOMe Purification by flash column chromatography (silica gel, PE:EA SO_2Ph = 3:1) afforded the product as yellow oil; 47.7 mg, yield: 96%; 99.8% ee; $[\alpha]_D^{30} = +3.3$ (c = 1.0, CH₂Cl₂); SFC condition: Lux 5u Amylose-2 (250 × 4.60 mm), CO₂:MeOH = 80:20, 3 mL/min, 210 nm; t_R =5.4 min (minor), t_R = 6.2 min (major). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.86 – 7.84 (m, 2H), 7.67 – 7.65 (m, 1H), 7.57 – 7.54 (m, 2H), 7.35 (ddd, *J* = 8.0, 2.0, 1.0 Hz, 1H), 7.20 (t, *J* = 1.8 Hz, 1H), 7.13 (t, *J* = 7.8 Hz, 1H), 7.00 (dt, *J* = 7.7, 1.3 Hz, 1H), 3.62 (dd, *J* = 14.3, 8.8 Hz, 1H), 3.54 (s, 3H), 3.19 – 3.14 (m, 1H), 3.10 (dd, *J* = 14.3, 4.0 Hz, 1H), 2.99 (dd, *J* = 13.8, 7.3 Hz, 1H), 2.83 (dd, *J* = 13.8, 7.4 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.5, 138.9, 138.7, 134.0, 131.9, 130.3, 130.2, 129.3, 128.1, 127.5, 122.7, 56.2, 52.3, 41.6, 37.4. TOF-HRMS Calcd. for C₁₇H₁₈⁷⁹BrO₄S [M+H⁺]: 397.0104, found 397.0103; TOF-HRMS Calcd. for C₁₇H₁₈⁸¹BrO₄S [M+H⁺]: 399.0090, found 399.0083.

Methyl 2-(2-fluorobenzyl)-3-(phenylsulfonyl)propanoate (20)

Purification by flash column chromatography (silica gel, PE:EA F SO₂Ph = 3:1) afforded the product as yellow oil; 40.8 mg, yield: 97%; 96% ee; $[\alpha]_D^{30} = +5.2$ (c = 1.0, CH₂Cl₂); SFC condition: Lux 5u Amylose-1 (250 × 4.60 mm), CO₂:MeOH = 80:20, 3 mL/min, 210 nm; t_R = 4.2 min (minor), t_R = 6.4 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 – 7.82 (m, 2H), 7.66 – 7.62 (m, 1H), 7.55 – 7.51 (m, 2H), 7.21 (dddd, *J* = 9.0, 7.2, 5.1, 2.3 Hz, 1H), 7.08 – 7.03 (m, 2H), 7.01 – 6.97 (m, 1H), 3.67 (ddd, *J* = 14.0, 9.4, 4.6 Hz, 1H), 3.51 (s, 3H), 3.26 – 3.19 (m, 1H), 3.13 (dd, *J* = 14.2, 3.4 Hz, 1H), 2.97 – 2.94 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.6, 161.0 (d, *J* = 246.0 Hz), 138.7, 133.8, 131.1 (d, *J* = 4.3 Hz), 129.2, 129.1 (d, *J* = 8.2 Hz), 128.1, 124.2 (d, *J* = 3.8 Hz), 123.5 (d, *J* = 15.6 Hz), 115.5 (d, *J* = 21.9 Hz). TOF-HRMS Calcd. for C₁₇H₁₈FO₄S [M+H⁺]: 337.0904, found 337.0901.

Methyl 2-(2-bromobenzyl)-3-(phenylsulfonyl)propanoate (2p)

Purification by flash column chromatography (silica gel, PE:EA Br SO_2Ph = 3:1) afforded the product as yellow oil; 45.7 mg, yield: 92%; 97% ee; $[\alpha]_D^{30} = + 8.8$ (c = 1.0, CH₂Cl₂); SFC condition: Lux 5u Amylose-2 (250 × 4.60 mm), CO₂:MeOH = 80:20, 3 mL/min, 210 nm; t_R = 5.7 min (minor), t_R = 6.3 min (major). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.85 – 7.83 (m, 2H), 7.65 – 7.63 (m, 1H), 7.54 – 7.51 (m, 2H), 7.47 (d, J = 1.3 Hz, 1H), 7.20 (td, J = 7.5, 1.3 Hz, 1H), 7.08 (ddd, J = 15.5, 7.7, 1.7 Hz, 2H), 3.74 (dd, J = 14.4, 10.2 Hz, 1H), 3.51 (s, 3H), 3.31 – 3.26 (m, 1H), 3.14 (dd, J = 14.4, 2.7 Hz, 1H), 3.04 (dd, J = 13.7, 7.8 Hz, 1H), 2.94 (dd, J = 13.7, 7.9 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.7, 138.6, 136.1, 133.8, 133.2, 131.0, 129.2, 128.9, 128.2, 127.6, 124.5, 56.5, 52.2, 40.3, 38.4. TOF-HRMS Calcd. for C₁₇H₁₈⁷⁹BrO4S [M+H⁺]: 397.0104, found 397.0103; TOF-HRMS Calcd. for C₁₇H₁₈⁸¹BrO4S [M+H⁺]: 399.0090, found 399.0083.

Methyl 2-(3,4-dichlorobenzyl)-3-(phenylsulfonyl)propanoate (2q)

condition: Lux 5u Amylose-1 (250 × 4.60 mm), CO₂:MeOH = 80:20, 3 mL/min, 210 nm; $t_R = 5.9$ min (minor), $t_R = 7.9$ min (major); m.p. 92-94 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 – 7.84 (m, 2H), 7.69 – 7.65 (m, 1H), 7.58 – 7.54 (m, 2H), 7.32 (d, J = 8.2 Hz, 1H), 7.16 (d, J = 2.1 Hz, 1H), 6.93 (dd, J = 8.2, 2.2 Hz, 1H), 3.61 (dd, J = 14.1, 8.2 Hz, 1H), 3.55 (s, 3H), 3.20 – 3.14 (m, 1H), 3.10 (dd, J = 14.1, 4.3 Hz, 1H), 2.98 (dd, J = 13.8, 7.4 Hz, 1H), 2.86 (dd, J = 13.8, 7.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.3, 138.6, 136.9, 134.1, 132.6, 131.3, 130.8, 130.6, 129.3, 128.3, 128.1, 56.1, 52.4, 41.4, 36.8. TOF-HRMS Calcd. for C₁₇H₁₇³⁵Cl₂O₄S [M+H⁺]: 387.0219, found 387.0215; TOF-HRMS Calcd. for C₁₇H₁₇³⁷Cl₂O₄S [M+H⁺]: 389.0189, found 389.0181.

Methyl 3-(naphthalen-2-yl)-2-((phenylsulfonyl)methyl)propanoate (2r)

Purification by flash column chromatography (silica gel, SO₂Ph PE:EA = 3:1) afforded the product as white solid; 43.3 mg, yield: 94%; 94% ee; $[\alpha]_D^{30} = +$ 10.5 (c = 1.0, CH₂Cl₂); HPLC condition: Lux 5u Cellulose-2 (250 × 4.60 mm), ipa:hex = 50:50, 1 mL/min, 210 nm; t_R = 20.2 min (major), t_R = 23.7 min (minor); m.p. 98-100 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 – 7.79 (m, 3H), 7.75 – 7.72 (m, 1H), 7.63 – 7.59 (m, 1H), 7.51 – 7.45 (m, 5H), 7.17 (dd, J = 8.4, 1.8 Hz, 1H), 3.69 (dd, J = 14.3, 9.2 Hz, 1H), 3.54 (s, 3H), 3.34 – 3.27 (m, 1H), 3.23 – 3.15 (m, 2H), 2.99 (dd, *J* = 13.6, 7.9 Hz, 1H). ¹³C NMR (151 MHz, Chloroform*d*) δ 172.9, 138.8, 134.0, 133.8, 133.3, 132.4, 129.2, 128.5, 128.1, 127.7, 127.6, 127.5, 126.7, 126.2, 125.8, 56.2, 52.2, 41.7, 38.1. TOF-HRMS Calcd. for C₂₁H₂₁O₄S [M+H⁺]: 369.1155, found 369.1154.

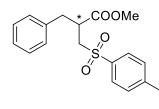
Methyl 3-(phenylsulfonyl)-2-(thiophen-2-ylmethyl)propanoate (2s)

Purification by flash column chromatography (silica gel, PE:EA SO₂Ph = 3:1) afforded the product as yellow oil; 38.9 mg, yield: 96%; 99.9% ee; $[\alpha]_D{}^{30} = -3.4$ (c = 1.0, CH₂Cl₂); HPLC condition: Lux 5u Cellulose-2 (250 × 4.60 mm), ipa:hex = 20:80, 1 mL/min, 210 nm; t_R = 36.2 min (major), t_R = 39.8 min (minor). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.88 – 7.87 (m, 2H), 7.67 – 7.64 (m, 1H), 7.55 (t, *J* = 7.8 Hz, 2H), 7.14 (dd, *J* = 5.1, 1.2 Hz, 1H), 6.89 (dd, *J* = 5.1, 3.4 Hz, 1H), 6.77 (dd, *J* = 3.5, 1.1 Hz, 1H), 3.64 – 3.60 (m, 4H), 3.30 – 3.27 (m, 1H), 3.25 – 3.20 (m, 1H), 3.19 – 3.15 (m, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.3, 138.9, 138.3, 133.9, 129.3, 128.1, 127.0, 126.7, 124.8, 55.7, 52.4, 41.8, 31.6. TOF-HRMS Calcd. for C₁₅H₁₇O₄S₂ [M+H⁺]: 325.0563, found 325.0556.

Methyl 3-(furan-2-yl)-2-((phenylsulfonyl)methyl)propanoate (2t)

Purification by flash column chromatography (silica gel, PE:EA SO₂Ph = 3:1) afforded the product as white solid; 37.4 mg, yield: 97%; 99.9% ee; $[\alpha]_D{}^{30} = -6.2$ (c = 1.0, CH₂Cl₂); SFC condition: Lux 5u Cellulose-2 (250 × 4.60 mm), CO₂:MeOH = 80:20, 3 mL/min, 210 nm; t_R = 4.1 min (major), t_R = 5.0 min (minor). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.88 – 7.86 (m, 2H), 7.67 – 7.64 (m, 1H), 7.55 (t, *J* = 7.8 Hz, 2H), 7.25 – 7.24 (m, 1H), 6.24 (dd, *J* = 3.2, 1.9 Hz, 1H), 6.03 (dd, *J* = 3.2, 0.9 Hz, 1H), 3.66 (dd, *J* = 14.4, 8.4 Hz, 1H), 3.59 (s, 3H), 3.27 – 3.23 (m, 1H), 3.18 (dd, *J* = 14.4, 4.2 Hz, 1H), 3.05 (dd, *J* = 15.1, 6.2 Hz, 1H), 2.98 – 2.94 (m, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.4, 150.4, 142.1, 138.8, 133.9, 129.3, 128.1, 110.2, 107.8, 56.0, 52.4, 39.4, 30.2. TOF-HRMS Calcd. for C₁₅H₁₇O₅S [M+H⁺]: 309.0791, found 309.0789.

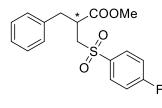
Methyl 3-(phenylsulfonyl)-2-(pyridin-3-ylmethyl)propanoate (2u)


Purification by flash column chromatography (silica gel, PE:EA = 3:1) afforded the

^{*}COOMe</sup> product as pale yellow solid; 37.9 mg, yield: 95%; 98% ee; $[\alpha]_D^{30}$ SO₂Ph = + 10.6 (c = 1.0, CH₂Cl₂); HPLC condition: Lux 5u Cellulose-2 (250 × 4.60 mm), ipa:hex = 20:80, 1 mL/min, 210 nm; t_R = 23.9 min (major), t_R = 26.0 min (minor); m.p. 68-70 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.48 (s, 1H), 8.35 (s, 1H), 7.88 – 7.83 (m, 2H), 7.67 – 7.63 (m, 1H), 7.57 – 7.52 (m, 2H), 7.48 (d, *J* = 7.7 Hz, 1H), 7.24 (dt, *J* = 8.8, 5.1 Hz, 1H), 3.61 (dd, *J* = 14.1, 8.1 Hz, 1H), 3.51 (s, 3H), 3.26 – 3.19 (m, 1H), 3.12 (dd, *J* = 14.2, 4.6 Hz, 1H), 2.99 (qd, *J* = 14.0, 7.3 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.2, 149.7, 148.1, 138.7, 136.9, 134.1, 132.6, 129.4, 128.1, 123.7, 56.3, 52.4, 41.3, 34.8. TOF-HRMS Calcd. for C₁₆H₁₈NO₄S [M+H⁺]: 320.0951, found 320.0947.

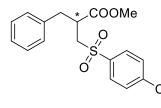
Methyl 4-methyl-2-((phenylsulfonyl)methyl)pentanoate (2v)

Purification by flash column chromatography (silica gel, PE:EA = SO_2Ph 3:1) afforded the product as yellow oil; 5.3 mg, yield: 15%; 95% ee; $[\alpha]_D{}^{30} = -32.9$ (c = 1.0, CH₂Cl₂); SFC condition: Lux 5u Amylose-1 (250 × 4.60 mm), CO₂:MeOH = 80:20, 3 mL/min, 210 nm; t_R = 3.3 min (minor), t_R = 3.8 min (major). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.91 – 7.89 (m, 2H), 7.67 – 7.64 (m, 1H), 7.58 – 7.55 (m, 2H), 3.64 (dd, *J* = 14.3, 10.0 Hz, 1H), 3.57 (s, 3H), 3.08 (dd, *J* = 14.3, 2.9 Hz, 1H), 2.99 – 2.95 (m, 1H), 1.55 (ddd, *J* = 13.1, 8.6, 6.2 Hz, 1H), 1.51 – 1.45 (m, 1H), 1.32 (ddd, *J* = 13.2, 7.8, 6.6 Hz, 1H), 0.88 (d, *J* = 6.5 Hz, 3H), 0.82 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 173.9, 138.9, 133.9, 129.2, 128.2, 57.8, 52.1, 41.6, 38.3, 25.7, 22.3, 21.8. TOF-HRMS Calcd. for C₁₄H₂₁O₄S [M+H⁺]: 285.1155, found 285.1152.


Methyl 2-benzyl-3-tosylpropanoate (4a)

Purification by flash column chromatography (silica gel, PE:EA = 3:1) afforded the product as white solid; 40.7 mg, yield: 98%; 98% ee; $[\alpha]_D^{30} = +4.9$ (c = 1.0, CH₂Cl₂); HPLC condition: Lux 5u Cellulose-2 (250 × 4.60 mm), ipa:hex =

20:80, 1 mL/min, 210 nm; $t_R = 38.5 \text{ min (major)}, t_R = 45.6 \text{ min (minor)}; m.p. 85-87 °C.$ ¹H NMR (600 MHz, Chloroform-*d*) δ 7.72 – 7.71 (m, 2H), 7.33 – 7.31 (m, 2H), 7.26 – 7.21 (m, 3H), 7.06 – 7.04 (m, 2H), 3.63 – 3.59 (m, 1H), 3.54 (s, 3H), 3.21 – 3.16 (m, 1H), 3.10 (dd, J = 14.3, 3.6 Hz, 1H), 3.02 (dd, J = 13.8, 7.1 Hz, 1H), 2.83 (dd, J = 13.8, 7.8 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.9, 144.8, 136.6, 136.0, 129.8, 128.9, 128.7, 128.2, 127.1, 56.4, 52.1, 41.8, 38.0, 21.6. TOF-HRMS Calcd. for C₁₈H₂₁O₄S [M+H⁺]: 333.1155, found 333.1148.


Methyl 2-benzyl-3-((4-fluorophenyl)sulfonyl)propanoate (4b)

Purification by flash column chromatography (silica gel, PE:EA = 3:1) afforded the product as pale yellow oil; 39.9 mg, yield: 95%; 97% ee; $[\alpha]_D^{30} = -3.3$ (c = 1.0, CH₂Cl₂); SFC condition: Lux 5u Amylose-1 (250 × 4.60 mm),

CO₂:MeOH = 80:20, 3 mL/min, 210 nm; t_R = 3.0 min (minor), t_R = 4.2 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.82 (m, 2H), 7.28 – 7.18 (m, 5H), 7.06 – 7.03 (m, 2H), 3.64 (dd, *J* = 14.1, 9.3 Hz, 1H), 3.56 (s, 3H), 3.20 – 3.08 (m, 2H), 3.03 (dd, *J* = 13.7, 6.7 Hz, 1H), 2.81 (dd, *J* = 13.7, 7.9 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.8, 165.8 (d, *J* = 256.8 Hz), 136.3, 134.8 (d, *J* = 3.2 Hz), 131.0 (d, *J* = 9.7 Hz), 128.8, 128.7, 127.2, 116.5 (d, *J* = 22.6 Hz), 56.3, 52.2, 41.8, 38.0. TOF-HRMS Calcd. for C₁₇H₁₈FO₄S [M+H⁺]: 337.0904, found 337.0898.

Methyl 2-benzyl-3-((4-chlorophenyl)sulfonyl)propanoate (4c)

Purification by flash column chromatography (silica gel, PE:EA = 3:1) afforded the product as pale yellow solid; 42.8 mg, yield: 97%; 96% ee; $[\alpha]_D^{30} = +$ 6.9 (c = 1.0, CH₂Cl₂); HPLC condition: Lux 5u Cellulose-2 (250 × 4.60 mm),

ipa:hex = 20:80, 1 mL/min, 210 nm; t_R = 20.9 min (minor), t_R = 22.5 min (major); m.p. 64-66 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.77 – 7.74 (m, 2H), 7.50 – 7.48 (m, 2H), 7.27 – 7.22 (m, 3H), 7.05 – 7.03 (m, 2H), 3.64 (dd, *J* = 14.3, 9.3 Hz, 1H), 3.56 (s, 3H), 3.18 – 3.15 (m, 1H), 3.10 (dd, *J* = 14.3, 3.3 Hz, 1H), 3.04 (dd, *J* = 13.7, 6.8 Hz, 1H), 2.81 (dd, *J* = 13.7, 8.1 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.8, 140.6, 137.3, 136.3, 129.6, 129.5, 128.8, 128.7, 127.2, 56.2, 52.2, 41.8, 38.0. TOF-HRMS Calcd. for C₁₇H₁₈³⁵ClO₄S [M+H⁺]: 353.0609, found 353.0603; TOF-HRMS

Calcd. for C₁₇H₁₈³⁷ClO₄S [M+H⁺]: 355.0582, found 353.0577.

Methyl 2-benzyl-3-(methylsulfonyl)propanoate (4d)

Purification by flash column chromatography (silica gel, PE:EA = 3:1) afforded the product as yellow oil; 31.7 mg, yield: 99%; 99.6% ee; $[\alpha]_D^{30} = +12.0$ (c = 1.0, CH₂Cl₂); SFC condition: Lux

5u Amylose-1 (250 × 4.60 mm), CO₂:MeOH = 80:20, 3 mL/min, 210 nm; t_R = 5.2 min (minor), t_R = 8.2 min (major). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 – 7.22 (m, 3H), 7.16 – 7.13 (m, 2H), 3.69 (d, *J* = 2.5 Hz, 3H), 3.57 – 3.51 (m, 1H), 3.36 – 3.29 (m, 1H), 3.13 – 3.00 (m, 1H), 3.02 (dt, *J* = 14.2, 3.0 Hz, 1H), 2.92 – 2.83 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.2, 136.4, 128.9, 128.7, 127.2, 54.8, 52.3, 41.5, 41.4, 37.8. TOF-HRMS Calcd. for C₁₂H₁₇O₄S [M+H⁺]: 257.0842, found 257.0837.

Methyl (*Z*)-2-((*tert*-butylsulfonyl)methyl)-3-phenylacrylate (4e)

Purification by flash column chromatography (silica gel, PE:EA $SO_2^{t}Bu = 3:1$) afforded the product as yellow solid; 44.2 mg, yield: 98%; 97% ee; $[\alpha]_D{}^{30} = -2.8$ (c = 1.0, CH₂Cl₂); SFC condition: Lux 5u Amylose-1 (250 × 4.60 mm), CO₂:MeOH = 80:20, 3 mL/min, 210 nm; t_R = 2.2 min (major), t_R = 3.0 min (minor); m.p. 79-80 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.31 – 7.29 (m, 1H), 7.25 – 7.22 (m, 1H), 7.18 – 7.16 (m, 2H), 3.66 (s, 3H), 3.47 – 3.39 (m, 2H), 3.11 (dd, *J* = 13.7, 6.7 Hz, 1H), 3.00 – 2.94 (m, 2H), 1.36 (s, 9H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 173.5, 136.9, 129.0, 128.6, 127.0, 59.3, 52.2, 45.8, 40.0, 37.9, 23.2. The analytical data are consistent with the literature.¹⁶

Methyl 2-benzyl-3-phenoxypropanoate (4f)

Purification by flash column chromatography (silica gel, PE:EA OPh = 3:1) afforded the product as yellow oil; 32.4 mg, yield: 96%; 94% ee; $[\alpha]_D^{30} = -16.5$ (c = 1.0, CH₂Cl₂); SFC condition: Lux 5u Amylose-1 (250 × 4.60 mm), CO₂:MeOH = 95:5, 3 mL/min, 210 nm; t_R = 5.2 min (minor), t_R = 5.5 min (major). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.31 – 7.27 (m, 4H), 7.25 – 7.22 (m, 1H), 7.21 – 7.19 (m, 2H), 6.97 (tt, *J* = 7.4, 1.1 Hz, 1H), 6.90 – 6.88 (m, 2H), 4.16 (dd, *J* = 9.1, 6.6 Hz, 1H), 4.07 (dd, *J* = 9.2, 5.3 Hz, 1H), 3.69 (s, 3H), 3.19 – 3.10 (m, 2H), 3.02 (dd, J = 13.6, 7.4 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 173.5, 158.5, 138.3, 129.4, 129.0, 128.5, 126.6, 121.0, 114.6, 67.2, 51.8, 47.1, 34.5. TOF-HRMS Calcd. for C₁₇H₁₉O₃ [M+H⁺]: 271.1329, found 271.1323.

Ethyl 2-benzyl-3-(phenylsulfonyl)propanoate (4g)

Purification by flash column chromatography (silica gel, PE:EA SO₂Ph = 3:1) afforded the product as yellow oil; 39.9 mg, yield: 96%; 98% ee; $[\alpha]_D{}^{30} = + 3.6$ (c = 1.0, CH₂Cl₂); HPLC condition: Lux 5u Amylose-1 (250 × 4.60 mm), ipa:hex = 5:95, 1 mL/min, 210 nm; t_R = 36.9 min (minor), t_R = 39.1 min (major). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.84 – 7.83 (m, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 2H), 7.25 – 7.18 (m, 3H), 7.06 – 7.04 (m, 2H), 3.95 (qd, *J* = 7.1, 1.4 Hz, 2H), 3.64 (dd, *J* = 14.3, 9.1 Hz, 1H), 3.19 – 3.14 (m, 1H), 3.11 (dd, *J* = 14.3, 3.5 Hz, 1H), 3.00 (dd, *J* = 13.7, 7.2 Hz, 1H), 2.83 (dd, *J* = 13.7, 7.8 Hz, 1H), 1.10 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.3, 138.8, 136.5, 133.7, 129.1, 128.8, 128.5, 128.0, 126.9, 61.1, 56.2, 41.7, 38.0, 13.8. TOF-HRMS Calcd. for C₁₈H₂₁O₄S [M+H⁺]: 333.1155, found 333.1148.

Tert-butyl 2-benzyl-3-(phenylsulfonyl)propanoate (4h)

Purification by flash column chromatography (silica gel, PE:EA = 3:1) afforded the product as white solid; 42.8 mg, yield: 95%; 97% ee; $[\alpha]_D^{30} = -9.0$ (c = 1.0, CH₂Cl₂); SFC condition: Lux 5u

Amylose-1 (250 × 4.60 mm), CO₂:MeOH = 80:20, 3 mL/min, 210 nm; $t_R = 5.7$ min (minor), $t_R = 7.3$ min (major); m.p. 88-89 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 – 7.84 (m, 2H), 7.66 – 7.62 (m, 1H), 7.56 – 7.51 (m, 2H), 7.26 – 7.18 (m, 3H), 7.08 – 7.06 (m, 2H), 3.66 – 3.59 (m, 1H), 3.12 – 3.04 (m, 2H), 2.97 (dd, *J* = 13.7, 7.2 Hz, 1H), 2.82 (dd, *J* = 13.7, 7.4 Hz, 1H), 1.32 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.5, 139.1, 136.7, 133.7, 129.2, 129.0, 128.5, 128.0, 126.9, 81.7, 56.4, 42.2, 38.2, 27.7. TOF-HRMS Calcd. for C₂₀H₂₅O₄S [M+H⁺]: 361.1468, found 368.1463.

2-Benzyl-3-(phenylsulfonyl)propanoic acid (4i)

Purification by flash column chromatography (silica gel, PE:EA SO₂Ph = 3:1) afforded the product as colorless oil; 35.8 mg, yield: 94%; 96% ee; $[\alpha]_D{}^{30} = -3.0$ (c = 1.0, CH₂Cl₂). ¹H NMR (600 MHz, Chloroform-*d*) δ 11.97 (br s, 1H), 7.45 – 7.42 (m, 2H), 7.31 – 7.29 (m, 3H), 7.24 – 7.19 (m, 5H), 3.09 (dd, J = 13.5, 6.5 Hz, 2H), 2.79 – 2.78 (m, 1H), 2.68 (dd, J = 13.5, 8.1 Hz, 2H). The analytical data are consistent with the literature.¹⁴ The product **4i** was dissolved in CH₂Cl₂, followed by addition of aniline, EDC, and DMAP at 0 °C, and stirred for 4 h. The corresponding amide was purified by chromatography. SFC condition: Lux 5u Cellulose-1 (250 × 4.60 mm), CO₂:MeOH = 80:20, 3 mL/min, 254 nm; t_R = 7.0 min (major), t_R = 9.6 min (minor).

2-Benzyl-3-(phenylsulfonyl)propanoic acid (4i')

Purification by flash column chromatography (silica gel, PE:EA = 3:1) afforded the product as colorless oil; 36.1 mg, yield: 95%; $[\alpha]_D^{30} = -3.5$ (c = 1.0, CH₂Cl₂).

2-Benzyl-*N*-phenyl-3-(phenylsulfonyl)propenamide (4j)

* CONHPh SO₂Ph Purification by flash column chromatography (silica gel, PE:EA = 3:1) afforded the product as white solid; 44.1 mg, yield: 93%; 92% ee; $[\alpha]_D^{30} = -24.3$ (c = 1.0, CH₂Cl₂); SFC

condition: Lux 5u Cellulose-1 (250 × 4.60 mm), CO₂:MeOH = 80:20, 3 mL/min, 254 nm; $t_R = 7.2$ min (minor), $t_R = 9.3$ min (major); 124-125 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.87 – 7.86 (m, 2H), 7.60 – 7.58 (m, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.25 – 7.22 (m, 5H), 7.19 – 7.15 (m, 4H), 7.07 (td, *J* = 7.2, 1.3 Hz, 1H), 3.86 (dd, *J* = 14.1, 8.6 Hz, 1H), 3.25 – 3.19 (m, 2H), 3.05 (dd, *J* = 13.5, 9.0 Hz, 1H), 2.93 (dd, *J* = 13.5, 6.4 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 169.7, 139.1, 137.3, 137.1, 133.9, 129.3, 129.0, 128.9, 128.8, 127.9, 127.1, 124.6, 120.2, 57.5, 44.3, 39.1. TOF-HRMS Calcd. for C₂₂H₂₂NO₃S [M+H⁺]: 380.1315, found 380.1312.

2-Benzyl-*N*-phenyl-3-(phenylsulfonyl)propenamide (4j')

* CONHPhPurification by flash column chromatography (silica gel,
PE:EA = 3:1) afforded the product as white solid; 41.0 mg,
yield: 91%; 97% ee; $[\alpha]_D^{30} = +28.4$ (c = 1.0, CH₂Cl₂); SFC

condition: Lux 5u Cellulose-1 (250 × 4.60 mm), CO₂:MeOH = 80:20, 3 mL/min, 210

nm; $t_R = 7.1 \text{ min (major)}, t_R = 9.5 \text{ min (minor)}.$

Methyl 2-methyl-3-phenylpropanoate (4k)

COOMe Purification by flash column chromatography (silica gel, PE:EA = 10:1) afforded the product as yellow oil; 21.2 mg, yield: 95%; 99% ee; $[\alpha]_D^{30} = -16.9$ (c = 1.0, CH₂Cl₂); SFC condition: Lux 5u Cellulose-3 (250 × 4.60 mm), CO₂:MeOH = 95:5, 3 mL/min, 210 nm; t_R = 1.8 min (minor), t_R = 1.9 min (major). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.30 – 7.27 (m, 2H), 7.23 – 7.20 (m, 1H), 7.18 – 7.16 (m, 2H), 3.64 (s, 3H), 3.04 (dd, *J* = 13.4, 6.8 Hz, 1H), 2.78 – 2.72 (m, 1H), 2.67 (dd, *J* = 13.4, 7.8 Hz, 1H), 1.16 (d, *J* = 6.9 Hz, 3H). The analytical data are consistent with the literature.¹⁷

6. References

(1) A. Dahiya, W. Ali, T. Alam and B. K. Patel, A cascade synthesis of *S*-allyl benzoylcarbamothioates *via* Mumm-type rearrangement, *Org. Biomol. Chem.*, 2018, **16**, 7787–7791.

(2) R. Zhou, S. Fan, L. Fang, B. Chu and J. Zhu, Rh(III)-Catalyzed N-Amino-Directed C–H Coupling with 3-Methyleneoxetan-2-ones for 1,2-Dihydroquinoline-3-carboxylic Acid Synthesis, *Org. Lett.*, 2023, 25, 8688–8692.

(3) A. Bouzide, Magnesium Bromide Mediated Highly Diastereoselective Heterogeneous Hydrogenation of Olefins, *Org. Lett.*, 2002, **4**, 1347–1350.

(4) D. R. Nicponski and P. V. Ramachandran, Alkylthialactonization: A novel protocol for access to either diastereoisomer of α -(thiomethyl)- γ -butyrolactones, *Tetrahedron Lett.*, 2023, **124**, 154605.

(5) P. Xie, J. Wang, Y. Liu, J. Fan, X. Wo, W. Fu, Z. Sun and T.-P. Loh, Water-promoted C-S bond formation reactions, *Nat. Commun.*, 2018, **9**, 1321.

(6) Z. He, B. Wibbeling and A. Studera, Oxidative Heck Coupling of Allylic Amines with 2,2,6,6-Tetramethylpiperidine-*N*-oxyl (TEMPO) as Oxidant for the Preparation of Tetrasubstituted Alkenes, *Adv. Synth. Catal.*, 2013, **355**, 3639–3647.

(7) Z.-Y. Li, S. Song, S.-F. Zhu, N. Guo, L.-X. Wang and Q.-L. Zhou, Synthesis of Chiral α -Benzyl- β^2 -hydroxy Carboxylic Acids through Iridium-Catalyzed Asymmetric Hydrogenation of α -Oxymethylcinnamic Acids, *Chin. J. Chem.*, 2014, **32**, 783–787.

(8) E. H. Demont, C. W. Chung, R. C. Furze, P. Grandi, A.-M. Michon, C. Wellaway, N. Barrett, A. M. Bridges, P. D. Craggs, H. Diallo, D. P. Dixon, C. Douault, A. J. Emmons, E. J. Jones, B. V. Karamshi, K. Locke, D. J. Mitchell, B. H. Mouzon, R. K. Prinjha, A. D. Roberts, R. J. Sheppard, R. J. Watson and Bamborough, P. Fragment-Based Discovery of Low-Micromolar ATAD2 Bromodomain Inhibitors, *J. Med. Chem.*, 2015, **58**, 5649–5673.

(9) Z.-G. Wang, L. Chen, J. Chen, J.-F. Zheng, W. Gao, Z. Zeng, H. Zhou, X.-k. Zhang, P.-Q. Huang and Y. Su, Synthesis and SAR study of modulators inhibiting tRXRαdependent AKT activation. *Eur. J. Med. Chem.* 2013, **62**, 632-648. (10) X. Yao, Z. Li, H. Mei, J. Escorihuela, V. A. Soloshonok and J. Han, Cascade Detrifluoroacetylation, C–S Bond Cleavage, and S_N2' Reaction of α,α -Difluorinated *Gem*-Diols with MBH Esters, *J. Org.Chem.*, 2023, **88**, 13057–13066.

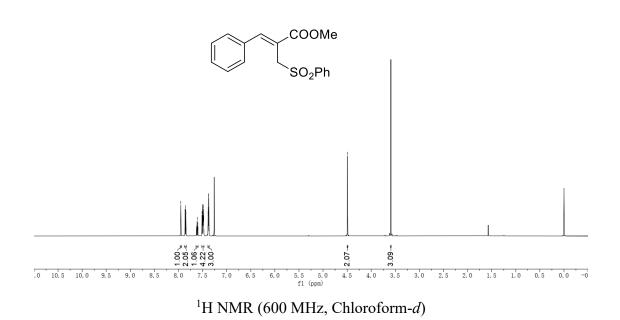
(11) L. Jiang, Y.-G. Li, J.-F. Zhou, Y.-M. Chuan, H.-L. Li and M.-L. Yuan, A Facile and Mild Synthesis of Trisubstituted Allylic Sulfones from Morita-Baylis-Hillman Carbonates, *Molecules*, 2015, **20**, 8213–8222.

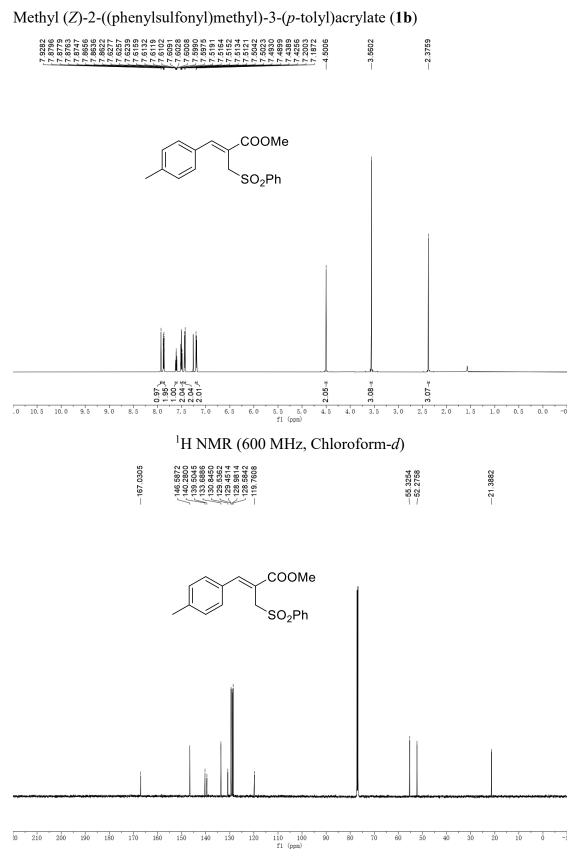
(12) Q. Wang, S. Sheng, S. Lin, L. Guo, M. Wei and X. Huang, Liquid-Phase Synthesis of Methyl (2*Z*)-2-Arylsulfonylmethyl-2-alkenoates from PEG-Supported α -Phenylselenopropionate, *Chin. J. Chem.*, 2007, **25**, 1027–1030.

(13) J.-B. Baudin and S. Julia, Unsaturated sulfinamides. XII. Substituted 4-(2-alkenesulfinyl)morpholines: preparation and conversion into the corresponding sulfinic acids and esters. Stereochemistry of olefin formation by hydrolytic desulfinylation of allylic sulfinamides, *Bull. Soc. Chim.Fr.*, 1995, **132**, 196–214.

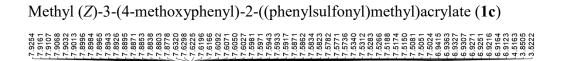
(14) S. Senapati, S. K. Parida, S. S. Karandikar, and S. Murarka, Organophotoredox-Catalyzed Arylation and Aryl Sulfonylation of Morita–Baylis–Hillman Acetates with Diaryliodonium Reagents, *Org. Lett.*, 2023, **25**, 7900–7905.

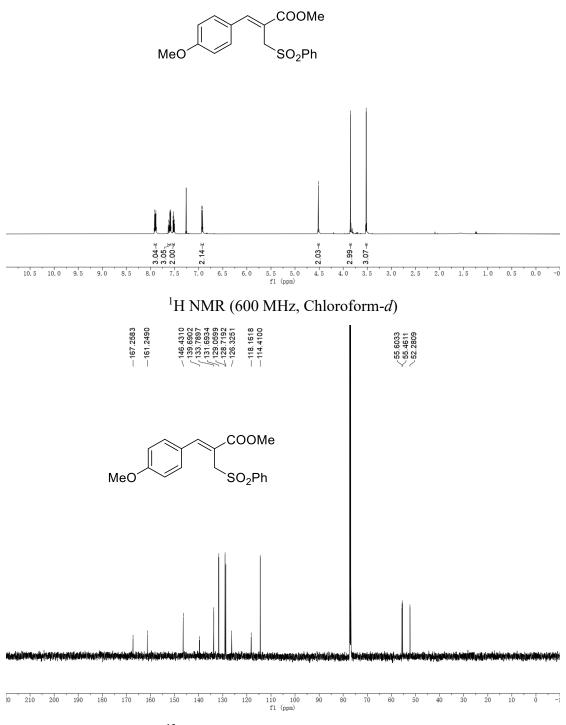
(15) K. Masao, Y. Yoshifumi, H. Mutsumi, M. Takashi and K. Hidenori, Preparation of 3-thio-2-benzylpropionic acids and their intermediates *via* catalyzed asymmetric hydrogenation, JP06172300 A, 1994.

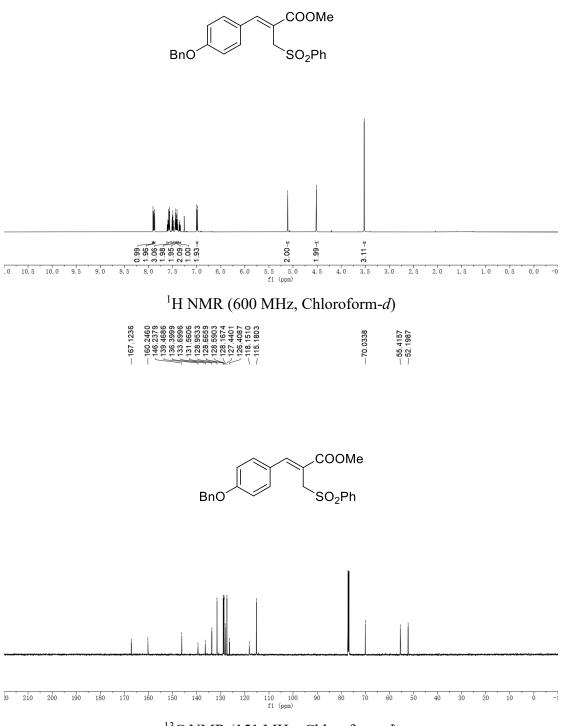

(16) H. L. Sham and S. H. Rosenberg, Preparation of renin-inhibiting difluorodiolcontaining peptides, EP416393 A1, 1991.


(17) J. M. Stevens, A. C. Parra-Rivera, D. D. Dixon, G. L. Beutner, A. J. DelMonte, D.
E. Frantz, J. M. Janey, J. Paulson and M. R. Talley, Direct Lewis Acid Catalyzed Conversion of Enantioenriched *N*-Acyloxazolidinones to Chiral Esters, Amides, and Acids. *J. Org. Chem.*, 2018, 83, 14245–14261.

7. NMR, SFC and HPLC spectra

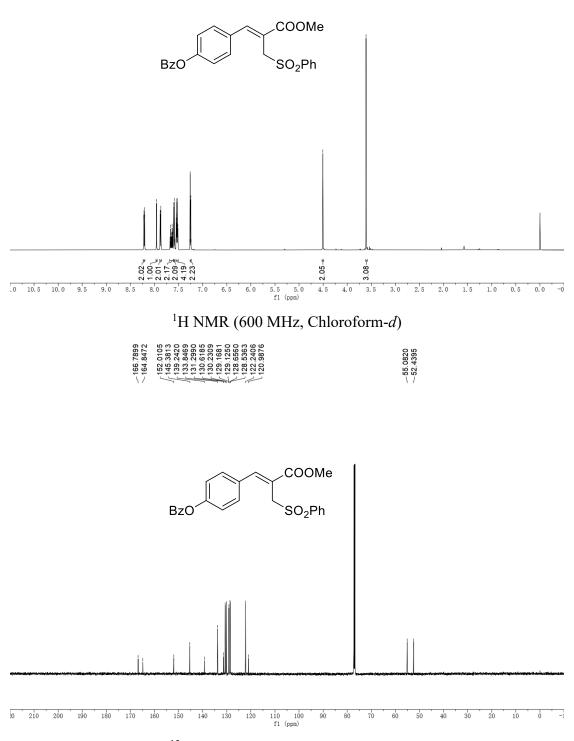

Methyl (Z)-3-phenyl-2-((phenylsulfonyl)methyl)acrylate (1a)




¹³C NMR (151 MHz, Chloroform-d)

¹³C NMR (151 MHz, Chloroform-d)

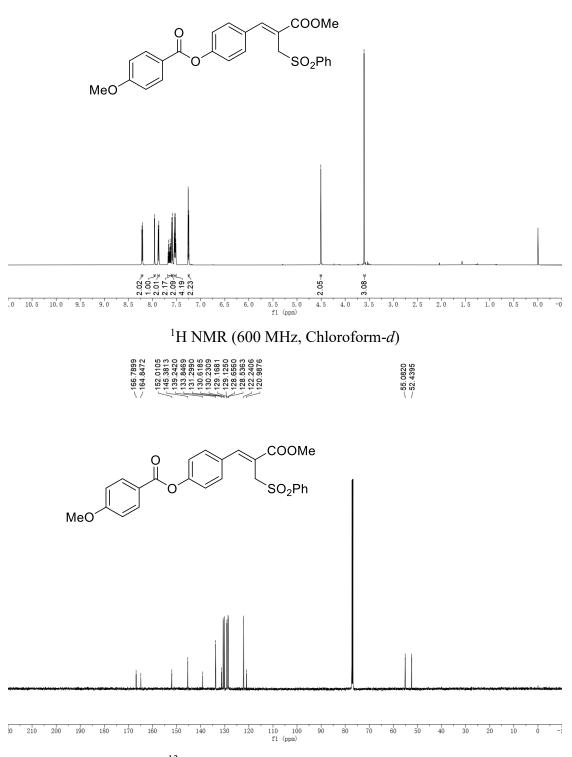
Methyl (*Z*)-3-(4-(benzyloxy)phenyl)-2-((phenylsulfonyl)methyl)acrylate (**1d**)



¹³C NMR (151 MHz, Chloroform-d)

(Z)-4-(3-methoxy-3-oxo-2-((phenylsulfonyl)methyl)prop-1-en-1-yl)phenyl benzoate

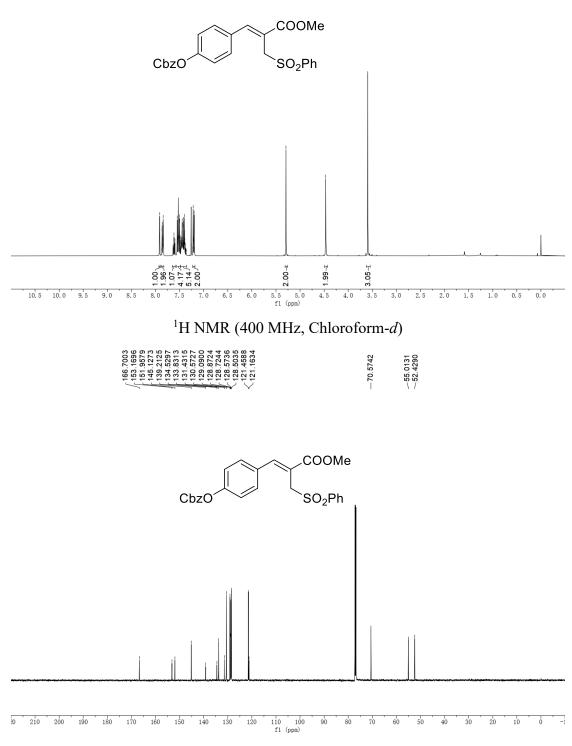
(1e)


8 2210 8 2210 8 2210 8 22080 8 22080 7 3 88288 7 3 88288 7 3 88288 7 3 8878 7 5 8642 7 5 8644

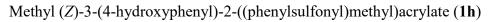
¹³C NMR (151 MHz, Chloroform-*d*)

methoxybenzoate (1f)

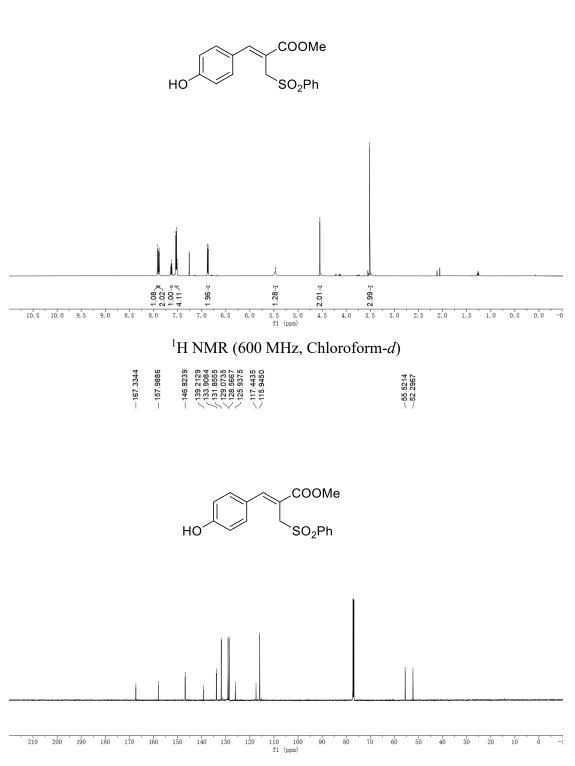
8 2219

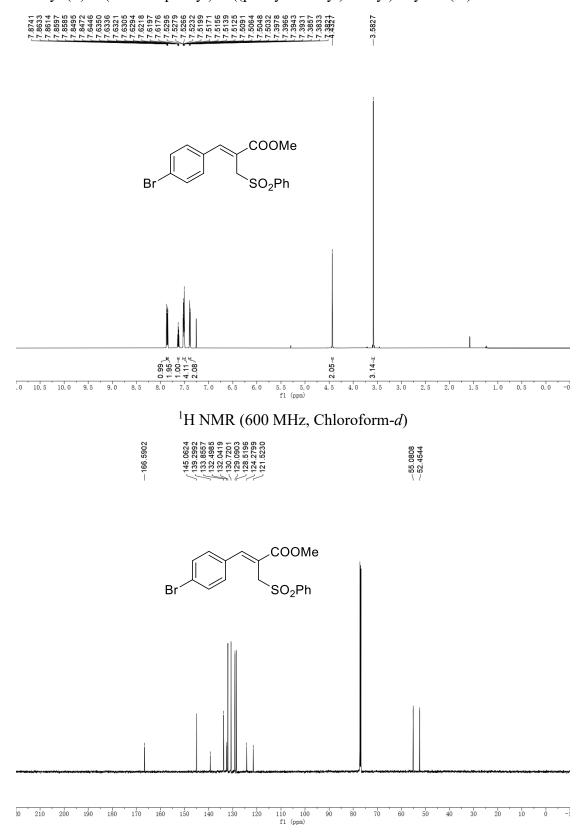

¹³C NMR (151 MHz, Chloroform-*d*)

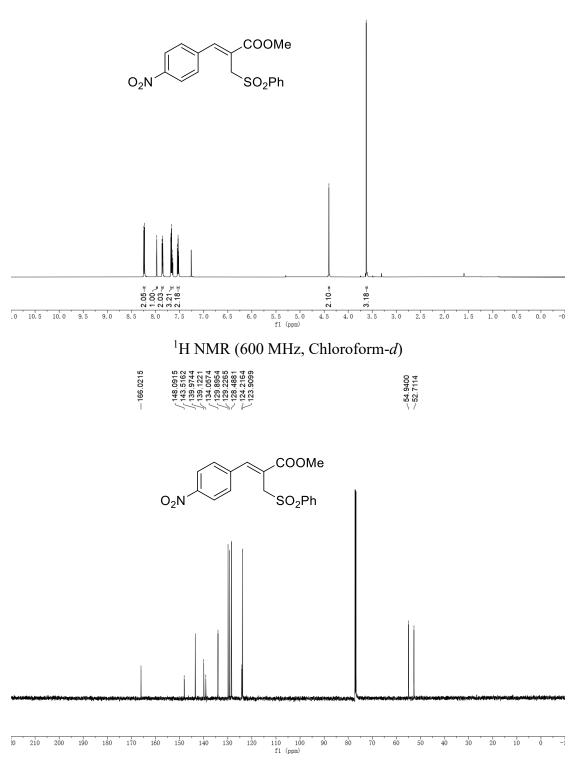
Methyl

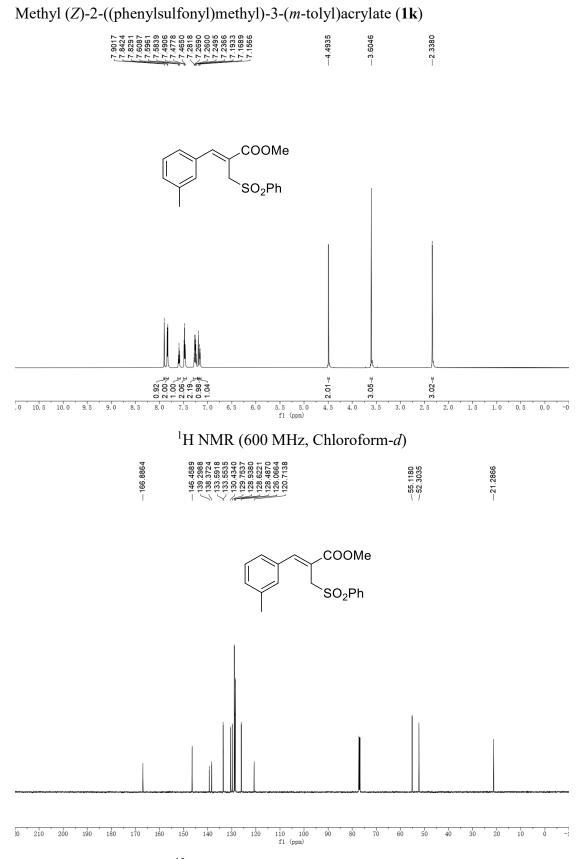

((phenylsulfonyl)methyl)acrylate

(**1g**)



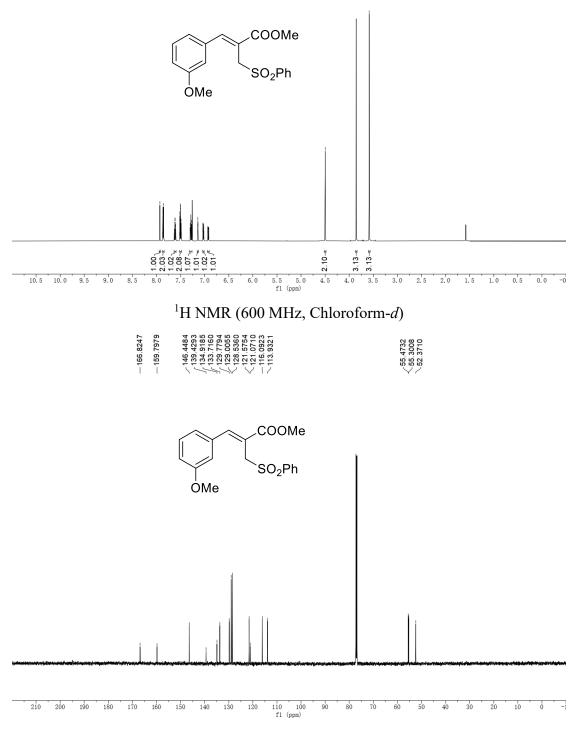

¹³C NMR (151 MHz, Chloroform-*d*)


¹³C NMR (151 MHz, Chloroform-d)

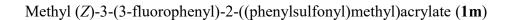

Methyl (Z)-3-(4-bromophenyl)-2-((phenylsulfonyl)methyl)acrylate (1i)

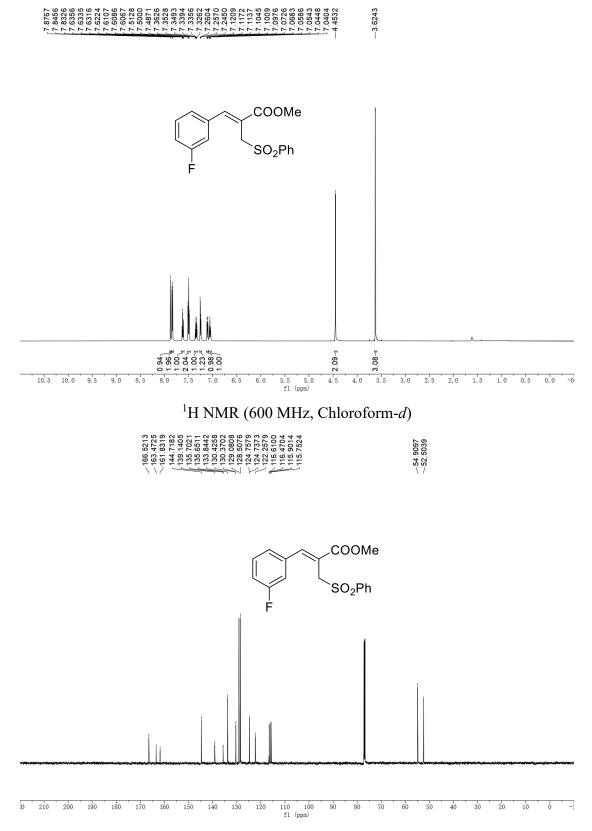
¹³C NMR (151 MHz, Chloroform-d)

Methyl (*Z*)-3-(4-nitrophenyl)-2-((phenylsulfonyl)methyl)acrylate (**1j**)



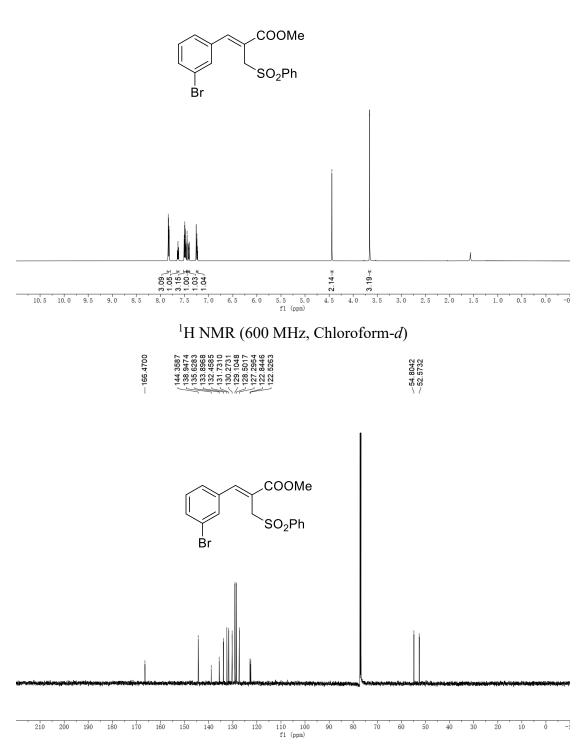
¹³C NMR (151 MHz, Chloroform-d)



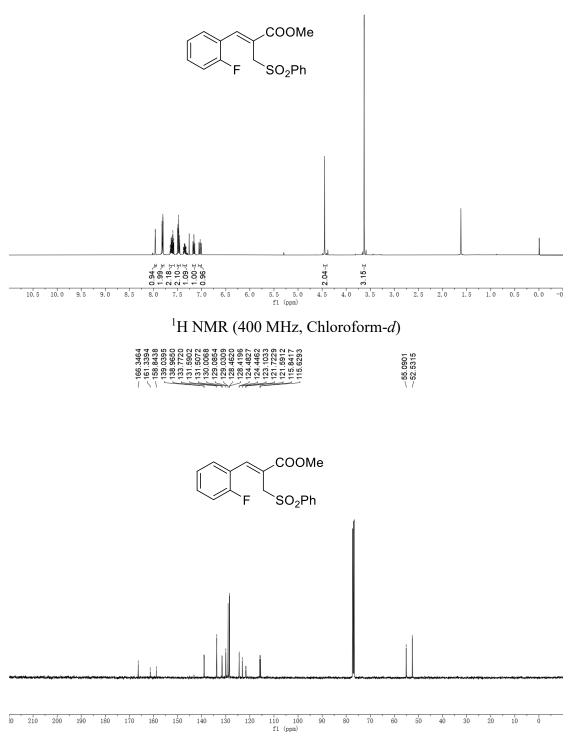

¹³C NMR (151 MHz, Chloroform-d)

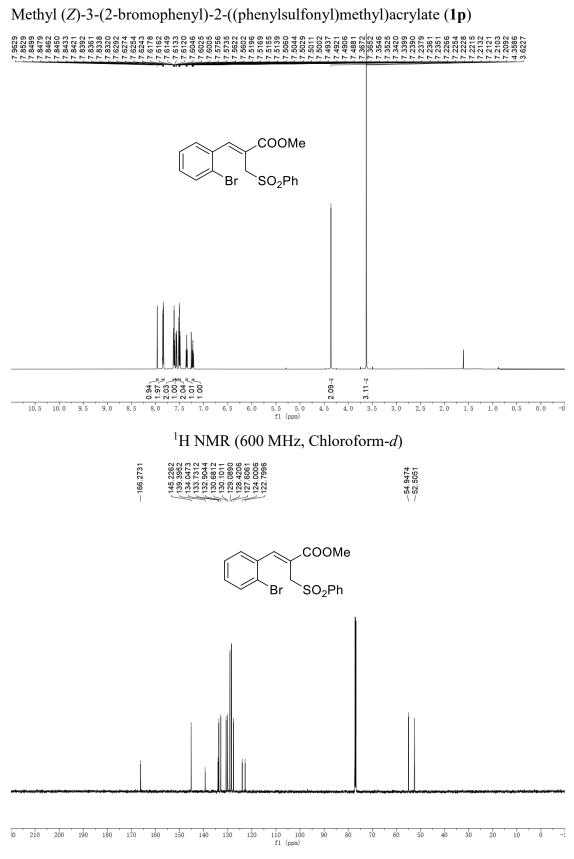
Methyl (*Z*)-3-(3-methoxyphenyl)-2-((phenylsulfonyl)methyl)acrylate (**1**l)

¹³C NMR (151 MHz, Chloroform-d)

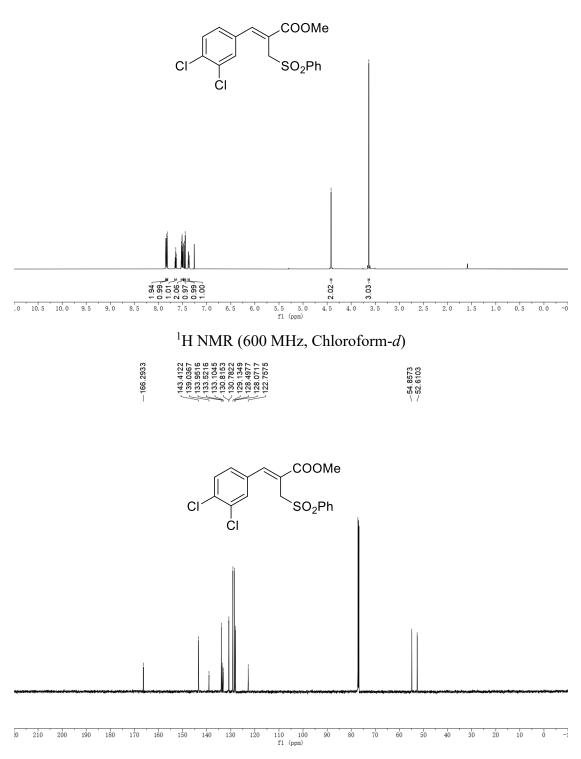


¹³C NMR (151 MHz, Chloroform-d)

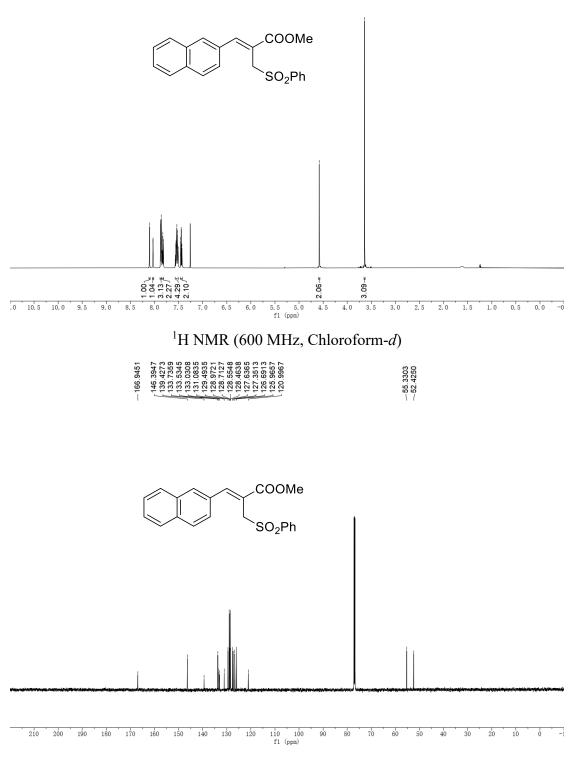



¹³C NMR (151 MHz, Chloroform-d)

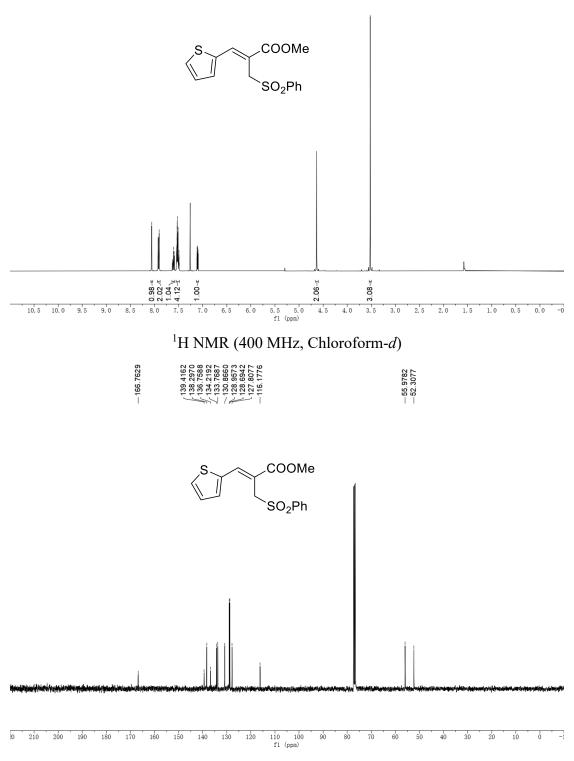
Methyl (Z)-3-(2-fluorophenyl)-2-((phenylsulfonyl)methyl)acrylate (10)



¹³C NMR (101 MHz, Chloroform-d)


¹³C NMR (151 MHz, Chloroform-d)

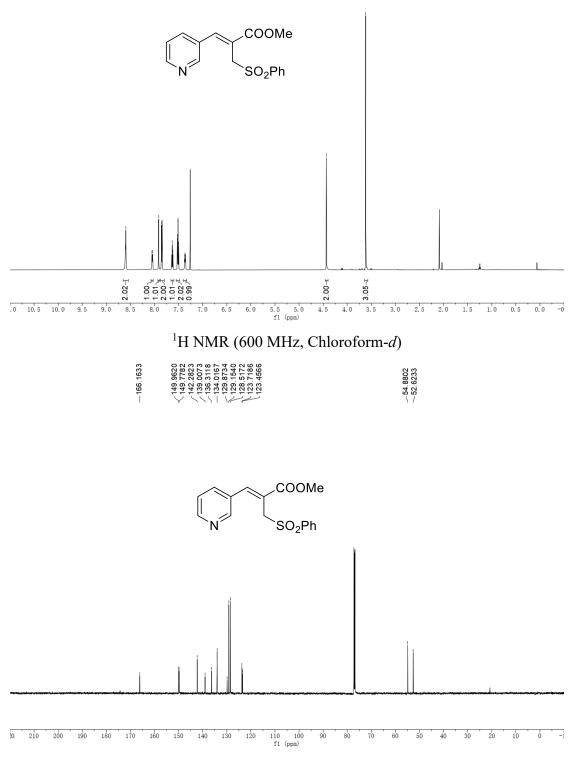
Methyl (*Z*)-3-(3,4-dichlorophenyl)-2-((phenylsulfonyl)methyl)acrylate (**1q**)

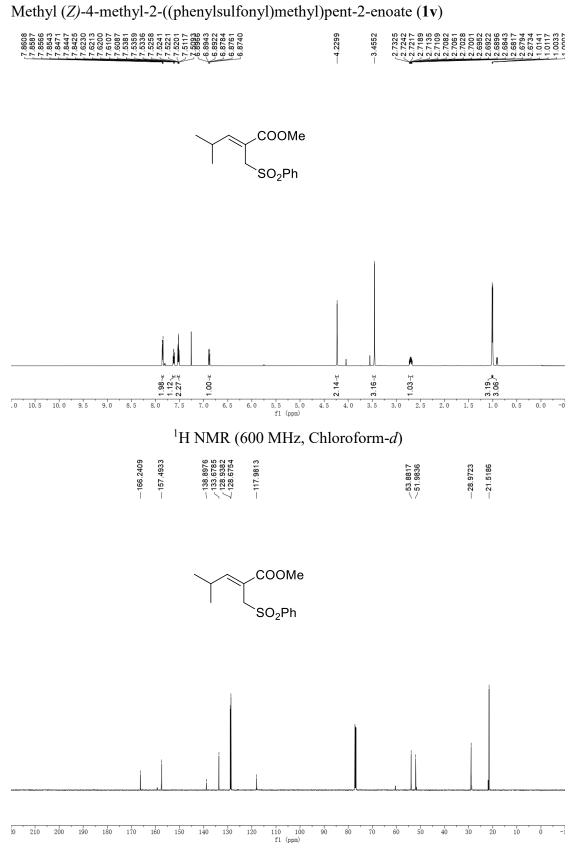

¹³C NMR (151 MHz, Chloroform-d)

Methyl (Z)-3-(naphthalen-2-yl)-2-((phenylsulfonyl)methyl)acrylate (1r)

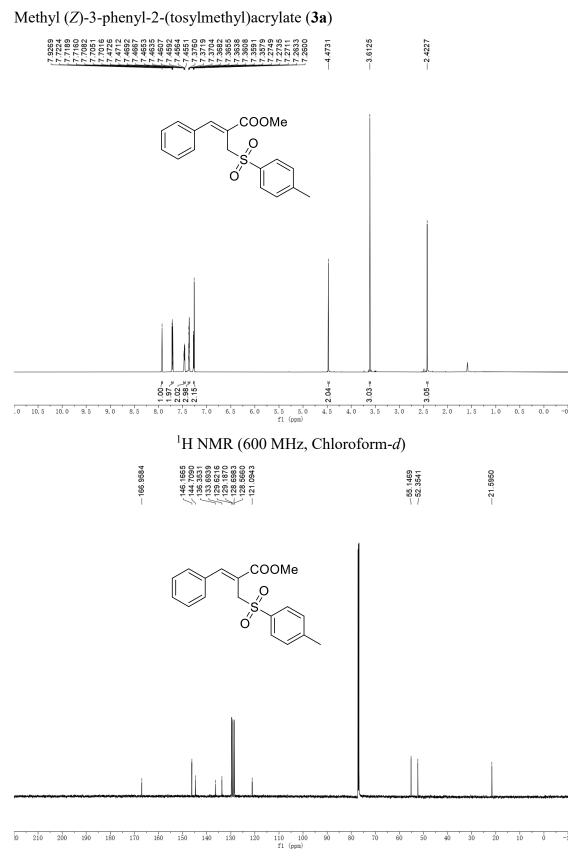
¹³C NMR (151 MHz, Chloroform-d)

Methyl (*Z*)-2-((phenylsulfonyl)methyl)-3-(thiophen-2-yl)acrylate (**1s**)

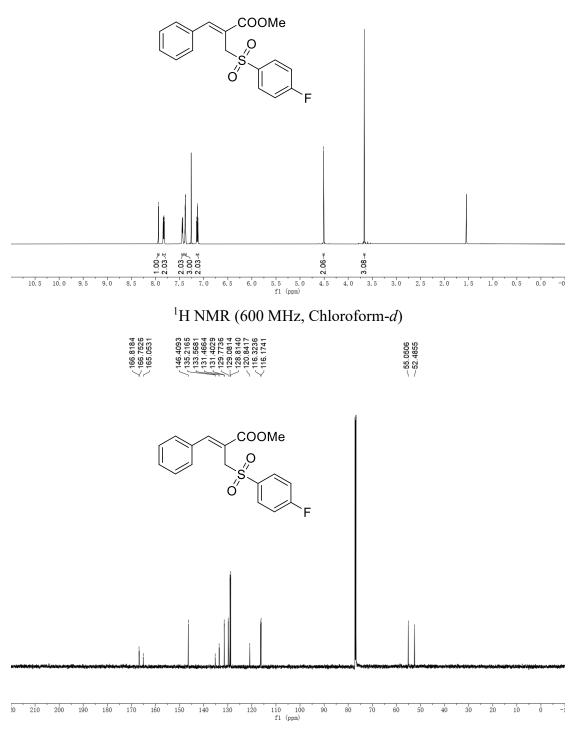

¹³C NMR (101 MHz, Chloroform-d)

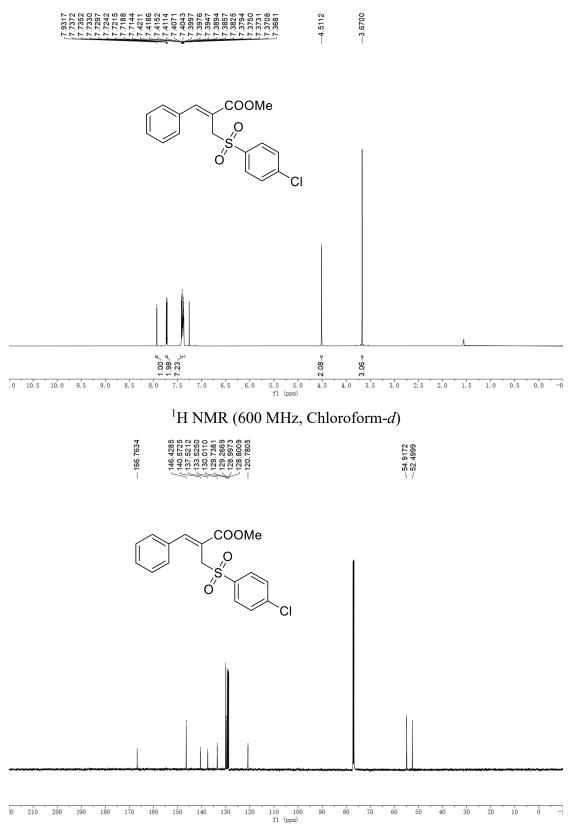

¹³C NMR (151 MHz, Chloroform-d)

Methyl (*Z*)-2-((phenylsulfonyl)methyl)-3-(pyridin-3-yl)acrylate (1u)



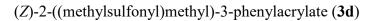
¹³C NMR (151 MHz, Chloroform-d)


¹³C NMR (151 MHz, Chloroform-d)

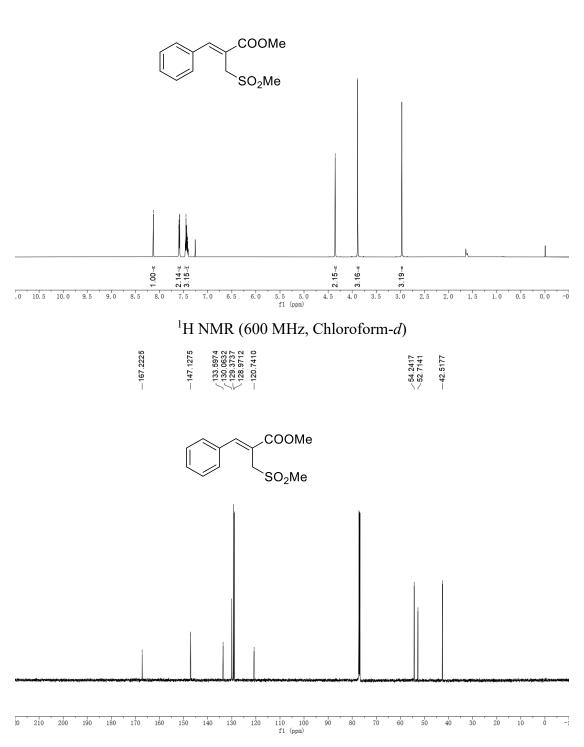

¹³C NMR (151 MHz, Chloroform-d)

 $Methyl~(Z)-2-(((4-fluorophenyl)sulfonyl)methyl)-3-phenylacrylate~({\bf 3b})$

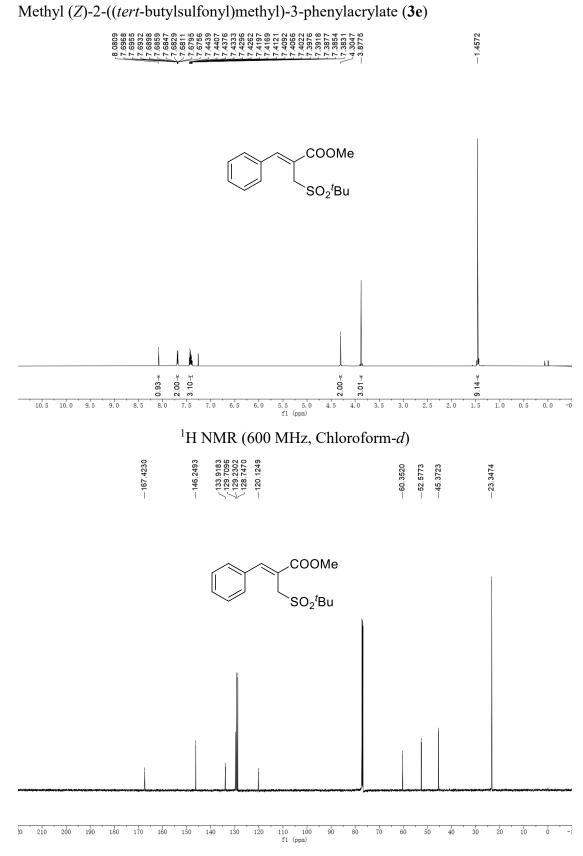
7, 9404 7, 8814 7, 8814 7, 8814 7, 8815 7, 8815 7, 4515 7, 4451 7, 4515 7, 11216

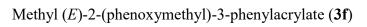


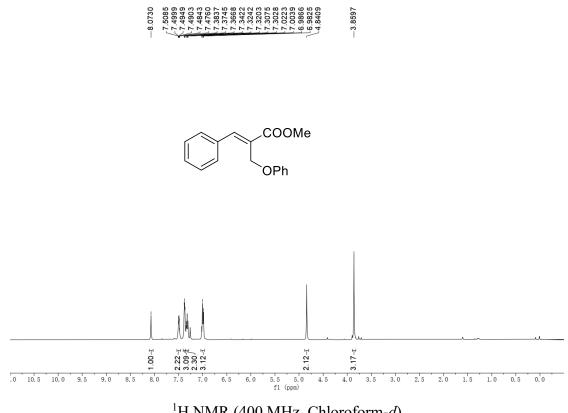
¹³C NMR (151 MHz, Chloroform-d)



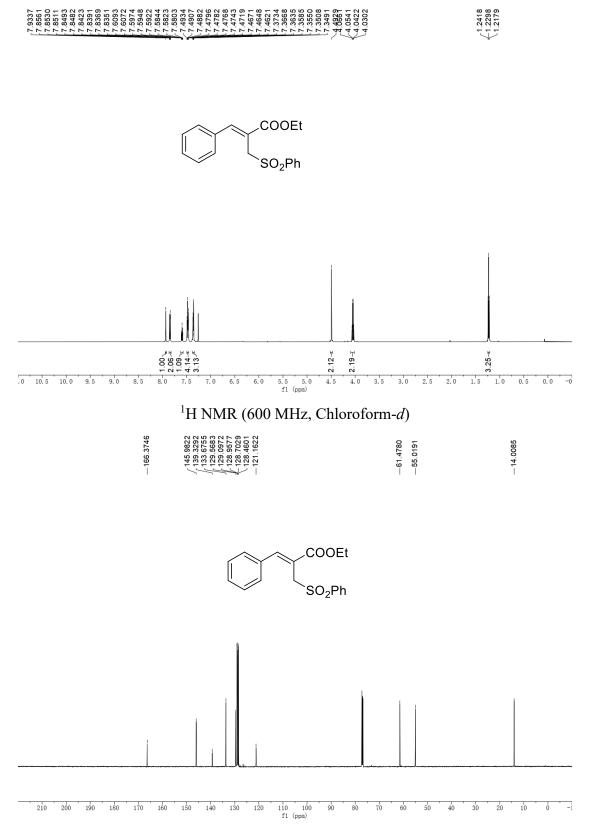
Methyl (*Z*)-2-(((4-chlorophenyl)sulfonyl)methyl)-3-phenylacrylate (**3c**)

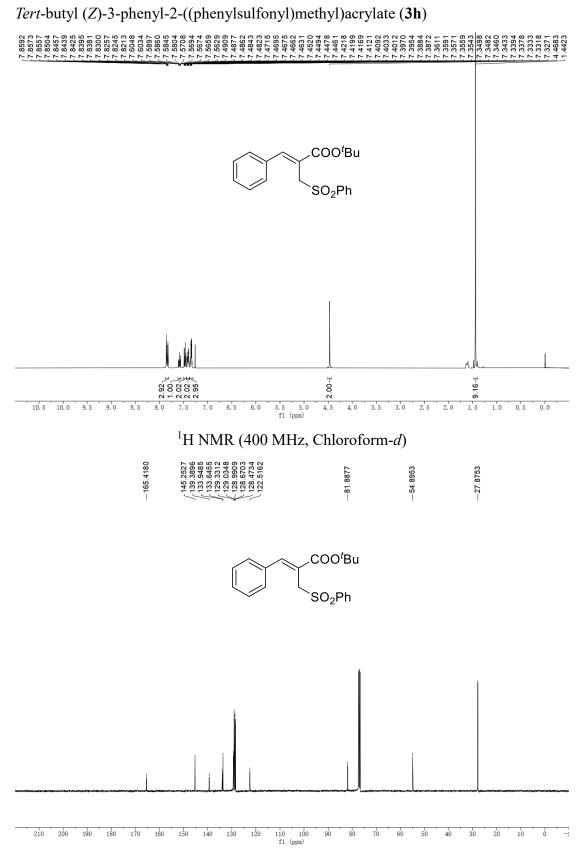

¹³C NMR (151 MHz, Chloroform-d)



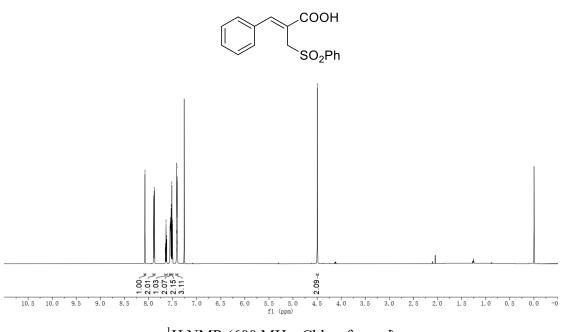


¹³C NMR (151 MHz, Chloroform-d)


¹³C NMR (151 MHz, Chloroform-d)

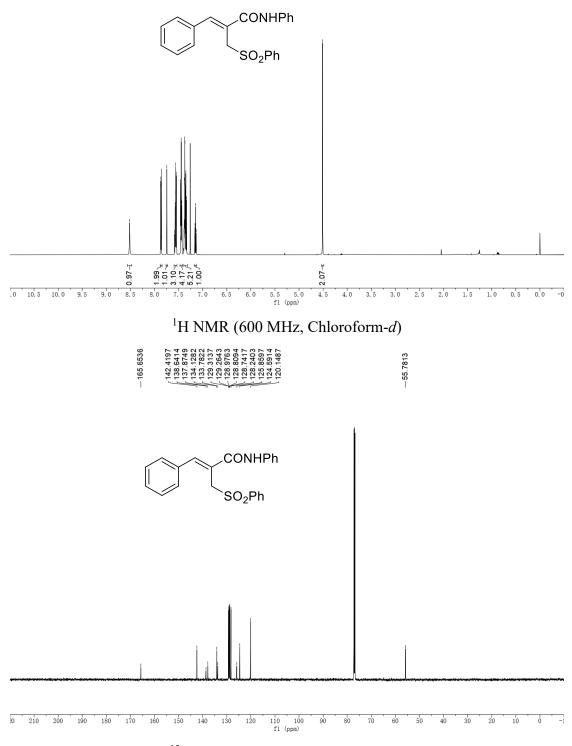


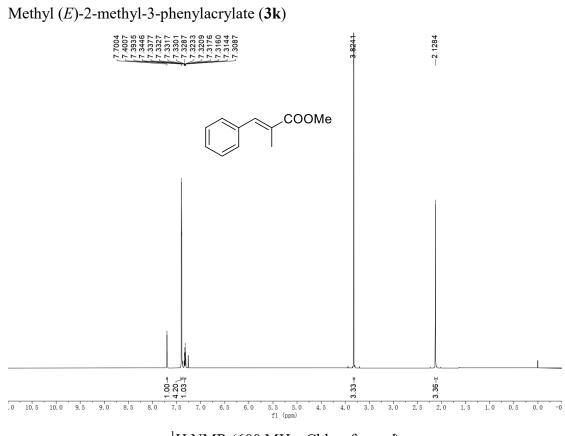
Ethyl (*Z*)-3-phenyl-2-((phenylsulfonyl)methyl)acrylate (**3**g)


¹³C NMR (151 MHz, Chloroform-d)

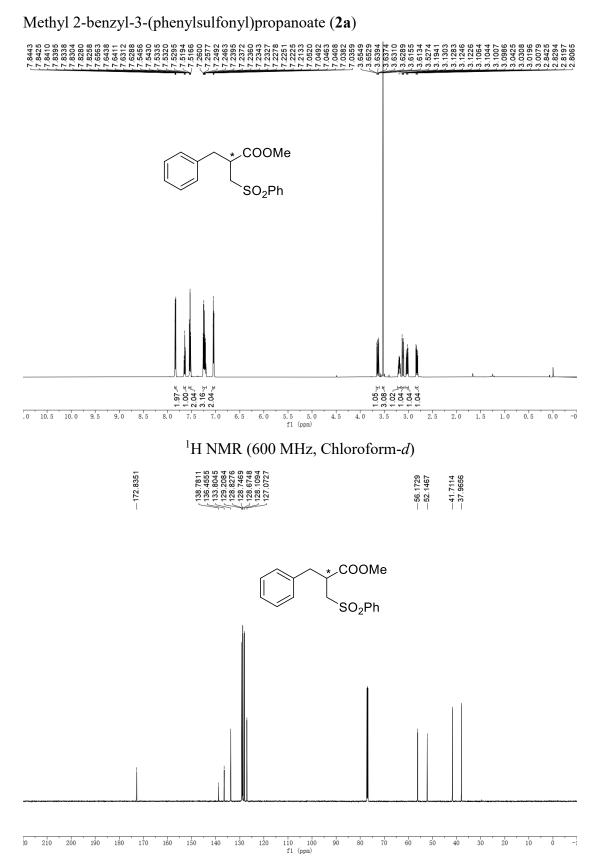
¹³C NMR (101 MHz, Chloroform-*d*)

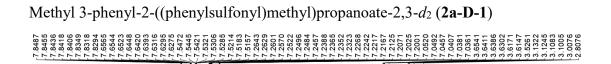
(Z)-3-phenyl-2-((phenylsulfonyl)methyl)acrylic acid (3i)

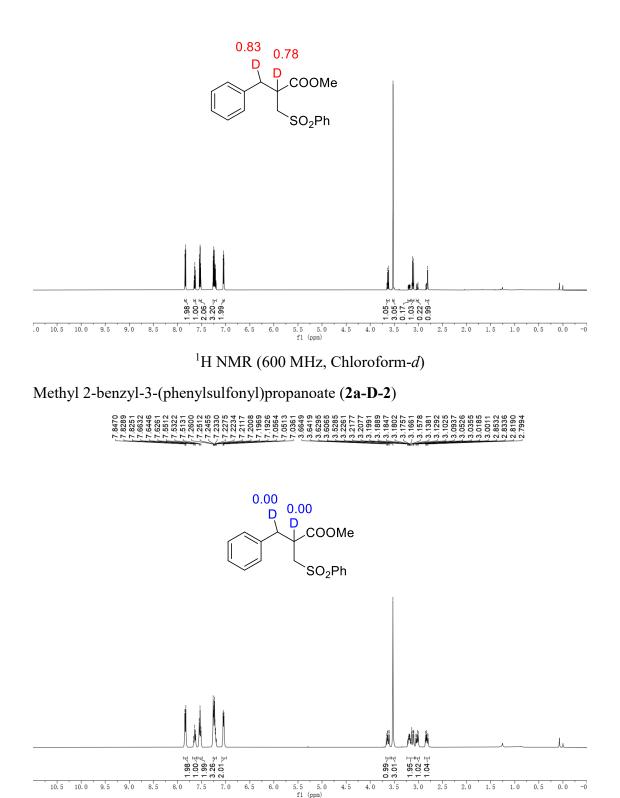




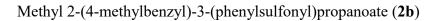
(Z)-N,3-diphenyl-2-((phenylsulfonyl)methyl)acrylamide (3j)

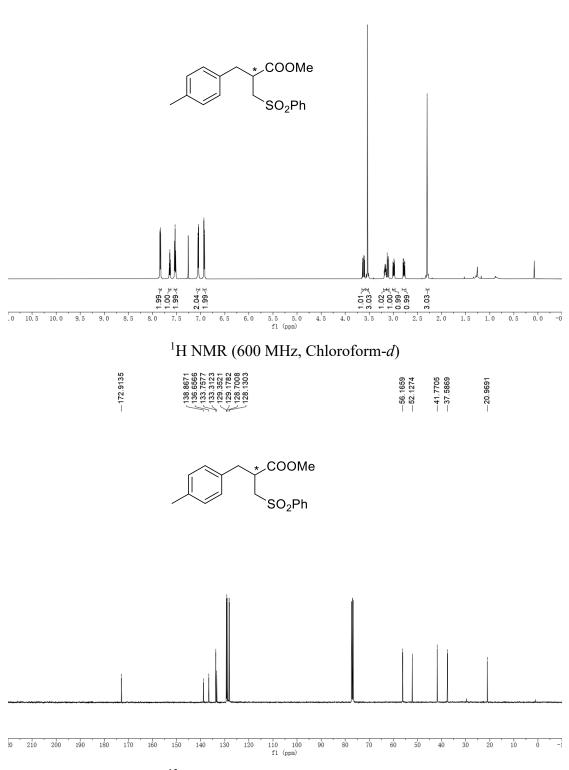


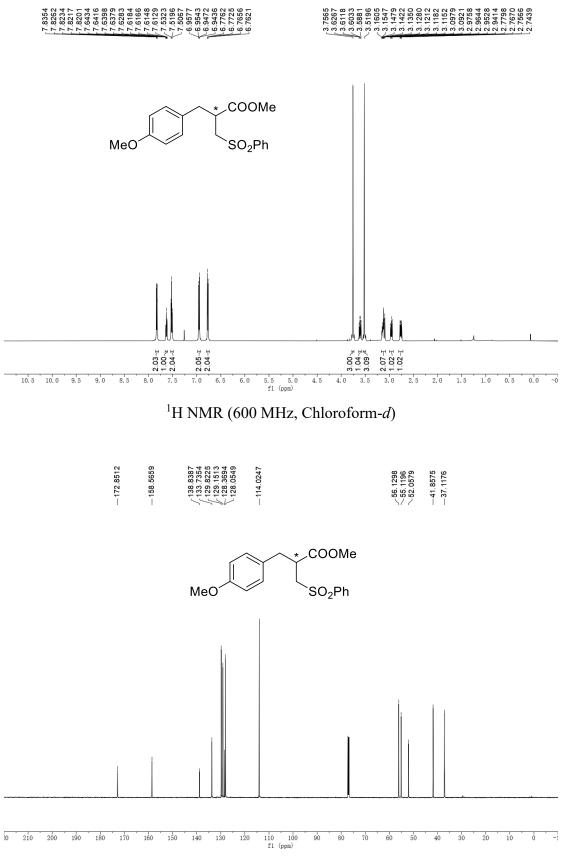

¹³C NMR (151 MHz, Chloroform-d)



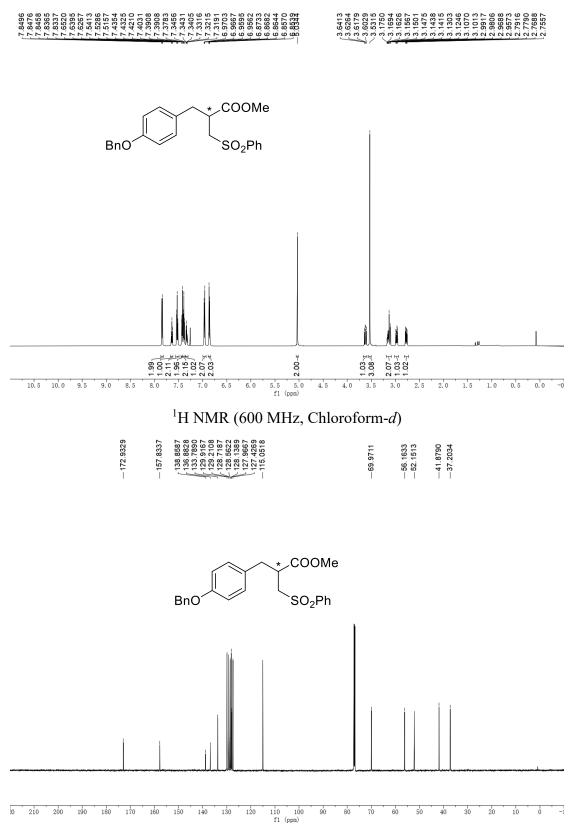
¹H NMR (600 MHz, Chloroform-*d*)



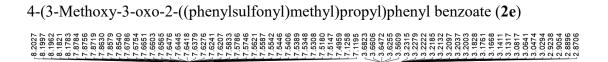

¹³C NMR (151 MHz, Chloroform-d)

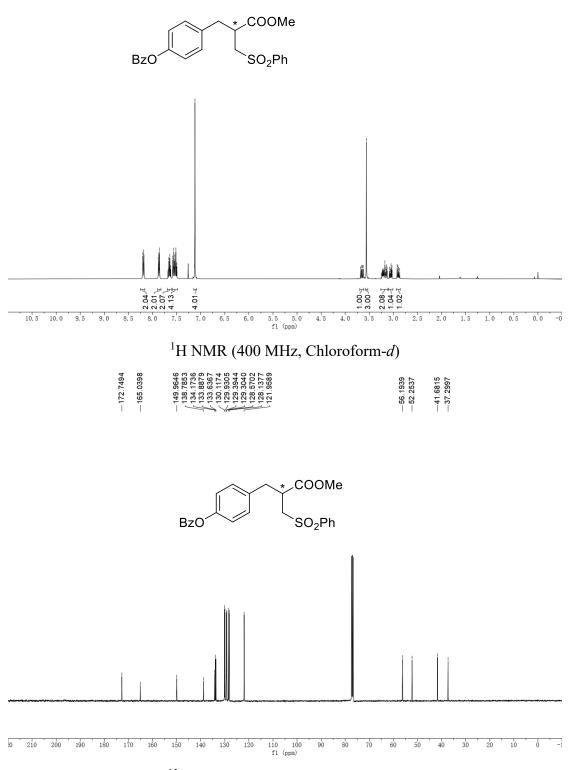


¹H NMR (400 MHz, Chloroform-*d*)



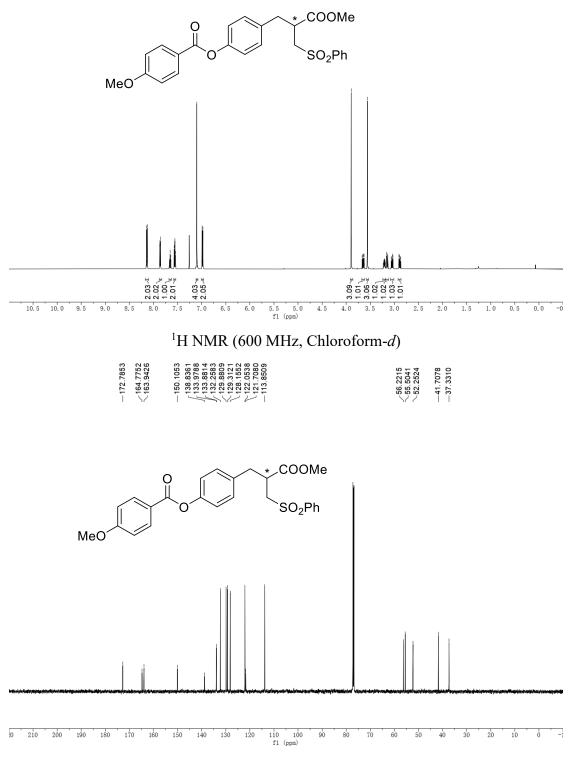
¹³C NMR (101 MHz, Chloroform-d)




Methyl 2-(4-methoxybenzyl)-3-(phenylsulfonyl)propanoate (2c)

Methyl 2-(4-(benzyloxy)benzyl)-3-(phenylsulfonyl)propanoate (2d)

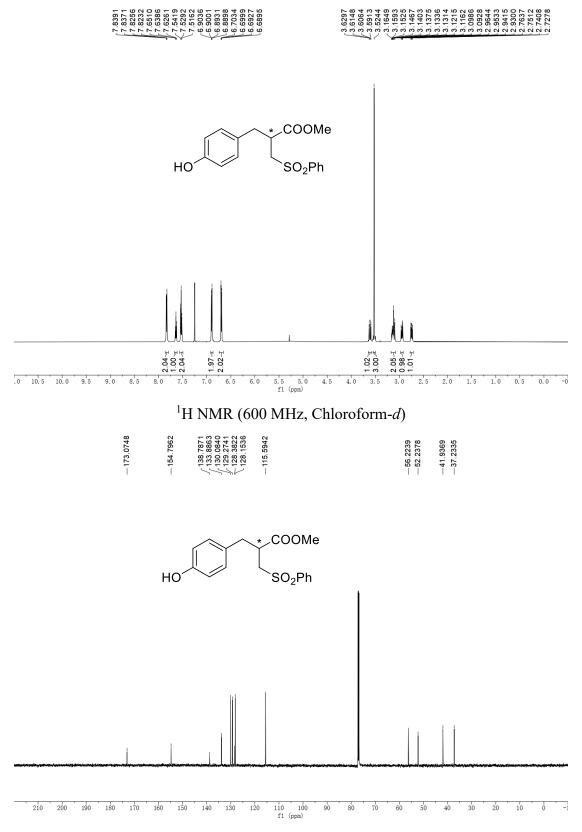
¹H NMR (600 MHz, Chloroform-*d*)



¹³C NMR (101 MHz, Chloroform-d)

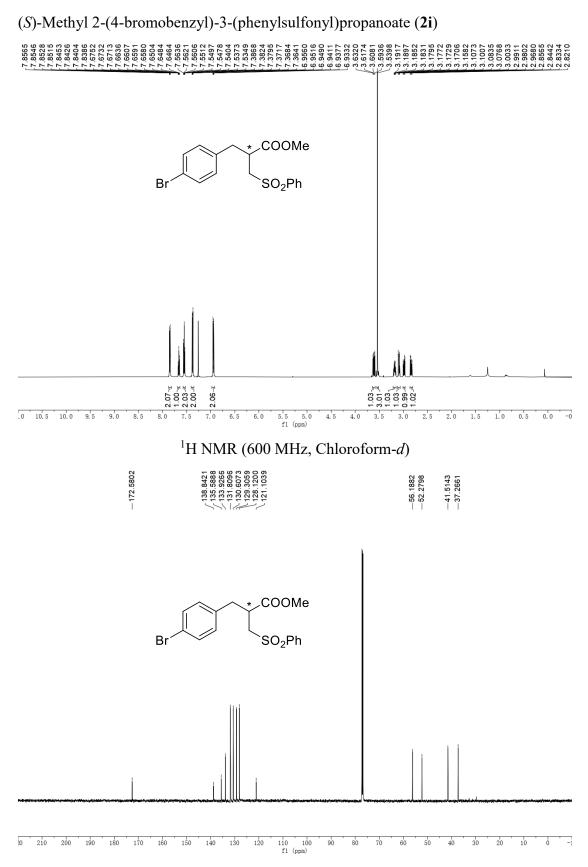
4-(3-Methoxy-3-oxo-2-((phenylsulfonyl)methyl)propyl)phenyl 4-methoxybenzoate


(2f)

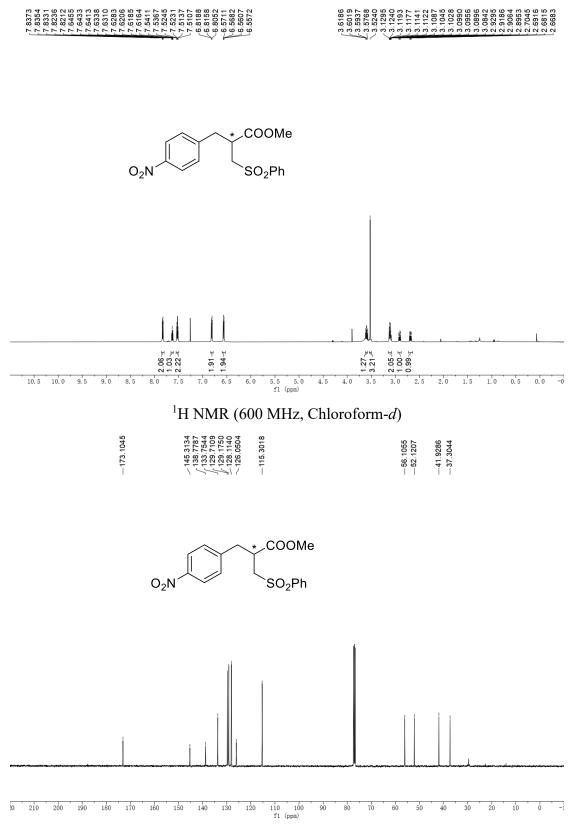


¹³C NMR (151 MHz, Chloroform-*d*)

Methyl 2-(4-(((benzyloxy)carbonyl)oxy)benzyl)-3-(phenylsulfonyl)propanoate (**2g**)

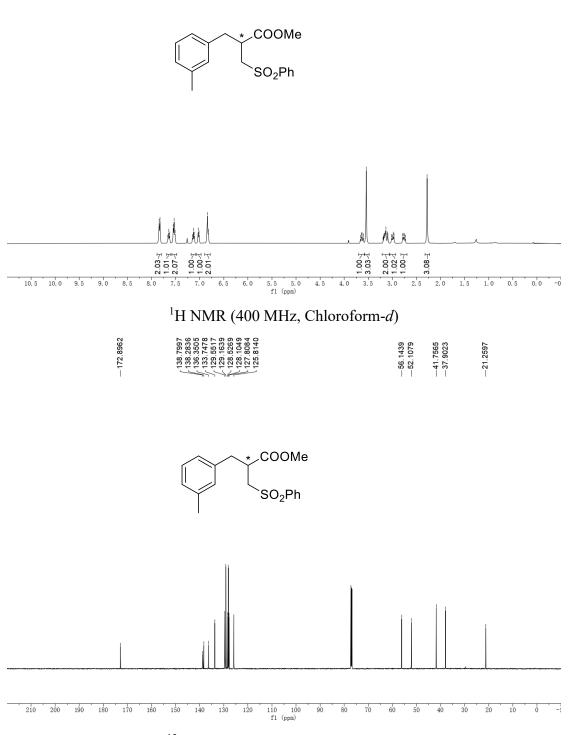


¹³C NMR (101 MHz, Chloroform-d)


Methyl 2-(4-hydroxybenzyl)-3-(phenylsulfonyl)propanoate (2h)

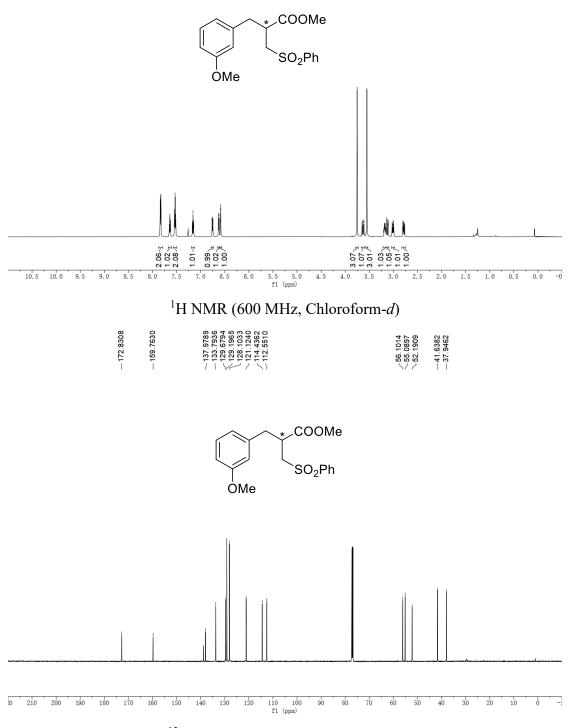
¹³C NMR (151 MHz, Chloroform-d)

¹³C NMR (151 MHz, Chloroform-d)


Methyl 2-(4-nitrobenzyl)-3-(phenylsulfonyl)propanoate (2j)

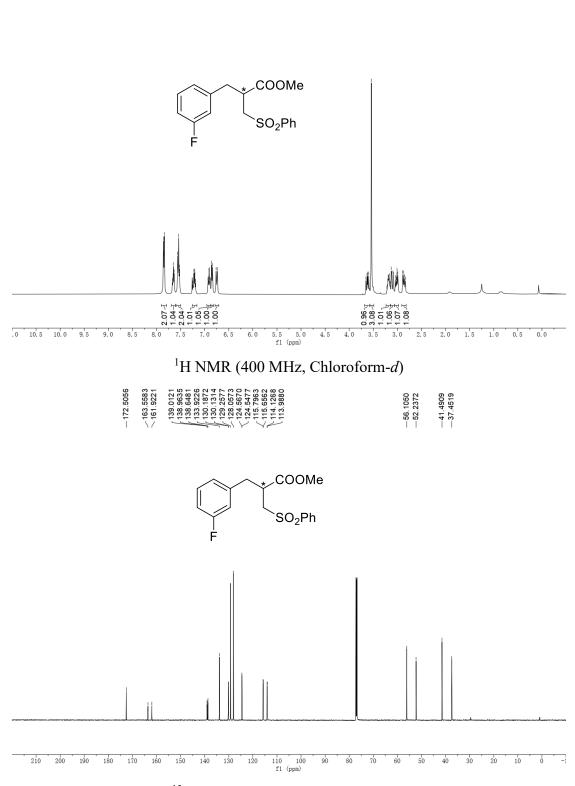
¹³C NMR (101 MHz, Chloroform-d)

Methyl 2-(3-methylbenzyl)-3-(phenylsulfonyl)propanoate (2k)



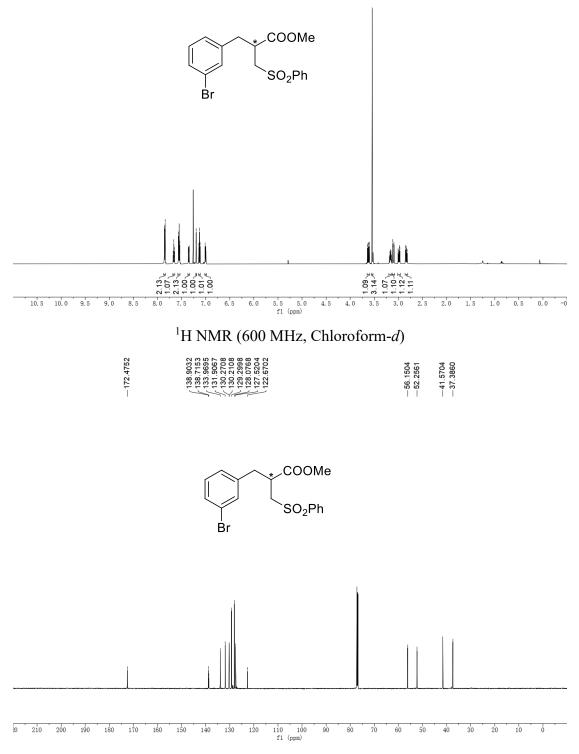
¹³C NMR (151 MHz, Chloroform-d)

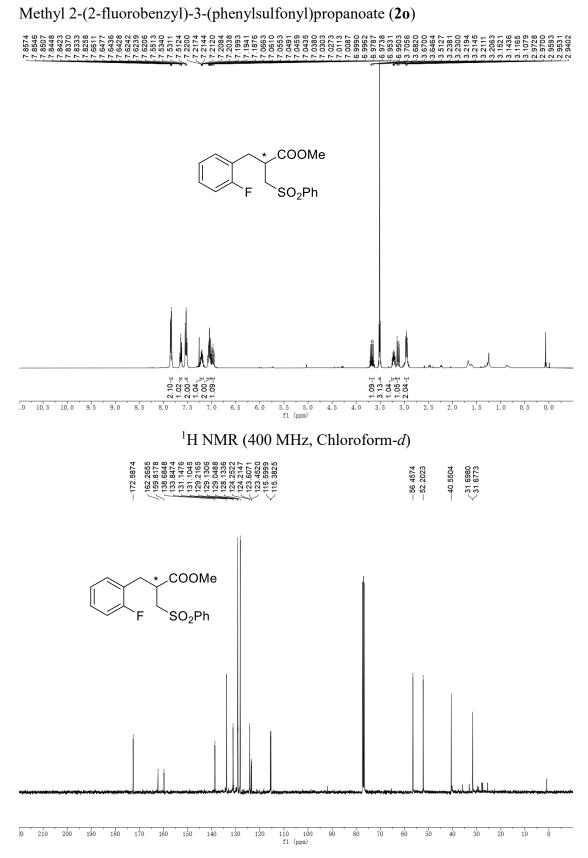
Methyl 2-(3-methoxybenzyl)-3-(phenylsulfonyl)propanoate (21)



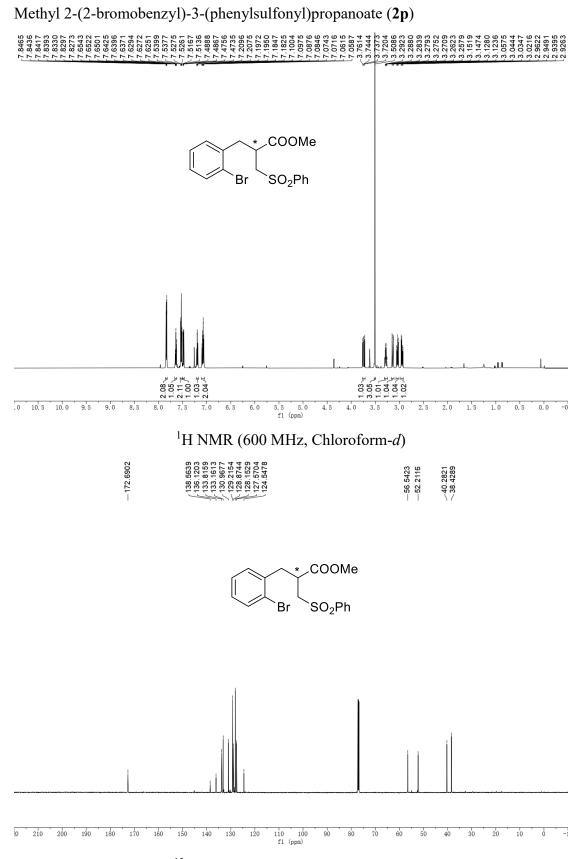
¹³C NMR (151 MHz, Chloroform-d)

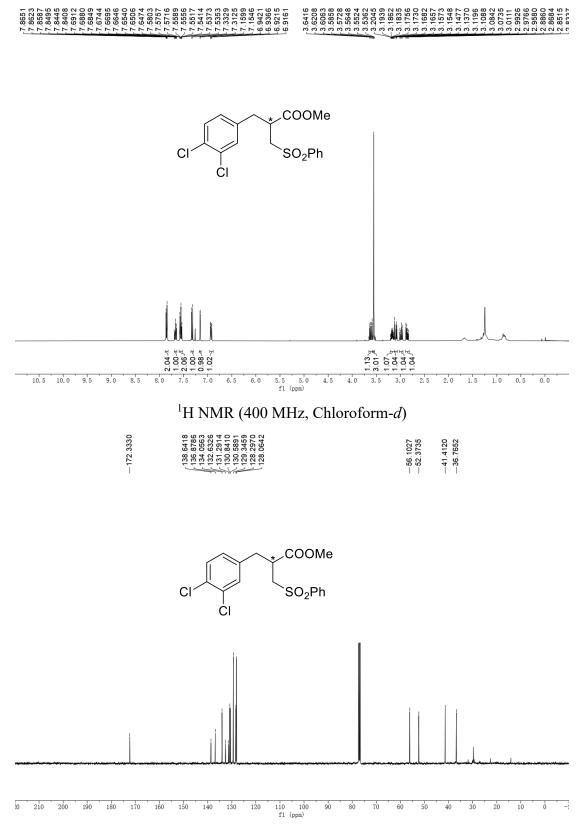
Methyl 2-(3-fluorobenzyl)-3-(phenylsulfonyl)propanoate (2m)


7,8564
7,8564
7,8564
7,8504
7,5503
7,5503
7,5503
7,5503
7,5504
7,5504
7,5504
7,5504
7,5204
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7224
7,7234
8,607
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800
8,800</

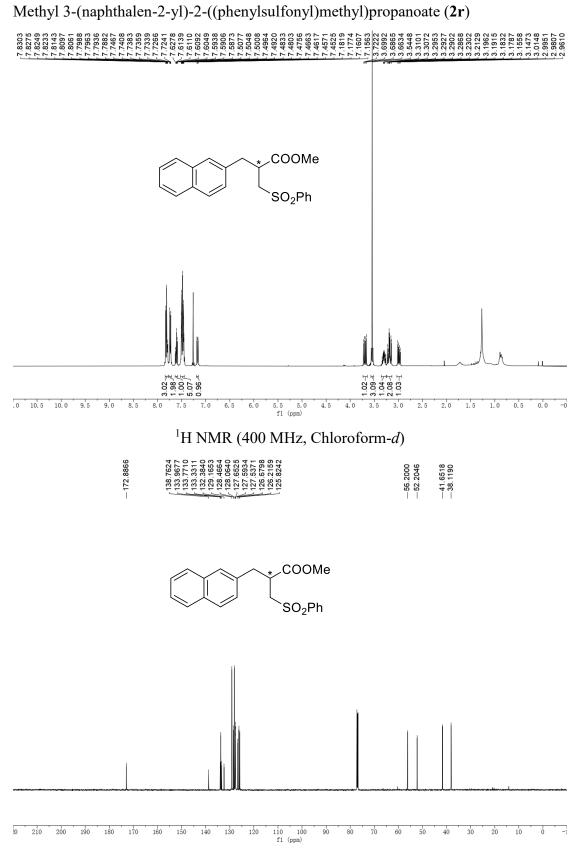

¹³C NMR (151 MHz, Chloroform-d)

Methyl 2-(3-bromobenzyl)-3-(phenylsulfonyl)propanoate (2n)

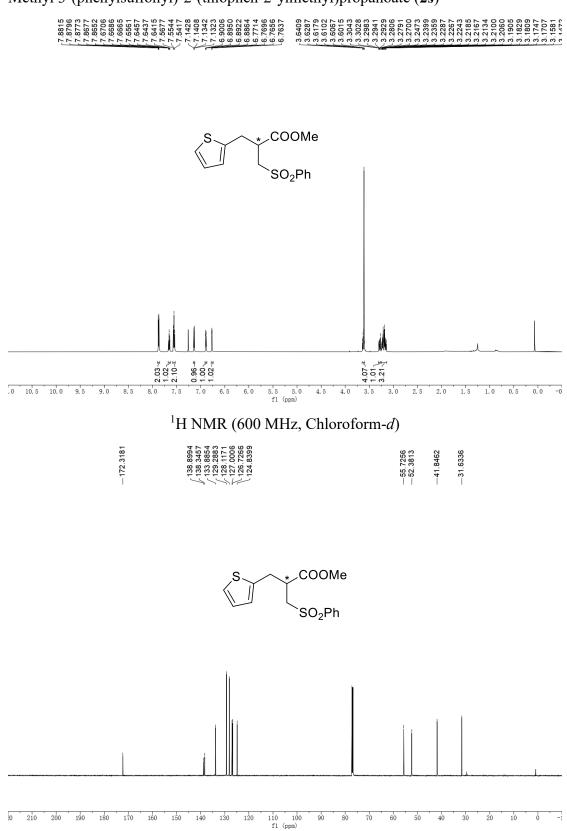



¹³C NMR (151 MHz, Chloroform-d)

¹³C NMR (101 MHz, Chloroform-d)

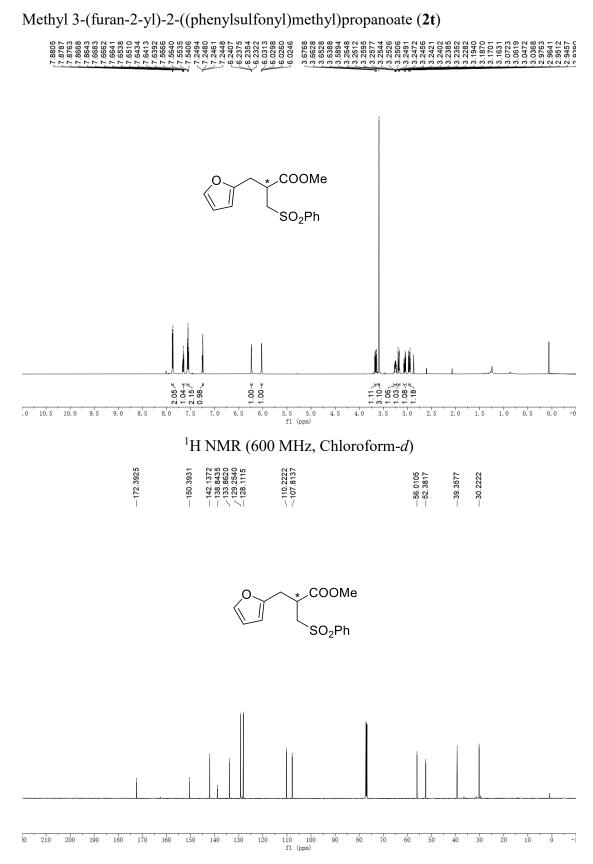


¹³C NMR (151 MHz, Chloroform-d)

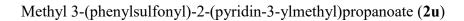


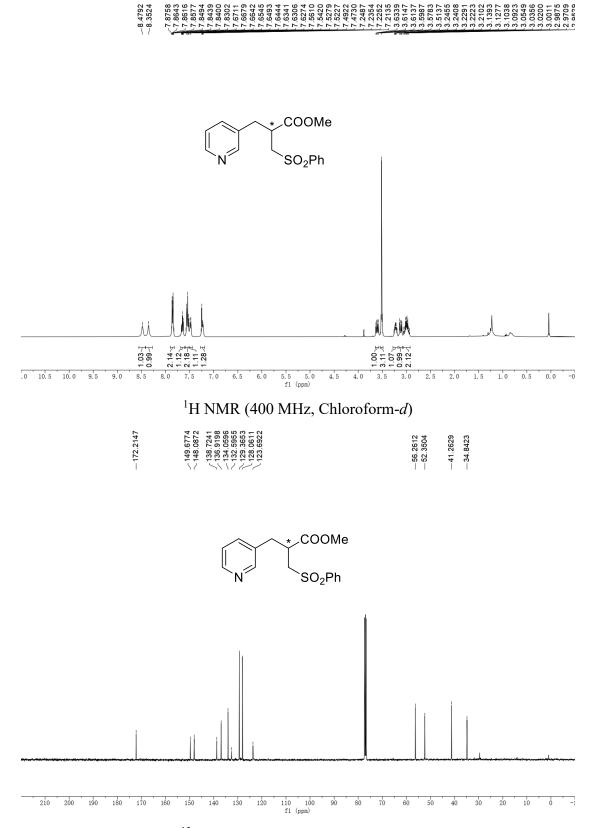
Methyl 2-(3,4-dichlorobenzyl)-3-(phenylsulfonyl)propanoate (2q)

¹³C NMR (101 MHz, Chloroform-d)

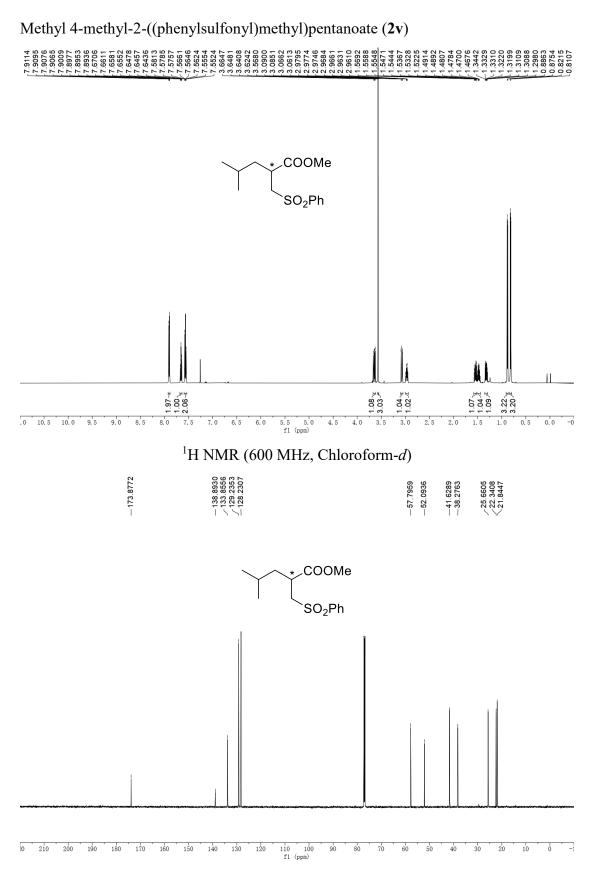


¹³C NMR (151 MHz, Chloroform-d)

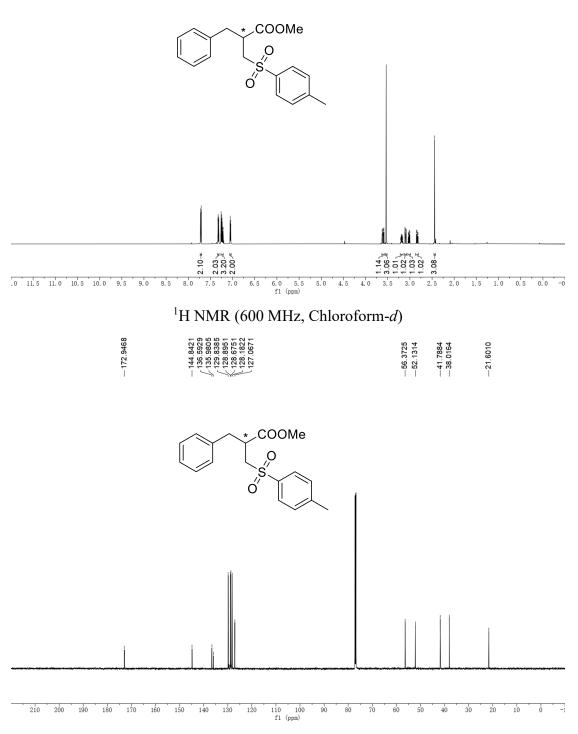



Methyl 3-(phenylsulfonyl)-2-(thiophen-2-ylmethyl)propanoate (2s)

¹³C NMR (151 MHz, Chloroform-*d*)

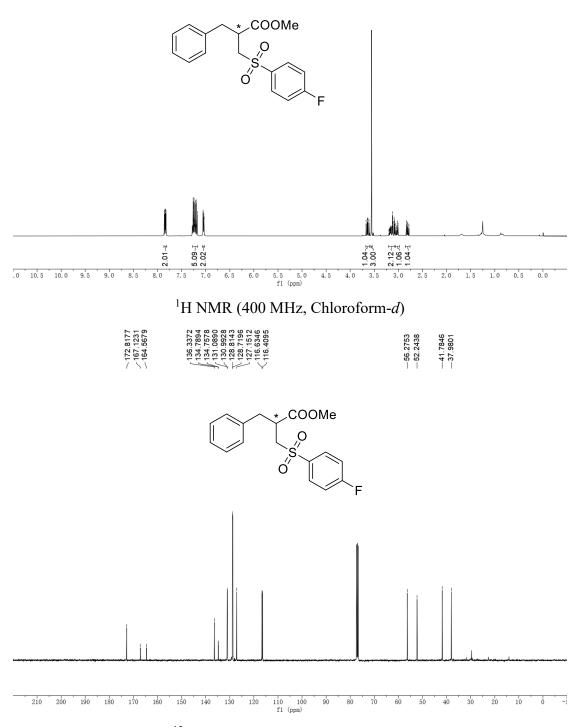


¹³C NMR (151 MHz, Chloroform-d)



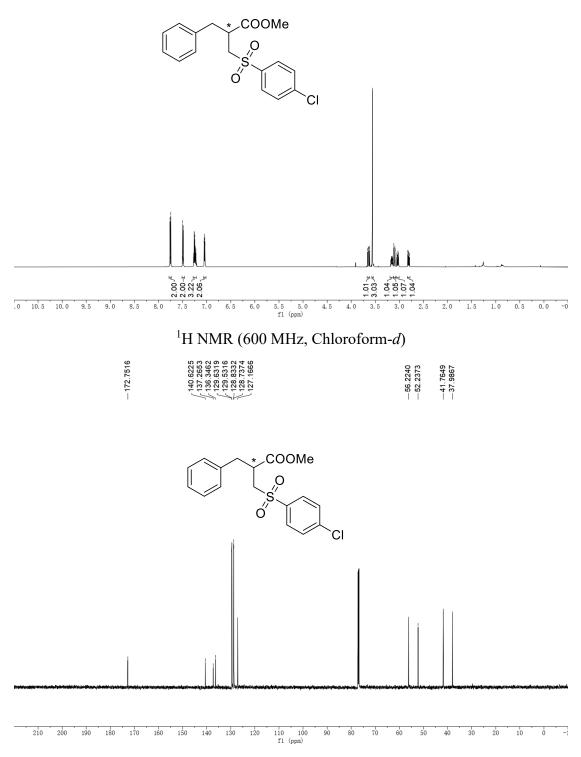
¹³C NMR (101 MHz, Chloroform-d)

¹³C NMR (151 MHz, Chloroform-d)

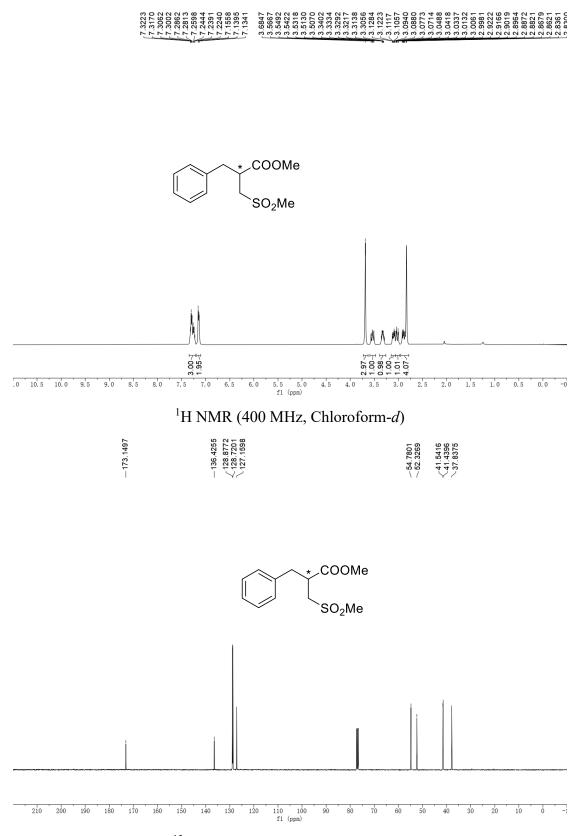


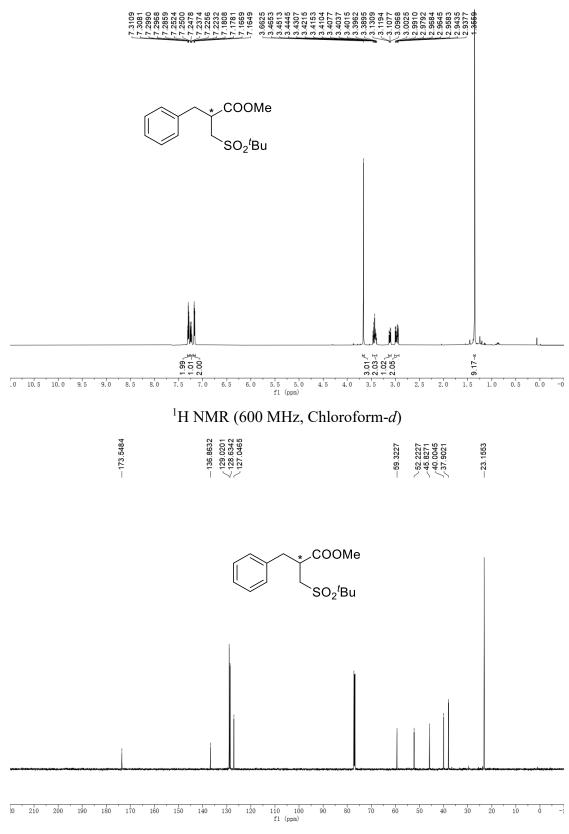
¹³C NMR (151 MHz, Chloroform-d)

Methyl 2-benzyl-3-((4-fluorophenyl)sulfonyl)propanoate (4b)


7, 28575 7, 28575 7, 28575 7, 28553 7, 28553 7, 28558 7, 28558 7, 22743 7, 22743 7, 22743 7, 22658 7,

¹³C NMR (101 MHz, Chloroform-d)

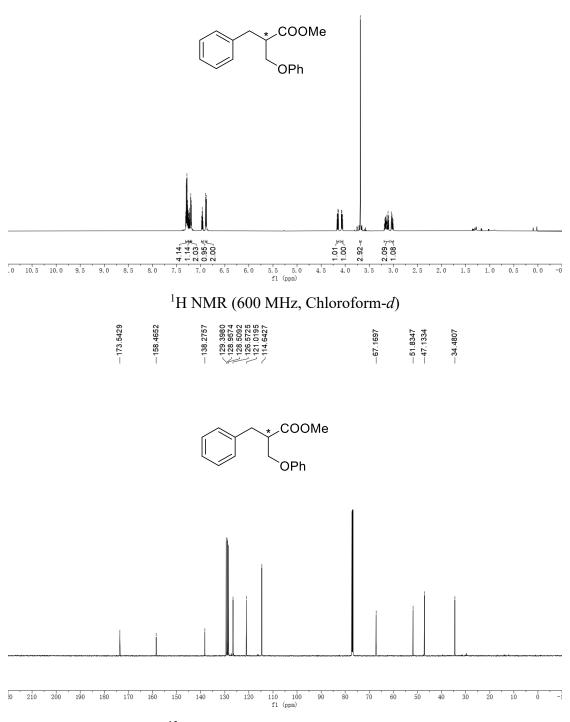

Methyl 2-benzyl-3-((4-chlorophenyl)sulfonyl)propanoate (4c)



¹³C NMR (151 MHz, Chloroform-d)

Methyl 2-benzyl-3-(methylsulfonyl)propanoate (4d)

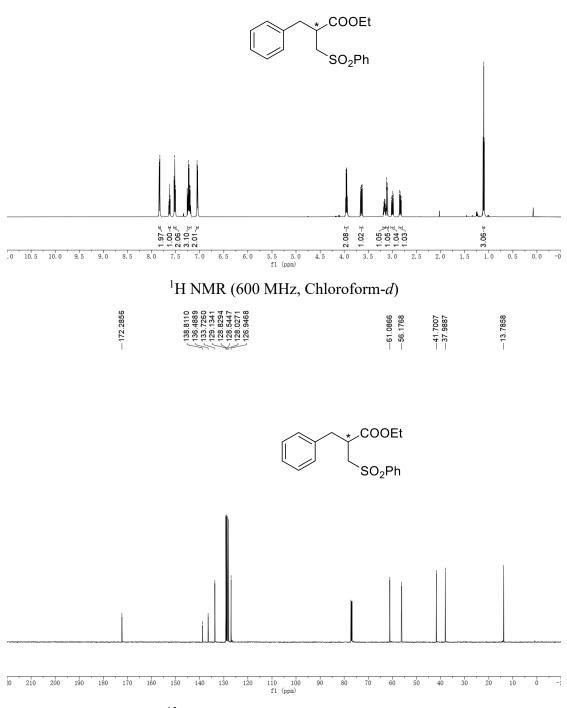
¹³C NMR (101 MHz, Chloroform-d)

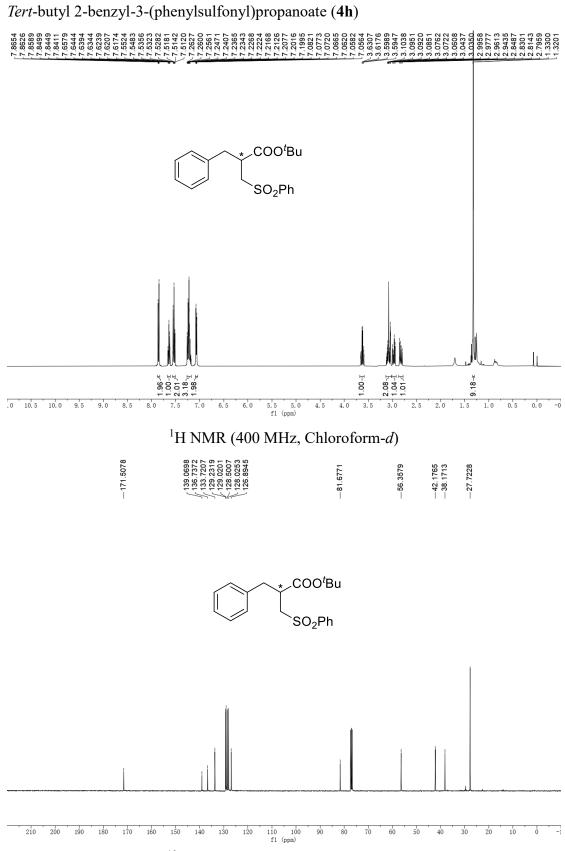


Methyl (*Z*)-2-((*tert*-butylsulfonyl)methyl)-3-phenylacrylate (**4e**)

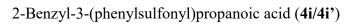
¹³C NMR (151 MHz, Chloroform-d)

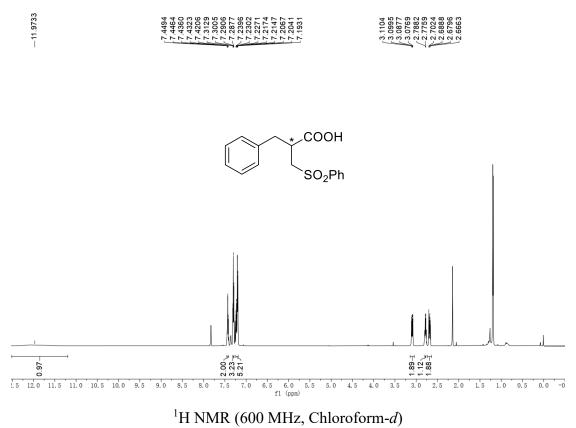
Methyl 2-benzyl-3-phenoxypropanoate (4f)


7, 3118 7, 7, 2985 7, 7, 2985 7, 7, 2985 7, 7, 2985 7, 7, 2985 7, 7, 2985 7, 7, 2985 7, 7, 2985 7, 7, 2985 7, 7, 2985 7, 7, 2985 7, 7, 2985 6, 9981 6, 8981 6, 8981 6, 8883 4, 1572 6, 8882 6, 8985 6, 8985 6, 8985 6, 8985 6, 8985 6, 8985 6, 8882 4, 1572 6, 8882 4, 1572 6, 8885 7, 7, 1395 8, 8, 1413 8, 14148 8, 14148 8

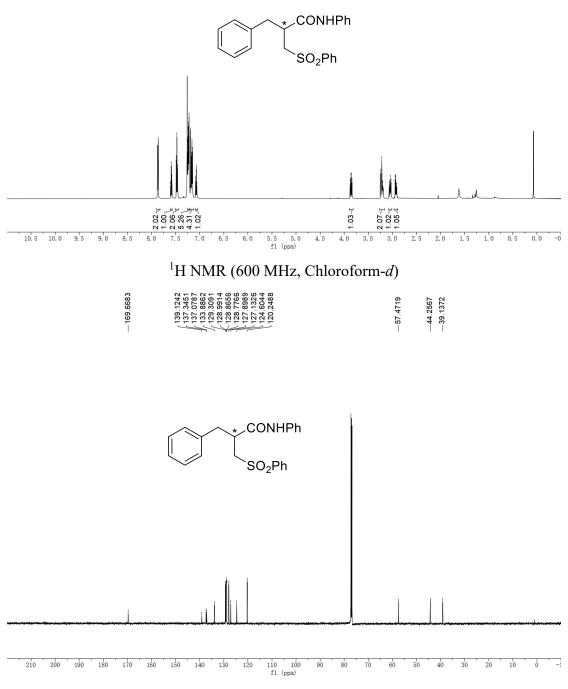

¹³C NMR (151 MHz, Chloroform-d)

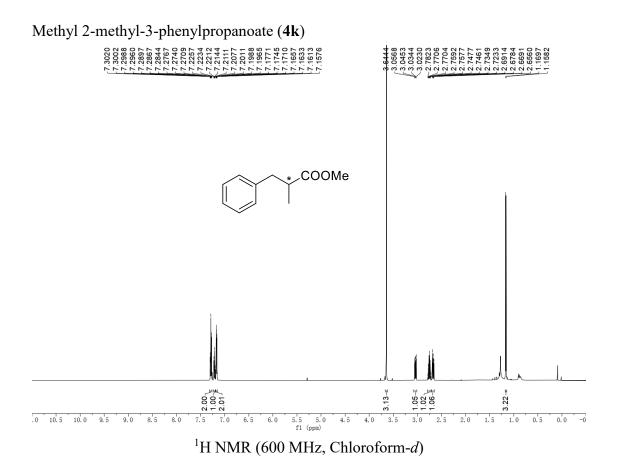
Ethyl 2-benzyl-3-(phenylsulfonyl)propanoate (4g)



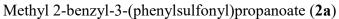


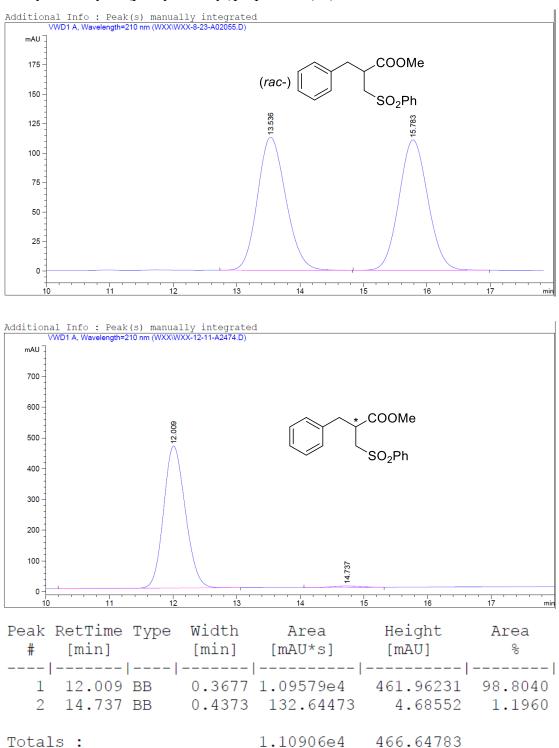
¹³C NMR (151 MHz, Chloroform-d)

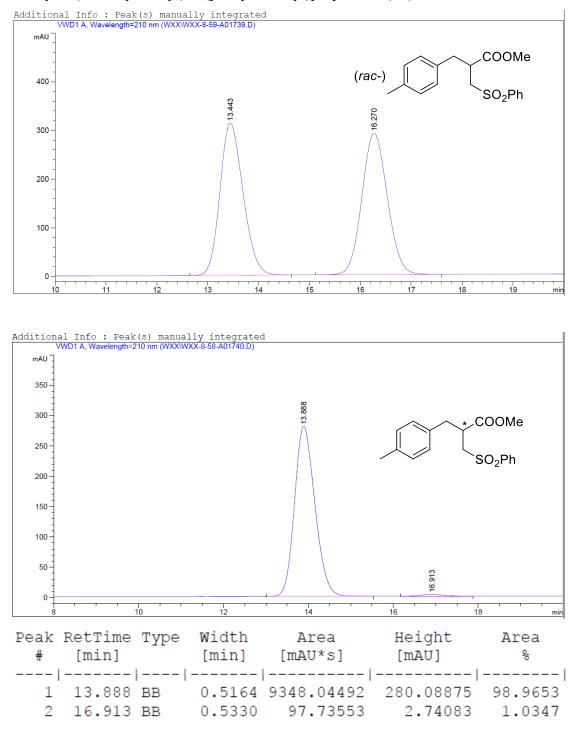

¹³C NMR (101 MHz, Chloroform-*d*)



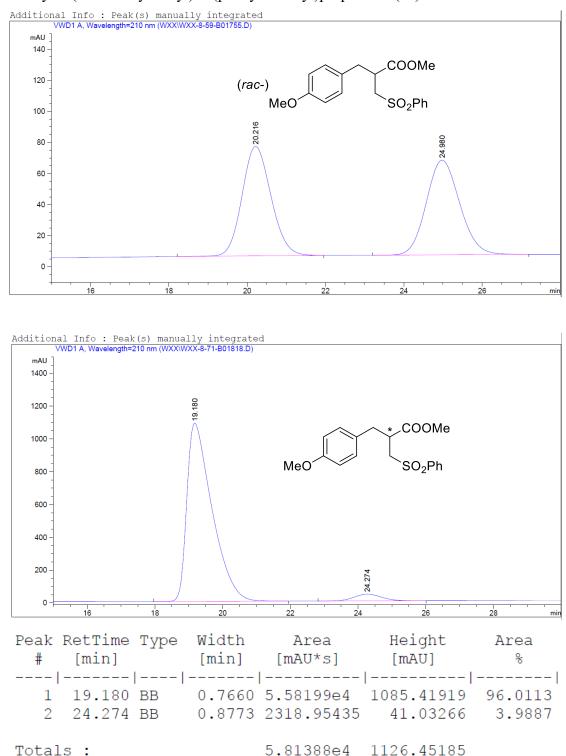
2-Benzyl-*N*-phenyl-3-(phenylsulfonyl)propenamide (4j/4j')

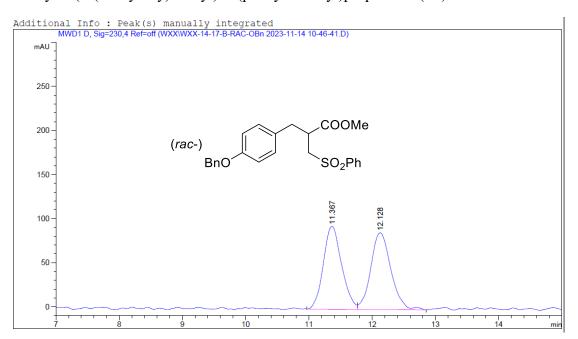

7, 8737 7, 88737 7, 88717 7, 88717 7, 88717 7, 88717 7, 88717 7, 88717 7, 88717 7, 88718 7, 8872 88628 7, 25128 88688 8, 253888 8, 253888 8, 253888 8, 25388 8, 25388 8, 25388

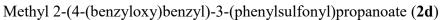


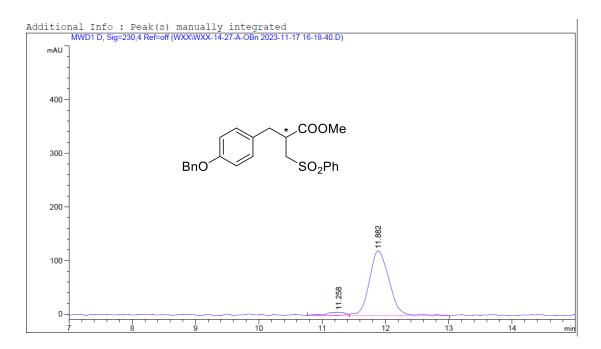

¹³C NMR (151 MHz, Chloroform-d)

S100

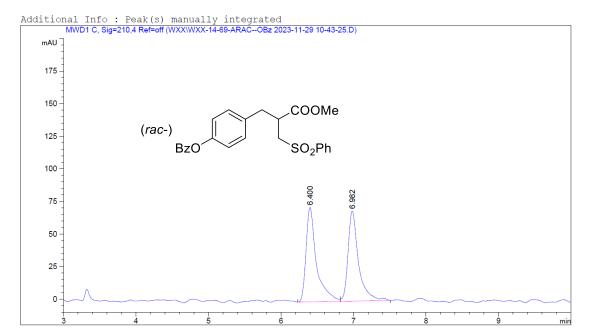


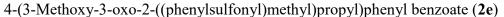

Methyl 2-(4-methylbenzyl)-3-(phenylsulfonyl)propanoate (2b)

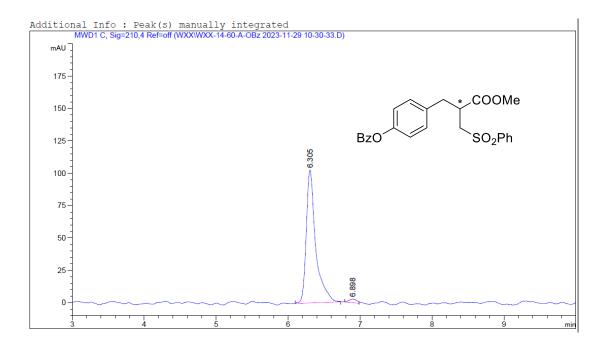

Totals :


9445.78045 282.82958

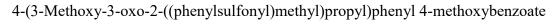
Methyl 2-(4-methoxybenzyl)-3-(phenylsulfonyl)propanoate (2c)

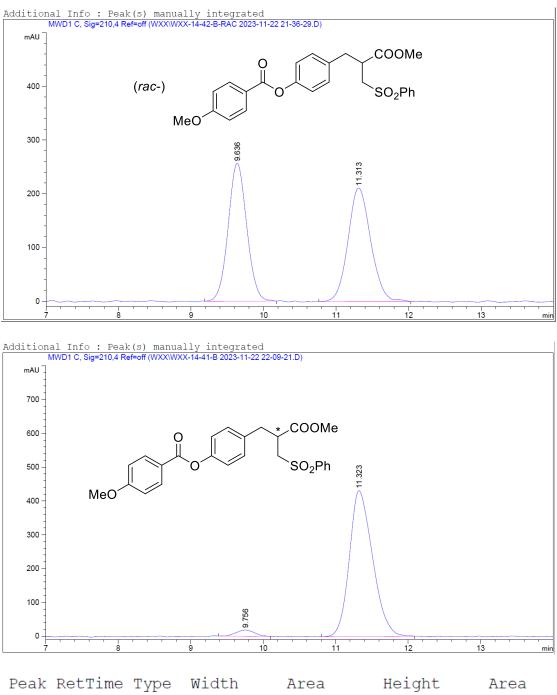


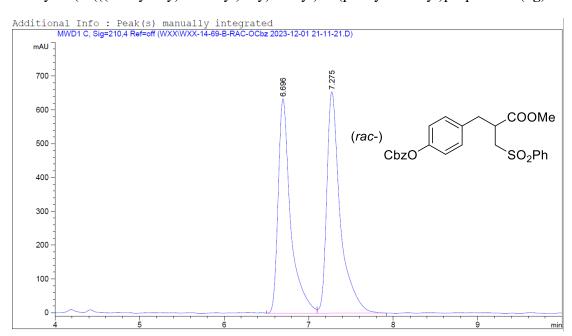


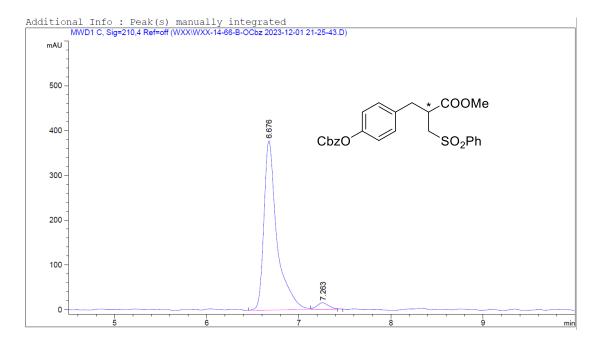

				Area [mAU*s]	-	
1	11.258	BV E	0.2475	117.27170	5.64162	4.2390
2	11.882	VV R	0.3201	2649.19067	120.64447	95.7610

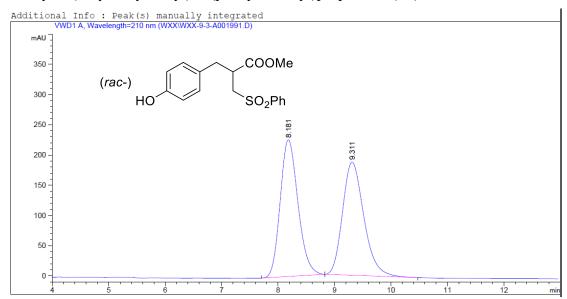
Totals :

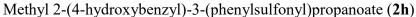

2766.46237 126.28609



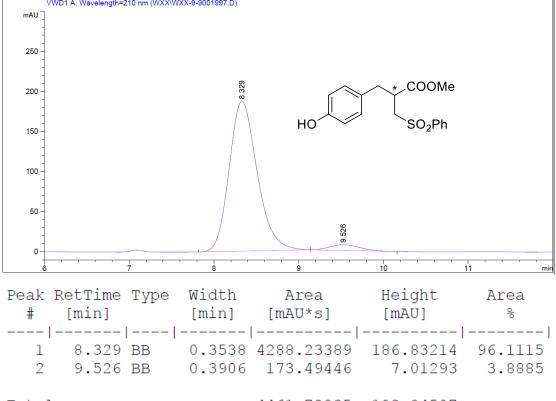

Height Peak RetTime Type Width Area Area [min] [min] [mAU*s] [mAU] 용 # ----|------6.305 VV R 0.1320 936.75104 102.63485 97.8102 1 2 6.898 BV 0.0862 20.97224 2.95778 2.1898 Totals : 957.72328 105.59263


(2f)

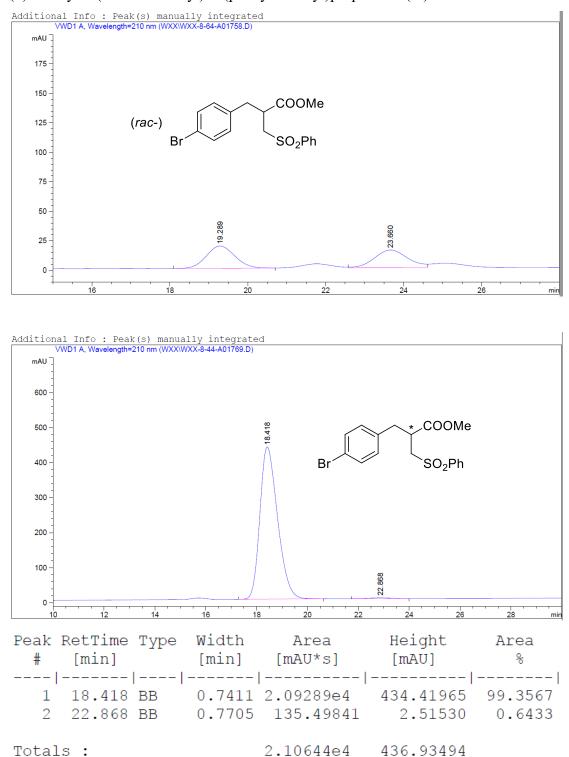

Peak RetTime Typ # [min]			~	
1 9.756 VB	R 0.2065	321.12201	18.59181	3.2342
2 11.323 VV	R 0.2951	9607.85059	431.74139	96.7658
Totals :		9928.97260	450.33320	

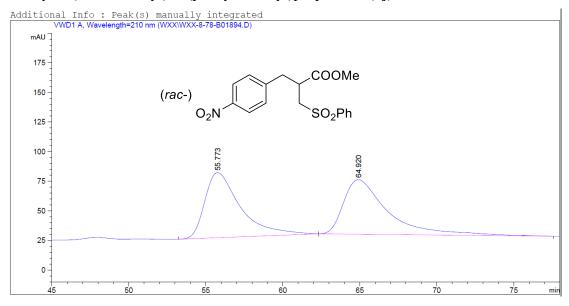


Methyl 2-(4-(((benzyloxy)carbonyl)oxy)benzyl)-3-(phenylsulfonyl)propanoate (2g)

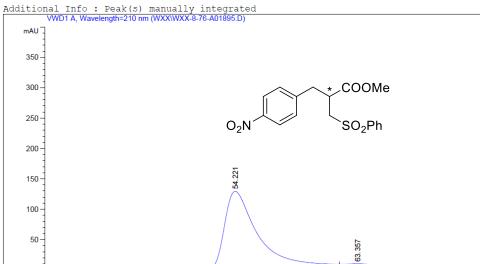


				Area [mAU*s]	-	
		-				
1	6.676	BV R	0.1436	3728.74487	377.96875	96.6770
2	7.263	VV E	0.1080	128.16551	14.58389	3.3230
Totals	:			3856.91039	392.55264	





Totals :


4461.72835 193.84507

(S)-Methyl 2-(4-bromobenzyl)-3-(phenylsulfonyl)propanoate (2i)

Methyl 2-(4-nitrobenzyl)-3-(phenylsulfonyl)propanoate (2j)

55

50

45

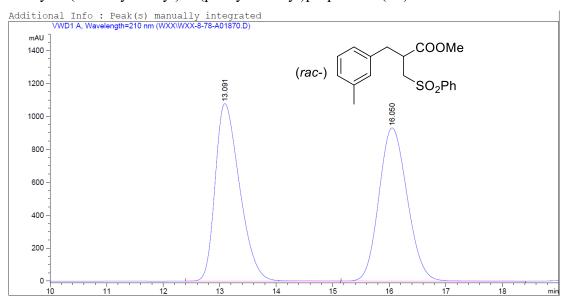
Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] 응 -----|----|-----|-----| ----54.221 BB 2.2572 2.06254e4 125.83629 98.7063 1 2 1.5965 1.2937 63.357 BB 270.32550 1.97915

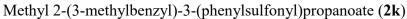
Totals :

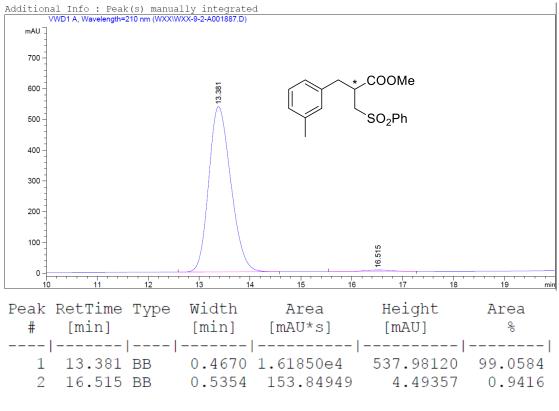
0-

40

2.08957e4 127.81543

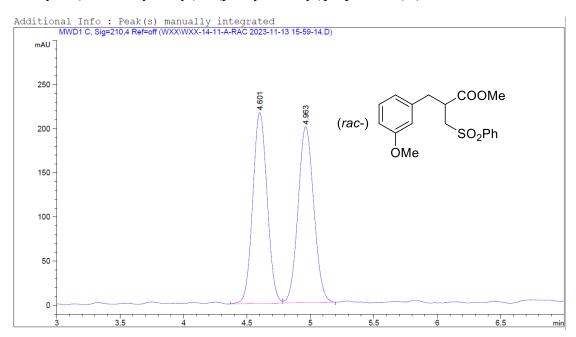

60

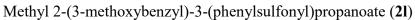

65

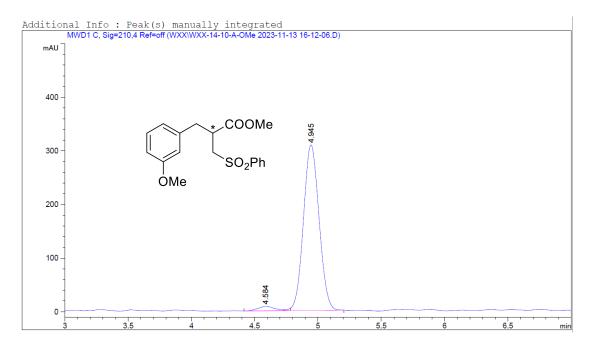

70

75

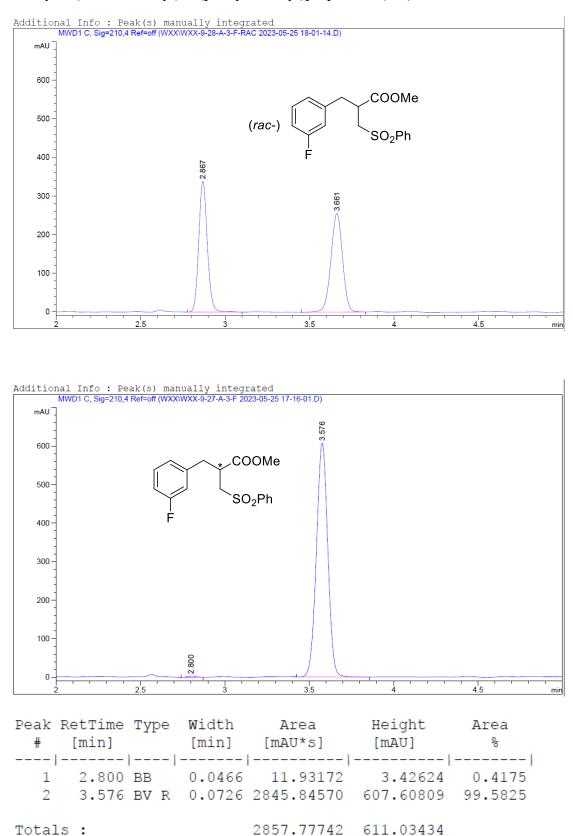
min

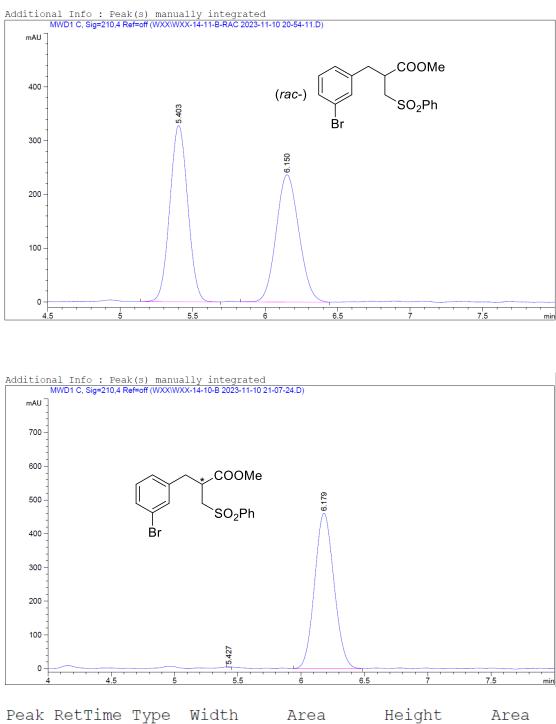






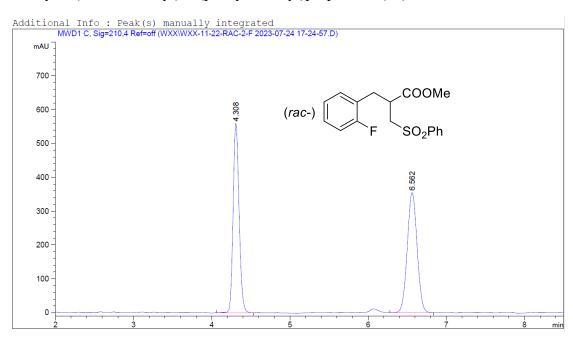
Totals :


1.63389e4 542.47477

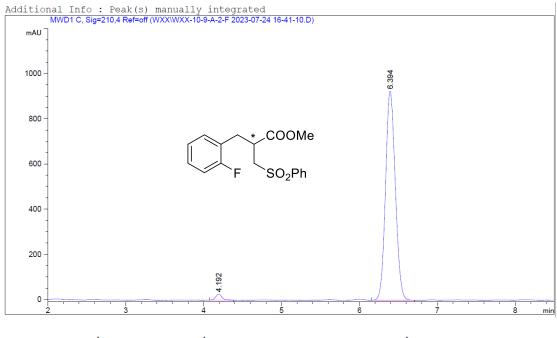


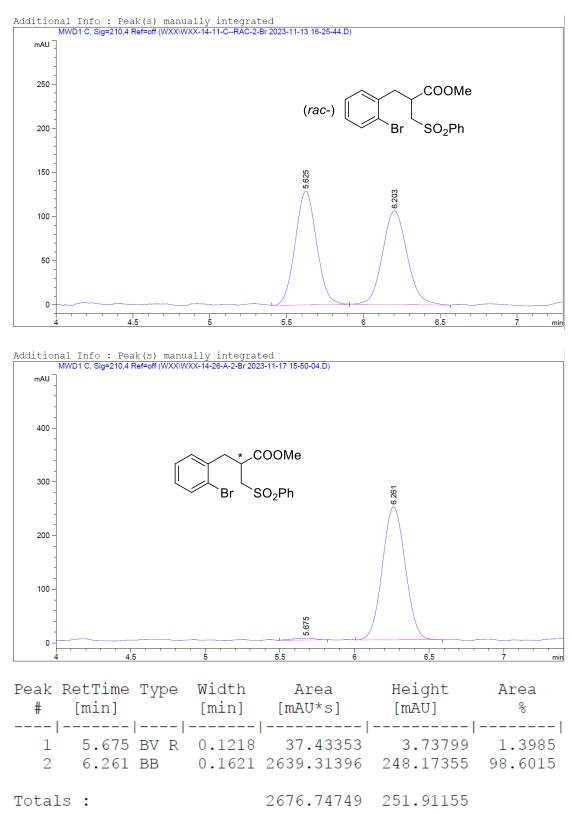


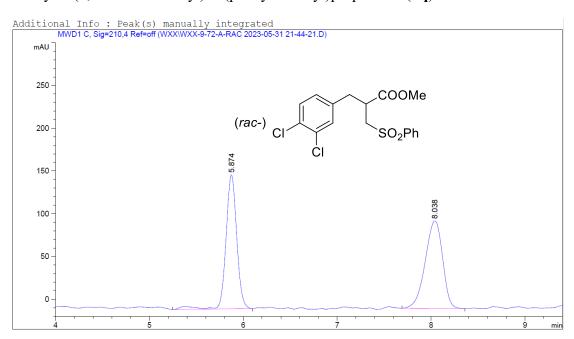
				Area [mAU*s]	-	
-						
1	4.584	BV E	0.1082	74.86328	8.34327	2.7491
2	4.945	VB R	0.1341	2648.30957	308.63998	97.2509
Totals	:			2723.17285	316.98325	

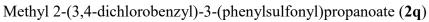


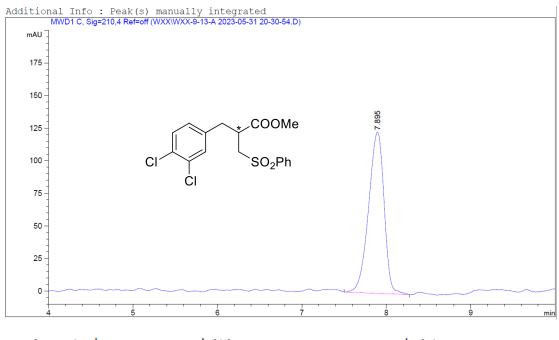
Methyl 2-(3-fluorobenzyl)-3-(phenylsulfonyl)propanoate (2m)

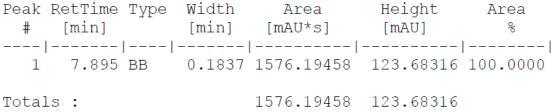


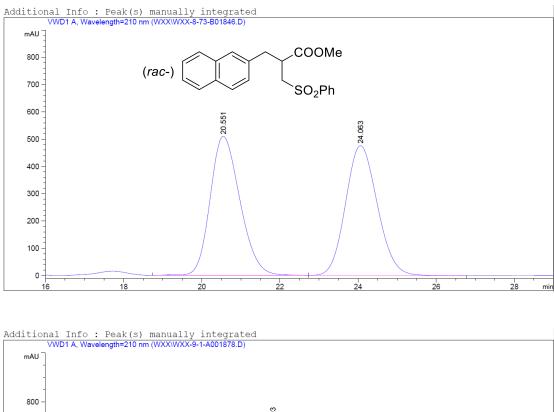

[min] [mAU*s] # [min] [mAU] 응 ----|-----|-------| ----| 5.427 VV 0.0976 0.0260 4.80424 2.44031 1 2 0.1476 4919.75488 460.69174 99.9024 6.179 BB 4924.55913 Totals : 463.13205

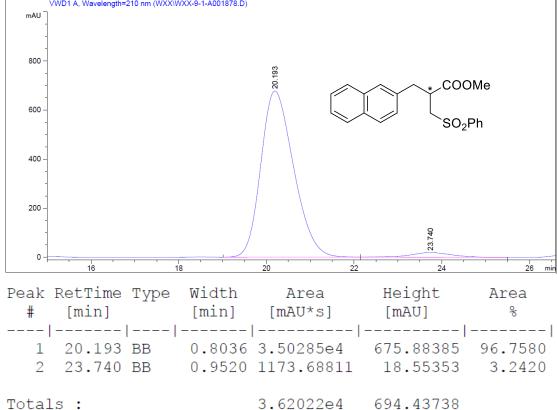

Methyl 2-(2-fluorobenzyl)-3-(phenylsulfonyl)propanoate (20)

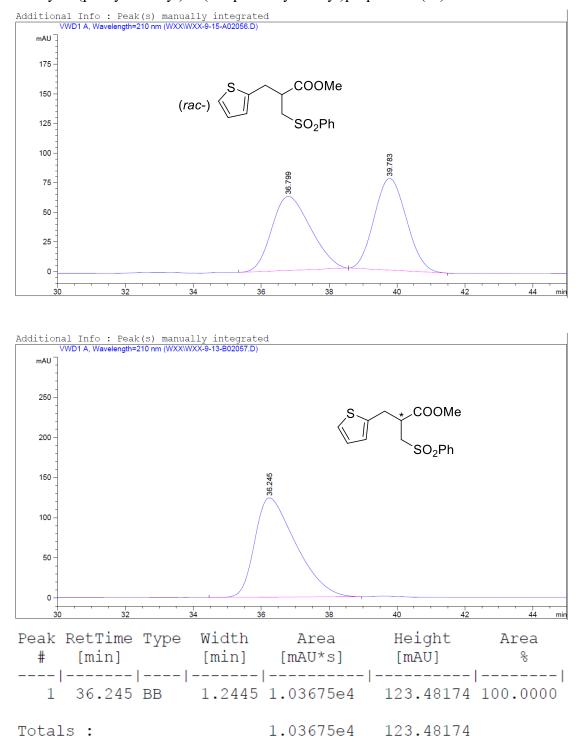


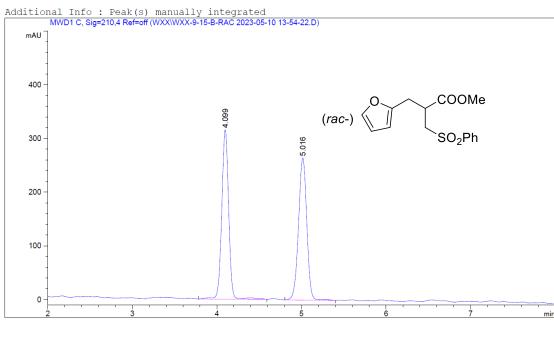

Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] 응 ----|-----|----|-----| ----| -----| 1 4.192 BV R 0.0837 145.16386 25.96060 1.7685 2 6.394 BB 0.1342 8063.11670 925.14130 98.2315 Totals : 8208.28056 951.10190

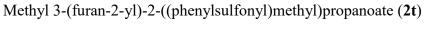


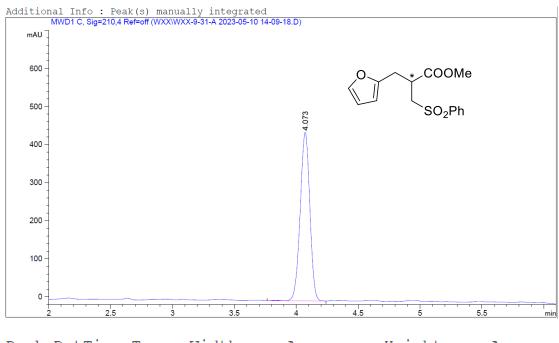

Methyl 2-(2-bromobenzyl)-3-(phenylsulfonyl)propanoate (2p)

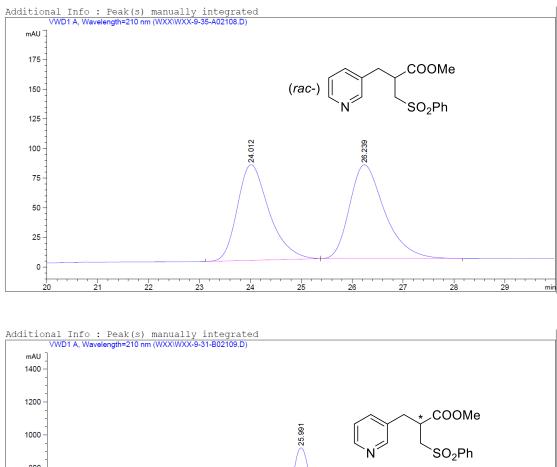


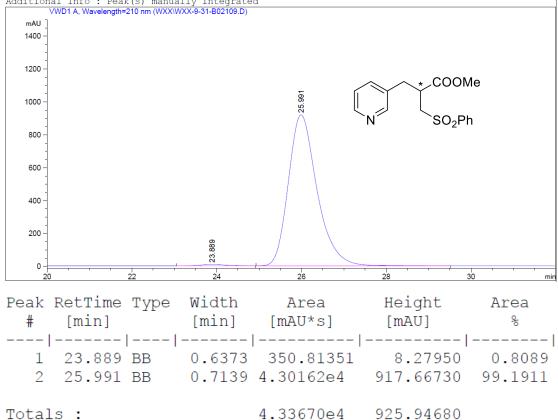


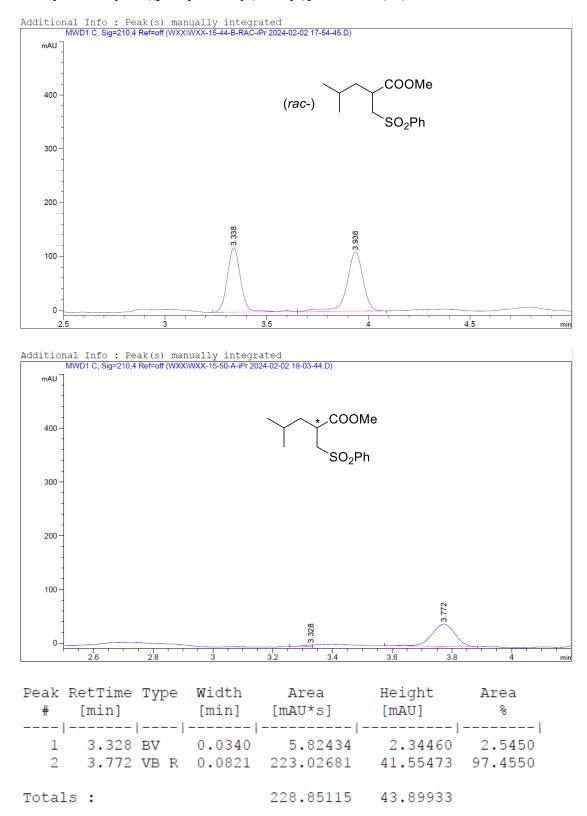



Methyl 3-(naphthalen-2-yl)-2-((phenylsulfonyl)methyl)propanoate (2r)

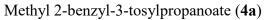


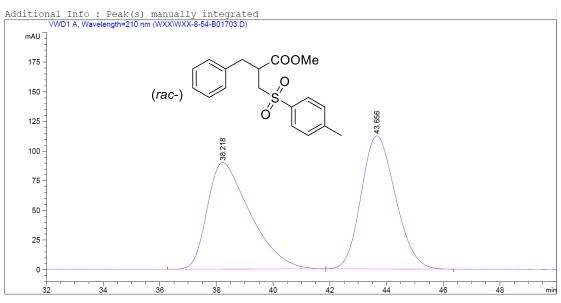

Methyl 3-(phenylsulfonyl)-2-(thiophen-2-ylmethyl)propanoate (2s)

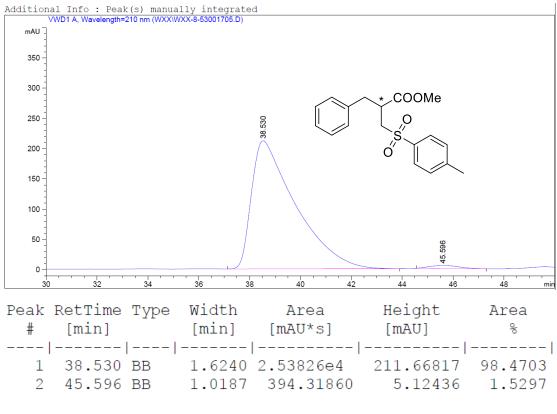




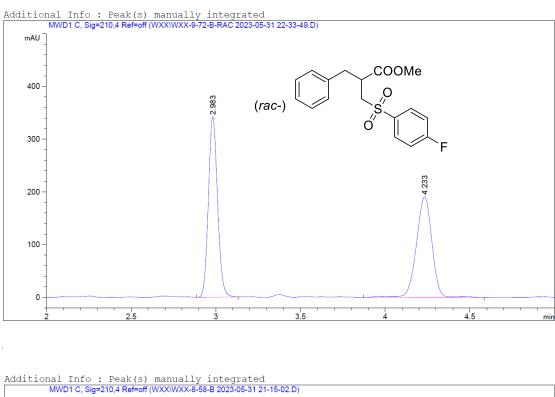
Peak RetTime Type Width Height Area Area [min] [mAU*s] [mAU] 응 # [min] 1 4.073 VB R 0.0833 2399.35059 442.17075 100.0000 Totals : 2399.35059 442.17075

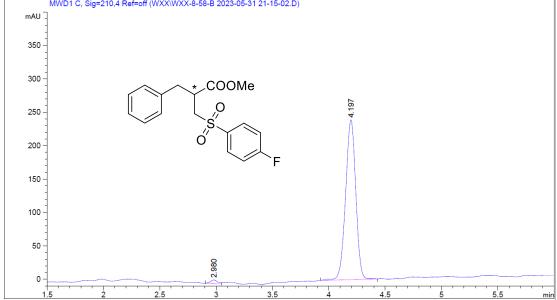



Methyl 3-(phenylsulfonyl)-2-(pyridin-3-ylmethyl)propanoate (2u)

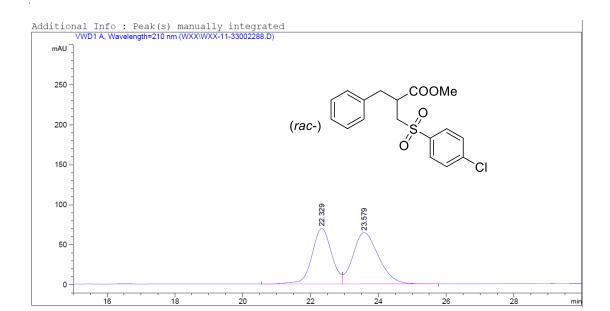


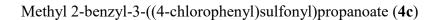
Methyl 4-methyl-2-((phenylsulfonyl)methyl)pentanoate (2v)

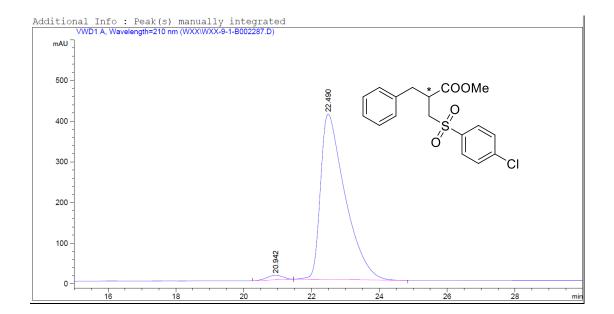


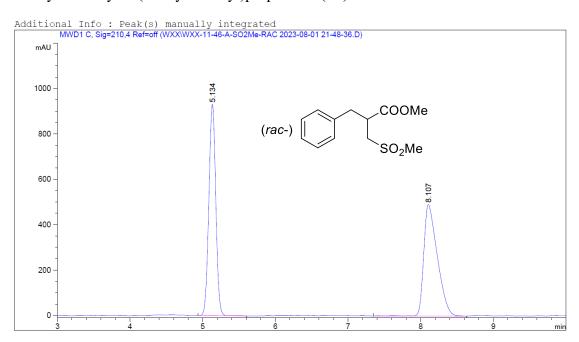


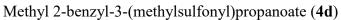
Totals :

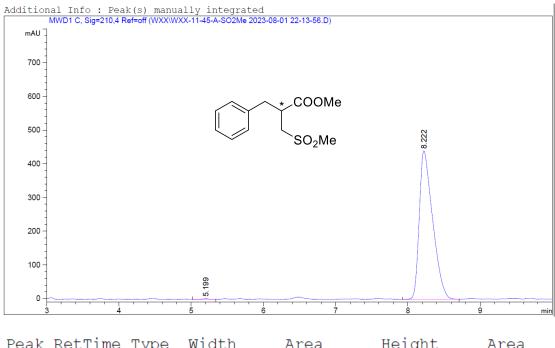

2.57769e4 216.79252

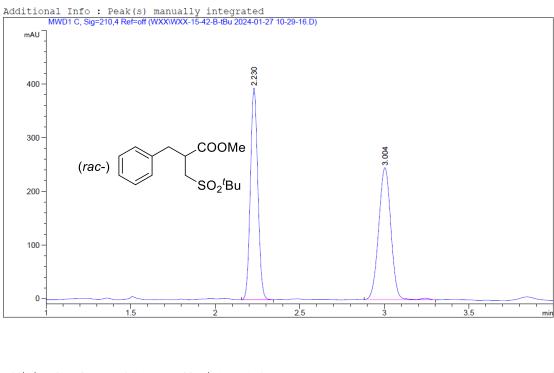


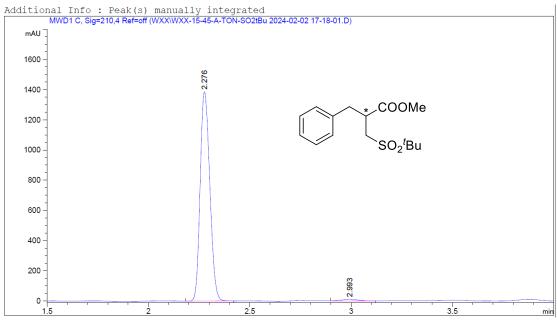

Methyl 2-benzyl-3-((4-fluorophenyl)sulfonyl)propanoate (4b)


Peak RetTime Type Width Height Area Area [min] 응 # [min] [mAU*s] [mAU] ----|-----|----| _____ ----| 1 2.980 BV 0.0549 23.75104 5.49862 1.5569 2 4.197 VV R 0.0987 1501.80298 239.24866 98.4431 1525.55401 244.74728 Totals :



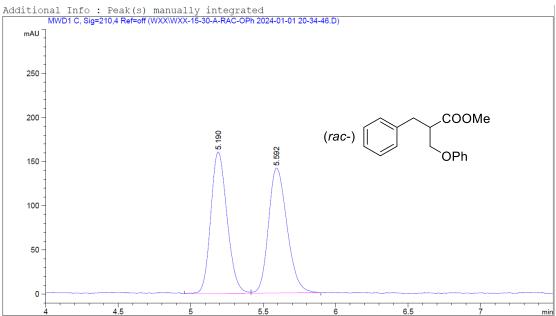


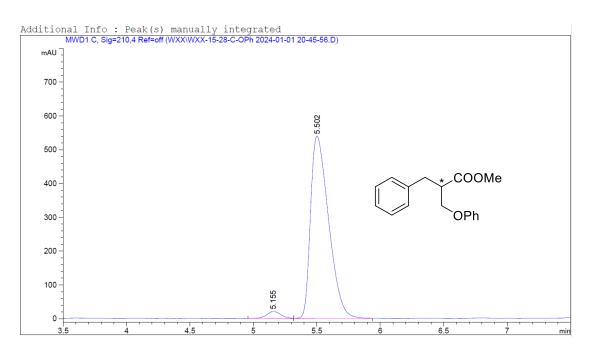

	RetTime Type			-	
	[min]				00
1	20.942 BB	0.5228	360.84949	11.17367	1.7310
2	22.490 BB	0.7354	2.04857e4	406.85208	98.2690
Total	s:		2.08466e4	418.02575	



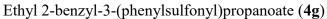
				Area	2	
				[mAU*s]		
1	5.199	BB	0.0805	11.56411	1.96838	0.2034
2	8.222	BB	0.1923	5673.06201	440.28922	99.7966
Totals	:			5684.62612	442.25760	

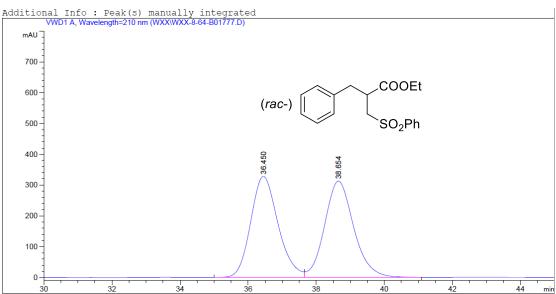
Methyl (Z)-2-((*tert*-butylsulfonyl)methyl)-3-phenylacrylate (4e)

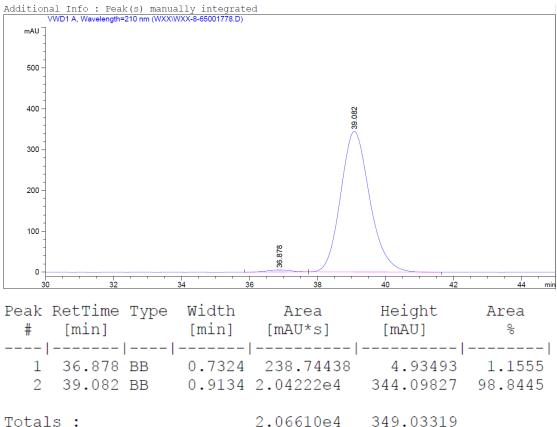


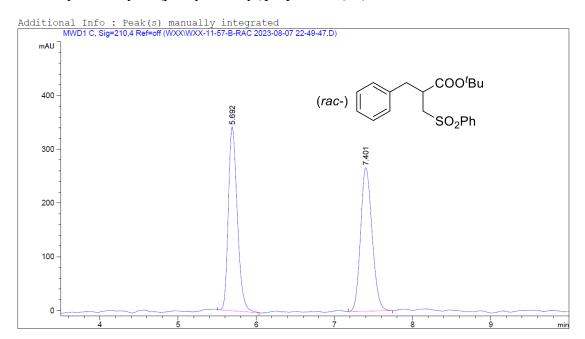

Peak RetTime # [min]			Area [mAU*s]	Height [mAU]	Area ۶
1 2.276	5 BB	0.0520	4580.00049	1386.21118	98.5050
2 2.993	3 VV R	0.0836	69.50828	12.26748	1.4950

```
Totals :
```

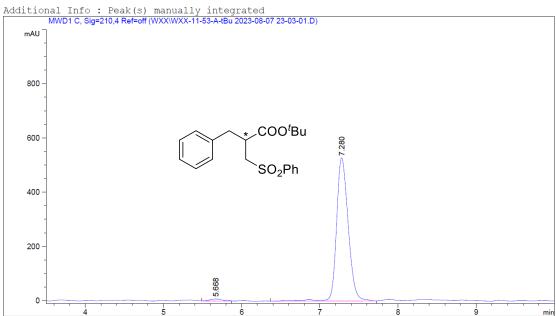

4649.50877 1398.47866

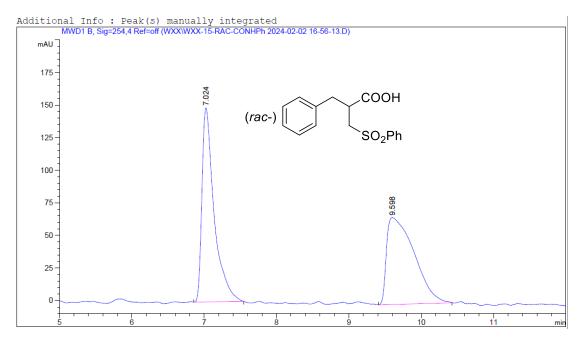

Methyl 2-benzyl-3-phenoxypropanoate (4f)

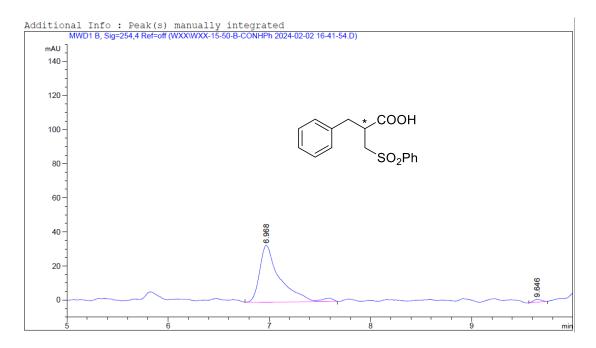




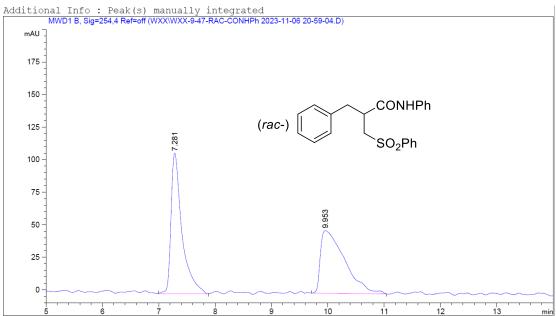
Peak RetTime Type Width Height Area Area # [min] [min] [mAU] 응 [mAU*s] ----|-----|----|-----| ----| ----| 5.155 VV R 20.56747 3.0048 1 0.1034 165.47737 2 5.502 VV R 0.1550 5341.68945 539.59766 96.9952 5507.16682 560.16512 Totals :



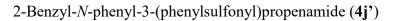

Tert-butyl 2-benzyl-3-(phenylsulfonyl)propanoate (4h)

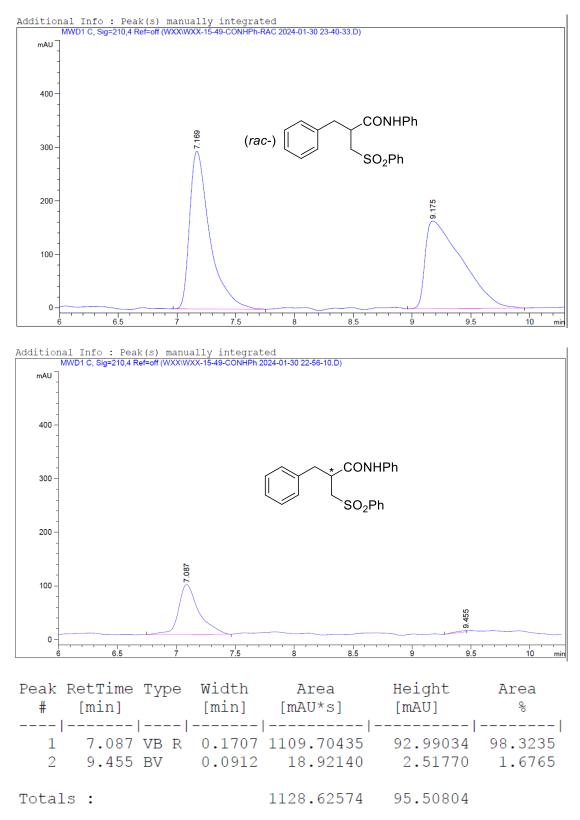


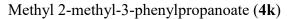
				Area [mAU*s]	-	Area %
		-				
1	5.668	VV	0.1441	91.61042	7.73825	1.6402
2	7.280	VB R	0.1596	5493.68848	527.87885	98.3598
Totals	:			5585.29890	535.61709	

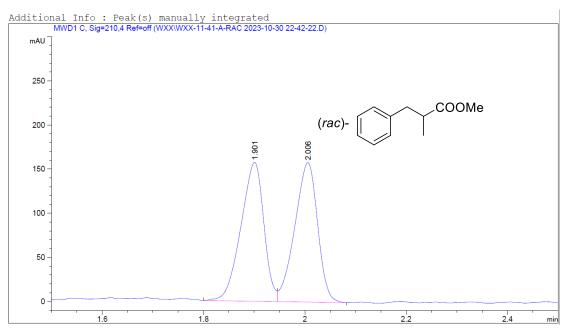

2-Benzyl-3-(phenylsulfonyl)propanoic acid (4i)

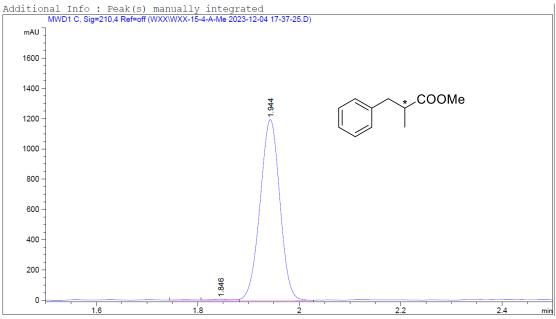
#	[min]		[min]	Area [mAU*s]	[mAU]	용
1	6.968	VV R	0.1885	469.07953 9.10690	33.33142	98.0955
Totals	:			478.18643	35.06842	


S131




2-Benzyl-*N*-phenyl-3-(phenylsulfonyl)propenamide (4j)




				Area [mAU*s]		Area %
		-				
1	7.224	VV R	0.1574	219.90819	18.07463	4.1970
2	9.322	BV R	0.2192	5019.76514	332.28152	95.8030
Totals	:			5239.67332	350.35616	

Peak H	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	응
-						
1	1.846	VV E	0.0362	13.87439	6.06008	0.4284
2	1.944	VB R	0.0420	3224.60449	1193.37988	99.5716

Totals :

3238.47889 1199.43996

8. X-ray crystallographic analysis of compound (S)-2i.

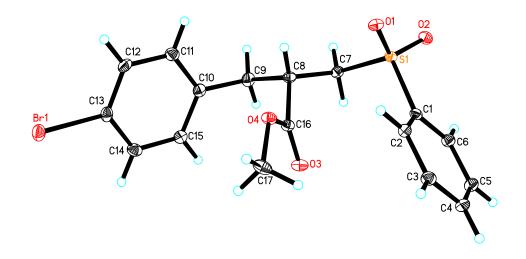


 Table S1. Crystal Data and Experimental Parameters for Compound (S)-2i

CCDC No.	2344449	Empirical	$C_{17}H_{17}BrO_4S$
CEDE IVO.		formula	
Formula weight	397.27	Reflections	5846
Formula weight	391.21	collected	
Temperature/K	100.00(10) K	Crystal system	Orthorhombic
Space group	P 21 21 21	<i>a</i> [Å]	5.43490(10)
<i>b</i> [Å]	12.9371(2)	<i>c</i> [Å]	23.6678(4)
α [deg]	90.00	β [deg]	90.00
γ [deg]	90.00	Volume/ [Å ³]	1664.13(5)
Ζ	4	$ ho_{ m calc}$ (g/cm ³)	1.586
Absorption	4.693	F(000)	808
coefficient/mm ⁻¹			
amental size (asse3)	0.2 imes 0.05 imes 0.02	Radiation	Cu-K α (λ =
crystal size (mm ³)			1.54184)
20 rongs for data	7.546 to 150.526	Index ranges	$-6 \le h \le 6$
2⊖ range for data collection/°			$-15 \le k \le 16$
concenton/			$-18 \le l \le 29$

Independent	2989 [$R_{int} = 0.0369$,	Data/restraints/p	2989/0/209
reflections	$R_{sigma} = 0.0452$]	arameters	
Goodness-of-fit on	1.058	Final R indexes	$R_1 = 0.0295$
F^2		$[I \ge 2\sigma(I)]$	$wR_2 = 0.0756$
Final R indexes	$R_1 = 0.0318$	Largest diff.	0.36/-0.47
[all data]	$wR_2 = 0.0772$	peak/hole/e Å ⁻³	
Absolute structure	-0.035(13)		
parameter			