Contents

1. General
2. General Procedures
2.1 General Procedure A: Acylation of 1-Indanones7
2.2 General Procedure B: Transesterification of β-ketoesters
2.3 General Procedure C: Arylation of (+)-Cinchonine8
2.4 General Procedure D: Benzylation of (+)-Cinchonine Aryl Derivatives 9
2.5 General Procedure E: Acetamidylation of Cinchona Alkaloids9
2.6 General Procedure F: Light-Initiated Phase-Transfer Catalysed Racemic α -Difluoroalkylation of β -Ketoesters10
2.7 General Procedure G: Light-Initiated Phase-Transfer Catalysed Asymmetric α -Difluoroalkylation of β -Ketoesters
2.8 General Procedure H: Light-Initiated Phase-Transfer Catalysed Asymmetric α -Difluoroalkylation of β -Ketoesters (0.5 mmol scale)11
3. Optimisation and Screening
3.1 Representative ¹ H and ¹⁹ F NMR Spectra13
3.2 Solvent Screening14
3.3 Base Screening 16
3.4 Dual Solvent System and Concentration17
3.5 Presence of Water 17
3.6 Miscellaneous Screening18
3.7 Catalyst Screening
4. Mechanistic Investigations
4.1 UV/Vis
4.2 Alternative Routes for Radical Generation25
4.3 Addition of Photocatalyst26
4.4 TEMPO Additive
4.5 Background Reactivity
5 Unsuccessful Substrates
5.1 Radical Precursors
5.2 Alternative α -Substituted Carbonyls
6. Characterisation
6.1 Catalyst and Ligand Synthesis

6.2 Starting Materials	
6.3 Products	
7. Spectra	
7.1 Catalysts	
7.2 Starting Materials	
7.3 Products	
8. References	

1. General

Reactions involving moisture sensitive reagents were carried out in flame-dried glassware under an inert atmosphere (N₂ or Ar) using standard vacuum line techniques. Anhydrous solvents (Et₂O, CH₂Cl₂, THF, DMSO, DMF and PhMe) were obtained after passing through an alumina column (Mbraun SPS-800). Anhydrous solvents (PhCl, PhF, PhCF₃, PhMe, *t*-BuPh, *m*-xylene, mesitylene, anisole, benzene, CHCl₃, DCE, MTBE, CPME, EtOAc, *t*-BuOAc, perfluorooctane, pivalonitrile, valeronitrile) were obtained by storing in an oven-dried Schlenk flask over activated 4 Å molecular sieves under an inert atmosphere, sieves were activated at 250 °C overnight under high vacuum.¹ Solvents used for purification purposes (Hexane, PhMe, Et₂O, CH₂Cl₂, EtOAc, NEt₃, MeOH) were used as obtained from suppliers without further purification. Hexane is defined as *n*-hexane. All other solvents and commercial reagents were used as received without further purification.

n-Butyllithium (*n*-BuLi) solutions were titrated before use, using THF and diphenyl acetic acid as the indicator. 6 mL of the bought ethyl iododifluoroacetate was washed with aq. Na₂S₂O₃ (3 x 10 mL), dried over MgSO₄. Distillation of the solution gave the ethyl iododifluoroacetate as a colourless liquid by trapping with a cooling bath of dry ice/acetone, bp 36 – 37 °C (0.8 mbar). The liquid was stored in an amber vial and kept at –12 °C until used.

Room temperature (RT) refers to 20 - 25 °C. Temperatures of 0 °C and -78 °C were obtained using ice/water and CO₂(s)/acetone baths or EtOAc/liquid N₂, respectively. Reactions involving heating were performed using DrySyn blocks and a contact thermocouple.

Under reduced pressure refers to the use of either a Büchi Rotavapor R-200 with a Büchi V-491 heating bath and Büchi V-800 vacuum controller, a Büchi Rotavapor R-210 with a Büchi V-491 heating bath and Büchi V-850 vacuum controller, a Heidolph Laborota 4001 with vacuum controller, an IKA RV10 rotary evaporator with a IKA HB10 heating bath and ILMVAC vacuum controller, or an IKA RV10 rotary evaporator with a IKA HB10 heating bath and Vacuubrand CVC3000 vacuum controller. Rotary evaporator condensers are fitted to Julabo FL601 Recirculating Coolers filled with ethylene glycol and set to 0 °C.

Analytical thin layer chromatography (TLC) was performed using pre-coated aluminium backed plates (Merck Kieselgel 60 F254 silica). Visualisation was achieved under UV light

(short–wave $\lambda = 254$, long–wave $\lambda = 340$ nm) and/or with staining with aqueous potassium permanganate solution, ethanolic vanillin solution, ethanolic phosphomolybdic acid (PMA) solution or Seebach's 'Magic' stain (ceric ammonium molybdate solution), followed by gentle heating. Flash chromatography was performed using compressed air on glass columns containing porosity 2/3 sintered disks over Kieselgel 60 silica, using the solvent system and gradient stated. Distillation was performed using a short pathway distillation using a DrySyn heating block with a contact thermocouple and pressure stated from Schlenk line and high vacuum pump (Edwards RV8). Otherwise from a Büchi Glass Oven B-585 Kugelrohr with a Vacuubrand MD1C vacuum controller using the temperature and pressure stated.

Compound names have been generated using ChemDraw[®] Professional (PerkinElmer) software.

Melting points were recorded on a Buchi melting point M–565 apparatus and are uncorrected. Solvents are reported in brackets when the solid was recrystallized and *dec* refers to decomposition.

Optical rotations were measured on a Perkin Elmer Precisely/Model-341 polarimeter operating at the sodium D line with a 100 mm path cell at 20 °C. Values are given: $[\alpha]_D^{20}$ (*c* in grams per 100 mL, solvent).

Chiral high performance liquid chromatography (HPLC) was performed on an Agilent 1260 Infinity II HPLC consisting of a 1260 Infinity II Quaternary Pump with integrated 4-channel degassing unit, 1260 Infinity II Vialsampler, 1290 Infinity II Multicolumn Thermostat, 1260 Infinity II Diode Array Detector WR. Separation was achieved using either Daicel CHIRALPAK® AD-H, AS-H columns or Daicel CHIRALCEL® OJ-H or OD-H columns using the method stated. All columns (4.6 mm $ø \times 250$ mm, 5 μ m particle size) were used with a corresponding guard column (4 mm $ø \times 10$ mm, 5 μ m particle size). HPLC traces of enantiomerically enriched compounds were compared with authentic racemic samples. Solvents are given as a ratio, solvent flow rates are reported in mL/min. Wavelengths (λ) are reported in nm, temperatures are reported in °C and retention times (t_R) are reported in minutes. Infrared spectra were recorded on a Shimadzu IRAffinity-1 Fourier transform IR spectrophotometer fitted with a Specac Quest ATR accessory (diamond puck). Spectra were recorded neat with characteristic absorption wavenumbers (ν_{max}) reported in cm⁻¹.

NMR spectra (¹H, ¹³C{¹H}, ¹⁹F and ¹⁹F{¹H}) on either a Bruker AV300 with a BBFO probe (¹H 400 MHz; ¹³C{¹H} 75 MHz; ¹⁹F{¹H} 282 MHz), a Bruker AV400 with a BBFO probe (¹H 400 MHz; ¹³C{¹H} 101 MHz; ¹⁹F{¹H} 377 MHz), a Bruker AVII 400 with a BBFO probe (¹H 400 MHz; ¹³C{¹H} 101 MHz; ¹⁹F{¹H} 376 MHz), a Bruker AVIII-HD 500 with a Smart Probe BBFO+ probe (¹H 500 MHz, ¹³C{¹H} 126 MHz, ¹⁹F{¹H} 470 MHz), a Bruker AVIII 500 with a CryoProbe Prodigy BBO probe (¹H 500 MHz, ¹³C{¹H} 126 MHz, ¹⁹F{¹H} 470 MHz), a Bruker AVIII 500 with a CryoProbe Prodigy BBO probe (¹H 500 MHz, ¹³C{¹H} 126 MHz, ¹⁹F 471 MHz) or a Bruker AVIII-HD 700 with a CryoProbe Prodigy BBO probe TCI (¹H 700 MHz, ¹³C{¹H} 176 MHz, ¹⁹F 659 MHz) in the deuterated solvent stated. Throughout the document ¹³C{¹H} will be written as ¹³C. All NMR spectra were recorded at 20 °C unless otherwise stated. ¹H and ¹³C NMR are internally referenced to CDCl₃ (7.26 and 77.16 ppm, respectively), acetone-*d*₆ (2.05 and 29.84 ppm, respectively), DMSO-*d*₆ (2.50 and 39.52 ppm, respectively), PhMe-*d*₈ (2.31 and 20.43 ppm). All coupling constants, *J*, are quoted in Hz. Multiplicities are indicated as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and multiples thereof.

High resolution mass spectrometry were acquired by electrospray ionisation (ESI) at the University of St Andrews Mass Spectrometry Facility or at the University of Edinburgh Mass Spectrometry Facility.

Ultraviolet/Visible–Light Spectrometry (UV/Vis) absorption spectra were recorded on an Agilent Technologies Cary 3500 Series UV/Vis spectrometer, samples were run in quartz cuvettes (10 mm path length), data interval (1 nm) Scan rate (3000 nm min⁻¹), detector module (multicell Peltier UV/Vis). Solvents and concentrations are stated with the respective spectrum.

Photochemical reactions were carried out in VWR Screw Vial 4 mL 45 \times 14.75 mm (Cat. No. 548-0051), sealed with VWR Screw Cap PP 3 mm Hole 8.5 mm (Cat No. 548-0096) fitted with VWR Septum 12 mm Si/PTFE 55° Shorea 1.5 mm (Cat No. 548-0475) unless stated otherwise,

under an atmosphere of nitrogen. The vials were irradiated within commercially available, EvoluChem PhotoRedOx BoxTM. Reaction temperatures were maintained at ~28 °C, with fans incorporated within the EvoluChem PhotoRedOx BoxTM.

Photochemical reactions were irradiated with the commercially available sources of light as stated. The sources of light are characterised as follows: λ of light source in nm, (part number, colour of light type of LED, electric power (W), relative irradiance (mW/cm²). Unless otherwise stated, light sources are EvoluChem type LEDs. **6200 K** (HCK1012-03-005, CREE XTE LED, 18 W, 24 mW/cm²). **525 nm** (HCK1012-03-004, CREE XPE LED, 18 W, 18 mW/cm²). **380 nm** (HCK1012-03-013, LG LED, 18 W, 8 mW/cm²). In instances that a household 23 W CFL (Phillips Tornado T2, 2700 K, 23 W) was used, reaction temperatures were maintained with the use of a commercially available household fan (Elpine Electricals 6" clip and desk fan, model: 31371c).

2. General Procedures

R (10.0 equiv.) NaH (2.10 equiv.) t-BuOK (10 mol%) THF, reflux 16 hours R (0 Me

To a flame-dried 3-neck round-bottom flask equipped with a reflux condenser, under a flow of N₂, NaH (60% in mineral oil, 2.10 equiv.) was added to anhydrous THF (0.26 M). To this solution was added dimethyl carbonate (10.0 equiv.) and a catalytic amount of *t*-BuOK (10 mol%) sequentially at RT. The mixture was stirred for 5 min and then a solution of the specified 1-indanone (1.0 equiv.) in anhydrous THF (0.44 M) was added dropwise. The reaction was stirred for 16 hours at reflux. The resulting mixture was put in an ice bath and 1 M HCl (3.8 mL per mmol of 1-indanone) was added. The mixture was then extracted with EtOAc (9 mL × 3 per mmol of 1-indanone), washed with water (3.8 mL per mmol of 1-indanone) and brine (6.5 mL per mmol of 1-indanone), dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The crude product was subjected to purification by column chromatography.

2.2 General Procedure B: Transesterification of β-ketoesters

To a flame dried 2-necked round-bottom flask equipped with a reflux condenser, under a flow of N_2 and at RT, Bu_2SnO (20 mol%) was added to anhydrous PhMe (0.1 M). Methyl 1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (1.0 equiv.) was added to the solution, followed by the appropriate alcohol (10.0 equiv.). The reaction mixture was refluxed for 3 hours, cooled to RT, and concentrated *in vacuo*. The crude product was purified by column chromatography.

2.1 General Procedure A: Acylation of 1-Indanones

2.3 General Procedure C: Arylation of (+)-Cinchonine

Synthesised according to a modified literature procedure,² *n*-BuLi (7.00 equiv.) was added to a solution of 4-substituted aryl bromide (7.00 equiv.) in anhydrous MTBE (0.21 M) at -74 °C. The organolithium was immediately transferred via cannula to a separate flask of (+)-cinchonine (1.00 equiv.) in anhydrous MTBE (0.21 M) and stirred at -10 °C for 20 min, the mixture was warmed to room temperature and stirred for a further 2 h. The reaction was quenched by dropwise addition of AcOH (8.56 equiv.), water (30 mL per 2.13 mmol of (+)-cinchonine) and EtOAc (30 mL per 2.13 mmol of (+)-cinchonine). Solid iodine (0.97 equiv. per 2.13 mmol of (+)-cinchonine) was added portionwise. A solution of sodium metabisulfite (0.52 equiv. per 2.13 mmol of (+)-cinchonine) in water (10.0 mL per 2.13 mmol of (+)-cinchonine) was added. Aqueous ammonia (28% approx. 1.00 equiv. per 2.13 mmol of (+)-cinchonine) was added until pH 10 is reached. The aqueous phase was extracted with EtOAc (3 × 30 mL per 2.13 mmol of (+)-cinchonine), the organic layers were combined, washed with brine (30 mL per 2.13 mmol of (+)-cinchonine), dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude product was purified by column chromatography.

2.4 General Procedure D: Benzylation of (+)-Cinchonine Aryl Derivatives

Synthesised according to a modified literature procedure,² substituted benzyl bromide (1.20 equiv.) was added to a solution of the (+)-cinchonine derivative (1.00 equiv.) in MeCN : CHCl₃ (1 : 1, 0.63 M). The reaction mixture was stirred for 16 h at reflux under an inert atmosphere. The crude reaction mixture was concentrated *in vacuo*. The crude product was dissolved in CH₂Cl₂ (3 mL per 1.00 mmol of (+)-cinchonine derivative) and MeOH (0.3 mL per 1.00 mmol of (+)-cinchonine derivative) addition of Et₂O (1 mL per 1.00 mmol of (+)-cinchonine derivative). The mixture was concentrated *in vacuo* until a solid began to form, further addition of Et₂O (2 × 1 mL per 1.00 mmol of (+)-cinchonine derivative) and concentrated *in vacuo* and the Et₂O mixture was placed in a -20 °C freezer overnight, the resulting solid was collected by filtration and washed with ice cold Et₂O to give the title compound.

2.5 General Procedure E: Acetamidylation of Cinchona Alkaloids

(1.2 equiv.)

Following a modified procedure, N-([1,1'-biphenyl]-2-yl)-2-bromoacetamide (4.08 mmol, 1.20 equiv.) was added to a solution of the appropriate cinchona alkaloid (3.40 mmol, 1.00 equiv.) in anhydrous THF (0.07 M). The mixture was refluxed for 24 hours, cooled to RT, and concentrated *in vacuo*. The crude product was dissolved in hot CH₂Cl₂ (~6 mL per 3.40 mmol

of cinchona alkaloid) and Et_2O (~1 mL per 3.40 mmol of cinchona alkaloid) was added dropwise. After cooling to RT, the solution was placed in a -20 °C freezer overnight, the resulting solid was collected by filtration and washed with ice cold Et_2O .

2.6 General Procedure F: Light-Initiated Phase-Transfer Catalysed Racemic α-Difluoroalkylation of β-Ketoesters

To a flame dried vial equipped with a Teflon-coated cross stirrer bar, the appropriate β -ketoester (0.1 mmol, 1.0 equiv.) and NBu₄Br (0.02 mmol, 0.2 equiv.) were added, the vial was sealed with a lid equipped with a septum and backfilled with nitrogen over three cycles. *t*-BuOAc (0.2 M), ethyl difluoroiodoacetate (0.3 mmol, 3 equiv.) and Cs₂CO₃ (0.2 mmol, 2.0 equiv.) were sequentially added. The reaction mixture was degassed via sparging at –10 °C (ice/NaCl bath) for 10 minutes, refilled with nitrogen and sealed with parafilm. The vial was suspended within a photobox equipped with a white LED (6200 K) placed on a stirrer plate. After being irradiated and stirred (500 rpm) for 16 hours, the solution was diluted with CH₂Cl₂ (3 mL) and filtered through a plug of silica. The silica plug was washed with CH₂Cl₂ (2 × 3 mL). The crude product was concentrated *in vacuo*, diluted with PhMe (~ 5 mL) to remove remaining *t*-BuOAc, and concentrated *in vacuo* again. The crude product was purified by column chromatography.

2.7 General Procedure G: Light-Initiated Phase-Transfer Catalysed Asymmetric α-Difluoroalkylation of β-Ketoesters

To a flame dried vial equipped with a Teflon-coated cross stirrer bar, the appropriate β -ketoester (0.1 mmol, 1.0 equiv.) and phase–transfer catalyst (**C18**) (0.02 mmol, 0.2 equiv.) were added, the vial was sealed with a lid equipped with a septum and backfilled with nitrogen over three cycles. *t*-BuOAc (0.2 M), ethyl difluoroiodoacetate (0.3 mmol, 3 equiv.) and Cs₂CO₃ (0.2 mmol, 2.0 equiv.) were sequentially added. The reaction mixture was degassed via sparging at -10 °C (ice/NaCl bath) for 10 minutes, refilled with nitrogen and sealed with parafilm. The vial was suspended within a photobox equipped with a white LED (6200 K) placed on a stirrer plate. After being irradiated and stirred (500 rpm) for 16 hours, the solution was diluted with CH₂Cl₂ (2 × 3 mL). The crude product was concentrated *in vacuo*, diluted with PhMe (~ 5 mL) to remove remaining *t*-BuOAc, and concentrated *in vacuo* again. The crude product was purified by column chromatography.

2.8 General Procedure H: Light-Initiated Phase-Transfer Catalysed Asymmetric α-Difluoroalkylation of β-Ketoesters (0.5 mmol scale)

To a flame dried 8 mL vial equipped with a Teflon-coated cross stirrer bar, the appropriate β -ketoester (0.5 mmol, 1.0 equiv.) and phase–transfer catalyst (**C18**) (0.1 mmol, 0.2 equiv.) were added, the vial was sealed with a lid equipped with a septum and backfilled with nitrogen over three cycles. *t*-BuOAc (0.2 M), ethyl difluoroiodoacetate (1.5 mmol, 3 equiv.) and Cs₂CO₃ (1 mmol, 2.0 equiv.) were sequentially added. The reaction mixture was degassed via sparging at -10 °C (ice/NaCl bath) for 20 minutes, refilled with nitrogen and sealed with parafilm. The vial was suspended within a photobox equipped with a white LED (6200 K) placed on a stirrer plate. After being irradiated and stirred (500 rpm) for 16 hours, the solution was diluted with CH₂Cl₂ (5 mL) and filtered through a plug of silica. The silica plug was washed with CH₂Cl₂ (2 × 10 mL). The crude product was concentrated *in vacuo*, diluted with

CHCl₃ (~ 5 mL) to remove remaining *t*-BuOAc, and concentrated *in vacuo* again. The crude product was purified by column chromatography.

3. Optimisation and Screening

3.1 Representative ¹H and ¹⁹F NMR Spectra

 ${}^{\rm 19}{\rm F}$ NMR spectrum of crude reaction mixture

Unless otherwise stated, all optimisation reaction were performed on a 0.1 mmol scale of **1a** following General Procedure G. Yields given refer to ¹H NMR yields using 1,3,5-trimethoxybenzene (0.33 equiv.) as an internal standard.

3.2 Solvent Screening

Initial optimisation was carried out using catalyst C1.

Solvent	¹ H NMR Yield/%	er [(R) : (S)]
PhCl : Perfluorooctane 2:1 (64 h)	10	43 : 57
CH ₂ Cl ₂	16	36:64
CHCl ₃	95	32:68
DCE	65	41 : 59
EtOAc	96	41 : 59
Perfluorooctane	0	N/A
PhCl	44	42:58
PhF	65	34:66
PhCF ₃	30	45 : 55
Mesitylene	59	39:61
Toluene	61	44 : 56
Benzene	70	36:64
<i>m</i> -xylene	30	47 : 53
Anisole	54	39:61
MTBE	90	41 : 59
СРМЕ	25	44 : 56
<i>n</i> -Hexane	63	50 : 50
t-BuOAc	88	35 : 65
t-BuPh	64	31:69

CH₂Cl₂, CHCl₃, *t*-BuPh, *t*-BuOAc were taken on for further base screening.

3.3 Base Screening

Base (2.0 equiv.)	¹ H NMR Yield/%	er [(<i>R</i>) : (<i>S</i>)]		
	CH ₂ Cl ₂			
Na ₂ CO ₃	0	N/A		
K ₂ CO ₃	50	41 : 59		
Cs ₂ CO ₃	64	36 : 64		
K ₂ HPO ₄	0	N/A		
K ₃ PO ₄	72	46:54		
КОН	16	48:52		
CsOH·H ₂ O	30	44:56		
	CHCl ₃			
Cs ₂ CO ₃	95	32:68		
K ₂ CO ₃	40	43 : 57		
K ₃ PO ₄	57	41 : 59		
	<i>t</i> -BuPh			
Cs ₂ CO ₃	64	31:69		
K ₂ CO ₃	20	48:52		
CsOH·H ₂ O	0	N/A		
K ₃ PO ₄	57	49:51		
	t-BuOAc			
Cs ₂ CO ₃	88	35 : 65		
K ₂ CO ₃	81	48:52		
K ₃ PO ₄	85	48:52		
CsF	77	31:69		
CsOAc	70	48:62		

3.4 Dual Solvent System and Concentration

Conditions	¹ H NMR Yield/%
<i>t</i> -BuPh : <i>n</i> -hexane (9 : 1) [0.2 M]	85
<i>t</i> -BuPh : <i>n</i> -hexane (1 : 1) [0.2 M]	78
<i>t-</i> BuPh [0.1 M]	64
<i>t</i> -BuPh [0.4 M]	69

Owing to the highly facile background reactivity in the absence of the PTC a non-polar solvent was added, and the concentration varied in an attempt to minimise the uncatalysed pathway.

3.5 Presence of Water

Conditions	¹ H NMR Yield/%	er [(R) : (S)]
Cs ₂ CO ₃ , dry <i>t</i> -BuPh (0.2 M)	63	42 : 58
Cs ₂ CO ₃ , dry <i>t</i> -BuOAc (0.2 M)	100	30:70
sat. aq. Cs_2CO_3 (4 : 1) + <i>t</i> -BuPh (0.2 M)	trace	37 : 63
sat. aq. Cs_2CO_3 (4 : 1) + <i>t</i> -BuOAc (0.2 M)	63	43 : 57

3.6 Miscellaneous Screening

Solvent	Temperature	Conditions	¹ H NMR Yield/%	er [(R) : (S)]
<i>t</i> -BuOAc	RT	dropwise addition of 2a (over 6 h)	19	46:54
<i>t</i> -BuOAc	RT	distilled 2a	64	40:60
<i>t</i> -BuOAc	5 °C	2a straight from bottle	78	39:61
<i>t</i> -BuPh	5 °C	2a straight from bottle	59	40:60

3.7 Catalyst Screening

List of cinchona alkaloid derived phase-transfer catalysts:

C5: $R^2 = H$, $R^3 = H$, $R^4 = H$ C6: $R^2 = H$, $R^3 = H$, $R^4 = 3,4,5$ - F_3 C7: $R^2 = H$, $R^3 = H$, $R^4 = 4$ -F C8: $R^2 = H$, $R^3 = H$, $R^4 = 3,5$ - Br_2 C9: $R^2 = OMe$, $R^3 = H$, $R^4 = H$ C10: $R^2 = OMe$, $R^3 = allyl$, $R^4 = H$ C11: $R^2 = OMe$, $R^3 = Bn$, $R^4 = H$

List of Maruoka-type derived phase-transfer catalysts:

List of acetamide-branched cinchona phase-transfer catalysts:

C18: R⁷ = H C19: R⁷ = OMe C20: R⁸ = H C21: R⁸ = OMe

Catalyst (20 mol%)	¹ H NMR Yield/%	er [(R) : (S)]
C1	88	35:65
C2	82	46:54
C3	69	37:63
C4	66	50:50
C5	75	50:50
C6	83	49:51
C7	79	49:51
C8	71	50:50
С9	67	49:51
C10	37	50:50
C11	55	50:50
C12	22	50:50
C13	73	50:50
C14	43	50:50
C15	72	50:50
C16	55	50:50
C17	73	50:50
C18	100	74:26
C19	92	73:27

C20	78	32:68
C21	81	28 : 72

2.7 Re-Optimisation with Catalysts C18 and C20

Deviation	¹ H NMR Yield/%	er [(<i>R</i>) : (<i>S</i>)]
As above	99	74:26
380 nm	59	54:46
525 nm	55	70:30
23 W CFL	20	71:29
CH ₂ Cl ₂	99	69:31
<i>t</i> -BuOAc (0.4 M)	59	54:46
C20, <i>t</i> -BuOAc	78	32:68
C20, PhMe	27	39:61
C20, Et ₂ O	73	41:59
C20, CH ₂ Cl ₂	75	28:72
C20, PhCl	83	38:62

4. Mechanistic Investigations

4.1 UV/Vis

Individual UV-Vis spectra of the starting materials were collected (Fig. A), the mixture of the materials (Fig. B), the inclusion of Cs_2CO_3 to the individual materials (Fig. C), the mixture of materials with the inclusion of Cs_2CO_3 (Fig. D) and the standard reaction mixture under racemic phase-transfer conditions (Fig. E).

In each of the spectra, equivalents from General Procedure F were used at a concentration of 0.0024 M relative to the limiting reagent of the β -ketoester.

Figure. A: Individual absorption spectra of β -ketoester and ethyl difluoroiodoacetate (c = 0.0024 M in *t*-BuOAc)

Figure. B: Individual absorption spectra of β -ketoester, ethyl difluoroiodoacetate and the combination of the starting materials (c = 0.0024 M in *t*-BuOAc).

Figure. C: Individual absorption spectra of β -ketoester, ethyl difluoroiodoacetate and these starting materials in the presence of Cs₂CO₃ (c = 0.0024 M in *t*-BuOAc)

Figure D: Individual absorption spectra of β -ketoester, ethyl difluoroiodoacetate, combination of the two starting materials and the combination of the starting materials in the presence of Cs₂CO₃ (c = 0.0024 M in *t*-BuOAc)

Figure E: Individual absorption spectra of β -ketoester, ethyl difluoroiodoacetate, the combination of the starting materials in the presence of Cs₂CO₃ and combination of the starting materials in the presence of Cs₂CO₃ and Bu₄NBr (c = 0.0024 M in *t*-BuOAc)

From the obtained spectra, a clear bathochromic shift can be observed with the inclusion of a racemic phase-transfer catalyst.

4.2 Alternative Routes for Radical Generation

Direct Irradiation and Alternative EDAs

Others have postulated that direct excitation and subsequent homolytic cleavage will afford the desired ethyl difluoroacetate radical.³ Alternatively, other EDA complexes could be forming between the radical precursor and either the base or solvent. For the latter, there is no spectroscopic evidence to suggest that an EDA forms between *t*-BuOAc and ICF₂CO₂Et. This has been proposed for other solvents such as acetone.⁴

To probe this further, modification of a known ATRA procedure across a styrene was used.³ The reaction conditions from General Procedure F were adapted. When both our chosen base (Cs₂CO₃) and solvent (*t*-BuOAc) were employed, a small amount of product was formed. Inclusion of the organic base that Melchiorre utilised,² DBU, for racemic reactivity, results in 21% of the desired ATRA product. Finally, removal of any base, affords the product in 81% yield. These results suggest that direct homolysis of the C–I bond can occur in *t*-BuOAc.

To understand if this facile C–I homolysis was occurring more rapidly with ICF₂CO₂Et than perfluorohexyl iodide, which was used by Melchiorre.² It was decided to employ perfluorohexyl iodide under the same conditions in replacement of ethyl difluoroiodoacetate. In the presence and absence of Cs₂CO₃ none of the desired ATRA product was observed by ¹⁹F NMR with near quantitative return of the fluorinated starting material. Thus demonstrating radical formation is more facile with ICF₂CO₂Et over perfluorohexyl iodide and the latter does not undergo appreciable C–I homolysis with the white LED used in this study.

Radical Precursor	Base	¹⁹ F NMR Yield/%
ICF2CO2Et	Cs ₂ CO ₃	10
ICF ₂ CO ₂ Et	DBU	21
ICF ₂ CO ₂ Et	none	81
IC ₆ F ₁₃	Cs_2CO_3	0
IC ₆ F ₁₃	none	0

All reactions were carried out under standard inert conditions in vials equipped with stirrer and septa, Cs₂CO₃ (0.2 mmol, 2.0 equiv.), styrene (0.1 mmol, 1 equiv.), ethyl difluoroiodoacetate or perfluorohexyl iodide (0.3 mmol, 3 equiv.) and t-BuOAc (0.1 M) were sequentially added. All reactions were monitored by ¹⁹F NMR, using fluorobenzene (0.2 mmol, 2.0 equiv.) as an internal standard.

4.3 Addition of Photocatalyst

The inclusion of photocatalysts to generate the desired radical from ethyl difluorobromoacetate was attempted. General Procedure G was followed with the addition of either $Ir(ppy)_3$ (3 mol%) or PTH (10 mol%).

All reactions were carried out under those outlined in General Procedure G, photocatalysts were added with C18.

When either catalyst was used, complete consumption of the β -ketoester and ethyl difluorobromoacetate was observed but no product was detected.

4.4 TEMPO Additive

Further evidence of a radical mechanism was obtained with the addition of TEMPO. Only the difluoroethylacetate–TEMPO adduct was formed in a low yield. Indicating that the difluoroalkyl radical is formed during the reaction, and that the presence of TEMPO disrupts product formation.

The reaction was carried out as outlined in General Procedure F; TEMPO (3.0 equiv.) was added with NBu₄Br. The reaction was monitored by ¹⁹F NMR, using fluorobenzene (0.2 mmol, 2.0 equiv.) as an internal standard.

The ¹⁹F chemical shift for **2a-TEMPO** data is in accordance with the literature.⁵

4.5 Background Reactivity

Silyl Enol Ether

We hypothesised the mildly nucleophilic tautomeric enol form of the β -ketoester, **1a**, could potentially be intercepting the radical, resulting in no stereocontrol in the crucial bond forming step. Many of the β -ketoester starting materials had varying amounts of the enol present when isolated as observed by ¹H NMR, and even spectroscopically pure samples could still tautomerise under the reaction conditions. To test this theory, the OTIPS silyl enol ether was made and tested as model for the enol under various conditions based on General Procedure G.

Cat	Base	¹⁹ F NMR Yield/%	er [(<i>R</i>) : (<i>S</i>)]
C1	None	0	N/A
C1	Cs_2CO_3	8	36 : 64
C18	CsF	74	74:26

All reactions were carried out using a modified version of General Procedure G, with variations noted in the

table.

Radical Precursor	Base	¹⁹ F NMR Yield/%
ICF ₂ CO ₂ Et	None	Trace
ICF ₂ CO ₂ Et	Cs ₂ CO ₃	13
IC_6F_{13}	None	0
IC ₆ F ₁₃	Cs ₂ CO ₃	Trace

All reactions were carried out using a modified version of General Procedure G, with variations noted in the table.

٦

Racemic Reactivity Without a Phase-Transfer Catalyst

To ascertain why such a facile background reactivity was occurring, we employed perfluorohexyl iodide that has been shown to successfully undergo a similar mechanism as which we have proposed. Under our reaction conditions, there was a marked decrease in a non-PTC background reactivity. Taking previously used conditions a background reaction could still be observed albeit it a much lower yield.²

RT, 16 h, 500 rpm

Radical Precursor	Solvent	¹ H NMR Yield/%
ICF ₂ CO ₂ Et	t-BuOAc	52
ICF ₂ CO ₂ Et	t-BuPh	76
$IC_{6}F_{13}$	t-BuOAc	18
$IC_{6}F_{13}$	PhCl : C ₈ F ₁₈ (2 : 1)	9
$IC_{6}F_{13}$	PhCl	8
IC ₆ F ₁₃	C_8F_{18}	0

Unless otherwise stated, all reactions were carried out under those outlined in General Procedure F, perfluorohexyl iodide (3.0 equiv) was used in place of ethyl difluoroiodoacetate, no NBu₄Br was added. The reaction was monitored by ¹H NMR, using 1,3,5-trimethoxybenzene (0.033 mmol, 0.33 equiv.) as an internal standard.

N.B. In all cases there was no return of the β -ketoester starting material with the exception of using C_8F_{18} as the solvent (16% NMR yield of β -ketoester starting material).

Product data was in accordance with literature data.²

5 Unsuccessful Substrates

5.1 Radical Precursors

When subjected to General Procedure F/G in replacement of ethyl difluoroiodoacetate, the above radical precursors resulted in full return of the β -ketoester (**1a**) in each case, *in situ* ¹⁹F NMR analysis identified near full return of the fluorinated radical precursors. When *N*-phthalimide esters were employed, no return of the radical precursors was observed.

5.2 Alternative α -Substituted Carbonyls

When the above α -substituted carbonyl precursors were submitted to General Procedure F/G in replacement of β -ketoester (**1a**), full return of each precursor was observed, with the exception of the β -ketoamide (20% return by ¹H NMR). *In situ* ¹⁹F NMR analysis identified near full return of the fluorinated radical precursor.

6. Characterisation

6.1 Catalyst and Ligand Synthesis

The following catalysts were purchased from chemical suppliers: **C13** from TCI, **C14** and **C15** from FUJIFILM Wako Pure Chemical Corporation, **C16** from STREM, **C12** and **C17** from Sigma-Aldrich. Catalysts **C2**,⁶ **C5**,⁷ **C7**,⁸ **C8**,⁸ **C9**,⁹ **C10**,¹⁰ and **C11**¹¹ were synthesised according to literature procedures.

(S)-(2-(4-(trifluoromethyl)phenyl)quinolin-4-yl)((1S,2R,4S,5R)-5-vinylquinuclidin-2-

yl)methanol (C1a)

Following General Procedure C, *n*-BuLi (5.1 mL, 12.8 mmol, 2.5 M) was added to a solution of 4-bromobenzotrifluoride (1.79 mL, 12.8 mmol) in anhydrous MTBE (5 mL). The organolithium was immediately transferred via cannula to a separate flask of (+)-cinchonine (1.5 g, 5.1 mmol) in anhydrous MTBE (25 mL) and stirred for 20 min at -10 °C, the mixture was warmed to RT and stirred for a further 2 h. The reaction was quenched by dropwise addition of AcOH (2.5 mL), water (30 mL) and EtOAc (30 mL). Solid iodine (1.25 g) was added portionwise. A solution of sodium metabisulfite (0.50 g) in water (10.0 mL) was added. Aqueous ammonia (28% approx. 4 mL) was added until pH 10 is reached. The aqueous phase was extracted with EtOAc (3 × 30 mL), the organic layers were combined, washed with brine (30 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. After purification by column chromatography (*n*-hexane : EtOAc : MeOH : Et₃N, 63 : 30 : 5 : 2 – 53 : 40 : 5 : 2 increase by 5% EtOAc per 250 mL) to give the title product **C1a** (1.31 g, 59%) as a pale yellow solid. Data was in accordance with the literature.²

Mp: 264 – 267 °C (*dec*)

Specific Rotation: $[\alpha]_D^{20}$ +63.5 (*c* 0.3, DMSO) {Lit.² $[\alpha]_D^{25}$ = +70.0 (*c* 0.6, DMSO)}

v_{max} (film): 2936, 2878, 1599 (C–N), 1323, 1165 (C–O), 1111, 1072, 849, 758, 682, 409

¹**H NMR (500 MHz, CDCl₃)** δ_H: 8.30 (2H, d, *J* 8.1), 8.21 (1H, d, *J* 8.6), 8.10 (1H, s), 8.05 (1H, d, *J* 8.5), 7.76 (3H, dd, *J* 20.7, 8.0), 7.58 (1H, app. t, *J* 7.7), 5.98 (1H, app. ddd, *J* 17.4, 10.4, 7.4), 5.73 (1H, d, *J* 5.0), 5.05 – 4.98 (2H, m), 3.19 (2H, dd, *J* 12.2, 7.2), 2.93 (2H, dd, *J* 14.1, 9.6), 2.79 (1H, dt, *J* 13.3, 8.7), 2.24 (1H, q, *J* 8.3), 2.04 – 1.96 (1H, m), 1.79 (1H, s), 1.36 – 1.29 (1H, m)

¹³C NMR (176 MHz, CDCl₃) δ_C: 155.5, 149.8, 148.4, 143.1, 140.1, 131.2 (app. d, *J* 32.9, unable to assign as quartet due to overlapping peaks), 130.8, 129.6, 128.0, 125.9, 125.8, 125.1, 124.9, 123.6, 122.8, 116.1, 115.3, 71.4, 60.3, 50.2, 49.6, 39.8, 28.3, 26.1, 20.9

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ_F: -62.6 (CF₃)

HRMS: (ESI⁺): C₂₆H₂₆F₃N₂O [M+H]⁺ found 439.1981, requires 439.1997 (-3.6 ppm)

(1*S*,2*R*,4*S*,5*R*)-2-((*S*)-hydroxy(2-(4-(trifluoromethyl)phenyl)quinolin-4-yl)methyl)-1-(3,4,5-trifluorobenzyl)-5-vinylquinuclidin-1-ium bromide (C1)

Following General Procedure D, 5-(bromomethyl)-1,2,3-trifluorobenzene (0.48 mL, 3.59 mmol) was added to a solution of the (+)-cinchonine derivative **C1a** (1.31 g, 2.99 mmol) in MeCN : CHCl₃ (1 : 1, 64 mL). The reaction mixture was stirred for 24 h at 50 °C under an inert atmosphere. The crude reaction mixture was concentrated *in vacuo*. The crude product was dissolved in CH₂Cl₂ (8 mL) and MeOH (1 mL), followed by dropwise addition of Et₂O (3 mL). The mixture was concentrated *in vacuo* until a solid began to form, further addition of Et₂O (2 × 3 mL) and concentration *in vacuo* and the Et₂O mixture was placed in a -20 °C freezer overnight, the resulting solid was collected by filtration and washed with ice-cold Et₂O to give

the title compound **C1** (1.19 g, 68%) as a yellow powder. Data was in accordance with the literature.²

Mp: 255 – 257 °C (*dec*) (Et₂O)

Specific Rotation: [α]_D²⁰ +132.0 (*c* 0.3, DMSO) {Lit.² [α]_D²⁰ +132.0 (*c* 0.3, DMSO)} ν_{max} (film): 3021, 1597, 1535, 1350, 1325, 1215 (C–O), 767, 669

¹**H NMR (500 MHz, DMSO**–*d*₆) δ_H: 8.51 (2H, d, *J* 8.1), 8.42 – 8.38 (2H, m), 8.22 (1 H, dd, *J* 8.5, 1.3), 7.98 (2H, d, *J* 8.2), 7.95 – 7.89 (3H, m), 7.81 – 7.76 (1H, m), 6.88 (1H, d, *J* 3.6), 6.54 (1H, s), 6.10 (1H, ddd, *J* 17.5, 9.9, 7.3), 5.27 – 5.14 (3H, m), 4.92 (1H, d, *J* 12.5), 4.25 – 4.17 (1H, m), 3.99 – 3.86 (2H, m), 3.58 (1H, t, *J* 11.4), 3.05 (1H, q, *J* 9.9), 2.61 (1H, q, *J* 8.5), 2.41 (1H, t, *J* 11.7), 1.86 (1H, s), 1.81 – 1.70 (2H, m), 1.19 – 1.11 (1H, m).

¹³C NMR (126 MHz, DMSO–*d*₆) δ_C: 154.2, 150.1 (app. d, *J* 253.4), 147.7, 146.7, 142.4, 137.2, 130.3, 130.2, 129.8 (app. d, *J* 31.5), 128.1, 127.8, 126.0 (d, *J* 3.8), 125.4, 125.0, 123.9 (d, *J* 6.1), 123.2, 118.9 (d, *J* 19.1), 117.3 (d, *J* 11.5), 67.8, 65.2, 60.7, 56.0, 54.2, 37.2, 26.3, 23.1, 20.5.

¹⁹F{¹H} NMR (471 MHz, DMSO–*d*₆) δ_F: -61.0 (3F), -134.5 (2F, dd, *J* 21.9, 8.8), -159.5 (1F, tt, *J* 22.0, 6.7).

HRMS: (ESI⁺): C₃₃H₂₉F₆N₂O [M–Br]⁺ found 583.2163, requires 583.2184 (–3.6 ppm)

(1*S*,2*R*,4*S*,5*R*)-1-benzyl-2-((*S*)-hydroxy(2-(4-(trifluoromethyl)phenyl)quinolin-4-yl)methyl)-5-vinylquinuclidin-1-ium bromide (C3)

Following General Procedure D, to a solution of (+)-cinchonine derivative **C1a** (228 mg, 0.52 mmol) in THF (6 mL), benzyl bromide (74 μ L, 0.62 mmol) was added. The reaction mixture

was stirred overnight at 50 °C under an inert atmosphere. The crude reaction mixture was concentrated *in vacuo*. The crude product was dissolved in CH_2Cl_2 (7 mL) and MeOH (3 mL), followed by dropwise addition of Et_2O (3 mL). The mixture was concentrated *in vacuo* until a solid began to form, further addition of Et_2O (2 × 3 mL) and concentration *in vacuo* and the Et_2O mixture was placed in a –20 °C freezer overnight, the resulting solid was collected by filtration and washed with ice-cold Et_2O to give the title compound **C3** (263 mg, 83%) as an off-white powder.

Mp: 214 – 216 °C

Specific Rotation: [α]_D²⁰ +131.1 (*c* 0.5, DMSO)

v_{max} (film): 3145 (O–H), 2947, 1595, 1589, 1550, 1510, 1421, 1323 (C–N), 1109, 1063, 847.

¹**H NMR (500 MHz, DMSO-***d*₆**)** δ_{H} : 8.52 (2H, d, *J* 8.0), 8.45 – 8.37 (2H, m), 8.22 (1H, app. dd, *J* 8.4, 2.4), 8.00 – 7.96 (2H, m), 7.94 – 7.89 (1H, m,), 7.82 – 7.74 (4H, m), 7.63 – 7.56 (3H, m), 6.95 (1H, app. dt, *J* 9.2, 4.0), 6.60 (1H, app. br. s,), 6.11 (1H, ddd, *J* 17.5, 10.4, 7.3), 5.25 – 5.19 (2H, m) 5.17 – 5.07 (1H, m), 5.00 – 4.89 (1H, m), 4.23 – 4.17 (1H, m), 4.01 – 3.91 (2H, m), 3.50 (1H, t, *J* 11.6), 2.96 (1H, app. q, *J* 10.1), 2.65 (1H, app. q, *J* 8.9), 2.42 (1H, app. t, *J* 11.9), 1.86 (1H, s), 1.77 (2H, app. d, *J* 10.7), 1.19 – 1.12 (1H, m).

¹³C NMR (176 MHz, DMSO-*d*₆) δ_C: 154.2, 147.7, 146.8, 142.4, 137.2, 133.8, 130.3, 130.2, 129.9, 129.7, 129.0, 128.1, 127.9, 127.7, 125.9, 125.1, 123.9, 123.8, 123.5, 117.3, 117.1, 67.3, 65.2, 64.9, 62.5, 56.0, 53.9, 37.0. 26.4, 23.0, 20.5.

¹⁹F NMR (471 MHz, DMSO- d_6) δ_F : -61.0 (CF₃).

HRMS: (ESI⁺): C₃₃H₃₂F₃N₂O [M–Br]⁺ found 529.2468, requires 529.2461 (+1.3 ppm).

Following General Procedure C, *n*-BuLi (2.5 M, 6 mL, 14.9 mmol) was added to a solution of bromobenzene (1.6 mL, 14.9 mmol) in anhydrous MTBE (10 mL) at -74 °C. The organolithium was transferred to (+)-cinchonine (628 mg, 2.13 mmol) in anhydrous MTBE (10 mL).The reaction was quenched with sequential addition of AcOH (1.05 mL), water (30 mL), EtOAc (30 mL), solid iodine (523 mg, 2.06 mmol), sodium metabisulfite (1.10 mmol in 10 mL of water), and aqueous ammonia (28%, approx. 83 µL) until pH 10 is reached. The crude product was purified by column chromatography (PhMe : MeOH : NEt₃ 95 : 4 : 1 – 85 : 14 : 1), to afford the title compound **C4a** (229 mg, 29%) as a white solid. All data was in agreement with the literature.⁶

Mp: 246 – 248 °C {Lit.⁶ (255 – 257 °C)}

Specific Rotation: [α]_D²⁰ +157.1 (*c* 0.1, CHCl₃) {Lit.⁶ [α]_D²⁰ + 175.0 (*c* 0.1, CHCl₃)}

¹**H NMR (700 MHz, DMSO-***d***₆)** δ_{H} : 8.26 (3H, ddd, *J* 15.7, 8.3, 1.2), 8.12 (1H, app. s), 8.08 (1H, dd, *J* 8.4, 1.3), 7.74 (1H, ddd, *J* 8.3, 6.8, 1.3), 7.61 – 7.55 (3H, m), 7.53 – 7.49 (1H, m), 6.11 (1H, ddd, *J* 17.6, 10.3, 7.6), 5.75 (1H, d, *J* 5.0), 5.34 (1H, dd, *J* 7.8, 5.0), 5.13 – 5.05 (2H, m), 3.12 (1H, q, *J* 8.4), 3.04 – 2.96 (1H, m), 2.65 (1H, dd, *J* 13.5, 9.7), 2.18 (1H, q, *J* 8.4), 1.91 – 1.86 (1H, m), 1.72 – 1.68 (1H, m), 1.57 – 1.39 (3H, m). Unable to resolve peak at 2.50 due residual deuterated solvent.

(1*S*,2*R*,4*S*,5*R*)-1-benzyl-2-((*S*)-hydroxy(2-phenylquinolin-4-yl)methyl)-5-vinylquinuclidin-1-ium bromide (C4)

Following General Procedure D, to a solution of (+)-cinchonine derivative C4a (228 mg, 0.52 mmol) in THF (6 mL), benzyl bromide (74 μ L, 0.62 mmol) was added. The reaction mixture was stirred overnight at 50 °C under an inert temperature atmosphere. After purification by recrystallisation (MeOH : Et₂O – 2 mL : 0.5 mL) the title compound C4 (76 mg, 74%) was isolated as a white powder.

Mp: 223 – 224 °C (Et₂O)

Specific Rotation: $[\alpha]_{D}^{20}$ +190.7 (*c* 0.3, DMSO)

v_{max} (film): 3121 (O–H), 2012, 1993, 1595, 1458, 1341 (C–N), 1125, 920, 893.

¹**H NMR (700 MHz, DMSO-***d*₆**)** δ_H: 8.39 (1H, d, *J* 8.5), 8.34 (1H, s), 8.29 (2H, d, *J* 7.7), 8.19 (1H, d, *J* 8.4), 7.89 (1H, t, *J* 7.6), 7.77 (3H, app. d, *J* 6.7), 7.67 – 7.53 (6H, m), 6.93 (1H, br. s), 6.59 (1H, s), 6.10 (1H, ddd, *J* 17.5, 10.4, 7.3), 5.27 – 5.19 (2H, m), 5.13 (1H, d, *J* 12.5), 4.95 (1H, d, *J* 12.5), 4.21 (1H, t, *J* 10.5), 3.97 (2H, q, *J* 10.6), 3.50 (1H, t, *J* 11.7), 2.96 (1H, q, *J* 10.2), 2.65 (1H, q, *J* 8.9), 2.41 (1H, t, *J* 11.9), 1.87 (1H, br. s), 1.76 (2H, t, *J* 10.5), 1.19 – 1.11 (1H, m).

¹³C NMR (176 MHz, DMSO-*d*₆) δ_C: 155.6, 147.3, 138.3, 137.3, 133.8, 130.2, 130.0, 129.7, 129.1, 129.0, 127.9, 127.4, 127.3, 123.9, 123.6, 117.3, 117.1, 67.3, 65.2, 62.4, 56.0, 53.8, 36.9, 26.4, 23.0, 20.6. Not all carbon environments observed.

HRMS: (ESI⁺): C₃₂H₃₃N₂O [M-Br]⁺ found 461.2586, requires 461.2587 (+1.3 ppm)

(1*S*,2*R*,4*S*,5*R*)-2-((*S*)-hydroxy(quinolin-4-yl)methyl)-1-(3,4,5-trifluorobenzyl)-5vinylquinuclidin-1-ium bromide (C6)

To a solution of (+)-cinchonine (589 mg, 2.00 mmol) in THF (50 mL), 5-(bromomethyl)-1,2,3trifluorobenzene (266 μ L, 2.00 mmol) was added. The solution was refluxed overnight, once cooled to room temperature the reaction mixture was poured onto cold MTBE (50 mL). The precipitate was collected under vacuum filtration. After purification recrystallisation, MeOH : MTBE (10 : 3, 13 mL) to give the title compound **C6** (738 mg, 71%) as a coral solid.

Mp: 241 °C (*dec*) (MeOH: MTBE).

Specific Rotation: [α]²⁰_D + 140.7 (*c* 0.4, MeOH).

v_{max} (film): 3009 (O–H), 1587, 1533, 1510, 1352 (C–N), 1234, 1038, 923.

¹**H NMR (700 MHz, CDCl**₃) δ_H: 8.82 (1H, d, *J* 4.3), 8.22 (1H, d, *J* 8.2), 7.81 (1H, d, *J* 4.4), 7.49 (2H, app. d, *J* 8.6), 6.92 (2H, dt, *J* 41.1, 7.3), 6.47 – 6.28 (3H, m), 5.83 (1H, app. dt, *J* 17.0, 8.6), 5.52 (1H, dd, *J* 42.1, 12.5), 5.24 (2H, dd, *J* 43.1, 13.9), 4.50 (1H, t, *J* 11.0), 4.21 – 4.08 (2H, m), 3.21 (1H, t, *J* 11.6), 2.83 – 2.75 (1H, m), 2.34 (1H, app. d, *J* 10.8), 2.08 (1H, t, *J* 12.6), 1.85 – 1.65 (3H, m), 0.80 – 0.70 (1H, m).

¹³C NMR (176 MHz, CDCl₃) δ_C: 149.4, 146.9, 143.7, 134.6, 127.01 (app. dd, *J* 263.4, 205.1) 122.8, 119.5, 118.6, 118.5, 67.1, 65.5, 59.5, 56.5, 54.0, 38.0, 26.9, 23.7, 21.8. Not all carbon peaks observed.

¹⁹F NMR (659 MHz, CDCl₃) δ_F : -130.9 – -131.1 (2F, m), -156.0 – -156.4 (1F, m).

HRMS: (ESI⁺): C₃₉H₃₈N₃O₂ [M-Br]⁺ found 439.2004, requires 439.1992 (+2.7 ppm)

N-([1,1'-biphenyl]-2-yl)-2-bromoacetamide (C18a)

Synthesised according to literature procedure,¹² to a solution of 2-aminobiphenyl (1.12 g, 6.61 mmol, 1.00 equiv.) in CH₂Cl₂ (8 mL) a solution of aqueous K₂CO₃ (1.08 g, 7.79 mmol, 1.18 equiv.) in H₂O (8.8 mL) was added and cooled to 0 °C. To the mixture a solution of bromoacetyl bromide (2.00 g, 9.91 mmol, 1.50 equiv.) in CH₂Cl₂ (8 mL) was added dropwise. The mixture was stirred for a further hour at 0 °C, warmed to RT and stirred overnight. The aqueous phase was extracted with CH₂Cl₂ (3 × 15 mL), the combined organic layers were washed with brine (15 mL), dried over MgSO₄, filtered, and concentrated *in vacuo*. After purification by column chromatography (*n*-hexane : EtOAc : Et₃N, 99 : 0 : 1 – 75 : 24 : 1)* to give the title product **C18a** (1.00 g, 71%) as a grey solid. Data was in accordance with the literature.¹²

*Neutralised silica used in purification; neutralisation achieved with 1% Et₃N when packing the column.

Mp: 96 – 98 °C {Lit.¹² (128 – 129 °C)}

v_{max} (film): 3019, 2953, 1688 (C=O), 1508, 1215 (C–N), 743, 702, 667.

¹**H NMR (400 MHz, DMSO-***d*₆**)** δ_H: 9.69 (1H, s), 7.52 (1H, d, *J* 7.8), 7.48 – 7.42 (2H, m), 7.41 – 7.30 (6H, m), 3.95 (2H, s).

¹³C NMR (101 MHz, DMSO-*d*₆) δ_C: 165.3, 138.4, 136.4, 134.0, 130.4, 128.9, 128.5, 127.8, 127.4, 126.6, 126.4, 29.7.

HRMS: (ESI⁺) C₁₄H₁₂BrNNaO [M+Na]⁺ found 311.9991, requires 311.9995 (+1.3 ppm)

(1*S*,2*S*,4*S*,5*R*)-1-(2-([1,1'-Biphenyl]-2-ylamino)-2-oxoethyl)-2-((*R*)-hydroxy(quinolin-4-yl)methyl)-5-vinylquinuclidin-1-ium bromide (C18)

Following General Procedure E, *N*-([1,1'-biphenyl]-2-yl)-2-bromoacetamide (1.18 g, 4.08 mmol), (–)-cinchonidine (1.00 g, 3.40 mmol), in anhydrous THF (49 mL). The mixture was refluxed for 24 hours. After purification by recrystallisation, CH_2Cl_2 : Et_2O (6 : 1, 7 mL) to give the title compound **C18** (1.21 g, 73%) as beige crystals. Data was in accordance with the literature.¹²

mp: 141 – 143 °C (CH₂Cl₂ : Et₂O) {Lit.¹² (149 – 150 °C)}.

Specific Rotation: $[\alpha]_D^{20}$ –36.8 (*c* 0.5, DMSO) {Lit.¹² $[\alpha]_D^{20}$ –44.6 (*c* 1.1, MeOH)}.

v_{max} (film): 3011 (O–H), 2955, 1686 (C=O), 1589, 1530, 1510, 1234, 1215 (C–N), 743, 700, 664.

¹**H NMR** (500 MHz, DMSO-*d*₆) δ_H: 10.42 (1H, t, *J* 10.2), 8.96 (1H, d, *J* 4.5), 8.06 (2H, t, *J* 8.8), 7.79 (1H, t, *J* 7.6), 7.73 (1H, d, *J* 4.5), 7.61 – 7.53 (2H, m), 7.51 – 7.42 (5H, m), 7.35 (2H, t, *J* 7.6), 7.22 (1H, t, *J* 7.4), 6.72 (1H, d, *J* 3.7), 5.90 (1H, s), 5.62 (1H, ddd, *J* 16.9, 10.6, 5.8), 5.10 (1H, d, *J* 17.3), 4.93 (1H, d, *J* 10.6), 4.66 (1H, d, *J* 15.8), 4.43 (1H, d, *J* 15.7), 4.36 – 4.29 (1H, m), 4.24 (1H, t, *J* 9.7), 3.91 (1H, d, *J* 12.6), 3.69 – 3.55 (2H, m), 2.78 (1H, s), 2.11 – 2.01 (2H, m), 1.96 – 1.86 (2H, m).

¹³C NMR (500 MHz, DMSO-*d*₆) δ_C: 163.2, 150.2, 147.6, 144.9, 138.7, 137.9, 137.7, 133.0, 130.7, 129.9, 129.5, 128.7, 128.6, 128.2, 127.5, 127.3, 127.2, 127.0, 124.2, 123.2, 119.9, 115.9, 65.4, 64.5, 60.1, 59.0, 55.6, 36.9, 25.3, 24.7, 20.9.

HRMS: (ESI⁺): C₃₃H₃₄N₃O₂ [M–Br]⁺ found 504.2652, requires 504.2646 (+1.3 ppm).

(1*S*,2*S*,4*S*,5*R*)-1-(2-([1,1'-Biphenyl]-2-ylamino)-2-oxoethyl)-2-((*R*)-hydroxy(6-methoxyquinolin-4-yl)methyl)-5-vinylquinuclidin-1-ium bromide (C19)

Following General Procedure E, *N*-([1,1'-biphenyl]-2-yl)-2-bromoacetamide (118 mg, 0.41 mmol), quinine (100 mg, 0.34 mmol), in anhydrous THF (4.9 mL). The mixture was refluxed for 24 hours. After purification by recrystallisation, CH_2Cl_2 : Et_2O (6 : 1, 0.7 mL) to give the title compound **C19** (68 mg, 34%) as brown crystals.

mp: 75 – 78 °C (CH₂Cl₂ : Et₂O).

Specific Rotation: $[\alpha]_{D}^{20}$ -81.9 (*c* 0.5, DMSO).

v_{max} (film): 3019, 2953, 1688 (C=O), 1620, 1508, 1240 (C-N), 1215, (C-O), 743, 702, 667.

¹**H NMR (500 MHz, DMSO-***d*₆**)** δ_H: 10.66 (1H, s), 8.77 (1H, d, *J* 4.6), 7.92 (1H, d, *J* 9.2), 7.70 (1H, d, *J* 4.6), 7.44 (6H, q, *J* 6.3), 7.34 (3H, t, *J* 6.8), 7.19 (2H, dd, *J* 8.1, 5.2), 6.79 (1H, s), 5.77 (1H, s), 5.58 (1H, ddd, *J* 16.6, 10.8, 5.1), 4.96 (2H, dd, *J* 38.5, 14.0), 4.70 (1H, d, *J* 16.4), 4.40 (3H, t, *J* 13.1), 3.79 – 3.73 (1H, m), 3.55 (3H, s), 2.75 (1H, s), 2.06 (2H, s), 1.83 (1H, t, *J* 11.9), 0.96 – 0.88 (1H, m).

¹³C NMR (126 MHz, DMSO-*d*₆) δ_C: 163.5, 157.8, 147.2, 143.7, 143.4, 138.9, 138.0, 132.9, 131.3, 130.4, 128.5, 128.3, 128.0, 127.6, 127.2, 127.2, 125.4, 120.2, 115.4, 100.9, 65.7, 62.8, 59.5, 58.6, 56.7, 55.7, 36.5, 25.3, 24.8, 21.3.

HRMS: (ESI⁺): C₃₄H₃₆N₃O₃ [M–Br]⁺ found 534.2755, requires 534.2751 (+0.7 ppm).

(1*S*,2*R*,4*S*,5*R*)-1-(2-([1,1'-Biphenyl]-2-ylamino)-2-oxoethyl)-2-((*S*)-hydroxy(quinolin-4-yl)methyl)-5-vinylquinuclidin-1-ium bromide (C20)

Following General Procedure E, *N*-([1,1'-biphenyl]-2-yl)-2-bromoacetamide (118 mg, 0.41 mmol), (+)-cinchonine (100 mg, 0.34 mmol), in anhydrous THF (4.9 mL). The mixture was refluxed for 24 hours. After purification by recrystallisation, CH_2Cl_2 : Et_2O (6 : 1, 0.7 mL) to give the title compound **C20** (143 mg, 68%) as white crystals.

mp:164 – 168 °C (CH₂Cl₂ : Et₂O).

Specific Rotation: [α]²⁰_D +70.1 (*c* 0.2, DMSO).

v_{max} (film): 3017(O–H), 2957, 1686 (C=O), 1589, 1572, 1215 (C–N), 926, 743, 702, 665.

¹H NMR (700 MHz, DMSO-*d*₆) $\delta_{\rm H}$: 10.52 (1H, s), 8.97 (1H, d, *J* 4.4), 8.19 (1H, d, *J* 8.4), 8.08 (1H, d, *J* 8.4), 7.79 (1H, t, *J* 7.6), 7.76 (1H, d, *J* 4.5), 7.59 (1H, dd, *J* 14.2, 7.4), 7.50 – 7.41 (6H, m), 7.39 (2H, t, *J* 7.5), 7.27 (1H, t, *J* 7.4), 6.76 (1H, d, *J* 3.4), 6.00 – 5.93 (2H, m), 5.27 – 5.23 (2H, m), 4.73 (1H, d, *J* 15.7), 4.40 (1H, d, *J* 15.6), 4.30 (1H, ddd, *J* 12.0, 8.9, 2.6), 4.15 (1H, t, *J* 10.0), 3.86 (1H, t, *J* 11.1), 3.78 (1H, t, *J* 11.3), 3.45 (1H, app. dq, *J* 16.6, 7.9), 2.77 (1 H, q, *J* 8.8), 2.11 (1H, t, *J* 11.8), 1.92 – 1.76 (3H, m), 0.93 (1H, app. dd, *J* 13.9, 6.8).

¹³C NMR (176 MHz, DMSO-*d*₆) δ_C: 163.1, 150.1, 147.6, 144.8, 138.7, 137.9, 136.6, 133.1, 130.6, 129.8, 129.4, 128.7, 128.5, 128.2, 127.5, 127.4, 127.3, 127.1, 124.4, 123.5, 120.0, 117.2, 65.6, 65.0, 58.9, 56.7, 37.1, 26.1, 22.9, 20.3, 11.3.

HRMS: (ESI⁺): C₃₃H₃₄N₃O₂ [M–Br]⁺ found 504.2637, requires 504.2646 (+1.7 ppm).

(1*S*,2*R*,4*S*,5*R*)-1-(2-([1,1'-Biphenyl]-2-ylamino)-2-oxoethyl)-2-((*S*)-hydroxy(6-methoxyquinolin-4-yl)methyl)-5-vinylquinuclidin-1-ium bromide (C21)

Following General Procedure E, *N*-([1,1'-biphenyl]-2-yl)-2-bromoacetamide (118 mg, 0.41 mmol), quinidine (111 mg, 0.34 mmol), in anhydrous THF (4.9 mL). The mixture was refluxed for 24 hours. After purification by recrystallisation, CH_2Cl_2 : Et_2O (6 : 1, 0.7 mL) to give the title compound **C21** (88 mg, 42%) as grey crystals.

mp: 76 – 79 °C (CH₂Cl₂ : Et₂O).

Specific Rotation: [α]²⁰_D +85.5 (*c* 0.3, DMSO).

v_{max} (film): 2951, 1688 (C=O), 1508, 1240 (C-O), 1229 (C-N), 1026, 743, 719, 702, 664.

¹H NMR (500 MHz, DMSO-*d*₆) $\delta_{\rm H}$: 10.56 (1H, s), 8.78 (1H, d, *J* 4.6), 7.93 (1H, d, *J* 9.8), 7.72 (1H, d, *J* 4.6), 7.53 – 7.48 (1H, m), 7.48 – 7.33 (8H, m), 7.30 – 7.25 (1H, m), 6.76 (1H, s), 5.97 (1H, ddd, *J* 17.2, 10.6, 6.7), 5.89 (1H, s), 5.28 – 5.22 (1H, m), 4.66 (1H, d, *J* 16.5), 4.41 – 4.24 (3H, m), 3.79 – 3.70 (1H, m), 3.63 (1H, t, *J* 11.2), 3.55 (3H, s, *J* 1.9), 2.77 (1H, q, *J* 8.9), 2.04 (1H, t, *J* 12.1), 1.92 – 1.80 (3H, m), 0.91 – 0.83 (1H, m). Unable to resolve peak at 3.32 ppm due to residual water.

¹³C NMR (126 MHz, DMSO-*d*₆) δ_C: 163.5, 157.8, 147.2, 143.7, 143.3, 138.7, 137.8, 136.5, 133.0, 131.3, 130.4, 128.5, 128.0, 127.5, 127.3, 127.2, 125.6, 122.2, 120.3, 117.1, 101.5, 66.1, 63.6, 60.2, 58.8, 56.6, 55.7, 37.2, 26.3, 22.7, 20.4.

HRMS: (ESI⁺): C₃₄H₃₆O₃N₃ [M–Br]⁺ found 534.2738, requires 534.2757 (-3.6 ppm).

6.2 Starting Materials

The following substrates were purchased from chemical suppliers: **1s**, **2a** and **2d** from Fluorochem, **2b** from Apollo Scientific, and **2c** from TCI. Substrates **1t**,¹³ **1u**,¹⁴ **1v**,¹³ **1w**,¹⁵ **1x**¹⁵ were synthesised according to literature procedures.

Methyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1a)

Following General Procedure A, NaH (60% in mineral oil, 3.30 g, 82.5 mmol) in anhydrous THF (146 mL), dimethyl carbonate (31.9 mL, 378 mmol), *t*-BuOK (424 mg, 3.78 mmol), 2,3-dihydro-1*H*-inden-1-one (5.00 g, 37.8 mmol) in anhydrous THF (51.6 mL) for 16 hours. After purification by column chromatography (*n*-hexane : EtOAc, 100 : 0 - 80 : 20, gradient run 5% increase per 250 mL), to give the title compound (5.40 g, 75%) as a dark yellow solid. The product was present as a mixture of keto/enol tautomers by ¹H NMR. To obtain the pure keto tautomer a subsequent recrystallisation can be carried out. The keto/enol mixed product (5.40 g) was refluxed in Et₂O (~10 mL) until all material had dissolved. After cooling to RT the solution was placed in a –20 °C freezer overnight, the resulting crystals were collected by filtration and washed with ice cold Et₂O to give the title compound (5.25 g, 73%) as colourless crystals. Data was in accordance with the literature.¹⁶

Mp: 59 – 60 °C {Lit.¹⁶ (51 – 55 °C)}.

¹**H NMR (500 MHz, CDCl**₃) **δ**_H: 7.77 (1H, d, *J* 7.7), 7.62 (1H, td, *J* 7.5, 1.2), 7.50 (1H, dt, *J* 7.8, 1.0), 7.42 – 7.37 (1H, m), 3.79 (3H, s), 3.74 (1H, dd, *J* 8.3, 4.0), 3.57 (1H, dd, *J* 17.2, 4.1), 3.38 (1H, dd, *J* 17.2, 8.3).

¹³C NMR (126 MHz, CDCl₃) δ_C: 199.6, 169.7, 153.7, 135.6, 135.3, 128.0, 126.7, 124.8, 53.3, 52.9, 30.4.

Methyl 5-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1b)

Following General Procedure A, NaH (60% in mineral oil, 239 mg, 9.95 mmol) in anhydrous THF (18.2 mL), dimethyl carbonate (4.0 mL, 47.4 mmol), *t*-BuOK (53 mg, 0.47 mmol), 5-fluoro-2,3-dihydro-1*H*-inden-1-one (711 mg, 4.74 mmol) in anhydrous THF (10.8 mL) for 16 hours. After purification by column chromatography (*n*-hexane : EtOAc, 100 : 0 – 80 : 20, gradient run 5% increase per 75 mL), to give the title compound (789 mg, 80%) as a brown solid.

Mp: 57 – 58°C.

v_{max} (film): 2955, 2361, 1742 (C=O), 1711 (C=O), 1593, 1248, 1086, 750.

¹**H NMR** (500 MHz, CDCl₃) δ_H: keto : enol (9.1 : 1). 7.81 (1H, dd, *J* 8.5, 5.3 keto Ar–H), 7.62 (0.11H, dd, *J* 8.4, 5.1, enol Ar–H), 7.22 – 7.17 (1.16H, m, keto/enol Ar–H), 7.15 – 7.09 (1.14H, m, keto/enol Ar–H), 3.88 (0.35H, s, enol OMe), 3.82 (3H, s, keto OMe), 3.79 (1H, app. dd, *J* 8.3, 4.0, keto C–H), 3.59 (1H, dd, *J* 17.5, 4.0, keto C–H), 3.54 (0.23H, s, enol C–H), 3.39 (1H, dd, *J* 17.5, 8.3, keto C–H).

¹³C NMR (126 MHz, CDCl₃) δ_c: Keto: 197.6, 169.4, 167.7 (d, *J* 257.9), 156.7 (d, *J* 10.4), 127.2 (d, *J* 10.8), 116.5 (d, *J* 24.0), 113.40 (d, *J* 22.6), 53.5, 53.1, 30.2.

Enol: 166.7, 163.3, 145.8, 131.7, 122.2 (d, J 9.4), 114.58 (d, J 23.6), 112.5 (d, J 23.3), 102.1, 51.4, 32.7.

¹⁹**F NMR (471 MHz, CDCl₃) δ_F:** -101.2 (1F, app. td, *J* 8.6, 5.1, **keto**), -110.9 (1F, app. td, *J* 9.0, 5.1, **enol**).

HRMS: (ESI⁺) C₁₁H₉FO₃ [M+H]⁺ found 209.0612, requires 209.0609 (+1.8 ppm).

Methyl 5-chloro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1c)

Following General Procedure A, NaH (60% in mineral oil, 126 mg, 3.15 mmol) in anhydrous THF (5.8 mL), dimethyl carbonate (1.3 mL, 15.0 mmol), *t*-BuOK (17 mg, 0.15 mmol), 5-chloro-2,3-dihydro-1*H*-inden-1-one (250 mg, 1.50 mmol) in anhydrous THF (3.4 mL) for 16 hours. After purification by column chromatography (*n*-hexane : EtOAc, 100 : 0 – 85 : 15, gradient run 5% increase per 50 mL), to give the title compound (212 mg, 63%) as a grey solid.

Mp: 79 – 81°C.

v_{max} (film): 3022, 2955, 1744 (C=O), 1715 (C=O), 1215, 1204, 752.

¹**H NMR (500 MHz, CDCl**₃) δ_H: keto : enol (4 : 1). 7.70 (1H, dd, *J* 8.2, 0.6, keto Ar–H), 7.56 (0.26 H, dd, *J* 8.1, 0.5, enol Ar–H), 7.51 (1H, d, *J* 1.0, keto Ar–H), 7.46 (0.25H, dd, *J* 1.8, 0.8, enol Ar–H), 7.40 – 7.35 (1.27H, m, keto/enol Ar–H), 3.86 (0.75H, s, enol OMe), 3.80 (3H, s, keto OMe), 3.76 (1H, dd, *J* 8.3, 4.0, keto C–H), 3.56 (1H, dd, *J* 17.4 3.9, keto C–H), 3.51 (0.5H, s, enol C–H), 3.35 (1H, ddd, *J* 17.4, 8.3, 0.7, keto C–H).

¹³C NMR (126 MHz, CDCl₃) δ_C: Keto: 198.0, 169.3, 155.1, 142.3, 133.8, 128.9, 126.9, 125.9, 53.3, 53.1, 30.1.

Enol: 144.8, 135.8, 135.5, 127.5, 125.4, 121.8, 102.6, 51.5, 32.5.

HRMS: (ESI⁺) C₁₁H₉³⁵ClO₃ [M+H]⁺ found 225.0313, requires 225.0313 (+2.4 ppm)

Methyl 5-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1d)

Following General Procedure A, NaH (60% in mineral oil, 99.5 mg, 2.49 mmol) in anhydrous THF (4.6 mL), dimethyl carbonate (1.0 mL, 11.8 mmol), *t*-BuOK (13 mg, 0.12 mmol), 5-bromo-

2,3-dihydro-1*H*-inden-1-one (250 mg, 1.18 mmol) in anhydrous THF (2.7 mL) for 16 hours. After purification by column chromatography (*n*-hexane : EtOAc, 100 : 0 - 90 : 10, gradient run 5% increase per 50 mL), to give the title compound (170 mg, 53%) as a yellow powder.

Mp: 87 – 88 °C.

v_{max} (film): 3024, 2953, 1742 (C=O), 1713 (C=O), 1215, 1204, 748.

¹**H NMR** (400 MHz, CDCl₃) δ_H: keto : enol (3.4 : 1). 7.69 (1H, d, *J* 0.9, keto Ar–H), 7.64 (0.34H, d, *J* 0.5, enol Ar–H), 7.62 (1H, s, keto Ar–H), 7.56 – 7.48 (1.56H, m, keto/enol Ar–H), 3.86 (0.88H, s, enol OMe), 3.80 (3H, s, keto OMe), 3.74 (1H, dd, *J* 8.3, 4.0, keto C–H), 3.56 (1H, dd, *J* 17.4, 4.0, keto C–H), 3.50 (0.57H, s, enol CH₂), 3.40 – 3.32 (1H, m, keto C–H).

¹³CNMR (101 MHz, CDCl₃) δ_C: Keto: 198.3, 169.2, 155.2, 134.2, 131.7, 131.1, 130.0, 126.0, 53.2, 53.1, 30.0.

Enol: 130.3, 128.3, 124.1, 122.1, 51.5, 32.5. Remaining quaternary carbons not observed.

HRMS: (ESI⁺) C₁₁H₉⁷⁹BrO₃ [M+H]⁺ found 268.9812, requires 268.9808 (+1.6 ppm).

Methyl 5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1e)

Following General Procedure A, NaH (60% in mineral oil, 129 mg, 3.24 mmol) in anhydrous THF (5.9 mL), dimethyl carbonate (1.3 mL, 15.4 mmol), *t*-BuOK (17 mg, 0.15 mmol), 5-methoxy-2,3-dihydro-1*H*-inden-1-one (250 mg, 1.54 mmol) in anhydrous THF (3.50 mL) for 16 hours. After purification by column chromatography (*n*-hexane : EtOAc, 100 : 0 - 75 : 25, gradient run 5% increase per 50 mL), to give the title compound (248 mg, 73%) as a white solid.

Mp: 75 – 77 °C.

v_{max} (film): 3019, 2953, 1740 (C=O), 1705 (C=O), 1260 (C-O), 1090, 754.

¹**H NMR (400 MHz, CDCl₃)** δ_H: Only keto tautomer present. 7.72 – 7.68 (1H, m), 6.95 – 6.90 (2H, m), 3.89 (3H, s), 3.79 (3H, s), 3.72 (1H, dd, *J* 8.2, 4.0), 3.51 (1H, dd, *J* 17.3, 3.9), 3.31 (1H, dd, *J* 17.3, 8.2).

¹³C NMR (101 MHz, CDCl₃) δ_C: 197.6, 170.0, 166.0, 156.9, 128.5, 126.5, 116.1, 109.7, 55.9, 53.5, 52.9, 30.4.

HRMS: (ESI⁺) C₁₂H₁₃O₄ [M+H]⁺ found 221.0808, requires 221.0808 (-0.1 ppm)

Methyl 4-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1f)

Following General Procedure A, NaH (60% in mineral oil, 129 mg, 3.24 mmol) in anhydrous THF (5.9 mL), dimethyl carbonate (1.3 mL, 15.4 mmol), *t*-BuOK (17 mg, 0.15 mmol), 4-methoxy-2,3-dihydro-1*H*-inden-1-one (250 mg, 1.54 mmol) in anhydrous THF (3.50 mL) for 16 hours. After purification by column chromatography (*n*-hexane : EtOAc, 100 : 0 - 75 : 25, gradient run 5% increase per 50 mL), to give the title compound (251 mg, 74%) as a pink solid.

Mp: 72 – 73 °C.

v_{max} (film): 3023, 2957, 1752 (C=O), 1724 (C=O), 1327, 1215 (Ar C–O), 1165, 1130, 748, 667.

¹**H** NMR (500 MHz, CDCl₃) δ_H: keto : enol (8.1 : 1). 7.39 – 7.34 (2H, m, keto/enol Ar–H), 7.28 (0.14H, dd, *J* 7.6, 0.8, enol Ar–H), 7.08 – 7.04 (1H, m, keto Ar–H), 6.94 (0.13H, dd, *J* 8.1, 0.9, enol Ar–H), 3.91 (3H, s, keto Ar–OMe), 3.90 (0.39H, s, enol Ar–OMe), 3.86 (0.37H, s, enol OMe), 3.79 (3H, s, keto OMe), 3.72 (1H, dd, *J* 8.1, 3.8, keto C–H), 3.47 – 3.41 (1H, m, keto/enol C–H), 3.29 (1H, dd, *J* 17.7, 8.1, keto C–H).

¹³C NMR (126 MHz, CDCl₃) δ_c: Keto: 199.8, 169.7, 157.0, 142.7, 136.8, 129.5, 116.2, 115.7, 55.7, 53.2, 52.9, 27.3.

Enol: 169.9, 155.7, 138.5, 130.8, 128.8, 115.9, 113.5, 111.3, 102.4, 55.5, 51.4, 30.0.

HRMS: (ESI⁺) C₁₂H₁₃O₄ [M+H]⁺ found 205.0859, requires 205.0859 (-0.2 ppm).

Methyl 4-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1g)

Following General Procedure A, NaH (60% in mineral oil, 303 mg, 12.6 mmol) in anhydrous THF (23 mL), dimethyl carbonate (5.1 mL, 60.2 mmol), *t*-BuOK (68 mg, 0.60 mmol), 4-bromo-2,3-dihydro-1*H*-inden-1-one (1.27 g, 6.02 mmol) in anhydrous THF (14 mL) for 16 hours. After purification by column chromatography (*n*-hexane : EtOAc, 100 : 0 - 90 : 10, gradient run 5% increase per 125 mL), to give the title compound (574 mg, 36%) as beige crystals.

Mp: 80 – 83 °C.

v_{max} (film): 2361, 2342, 1658 (C=O), 1234, 1186, 767.

¹**H NMR (500 MHz, CDCl**₃) δ_H: keto : enol (2.2 : 1). 7.77 (2H, app. ddd, *J* 33.9, 7.7, 1.0, keto Ar– **H**), 7.58 (0.91H, app. ddd, *J* 20.3, 7.7, 0.9, enol Ar–H), 7.34 – 7.27 (1.52H, m, keto/enol Ar–H), 3.88 (1.37H, s, enol OMe), 3.81 (3H, s, keto OMe), 3.78 (1H, dd, *J* 8.3, 4.0, keto C–H), 3.53 – 3.47 (1.53H, m, keto/enol C–H), 3.33 (1H, dd, *J* 17.8, 8.3, keto C–H).

¹³C NMR (126 MHz, CDCl₃) δ_c: Keto: 198.8, 169.1, 153.4, 138.4, 137.3, 129.8, 123.7, 122.1, 53.2, 53.1, 34.2.

Enol: 143.2, 138.6, 138.4, 132.5, 128.9, 120.0, 119.8, 103.1, 51.6, 31.5. C–OH not observed.

HRMS: (ESI⁺) C₁₁H₉⁷⁹BrO₃ [M+H]⁺ found 268.9809, requires 268.9808 (+0.6 ppm).

Methyl 4-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1h)

Following General Procedure A, NaH (60% in mineral oil, 86 mg, 3.59 mmol) in anhydrous THF (6.6 mL), dimethyl carbonate (1.4 mL, 17.1 mmol), *t*-BuOK (19 mg, 0.17 mmol), 4-methyl-2,3-dihydro-1*H*-inden-1-one (250 mg, 1.71 mmol) in anhydrous THF (3.9 mL) for 16 hours.

After purification by column chromatography (*n*-hexane : EtOAc, 100 : 0 - 95 : 5, gradient run 5% increase per 100 mL), to give the title compound (284 mg, 81%) as pale pink powder.

Mp: 73 – 74 °C.

v_{max} (film): 3020, 1742 (C=O), 1713 (C=O), 1215, 745, 667.

¹**H NMR (500 MHz, CDCl₃) δ_H:** keto : enol (5.5: 1). 7.62 (1H, d, *J* 7.6, **keto Ar–H**), 7.50 (0.16H, d, *J* 7.5, **enol Ar–H**), 7.44 (1H, d, *J* 7.3, **keto Ar–H**), 7.32 (1.20H, app. t, *J* 7.6, **keto/enol Ar–H**), 7.24 (0.18H, app. d, **enol Ar–H**), 3.87 (0.51H, s, **enol OMe**), 3.80 (3H, s, **keto OMe**), 3.75 (1H, dd, *J* 8.2, 3.9, **keto C–H**), 3.48 – 3.40 (1.41H, m **keto/enol Ar–Me**), 3.27 (1H, dd, *J* 17.3, 8.2 **keto C–H**), 2.37* (3.62H, d, *J* 4.9, **keto/enol Ar–Me**).

*Overlapping singlets.

¹³C NMR (126 MHz, CDCl₃) δ_C: Keto: 199.9, 169.8, 152.7, 136.1, 134.1, 128.2, 122.2, 53.2, 52.9, 29.3, 17.9.

Enol: 142.1, 136.6, 136.0, 135.2, 130.7,127.4, 118.6, 102.1, 51.4, 31.7, 18.1. C–OH not observed. HRMS: (ESI⁺) C₁₂H₁₃O₄ [M+H]⁺ found 221.0808, requires 221.0808 (–0.4 ppm)

Methyl 1-oxo-4-(trifluoromethyl)-2,3-dihydro-1H-indene-2-carboxylate (1i)

Following General Procedure A, NaH (60% in mineral oil, 50.4 mg, 2.10 mmol) in anhydrous THF (3.8 mL), dimethyl carbonate (0.8 mL, 99.9 mmol), *t*-BuOK (11.2 mg, 1.00 mmol), 4-(trifluoromethyl)-2,3-dihydro-1*H*-inden-1-one (200 mg, 1.71 mmol) in anhydrous THF (2.3 mL) for 16 hours. After purification by column chromatography (*n*-hexane : EtOAc, 100 : 0 - 90 : 10, gradient run 5% increase per 100 mL), to give the title compound (139 mg, 54%) as white solid.

Mp: 65 – 67 °C.

v_{max} (film): 3026, 2959, 1748 (C=O), 1724 (C=O), 1325, 1121, 1105, 754.

¹**H NMR** (500 MHz, CDCl₃) δ_H: keto : enol (1 : 1). 10.26 (1H, s, enol OH), 7.94 (1H, d, *J* 7.7, keto Ar–H), 7.88 (1H, d, *J* 7.2, keto Ar–H), 7.78 (1H, dd, *J* 7.7, 2.2, enol Ar–H), 7.66 – 7.62 (1H, m, enol Ar–H), 7.56 – 7.46 (2H, m, keto/enol Ar–H), 3.86 (3H, s, enol OMe), 3.81 – 3.77 (4H, m, keto OMe/C–H),* 3.72 (1H, dd, *J* 18.0, 4.3 keto C–H), 3.67 (2H, s, enol C–H), 3.56 (1H, dd, *J* 18.0, 8.3, keto C–H). *Unable to resolve due to overlapping environments.

¹³C NMR (126 MHz, CDCl₃) δ_C: Keto: 198.2, 168.9, 150.8, 136.8, 132.2 (q, *J* 4.6), 128.8, 128.5, 125.0 (d, *J* 57.1), 122.9 (d, *J* 57.4), 120.7 (d, *J* 57.7), 53.1, 52.8, 29.3.

Enol: 169.7, 140.4, 138.6, 128.3, 127.6, 127.0 (d, J 32.6), 126.8 (d, J 45.0), 126.0 (q, J 4.5), 124.2, 103.2, 51.5, 32.0.

¹⁹F NMR (471 MHz, CDCl₃) δ_F: -62.1 (CF₃, s, enol), -62.3 (CF₃, s, keto).

HRMS: (ESI⁺) C₁₂H₉F₃NaO₃ [M+Na]⁺ found 281.0397, requires 281.0396 (+0.4 ppm).

Methyl 6-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1j)

Following General Procedure A, NaH (60% in mineral oil, 303 mg, 12.6 mmol) in anhydrous THF (23 mL), dimethyl carbonate (5.1 mL, 60.2 mmol), *t*-BuOK (68 mg, 0.60 mmol), 6-bromo-2,3-dihydro-1*H*-inden-1-one (1.27 g, 6.02 mmol) in anhydrous THF (14 mL) for 16 hours. After purification by column chromatography (*n*-hexane : PhMe, 100 : 0 - 50 : 50, gradient run 10% increase per 75 mL), to give the title compound (334 mg, 21%) as an orange powder.

Mp: 126 – 127 °C.

v_{max} (film): 3019, 1721 (C=O), 1657 (C=O), 1213, 746, 667.

¹**H NMR** (400 MHz, CDCl₃) δ_H: keto : enol (2.4 : 1). 7.90 (1H, dd, *J* 2.0, 0.6, keto Ar–H), 7.77 (0.41H, dd, *J* 1.9, 0.6, enol Ar–H), 7.73 (1H, dd, *J* 8.1, 2.0, keto Ar–H), 7.53 (0.43H, dd, *J* 8.0, 1.9, enol Ar–H), 7.40 (1H, dd, *J* 8.2, 0.8, keto Ar–H), 7.33 (0.42H, dd, *J* 8.0, 0.7, enol Ar–H), 3.86

(1.29H, s, enol OMe), 3.80 (3H, s, keto OMe), 3.77 (1H, dd, J 8.3, 4.0, keto C–H), 3.52 (1H, dd, J 17.4, 3.9, keto C–H), 3.47 (0.85H, d, J 0.7, enol C–H), 3.33 (1H, dd, J 17.4, 8.2, keto C–H).

¹³C NMR (126 MHz, CDCl₃) δ_c: Keto: 198.1, 169.2, 152.2, 138.4, 137.1, 128.2, 127.7, 122.2, 53.5, 53.1, 39.0, 30.0.

Enol: 168.3, 141.8, 139.0, 132.3, 126.3, 124.0, 121.0, 51.5, 32.4, 29.8. C–OH not observed.

HRMS: (ESI⁺) $C_{11}H_9^{79}BrO_3$ [M+H]⁺ found 268.9811, requires 268.9807 (+1.4 ppm)

Methyl 6-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1k)

Following General Procedure A, NaH (60% in mineral oil, 86 mg, 3.59 mmol) in anhydrous THF (6.6 mL), dimethyl carbonate (1.4 mL, 17.1 mmol), *t*-BuOK (19 mg, 0.17 mmol), 6-methyl-2,3-dihydro-1*H*-inden-1-one (250 mg, 1.71 mmol) in anhydrous THF (3.9 mL) for 16 hours. After purification by column chromatography (*n*-hexane : EtOAc, 100 : 0 – 75 : 25, gradient run 5% increase per 100 mL), to give the title compound (314 mg, 90%) as a brown powder.

Mp: 73 – 74 °C.

v_{max} (film): 3022, 2953, 1738 (C=O), 1705 (C=O), 1211 1150, 750, 492.

¹H NMR (500 MHz, CDCl₃) δ_H: 7.67 (1H, s, keto Ar–H), 7.56 – 7.53 (1.17H, m, keto/enol Ar– H), 7.49 (1H, d, *J* 7.8, keto Ar–H), 7.45 (0.13H, d, *J* 7.7, enol Ar–H), 7.34 (0.15H, d, *J* 7.7, enol Ar–H), 3.95 (0.38H, s, enol OMe), 3.89 (3H, s, keto OMe), 3.83 (1H, dd, *J* 8.2, 4.0, keto C–H), 3.61 (1H, dd, *J* 17.1, 4.0, keto C–H), 3.57 (0.27H, s, enol C–H), 3.43 (1H, dd, *J* 17.1, 8.2, keto C– H), 2.52 (0.46H, s, keto CH₃), 2.50 (3H, s, enol CH₃).

¹³C NMR (126 MHz, CDCl₃) δ_c: Keto: 199.7, 169.8, 151.2, 138.0, 136.8, 126.3, 124.7, 121.3, 53.6, 52.9, 30.1, 21.2.

Enol: 140.5, 137.1, 136.9, 135.5, 130.6, 124.6, 102.5, 51.3, 32.2, 21.5. Remaining quaternary peaks not observed.

HRMS: (ESI⁺) C₁₂H₁₃O₄ [M+H]⁺ found 205.0858, requires 205.0859 (-0.5 ppm)

Methyl 5,6-dimethoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (11)

Following General Procedure A, NaH (60% in mineral oil, 328 mg, 8.19 mmol) in anhydrous THF (15 mL), dimethyl carbonate (3.3 mL, 39.0 mmol), *t*-BuOK (44 mg, 0.39 mmol), 5,6-dimethoxy-2,3-dihydro-1*H*-inden-1-one (750 mg, 3.90 mmol) in anhydrous THF (9 mL) for 16 hours. After purification by column chromatography (*n*-hexane : EtOAc 100 : 0 - 50 : 50, gradient run 10% increase per 200 mL), to give the title compound (887 mg, 91%) as a beige solid.

Mp: 156 – 159 °C.

v_{max} (film): 2957, 2839, 1721 (C=O), 1690 (C=O), 1310, 1252 (C–O), 1194 (C–O), 1022, 876, 525.

¹**H NMR (500 MHz, CDCl₃) δ**_H: Only keto tautomer present. 7.17 (1H, s), 6.91 (1H, s), 3.98 (3H, s), 3.90 (3H, s), 3.79 (3H, s), 3.73 (1H, dd, *J* 7.9, 3.5), 3.46 (1H, dd, *J* 17.1, 3.4), 3.28 (1H dd, *J* 17.1, 7.9).

¹³C NMR (126 MHz, CDCl₃) δ_C: 198.0, 170.0, 156.2, 149.9, 149.4, 128.0, 107.4, 104.9, 56.5, 56.3, 53.5, 52.9, 30.1.

HRMS: (ESI⁺) C₁₃H₁₄O₅ [M+H]⁺ found 251.0913, requires 251.0914 (-0.4 ppm)

Methyl 5-chloro-6-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1m)

Following General Procedure A, NaH (60% in mineral oil, 126 mg, 3.15 mmol) in anhydrous THF (5.8 mL), dimethyl carbonate (1.3 mL, 15.0 mmol), *t*-BuOK (17 mg, 0.15 mmol), 5-chloro,

6-methoxy-2,3-dihydro-1*H*-inden-1-one (295 mg, 1.50 mmol) in anhydrous THF (3.4 mL) for 16 hours. After purification by column chromatography (*n*-hexane : Et_2O , 100 : 0 – 80 : 20, gradient run 5% increase per 100 mL), to give the title compound (246 mg, 64%) as a grey solid.

Mp: 116 – 119 °C.

v_{max} (film): 3019, 2955, 1742 (C=O), 1709 (C=O), 1439, 1204 (C-O), 1194 (C-O), 1051, 750, 721.

¹**H NMR** (500 MHz, CDCl₃) δ_H: keto : enol (6.7 : 1). 7.52 (1H, s, keto Ar–H), 7.46 (0.15H, s, enol Ar–H), 7.23 (1H, s, keto Ar–H), 7.17 (0.15H, s, enol Ar–H), 3.95 (0.45H, s, enol Ar–OMe), 3.92 (3H, s, keto Ar–OMe), 3.85 (0.45H, s, enol OMe), 3.79 (3H, s, keto OMe), 3.75 (1H, dd, *J* 8.1, 3.8, keto C–H), 3.52 – 3.42 (1.34H, m, keto/enol C–H), 3.29 (1H, dd, *J* 17.2, 8.3, keto C–H).

¹³C NMR (126 MHz, CDCl₃) δ_C: Keto: 198.5, 169.4, 155.4, 146.5, 134.7, 131.9, 126.6, 105.8, 56.5, 53.7, 53.0, 29.5.

Enol: 154.6, 136.5, 135.8, 128.1, 124.6, 103.8, 103.4, 56.6, 51.5, 31.9. Remaining quaternary carbons not observed.

HRMS: (ESI⁺) C₁₂H₁₁³⁵ClO₃ [M+H]⁺ found 277.0243, requires 277.0238 (+1.9 ppm)

Methyl 3-oxo-2,3-dihydrobenzo[b]thiophene-2-carboxylate (1n)

Following General Procedure A, NaH (60% in mineral oil, 112 mg, 2.80 mmol) in anhydrous THF (5.2 mL), dimethyl carbonate (1.1 mL, 13.3 mmol), *t*-BuOK (15 mg, 0.13 mmol), benzo[*b*]thiophen-3(2*H*)-one (200 mg, 1.33 mmol) in anhydrous THF (3.3 mL) for 16 hours. After purification by column chromatography (*n*-hexane), to give the title compound (123 mg, 44%) as pink crystals. Data was in accordance with the literature.¹⁷

v_{max} (film): 3019, 2953, 1660 (C=O), 1445, 1308, 1216 (C–O), 1148, 748, 733, 667.

Mp: 106 – 108 °C {Lit.¹⁷ (103 – 106 °C)}.

¹**H NMR (500 MHz, CDCl**₃) δ_H: Only enol tautomer is present. 10.14 (1H, s, **enol OH**), 7.94 (1H, d, *J* 8.6), 7.74 (1H, d, *J* 8.4), 7.50 (1H, t, *J* 7.4), 7.40 (1H, t, *J* 7.2), 3.96 (3H, s).

¹³C NMR (126 MHz, CDCl₃) δ_C: 167.8, 159.7, 139.0, 130.5, 129.0, 124.6, 123.3, 123.1, 101.8, 52.3.

tert-Butyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate (10)

Following General Procedure B, Bu₂SnO (164 mg, 0.66 mmol), PhMe (33.0 mL), methyl 1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (**1a**) (628 mg, 3.30 mmol), *t*-BuOH (3.2 mL, 33.0 mmol) were refluxed for 16 hours. After purification by column chromatography (*n*-hexane : EtOAc, 100 : 0 - 80 : 20, gradient run 5% increase per 100 mL), to give the title compound (445 mg, 58%) as a purple oil.

v_{max} (film): 2976, 2931, 1709 (C=O), 1256, 1146 (C–O), 843, 760, 467.

¹**H NMR (500 MHz, CDCl₃)** δ_H: keto : enol (7.69 : 1). 7.75 (1.04H, d, *J* 7.7, keto/enol Ar–H), 7.60 (1.16H, t, *J* 7.5, keto/enol Ar–H), 7.49 (1.03H, d, *J* 7.7, keto/enol Ar–H), 7.38 (1.52H, t, *J* 7.5, keto/enol Ar–H), 3.62 (1H, dd, *J* 8.3, 4.0, keto C–H), 3.53 – 3.46 (1.30H, m, keto/enol C–H), 3.33 (1H, dd, *J* 17.2, 8.2, keto C–H), 1.57 (1.17H, s, enol Ot-Bu), 1.49 (9H, s, keto Ot-Bu).

¹³C NMR (126 MHz, CDCl₃) δ_c: Keto: 200.2, 168.5, 153.8, 137.3, 135.4, 127.8, 126.7, 124.7, 82.2, 54.5, 30.5, 28.1.

Enol: 143.1, 135.6, 134.7, 129.1, 127.4, 126.8, 124.7, 123.9, 120.6, 104.1, 81.1, 28.6.

HRMS: (ESI⁺) C₁₄H₁₆O₃ [M+H]⁺ found 255.0991, requires 255.0992 (-0.2 ppm).

Adamantan-1-yl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1p)

Following General Procedure B, Bu₂SnO (100 mg, 0.40 mmol), PhMe (20 mL), methyl 1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (**1a**) (380 mg, 3.30 mmol), 1-adamantol (913 mg, 6.00 mmol) were refluxed for 16 hours. After purification by column chromatography (*n*-hexane : EtOAc, 100 : 0 - 90 : 10, gradient run 10% increase per 200 mL), to give the title compound (203 mg, 33%) as a pink solid. Data was in accordance with the literature.¹⁸

Mp: 99 – 103 °C {Lit.¹⁸ (103 °C)}.

v_{max} (film): 3021, 2913, 2855, 1707 (C=O), 1256, 1207 (C–O), 1053, 746, 667.

¹**H NMR (500 MHz, CDCl**₃) δ_H: keto : enol (6.25 : 1). 7.76 (1H, d, *J* 7.7, **keto Ar–H**), 7.61 (1.19H, app. td, *J* 7.5, 1.3, **keto/enol Ar–H**), 7.49 (1H, d, *J* 7.7, **keto/enol Ar–H**), 7.45 (0.16H H, d, *J* 7.2 **enol Ar–H**), 7.42 – 7.34 (1.37H, m, **keto/enol Ar–H**), 3.62 (1H, dd, *J* 8.2, 3.9, **keto C–H**), 3.52 – 3.46 (1.34H, m, **keto/enol C–H**), 3.33 (1H, dd, *J* 17.2, 8.2, **keto C–H**), 2.23 (1.31H, s, **enol C–H**), 2.14 (9H, s, **keto C–H**), 1.76 – 1.56 (7.70H, m, **keto/enol C–H**).

¹³C NMR (126 MHz, CDCl₃) δ_c: Keto: 200.2, 168.1, 153.8, 135.3, 127.8, 126.6, 125.2, 124.7, 82.3, 54.7, 41.3, 36.3, 36.2, 31.0, 30.9, 30.8, 30.5.

Enol: 143.2, 137.4, 135.6, 129.1, 126.8, 126.4, 124.7, 120.6, 104.2, 81.3, 45.5, 41.9, 41.5, 41.0, 36.0, 33.0, 31.0, 29.8.

HRMS: (ESI⁺) C₂₀H₂₂O₃ [M+H]⁺ found 311.1641, requires 311.1642 (-0.1 ppm)

Methyl 1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (1q)

To a flame-dried 3-neck round-bottom flask equipped with a reflux condenser, under a flow of N_2 , NaH (60% in mineral oil, 2.92 equiv.) was added to anhydrous MeOH (0.1 mL, 171 M). To this solution was added, dimethyl carbonate (17 mL, 205 mmol, 12.0 equiv.) and a catalytic amount of *t*-BuOK (192 mg, 1.71 mmol, 0.1 equiv.) sequentially at RT. The mixture was stirred for 5 min and then 3,4-dihydronaphthalen-1(2*H*)-one (2.3 mL, 17.1 mmol, 1.0 equiv.) was added dropwise. The reaction was stirred for 3 hours at reflux. The resulting mixture was put

in an ice bath and 3 M HCl (40 mL) was added. The mixture was then extracted with EtOAc (3 × 30 mL), washed with water (10 mL) and brine (15 mL), dried over anhydrous MgSO₄, filtered, and concentrated *in vacuo*. After purification by column chromatography (hexane : EtOAc, 100 : 0 - 90 : 10, gradient run 5% increase per 150 mL), to give the title compound (2.67 g, 76%) as a pink powder. Data was in accordance with the literature.¹⁹

Mp: 60 – 63 °C {Lit.¹⁹ (83 – 86 °C)}.

ν_{max} (film): 3024, 2951, 2846, 1742 (C=O), 1684 (C=O), 1645, 1439, 1265, 1213 (C–O), 1084, 745, 727.

¹**H** NMR (500 MHz, CDCl₃) δ_H: keto : enol (2 : 1). 12.41 (0.49H, s, enol OH), 8.05 (1H, dd, *J* 7.9, 1.5, keto Ar–H), 7.80 (0.51H, dd, *J* 7.6, 1.6, enol Ar–H), 7.50 (1H, app. td, *J* 7.5, 1.5, keto Ar–H), 7.36 – 7.23 (unable to resolve due to CDCl₃, m, keto/enol Ar–H), 7.17 (0.54H, app. dd, *J* 7.2, 1.0, keto/enol Ar–H), 3.82 (1H, s, enol OMe), 3.78 (3H, s, keto OMe), 3.63 (1H, dd, *J* 10.4, 4.7 keto C–H), 3.10 – 2.95 (2H, m, keto/enol C–H), 2.81 (1H, app. dd, *J* 8.8, 6.7, keto C–H), 2.59 – 2.46 (2H, m, keto/enol C–H), 2.36 (1H, m, keto C–H).

¹³C NMR (126 MHz, CDCl₃) δ_C: Keto: 193.3, 170.8, 143.8, 134.1, 131.8, 128.9, 127.5, 126.7, 54.6, 51.8, 27.9, 26.5.

Enol: 173.2, 165.2, 139.5, 130.7, 130.1, 127.9, 127.0, 124.5, 97.0, 52.5, 27.7, 20.6.

Methyl 5-oxo-6,7,8,9-tetrahydro-5H-benzo[7]annulene-6-carboxylate (1r)

A solution of 5-phenylpentanoic acid (500 mg, 2.81 mmol, 1.00 equiv.) in triflic acid (2.8 mL, 31.7 mmol, 11.3 equiv.) was stirred at 5 °C to RT over 2 hrs. Ice was slowly added, and the mixture was extracted with Et_2O (3 × 25 mL), the organic layer was washed with sat. aq. NaHCO₃ (25 mL), water (25 mL) and brine (25 mL). Dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The intermediate (165 mg, 37%) was taken directly to the next step

without purification. Following General Procedure A, NaH (60% in mineral oil, 87 mg, 2.16 mmol) in anhydrous THF (4 mL), dimethyl carbonate (0.9 mL, 10.3 mmol), *t*-BuOK (12 mg, 0.10 mmol), 6,7,8,9-tetrahydro-5*H*-benzo[7]annulen-5-one (165 mg, 1.03 mmol) in anhydrous THF (2.3 mL) for 16 hours. After purification by column chromatography (*n*-hexane : Et₂O, 100: 0-95: 0, gradient run 5% increase per 75 mL), to give the title compound (123 mg, 44%) as a yellow wax.

ν_{max} (film): 3021 (C–OH), 2859, 2361, 1684 (C=O), 1640, 1614, 1439, 1271, 1252, 1204 (C–O), 1094, 999, 750.

¹**H NMR (500 MHz, CDCl₃) δ_H:** keto : enol (1 : 42.9). 12.62 (1H, s, **enol OH**), 7.63 (1H, dd, *J* 7.2, 1.9 **Ar–H enol**), 7.38 – 7.30 (2H, m, **keto/enol Ar–H**), 7.22 (1H, dd, *J* 7.1, 1.9, **keto/enol Ar–H**), 3.83 (3H, s, **enol OMe**), 3.76 (0.07H, s, **keto OMe**), 2.95 (0.05H, app. q, *J* 4.5, **keto C–H**), 2.64 (2H, t, *J* 6.8, **enol C–H**), 2.17 – 2.05 (4H, m, **keto/enol C–H**).

¹³C NMR (126 MHz, CDCl₃) δ_C: Keto: 170.9, 141.4, 138.1, 132.6, 130.0, 129.3, 126.9, 56.6, 52.4, 33.0, 29.8, 25.4, 24.4.

Enol: 173.5, 170.6, 141.2, 135.8, 130.2, 129.1, 127.3, 126.5, 100.3, 51.9, 33.6, 31.9, 21.9.

HRMS: (ESI⁺) C₁₃H₁₄O₃ [M+H]⁺ found 219.1016, requires 219.1016 (+0.3 ppm).

Methyl 3-((triisopropylsilyl)oxy)-1H-indene-2-carboxylate (TIPS enol 1a)

To a solution of methyl 1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (250 mg, 1.31 mmol, 1.00 equiv.) in anhydrous CH_2Cl_2 (10 mL) was added Et_3N (0.33 mL, 2.37 mmol, 1.8 equiv) at RT under argon. Subsequently, TIPSOTf (0.42 mL, 1.58 mmol, 1.2 equiv) was slowly added at 0 °C, and the resulting solution was stirred at RT for 1 hour. A solution of NaHCO₃ (5%, 15 mL) was added, and the mixture was extracted with CH_2Cl_2 (2 × 15 mL). The organic phases were combined, dried over anhydrous MgSO₄, filtered, and concentrated *in vacuo*. After

purification by column chromatography (*n*-hexane : Et_2O : Et_3N , 99 : 0 : 1 – 94 : 4 : 1, gradient run 1% increase per 100 mL), to give the title compound (198 mg, 42%) as a white semi-solid.

Neutralised silica used in purification; neutralisation achieved with 1% Et₃N when packing the column.

v_{max} (film): 2941, 2864, 1744 (C=O), 1462, 1240, 1227, 1152, 924, 883, 754.

¹**H NMR (500 MHz, CDCl**₃) δ_H: 7.54 – 7.50 (1H, m), 7.46 – 7.42 (1H, m), 7.39 – 7.32 (2H, m), 3.79 (3H, s), 3.61 (2H, s), 1.42 (3H, q, *J* 7.5), 1.15 (18H, d, *J* 7.6).

¹³C NMR (126 MHz, CDCl₃) δ_c: 165.5, 161.5, 142.6, 141.2, 128.4, 126.7, 124.5, 120.7, 110.8, 50.9, 35.0, 18.1, 14.3.

HRMS: (ESI⁺) C₂₀H₃₀NaO₄Si [M+Na]⁺ found 385.1808, requires 385.1806 (+0.8 ppm).

6.3 Products

Methyl (*R*)-2-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate (*R*)-3a)

Following General Procedure G, methyl 1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (**1a**) (19 mg, 0.10 mmol), PTC (**C18**) (12 mg, 0.02 mmol), *t*-BuOAc (0.50 mL), ethyl difluoroiodoacetate (38 μ L, 0.3 mmol) and Cs₂CO₃ (65 mg, 0.20 mmol) for 16 hours. After purification by column chromatography (PhMe), to give the title compound (31 mg, 99%) as a colourless oil.

Specific Rotation $[\alpha]_D^{20}$ -7.7 (*c* 2.06, CHCl₃).

Chiral HPLC: DAICEL CHIRALPAK AD-H (*n*-hexane : IPA, 95 : 5, flow rate = 1 mL min⁻¹, λ = 254 nm, 30 °C) t_{minor}: 12.1 min, t_{major}: 13.2 min, 26 : 74 er

v_{max} (film): 2959, 1748 (C=O), 1722 (C=O), 1607, 1275, 1215, 1130, 1038, 756, 419.

¹**H NMR (500 MHz, CDCl**₃) **δ**_H: 7.82 (1H, app. dt, *J* 7.7, 1.0), 7.66 (1H, app. td, *J* 7.5, 1.2), 7.50 (1H, app. dt, *J* 7.7, 0.9), 7.43 (1H, app. ddt, *J* 8.0, 7.2, 0.8), 4.35 (2H, q, *J* 7.2), 3.83 – 3.69 (5H, m, unable to resolve quartet and singlet), 1.33 (3H, t, *J* 7.1).

¹³**C NMR (126 MHz, CDCl₃)** δ_c: 194.8, 167.5 (dd, *J* 6.8, 2.5), 162.5 (t, *J* 31.8), 152.1, 136.1, 135.2, 128.4, 126.3, 125.3, 113.9 (dd, *J* 265.0, 255.6), 63.9 – 63.4 (m), 53.5, 35.03 (t, *J* 3.5), 13.9.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ_F: -108.5 (1F, d, *J* 277.8), -110.2 (1F, d, *J* 278.1).

HRMS: (ESI⁺): C₁₅H₁₄F₂O₅[M+Na]⁺ found 335.0692, requires 335.0707 (-4.5 ppm).

Methyl (*R*)-2-(2-ethoxy-1,1-difluoro-2-oxoethyl)-5-fluoro-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate (*R*)-3b

Following General Procedure G, methyl 5-fluoro-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (**1b**) (21 mg, 0.10 mmol), PTC (**C18**) (12 mg, 0.02 mmol), *t*-BuOAc (0.50 mL), ethyl difluoroiodoacetate (38 μ L, 0.3 mmol) and Cs₂CO₃ (65 mg, 0.20 mmol) for 16 hours. After purification by column chromatography (PhMe), to give the title compound (30.4 mg, 92%) as a colourless oil.

Specific Rotation: [α]_D²⁰ –13.8 (*c* 2.03, CHCl₃).

Chiral HPLC: DAICEL CHIRALPAK AD-H (*n*-hexane : IPA, 98 : 2, flow rate = 0.5 mL min⁻¹, $\lambda = 220$ nm, 30 °C) t_{minor}: 24.9 min, t_{major}: 26.7 min, 28 : 72 er

v_{max} (film): 2926, 2853, 1749 (C=O), 1722 (C=O), 1616, 1595, 1260, 1132, 1066, 752, 433.

¹**H NMR (500 MHz, CDCl**₃) δ_H: 7.83 (1H, dd, *J* 8.5, 5.2), 7.18 – 7.11 (2H, m), 4.36 (2H, q, *J* 7.1), 3.81 – 3.69 (5H, m), 1.35 (3H, t, *J* 7.2).

¹³**C NMR (126 MHz, CDCl₃)** δ_c: 192.9, 167.9 (d, *J* 259.0), 167.3 – 167.2 (m), 162.5 (t, *J* 31.6), 155.1 (d, *J* 10.5), 127.8 (d, *J* 10.8), 116.9 (d, *J* 24.0), 113.8 (dd, *J* 265.9, 255.4), 113.2 (d, *J* 23.0), 63.9 (dd, *J* 23.8, 20.8), 63.7, 53.6, 34.9, 34.9, 13.9.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ_F: -99.9 - -100.0 (1F, m), -108.6 (1F, d, *J* 278.9), -110.4 (1F, d, *J* 278.6).

HRMS: (ESI⁺) C₁₅H₁₃F₃O₅ [M+Na]⁺ found 353.0596, requires 353.0613 (-4.8 ppm).

Methyl (R)-5-chloro-2-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate (R)-3c

Following General Procedure G, methyl 5-chloro-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (**1c**) (23 mg, 0.10 mmol), PTC (**C18**) (12 mg, 0.02 mmol), *t*-BuOAc (0.50 mL), ethyl difluoroiodoacetate (38 μ L, 0.3 mmol) and Cs₂CO₃ (65 mg, 0.20 mmol) for 16 hours. After purification by column chromatography (PhMe), to give the title compound (35 mg, 84%) as a yellow oil.

Specific Rotation: [α]_D²⁰ –24.6 (*c* 2.03, CHCl₃).

Chiral HPLC: DAICEL CHIRALPAK AD-H (*n*-hexane : IPA, 95 : 5, flow rate = 1 mL min⁻¹, λ = 254 nm, 30 °C) t_{minor}: 12.8 min, t_{major}: 15.3 min, 26 : 74 er

v_{max} (film): 2959, 2926, 1749 (C=O), 1724 (C=O), 1599, 1584, 1263, 1130, 1067, 899, 750, 424.

¹**H NMR (500 MHz, CDCl**₃) δ_H: 7.52 – 7.49 (1H, m), 7.43 – 7.40 (1H, m), 4.39 – 4.33 (2H, m), 3.81 – 3.67 (5H, m, unable to resolve singlet and quartet), 1.35 (3H, t, *J* 7.2).

¹³C NMR (126 MHz, CDCl₃) δ_c: 193.4, 167.1 (d, *J* 6.3), 162.4 (t, *J* 31.4), 153.5, 142.8, 133.6, 129.3, 126.6, 126.4, 113.8 (dd, *J* 265.4, 255.3), 64.1 – 63.7 (m), 53.7, 34.8 (t, *J* 3.6), 13.9.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ_F: -108.5 (1F, d, *J* 279.2), -110.3 (1F, d, *J* 279.1).

HRMS: (ESI⁺) C₁₅H₁₃³⁵ClF₂O₅ [M+H]⁺ found 347.0491, requires 347.0492 (+0.4 ppm).

Methyl (R)-5-bromo-2-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate (R)-3d

Following General Procedure G, methyl 5-bromo-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (**1d**) (27 mg, 0.10 mmol), PTC (**C18**) (12 mg, 0.02 mmol), *t*-BuOAc (0.50 mL), ethyl difluoroiodoacetate (38 μ L, 0.3 mmol) and Cs₂CO₃ (65 mg, 0.20 mmol) for 16 hours. After purification by column chromatography (PhMe), to give the title compound (24 mg, 60%) as a yellow solid.

Mp: 56 – 57 °C.

Specific Rotation: [α]²⁰_D –27.7 (*c* 1.57, CHCl₃).

Chiral HPLC: DAICEL CHIRALCEL OD-H (*n*-hexane : IPA, 95 : 5, flow rate = 1 mL min⁻¹, λ = 254 nm, 30 °C) t_{minor}: 10.4 min, t_{major}: 11.7 min, 35 : 65 er

v_{max} (film): 2959, 2851, 1749 (C=O), 1724 (C=O), 1597, 1581, 1317, 1265, 1132, 1057, 1036, 419.

¹**H NMR (500 MHz, CDCl₃) δ**_H: 7.70 – 7.66 (2H, m), 7.59 – 7.56 (1H, m), 4.36 (2H, qd, *J* 7.2, 0.9), 3.81 – 3.68 (5H, m, unable to resolve singlet and quartet), 1.35 (3H, t, *J* 7.1).

¹³C NMR (126 MHz, CDCl₃) δ_C: 193.6, 167.1 (d, J 6.6), 162.4 (t, J 31.6), 153.6, 134.0, 132.1, 131.7, 129.7, 126.4, 113.8 (dd, J 266.0, 255.6), 63.9 – 63.5 (m), 53.6, 34.7 (t, J 3.6), 13.9.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ_F: -108.4 (1F, d, *J* 279.1), -110.3 (1F, d, *J* 279.2).

HRMS: (ESI⁺) C₁₅H₁₃⁷⁹BrF₂O₅ [M+H]⁺ found 390.9975, requires 390.9987 (+3.1 ppm).

Methyl (*R*)-2-(2-ethoxy-1,1-difluoro-2-oxoethyl)-5-methoxy-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (*R*)-3e

Following General Procedure G, methyl 5-methoxy-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate (**1e**) (22 mg, 0.10 mmol), PTC (**C18**) (12 mg, 0.02 mmol), *t*-BuOAc (0.50 mL), ethyl difluoroiodoacetate (38 μ L, 0.3 mmol) and Cs₂CO₃ (65 mg, 0.20 mmol) for 16 hours. After purification by column chromatography (PhMe : CH₂Cl₂ 100 : 0 – 80 : 20, gradient run 10% increase per 100 mL), to give the title compound (17 mg, 49%) as a yellow oil.

Specific Rotation: $[\alpha]_D^{20}$ –18.4 (*c* 1.13, CHCl₃).

Chiral HPLC: DAICEL CHIRALPAK AD-H (*n*-hexane : IPA, 90 : 10, flow rate = 1 mL min⁻¹, $\lambda = 254$ nm, 30 °C) t_{minor}: 15.7 min, t_{major}: 17.6 min, 30 : 70 er

v_{max} (film): 2924, 2851, 1746 (C=O), 1713 (C=O), 1599, 1310, 1265, 1126, 754, 419, 409.

¹**H NMR (500 MHz, CDCl**₃) **δ**_H: 7.74 (1H, d, *J* 8.6), 6.97 – 6.93 (1H, m), 6.91 – 6.90 (1H, m), 4.35 (2H, q, *J* 7.1), 3.90 (3H, s), 3.78 – 3.63 (5H, m, unable to resolve singlet and quartet), 1.34 (3H, t, *J* 7.2).

¹³C NMR (126 MHz, CDCl₃) δ_C: 192.7, 167.8 (d, *J* 6.3), 166.4, 162.7 (t, *J* 31.8), 155.3, 128.3, 127.1, 116.6, 114.0 (dd, *J* 265.3, 255.0), 109.4, 64.0 (dd, *J* 23.7, 20.8), 63.5, 56.0, 53.5, 35.0 (t, *J* 3.6), 13.9.

¹⁹F NMR (471 MHz, CDCl₃) $\delta_{\rm F}$: -108.8 (d, *J* 277.3), -110.6 (d, *J* 277.2).

HRMS: (ESI⁺) C₁₆H₁₆F₂O₆ [M+H]⁺ found 343.0999, requires 343.0988 (+3.3 ppm).

Methyl 2-(2-ethoxy-1,1-difluoro-2-oxoethyl)-4-methoxy-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate 3f

Following General Procedure G, methyl 4-methoxy-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate (**1f**) (22 mg, 0.10 mmol), PTC (**C18**) (12 mg, 0.02 mmol), *t*-BuOAc (0.50 mL), ethyl difluoroiodoacetate (38 μ L, 0.3 mmol) and Cs₂CO₃ (65 mg, 0.20 mmol) for 16 hours. After purification by column chromatography (PhMe : CH₂Cl₂ 100 : 0 – 90 : 10, gradient run 10% increase per 100 mL), to give the title compound (26 mg, 75%) as a yellow oil.

Chiral HPLC: DAICEL CHIRALCEL OD-H (*n*-hexane : IPA, 95 : 5, flow rate = 1 mL min⁻¹, λ = 254 nm, 30 °C) t_{major}: 9.2 min, t_{minor}: 9.9 min, 55 : 45 er

v_{max} (film): 3023, 2845, 1749 (C=O), 1726 (C=O), 1605, 1491, 1265, 754, 667, 419.

¹**H NMR (500 MHz, CDCl**₃) δ_H: 7.41 – 7.39 (1H, m), 7.09 (1H, app. p, *J* 4.2), 4.35 (1H, q, *J* 7.1), 3.92 (3H, s), 3.75 (3H, s), 3.71 – 3.58 (1H, m), 1.33 (2H, t, *J* 7.1).

¹³C NMR (126 MHz, CDCl₃) δ_c: 195.0, 167.5 (dd, *J* 6.5, 2.6), 162.4 (t, *J* 31.8), 156.7, 141.1, 136.6, 130.0, 116.3 (d, *J* 63.1), 113.9 (dd, *J* 264.7, 255.6), 63.7 – 63.1 (m), 55.7, 53.4, 32.1 (t, *J* 3.6), 13.9.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ_F: -108.6 (1F, d, *J* 278.4), -110.3 (1F, d, *J* 278.4).

HRMS: (ESI⁺) C₁₆H₁₆F₂O₆ [M+H]⁺ found 343.0999, requires 343.0988 (+3.3 ppm).

Methyl (R)-4-bromo-2-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate (R)-3g

Following General Procedure G, methyl 4-bromo-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (**1g**) (27 mg, 0.10 mmol), PTC (**C18**) (12 mg, 0.02 mmol), *t*-BuOAc (0.50 mL), ethyl difluoroiodoacetate (38 μ L, 0.3 mmol) and Cs₂CO₃ (65 mg, 0.20 mmol) for 16 hours. After purification by column chromatography (PhMe), to give the title compound (29 mg, 74%) as a yellow oil.

Specific Rotation: [α]²⁰_D –22.9 (*c* 1.93, CHCl₃).

Chiral HPLC: DAICEL CHIRALPAK -H (*n*-hexane : IPA, 95 : 5, flow rate = 1 mL min⁻¹, λ = 254 nm, 30 °C) t_{minor}: 12.8 min, t_{major}: 14.8 min, 29 : 71 er

v_{max} (film): 2920, 2851, 1751 (C=O), 1730 (C=O), 1599, 1458, 1319, 1262, 1171, 1134, 808.

¹**H NMR (500 MHz, CDCl₃) δ**_H: 7.83 (1H, dd, *J* 7.8, 1.0), 7.78 (1H, dd, *J* 7.6, 1.0), 7.38 – 7.32 (1H, m), 4.37 (2H, q, *J* 7.2), 3.77 (3H, s), 3.74 – 3.62 (3H, m), 1.35 (3H, t, *J* 7.2).

¹³**C NMR (126 MHz, CDCl₃)** δ_c: 194.1, 167.0 (app. s), 162.3 (t *J* 31.8), 151.8, 138.8, 137.0, 130.1, 124.1, 121.7, 113.7 (app. s), 53.7, 64.0 – 63.6 (m), 36.13 (t, *J* 3.4), 13.9.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ_{F} : -108.4 (1F, dd, *J* 280.2, 148.3), -110.1 (1F, dd, *J* 279.9, 115.6).

HRMS: (ESI⁺) C₁₅H₁₃⁷⁹BrF₂O₅ [M+H]⁺ found 390.9981, requires 390.9987 (+1.6 ppm).

Methyl (R)-2-(2-ethoxy-1,1-difluoro-2-oxoethyl)-4-methyl-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate (R)-3h

Following General Procedure G, methyl 4-methyl-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate (**1h**) (20 mg, 0.10 mmol), PTC (**C18**) (12 mg, 0.02 mmol), *t*-BuOAc (0.50 mL), ethyl difluoroiodoacetate (38 μ L, 0.3 mmol) and Cs₂CO₃ (65 mg, 0.20 mmol) for 16 hours. After purification by column chromatography (PhMe) to give the title compound (31 mg, 94%) as a colourless oil. **Specific Rotation:** $[\alpha]_{D}^{20} - 15.0$ (*c* 2.05, CHCl₃).

Chiral HPLC: DAICEL CHIRALPAK AD-H (*n*-hexane : IPA, 95 : 5, flow rate = 1 mL min⁻¹, λ = 254 nm, 30 °C) t_{minor}: 8.9 min, t_{major}: 9.9 min, 29 : 71 er

v_{max} (film): 1748 (C=O), 1724 (C=O), 1593, 1437, 1317, 1271, 1171, 1128, 1171, 789, 754, 421.

¹**H NMR (500 MHz, CDCl**₃) **δ**_H: 7.65 (1H, d, *J* 7.6), 7.46 (1H, d, *J* 7.3), 7.35 (1H, t, *J* 7.5), 4.36 (2H, q, *J* 7.1), 3.76 (3H, s), 3.63 (2H, q, *J* 17.9), 2.38 (3H, s), 1.34 (3H, t, *J* 7.2).

¹³C NMR (126 MHz, CDCl₃) δ_c: 195.1, 167.6 (app. s), 162.6 (t, *J* 31.8), 151.0, 136.6, 135.8, 135.0, 128.6, 122.7, 114.0 (dd, *J* 265.2, 255.6), 64.0 – 63.0 (m), 53.5, 34.0 (t, *J* 3.6), 17.9, 13.9.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ_F: -108.5 (1F, d, *J* 277.5), -110.3 (1F, d, *J* 277.6).

HRMS: (ESI⁺) $C_{16}H_{16}F_2O_5$ [M+H]⁺ found 327.1040, requires 327.1039 (+0.3 ppm).

Methyl (R)-2-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-oxo-4-(trifluoromethyl)-2,3-dihydro-1*H*indene-2-carboxylate (R)-3i

Following General Procedure G, methyl 4-(trifluoromethyl)-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate (**1i**) (26 mg, 0.10 mmol), PTC (**C18**) (11.7 mg, 0.02 mmol), *t*-BuOAc (0.50 mL, ethyl difluoroiodoacetate (38 μ L, 0.3 mmol) and Cs₂CO₃ (65 mg, 0.20 mmol) for 16 hours. After purification by column chromatography (PhMe), to give the title compound (20 mg, 53%) as a colourless oil.

Specific Rotation: [α]²⁰_D –10.1 (*c* 1.33, CHCl₃).

Chiral HPLC: DAICEL CHIRALPAK AD-H (*n*-hexane : IPA, 99.5 : 0.5, flow rate = 0.5 mL min⁻¹, $\lambda = 254$ nm, 30 °C) t_{minor}: 31.4 min, t_{major}: 33.1 min, 34 : 66 er

v_{max} (film): 1753 (C=O), 1732 (C=O), 1597, 1434, 1329, 1179, 1126, 754, 417.

¹**H NMR (500 MHz, CDCl₃) δ**_H: 8.01 (1H, d, *J* 7.7), 7.93 (1H, d, *J* 7.6), 7.59 (1H, t, *J* 7.6), 4.37 (2H, q, *J* 7.1), 3.98 – 3.85 (2H, app. m), 3.78 (3H, s), 1.35 (3H, t, *J* 7.1).

¹³C NMR (126 MHz, CDCl₃) δ_C: 193.6, 166.8 (d, *J* 7.2), 162.2 (t, *J* 31.6), 149.2, 136.7, 132.7 (q, *J* 4.7), 128.9, 128.7, 128.6, 128.4, 128.1, 123.6 (q, *J* 273.5), 113.7 (dd, *J* 265.8, 256.3), 63.8, 63.8 – 63.3 (m), 53.7, 34.0, 13.9.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ_{F} : -62.2 (CF₃), -108.2 (1F, d, *J* 280.3), -109.9 (1F, d, *J* 280.0). HRMS: (ESI⁺) C₁₆H₁₃F₅O₅ [M+H]⁺ found 381.0758, requires 381.0756 (+0.6 ppm).

Methyl (R)-6-bromo-2-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate (R)-3j

Following General Procedure G, methyl 6-bromo-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (**1j**) (27 mg, 0.10 mmol), PTC (**C18**) (12 mg, 0.02 mmol), *t*-BuOAc (0.50 mL), ethyl difluoroiodoacetate (38 μ L, 0.3 mmol) and Cs₂CO₃ (65 mg, 0.20 mmol) for 16 hours. After purification by column chromatography (PhMe) to give the title compound (27 mg, 69%) as a waxy yellow solid.

Specific Rotation: [α]²⁰_D -8.2 (*c* 1.80, CHCl₃).

Chiral HPLC: DAICEL CHIRALCEL OD-H (*n*-hexane : IPA, 95 : 5, flow rate = 1 mL min⁻¹, λ = 254 nm, 30 °C) t_{minor}: 9.5 min, t_{major}: 10.3 min, 32 : 68 er

v_{max} (film): 2956, 2359, 1749 (C=O), 1728 (C=O), 1599, 1435, 1317, 1282, 1254, 1186, 1132, 1067, 692, 496.

¹**H NMR (500 MHz, CDCl₃)** δ_H: 7.95 – 7.93 (1H, m), 7.76 (1H, dd, *J* 8.1, 1.9), 7.39 (1H, dd, *J* 8.2, 0.7), 4.39 – 4.32 (2H, m), 3.78 – 3.64 (5H, m, unable to resolve singlet and quartet), 1.35 (3H, t, *J* 7.2).

¹³**C NMR (126 MHz, CDCl₃)** δ_C: 193.4, 167.1, 162.4 (t, *J* 31.5), 150.6, 138.8, 137.0, 128.1, 127.9, 122.6, 113.8 (dd, *J* 266.3, 255.9), 64.3 – 63.9 (app. m), 63.7, 53.7, 34.8, 13.9.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ_F: -108.3 (1F, d, *J* 279.4), -110.1 (1F, d, *J* 279.3).

HRMS: (ESI⁺) C₁₅H₁₃⁷⁹BrF₂O₅ [M+H]⁺ found 390.9973, requires 390.9987 (+3.6 ppm)

Methyl (R)-2-(2-ethoxy-1,1-difluoro-2-oxoethyl)-6-methyl-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate (R)-3k

Following General Procedure G, methyl 6-methyl-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate (**1k**) (20 mg, 0.10 mmol), PTC (**C18**) (12 mg, 0.02 mmol), *t*-BuOAc (0.50 mL), ethyl difluoroiodoacetate (38 μ L, 0.3 mmol) and Cs₂CO₃ (65 mg, 0.20 mmol) for 16 hours. After purification by column chromatography (PhMe : CH₂Cl₂ 100 : 0 – 90 : 10, gradient run 10% increase per 100 mL), to give the title compound (17 mg, 53%) as a colourless oil.

Specific Rotation: $[\alpha]_{D}^{20}$ –16.5 (*c* 1.16, CHCl₃).

Chiral HPLC: DAICEL CHIRALPAK AD-H (*n*-hexane : IPA, 95 : 5, flow rate = 0.5 mL min⁻¹, $\lambda = 280$ nm, 30 °C) t_{minor}: 24.2 min, t_{major}: 26.0 min, 33 : 67 er

v_{max} (film): 3030, 2957, 2928, 1748 (C=O), 1721 (C=O), 1281, 1219, 1155, 1128, 752, 407.

¹**H NMR (500 MHz, CDCl₃) δ**_H: 7.61 (1H, s), 7.49 – 7.46 (1H, m), 7.40 – 7.37 (1H, m), 4.35 (2H, q, *J* 7.2), 3.77 – 3.63 (5H, m, unable to resolve singlet and quartet), 2.42 (3H, s), 1.33 (3H, t, *J* 7.1)

¹³C NMR (126 MHz, CDCl₃) δ_C: 194.8, 167.6, 162.6 (t, *J* 31.8), 149.5, 138.5, 137.4, 135.4, 126.0, 125.2, 114.0 (dd, *J* 265.0, 255.4), 64.3 – 63.8 (app. m), 63.6, 53.5, 34.7, 21.2, 13.9.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ_F: -108.6 (1F, d, *J* 278.0), -110.3 (1F, d, *J* 277.8).

HRMS: (ESI⁺) C₁₆H₁₆F₂O₅ [M+H]⁺ found 327.1046, requires 327.1039 (+2.3 ppm).

Methyl (R)-2-(2-ethoxy-1,1-difluoro-2-oxoethyl)-5,6-dimethoxy-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (R)-3l

Following General Procedure G, methyl 5,6-dimethoxy-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate (**1l**) (25 mg, 0.10 mmol), PTC (**C18**) (12 mg, 0.02 mmol), *t*-BuOAc (0.50 mL), ethyl difluoroiodoacetate (38 μ L, 0.3 mmol) and Cs₂CO₃ (65 mg, 0.20 mmol) for 16 hours. After purification by column chromatography (PhMe : CH₂Cl₂ 100 : 0 – 50 : 50, gradient run 10% increase per 50 mL), to give the title compound (33.0 mg, 89%) as a yellow solid.

Mp: 136 – 138 °C.

Specific Rotation: $[\alpha]_D^{20}$ –15.8 (*c* 2.2, CHCl₃).

Chiral HPLC: DAICEL CHIRALPAK AD-H (*n*-hexane : IPA, 95 : 5, flow rate = 1 mL min⁻¹, λ = 254 nm, 30 °C) t_{minor}: 39.3 min, t_{major}: 46.2 min, 32 : 68 er

v_{max} (film): 3022, 2926, 2853, 1744 (C=O), 1707 (C=O), 1591, 1503, 1314, 1271, 1250, 1221, 1128, 1008, 752, 665.

¹**H NMR (500 MHz, CDCl**₃) **δ**_H: 7.20 (1H, s), 6.89 (1H, s), 4.36 (2H, q, *J* 7.1), 3.99 (3H, s), 3.92 (3H, s), 3.76 (3H, s), 3.73 – 3.59 (2H, m), 1.35 (3H, t, *J* 7.2).

¹³**C NMR (126 MHz, CDCl₃)** δ_c: 193.1, 167.8 (d, *J* 4.5), 162.7 (t, *J* 31.8), 156.7, 150.2, 147.9, 128.0, 114.0 (dd, *J* 265.4, 255.0), 107.0, 105.3, 64.4 – 63.8 (m), 63.5, 56.6, 56.3, 53.4, 34.8, 34.7, 34.7, 13.9.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ_F: -108.9 (1F, d, *J* 276.7), -110.7 (1F, d, *J* 276.7).

HRMS: (ESI⁺) C₁₇H₁₈F₂O₇ [M+H]⁺ found 327.1046, requires 327.1039 (+2.3 ppm).

This product was also synthesised on a 0.5 mmol scale.

Following General Procedure H, methyl 5,6-dimethoxy-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (11) (125 mg, 0.50 mmol), PTC (C18) (60 mg, 0.1 mmol), *t*-BuOAc (2.50 mL), ethyl difluoroiodoacetate (190 μ L, 1.5 mmol) and Cs₂CO₃ (325 mg, 1.0 mmol) for 16 hours. After

purification by column chromatography (PhMe : $CH_2Cl_2 \ 100 : 0 - 50 : 50$, gradient run 10% increase per 50 mL), to give the title compound (162 mg, 87%) as a yellow oil in 34 : 66 er.

Attempts to run this reaction on a 1 mmol scale in a 25 mL Schlenk tube being irradiated with two white LEDs (6200 K) were not successful with only trace amounts of product formed.
Methyl (*R*)-5-chloro-2-(2-ethoxy-1,1-difluoro-2-oxoethyl)-6-methoxy-1-oxo-2,3-dihydro-1*H*indene-2-carboxylate (*R*)-3m

Following General Procedure G, methyl 5-chloro-6-methoxy-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate (**1m**) (26 mg, 0.10 mmol), PTC (**C18**) (12 mg, 0.02 mmol), *t*-BuOAc (0.50 mL), ethyl difluoroiodoacetate (38 μ L, 0.3 mmol) and Cs₂CO₃ (65 mg, 0.20 mmol) for 16 hours. After purification by column chromatography (PhMe : CH₂Cl₂ 100 : 0 – 85 : 15, gradient run 5% increase per 50 mL), to give the title compound (30 mg, 78%) as a yellow oil.

Specific Rotation: $[\alpha]_{D}^{20} - 15.0$ (*c* 1.97, CHCl₃).

Chiral HPLC: DAICEL CHIRALPAK AD-H (*n*-hexane : IPA, 90 : 10, flow rate = 1 mL min⁻¹, $\lambda = 254$ nm, 30 °C) t_{minor}: 12.5 min, t_{major}: 15.4 min, 33 : 67 er

v_{max} (film): 3022, 2160, 1748 (C=O), 1721 (C=O), 1601, 1582, 1483, 1410, 1305, 1260, 1217, 1126, 1039, 748, 667.

¹**H NMR (500 MHz, CDCl**₃) **δ**_H: 7.53 (1H, s), 7.27 (1H, s), 4.36 (2H, q, *J* 7.2), 3.95 (3H, s), 3.76 (3H, s), 3.73 – 3.60 (2H, m), 1.35 (3H, t, *J* 7.1).

¹³C NMR (126 MHz, CDCl₃) δ_c: 193.8, 167.3 (d, *J* 8.7), 162.4 (t, *J* 31.7), 155.7, 145.0, 134.6, 132.5, 127.8, 113.8 (dd, *J* 265.7, 255.7), 64.2 (dd, *J* 23.7, 20.7), 63.7, 56.6, 53.6, 34.2 (t, *J* 3.6), 13.9.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ_F: -108.6 (1F, d, *J* 279.1), -110.3 (1F, d, *J* 278.9).

HRMS: (ESI⁺) C₁₆H₁₅³⁵ClF₂O₆ [M+H]⁺ found 377.0593, requires 377.0598 (+1.3 ppm).

Methyl (S)-2-(2-ethoxy-1,1-difluoro-2-oxoethyl)-3-oxo-2,3-dihydrobenzo[*b*]thiophene-2carboxylate (*R*)-3n

Following General Procedure G, methyl 3-oxo-2,3-dihydrobenzo[*b*]thiophene-2-carboxylate (**1n**) (21 mg, 0.10 mmol), PTC (**C18**) (12 mg, 0.02 mmol), *t*-BuOAc (0.50 mL), ethyl difluoroiodoacetate (38 μ L, 0.3 mmol) and Cs₂CO₃ (65 mg, 0.20 mmol) for 16 hours. After purification by column chromatography (PhMe) to give the title compound (21 mg, 63%) as a yellow oil.

Specific Rotation: [α]²⁰_D +12.2 (*c* 1.39, CHCl₃).

Chiral HPLC: DAICEL CHIRALPAK AS-H (*n*-hexane : IPA, 95 : 5, flow rate = 0.8 mL min⁻¹, $\lambda = 254$ nm, 30 °C) t_{minor}: 18.0 min, t_{major}: 19.5 min, 35 : 65 er

v_{max} (film): 2957, 2926, 2855, 1749 (C=O), 1718 (C=O), 1587, 1451, 1281, 1248, 1221, 1120, 1015, 758, 415.

¹**H NMR (500 MHz, CDCl**₃) **δ**_H: 7.84 (1H, dd, *J* 7.8, 1.3), 7.62 (1H, app. td, *J* 7.7, 1.3), 7.42 (1H, d, *J* 8.0), 7.31 (1H, app. t, *J* 7.5), 4.39 – 4.31 (2H, m), 3.80 (3H, s), 1.30 (3H, t, *J* 7.2).

¹³C NMR (126 MHz, CDCl₃) δ_C: 191.1, 165.2, 161.6 (t, *J* 31.6), 150.3, 136.7, 129.5, 128.1, 126.2, 124.0, 113.1 (dd, *J* 260.8, 260.1), 64.0, 54.1, 29.9, 13.8.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ_F: -105.0 (1F, d, *J* 278.9), -108.2 (1F d, *J* 278.9).

HRMS: (ESI⁺) C₁₄H₁₂F₂O₅S [M+H]⁺ found 331.0446, requires 331.0446 (+0.1 ppm).

tert-Butyl 2-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (30)

Following General Procedure G, *tert*-butyl 1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (**1o**) (23 mg, 0.10 mmol), PTC (**C18**) (12 mg, 0.02 mmol), *t*-BuOAc (0.50 mL), ethyl difluoroiodoacetate (38 μ L, 0.3 mmol) and Cs₂CO₃ (65 mg, 0.20 mmol) for 16 hours. After purification by column chromatography (PhMe) to give the title compound (22 mg, 61%) as a colourless oil.

Chiral HPLC: DAICEL CHIRALPAK AD-H (*n*-hexane : IPA, 98 : 2, flow rate = 0.5 mL min⁻¹, $\lambda = 254$ nm, 30 °C) t_{minor}: 18.1 min, t_{major}: 19.7 min, 45 : 55 er

v_{max} (film): 2984, 2936, 1738 (C=O), 1719 (C=O), 1607, 1466, 1371, 1271, 1215, 1150, 1022, 839, 752, 405.

¹**H NMR (500 MHz, CDCl**₃) **δ**_H: 7.80 (1H, d, *J* 7.7), 7.64 (1H, app. td, *J* 7.5, 1.2), 7.49 (1H, app. dt, *J* 7.8, 1.0), 7.44 – 7.40 (1H, m), 4.34 (2H, q, *J* 7.1), 3.81 – 3.65 (2H, m), 1.41 (9H, s), 1.34 (3H, t, *J* 7.1).

¹³C NMR (126 MHz, CDCl₃) δ_c: 195.2, 165.9 (d, *J* 7.2), 162.7 (t, *J* 32.1), 152.3, 135.8, 135.4, 128.2, 126.2, 125.1, 84.1, 114.0 (dd, *J* 265.1, 253.8), 64.6 (dd, *J* 23.3, 20.1), 63.4, 35.3, 27.8, 25.0, 24.6, 13.9.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ_F: -108.1 (1F, d, *J* 278.0), -109.9 (1F, d, *J* 278.0).

HRMS: (ESI⁺) C₁₈H₂₀F₂O₅ [M+H]⁺ found 377.1171, requires 377.1177 (-1.6 ppm).

Adamantan-1-yl (*R*)-2-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate (*R*)-3p

Following General Procedure G, adamantan-1-yl 1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (**1p**) (31 mg, 0.10 mmol), PTC (**C18**) (12 mg, 0.02 mmol), *t*-BuOAc (0.50 mL), ethyl difluoroiodoacetate (38 μ L, 0.3 mmol) and Cs₂CO₃ (65 mg, 0.20 mmol) for 16 hours. After purification by column chromatography (PhMe) to give the title compound (18 mg, 42%) as a yellow oil. The data was in accordance with the literature and the absolute stereochemistry was assigned by comparison of the specific rotation.²⁰

Specific Rotation: [α]²⁰_D –9.6 (*c* 1.21, CHCl₃).

Chiral HPLC: DAICEL CHIRALPAK AD-H (*n*-hexane : IPA, 95 : 5, flow rate = 0.5 mL min⁻¹, $\lambda = 280$ nm, 30 °C) t_{minor}: 18.9 min, t_{major}: 22.5 min, 35 : 65 er

v_{max} (film): 2914, 2855, 1776, 1738 (C=O), 1722 (C=O), 1607, 1462, 1317, 1263, 1215, 1134, 1051 1024, 839, 797, 766, 421.

¹**H NMR (500 MHz, CDCl**₃) **δ**_H: 7.80 (1H, d, *J* 7.7), 7.64 (1H, app. td, *J* 7.4, 1.2), 7.49 (1H, d, *J* 7.7), 7.41 (1H, app. t, *J* 7.5), 4.35 (2H, app. qd, *J* 7.1, 1.2), 3.78 (1H, d, *J* 17.8), 3.68 (1H, d, *J* 17.8), 2.13 (3H, s), 2.04 (6H, d, *J* 3.0), 1.61 (6H, d, *J* 3.1), 1.35 (3H, t, *J* 7.1).

¹³**C NMR (126 MHz, CDCl**₃) δ_C: 195.3, 165.6 (d, *J* 7.2), 162.8 (t, *J* 32.1), 152.3, 135.7, 135.4, 128.1, 126.2, 125.1, 114.0 (dd, *J* 265.0, 253.5), 84.1, 64.7 (dd, *J* 23.2, 20.1), 63.4, 41.0, 36.1, 35.5 (t, *J* 3.9), 31.0, 14.0.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ_F: -108.2 (1F, d, *J* 278.3), -110.1 (1F, d, *J* 277.9).

HRMS: (ESI⁺) C₂₂H₂₆F₂O₅ [M+H]⁺ found 433.1814, requires 433.1821 (+1.6 ppm).

Methyl (R)-2-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-oxo-1,2,3,4-tetrahydronaphthalene-2carboxylate (R)-3q

Following General Procedure G, methyl 1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (**1q**) (20 mg, 0.10 mmol), PTC (**C18**) (12 mg, 0.02 mmol), *t*-BuOAc (0.50 mL), ethyl difluoroiodoacetate (38 μ L, 0.3 mmol) and Cs₂CO₃ (65 mg, 0.20 mmol) for 16 hours. After purification by column chromatography (PhMe) to give the title compound (19 mg, 57%) as a grey oil.

Specific Rotation: $[\alpha]_D^{20}$ +3.2 (*c* 1.24, CHCl₃).

Chiral HPLC: DAICEL CHIRALPAK AD-H (*n*-hexane : IPA, 95 : 5, flow rate = 1 mL min⁻¹, λ = 254 nm, 30 °C) t_{minor}: 14.8 min, t_{major}: 16.9 min, 28 : 72 er

v_{max} (film): 3021, 1753 (C=O), 1690 (C=O), 1602, 1456, 1312, 1246, 1215, 1086, 806, 754, 667, 417.

¹**H NMR (500 MHz, CDCl₃)** δ_H: 8.08 (1H, dd, *J* 8.0, 1.5), 7.52 (1H, app. td, *J* 7.5, 1.4), 7.37 – 7.31 (1H, m), 7.26 – 7.23 (1H, m), 4.41 (2H, app. qd, *J* 7.2, 1.7), 3.75 (3H, s), 3.03 (1H, ddd, *J* 17.3, 4.7, 2.7), 2.92 (1H, ddd, *J* 17.3, 13.1, 4.3), 2.82 (1H, ddd, *J* 13.3, 4.3, 2.7), 2.61 (1H, td, *J* 13.2, 4.8), 1.39 (3H, t, *J* 7.2).

¹³**C NMR (126 MHz, CDCl**₃) δ_c: 199.7, 167.1 (d, *J* 8.2), 162.8 (t, *J* 31.5), 138.9, 137.9, 133.3, 130.3, 129.5, 127.2, 114.5 (app. t, *J* 262.0). 66.5 (app. d, *J* 23.7), 63.4, 53.2, 31.8, 24.9 (t, *J* 4.3), 22.0, 14.0.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ_F : -111.6 (1F, d, J 5.6).

HRMS: (ESI⁺) C₂₂H₂₆F₂O₅ [M+H]⁺ found 327.1050, requires 327.1039 (+3.5 ppm).

Methyl 6-(1,1-difluoro-2-methoxy-2-oxoethyl)-5-oxo-6,7,8,9-tetrahydro-5H-

benzo[7]annulene-6-carboxylate (3r)

Following General Procedure G, methyl 5-oxo-6,7,8,9-tetrahydro-5*H*-benzo[7]annulene-6-carboxylate (**1r**) (22 mg, 0.10 mmol), PTC (**C18**) (12 mg, 0.02 mmol), *t*-BuOAc (0.50 mL), ethyl difluoroiodoacetate (38 μ L, 0.3 mmol) and Cs₂CO₃ (65 mg, 0.20 mmol) for 16 hours. After purification by column chromatography (PhMe) to give the title compound (27 mg, 78%) as a colourless oil.

Chiral HPLC: DAICEL CHIRALPAK AD-H (*n*-hexane : IPA, 95 : 5, flow rate = 1 mL min⁻¹, λ = 254 nm, 30 °C) t_{major}: 9.5 min, t_{minor}: 11.1 min, 52 : 48 er

v_{max} (film): 2926, 1776 (C=O), 1744 (C=O), 1680, 1597, 1312, 1258, 1240 1213, 909, 752, 731, 648.

¹**H NMR (500 MHz, CDCl₃)** δ_H: 7.66 (1H, dd, *J* 7.7, 1.5), 7.46 (1H, app. td, *J* 7.5, 1.5), 7.32 (1H, app. td, *J* 7.6, 1.2), 7.15 (1H, d, *J* 7.5), 4.49 – 4.36 (2H, m), 3.81 (3H, s), 2.92 (1H, ddd, *J* 15.0, 11.1, 6.7), 2.79 (1H, ddd, *J* 15.0, 6.0, 4.0), 2.61 (1H, ddd, *J* 14.5, 5.5, 3.8), 2.18 (1H, ddd, *J* 14.5, 10.4, 6.6), 2.07 – 1.93 (2H, m), 1.41 (3H, t, *J* 7.2).

¹³C NMR (126 MHz, CDCl₃) δ_C: 199.7 (d, *J* 3.1), 167.1 (d, *J* 8.0), 162.8 (t, *J* 31.6), 138.9, 137.9, 133.3, 130.3, 129.5, 127.2, 114.5 (t, *J* 261.9), 66.6 (dd, *J* 23.7, 19.2), 63.4, 53.2, 31.7, 24.9 (t, *J* 4.2), 22.0, 14.0.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ_F: -107.1 (1F, d, *J* 268.2), -111.3 (1F, d, *J* 268.2).

HRMS: (ESI⁺) C₂₂H₂₆F₂O₅ [M+H]⁺ found 341.1172, requires 341.1170 (+0.8 ppm)

7. Spectra

7.1 Catalysts

(C1a)

(C1)

(C3)

(C4)

11 11

(C18)

(C19)

(C20)

(C21)

7.2 Starting Materials

(1b)

(1c)

4.5 4.0 f1 (ppm)

(1f)

(1g)

(1h)

(10)

(1p)

(TIPS enol 1a)

S112

7.3 Products

(R)-3a

Signal:	DAD1D,				
RT [min]	Туре	Width [min]	Area	Height	Area% Name
12.072	MM m	0.8886	882.4146	58.8938	49.8665
13.225	MM m	1.0176	887.1386	53.5262	50.1335

1.7	11.8	11.9	12.0	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	13.0	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.8	13.9
										Т	ime [r	nin]										

Signal: DAD1D,Sig=254,4 Ref=off										
RT [min]	Туре	Width [min]	Area	Height	Area% Name					
12.109	MM m	0.7835	2382.6023	158.1581	25.8005					
13.277	MM m	1.0446	6852.1023	408.0479	74.1995					

Signal:	DAD1B,Sig=220,4	Ref=off	

RT [min] Type	Width [min]	Area	Height	Area% Name
24.917 MM m	1.6125	2601.7633	94.6071	50.1784
26.678 MM m	1.7845	2583.2630	87.9869	49.8216

Signal:	DAD1B	,Sig=220,4 Ref	=off		
RT [min]	Туре	Width [min]	Area	Height	Area% Name
24.949	MM m	1.5265	13164.7600	478.5962	28.0286
26.707	MM m	1.6125	33804.1821	1154.3652	71.9714

(R)-3c

Signal:	DAD1D,				
RT [min]	Туре	Width [min]	Area	Height	Area% Name
12.791	MM m	0.8599	2291.4504	141.5594	49.9210
15.287	MM m	1.0892	2298.7053	117.5061	50.0790

Signal:	DAD1D,Sig=254,4 Ref=off				
DT [min]	Tuno	Width [min]	Aro		

•				
RT [min] Type	Width [min]	Area	Height	Area% Name
12.835 MM m	0.8743	3625.1311	223.7594	25.9087
15.327 MM m	1.1896	10366.8141	528.5193	74.0913

Signal:	DAD1D,	Sig=254,4 Ref=c			
RT [min]	Туре	Width [min]	Area	Height	Area% Name
10.352	MM m	0.7322	3431.0778	252.8187	49.9681
11.635	MM m	0.8313	3435.4555	218.8549	50.0319

Signal:	DAD1D,Sig=254,4 Ref=off								
RT [min]	Туре	Width [min]	Area	Height	Area% Name				
10.384	MM m	0.5791	275.8317	20.7512	34.7440				
11.670	MM m	0.7104	518.0658	33.5400	65.2560				

		5			
RT [min] 1	Гуре	Width [min]	Area	Height	Area% Name
15.434 M	MM m	1.1825	2059.1538	99.8023	50.1538
17.269 N	MM m	1.2004	2046.5272	88.4785	49.8462

Signal:	DAD1	0,Sig=254,4 Ref=				
RT [min] Туре	Width [min]	Area	Height	Area% Name	
15.74	7 MM m	1.1287	1278.6137	60.9239	30.3976	
17.60	6 MM m	1.5587	2927.6896	123.5655	69.6024	

3f

Signal:	DAD1D,Sig=254,4	Ref=off
---------	-----------------	---------

RT [min] Type	Width [min]	Area	Height	Area% Name
9.219 MM m	0.6910	2958.4637	231.4588	54.8020
9.960 MM m	0.7153	2439.9928	178.4976	45.1980

Cianal	DAD1D CH	-254 4	Dofeoff
Signal:	DAD TD.SI	a=254.4	Ref=off

RT [min] Type	Width [min]	Area	Height	Area% Name
12.796 MM m	0.9316	11770.8501	729.0064	50.0514
14.788 MM m	1.0437	11746.6829	624.7078	49.9486

Signal:	DAD1D,	Sig=254,4 Ref			
RT [min]	Туре	Width [min]	Area	Height	Area% Name
12.799	MM m	0.9049	6069.4781	378.8658	29.2542
14.780	MM m	1.0293	14677.8785	779.2605	70.7458

Signal:	DAD1D,	Sig=254,4	Ref=of
---------	--------	-----------	--------

RT [min] Type	Width [min]	Area	Height	Area% Name
8.993 MM m	0.7593	4846.6746	427.0793	28.5839
9.848 MM m	0.8286	12109.2969	970.2446	71.4161

Signal: DAD1D,Sig=254,4 Ref=off					
RT [min]	Туре	Width [min]	Area	Height	Area% Name
31.007	MM m	1.7493	632.5060	17.7392	50.1864
32.750	MM m	1.7493	627.8075	16.8103	49.8136

Signal:	DAD1D,	Sig=254,4 Ref=of	f		
RT [min]	Туре	Width [min]	Area	Height	Area% Name
31.353	MM m	1.6941	496.9330	13.9295	33.5331
33.095	MM m	2.0486	984.9836	26.1389	66.4669

Signal:	DAD1E,Sig=280,4	Ref=off

RT [min] Type	Width [min]	Area	Height	Area% Name
24.569 MM m	1.5268	911.5006	33.9991	50.2652
26.459 MM m	1.4250	901.8808	31.0607	49.7348

DAD1E,Sig=280,4 Re			
ype Width [min]	Area	Height	Area% Name
1M m 1.4426	1511.0189	56.9269	32.5505
1M m 1.5868	3131.0520	107.9751	67.4495
	DAD1E,Sig=280,4 Re ype Width [min] IM m 1.4426 IM m 1.5868	DAD1E,Sig=280,4 Ref=off ype Width [min] Area IM m 1.4426 1511.0189 IM m 1.5868 3131.0520	DAD1E,Sig=280,4 Ref=off ype Width [min] Area Height IM m 1.4426 1511.0189 56.9269 IM m 1.5868 3131.0520 107.9751

(R)-31

Signal:	DAD1D,	Sig=254,4 Ref=of			
RT [min]	Туре	Width [min]	Area	Height	Area% Name
39.183	MM m	3.3115	210.0031	3.7237	49.6439
46.022	MM m	3.3545	213.0160	3.2946	50.3561

Signal:	DAD1D	,Sig=254,4 Ref=o	off		
RT [min]	Туре	Width [min]	Area	Height	Area% Name
39.315	MM m	3.0964	572.9052	10.2244	31.9663
46.177	MM m	3.8705	1219.3112	18.7938	68.0337

Signal:					
RT [min]	Туре	Width [min]	Area	Height	Area% Name
				-	
12.912	MM m	1.0750	4055.4954	234.0865	49.9001
15.792	MM m	1.3437	4071.7353	186.0361	50.0999

Signal:	DAD1D,Sig=254,4 Ref=off					
RT [min]	Туре	Width [min]	Area	Height	Area% Name	
12.457	MM m	0.9317	2636.8444	151.7684	32.5269	
15 245	MM m	1 5507	F460 9020	249 2945	67 4724	
15.345	IVIIVI M	1.5587	5469.8030	240.2845	07.4731	

RT [min] Type	Width [min]	Area	Height	Area% Name
18.000 MM m	1.2979	2338.1527	99.6243	50.0429
19.494 MM m	1.5769	2334.1416	88.2312	49.9571

Signal:	DAD1D,	Sig=254,4 Ref=of	f		
RT [min]	Туре	Width [min]	Area	Height	Area% Name
18.029	MM m	1.2524	402.3971	17.3267	34.8415
19.535	MM m	1.5256	752.5383	28.5806	65.1585

Signal:	DAD ID,	Sig=254,4 Rei=	011		
RT [min]	Туре	Width [min]	Area	Height	Area% Name
18.119	MM m	1.1610	2326.4952	114.6375	45.0832
19.724	MM m	1.4835	2833.9537	128.4660	54.9168
		Sum	5160.4489		

Signal:	DAD1E,Sig=280,4 Ref=off						
RT [min]	Туре	Width [min]	Area	Height	Area% Name		
18.955	MM m	1.5695	460.3169	20.6745	49.5796		
22.566	MM m	1.8706	468.1224	16.8193	50.4204		

	۰		ie	U

Signal:	DAD1E,	Sig=280,4 Ref=of				
RT [min]	Туре	Width [min]	Area	Height	Area% Name	
18,932	MM m	1.0320	291,4146	13.3414	35.3427	
22 526	MM m	1 6555	533 1254	19 6121	64 6573	
22.520		1.0000	000.1204	13.0121	04.0075	


```
Signal: DAD1D,Sig=254,4 Ref=off
```

RT [min] Type	Width [min]	Area	Height	Area% Name
14.822 MM m	1.5408	2846.7754	147.1193	49.5577
16.962 MM m	1.0742	2897.5937	132.1453	50.4423

Signal:	DAD1D),Sig=254,4 Ref=			
RT [m	in] Type	Width [min]	Area	Height	Area% Name
14.8	31 MM m	1.4837	1040.9873	53.8320	28.2032
16.9	76 MM m	1.8763	2650.0393	119.3431	71.7968

Signal:	DAD1D,Sig=254,4	Ref=off	
---------	-----------------	---------	--

RT [min] Type	Width [min]	Area	Height	Area% Name
9.483 MM m	0.7418	6096.4262	504.2255	49.9655
11.071 MM m	0.9999	6104.8490	425.8716	50.0345

Signal:	DAD1D,	Sig=254,4 Ref=o	ff		
RT [min]	Туре	Width [min]	Area	Height	Area% Name
9.497	MM m	0.8708	644.2239	53.4609	51.8302
11.080	MM m	1.2256	598.7277	41.8102	48.1698

8. References

- 1 D. B. G. Williams and M. Lawton, J. Org. Chem., 2010, 75, 8351-8354.
- 2 Ł. Woźniak, J. J. Murphy and P. Melchiorre, J. Am. Chem. Soc., 2015, 137, 5678–5681.
- 3 K. Li, X. Zhang, J. Chen, Y. Gao, C. Yang, K. Zhang, Y. Zhou and B. Fan, *Org. Lett.*, 2019, **21**, 9914–9918.
- 4 T. Mao, M.-J. Ma, L. Zhao, D.-P. Xue, Y. Yu, J. Gu and C.-Y. He, *Chem. Commun.*, 2020, 56, 1815–1818.
- 5 Z. Ruan, S.-K. Zhang, C. Zhu, P. N. Ruth, D. Stalke and L. Ackermann, *Angew. Chem. Int. Ed.*, 2017, **56**, 2045–2049.
- 6 X.-F. Tang, J.-N. Zhao, Y.-F. Wu, S.-H. Feng, F. Yang, Z.-Y. Yu and Q.-W. Meng, *Adv. Synth. Catal.*, 2019, **361**, 5245–5252.
- 7 E.-M. Tanzer, W. B. Schweizer, M.-O. Ebert and R. Gilmour, *Chem. Eur. J.*, 2012, **18**, 2006–2013.
- 8 M. Lian, Z. Li, J. Du, Q. Meng and Z. Gao, Eur. J. Org. Chem., 2010, 6525–6530.
- 9 C. D. Fiandra, M. Moccia, V. Cerulli and M. F. A. Adamo, *Chem. Commun.*, 2016, **52**, 1697– 1700.
- 10 M. Matsushita, K. Yoshida, N. Yamamoto, P. Wirsching, R. A. Lerner and K. D. Janda, *Angew. Chem. Int. Ed.*, 2003, **42**, 5984–5987.
- 11 P. B. González, R. Lopez and C. Palomo, J. Org. Chem., 2010, 75, 3920–3922.
- 12 M. Majdecki, P. Niedbala and J. Jurczak, Org. Lett., 2019, 21, 8085–8090.
- 13 Y.-F. Liang, X.-F. Zhou, S.-Y. Tang, Y.-B. Huang, Y.-S. Feng and H.-J. Xu, *RSC Adv.*, 2013, **3**, 7739–7742.
- 14 K. Li, J. Chen, C. Yang, K. Zhang, C. Pan and B. Fan, Org. Lett., 2020, 22, 4261–4265.
- 15 P. Drouhin and R. J. K. Taylor, Eur. J. Org. Chem., 2015, 2333–2336.
- 16 A. M. R. Smith, D. Billen and K. K. (Mimi) Hii, Chem. Commun., 2009, 3925–3927.
- 17 P. Gopinath, S. Nilaya, T. R. Debi, V. Ramkumar and K. M. Muraleedharan, *Chem. Commun.*, 2009, 7131–7133.
- 18 A. M. R. Smith, H. S. Rzepa, A. J. P. White, D. Billen and K. K. (Mimi) Hii, *J. Org. Chem.*, 2010, **75**, 3085–3096.
- 19 S. Companys, P. A. Peixoto, C. Bosset, S. Chassaing, K. Miqueu, J.-M. Sotiropoulos, L. Pouységu and S. Quideau, *Chem. Eur. J.*, 2017, 23, 13309–13313.
- 20 J. Liu, W. Ding, Q.-Q. Zhou, D. Liu, L.-Q. Lu and W.-J. Xiao, Org. Lett., 2018, 20, 461–464.