Supporting Information

Switching from gem-difluorovinylation to carboxylation: ligand-

enabled palladium-catalyzed Heck annulation of alkene-tethered

aryl halides with sodium difluorochloroacetate

Yu Xia*, Wenqi Li, Minzhu Wei, Yonghong Zhang, Bin Wang, Shaofeng Wu, and Chenjiang Liu*

Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China

E-mail; 18509487642@163.com; pxylcj@126.com

Table of contents

1. General information	2
2. Preparation of Substrates	2
2.1 General Procedure for the Synthesis of Substrates 1a,1b-1h	2
2.2 Synthesis of Substrates 1i-1k	3
3 Typical Procedures, optimized reaction conditions and Mechanism studies	4
3.1 Gram-Scale Reaction	4
3.2 General Procedure for the Synthesis of Compound 5a	6
3.3 General Procedure for the Synthesis of Compound 5b	6
3.4 Optimized reaction conditions	7
3.5 Mechanism studies	8
4. Characterization Data	.10
5. X-Ray Crystallography Data of 3h and 4a	.20
6. NMR Spectra	.23

1. General information

¹H, ¹³C, and ¹⁹F NMR spectra were recorded on Bruker 800 MHz or Bruker Avance NEO 600 (600, 151, 201 and 565 MHz, respectively) NMR spectrometer. ¹H and ¹³C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0, CDCl₃ (δ (¹H), 7.26 ppm; δ (¹³C), 77.16 ppm), DMSO-d6 (δ (¹H), 2.50 ppm; δ (¹³C), 39.51 ppm). Chemical shifts (δ) are reported in ppm, and coupling constants (J) are in Hertz (Hz). The following abbreviations are used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. The HRMS analysis was obtained on an Agilent6540 UHD Q-TOF mass spectrometer. The melting point was recorded on BÜCHI (M-560) and uncorrected. The X-ray single crystal diffraction data were collected on a Bruker D8 VENTURE. Analytical thin layer chromatography (TLC) was performed on 0.25 mm silica gel 60 F254 plates and viewed by UV light (254 nm). Column chromatographic purification was performed using 200-300 mesh silica gel. Materials. All the chemical reagents were purchased from commercial sources and used as received unless otherwise indicated. Substrates **1** were synthesized in the lab by the reported procedures.

2. Preparation of Substrates

2.1 General Procedure for the Synthesis of Substrates 1a,1b-1h

Step I: A mixture of 2-iodoacetophenone (5.0 mmol, 1.23 g), phenylhydrazine (6.0 mmol, 1.2 equiv, 0.65 g) and polyphosphoric acid (PPA, 15.0 g) was added to a round bottom flask and stirred at 110 °C for 6 h. After the completion of the reaction, the

residue was quenched with ice water and extracted into ethyl acetate. The organic phases were dried over anhydrous Na_2SO_4 and concentrated in vacuo. The crude product was purified by silica gel column chromatography (petroleum ether/EtOAc) to give the corresponding substituted indole **S1** (70%, 1.12 g).

Step II: According to a literature procedure, to the solution of indole **S1** (3.5 mmol, 1.12 g) and DMAP (0.7 mmol, 0.2 equiv, 85 mg) in DCM (7 mL, 0.5 M) was added Et_3N (7 mmol, 2.0 equiv, 0.71 g) and chloride (4.2 mmol, 1.2 equiv, 0.44 g) at 0 °C. The solution was warmed up to room temperature and stirred for overnight. The mixture was diluted with DCM (20 mL) and saturated NH₄Cl solution (20 mL). The organic and aqueous layers were separated. The aqueous layer was extracted with DCM (2 x 20 mL). The combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo to give a residue, which was purified by flash chromatography and then recrystallized from petroleum ether/EtOAc to afford the product **1a** (50%, 677 mg). Procedure for the synthesis of substrates **1b-1h** is similar to **1a**.

2.2 Synthesis of Substrates 1i-1k

A solution of S1 (6.0 mmol, 1.91 g) in 10 mL of DMF and powdered KOH (7.8 mmol, 1.3 equiv, 437 mg) was stirred at 60 °C for 10 min, cooled to rt, and treated with 3bromo-2-methylprop-1-ene (8.9 mmol, 1.5 equiv, 1.20 g). The reaction mixture was stirred at 60 °C for 18 h, poured onto ice and diluted with 15 mL of EtOAc. The combined organic layers were washed with H₂O, brine and dried by Na₂SO₄, concentrated in vacuo and purified by chromatography on SiO₂ (petroleum ether) to afford the desired product **4a** (63%, 1.41 g). Procedure for the synthesis of substrates **1j**, **1k** is similar to **1i**.

3 General Procedures, optimized reaction conditions and Mechanism

studies

3.1 General procedures and gram-scale reaction

3.1.1 General procedure for 3a and 4a

To a well dried 25 mL sealed tube with magnetic stir bar, 1-(2-(2-iodophenyl)-1*H*-indol-1-yl)-2-methylprop-2-en-1-one **1a** (77.6 mg, 0.2 mmol), chlorodifluoroacetate **2a** (60.1 mg, 0.4 mmol), Pd(OAc)₂ (4.4 mg, 10 mol%), K₂CO₃ (83.2 mg, 0.6 mmol), PPh₃ (6.2 mg, 12 mol%) were dissolved in 2.0 mL DCE, resulting mixture was stirred at 120 °C (oil bath) for 12 h. When the reaction was finished, the reation mixture was extracted by EtOAc (3 x 30 mL) and H₂O. The organic layer was dried over by Na₂SO₄, filtered and the solvent removed in vacuo. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 5:1, v/v) to provide pure product **3a** (53.5 mg, 93% yield).

To a well dried 25 mL sealed tube with magnetic stir bar, 1-(2-(2-iodophenyl)-1*H*-indol-1-yl)-2-methylprop-2-en-1-one **1a** (77.6 mg, 0.2 mmol), chlorodifluoroacetate **2a** (60.2 mg, 0.4 mmol), Pd(OAc)₂ (4.4 mg, 10 mol%), K₂CO₃ (83.2 mg, 0.6 mmol), AcOK (19.6 mg, 0.2 mmol), Triphos (15.4 mg, 12 mol%) were dissolved in DCE/Dioxane = 1/2 (v/v, 4 mL), resulting mixture was stirred at 110 °C (oil bath) for 12 h. When the reaction was finished, the reation mixture was extracted by EtOAc (3 x 30 mL) and H₂O. The organic layer was dried over by Na₂SO₄, filtered and the solvent removed in vacuo. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 50:1 to 4:1, v/v) to provide pure product **4a** (62.6 mg, 85% yield).

3.1.2 gram-scale reaction

To a well dried 100 mL sealed tube with magnetic stir bar, 1-(2-(2-iodophenyl)-1*H*-indol-1-yl)-2-methylprop-2-en-1-one **1a** (1.94 g, 5 mmol), chlorodifluoroacetate **2a** (1.53 g, 10 mmol), Pd(OAc)₂ (0.11 g, 10 mol%), K₂CO₃ (2.10 g, 15 mmol), PPh₃ (0.31 g, 12 mol%) were dissolved in 30 mL DCE, resulting mixture was stirred at 120 °C (oil bath) for 12 h. When the reaction was finished, the reaction mixture was extracted by EtOAc (3 x 30 mL) and H₂O. The organic layer was dried over by Na₂SO₄, filtered and the solvent removed in vacuo. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 20/1 to 5/1, v/v) to provide pure product **3a** (1.13 g, 73% yield).

To a well dried 100 mL sealed tube with magnetic stir bar, 1-(2-(2-iodophenyl)-1*H*-indol-1-yl)-2-methylprop-2-en-1-one **1a** (1.94 g, 5 mmol), chlorodifluoroacetate **2** (1.53 g, 10 mmol), Pd(OAc)₂ (0.11 g, 10 mol%), K₂CO₃ (2.10 g, 15 mmol), AcOK (0.49 g, 5 mmol), Triphos (0.38 g, 12 mol%) were dissolved in 30 mL DCE/1,4-dioxane (v/v = 1/2), resulting mixture was stirred at 110 °C (oil bath) for 12 h. When the reaction was finished, the reation mixture was partitioned between EtOAc (3 x 30 mL) and H₂O.

The organic layer was dried over Na₂SO₄, filtered and the solvent removed in vacuo. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 50:1 to 4:1, v/v) to provide pure product **4a** (1.23 g, 67% yield).

3.2 General Procedure for the Synthesis of Compound 5a

According to a modified literature procedure, to a stirred solution of 5-(2,2difluorovinyl)-5-methylindolo[2,1-*a*]isoquinolin-6(5*H*)-one **3a** (77.3 mg, 0.25 mmol) in NMP (3 mL), AgF (136.8 mg, 0.75 mmol) was added at room temperature. The resultant solution was further stirred at 80 °C (oil bath) for 24 h. After completion, as indicated by TLC, the reaction mixture was cooled to room temperature and the resulting mixture was extracted with EtOAc (3×10 mL). Combined organic layer was dried over Na₂SO₄, filtered, and all of the volatiles were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 5:1, v/v) afford 5-methyl-5-(2,2,2trifluoroethyl)-3,5-dihydroindolo[2,1-*a*]isoquinolin-6(2*H*)-one **5a** as a yellow oil in 76% yield (62.5 mg).

3.3 General Procedure for the Synthesis of Compound 5b

According to a modified literature procedure, to a stirred solution of 2-chloroethyl 2-(5-methyl-6-oxo-5,6-dihydroindolo[2,1-*a*]isoquinolin-5-yl)acetate **4a** (121.1 mg, 0.33

mmol) in THF (1 mL), NaOH (2.5 M aq., 0.5 mL) was added at room temperature. The resultant solution was further stirred at 60 °C (oil bath) for 3 h. After completion, as indicated by TLC, the reaction mixture was cooled to room temperature and the resulting mixture was extracted with EtOAc (3×10 mL). Combined organic layer was dried over Na₂SO₄, filtered, and all of the volatiles were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 5:1, v/v) afford 2-(5-methyl-6-oxo-5,6dihydroindolo[2,1-a]isoquinolin-5-yl)acetic acid 5b as a yellow oil in 95% yield (95.6 mg).

3.4 Optimized reaction conditions^a

PdCl₂(dippp)

 $Pd(OAc)_2$

Pd(OAc)₂

Pd(OAc)₂

Pd(OAc)₂

Pd(OAc)₂

Pd(OAc)₂

Pd(OAc)₂

 $Pd(OAc)_2$

 $Pd(OAc)_2$

PPh₃

DPEphos

dpppe

dppm

PPh₃

PPh₃

PPh₃

PPh₃

PPh₃

PPh₃

1

2

3

4

5

6

7

8

9

10

11

 12^{c}

K₂CO₃

K₂CO₃

K₂CO₃

 K_2CO_3

AcONa

Cs₂CO₃

Na₂CO₃

K₂CO₃

K₂CO₃

K₂CO₃

DCE

DCE

DCE

DCE

DCE

DCE

DCE

1,4-dioxane

toluene

DCE

trace

27

75

43

NR

NR

11

NR

trace

66

trace

13

18

trace

NR

NR

ND

NR

ND

trace

Table S1 Optimization of the reaction conditions

^a Reaction conditions: 1a (0.2 mmol), 2a (2.0 equiv.), [Pd] (10 mol%), ligand (12 mol%), base (3.0 equiv.) and solvent
(2.0 mL) at 120 °C for 12 h under a N ₂ atmosphere. ^b Isolated yield. NR = no reaction. ^c Pd(OAc) ₂ (5 mol%).
PdCl ₂ (dippp) = dichloro(1,3-bis(diphenylphosphino)propane)palladium(II).

^{*a*}Reaction conditions: 1a (0.2 mmol), 2a (2.0 equiv.), [Pd] (10 mol%), ligand (12 mol%), base (3.0 equiv.) and solvent (2.0 mL) at 120 °C for 12 h under a N₂ atmosphere. ^{*b*}Isolated yield. ^{*c*}DCE/1,4-dioxane =1/1 (v/v, 2.0 mL). ^{*d*}KOAc(1.0 equiv) was added. ^{*e*}110°C. ^{*f*} DCE/1,4-dioxane = 1/2 (v/v, 4.0 mL). ^{*g*} **2a** changed by ClCF₂COOEt. ^{*h*}**2a** changed by BrCF₂TMS. ^{*j*}**2a** changed by KOAc. ^{*j*} Pd(OAc)₂ (5 mol%). ^{*k*} DCE changed by DCM. ^{*l*}DCE changed by BrCH₂CH₂Br.

3.5 Mechanism studies

3.5.1 Control experiments

When added 10 equiv. H_2O^{18} , we did not detect C=O¹⁸. So, the source of carbonyl could not come from Pd=CF₂ hydrolysis.

When we replaced ClCF₂COONa with CO₂ gas (1 atm), we could obtain **4a** in trace yield. So, we think that the concentration of CO₂ from ClCF₂COONa in solvent is much more than CO₂ gas.

3.5.2 GC-MS for CO₂ Concentration

Subsequently, we detected the concentration of CO_2 in solvent. The experiment result showed that the CO_2 concentration coming from $ClCF_2COONa$ is very high.

We also detected the concentration of CO_2 in solvent, which CO_2 came from CO_2 gas. The experiment result showed that the CO_2 concentration coming from CO_2 gas is very low. The low CO_2 concentration in solvent may not facilitate the reaction.

3.6 Gram-scale

The reaction of *N*-allyl indole **1j** with **2a** was performed on a gram scale, furnishing the corresponding product product **4j** in 42% yield (0.83 g). The reaction of *N*-allyl indole **1i** with **2a** was performed on a gram scale, furnishing the corresponding product product **4i** in 20% yield (0.35 g).

4. Characterization Data

5-(2,2-difluorovinyl)-5-methylindolo[2,1-*a***]isoquinolin-6(5***H***)-one (3a): Eluent: petroleum ether/EtOAc = 20:1 to 5:1 (v/v). New compound. 57.5 mg, 93% yield. Yellow oil. ¹H NMR (800 MHz, CDCl₃) \delta 8.47 (dd, J = 8.8, 4.0 Hz, 1H), 7.82 – 7.81 (m, 1H), 7.41 – 7.38 (m, 3H), 7.24 (dd, J = 8.0, 2.4 Hz, 1H), 7.08 (td, J = 8.8, 2.4 Hz, 1H), 6.99 (s, 1H), 4.74 (dd, J = 25.6, 3.2 Hz, 1H), 1.83 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) \delta 171.1, 156.7(dd,** *J* **= 296.0, 289.9 Hz), 138.5, 135.6, 135.2, 130.8, 129.2, 127.9, 127.3, 125.6, 124.9, 123.9, 120.7, 116.7, 103.7, 84.5 (dd,** *J* **= 27.2, 13.6 Hz), 46.1 (dd,** *J* **= 4.5, 1.5 Hz), 30.2 (d,** *J* **= 3.0 Hz). ¹⁹F NMR (565 MHz, CDCl₃) \delta -2.94 (d,** *J* **= 33.9 Hz), -6.09 (d,** *J* **= 39.6 Hz). HRMS (ESI) m/z Calcd for C₁₉H₁₄F₂NO [M+H]⁺:**

310.1044; Found: 310.1038.

5-(2,2-difluorovinyl)-5,10-dimethylindolo[2,1-*a***]isoquinolin-6(5***H***)-one (3b): Eluent: petroleum ether/EtOAc = 20:1 to 5:1 (v/v). New compound. 32.0 mg, 51% yield. Yellow oil. ¹H NMR (600 MHz, DMSO) \delta 8.27 (d, J = 8.4 Hz, 1H), 8.02 (dd, J = 6.0, 4.0 Hz, 1H), 7.50 (dd, J = 7.2, 4.2 Hz, 1H), 7.44 (s, 1H), 7.43 – 7.41 (m, 2H), 7.34 (s, 1H), 7.18 (d, J = 8.4 Hz, 1H), 5.25 (dd, J = 28.2, 3.6 Hz, 1H), 2.40 (s, 3H), 1.74 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) \delta 170.2, 155.2 (dd,** *J* **= 286.9, 292.9 Hz), 138.2, 135.0, 133.9, 132.9, 130.7, 129.2, 127.8, 127.4, 126.4, 123.9, 122.8, 120.7, 115.5 (d,** *J* **= 6.0 Hz), 103.6, 85.5 (dd,** *J* **= 25.7, 12.1 Hz), 45.2 (dd,** *J* **= 4.53, 1.5 Hz), 29.5, 21.0. ¹⁹F NMR (565 MHz, DMSO) \delta -5.06 (d,** *J* **= 45.2 Hz), -8.88 (d,** *J* **= 45.2 Hz). HRMS (ESI) m/z Calcd for C₂₀H₁₆F₂NO [M+H]⁺: 324.1200; Found: 324.1195.**

5-(2,2-difluorovinyl)-10-fluoro-5-methylindolo[2,1-*a***]isoquinolin-6(5***H***)-one (3c): Eluent: petroleum ether/EtOAc = 20:1 to 5:1 (v/v). New compound. 58.8 mg, 91% yield. Yellow oil. ¹H NMR (600 MHz, DMSO) \delta 8.38 (dd, J = 9.0, 4.8 Hz, 1H), 8.03 – 8.02 (m, 1H), 7.52 – 7.49 (m, 1H), 7.45 – 7.40 (m, 3H), 7.37 (s, 1H), 7.17 (td, J = 9.0, 3.0 Hz, 1H), 5.22 (dd, J = 28.2, 3.6 Hz, 1H), 1.73 (s, 3H).¹³C NMR (151 MHz, DMSO) \delta 170.3, 159.6 (d,** *J* **= 240.1 Hz), 155.3 (dd,** *J* **= 286.9, 292.9 Hz), 138.5, 136.7, 131.8 (d,** *J* **= 4.5 Hz), 131.2, 129.5, 127.9, 127.4, 124.1, 122.4, 117.1 (d,** *J* **= 9.1 Hz), 112.6, 112.4, 106.5, 106.4, 103.3 (d,** *J* **= 3.0 Hz), 85.3 (dd,** *J* **= 25.7, 12.1 Hz), 45.3 (dd,** *J* **= 6.0, 1.5 Hz), 29.4. ¹⁹F NMR (565 MHz, DMSO) \delta -5.99(d,** *J* **= 45.2 Hz), -6.42(d,** *J* **= 45.2 Hz), -39.79. HRMS (ESI) m/z Calcd for C₂₀H₁₆F₂NO [M+H]⁺: 328.0949; Found: 328.0944.**

10-chloro-5-(2,2-difluorovinyl)-5-methylindolo[2,1-*a***]isoquinolin-6(5***H***)-one(3d): Eluent: petroleum ether/EtOAc = 20:1 to 5:1 (v/v). New compound. 61.8 mg, 90% yield. Yellow oil. ¹H NMR (600 MHz, DMSO) \delta 8.36 (d, J = 9.0 Hz, 1H), 8.03 (dd, J = 7.2, 1.2 Hz, 1H), 7.70 (d, J = 2.4 Hz, 1H), 7.52 – 7.50 (m, 1H), 7.46 – 7.41 (m, 2H), 7.37 – 7.35 (m, 2H), 5.23 (dd, J = 28.2, 3.6 Hz, 1H), 1.74 (s, 3H). ¹³C NMR (151 MHz, DMSO) \delta 170.5, 155.3 (dd, J = 294.45, 286.9 Hz), 138.5, 136.5, 133.2, 132.0, 129.7, 129.0, 127.9, 127.4, 124.9, 124.2, 122.3, 120.2, 117.2, 102.9, 85.3 (dd, J = 25.7, 12.1 Hz), 45.3 (d, J = 3.0 Hz), 29.4 (d, J = 1.5 Hz). ¹⁹F NMR (565 MHz, DMSO) \delta -4.82(d, J = 39.6 Hz), -8.46(d, J = 45.2 Hz). HRMS (ESI) m/z Calcd for C₁₉H₁₃ClF₂NO [M+H]⁺: 344.0654; Found: 344.0648.**

5-(2,2-difluorovinyl)-5,9,11-trimethylindolo[**2,1***-a*]isoquinolin-6(5H)-one (**3e**): Eluent: petroleum ether/EtOAc = 20:1 to 5:1 (v/v). New compound. 44.4 mg, 66% yield. Yellow oil. ¹H NMR (800 MHz, CDCl₃) δ 8.22 (s, 1H), 7.84 (d, J = 7.2 Hz, 1H), 7.40 – 7.34 (m, 3H), 7.05 (s, 1H), 6.99 (s, 1H), 4.74 (dd, J = 26.4, 4.0 Hz, 1H), 2.55 (s, 3H), 2.48 (s, 3H), 1.82 (s, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 171.2, 156.7 (dd, J = 293.5, 287.4 Hz), 138.2, 136.1, 135.8, 134.0, 129.8, 128.8, 128.1, 127.8, 127.3, 126.8, 124.0, 123.7, 114.5, 102.3, 84.6 (dd, J = 28.1, 14.1 Hz), 46.1 (d, J = 4.0 Hz), 30.1 (d, J = 4.0 Hz), 22.0, 18.6. ¹⁹F NMR (565 MHz, CDCl₃) δ -3.11(d, *J* = 39.6 Hz), -6.28 (d, *J* = 39.6 Hz). HRMS (ESI) m/z Calcd for C₂₁H₁₈F₂NO [M+H]⁺: 328.1357; Found: 338.1351.

5-(2,2-difluorovinyl)-9,11-difluoro-5-methylindolo[2,1-*a***]isoquinolin-6(5***H***)-one (3f**): Eluent: petroleum ether/EtOAc = 20:1 to 5:1 (v/v). New compound. 34.5 mg, 50% yield. Yellow solid. Melting point: 85.6 - 86.3 °C. ¹H NMR (800 MHz, CDCl₃) δ 8.08 (dd, J = 8.8, 1.6 Hz, 1H), 7.80 (dd, J = 6.6, 3.2 Hz, 1H), 7.41 - 7.37 (m, 3H), 7.06 (s, 1H), 6.82 (td, J = 9.6, 2.4 Hz, 1H), 4.74 (dd, J = 26.4, 3.2 Hz, 1H), 1.82 (s, 3H). ¹³C **NMR** (201 MHz, CDCl₃) δ 171.3, 161.3 (dd, *J* = 245.2, 12.1 Hz), 156.8 (dd, *J* = 293.5, 287.4 Hz), 155.0 (dd, *J* = 251.3, 14.1 Hz), 138.3, 136.6 (dd, *J* = 16.8, 12.1 Hz), 135.5 (d, *J* = 4.0 Hz), 129.6, 128.1, 127.3, 123.8, 123.1, 116.1 (d, *J* = 20.1 Hz), 100.6 (d, *J* = 4.3 Hz), 100.50 (d, *J* = 4.3 Hz), 100.4, 100.2 (d, *J* = 4.9 Hz), 100.1, 98.6, 84.3 (dd, *J* = 28.1, 16.8 Hz), 46.2 (dd, *J* = 6.0, 4.0 Hz), 30.1 (d, *J* = 2.0 Hz) ¹⁹F **NMR** (565 MHz, DMSO) δ -2.54 (d, *J* = 39.6 Hz), -5.81 (d, *J* = 33.9 Hz), -34.71 (d, J = 4.4 Hz), -40.80 (d, J = 5.4 Hz). **HRMS** (ESI) m/z Calcd for C₂₀H₁₆F₂NO [M+H]⁺: 346.0855; Found: 346.0850.

9,11-dichloro-5-(2,2-difluorovinyl)-5-methylindolo[2,1-*a***]isoquinolin-6(5***H***)-one (3g**) : Eluent: petroleum ether/EtOAc = 20:1 to 5:1 (v/v). New compound. 50.0 mg, 66% yield. Yellow solid. Melting point: 114.5 – 115.4 °C. ¹H NMR (600 MHz, DMSO) δ 8.31 (d, J = 1.2 Hz, 1H), 8.16 (dd, J = 7.8, 1.2 Hz, 1H), 7.53 (dd, J = 8.4, 1.2 Hz, 1H), 7.50 (d, J = 1.8 Hz, 1H), 7.49 – 7.46 (m, 2H), 7.44 (td, J = 7.8, 1.8 Hz, 1H), 5.24 (dd, J = 28.2, 3.6 Hz, 1H), 1.76 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ 170.8, 155.4 (dd, J = 286.9, 294.5 Hz), 138.4, 136.9, 135.1, 130.0, 129.6, 128.1, 128.0, 127.3, 125.4, 124.6, 124.1, 122.0, 114.6, 100.9, 85.1 (dd, J = 27.2, 12.1 Hz), 45.6 (dd, J = 4.5, 1.5 Hz), 29.2 (d, J = 1.5 Hz). ¹⁹F NMR (565 MHz, DMSO) δ -4.75 (d, J = 39.6 Hz), -8.16 (d, J = 39.6 Hz). HRMS (ESI) m/z Calcd for C₁₉H₁₂Cl₂F₂NO [M+H]⁺: 378.0264; Found: 378.0259.

5-(2,2-difluorovinyl)-2-fluoro-5-methylindolo[2,1-*a*]isoquinolin-6(5*H*)-one (3h):

Eluent: petroleum ether/EtOAc = 20:1 to 5:1 (v/v). New compound. 46.4 mg, 71% yield. Yellow oil. ¹**H NMR** (800 MHz, CDCl₃) δ 8.77 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.72 (dd, J = 9.6, 2.4 Hz, 1H), 7.65 – 7.63 (m, 1H), 7.61 (dd, J = 8.8, 5.6 Hz, 1H), 7.58 (t, J = 7.2 Hz, 1H), 7.31 (td, J = 8.8, 3.2 Hz, 1H), 4.97 (dd, J = 25.6, 3.2 Hz, 1H), 2.05 (s, 3H). ¹³**C NMR** (201 MHz, CDCl₃) δ 170.8, 162.2 (d, *J* = 247.2 Hz), 156.7 (dd, *J* = 295.5, 289.4 Hz), 135.6, 134.3, 134.1 (d, *J* = 2.0 Hz), 130.5, 129.5 (d, *J* = 8.0 Hz), 126.1, 125.6 (d, *J* = 8.0 Hz), 125.0, 121.0, 116.8, 116.6 (d, *J* = 22.1 Hz), 110.0 (d, *J* = 24.12 Hz), 104.7, 84.5 (dd, *J* = 28.1, 14.1 Hz), 45.8 (dd, *J* = 6.0, 4.0 Hz), 30.3 (d, *J* = 2.0 Hz). ¹⁹**F NMR** (565 MHz, DMSO) δ -5.99(d, *J* = 45.2 Hz), -6.42(d, *J* = 45.2 Hz), - 36.25. **HRMS** (ESI) m/z Calcd for C₂₀H₁₆F₂NO [M+H]⁺: 328.0949; Found: 328.0944.

2-chloroethyl 2-(5-methyl-6-oxo-5,6-dihydroindolo[2,1-*a***]isoquinolin-5yl)acetate(4a):** petroleum ether/EtOAc = 20:1 to 5:1 (v/v).New compound. 62.6 mg, 85% yield. Yellow solid. Melting point: 88.3 – 89.0 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.63 – 8.57 (m, 1H), 7.89 – 7.87 (m, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.39 – 7.32 (m, 5H), 7.07 (s, 1H), 4.05 – 3.99 (m, 2H), 3.79 (d, J = 16.8 Hz, 1H), 3.26 (t, J = 6.0 Hz, 2H), 3.19 (d, J = 17.4 Hz, 1H), 1.64 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 172.5, 169.9, 137.7, 135.6, 153.5, 130.7, 129.1, 127.7, 125.4, 125.3, 124.8, 124.7, 124.2, 120.6, 116.8, 103.3, 64.2, 46.4, 44.2, 41.0, 30.4. HRMS (ESI) m/z Calcd for C₂₁H₁₉CINO₃ [M+H]⁺: 368.1054; Found: 368.1048.

2-chloroethyl 2-(5,11-dimethyl-6-oxo-5,6-dihydroindolo[2,1-*a***]isoquinolin-5yl)acetate(4b): petroleum ether/EtOAc = 20:1 to 5:1 (v/v).New compound. 54.2 mg, 71% yield. Yellow oil. ¹H NMR (800 MHz, CDCl₃) \delta 8.43 (d, J = 8.8 Hz, 1H), 7.86 (dd, J = 5.6, 3.2 Hz, 1H), 7.39 (s, 1H), 7.36 – 7.33 (m, 3H), 7.19 (dd, J = 8.8, 1.6 Hz,** 1H), 6.99 (s, 1H), 4.04 – 3.97 (m, 2H), 3.78 (d, J = 17.6 Hz, 1H), 3.24 (td, J = 6.4, 1.6 Hz, 2H), 3.17 (d, J = 16.8 Hz, 1H), 2.47 (s, 3H), 1.63 (s, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 172.3, 170.0, 137.6, 135.5, 134.3, 133.8, 131.0, 129.0, 127.6, 126.7, 125.3, 124.9, 124.1, 120.6, 116.4, 103.2, 64.2, 46.3, 44.1,41.0, 30.4, 21.6. HRMS (ESI) m/z Calcd for C₂₂H₂₁ClNO₃ [M+H]⁺: 382.1210; Found: 382.1205.

propyl 2-(10-fluoro-5-methyl-6-oxo-5,6-dihydroindolo[2,1-*a***]isoquinolin-5yl)acetate (4c): petroleum ether/EtOAc = 20:1 to 5:1 (v/v).New compound. 55.4 mg, 76% yield. Yellow oil. ¹H NMR (800 MHz, CDCl₃) \delta 8.77 (dd, J = 8.9, 4.7 Hz, 1H), 8.11 – 8.10 (m, 1H), 7.63 – 7.59 (m, 3H), 7.51 – 7.49 (m, 1H), 7.32 (td, J = 9.0, 2.6 Hz, 1H), 4.27 (td, J = 5.5, 1.2 Hz, 2H), 4.02 (d, J = 17.2 Hz, 1H), 3.52 (t, J = 5.7 Hz, 2H), 3.44 (d, J = 17.2 Hz, 1H), 1.88 (s, 3H). ¹³C NMR (201 MHz, CDCl₃) \delta 172.4, 170.0, 160.4 (d,** *J* **= 239.2 Hz), 137.9, 137.1, 131.9 (d,** *J* **= 2.0 Hz), 131.85, 129.4, 127.7, 125.4, 124.3 (d,** *J* **= 16.9 Hz), 117.8 (d,** *J* **= 9.0 Hz), 112.9, 112.8, 106.3, 106.2, 102.9 (d,** *J* **= 4.2 Hz), 64.3, 46.2, 44.2, 41.1, 30.4. HRMS (ESI) m/z Calcd for C₂₁H₁₈ClFNO₃ [M+H]⁺: 386.0959; Found: 386.0954.**

2-chloroethyl 2-(10-chloro-5-methyl-6-oxo-5,6-dihydroindolo[2,1-*a***]isoquinolin-5yl)acetate (4d): petroleum ether/EtOAc = 20:1 to 5:1 (v/v).New compound. 66.8 mg, 83% yield. Yellow oil. ¹H NMR (800 MHz, CDCl₃) \delta 8.49 (d, J = 8.8 Hz, 1H), 7.86 (dd, J = 7.2, 0.8 Hz, 1H), 7.56 (d, J = 2.4 Hz, 1H), 7.40 – 7.34 (m, 3H), 7.31 (dd, J = 8.0, 1.6 Hz, 1H), 6.99 (s, 1H), 4.04 – 4.01 (m, 2H), 3.77 (d, J = 16.8 Hz, 1H), 3.28 (t, J = 6.4 Hz, 2H), 3.19 (d, J = 17.6 Hz, 1H), 1.63 (s, 3H). ¹³C NMR (201 MHz, CDCl₃) \delta 172.5, 170.0, 137.8, 136.8, 133.9, 132.0, 130.2, 129.5, 127.8, 125.4, 125.3, 124.4, 124.3, 120.2, 117.8, 102.4, 64.3, 46.3, 44.2, 41.1, 30.4. HRMS (ESI) m/z Calcd for C₂₁H₁₈Cl₂NO₃ [M+H]⁺: 402.0663; Found: 402.0658.**

2-chloroethyl 2-(5,9,11-trimethyl-6-oxo-5,6-dihydroindolo[2,1-*a***]isoquinolin-5yl)acetate (4e): petroleum ether/EtOAc = 20:1 to 5:1 (v/v).New compound. 58.6 mg, 74% yield. Yellow oil. ¹H NMR (800 MHz, CDCl₃) \delta 8.27 (s, 1H), 7.89 (dd, J = 6.6, 2.0 Hz, 1H), 7.36 – 7.32 (m, 3H), 7.08 (s, 1H), 6.99 (s, 1H), 4.06 – 3.99 (m, 2H), 3.79 (d, J = 17.2 Hz, 1H), 3.29 – 3.24 (m, 2H), 3.18 (d, J = 17.2 Hz, 1H), 2.56 (s, 3H), 2.49 (s, 3H), 1.63 (s, 3H). ¹³C NMR (201 MHz, CDCl₃) \delta 172.6, 170.0, 137.3, 135.7, 134.3, 129.6, 128.6, 128.0, 127.5, 126.6, 125.3, 125.0, 123.9, 114.6, 101.9, 64.1, 46.3, 44.1, 41.0, 30.4, 22.0, 18.6. HRMS (ESI) m/z Calcd for C₂₃H₂₃ClNO₃ [M+H]⁺: 396.1367; Found: 396.1361.**

2-chloroethyl 2-(9,11-difluoro-5-methyl-6-oxo-5,6-dihydroindolo[2,1*a*]isoquinolin-5-yl)acetate (4f): petroleum ether/EtOAc = 20:1 to 5:1 (v/v).New compound. 43.6 mg, 54% yield. Yellow solid. Melting point: 110.0 – 111.1 °C. ¹H NMR (800 MHz, CDCl₃) δ 8.14 (dd, J = 8.8, 1.6 Hz, 1H), 7.87 – 7.86 (m, 1H), 7.40 – 7.34 (m, 3H), 7.10 (s, 1H), 6.83 (td, J = 9.6, 2.4 Hz, 1H), 4.04 (t, J = 5.6 Hz, 2H), 3.76 (d, J = 17.6 Hz, 1H), 3.31 (t, J = 5.6 Hz, 2H), 3.21 (d, J = 17.6 Hz, 1H), 1.64 (s, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 172.8, 170.0, 161.7 (d, J = 11.5 Hz), 160.5 (d, J = 11.1 Hz), 155.6 (d, J = 14.2 Hz), 154.4 (d, J = 14.4 Hz), 137.5, 136.6 (d, J = 15.4 Hz), 135.8 (d, J = 3.9 Hz), 129.5, 127.9, 125.4, 124.3, 124.1, 116.0 (d, J = 20.0 Hz), 100.8 (d, J = 4.2 Hz), 100.6 (d, J = 4.3 Hz), 100.2, 100.0 (d, J = 5.7 Hz), 99.9, 98.3, 64.4, 46.4, 44.3, 41.1, 30.4, 29.8. **HRMS** (ESI) m/z Calcd for C₂₁H₁₇ClF₂NO₃ [M+H]⁺: 404.0865; Found: 404.0860.

2-chloroethyl 2-(9,11-dichloro-5-methyl-6-oxo-5,6-dihydroindolo[2,1*a*]isoquinolin-5-yl)acetate (4g): petroleum ether/EtOAc = 20:1 to 5:1 (v/v). New compound. 52.4 mg, 60% yield. Yellow solid. Melting point: 131.2 - 132.3 °C. ¹H NMR (800 MHz, CDCl₃) δ 8.54 – 8.53 (m, 1H), 7.90 (dd, J = 5.4, 0.8 Hz, 1H), 7.41 – 7.36 (m, 2H), 7.35 (dd, J = 8.0, 1.6 Hz, 1H), 7.33 (d, J = 1.6 Hz, 1H), 7.12 (s, 1H), 4.04 (td, J = 5.6, 3.2 Hz, 2H), 3.76 (d, J = 16.8 Hz, 1H), 3.32 (t, J = 5.6 Hz, 2H), 3.21 (d, J = 17.6 Hz, 1H), 1.63 (s, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 172.8, 170.0, 137.7, 136.7, 135.8, 131.0, 129.8, 128.3, 127.9, 126.1, 125.4, 124.7, 124.5, 124.0, 115.7, 100.9, 64.4, 46.4, 44.2, 41.1, 30.3. HRMS (ESI) m/z Calcd for C₂₁H₁₇Cl₃NO₃ [M+H]⁺: 436.0274; Found: 436.0269.

propyl 2-(2-fluoro-5-methyl-6-oxo-5,6-dihydroindolo[2,1-*a***]isoquinolin-5yl)acetate(4h):** petroleum ether/EtOAc = 20:1 to 5:1 (v/v).New compound. 40.2 mg, 55% yield. Yellow oil. ¹H NMR (800 MHz, CDCl₃) δ 8.57 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.53 (dd, J = 8.8, 2.4 Hz, 1H), 7.40 (td, J = 7.2, 0.8 Hz, 1H), 7.36 – 7.33 (m, 1H), 7.31 (dd, J = 8.8, 5.6 Hz, 1H), 7.07 (dd, J = 8.0, 2.4 Hz, 1H), 7.05 (s, 1H), 4.05 – 4.02 (m, 2H), 3.79 (d, *J* = 17.6 Hz, 1H), 3.31 – (m, 2H), 3.15 (d, *J* = 17.6 Hz, 1H), 1.62 (s, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 172.2, 169.9, 161.9 (d, *J* = 245.2 Hz), 135.6, 134.4 (d, *J* = 2.9 Hz), 133.5 (d, *J* = 2.4 Hz), 130.4, 127.4 (d, *J* = 8.6 Hz), 126.7, 125.8, 124.8, 120.9, 116.8, 110.4, 110.3, 104.4, 64.3, 46.1, 44.3, 41.1, 30.4. HRMS (ESI) m/z Calcd for C₂₁H₁₈CIFNO₃ [M+H]⁺: 386.0959; Found: 386.0954.

propyl 2-(5-methyl-5,6-dihydroindolo[2,1-*a***]isoquinolin-5-yl)acetate(4i):** petroleum ether/EtOAc = 20:1 to 5:1 (v/v).New compound. 44.6 mg, 67% yield. Yellow oil. ¹**H NMR** (800 MHz, CDCl₃) δ 8.16 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.78 (dd, J = 14.Z, 7.2 Hz, 2H), 7.71 (td, J = 7.2, 0.8 Hz, 1H), 7.67 (td, J = 8.0, 1.6 Hz, 1H), 7.61 – 7.59 (m, 1H), 7.50 – 7.48 (m, 1H), 5.01 (d, J = 12.0 Hz, 1H), 4.59 – 4.56 (m, 1H), 4.51 – 4.48 (m, 1H), 4.24 (d, J = 12.0 Hz, 1H), 3.92 – 3.86 (m, 2H), 2.93 (d, J = 14.4 Hz, 1H), 2.85 (d, J = 14.4 Hz, 1H), 2.01 (s, 3H). ¹³**C NMR** (201 MHz, CDCl₃) δ 170.6, 138.8, 137.0, 135.0, 128.8, 128.1, 128.0, 127.8, 124.9, 124.9, 122.0, 120.9, 120.1, 109.2, 97.0, 64.1, 49.3, 43.0, 41.5, 37.9, 22.9. **HRMS** (ESI) m/z Calcd for $C_{21}H_{21}CINO_2$ [M+H]⁺: 354.1261; Found: 354.1255.

2-chloroethyl 2-(5,9,11-trimethyl-5,6-dihydroindolo[2,1-*a***]isoquinolin-5yl)acetate (4j):** petroleum ether/EtOAc = 20:1 to 5:1 (v/v).New compound. 63.4 mg, 83% yield. Yellow oil. ¹H NMR (800 MHz, CDCl₃) δ 7.82 (dd, J = 7.7, 1.1 Hz, 1H), 7.43 (dd, J = 7.8, 0.6 Hz, 1H), 7.36 (td, J = 7.2, 0.8 Hz, 1H), 7.30 (td, J = 7.2, 0.8 Hz, 1H), 7.09 (s, 1H), 6.89 (s, 1H), 6.81 (s, 1H), 4.61 (d, J = 12.0 Hz, 1H), 4.26 – 4.23 (m, 1H), 4.19 – 4.14 (m, 1H), 3.85 (d, J = 12.0 Hz, 1H), 3.60 – 3.53 (m, 2H), 2.60 (s, 3H), 2.58 (s, 1H), 2.52 (s, 1H), 2.51 (s, 3H), 1.66 (s, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 170.7, 138.5, 137.2, 133.9, 132.1, 130.0, 128.4, 127.7, 127.6, 126.6, 124.9, 124.6, 122.3, 106.8, 95.4, 64.1, 49.4, 42.9, 41.5, 37.9, 22.8, 22.0, 18.8. HRMS (ESI) m/z Calcd for C₂₃H₂₅CINO₃ [M+H]⁺: 382.1574; Found: 382.1568.

2-chloroethyl 2-(9,11-dichloro-5-methyl-5,6-dihydroindolo[2,1-*a*]isoquinolin-5yl)acetate (4k): petroleum ether/EtOAc = 20:1 to 5:1 (v/v).New compound. 61.8 mg, 73% yield. Yellow oil. ¹H NMR (800 MHz, CDCl₃) δ 7.80 – 7.79 (m, 1H), 7.42 (dd, J = 7.2, 1.6 Hz, 1H), 7.35 (pd, J = 7.2, 1.6 Hz, 2H), 7.31 (d, J = 0.8 Hz, 1H), 7.12 (d, J = 1.6 Hz, 1H), 6.92 (s, 1H), 4.58 (d, J = 12.0 Hz, 1H), 4.28 – 4.26 (m, 1H), 4.21 – 4.18 (m, 1H), 3.82 (d, J = 12.0 Hz, 1H), 3.59 (dt, J = 5.6, 4.8 Hz, 2H), 2.49 (dd, J = 52.8, 14.4 Hz, 2H), 1.62 (s, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 170.4, 138.9, 137.5, 136.2, 128.8, 128.0, 127.6, 127.2, 126.4, 126.3, 125.2, 124.9, 120.3, 108.1, 95.7, 64.3, 49.4, 42.8, 41.6, 37.9, 22.7. HRMS (ESI) m/z Calcd for C₂₁H₁₉Cl₃NO₂ [M+H]⁺: 422.0481; Found: 422.0476.

5-methyl-5-(2,2,2-trifluoroethyl)indolo[2,1-*a***]isoquinolin-6(5***H***)-one (5***a***) : petroleum ether/EtOAc = 100:1 to 50:1 (v/v). New compound. 62.5 mg, 76% yield. Yellow oil. ¹H** NMR (600 MHz, CDCl₃) δ 8.59 (d, *J* = 8.4 Hz, 1H), 7.90 – 7.88 (m, 1H), 7.61 (d, *J* = 7.8 Hz, 1H), 7.42 – 7.39 (m, 3H), 7.37 (dd, *J* = 14.5, 1.1 Hz, 1H), 7.34 (dd, *J* = 7.4, 0.8 Hz, 1H), 7.07 (s, 1H), 3.48 (dq, *J* = 15.2, 10.5 Hz, 1H), 2.87 (dq, *J* = 15.3, 9.8 Hz, 1H), 1.73 (s, 3H). ¹³**C** NMR (151 MHz, CDCl₃) δ 171.0, 135.5, 135.3, 135.1, 130.8, 128.8, 128.0, 126.8, 125.6, 125.3(q, J = 279.4 Hz)125.0, 124.4, 124.3, 124.1, 120.7, 116.9, 103.8, 44.9 (q, J = 1.5 Hz), 43.9 (q, J = 27.2 Hz), 31.0. ¹⁹**F** NMR (565 MHz, CDCl₃) δ 16.56. **HRMS** (ESI) m/z Calcd for C₁₉H₁₅F₃NO [M+H]⁺: 330.1106; Found: 330.1100.

2-(5-methyl-6-oxo-5,6-dihydroindolo[2,1-*a***]isoquinolin-5-yl)acetic acid (5b):** petroleum ether/EtOAc = 10:1 to 5:1 (v/v). Known compound, 95.6 mg, 95% yield. Yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 9.62 (s, 1H), 8.52 (d, *J* = 8.0 Hz, 1H), 7.78 – 7.76 (m, 1H), 7.57 – 7.55 (m, 1H), 7.36 – 7.33 (m, 1H), 7.31 – 7.30 (m, 1H), 7.29 – 7.27 (m, 2H), 7.24 (s, 1H), 7.22 – 7.19 (m, 1H), 6.96 (s, 1H), 3.66 (d, *J* = 17.7 Hz, 1H), 3.04 (d, *J* = 17.6 Hz, 1H), 1.50 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 176.0, 172.5, 137.5, 135.4, 130.7, 129.0, 127.5, 125.2, 124.9, 124.6, 124.5, 124.2, 120.5, 116.7, 103.2, 46.0, 43.2, 30.6.

5. X-Ray Crystallography Data of 3h and 4a

The suitable crystals were selected on a XtaLAB Synergy, Dualflex, HyPix diffractometer. The crystals were kept at 100.03(10) K during data collection. Using Olex2, the structures were solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimisation.

- 7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J, Howard, J. A. K. & Puschmann, H.
- J. Appl. Cryst. 2009, 42, 339-341.
- 8. Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8.
- 9. Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.

Single-crystals suitable for X-ray diffraction analysis were grown from the recrystallization in dichloromethane and petroleum ether (1/1, v/v) at 25 °C. Thermal ellipsoids of the crystal structures of **3h** was set at 50%.

Identification code	CCDC 2323817
Empirical formula	$C_{20}H_{11}Cl_2F_2O$
Formula weight	376.19
Temperature/K	296.15
Crystal system	triclinic
Space group	P-1
a/Å	8.872(3)
b/Å	10.069(3)
c/Å	10.305(3)
α/\circ	111.594(5)
β/°	96.066(5)
γ/°	104.973(5)
Volume/Å ³	806.0(4)
Z	2
$\rho_{calc}g/cm^3$	1.550
μ/mm^{-1}	0.429

F(000)	382.0
Crystal size/mm ³	0.2 imes 0.15 imes 0.1
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/ ^c	² 4.862 to 52.74
Index ranges	$\text{-}11 \leq h \leq 11, \text{-}12 \leq k \leq 10, \text{-}12 \leq l \leq 12$
Reflections collected	4542
Independent reflections	3236 [$R_{int} = 0.0198$, $R_{sigma} = 0.0474$]
Data/restraints/parameters	3236/0/227
Goodness-of-fit on F ²	1.065
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0667, wR_2 = 0.1961$
Final R indexes [all data]	$R_1 = 0.0962, wR_2 = 0.2202$
Largest diff. peak/hole / e Å ⁻³	0.62/-0.40

X-Ray Crystallography Data of 4a

Identification code	CCDC 2323815
Empirical formula	$C_{21}H_{18}ClNO_3$
Formula weight	367.81
Temperature/K	296.15
Crystal system	monoclinic
Space group	C2
a/Å	24.627(8)
b/Å	6.889(2)
c/Å	32.225(11)
$\alpha/^{\circ}$	90
β/°	96.899(10)
γ/°	90
Volume/Å ³	5427(3)
Z	12
$\rho_{calc}g/cm^3$	1.350
μ/mm^{-1}	0.232
F(000)	2304.0
Crystal size/mm ³	$? \times ? \times ?$

Radiation	MoKa ($\lambda = 0.71073$)
2 Θ range for data collection/ ^c	° 1.272 to 49.998
Index ranges	$\text{-}23 \leq h \leq 29, \text{-}7 \leq k \leq 8, \text{-}38 \leq l \leq 38$
Reflections collected	13448
Independent reflections	8455 [$R_{int} = 0.0567$, $R_{sigma} = 0.0864$]
Data/restraints/parameters	8455/1/706
Goodness-of-fit on F ²	1.070
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.1045, wR_2 = 0.2818$
Final R indexes [all data]	$R_1 = 0.1205, wR_2 = 0.2950$
Largest diff. peak/hole / e Å ⁻³	0.77/-0.42
Flack parameter	0.21(8)

6. NMR Spectra

¹⁹F NMR of product 3a in DMSO (565 MHz)

C-5.024 -5.099 -8.843 C-8.916

¹H NMR of product 3c in DMSO (600 MHz)

¹⁹F NMR of product 3c in DMSO (565 MHz)

0 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -1: f1 (ppm)

¹⁹F NMR of product 3e in DMSO (565 MHz)

¹³C NMR of product 3f in CDCl₃ (201 MHz)

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (f1 (ppm)

¹⁹F NMR of product 3f in DMSO (565 MHz)

¹H NMR of product 3g in DMSO (600 MHz) 2.503 2.500 2.494 2.494 -1.760CI <u>-66.0</u> ±-16.0 1.00 2.00 1.00 3.00 H 5.5 5.0 4.5 f1 (ppm) .0 8.0 7.5 9.5 9.0 8.5 7.0 6.5 6.0 3.0 2.5 2.0 1.5 1.0 0.5 0 4.0 3.5 ¹³C NMR of product 3g in DMSO (151 MHz) -170.82 157.29 155.39 155.34 136.88 129.61 129.61 127.39 127.39 124.58 124.58 124.58 124.58 -100.92 85.19 85.11 85.01 84.93

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR of product 3g in DMSO (565 MHz)

¹³C NMR of product 3h in CDCl₃ (201 MHz)

¹H NMR of product 4a in CDCl₃ (600 MHz)

¹H NMR of product 4h in CDCl₃ (800 MHz)

¹⁹F NMR of product 5a in DMSO (565 MHz)

-16.555

¹³C NMR of product 5b in CDCl₃ (151 MHz)

)0 110 100 f1 (ppm) (140 130