Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Selective Nickel-Catalyzed Disulfuration of Alkyl

Halides via Di/Trithiosulfonates

Lulu Liu^{‡a}, Jiaqi Hou^{‡a}, Yingying Ma^a, Hongwei Wang^a, Yu Zhong^a, Fangcan Liang^a, Luyao Wang^a, Qingling Wang^{*b}, Ji-Quan Liu^a, Wen-Hua Xu^a, and Dianhu Zhu^{*a}

^aKey Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127 (China)

^bShaanxi Natural Carbohydrate Resource Engineering Research Center College of Food Science and Technology, Northwest University, Xi'an, 710069 (China)

E-mail: zhudianhu@nwu.edu.cn; wql0143@nwu.edu.cn

Table of Contents

I. General information
II. Optimization of the reaction conditions 4
Optimization of reaction conditions of alkyl bromides4
III. Synthesis of the starting materials
Preparation of substrates5
General procedure for the preparation of di/trithiosulfonates
IV. General procedure for cross coupling and substrate scope 10
Substrate scope of alkyl halides10
Late-stage modification of natural products or bioactive molecules
Substrate scope of di/trithiosulfonate reagents17
V. Mechanistic studies
Radical inhibition experiment
Control experiment 21
Isolation of reactive intermediates 22
Capture and conversion of trisulfide intermediates
Investigation of the reaction process
Raman study 29
CV test of di/trithiosulfonates 30
DFT calculations
VI. References
VII. NMR spectrum of the products

I. General information

General procedures. All reactions were carried out under an argon atmosphere using standard Schlenk-Lines. ¹H, ¹³C and ¹⁹F NMR spectra were acquired on 400 MHz, 100 MHz, 376 MHz on JOEL-ZETA 400 MHz or Bruker-AVANCE III-400 MHz spectrometer (400 MHz for ¹H; 100 MHz for ¹³C; 376 MHz for ¹⁹F). ¹H NMR and ¹³C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0 ppm and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as inter standard. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d =doublet, t = triplet, q = quartet, m = multiplet, br = broad. All reactions were monitored by TLC with 0.25 mm coated commercial silica gel plates (TLC Silica Gel 60 F₂₅₄). Flash column chromatograph was carried out using 300-400 mesh silica gel at medium pressure. Mass spectra were acquired on a Bruker Daltonics MicroTof-Q II mass spectrometer or Agilent 7890B-5977A mass spectrometer. Cyclic Voltammetry experiments were acquired on an electrochemical station (CHI660E). Raman frequency was carried out at the 532nm-2mw-50slit-50X level by Thermo DXR2 Raman Microscope.

Materials. All reagents were received from commercial sources unless otherwise noted. Solvents were freshly dried and degassed according to the purification handbook *Purification of Laboratory Chemicals* before using.

II. Optimization of the reaction conditions

Br	+ \$\$`S`S` ^S 'Bu	[Ni] (5 mo Reduc DN	I%)/[L] (7.5 mol%) stant (2.5 equiv) ₩F, RT, t		S ^{-S.} tBu +	S ^{-S} S ^{-/Bu}
1ae	2aa			3ae		3ae′
Entry	[Ni]	[L]	Reductant	t (h)	Yield (3ae , %)	Yield (3ae ′, %)
1	$NiCl_2(PPh_3)_2$	L3	Mn	12	87	11
2	NiBr ₂	L3	Mn	12	34	60
3	Nil ₂	L3	Mn	12	46	50
4	NiBr ₂ •diglyme	L3	Mn	12	50	41
5	NiBr ₂ •DME	L3	Mn	12	48	46
6	NiCl ₂ •6H ₂ O	L3	Mn	12	47	48
7	NiCl ₂	L3	Mn	12	38	58
8	NiCl ₂ •DME	L3	Mn	12	27	69
9	Ni(acac) ₂	L3	Mn	12	69	31
10	Ni(OAc) ₂ •4H ₂ O	L3	Mn	12	39	13
11	$NiCl_2(PPh_3)_2$	L1	Mn	12	Trace	Trace
12	$NiCl_2(PPh_3)_2$	L2	Mn	12	26	31
13	NiCl ₂ (PPh ₃) ₂	L4	Mn	12	85	13
14	NiCl ₂ (PPh ₃) ₂	L5	Mn	12	53	45
15	NiCl ₂ (PPh ₃) ₂	L6	Mn	12	39	40
16	$NiCl_2(PPh_3)_2$	L4	Zn	12	ND	ND
17	$NiCl_2(PPh_3)_2$	L4	Sn	12	ND	ND
18	$NiCl_2(PPh_3)_2$	L4	PPh ₃	12	ND	ND
19	NiCl ₂ (PPh ₃) ₂	L4	Mn	24	99	0

Optimization the reaction of PhSO₂SS'Bu and alkyl bromides.^{*a,b*}

^{*a*} Reaction conditions: **1ae** (0.2 mmol, 1.0 equiv), **2aa** (0.3 mmol, 1.5 equiv), [Ni] (5 mol%), [L] (7.5 mol%) and reductant (0.5 mmol, 2.5 equiv) were added in DMF (2.0 mL) in argon atmosphere and reacted at RT. ^{*b*} Yields were determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. ND = no detection of product.

III. Synthesis of the starting materials

A. <u>Preparation of substrates</u>

Synthesis of 2-(3-bromopropyl)isoindoline-1,3-dione 1aj

An oven-dried 100-mL round-bottom flask, equipped with a stir bar, was charged with 1,3-dioxoisoindolin-2-ide (834 mg, 4.50 mmol, 1.00 equiv) in Acetong (30.0 mL). Then 1,3-dibromopropane (1.21 g, 6.00 mmol, 1.33 equiv) was added to the solution. The mixture was stirred at 40 °C for 24 hours. After filtering off the precipitated potassium bromide, the solvent and excess dibromopentane were distilled off and the phthalimido bromide was distilled at reduced pressure to obtain a yellow oil (808.4 mg, 67% yield). Spectra were consistent with literature data. ^[1]

Synthesis of 3-(2-bromoethyl)-1H-indole 1ap

An oven-dried 100-mL round-bottom flask, equipped with a stir bar, was charged with tryptophol (1.61 g, 10.00 mmol, 1.00 equiv) and triphenyl phosphine (3.41 g, 13.00 mmol, 1.30 equiv) in dry CH_2Cl_2 (15.0 ml). In an addition funnel, carbon tetrabromide (4.31 g, 13.00 mmol, 1.30 equiv) dissolved in dry CH_2Cl_2 (5.0 ml) was added dropwise, under inert atmosphere at 0 °C, until the addition was complete. The reaction was allowed to stir at room temperature for an additional 3 h, or until complete disappearance of starting materials by TLC. Solvent was removed under reduced pressure and the residue was purified by column chromatography using hexane and ethyl acetate to obtain an off-white solid. (3.67 g, 60.8% yield). Spectra were consistent with literature data. ^[2]

Synthesis of 3-bromopropyl thiophene-2-carboxylate 1aq

$$\begin{array}{c} O \\ O \\ S \end{array} + HO \\ HO \\ Br \\ \hline 0 \ ^{\circ}C \ to \ RT, \ 12 \ h \end{array}$$

To a 250 mL round-bottom flask were added thiophene-2-carboxylic acid (2.563 g, 20.0 mmol, 1.00 equiv), DMAP (0.244 g, 2.00 mmol, 0.100 equiv), anhydrous DCM (50 mL), and 3-bromopropan-1-ol (3.058 g, 22.0 mmol, 1.10 equiv). A solution of DCC (4.539 g, 22.0 mmol, 1.10 equiv) in DCM (10.0 mL) was added dropwise at 0 °C. After stirring for 12 h at room temperature, the reaction mixture was filtered with a pad of celite and washed with ethyl acetate. The filtrate was concentrated, and the residue was purified with silica gel chromatography (eluent: 200:1 petroleum ether: ethyl acetate) to obtain a yellow oil (4.12g, 83% yield). Spectra were consistent with literature data.

Synthesis of 3-bromopropyl furan-2-carboxylate 1ar

$$\begin{array}{c} 0 \\ 0 \\ 0 \end{array} + H0 \\ Br \\ 0 \\ 0 \\ 0 \\ C \\ to \\ RT, 12 \\ h \end{array}$$

To a 250 mL round-bottom flask were added furan-2-carboxylic acid (2.241 g, 20.0 mmol, 1.00 equiv), DMAP (0.244 g, 2.00 mmol, 0.100 equiv), anhydrous DCM (50 mL), and 3-bromopropan-1-ol (3.058 g, 22.0 mmol, 1.10 equiv). A solution of DCC (4.539 g, 22.0 mmol, 1.10 equiv) in DCM (10.0 mL) was added dropwise at 0 °C. After stirring for 12 h at room temperature, the reaction mixture was filtered with a pad of celite and washed with ethyl acetate. The filtrate was concentrated, and the residue was purified with silica gel chromatography (eluent: 200:1 petroleum ether: ethyl acetate) to obtain a colorless oil (3.45g, 74% yield). Spectra were consistent with literature data. ^[4]

Synthesis of 3-bromopropyl 2-(3-benzoylphenyl)propanoate 1as

To a 250 mL round-bottom flask were added Ketoprofen (5.085 g, 20.0 mmol, 1.0 equiv), DMAP (0.244 g, 2.00 mmol, 0.100 equiv), anhydrous DCM (50 mL), and 3-

bromopropan-1-ol (2.779 g, 20.0 mmol, 1.0 equiv). A solution of DCC (4.539 g, 22.0 mmol, 1.10 equiv) in DCM (10.0 mL) was added dropwise at 0 °C. After stirring for 12 h at room temperature, the reaction mixture was filtered with a pad of celite and washed with ethyl acetate. The filtrate was concentrated, and the residue was purified with silica gel chromatography (eluent: 30:1 petroleum ether: ethyl acetate) to obtain a colorless oil (3.90g, 52% yield). HRMS (ESI): m/z for $C_{19}H_{19}BrO_3$ [M+Na]⁺ calcd 397.0410, found 397.0406.

Synthesis of 3-bromopropyl (tert-butoxycarbonyl)-L-phenylalaninate 1at

To a 250 mL round-bottom flask were added Boc-L-phenylalanine (5.306 g, 20.0 mmol, 1.0 equiv), DMAP (0.244 g, 2.00 mmol, 0.100 equiv), anhydrous DCM (50 mL), and 3-bromopropan-1-ol (2.779 g, 20.0 mmol, 1.0 equiv). A solution of DCC (4.539 g, 22.0 mmol, 1.10 equiv) in DCM (10.0 mL) was added dropwise at 0 °C. After stirring for 12 h at room temperature, the reaction mixture was filtered with a pad of celite and washed with ethyl acetate. The filtrate was concentrated, and the residue was purified with silica gel chromatography (eluent: 30:1 petroleum ether: ethyl acetate) to obtain a white solid (4.25g, 55% yield). HRMS (ESI): m/z for C₁₇H₂₄BrNO₄ [M+Na]⁺ calcd 408.0781, found 408.0789.

 Synthesis
 of
 (3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6

 methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H* cyclopenta[a]phenanthren-3-yl 2-bromoacetate 1au

To a 250 mL round-bottom flask were added Cholesterol (7.733 g, 20.0 mmol, 1.0 equiv), DMAP (0.244 g, 2.00 mmol, 0.100 equiv), anhydrous DCM (50 mL), and 2-bromoacetic acid (2.779 g, 20.0 mmol, 1.0 equiv). A solution of DCC (4.539 g, 22.0 mmol, 1.10 equiv) in DCM (10.0 mL) was added dropwise at 0 °C. After stirring for 12 h at room temperature, the reaction mixture was filtered with a pad of celite and washed with ethyl acetate. The filtrate was concentrated, and the residue was purified with silica gel chromatography (eluent: 30:1 petroleum ether: ethyl acetate) to obtain a white solid (5.48g, 54% yield). ^[5]

B. General procedure for the preparation of di/trithiosulfonates

General procedure for the synthesis of tetrasulfide.

A solution of S_2Cl_2 (0.80 mL, 10.00 mmol, 0.50 equiv) in dry ether (50.0 mL) is cooled to -78 °C in a dry ice/acetone bath. A solution of thiol (20.00 mmol, 1.00 equiv) and Et₃N (1.62 mL, 20.00 mmol, 1.00 equiv) in dry ether (50.0 mL) is added dropwise over 1 hour. After the addition is complete, the solution is stirred at -78 °C for an additional 30 minutes after which is warmed to room temperature and quenched with water. The organic layer was separated and washed with water, Na₂CO₃ (sat.) and brine, dried over NaSO₄, filtered and concentrated in vacuo. The crude residue was purified by column chromatography to give the desired product. ^[6]

General procedure for the preparation of di/trithiosulfonates

A flame-dried Schlenk-tube equipped witzzh a magnetic stir bar was sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before a solution of RSSR or RSSSSR (10.00 mmol, 1.00 equiv) in Et₂O (40.0 mL) was added. SO₂Cl₂ (1.35 g, 10.00 mmol, 1.00 equiv) was slowly added to the result solution at 0 °C and the mixture was stirred at the same temperature for 1 h. Then a solution of PhSO₂SNa (3.92 g, 20.00 mmol, 2.00 equiv) in acetone (50.0 mL) was added slowly at 0 °C and then the mixture was allowed to warm to room temperature

stirred for 2 h. The precipitate was filtered and the filtrate was evaporated under reduced pressure with the aid of a rotary evaporator the crude residue was purified by column chromatography to give the desired product. ^[7]

IV. General procedure for cross coupling and substrate scope

General procedure for reaction of alkyl halides and PhSO₂SS'Bu.

 $R \xrightarrow{X} + \underbrace{V}_{S} \xrightarrow{S} x^{S} \xrightarrow{t}_{Bu} \xrightarrow{NiCl_2(PPh_3)_2 (5 \text{ mol}\%), \text{ terbpy } (7.5 \text{ mol}\%)}_{Mn (2.5 \text{ equiv}), DMF, RT, 24 \text{ h}} R \xrightarrow{SS^tBu}$

An oven-dried 25 mL Schlenk tube, equipped with a stirring bar, was charged with PhSO₂SS'Bu (0.75 mmol, 1.5 equiv), alkyl halides (0.5 mmol, 1.0 equiv), Ni(PPh₃)₂Cl₂ (5 mol%), terpyridine (7.5 mol%), Mn (1.5 mmol, 3.0 equiv) and DMF (4.0 mL) in argon atmosphere. The reaction mixture was stirred at RT for 24 h. After completion of the reaction, the solution was filtered and washed with ethyl acetate for 3 times. The combined solvents were removed under vacuum, and the residue was purified by flash column chromatography to obtain the desired thioether.

1. Substrate scope of alkyl bromides

Benzyl 2-(tert-butylsulfinothioyl)acetate 3aa

Colorless oil (50 °C, 66.2 mg, 49%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.70$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.30 (m, 5H), 5.18 (s, 2H), 3.53 (s, 2H), 1.33 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.2, 135.4, 128.6, 128.3, 67.1, 48.3, 43.1, 29.8 ppm. HRMS (ESI): m/z for C₁₃H₁₈O₂S₂ [M+Na]⁺ calcd 293.0640, found 293.0637.

(2-(Tert-butylsulfinothioyl)ethyl)benzene 3ab

Pale yellow oil (74.7 mg, 66%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.84$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.28 (m, 2H), 7.26 – 7.18 (m, 3H), 3.01 – 2.94 (m, 4H), 1.36 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 140.2, 128.5, 128. 5, 126.3, 47.8, 41.8, 35.7, 30.0 ppm. Spectra were consistent with literature data. ^[6]

1-(2-(Tert-butylsulfinothioyl)ethyl)-4-hydroxybenzene 3ac

Colorless oil (50 °C, 66.7 mg, 55%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.45$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.07 (d, J = 8.5 Hz, 2H), 6.77 (d, J = 8.6 Hz, 2H), 5.00 (s, 1H), 2.90 (s, 4H), 1.34 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.0, 132.4, 129.7, 115.3, 47.9, 42.1, 34.8, 29.9 ppm. HRMS (ESI): m/z for C₁₂H₁₈OS₂ [M+Na]⁺ calcd 265.0691, found 265.0695.

1-(2-(Tert-butylsulfinothioyl)ethyl)-4-chlorobenzene 3ad

Colorless oil (50 °C, 73.0 mg, 56%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.85$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 2.95 – 2.86 (m, 4H), 1.33 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.6, 132.1, 130.0, 128.6, 48.0, 41.6, 34.9, 29.9 ppm. HRMS (ESI): m/z for C₁₂H₁₇ClS₂ [M+Na]⁺ calcd 283.0352, found 283.0344.

(3-(Tert-butylsulfinothioyl)propyl)benzene 3ae

Pale yellow oil (119.0 mg, 99%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.86$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.27 (m, 2H), 7.24 – 7.18 (m, 3H), 2.76 – 2.70 (m, 4H), 2.02 (p, *J* = 7.4 Hz, 2H), 1.34 (s, 9H). ¹³C NMR (101 MHz, Chloroform *d*) δ 141.4, 128.5, 128.3, 125.9, 47.7, 39.8, 34.4, 30.6, 29.9 ppm. Spectra were consistent with literature data. ^[6]

(2-(Tert-butylsulfinothioyl)ethoxy)benzene 3af

Pale yellow oil (78.8 mg, 65%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.81$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.27 (m, 2H), 7.00 – 6.89 (m, 3H), 4.23 (t, J = 7.0 Hz, 2H), 3.06 (t, J = 7.0 Hz, 2H), 1.37 (s, 9H). ¹³C NMR (101 MHz, Chloroform*d*) δ 158.4, 129.5, 121.0, 114.6, 66.5, 48.0, 38.9, 29.8 ppm. Spectra were consistent with literature data. ^[6]

(4-(Tert-butylsulfinothioyl)butyl)benzene 3ag

Pale yellow oil (67.4 mg, 53%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.70$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 7.24 (m, 2H), 7.20 – 7.15 (m, 3H), 2.72 (t, *J* = 6.9 Hz, 2H), 2.62 (t, *J* = 7.1 Hz, 2H), 1.71 (t, *J* = 3.7 Hz, 4H), 1.32 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 142.2, 128.4, 128.3, 125.8, 47.7, 40.7, 35.5, 30.3, 29.9, 28.9 ppm. Spectra were consistent with literature data. ^[6]

((3-(Tert-butylsulfinothioyl)propoxy)methyl)benzene 3ah

Colorless oil (50 °C, 90.6 mg, 67%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.72$). ¹HNMR (400 MHz, Chloroform-*d*) δ 7.33 (d, J = 1.3 Hz, 5H), 4.50 (s, 2H), 3.56 (t, J = 6.1 Hz, 2H), 2.86 – 2.75 (m, 2H), 2.04 – 1.92 (m, 2H), 1.33 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.4, 128.3, 127.6, 127.5, 72.9, 68.4, 47.7, 37.3, 29.9, 29.4 ppm. HRMS (ESI): m/z for C₁₄H₂₂OS₂ [M+Na]⁺ calcd 293.1004, found 293.0989. *Tert*-butyl (3-(*tert*-butylsulfinothioyl)propyl)carbamate 3ai

BocHN SS^tBu

Pale yellow oil (99.2 mg, 71%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.47$). ¹H NMR (400 MHz, Chloroform-*d*) δ 4.62 (s, 1H), 3.25 – 3.12 (m, 2H), 2.69 (td, J =7.3, 3.1 Hz, 2H), 1.83 (dd, J = 8.6, 5.5 Hz, 2H), 1.41 (s, 9H), 1.30 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.9, 79.2, 47.9, 39.2, 37.7, 29.9, 29.6, 28.4 ppm. Spectra were consistent with literature data. ^[6]

2-(3-(Tert-butylsulfinothioyl)propyl)isoindoline-1,3-dione 3aj

Pale yellow oil (50 °C, 112.9 mg, 73%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.49$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (dd, J = 5.5, 3.1 Hz, 2H), 7.67 (dd, J = 5.5, 3.0 Hz, 2H), 3.73 (t, J = 7.0 Hz, 2H), 2.72 – 2.63 (m, 2H), 2.02 (p, J = 7.1 Hz, 2H), 1.25 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.2, 133.9, 131.9, 123.1, 47.7, 37.6, 36.8, 29.8, 28.2 ppm. Spectra were consistent with literature data. ^[6]

4-(3-(Tert-butylsulfinothioyl)propoxy)benzaldehyde 3ak

Colorless oil (79.6 mg, 56%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.51$). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.87 (s, 1H), 7.82 (d, *J* = 8.8 Hz, 2H), 6.99 (d, *J* = 8.7 Hz, 2H), 4.15 (t, *J* = 6.1 Hz, 2H), 2.87 (t, *J* = 7.0 Hz, 2H), 2.24 – 2.15 (m, 2H), 1.33 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 190.8, 163.9, 132.0, 129.9, 114.8, 66.1, 49.1, 35.2, 29.9, 28.1 ppm. HRMS (ESI): m/z for C₁₄H₂₀O₂S₂ [M+Na]⁺ calcd 307.0797, found 307.0790.

1-(Tert-butylsulfinothioyl)-6-chlorohexane 3al

Colorless oil (60.2 mg, 50%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.80$). ¹H NMR (400 MHz, Chloroform-*d*) δ 3.54 (t, J = 6.7 Hz, 2H), 2.70 (t, J = 7.3 Hz, 2H), 1.84 – 1.75 (m, 2H), 1.69 (p, J = 7.4 Hz, 2H), 1.57 – 1.51 (m, 2H), 1.33 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 47.8, 44.8, 40.5, 32.2, 29.9, 28.5, 25.8 ppm. HRMS (ESI): m/z for C₉H₁₉ClS₂ [M+Na]⁺ calcd 249.0509, found 249.0517.

Ethyl 6-(tert-butylsulfinothioyl)hexanoate 3am

Pale yellow oil (50 °C, 82.0 mg, 62%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.70$). ¹H NMR (400 MHz, Chloroform-*d*) δ 4.06 (q, J = 7.1 Hz, 2H), 2.64 (t, J = 7.4 Hz, 2H), 2.24 (t, J = 7.5 Hz, 2H), 1.66 – 1.55 (m, 4H), 1.36 (dd, J = 8.8, 6.6 Hz, 2H), 1.26 (d, J = 1.2 Hz, 9H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.4, 60.0, 47.5, 40.4, 34.0, 29.8, 28.8, 27.8, 24.4, 14.1 ppm. Spectra were consistent

with literature data.^[6]

6-(Tert-butylsulfinothioyl)hexanenitrile 3an

Pale yellow oil (87.0 mg, 80%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.56$). ¹H NMR (400 MHz, Chloroform-*d*) δ 2.71 (t, J = 6.7 Hz, 2H), 2.38 (t, J = 6.7 Hz, 2H), 1.81 (m, 4H), 1.32 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 119.4, 53.4, 47.9, 39.3, 29.9, 28.0, 24.0, 16.8 ppm. HRMS (ESI): m/z for C₉H₁₇NS₂ [M+Na]⁺ calcd 226.0695, found 226.0690.

1-(Tert-butylsulfinothioyl)-6-hydroxyhexane 3ao

Pale yellow oil (38.9 mg, 35%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.20$). ¹H NMR (400 MHz, Chloroform-*d*) δ 3.62 (t, J = 6.6 Hz, 2H), 2.74 – 2.64 (m, 2H), 1.72 – 1.62 (m, 2H), 1.61 – 1.51 (m, 3H), 1.42 – 1.34 (m, 4H), 1.31 (d, J = 0.8 Hz, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 62.8, 47.6, 40.7, 32.5, 29.9, 29.2, 28.2, 25.3 ppm. Spectra were consistent with literature data. ^[6]

3-(2-(Tert-butylsulfinothioyl)ethyl)-1H-indole 3ap

Pale yellow oil (65.0 mg, 49%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.34$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (s, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.25 – 7.12 (m, 2H), 7.05 (s, 1H), 3.20 – 3.12 (m, 2H), 3.05 (dd, J = 8.5, 6.4 Hz, 2H), 1.37 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 136.2, 127.2, 122.0, 121.8, 119.3, 118.7, 114.6, 111.2, 47.8, 41.0, 30.0, 25.4 ppm. Spectra were consistent with literature data. ^[6]

3-(Tert-butylsulfinothioyl)propyl thiophene-2-carboxylate 3aq

Pale yellow oil (74.1 mg, 51%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.75$).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, J = 3.7 Hz, 1H), 7.55 (d, J = 4.9 Hz, 1H), 7.13 – 7.05 (m, 1H), 4.42 (t, J = 6.1 Hz, 2H), 3.01 (t, J = 7.1 Hz, 2H), 2.26 – 2.18 (m, 2H), 1.38 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.1, 133.6, 133.4, 132.4, 127.7, 63.2, 49.0, 35.3, 29.8, 27.9 ppm. HRMS (ESI): m/z for C₁₂H₁₈O₂S₃ [M+Na]⁺ calcd 313.0361, found 313.0348.

3-(Tert-butylsulfinothioyl)propyl furan-2-carboxylate 3ar

Colorless oil (76.8 mg, 56%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.64$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 (s, 1H), 7.15 (d, J = 3.5 Hz, 1H), 6.49 (s, 1H), 4.38 (t, J = 6.2 Hz, 2H), 2.79 (t, J = 7.2 Hz, 2H), 2.12 (p, J = 6.8 Hz, 2H), 1.31 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.6, 146.3, 144.5, 117.9, 111.8, 63.2, 47.8, 36.5, 29.9, 28.3 ppm. HRMS (ESI): m/z for C₁₂H₁₈O₃S₂ [M+Na]⁺ calcd 297.0590, found 297.0591.

2. Late-stage modification of natural products or bioactive molecules

Synthesis 3-(tert-butylsulfinothioyl)propyl 2-(3-benzoylphenyl)propanoate 3as

An oven-dried 25 mL Schlenk tube, equipped with a stirring bar, was charged with PhSO₂SS'Bu (0.75 mmol, 1.5 equiv), **1as** (0.5 mmol, 1.0 equiv), Ni(PPh₃)₂Cl₂ (5 mol%), terpyridine (7.5 mol%), Mn (1.5 mmol, 3.0 equiv) and DMF (4.0 mL) in argon atmosphere. The reaction mixture was stirred at RT for 24 h. After completion of the reaction, the solution was filtered and washed with ethyl acetate for 3 times. The combined solvents were removed under vacuum, and the residue was purified by flash column chromatography to obtain a colorless oil (114.6 mg, 55% yield). Eluent: petroleum ether/ethyl acetate (5:1, $R_f = 0.50$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 – 7.78 (m, 2H), 7.75 (t, *J* = 1.8 Hz, 1H), 7.68 (dt, *J* = 7.6, 1.4 Hz, 1H), 7.62 – 7.57 (m, 1H), 7.54 (dt, *J* = 7.7, 1.6 Hz, 1H), 7.51 – 7.44 (m, 3H), 4.20 (t, *J* = 6.2 Hz, 2H),

3.80 (d, J = 7.2 Hz, 1H), 2.80 (t, J = 6.9 Hz, 2H), 2.10 – 2.01 (m, 2H), 1.54 (d, J = 7.2 Hz, 3H), 1.36 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.5, 174.0, 140.8, 137.8, 137.4, 132.5, 131.5, 130.1, 129.2, 129.1, 128.6, 128.3, 63.0, 49.0, 45.3, 35.1, 29.8, 27.6, 18.4 ppm. HRMS (ESI): m/z for C₂₃H₂₈O₃S₂ [M+Na]⁺ calcd 439.1372, found 439.1370. Synthesis 3-(*tert*-butylsulfinothioyl)propyl (*tert*-butoxycarbonyl)-*L*-phenylalaninate 3at

An oven-dried 25 mL Schlenk tube, equipped with a stirring bar, was charged with PhSO₂SS'Bu (0.75 mmol, 1.5 equiv), **1at** (0.5 mmol, 1.0 equiv), Ni(PPh₃)₂Cl₂ (5 mol%), terpyridine (7.5 mol%), Mn (1.5 mmol, 3.0 equiv) and DMF (4.0 mL) in argon atmosphere. The reaction mixture was stirred at RT for 24 h. After completion of the reaction, the solution was filtered and washed with ethyl acetate for 3 times. The combined solvents were removed under vacuum, and the residue was purified by flash column chromatography to obtain a colorless oil (111.2 mg, 52% yield). Eluent: petroleum ether/ethyl acetate (5:1, $R_f = 0.42$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 – 7.25 (m, 3H), 7.16 – 7.11 (m, 2H), 4.99 (d, *J* = 8.3 Hz, 1H), 4.65 – 4.49 (m, 1H), 4.20 (t, *J* = 6.1 Hz, 2H), 3.07 (d, *J* = 6.3 Hz, 2H), 2.80 – 2.74 (m, 2H), 2.08 – 2.00 (m, 2H), 1.42 (s, 9H), 1.38 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.0, 135.9, 129.3, 128.6, 127.1, 79.9, 63.4, 54.5, 49.0, 38.5, 35.0, 29.8, 28.3, 27.5 ppm. HRMS (ESI): m/z for C₂₁H₄₄NO₄S₂ [M+Na]⁺ calcd 450.1743, found 450.1765.

 Synthesis
 of
 (3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6

 methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H* cyclopenta[a]phenanthren-3-yl 2-bromoacetate 3au

An oven-dried 25 mL Schlenk tube, equipped with a stirring bar, was charged with PhSO₂SS'Bu (0.75 mmol, 1.5 equiv), **1au** (0.5 mmol, 1.0 equiv), Ni(PPh₃)₂Cl₂ (5 mol%), terpyridine (7.5 mol%), Mn (1.5 mmol, 3.0 equiv) and DMF (4.0 mL) in argon atmosphere. The reaction mixture was stirred at RT for 24 h. After completion of the reaction, the solution was filtered and washed with ethyl acetate for 3 times. The combined solvents were removed under vacuum, and the residue was purified by flash column chromatography to obtain a white solid (115.3 mg, 42% yield). MP: 95-96 °C. Eluent: petroleum ether/ethyl acetate (5:1, $R_f = 0.78$). ¹H NMR (400 MHz, Chloroform-*d*) δ 5.38 (dd, *J* = 5.0, 2.0 Hz, 1H), 4.73 – 4.59 (m, 1H), 3.46 (s, 2H), 2.35 (d, *J* = 7.4 Hz, 2H), 2.08 – 1.75 (m, 6H), 1.69 – 1.37 (m, 10H), 1.34 (s, 9H), 1.30 – 1.21 (m, 2H), 1.21 – 1.04 (m, 8H), 1.02 (s, 5H), 0.99 – 0.93 (m, 2H), 0.91 (d, *J* = 6.5 Hz, 4H), 0.86 (dd, *J* = 6.7, 1.8 Hz, 7H), 0.67 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.7, 139.4, 122.8, 75.2, 56.6, 56.1, 49.9, 48.3, 43.4, 42.3, 39.7, 39.5, 38.0, 36.9, 36.5, 36.1, 35.8, 31.9, 31.8, 29.8, 28.2, 28.0, 27.7, 24.2, 23.8, 22.8, 22.5, 21.0, 19.3, 18.7, 11.8 ppm. HRMS (ESI): m/z for C₃₃H₅₆O₂S₂ [M+Na]⁺ calcd 571.3614, found 571.3606.

3. Substrate scope of di/trithiosulfonate reagents

1-Hexyl-2-(4-methoxyphenethyl)disulfane 4aa

Pale yellow oil (80 °C, 85.3 mg, 60%). Eluent: petroleum ether/ethyl acetate (10:1, R_f = 0.65). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.13 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.7 Hz, 2H), 3.79 (s, 3H), 2.95 – 2.87 (m, 4H), 2.72 – 2.66 (m, 2H), 1.67 (p, *J* = 7.4 Hz, 2H), 1.38 (dt, *J* = 2.9, 1.6 Hz, 2H), 1.30 (m, 4H), 0.89 (t, *J* = 6.8 Hz, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ 158.1, 132.2, 129.5, 113.8, 55.2, 40.5, 39.2, 34.8, 31.4, 29.2, 28.2, 22.5, 14.0 ppm. Spectra were consistent with literature data. ^[6]

1-Cyclohexyl-2-(4-methoxyphenethyl)disulfane 4ab

Pale yellow oil (97.4 mg, 69%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.64$).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.13 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 3.79 (s, 3H), 2.91 (s, 4H), 2.73 (tq, J = 6.7, 3.4 Hz, 1H), 2.03 (d, J = 12.2 Hz, 2H), 1.87 – 1.75 (m, 2H), 1.63 (d, J = 10.4 Hz, 1H), 1.41 – 1.25 (m, 5H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.1, 132.3, 129.5, 113.8, 55.2, 49.6, 41.6, 34.8, 32.9, 26.1, 25.6 ppm. Spectra were consistent with literature data. ^[6]

(4-(Tert-butyl)benzyl)(2-phenoxyethyl)sulfane 4ac

Colorless oil (105.2 mg, 70%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.81$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 (d, J = 8.4 Hz, 2H), 7.32 – 7.26 (m, 4H), 6.98 (tt, J = 7.3, 1.1 Hz, 1H), 6.93 – 6.89 (m, 2H), 4.13 (t, J = 6.6 Hz, 2H), 3.93 (s, 2H), 2.81 (t, J = 6.7 Hz, 2H), 1.33 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.3, 150.6, 134.0, 129.6, 128.9, 125.5, 121.0, 114.5, 66.0, 43.4, 37.1, 34.5, 31.3 ppm. HRMS (ESI): m/z for C₁₉H₂₄OS [M+Na]⁺ calcd 355.1161, found 355.1158.

(4-Chlorobenzyl)(2-phenoxyethyl)sulfane 4ad

Colorless oil (90.6 mg, 65%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.76$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 – 7.21 (m, 6H), 6.99 – 6.94 (m, 1H), 6.92 – 6.83 (m, 2H), 4.09 (t, *J* = 6.5 Hz, 2H), 3.85 (s, 2H), 2.81 (t, *J* = 6.5 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.3, 135.8, 133.4, 130.6, 129.5, 128.7, 121.1, 114.6, 66.0, 42.8, 37.5 ppm. HRMS (ESI): m/z for C₁₅H₁₅ClOS [M+Na]⁺ calcd 333.0145, found 333.0139.

Methyl 2-((3-phenylpropyl)disulfaneyl)acetate 4ae

Pale yellow oil (92.3 mg, 72%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.59$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 – 7.26 (m, 2H), 7.24 – 7.14 (m, 3H), 3.71 (s, 3H), 3.45 (s, 2H), 2.74 (dt, J = 12.3, 7.4 Hz, 4H), 2.07 – 1.98 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.0, 141.0, 128.4, 128.3, 125.9, 52.4, 41.1, 37.7, 34.2,
30.3 ppm. HRMS (ESI): m/z for C₁₂H₁₆O₂S₂ [M+Na]⁺ calcd 279.0484, found 279.0497.
Ethyl 2-((3-phenylpropyl)disulfaneyl)propanoate 4af

Pale yellow oil (128.0 mg, 90%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.68$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.25 (m, 2H), 7.19 (td, J = 6.6, 1.7 Hz, 3H), 4.20 – 4.11 (m, 2H), 3.49 (q, J = 7.1 Hz, 1H), 2.70 (td, J = 7.4, 1.9 Hz, 4H), 2.00 (q, J = 7.6 Hz, 2H), 1.48 (d, J = 7.1 Hz, 3H), 1.27 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.4, 141.2, 128.4, 128.4, 125.9, 61.3, 47.1, 38.2, 34.3, 30.4, 16.7, 14.1 ppm. HRMS (ESI): m/z for C₁₄H₂₀O₂S₂ [M+Na]⁺ calcd 307.0797, found 307.0816.

(3-(Tert-butylsulfinothioyl)propyl)benzene 4ag

Pale yellow oil (69.7 mg, 58%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.86$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.27 (m, 2H), 7.24 – 7.18 (m, 3H), 2.76 – 2.70 (m, 4H), 2.02 (p, *J* = 7.4 Hz, 2H), 1.34 (s, 9H). ¹³C NMR (101 MHz, Chloroform *d*) δ 141.4, 128.5, 128.3, 125.9, 47.7, 39.8, 34.4, 30.6, 29.9 ppm. Spectra were consistent with literature data. ^[6]

1-Hexyl-2-(4-methoxyphenethyl)disulfane 4ah

Pale yellow oil (85.3 mg, 60%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.65$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.13 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 3.79 (s, 3H), 2.95 – 2.87 (m, 4H), 2.72 – 2.66 (m, 2H), 1.67 (p, J = 7.4 Hz, 2H), 1.38 (dt, J = 2.9, 1.6 Hz, 2H), 1.30 (m, 4H), 0.89 (t, J = 6.8 Hz, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ 158.1, 132.2, 129.5, 113.8, 55.2, 40.5, 39.2, 34.8, 31.4, 29.2, 28.2, 22.5, 14.0 ppm. Spectra were consistent with literature data. ^[6]

1-Cyclohexyl-2-(4-methoxyphenethyl)disulfane 4ai

Pale yellow oil (83.3 mg, 59%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.64$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.13 (d, *J* = 8.6 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 3.79 (s, 3H), 2.91 (s, 4H), 2.73 (tq, *J* = 6.7, 3.4 Hz, 1H), 2.03 (d, *J* = 12.2 Hz, 2H), 1.87 – 1.75 (m, 2H), 1.63 (d, *J* = 10.4 Hz, 1H), 1.41 – 1.25 (m, 5H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.1, 132.3, 129.5, 113.8, 55.2, 49.6, 41.6, 34.8, 32.9, 26.1, 25.6 ppm. Spectra were consistent with literature data. ^[6]

Ethyl 2-((3-phenylpropyl)disulfaneyl)propanoate 4aj

Pale yellow oil (96.7 mg, 68%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.68$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.25 (m, 2H), 7.19 (td, J = 6.6, 1.7 Hz, 3H), 4.20 – 4.11 (m, 2H), 3.49 (q, J = 7.1 Hz, 1H), 2.70 (td, J = 7.4, 1.9 Hz, 4H), 2.00 (q, J = 7.6 Hz, 2H), 1.48 (d, J = 7.1 Hz, 3H), 1.27 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.4, 141.2, 128.4, 128.4, 125.9, 61.3, 47.1, 38.2, 34.3, 30.4, 16.7, 14.1 ppm. HRMS (ESI): m/z for C₁₄H₂₀O₂S₂ [M+Na]⁺ calcd 307.0797, found 307.0816.

V. Mechanistic studies

1. Radical inhibition experiment

An oven-dried 25 mL Schlenck tube, equipped with a stirring bar, was charged with **2aa** (0.75 mmol, 1.5 equiv), **1ae** (0.5 mmol, 1.0 equiv), Ni(PPh₃)₂Cl₂ (5 mol%), terpyridine (7.5 mol%), Mn (1.25 mmol, 2.5 equiv) and DMF (4.0 mL) in argon atmosphere, the reaction mixture was stirred at RT for 24 h. The reaction mixture was stirred at RT for 24 h. After simple filtration and removal of solvent, the crude products were subjected to ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. However, only a trace amount of desired cross-coupling product **3ae** was observed, indicating that a radical pathway may be involved in the current C-S reductive coupling.

2. Control experiment

Catalytic system and Mn

An oven-dried 25 mL Schlenk tube, equipped with a stirring bar, was charged with **2aa** (0.75 mmol, 1.5 equiv), **1ae** (0.5 mmol, 1.0 equiv), Mn (1.25 mmol, 2.5 equiv) and DMF (4.0 mL) in argon atmosphere. The reaction mixture was stirred at RT for 24 h. After completion of the reaction, the solution was filtered and washed with ethyl acetate for 3 times. After removal of solvent, no desired product was observed by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

Another oven-dried 25 mL Schlenk tube, equipped with a stirring bar, was charged with **2aa** (0.75 mmol, 1.5 equiv), **1ae** (0.5 mmol, 1.0 equiv), Ni(PPh₃)₂Cl₂ (5 mol%),

terpyridine (7.5 mol%) and DMF (4.0 mL) in argon atmosphere. The reaction mixture was stirred at RT for 24 h. After completion of the reaction, the solution was filtered and washed with ethyl acetate for 3 times. After removal of solvent, no desired product was observed by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

3. Isolation of reactive intermediates

General procedure for the capture of reductive intermediate Int-I

An oven-dried 25 mL Schlenk tube, equipped with a stirring bar, was charged with **2aa** (0.75 mmol, 1.0 equiv), Mn (1.5 mmol, 2.0 equiv) and DMF (4.0 mL) in argon atmosphere. The reaction mixture was stirred at RT for 4 h. After completion of the reaction, the solution was filtered and washed with ethyl acetate for 3 times. After removal of solvent, no desired product was observed by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

Another oven-dried 25 mL Schlenk tube, equipped with a stirring bar, was charged with **2aa** (0.75 mmol, 1.0 equiv), Mn (1.5 mmol, 2.0 equiv), Ni (PPh₃)₂Cl₂ (5 mol%) and DMF (4.0 mL) in argon atmosphere. The reaction mixture was stirred at RT for 4 h. After completion of the reaction, the solution was filtered and washed with ethyl acetate for 3 times. The combined solvents were removed under vacuum, and the residue was purified by flash column chromatography to obtain **Int-I** as a yellow oil (54.5 mg, 45% yield). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.91$). ¹H NMR (400 MHz, Chloroform-*d*) δ 1.39 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 49.1, 30.2 ppm. Spectra were consistent with literature data. ^[8]

General procedure for the conversion of Int-I under standard condition

An oven-dried 25 mL Schlenk tube, equipped with a stirring bar, was charged with

Int-I (0.75 mmol, 1.5 equiv), **1ae** (0.5 mmol, 1.0 equiv), Ni(PPh₃)₂Cl₂ (5 mol%), terpyridine (7.5 mol%), Mn (1.25 mmol, 2.5 equiv) and DMF (4.0 mL) in argon atmosphere. The reaction mixture was stirred at RT for 24 h. After completion of the reaction, the solution was filtered and washed with ethyl acetate for 3 times. The combined solvents were removed under vacuum, and the residue was purified by flash column chromatography to obtain the desired product **3ae** (110.6 mg, 92% yield), indicating that 1,4-di-*tert*-butyltetrasulfane intermediate may be involved in the current C-S coupling.

General procedure for the capture of reductive intermediate Int-I

An oven-dried 25 mL Schlenk tube, equipped with a stirring bar, was charged with PhSO₂SSS'Bu (**2aa'**, 0.75 mmol, 1.5 equiv), Mn (1.5 mmol, 3.0 equiv), Ni (PPh₃)₂Cl₂ (5 mol%) and DMF (4.0 mL) in argon atmosphere. The reaction mixture was stirred at RT for 4 h. After completion of the reaction, the solution was filtered and washed with ethyl acetate for 3 times. The combined solvents were removed under vacuum, and the residue was purified by flash column chromatography to obtain **Int-I** as a yellow oil (50.9 mg, 42% yield). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.91$). ¹H NMR (400 MHz, Chloroform-*d*) δ 1.39 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 49.1, 30.2 ppm. Spectra were consistent with literature data. ^[6]

General procedure for the conversion of Int-I under standard condition

An oven-dried 25 mL Schlenk tube, equipped with a stirring bar, was charged with **Int-I** (0.75 mmol, 1.5 equiv), **1ae** (0.5 mmol, 1.0 equiv), Ni(PPh₃)₂Cl₂ (5 mol%), terpyridine (7.5 mol%), Mn (1.25 mmol, 2.5 equiv) and DMF (4.0 mL) in argon atmosphere. The reaction mixture was stirred at RT for 24 h. After completion of the reaction, the solution was filtered and washed with ethyl acetate for 3 times. The combined solvents were removed under vacuum, and the residue was purified by flash column chromatography to obtain the desired product **4ag** (110.6 mg, 92% yield)

indicating that 1,4-di-*tert*-butyltetrasulfane intermediate may be involved in the current C-S coupling.

4. Capture and conversion of trisulfide intermediates

An oven-dried 25 mL Schlenk tube, equipped with a stirring bar, was charged with **Int-I** (0.75 mmol, 1.5 equiv), **1ae** (0.5 mmol, 1.0 equiv), Ni(PPh₃)₂Cl₂ (5 mol%), terpyridine (7.5 mol%), Mn (1.25 mmol, 2.5 equiv) and DMF (4.0 mL) in argon atmosphere. The reaction mixture was stirred at RT for 13 h. After simple filtration and removal of solvent, the crude products were subjected to ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. In addition to the expected product **3ae**, there is also a trace amount of trisulfide product **3ae'** was observed.

(3-(Tert-butylsulfonodithioyl)propyl)benzene 3ae'

Pale yellow oil (36.8 mg, 27%). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.86$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.26 (m, 2H), 7.19 (d, J = 7.2 Hz, 3H), 2.87 (t, J = 7.2 Hz, 2H), 2.74 (t, J = 7.5 Hz, 2H), 2.08 (p, J = 7.3 Hz, 2H), 1.38 (s, 9H) ppm. ¹H NMR spectra was consistent with literature data. ^[6]

General procedure for the synthesis of BnSSSBn

To a stirred solution of sodium thiosulfate pentahydrate ($Na_2S_2O_3$, 3.54 mmol, 1.3 equiv) in 30% of ethanol-water mixture (10.0 ml), was added the corresponding Benzyl mercaptan (2.72 mmol, 1.0 equiv) and stirred at room temperature for 4-5 h. Progress of the reaction was monitored by TLC study. Upon completion of the reaction, ethanol component was removed under reduced pressure and the residue was used for the next step in general without any further purification.

To a stirred solution of the crude Bunte salt (2.72 mmol, 1.0 equiv) in water (30.0 ml), was added an aqueous solution (40.0 ml) of sodium sulfide nonahydrate (1.36 mmol, 0.5 equiv) at 0 °C in a drop-wise manner and the mixture was stirred at that temperature for the required duration. A white colored suspension appeared upon completion of the addition of sodium sulfide. The progress of the reaction was monitored by TLC study. Upon the completion of the reaction, the mixture was diluted with ethyl acetate and washed with brine solution. The combined organic layer was dried over anhydrous sodium sulfate and the solvent was evaporated under reduced pressure to afford a white solid (246.1 mg, 65% yield). Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.76$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 – 7.26 (m, 5H),

4.04 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 136.5, 129.4, 128.6, 127.5, 43.1 ppm. Spectra were consistent with literature data. ^[9]

General procedure for the conversion of BnSSSBn under standard condition

		3av ; 1	lav = 14.	4:1
1av		86%, 3av		6%, 1av
Bn ^{∕S} S ^{∕S} Bn	Mn, terbpy ────────── DMF, RT, 5 h	Bn ^{∕S} ∖S ^{∕Bn}	+	Bn ^S _S ^S _Bn
	NiCl ₂ (PPh ₃) ₂			

An oven-dried 25 mL Schlenk tube, equipped with a stirring bar, was charged with **1av** (0.75 mmol, 1.0 equiv), Ni(PPh₃)₂Cl₂ (5 mol%), terpyridine (7.5 mol%), Mn (1.25 mmol, 1.67 equiv) and DMF (4.0 mL) in argon atmosphere. The reaction mixture was stirred at RT for 5 h. After completion of the reaction, the solution was filtered and washed with ethyl acetate for 3 times. The combined solvents were removed under vacuum, and the residue was purified by flash column chromatography to obtain the product **3av** (158.9 mg, 86% yield) and recycle the starting material **1av**. Eluent: petroleum ether/ethyl acetate (10:1, $R_f = 0.69$). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 – 7.26 (m, 5H), 3.62 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.3, 129.4, 128.5, 127.4, 43.2 ppm. Spectra were consistent with literature data. ^[6]

5. Investigation of the reaction process

I. The reaction process of (3-bromopropyl)benzene with PhSO₂SS'Bu (2aa)

An oven-dried 25 mL Schlenk tube, equipped with a stirring bar, was charged with PhSO₂SS'Bu (**2aa**, 0.75 mmol, 1.5 equiv), **1ae** (0.5 mmol, 1.0 equiv), Ni(PPh₃)₂Cl₂ (5 mol%), terpyridine (7.5 mol%), Mn (1.25 mmol, 2.5 equiv) and DMF (4.0 mL) in argon atmosphere. The reaction mixture was stirred at RT for T h. After simple filtration and removal of solvent, the crude products were subjected to ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. The results show that the reaction has different proportions for the products **3ae** and **3ae'** at different time periods.

T/h	Yield of 3ae	Yield of 3ae'
3	0	0
6	4%	3%
8	35%	13%
9	43%	21%
10	48%	31%
12	53%	37%
13	64%	29%
14	81%	16%
15	89%	9%
17	99%	0

II. The reaction process of (3-bromopropyl)benzene with PhSO₂SSS'Bu (2ag)

An oven-dried 25 mL Schlenk tube, equipped with a stirring bar, was charged with PhSO₂SSS'Bu (**2ag**, 0.75 mmol, 1.5 equiv), **1ae** (0.5 mmol, 1.0 equiv), Ni(PPh₃)₂Cl₂ (5 mol%), terpyridine (7.5 mol%), Mn (1.25 mmol, 2.5 equiv) and DMF (4.0 mL) in argon atmosphere. The reaction mixture was stirred at RT for T h. After simple filtration and removal of solvent, the crude products were subjected to ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. The results show that the reaction has different proportions for the products **4ag** and **4ag'** at different time periods.

T/h	Yield of 4ag	Yield of 4ag'
3	0	0
6	3%	3%
8	26%	12%
10	35%	23%
12	40%	28%
15	58%	11%
18	65%	0%

6. Raman study

Raman frequency of the samples was carried out at the 532nm-2mw-50slit-50X level by Thermo DXR2 Raman Microscope. Raman spectra of (a) **3ae**. (b) **1ae** with PhSO₂SS'Bu under optimized reaction conditions, T = 4 h. (c) **3ae'**.

General procedure for the preparation of 3ae

An oven-dried 25 mL Schlenk tube, equipped with a stirring bar, was charged with PhSO₂SS'Bu (0.75 mmol, 1.5 equiv), **1ae** (0.5 mmol, 1.0 equiv), Ni(PPh₃)₂Cl₂ (5 mol%), terpyridine (7.5 mol%), Mn (1.25 mmol, 2.5 equiv) and DMF (4.0 mL) in argon atmosphere. The reaction mixture was stirred at RT for 24 h. After completion of the reaction, the solution was filtered and washed with ethyl acetate for 3 times. The combined solvents were removed under vacuum, and the residue was purified by flash column chromatography to obtain the product **3ae**.

General procedure for the preparation of the mixed products 3ae and 3ae'

An oven-dried 25 mL Schlenk tube, equipped with a stirring bar, was charged with PhSO₂SS'Bu (0.75 mmol, 1.5 equiv), **1ae** (0.5 mmol, 1.0 equiv), Ni(PPh₃)₂Cl₂ (5 mol%), terpyridine (7.5 mol%), Mn (1.25 mmol, 2.5 equiv) and DMF (4.0 mL) in argon atmosphere. The reaction mixture was stirred at RT for 4 h. After completion of the reaction, the solution was filtered and washed with ethyl acetate for 3 times. The

combined solvents were removed under vacuum, and the residue was purified by flash column chromatography to obtain the mixed products **3ae** and **3ae'**.

General procedure for the preparation of 3ae'

An oven-dried 25 mL Schlenk tube, equipped with a stirring bar, was charged with ^{*i*}BuSSSS'Bu (0.75 mmol, 1.5 equiv), **1ae** (0.5 mmol, 1.0 equiv), Ni(acac)₂ (5 mol%), dtbbpy (7.5 mol%), Mn (1.25 mmol, 2.5 equiv) and DMF (4.0 mL) in argon atmosphere. The reaction mixture was stirred at 40 °C for 12 h. After completion of the reaction, the solution was filtered and washed with ethyl acetate for 3 times. The combined solvents were removed under vacuum, and the residue was purified by thin layer chromatography to obtain the product **3ae'**. ^[6]

7. CV test of di/trithiosulfonates

The Cyclic Voltammetry (CV) measurements were performed under N₂ atmosphere at room temperature over an electrochemical station (CHI660E) using a standard three electrode system. Glassy carbon (GC) and platinum mesh were employed as working electrode and counter electrode, respectively. Then, Ag⁺/Ag was used as reference electrode and the redox potential (V vs SHE) was calibrated by Fc⁺/Fc pair. The CV test was performed at scan rate of 100 mV·s⁻¹ in 0.05 M tetrabutylammonium perchlorate and N, N-dimethylformamide (DMF) solution.

reference potantial: $Fc^+/Fc = 0.69 V vs. SHE$ test potantial: $Fc^+/Fc=0.01 V vs. Ag^+/Ag$

According to the CV tests, these reagents (**2aa**, **2aa**') can be reduced under electrochemical conditions, and their onset reduction potential is -0.96 V vs SHE. Considering the reduction potential of Mn (-1.185 V vs SHE), it is reasonable to expect that the four reagents can be reduced by Mn in our system. In addition, as a comparison, reagent **2aa**' possesses relatively low reduction potential when comparing with **2aa**. Three reduction peaks of **2aa** are located at -1.31, -1.79 and -2.40 V vs SHE. For reagent **2aa**', its reduction potentials are -1.09, -1.60 and -2.15 V vs SHE. This phenomenon may also indicate that reagents **2aa** and **2aa**' may have different activation modes (a different pattern of breaking S-S bond).

8. DFT calculations

Computational Details

All species involved in the catalytic process were optimized at the B3LYP-D3(BJ)/Def2-SVP/SDD(Ni) level.^[1-6] The harmonic vibrational modes were computed to verify the characters of local minima and obtain free energy corrections as well. Electronic energies were further improved by single point calculations at the aforementioned optimized geometries with larger Def2-TZVP basis sets and the SMD solvation model ^[7] to account the solvation effects in dimethyl sulfoxide (DMSO). All calculations were performed employing the Gaussian 16 program (version b.01). ^[8]

DFT calculations were conducted for the reaction of (3-bromopropyl)benzene and PhSO₂SS'Bu (**2aa**) in the presence of NiCl₂(PPh₃)₂ (5 mol%), terpy (7.5 mol%) and Mn in the solvent DMF. Through detailed mechanistic studies (please see Scheme 2 in the manuscript), we found that tetrasulfide reagent ('BuSSSS'Bu) is a key intermediate, which is responsible for nickel-catalyzed reductive thiolation.

Preliminary DFT calculations revealed that 1) the generation of trisulfides ((3-(*tert*butylsulfonodithioyl)propyl)benzene) in the initial stage may be more favorable than direct generation of disulfides (pathway D, (3-(tert-butylsulfinothioyl)propyl)benzene) or monosulfides (pathway A, *tert*-butyl(3-phenylpropyl)sulfane); 2) the desulfurization process of trisulfides ((3-(tert-butylsulfonodithioyl)propyl)benzene) to disulfides is unfavorable at this stage. The oxidative addition of trisulfide R'-(S)₃'Bu in the presence of Ni(0) with releasing the corresponding sulfur intermediates might furnish the target disulfide product **P** (R'-SS'Bu). The energy barrier for reductive elimination of this step (pathway B, **TS-5**) is 29.0 kcal/mol. By contrast, R'S-L_nNi^{II}-SS'Bu tends to be reduced to L_nNi(I)(S)₂'Bu (**Int-8**) in the presence of reducing agents and reacts with alkyl bromide (R'-Br) to yield the final product **P** (R'-SS'Bu). The energy barrier for oxidative addition (pathway C, **TS-6**) and reductive elimination (pathway C, **TS-7**) of this step is 19.7 and 17.5 kcal/mol, respectively. Compared to the desulfurization reaction (pathway B), this process (pathway C) may be more reasonable.

30			
CAT	E = -2251.261935	13 G = -225	1.077682
Ni	0.000000	-1.190297	-0.000007
Ν	1.924492	-0.956654	-0.000001
С	2.897313	-1.892525	0.000000
С	4.250450	-1.595776	0.000002
С	4.646184	-0.241496	0.000005
С	3.663636	0.737474	0.000005
С	2.305878	0.380112	0.000002
Н	2.556601	-2.931218	-0.000002
Н	4.983957	-2.403529	0.000003
Н	5.703092	0.032164	0.000008
Н	3.934529	1.794644	0.000009
С	1.196351	1.328976	0.000004
С	1.222990	2.724922	-0.000004
Η	2.166799	3.272952	-0.000011
Ν	0.000000	0.694294	0.000012
С	0.000000	3.419936	-0.000007
Ν	-1.924493	-0.956653	-0.000001
С	-2.897313	-1.892525	0.000000
С	-4.250451	-1.595776	0.000002
С	-4.646185	-0.241496	0.000005
С	-3.663636	0.737474	0.000005
С	-2.305878	0.380112	0.000002
Н	-2.556601	-2.931218	-0.000002
Н	-4.983957	-2.403528	0.000003
Η	-5.703092	0.032164	0.000007
Н	-3.934529	1.794644	0.000008
С	-1.196351	1.328976	0.000004
С	-1.222990	2.724922	-0.000004

Η	-2.166799	3.272952	-0.000011
Η	0.000000	4.511536	-0.000014

50			
Int-0	E = -1908.8211	4665 $G = -1$	908.619502
S	0.582565	0.898342	0.679272
S	-0.582299	-0.896678	0.680589
S	-1.964663	-0.717612	-0.843514
С	-3.438354	0.151445	-0.061813
С	-4.436386	0.250799	-1.221923
Н	-4.031309	0.850486	-2.051585
Н	-4.706315	-0.744223	-1.608829
Н	-5.359286	0.738750	-0.867868
С	-3.031295	1.538354	0.432055
Н	-2.293981	1.468934	1.244744
Н	-2.591588	2.140227	-0.376442
Н	-3.917116	2.066984	0.823216
С	-3.998205	-0.700389	1.076280
Η	-4.878729	-0.203473	1.517724
Н	-4.303642	-1.694453	0.717203
Η	-3.249482	-0.833203	1.871514
S	1.965001	0.716935	-0.844466
С	3.438190	-0.151921	-0.061603
С	3.997781	0.700460	1.076203
С	4.436689	-0.252251	-1.221231
С	3.030496	-1.538411	0.432933
Н	4.303686	1.694205	0.716640
Н	3.248724	0.834001	1.870997
Н	4.877949	0.203551	1.518363
Н	4.031786	-0.852264	-2.050743
Η	4.707107	0.742470	-1.608572
Н	5.359272	-0.740308	-0.866503
Н	3.915999	-2.067098	0.824740
Η	2.292857	-1.468289	1.245268
Н	2.590907	-2.140614	-0.375386
60			
Int-1	E = -4160.1645	G = -4	159.753095
Ni	-0.44632	5 0.07336	5 -0.279308
S	-2.53308	3 0.92898	0.313203
S	-0.00041	0 -0.13734	2 -2.591878
S	1.34669	96 -1.75192	-2.331615
Ν	-0.05496	68 0.00388	1.703378
С	0.39969	92 1.1071	50 2.306973

С	-0.406449	-1.098186	2.374995
С	0.684725	2.230673	1.379839
С	0.557941	1.131575	3.698112
С	-0.938380	-2.187593	1.518768
С	-0.272723	-1.141855	3.768164
Ν	0.482506	1.956369	0.075623
С	1.123460	3.492859	1.794543
Н	0.931377	2.019665	4.207372
С	0.220649	-0.012312	4.424994
Ν	-0.971579	-1.909554	0.200559
С	-1.393215	-3.415154	2.011127
Н	-0.549508	-2.032021	4.332388
С	0.693238	2.893103	-0.847180
С	1.335954	4.481366	0.832988
Н	1.289147	3.705550	2.850809
Н	0.335099	-0.020676	5.510797
С	-1.447893	-2.803038	-0.664537
С	-1.895830	-4.355406	1.110869
Н	-1.361972	-3.633887	3.078571
С	1.115828	4.180594	-0.512398
Н	0.531454	2.577896	-1.881964
Н	1.670793	5.476452	1.133838
С	-1.927872	-4.046765	-0.249711
Н	-1.435718	-2.496193	-1.713179
Н	-2.260451	-5.319662	1.471627
Н	1.272879	4.925051	-1.294497
Н	-2.313876	-4.755209	-0.984234
С	-3.494470	1.278565	-1.237760
С	-3.755630	-0.020658	-2.008087
Н	-4.381676	0.171712	-2.898835
Н	-2.808171	-0.464087	-2.346855
Н	-4.275186	-0.750458	-1.368326
С	-2.736305	2.275087	-2.121638
Н	-2.511365	3.196954	-1.563547
Н	-1.786562	1.845200	-2.472036
Н	-3.331671	2.541346	-3.013933
С	-4.825217	1.896292	-0.786318
Н	-4.655114	2.826252	-0.221916
Н	-5.458188	2.130427	-1.661061
Н	-5.377966	1.201239	-0.135601
S	2.226434	-1.496127	-0.450267
С	3.820668	-0.553761	-0.771764
С	3.518715	0.798635	-1.412530
Н	4.463085	1.315590	-1.655537

Η	2.936199	0.679329	-2.337302
Н	2.942688	1.435444	-0.729348
С	4.723784	-1.399558	-1.668269
Н	5.676750	-0.873172	-1.848883
Н	4.944512	-2.373707	-1.206405
Н	4.240498	-1.577731	-2.640528
С	4.428114	-0.377948	0.624220
Н	4.628190	-1.349196	1.103323
Н	5.384011	0.166645	0.545930
Н	3.759236	0.202610	1.279551
65			
Int-2	E = -5731.44770191	G = -5730.9	990036
Ni	-1.042902	0.081014	-0.346177
S	0.549231	-0.278021	1.226137
С	1.698161	-2.249786	-1.384718
Н	1.973473	-3.207362	-1.845094
Н	1.130574	-2.391475	-0.456785
С	2.867871	-1.320807	-1.146227
Н	2.469822	-0.346072	-0.835547
Н	3.449205	-1.167622	-2.069961
С	3.773378	-1.830565	-0.012086
Н	4.275134	-2.765621	-0.311352
Н	3.130120	-2.057180	0.853391
С	4.794889	-0.791221	0.385657
С	4.388635	0.340528	1.114011
С	6.139651	-0.901573	0.008579
С	5.310481	1.331431	1.455521
Н	3.338990	0.435830	1.409318
С	7.064229	0.090441	0.350857
Н	6.468098	-1.777751	-0.558144
С	6.651753	1.210986	1.075348
Н	4.979849	2.203120	2.026398
Н	8.110180	-0.014388	0.051049
Н	7.372733	1.986612	1.345764
Br	0.377693	-1.429338	-2.617772
Ν	-2.557212	1.251674	-0.088685
С	-3.757372	0.699478	0.230708
С	-2.355702	2.591641	-0.057145
С	-3.772919	-0.752526	0.077392
С	-4.818152	1.516960	0.634329
С	-1.001264	2.978995	-0.479451
С	-3.381378	3.448813	0.334217
Ν	-2.592920	-1.287442	-0.366770
Ν	-2.592920	-1.287442	-0.3667
С	-4.884318	-1.573399	0.339807
-------	--------------------	-------------	-----------
Н	-5.784947	1.085043	0.895989
С	-4.626033	2.900363	0.689591
Ν	-0.228060	1.950559	-0.921240
С	-0.506046	4.291912	-0.441445
Н	-3.229781	4.528447	0.356887
С	-2.522212	-2.611506	-0.583701
С	-4.795084	-2.939887	0.119464
Н	-5.809901	-1.131864	0.711176
Н	-5.443149	3.554722	0.998013
С	1.021208	2.201728	-1.331336
С	0.792250	4.544421	-0.869614
Н	-1.134019	5.102448	-0.070226
С	-3.586632	-3.473556	-0.366145
Н	-1.562391	-2.979397	-0.953704
Н	-5.650906	-3.588663	0.317198
С	1.575658	3.476765	-1.330310
Н	1.593267	1.338405	-1.677228
Н	1.194245	5.559524	-0.842519
Н	-3.474890	-4.540577	-0.564365
Н	2.599479	3.627033	-1.676088
С	-0.190639	-1.130983	2.708050
С	-0.430417	-2.614745	2.411439
Н	0.510276	-3.115945	2.135894
Н	-0.846526	-3.129457	3.296662
Н	-1.140523	-2.739497	1.583431
С	-1.507182	-0.447009	3.090426
Н	-1.928507	-0.896671	4.007714
Н	-1.349984	0.627318	3.267627
Н	-2.250522	-0.549987	2.288861
С	0.824517	-0.986127	3.848659
Н	1.010181	0.074828	4.073904
Н	0.450669	-1.477574	4.764564
Η	1.787405	-1.447575	3.579571
65			
Int-3	E = -5731.45299772	G = -5730.9	991459
Ni	-0.664271	-0.390500	-0.142140
S	-1.283435	-0.800388	2.054123
С	0.371498	-2.095816	-0.248409

0.371498	-2.095816	-0.248409
0.104214	-2.416760	-1.264960
-0.104696	-2.742016	0.496262
1.876086	-2.040543	-0.066062

2.230659

Н

Н С

Η

-3.050759

0.218515

Н	2.134156	-1.414458	0.803197
С	2.646883	-1.563373	-1.306531
Н	2.070187	-0.771838	-1.807283
Н	2.683418	-2.390101	-2.039128
С	4.048006	-1.063137	-1.037629
С	4.889240	-1.668346	-0.090009
С	4.533752	0.061341	-1.726339
С	6.171163	-1.170337	0.158804
Н	4.537510	-2.540735	0.465418
С	5.814436	0.562945	-1.481700
Н	3.884655	0.552413	-2.456596
С	6.639854	-0.051457	-0.535059
Н	6.807267	-1.658673	0.901684
Н	6.168324	1.439409	-2.031089
Н	7.641265	0.339529	-0.338820
Br	-0.332330	0.108149	-2.550152
Ν	-1.963841	1.195101	-0.060859
С	-3.268243	0.961499	-0.254231
С	-1.506384	2.413337	0.246150
С	-3.616060	-0.436541	-0.606525
С	-4.205568	1.993817	-0.125548
С	-0.034504	2.525319	0.374898
С	-2.391842	3.488950	0.399939
Ν	-2.584588	-1.298193	-0.640212
С	-4.921640	-0.854409	-0.895416
Н	-5.267595	1.808833	-0.280391
С	-3.754686	3.268401	0.213234
Ν	0.656370	1.375902	0.255996
С	0.614778	3.752735	0.566880
Н	-2.027605	4.481034	0.662539
С	-2.797827	-2.575309	-0.946388
С	-5.147628	-2.190522	-1.221004
Н	-5.751469	-0.148865	-0.869958
Н	-4.464856	4.089484	0.329154
С	1.987314	1.415014	0.292906
С	2.007432	3.787379	0.612987
Η	0.042535	4.674801	0.662749
С	-4.066785	-3.072083	-1.247363
Н	-1.920096	-3.224042	-0.950687
Н	-6.157269	-2.537455	-1.451153
С	2.712579	2.594395	0.463073
Н	2.509862	0.469848	0.178620
Н	2.530593	4.735644	0.754044
Н	-4.197109	-4.126504	-1.495966

Н	3.802958	2.558295	0.470089
С	0.001396	-1.020384	3.383382
С	-0.770147	-0.797566	4.693915
Н	-0.098533	-0.942076	5.558828
Н	-1.183095	0.221463	4.737393
Н	-1.606304	-1.507831	4.784785
С	1.126905	0.009476	3.275688
Н	0.724960	1.032598	3.240078
Н	1.805368	-0.070582	4.143699
Н	1.725969	-0.151183	2.371386
С	0.575705	-2.442551	3.369499
Н	1.148578	-2.637446	2.453984
Н	1.254364	-2.593318	4.228600
Н	-0.231980	-3.186790	3.430962

Int-4	E = -6527.93621554	G = -6527.4	77562
Ni	0.836964	-0.970267	0.596947
S	-0.252901	-0.329066	-1.335127
С	-1.720997	-3.258546	-0.539557
Η	-2.129987	-4.270714	-0.651730
Н	-1.113151	-2.979666	-1.408872
С	-2.756655	-2.200293	-0.224985
Η	-2.230615	-1.287621	0.085879
Η	-3.390490	-2.515257	0.620113
С	-3.628892	-1.842886	-1.440944
Η	-4.259118	-2.700210	-1.728961
Η	-2.961184	-1.620379	-2.289112
С	-4.487204	-0.633335	-1.147667
С	-3.890014	0.636114	-1.063032
С	-5.861849	-0.747911	-0.904702
С	-4.652815	1.759720	-0.743832
Η	-2.815924	0.731183	-1.245548
С	-6.628649	0.378174	-0.586893
Н	-6.339520	-1.730095	-0.967436
С	-6.025842	1.635447	-0.504230
Н	-4.169804	2.738272	-0.683495
Η	-7.700995	0.271204	-0.404083
Н	-6.623725	2.516082	-0.256385
Br	-0.392587	-3.396627	0.937767
S	1.226297	0.732647	-2.372663
S	1.657638	2.494632	-1.328612
С	0.106827	3.557554	-1.412582
С	-0.810287	3.152552	-0.252531

Н	-1.737693	3.752395	-0.273488
Н	-1.070906	2.087678	-0.317577
Н	-0.316454	3.319337	0.715938
С	-0.601668	3.403033	-2.754343
Н	-1.470846	4.081962	-2.789146
Н	0.068505	3.650207	-3.591323
Н	-0.961125	2.374450	-2.896507
С	0.623378	4.987634	-1.221080
Н	-0.229245	5.683289	-1.139052
Н	1.217939	5.077049	-0.297153
Н	1.251459	5.304058	-2.067481
Ν	2.191373	0.263777	1.195161
С	3.383535	0.265977	0.552208
С	1.829527	1.275361	2.019723
С	3.547824	-0.872063	-0.359793
С	4.297232	1.298320	0.763537
С	0.474176	1.125390	2.550972
С	2.706319	2.333280	2.266783
Ν	2.509866	-1.751021	-0.363017
С	4.661621	-1.062171	-1.194338
Н	5.259222	1.305205	0.250600
С	3.954677	2.339088	1.635767
Ν	-0.185079	0.004289	2.135603
С	-0.140981	2.051326	3.410710
Н	2.422445	3.150283	2.930796
С	2.541602	-2.793123	-1.202927
С	4.695288	-2.156464	-2.047041
Н	5.481354	-0.343590	-1.182330
Н	4.653744	3.158519	1.811054
С	-1.433143	-0.209982	2.580943
С	-1.437375	1.825133	3.851333
Н	0.400009	2.945391	3.721770
С	3.607692	-3.043803	-2.057453
Н	1.668993	-3.450303	-1.178423
Н	5.550192	-2.315636	-2.707763
С	-2.100865	0.661246	3.430662
Н	-1.911397	-1.127645	2.235551
Н	-1.929774	2.540548	4.513283
Н	3.587853	-3.911985	-2.718108
Η	-3.118645	0.436079	3.752592

Int-5	E = -6527.95407289	G = -6527	.49658
Ni	0.012421	-0.981254	-0.028053

S	0.377395	0.311715	-1.888560
С	-1.640427	-1.528658	-0.999758
Н	-1.751471	-2.567654	-0.661907
Н	-1.432846	-1.500447	-2.080351
С	-2.848377	-0.698976	-0.643914
Н	-2.722216	0.331583	-1.016567
Н	-2.954850	-0.649074	0.451256
С	-4.164751	-1.254412	-1.230927
Н	-4.317545	-2.277809	-0.850402
Н	-4.073012	-1.329446	-2.327089
С	-5.343579	-0.386079	-0.868998
С	-5.791298	0.623829	-1.733707
С	-5.974196	-0.522074	0.377964
С	-6.842006	1.469974	-1.368945
Н	-5.309194	0.744808	-2.708112
С	-7.024385	0.321075	0.747367
Н	-5.634147	-1.301665	1.065658
С	-7.462798	1.321441	-0.125787
Н	-7.179085	2.246915	-2.060079
Н	-7.505299	0.195075	1.720854
Н	-8.286663	1.979866	0.160494
Br	-0.737013	-2.252280	1.919547
S	2.413460	0.704346	-1.987200
S	2.968626	2.174443	-0.586384
С	2.383465	3.813171	-1.290724
С	0.856615	3.885664	-1.215752
Н	0.510041	4.861493	-1.598750
Н	0.389040	3.088253	-1.809163
Н	0.507762	3.777485	-0.178409
С	2.880730	3.982302	-2.724020
Н	2.550615	4.957023	-3.121836
Н	3.979461	3.940310	-2.770717
Н	2.477970	3.191403	-3.373326
С	3.020442	4.850568	-0.358343
Н	2.706630	5.862322	-0.665542
Н	2.698232	4.700277	0.684521
Н	4.119869	4.805777	-0.394302
Ν	1.758969	-0.638645	0.950553
С	2.760550	-1.503730	0.737626
С	1.858405	0.332888	1.864398
С	2.508906	-2.511883	-0.316803
С	3.939628	-1.435586	1.487650
С	0.707191	1.262703	1.940828
С	3.006603	0.449040	2.658350

Ν	1.252599	-2.541767	-0.796300
С	3.492505	-3.384045	-0.801210
Н	4.747434	-2.147580	1.324858
С	4.052703	-0.448248	2.464417
Ν	-0.357278	0.949240	1.183012
С	0.734678	2.424476	2.724560
Н	3.086238	1.230109	3.412203
С	0.925920	-3.415801	-1.747363
С	3.153099	-4.301364	-1.792874
Н	4.511892	-3.338410	-0.419320
Н	4.956438	-0.378242	3.072869
С	-1.412524	1.762522	1.177748
С	-0.370942	3.271578	2.721301
Н	1.613370	2.674622	3.317424
С	1.843515	-4.323130	-2.275999
Н	-0.107191	-3.384279	-2.097739
Н	3.904700	-4.988487	-2.187347
С	-1.470647	2.935639	1.932674
Н	-2.249129	1.468500	0.545270
Н	-0.368925	4.183794	3.321817
Н	1.533949	-5.024862	-3.052016
Н	-2.360278	3.566079	1.892015

Int-6	E = -3555.49821429	G = -3555.0	4158
Ni	-0.968789	-0.000765	0.162405
S	-2.988475	0.001484	1.318797
S	1.025250	-0.001838	1.366655
Ν	-2.177945	-0.000167	-1.474350
С	-2.674556	-1.175033	-1.882062
С	-2.672309	1.175311	-1.883010
С	-2.026890	-2.353909	-1.253058
С	-3.723984	-1.210369	-2.808007
С	-2.022361	2.353461	-1.255003
С	-3.721654	1.211910	-2.808988
Ν	-1.074636	-2.057028	-0.345356
С	-2.353058	-3.681239	-1.548324
Η	-4.140052	-2.157294	-3.151294
С	-4.240820	0.001076	-3.273691
Ν	-1.070662	2.055537	-0.347079
С	-2.345951	3.681170	-1.551415
Η	-4.135918	2.159347	-3.153041
С	-0.422654	-3.026632	0.294225
С	-1.680375	-4.703843	-0.876551

Н	-3.120507	-3.916302	-2.286180
Н	-5.062454	0.001576	-3.992728
С	-0.416747	3.024404	0.291605
С	-1.671207	4.703047	-0.880600
Н	-3.112985	3.917098	-2.289428
С	-0.698718	-4.376030	0.060200
Н	0.333061	-2.679358	1.008704
Н	-1.923218	-5.748084	-1.085464
С	-0.690129	4.374149	0.056374
Н	0.338231	2.676316	1.006472
Н	-1.912013	5.747575	-1.090437
Н	-0.152974	-5.148513	0.604541
Н	-0.142824	5.146039	0.599985
С	-2.581039	0.003757	3.131664
С	-1.783952	1.262453	3.492633
Н	-1.590590	1.302204	4.580235
Н	-0.813353	1.273926	2.975865
Н	-2.340556	2.167841	3.205055
С	-1.785971	-1.255178	3.496257
Н	-2.344211	-2.160502	3.211671
Н	-0.815550	-1.269985	2.979236
Н	-1.592315	-1.291907	4.583914
С	-3.925294	0.005887	3.872568
Н	-4.518632	-0.884576	3.612875
Н	-3.761491	0.007203	4.965043
Н	-4.517105	0.896671	3.610498
С	2.084182	-0.000667	-0.143892
Н	1.855766	0.885197	-0.764347
Н	1.855460	-0.885307	-0.765953
С	3.569532	-0.001272	0.207529
Н	3.794697	-0.882113	0.832044
Н	3.795035	0.878342	0.833651
С	4.480804	-0.000332	-1.031467
Н	4.249432	0.884323	-1.649282
Н	4.249039	-0.883746	-1.650903
С	5.947464	-0.000995	-0.677397
С	6.640615	-1.205234	-0.482039
С	6.641056	1.202546	-0.479333
С	7.985259	-1.209139	-0.103723
Н	6.115708	-2.153315	-0.630984
С	7.985703	1.205107	-0.101012
Н	6.116500	2.151153	-0.626148
С	8.663690	-0.002354	0.088480
Н	8.506767	-2.158988	0.040014

Н	8.5075	57	2.1544	40	0.044856
Н	9.7160	72	-0.00287	78	0.382701
60					
Int-7	E = -4160.173428	818	G = -415	9.761	359
Ni	-0.000702	0.0	03692	0.5	35410
S	-1.363365	1.7	02857	1.3	41894
S	1.362459	-1.6	90350	1.3	53130
S	3.118196	-0.7	89146	2.0	43413
С	4.402220	-1.2	281879	0.7	65935
С	5.698222	-0.6	534671	1.2	63376
Н	5.601621	0.	461769	1.3	311867
Н	5.968745	-1.(002487	2.2	65497
Н	6.526872	-0.8	875039	0.5	75988
С	4.013128	-0.7	740298	-0.6	09290
Н	2.997214	-1.(071043	-0.8	73419
Н	4.039450	0.	358294	-0.6	21826
Н	4.713324	-1.1	109272	-1.3	78864
С	4.522488	-2.8	805515	0.7	34997
Н	5.277838	-3.1	115501	-0.0	08392
Н	4.818743	-3.]	196396	1.7	20008
Н	3.557361	-3.2	258162	0.4	62312
Ν	0.000000	-0.0	006375	-1.5	37652
С	-0.817010	-0.8	52364	-2.18	38634
С	0.818233	0.	833316	-2.1	95268
С	-1.671156	-1.7	06796	-1.32	25109
С	-0.836590	-0.8	83214	-3.58	38478
С	1.671548	1.0	695180	-1.3	38392
С	0.839980	0.	851119	-3.5	95303
Ν	-1.500533	-1.5	48166	-0.00	00831
С	-2.618173	-2.6	08141	-1.82	26379
Н	-1.493578	-1.5	68119	-4.12	22845
С	0.002187	-0.0)19272	-4.2	92365
Ν	1.499287	1.	548246	-0.0	12925
С	2.619583	2.:	591626	-1.8	46410
Н	1.497940	1.	530877	-4.1	35022
С	-2.243389	-2.2	34241	0.8	66208
С	-3.399336	-3.3	33793	-0.92	25671
Н	-2.755612	-2.7	38242	-2.89	99389
Н	0.003002	-0.0)24357	-5.3	84042
С	2.241767	2.2	241275	0.8	348947
С	3.400242	3.	324578	-0.9	51190
Н	2.758196	2.1	712344	-2.9	20365
C	-3.215297	-3.1	45000	0.4	44199

Н	-2.047673	-2.048355	1.922931
Η	-4.148030	-4.038242	-1.294410
С	3.214723	3.147673	0.420063
Η	2.044695	2.064847	1.907033
Η	4.149722	4.025393	-1.325216
Η	-3.810125	-3.689629	1.178989
Η	3.809178	3.698204	1.150741
S	-3.119503	0.806034	2.037153
С	-4.402131	1.288205	0.754244
С	-5.698569	0.644660	1.255291
Η	-5.970490	1.020578	2.254020
Η	-6.526403	0.879135	0.564892
Η	-5.601704	-0.451317	1.312860
С	-4.011228	0.735664	-0.616121
Η	-2.994782	1.063832	-0.881437
Η	-4.037943	-0.362987	-0.620041
Η	-4.710166	1.098801	-1.389603
С	-4.522822	2.811507	0.711007
Η	-4.820340	3.210101	1.692542
Н	-3.557542	3.262325	0.435851
Н	-5.277429	3.115303	-0.035684

Int-8	E = -6129.69612105	G = -6129.	238197
Ni	0.987029	0.544994	0.420939
S	-0.554109	-0.407146	-0.970701
С	-1.808066	-0.997591	2.357016
Η	-2.116541	-1.495077	3.285427
Η	-1.273572	-1.702723	1.710156
С	-2.939590	-0.314417	1.620638
Η	-2.501840	0.314273	0.834321
Η	-3.515242	0.333161	2.301866
С	-3.862255	-1.338727	0.935240
Η	-4.380334	-1.953630	1.689850
Η	-3.236111	-2.016701	0.331998
С	-4.868015	-0.660239	0.035821
С	-4.446528	-0.105621	-1.184814
С	-6.213981	-0.533155	0.403309
С	-5.354202	0.555146	-2.014007
Η	-3.394913	-0.193356	-1.474661
С	-7.124771	0.128002	-0.426926
Η	-6.554442	-0.961292	1.350701
С	-6.696949	0.674601	-1.638882
Н	-5.011590	0.977295	-2.962377

Н	-8.172005	0.214098	-0.125601
Н	-7.407068	1.189757	-2.290702
Br	-0.411479	0.302282	2.907318
Ν	2.617499	1.343365	-0.223872
С	3.749869	0.594709	-0.249225
С	2.569096	2.582098	-0.778261
С	3.582965	-0.706731	0.403518
С	4.906517	1.088819	-0.852971
С	1.253654	3.214775	-0.642365
С	3.699484	3.122246	-1.393008
Ν	2.351637	-0.908190	0.956614
С	4.576405	-1.695608	0.466555
Н	5.821175	0.495155	-0.874325
С	4.879792	2.366735	-1.429247
Ν	0.345107	2.483351	0.065070
С	0.908378	4.463421	-1.185292
Н	3.670717	4.118661	-1.835668
С	2.090391	-2.079995	1.553767
С	4.299756	-2.902868	1.097683
Н	5.552705	-1.517414	0.014816
Н	5.775386	2.772725	-1.902445
С	-0.895456	2.964182	0.232033
С	-0.375900	4.958824	-0.997907
Н	1.643592	5.032073	-1.755753
С	3.027468	-3.101879	1.653941
Н	1.089986	-2.192695	1.970762
Н	5.060728	-3.684196	1.152541
С	-1.302261	4.193309	-0.271897
Н	-1.580515	2.328670	0.797432
Н	-0.659922	5.926929	-1.415990
Н	2.764275	-4.035037	2.154174
Н	-2.322573	4.541275	-0.104073
S	-0.479934	-2.482446	-0.698343
С	0.536305	-3.095163	-2.153405
С	1.928876	-2.467709	-2.117257
Н	2.496495	-2.751470	-3.020236
Н	1.854588	-1.370695	-2.083057
Н	2.491777	-2.806427	-1.237133
С	-0.190449	-2.739225	-3.449868
Н	0.387606	-3.094397	-4.320742
Н	-1.190060	-3.198387	-3.481065
Н	-0.309180	-1.648495	-3.532446
С	0.608131	-4.611562	-1.953113
Н	-0.396601	-5.062732	-1.947364

Н	1.183269	-5.070423	-2.774858
Н	1.108186	-4.863093	-1.004443

Int-9	E = -6129.70944369	G = -6129.	248041
Ni	0.628459	-0.736730	-0.248831
S	0.917800	0.855751	-1.926447
С	-0.403189	-1.695918	-1.671631
Η	-0.213329	-2.748799	-1.419348
Н	0.125503	-1.433842	-2.601065
С	-1.887054	-1.405699	-1.782977
Η	-2.218545	-1.636577	-2.813710
Н	-2.066218	-0.322677	-1.674714
С	-2.738408	-2.205705	-0.785070
Η	-2.198746	-2.279010	0.171734
Н	-2.811977	-3.248720	-1.143818
С	-4.127883	-1.664823	-0.531917
С	-4.884982	-1.045707	-1.539175
С	-4.688729	-1.752468	0.753728
С	-6.159007	-0.536041	-1.273129
Η	-4.473048	-0.955916	-2.546654
С	-5.961437	-1.244812	1.024832
Η	-4.105319	-2.217926	1.553050
С	-6.703314	-0.632153	0.010171
Η	-6.728882	-0.057817	-2.074059
Η	-6.374529	-1.325391	2.033815
Η	-7.698203	-0.231106	0.218837
Br	0.260224	-2.521824	1.394882
S	1.342214	2.691827	-1.058678
Ν	1.935128	0.225894	0.963022
С	3.244108	-0.022134	0.813549
С	1.490251	1.162254	1.808663
С	3.577008	-1.091231	-0.156613
С	4.194643	0.699422	1.544040
С	0.017760	1.305767	1.873014
С	2.389073	1.911028	2.580738
Ν	2.527973	-1.636181	-0.798736
С	4.884928	-1.532030	-0.396099
Н	5.259599	0.509663	1.418379
С	3.752823	1.675496	2.437519
Ν	-0.681138	0.546748	1.009105
С	-0.623686	2.139326	2.799591
Н	2.031662	2.674428	3.269947
С	2.726755	-2.618851	-1.674163

С	5.096216	-2.556036	-1.317526
Н	5.727749	-1.087696	0.132384
Н	4.474182	2.253723	3.018251
С	-2.011860	0.580061	1.046194
С	-2.016525	2.166855	2.839297
Н	-0.044395	2.748872	3.492152
С	3.997313	-3.114506	-1.970524
Н	1.835379	-3.025286	-2.155440
Н	6.107736	-2.915115	-1.518874
С	-2.729448	1.365753	1.948200
Н	-2.538898	-0.042878	0.331036
Н	-2.534249	2.803274	3.560227
Н	4.114424	-3.921198	-2.695864
Н	-3.819943	1.336527	1.936395
С	-0.112250	3.791997	-1.514789
С	-1.415419	3.221333	-0.966611
Н	-2.269089	3.837528	-1.297036
Н	-1.567719	2.195966	-1.332948
Н	-1.409605	3.204629	0.131379
С	-0.174487	3.924120	-3.036881
Н	-1.004950	4.590856	-3.327389
Н	0.763337	4.337679	-3.437314
Н	-0.342451	2.940209	-3.499724
С	0.223167	5.133791	-0.856144
Н	-0.562317	5.871557	-1.090596
Н	0.282747	5.035169	0.239390
Н	1.183237	5.531156	-1.221495
65			
TS-I	E = -5/31.412/8424	G = -5/30.	957017
Ni	-0.813050	-0.004204	-0.517189
S	0.374195	0.013848	1.445663
C	1.180345	-2.340051	-1.113659
H	1.172324	-3.231541	-1.744600
H	0.493417	-2.343018	-0.265229
C	2.439054	-1.569556	-0.945750
H	2.184043	-0.537512	-0.669816
H	3.015312	-1.539612	-1.883731
C	3.332907	-2.099887	0.207108
H	3.695550	-3.114135	-0.024844
H	2.707259	-2.163779	1.110407
C	4.490509	-1.164815	0.458565
C	4.267219	0.059459	1.113168
C	5.782675	-1.455836	0.001054

С	5.314372	0.962052	1.306271
Н	3.259410	0.295852	1.467456
С	6.832859	-0.553021	0.195136
Н	5.968928	-2.403796	-0.512081
С	6.601574	0.660003	0.848130
Н	5.125173	1.907289	1.822046
Н	7.835212	-0.799493	-0.164719
Н	7.421323	1.366258	1.002433
Br	-0.137758	-1.009272	-2.847024
Ν	-2.236886	1.306696	-0.107427
С	-3.439372	0.832218	0.284209
С	-1.881758	2.592373	0.069187
С	-3.609750	-0.605758	0.057281
С	-4.373926	1.695552	0.872727
С	-0.516459	2.903566	-0.407302
С	-2.770814	3.498502	0.646133
Ν	-2.496433	-1.251700	-0.390419
С	-4.811064	-1.302638	0.271896
Н	-5.345661	1.325303	1.200111
С	-4.034268	3.036068	1.049326
Ν	0.153577	1.854474	-0.936578
С	0.064557	4.175529	-0.345359
Н	-2.495601	4.543496	0.786594
С	-2.565440	-2.558593	-0.669912
С	-4.867997	-2.663642	0.002224
Н	-5.692832	-0.773838	0.634920
Н	-4.746016	3.724676	1.508287
С	1.382260	2.030641	-1.426839
С	1.357031	4.355073	-0.835701
Н	-0.485106	5.013779	0.083010
С	-3.721920	-3.309130	-0.490284
Н	-1.652592	-3.009110	-1.065031
Н	-5.795067	-3.218603	0.160605
С	2.031221	3.264305	-1.391359
Н	1.851584	1.149570	-1.868467
Н	1.830822	5.337996	-0.789046
Н	-3.726529	-4.372567	-0.732979
Н	3.041622	3.360474	-1.791426
С	-0.354575	-1.017985	2.814081
С	-0.460451	-2.491033	2.408375
Н	0.525620	-2.898711	2.140873
Н	-0.866197	-3.095649	3.239359
Н	-1.129369	-2.615154	1.546289
С	-1.736843	-0.474147	3.191092

Н	-2.145657	-1.018477	4.061628
Н	-1.680407	0.595287	3.442662
Н	-2.444636	-0.590044	2.360524
С	0.601913	-0.877789	4.005808
Н	0.697706	0.175799	4.308733
Н	0.228765	-1.456393	4.869520
Н	1.606456	-1.248747	3.750368

TS-2	E = -5731.425988	G = -573	30.966559
Ni	-0.638095	-0.381647	-0.194520
S	-1.201873	0.172001	2.010094
С	0.677427	-1.233661	1.632491
Η	0.415108	-2.085699	0.998582
Η	0.555271	-1.500952	2.684100
С	2.031397	-0.658955	1.298727
Η	2.368372	0.052913	2.067581
Η	1.985342	-0.102348	0.359193
С	3.113211	-1.747899	1.111297
Η	2.714269	-2.501594	0.416113
Η	3.319752	-2.246289	2.072845
С	4.371959	-1.146649	0.537553
С	5.439312	-0.749638	1.354538
С	4.454998	-0.899483	-0.844418
С	6.565577	-0.123689	0.811030
Η	5.387396	-0.935735	2.431410
С	5.578265	-0.273180	-1.388655
Η	3.624108	-1.208787	-1.486232
С	6.637951	0.118581	-0.563000
Η	7.390340	0.174203	1.463857
Η	5.630327	-0.096155	-2.466367
Η	7.518559	0.605275	-0.989932
Br	0.687972	-1.784779	-1.800944
Ν	-2.323321	0.657315	-0.807730
С	-3.510095	0.119268	-0.500649
С	-2.184806	1.963141	-1.058297
С	-3.453907	-1.336433	-0.221142
С	-4.663250	0.911311	-0.452264
С	-0.794669	2.368804	-1.372534
С	-3.289805	2.823010	-1.004408
Ν	-2.211857	-1.839735	-0.071262
С	-4.586231	-2.157592	-0.155260
Н	-5.632240	0.479381	-0.201549
С	-4.540404	2.280296	-0.701690

Ν	0.150784	1.448861	-1.086372
С	-0.470609	3.597371	-1.961996
Η	-3.178443	3.893399	-1.178986
С	-2.046905	-3.149912	0.109765
С	-4.416360	-3.524282	0.061797
Η	-5.583326	-1.738167	-0.291805
Η	-5.418721	2.926744	-0.648216
С	1.418140	1.692837	-1.426386
С	0.860921	3.867516	-2.273949
Η	-1.252221	4.320868	-2.195401
С	-3.123268	-4.034751	0.190428
Η	-1.012191	-3.497622	0.165580
Η	-5.284352	-4.185235	0.114211
С	1.824459	2.892535	-2.012060
Η	2.133953	0.891650	-1.235399
Η	1.137788	4.818490	-2.734394
Η	-2.944603	-5.100361	0.342736
Н	2.876303	3.045908	-2.258312
С	-0.397602	1.563535	2.957858
С	-1.588619	2.369029	3.501167
Н	-1.223284	3.220416	4.101731
Н	-2.205459	2.761232	2.678404
Н	-2.230687	1.746481	4.142927
С	0.453838	2.459560	2.057476
Н	-0.154921	2.904475	1.258626
Н	0.890317	3.281227	2.651997
Η	1.276635	1.907038	1.588980
С	0.423489	1.017576	4.131465
Н	1.300838	0.452309	3.790742
Н	0.786828	1.849773	4.759364
Н	-0.189145	0.353941	4.759933

TS-3	E = -6527.90200	601 $G = -65$	527.447428
Ni	0.177553	-1.314343	0.284189
S	-0.172419	0.721023	-0.803018
С	-1.914896	-2.103763	-1.450423
Н	-2.231817	-2.999553	-1.988450
Н	-1.032894	-1.612395	-1.869192
С	-2.985324	-1.188180	-0.955823
Н	-2.577761	-0.517120	-0.187970
Н	-3.804281	-1.756444	-0.487470
С	-3.549516	-0.281742	-2.080462
Н	-4.078441	-0.893457	-2.828894

Н	-2.698262	0.202305	-2.583470
С	-4.467704	0.771541	-1.509583
С	-3.923308	1.881397	-0.840728
С	-5.861718	0.644823	-1.575186
С	-4.755225	2.839505	-0.259358
Н	-2.836021	1.986418	-0.780587
С	-6.696968	1.604363	-0.994647
Н	-6.298369	-0.215248	-2.091095
С	-6.145860	2.704946	-0.334091
Н	-4.315270	3.699491	0.252321
Н	-7.782227	1.491563	-1.060374
Н	-6.796930	3.457021	0.118558
Br	-1.208924	-3.522065	0.420774
S	1.590728	1.147003	-1.828687
S	2.805587	2.317108	-0.589863
С	2.220938	4.077748	-0.872528
С	0.767814	4.223244	-0.419745
Н	0.447068	5.274234	-0.526989
Н	0.099363	3.592699	-1.022099
Н	0.647233	3.923047	0.631619
С	2.379821	4.450201	-2.345601
Н	2.044460	5.488404	-2.512011
Н	3.429734	4.367515	-2.665145
Н	1.771703	3.787800	-2.979372
С	3.155310	4.912365	0.011294
Н	2.894010	5.979991	-0.079304
Н	3.061968	4.628270	1.071379
Н	4.208036	4.792853	-0.289628
Ν	1.798006	-0.737672	1.259764
С	2.981430	-0.863741	0.628629
С	1.643326	0.063163	2.330265
С	2.919824	-1.695616	-0.584101
С	4.118038	-0.220937	1.130710
С	0.252268	0.138679	2.815608
С	2.740541	0.731929	2.876222
Ν	1.683082	-2.157957	-0.901194
С	4.036220	-2.010023	-1.372868
Н	5.080825	-0.315738	0.629555
С	3.992688	0.571252	2.273003
Ν	-0.648471	-0.573299	2.092915
С	-0.142304	0.873912	3.941303
Н	2.627851	1.375994	3.748159
С	1.533334	-2.937252	-1.977792
С	3.871877	-2.808396	-2.498080

Η	5.021075	-1.627360	-1.105310
Н	4.864793	1.087670	2.677551
С	-1.927208	-0.601060	2.482036
С	-1.480056	0.864997	4.327288
Н	0.592598	1.443347	4.510517
С	2.592152	-3.287856	-2.808982
Н	0.521595	-3.301943	-2.167246
Н	4.729120	-3.059595	-3.126266
С	-2.393554	0.106500	3.587500
Н	-2.593761	-1.226671	1.885846
Н	-1.805553	1.435416	5.199839
Н	2.417822	-3.925774	-3.676725
Н	-3.449097	0.059501	3.859404

TS-4	E = -6527.9261347	G = -6527	7.468476
Ni	0.286890	-0.964885	-0.129865
S	0.281275	0.036679	-2.179674
С	-0.953461	-1.793506	-2.027624
Η	-0.798750	-2.532437	-1.224300
Η	-0.530557	-2.179379	-2.958516
С	-2.401452	-1.336179	-2.129129
Η	-2.832395	-1.703623	-3.076872
Η	-2.438064	-0.235930	-2.220558
С	-3.251304	-1.800880	-0.935326
Η	-2.626341	-1.815329	-0.028704
Η	-3.531388	-2.859157	-1.086665
С	-4.492122	-0.987960	-0.646099
С	-5.210115	-0.319939	-1.649435
С	-4.936556	-0.862732	0.681510
С	-6.336952	0.447895	-1.337923
Η	-4.885893	-0.393994	-2.689786
С	-6.062009	-0.099646	0.996613
Η	-4.372226	-1.361358	1.474470
С	-6.767626	0.562308	-0.013921
Н	-6.880067	0.960707	-2.136009
Η	-6.386401	-0.015160	2.037121
Н	-7.647136	1.163453	0.229659
Br	-0.534030	-2.604183	1.547983
S	2.337887	1.107613	-2.003664
S	2.388478	2.479127	-0.465481
С	1.424375	3.978061	-1.063945
С	-0.058423	3.621922	-1.172476
Н	-0.627342	4.494712	-1.537376

Η	-0.217884	2.783504	-1.864780
Η	-0.465831	3.332319	-0.193678
С	1.981875	4.453569	-2.403092
Η	1.424152	5.340801	-2.748263
Η	3.046031	4.721396	-2.318059
Η	1.884514	3.665767	-3.164363
С	1.655578	5.018852	0.037150
Η	1.102754	5.941903	-0.204846
Η	1.293021	4.654242	1.011737
Η	2.722205	5.273870	0.135124
Ν	1.619771	-0.209489	1.179517
С	2.855240	-0.716353	1.189060
С	1.211548	0.693546	2.075622
С	3.117267	-1.723000	0.134189
С	3.781791	-0.305095	2.155646
С	-0.172122	1.179690	1.870297
С	2.078901	1.136036	3.079841
Ν	2.044652	-2.089557	-0.593817
С	4.381005	-2.277683	-0.101001
Η	4.791800	-0.712489	2.175015
С	3.377874	0.628900	3.108872
Ν	-0.828733	0.626084	0.832266
С	-0.763842	2.172432	2.659323
Η	1.756101	1.869091	3.817849
С	2.181695	-3.001832	-1.554799
С	4.525664	-3.229346	-1.107921
Η	5.242492	-1.961690	0.486577
Η	4.077598	0.961733	3.878014
С	-2.055721	1.045740	0.533640
С	-2.063069	2.588151	2.365716
Η	-0.218684	2.617639	3.491215
С	3.404540	-3.604763	-1.849177
Η	1.278914	-3.259594	-2.110500
Η	5.503375	-3.670899	-1.312121
С	-2.724953	2.017111	1.279930
Η	-2.526881	0.597256	-0.336582
Η	-2.545815	3.355138	2.975136
Η	3.469771	-4.348015	-2.645180
Η	-3.740779	2.302927	1.004142
66			
TS-6	E = -6129.66327297	G = -6129.	206782
Ni	0.626423	0.601612	0.542627
S	-0.313577	-0.615622	-1.197206

С	-1.189631	-0.769765	2.194630
Н	-1.200558	-1.100888	3.234955
Н	-0.510904	-1.341414	1.556215
С	-2.490151	-0.389428	1.574286
Н	-2.297690	0.173194	0.651898
Н	-3.083453	0.245193	2.251184
С	-3.319220	-1.633228	1.155097
Н	-3.656554	-2.181544	2.049322
Н	-2.666732	-2.309254	0.580479
С	-4.496496	-1.232321	0.300845
С	-4.284812	-0.850008	-1.035340
С	-5.798037	-1.180891	0.817103
С	-5.352977	-0.433739	-1.831402
Н	-3.268969	-0.876692	-1.440918
С	-6.869441	-0.765406	0.020042
Н	-5.974899	-1.474085	1.856041
С	-6.649823	-0.390332	-1.307435
Н	-5.172981	-0.144449	-2.870172
Н	-7.879067	-0.736559	0.438141
Н	-7.485976	-0.067621	-1.932963
Br	-0.034000	1.280983	2.945641
Ν	2.131873	1.477096	-0.413423
С	3.323645	0.844794	-0.416666
С	1.853857	2.465485	-1.287430
С	3.411087	-0.268075	0.541408
С	4.328688	1.231996	-1.308722
С	0.481474	2.994896	-1.172246
С	2.817501	2.896385	-2.201868
Ν	2.246988	-0.585354	1.163368
С	4.589894	-0.984487	0.794401
Н	5.291799	0.721821	-1.320015
С	4.071363	2.273616	-2.204086
Ν	-0.302760	2.356025	-0.271929
С	-0.004182	4.079595	-1.916578
Н	2.599261	3.696367	-2.909205
С	2.225901	-1.611276	2.020757
С	4.561908	-2.049569	1.687837
Н	5.518178	-0.706556	0.295300
Н	4.838805	2.589587	-2.912874
С	-1.553805	2.779158	-0.071729
С	-1.313612	4.507661	-1.717713
Н	0.638368	4.585626	-2.637283
С	3.351984	-2.375856	2.312559
Н	1.268813	-1.824643	2.496886

Η	5.469749	-2.619414	1.896499
С	-2.107187	3.848231	-0.772767
Н	-2.126295	2.242826	0.686332
Н	-1.709911	5.350488	-2.288091
Н	3.279909	-3.204232	3.018721
Н	-3.136387	4.153587	-0.578581
S	-0.143999	-2.637790	-0.684972
С	1.124187	-3.322795	-1.884871
С	2.456364	-2.598331	-1.711124
Н	3.188445	-2.961070	-2.453500
Н	2.322045	-1.516502	-1.856110
Н	2.869168	-2.768774	-0.707364
С	0.598507	-3.163719	-3.311443
Н	1.327976	-3.568667	-4.034535
Н	-0.355965	-3.695589	-3.441489
Н	0.433812	-2.100358	-3.541279
С	1.245247	-4.800259	-1.499222
Н	0.277480	-5.317792	-1.590371
Н	1.965428	-5.303413	-2.166123
Н	1.602385	-4.912439	-0.463293

TS-7	E = -6129.67863623	G = -6129.	220185
Ni	0.723646	-0.726843	0.022530
S	0.728867	0.526037	-1.960565
С	-0.586362	-1.218215	-1.956219
Н	-0.360608	-2.069362	-1.295277
Н	-0.236215	-1.452132	-2.969491
С	-2.028140	-0.790040	-1.825054
Н	-2.341587	-0.203462	-2.703393
Н	-2.111815	-0.098206	-0.976996
С	-2.999780	-1.970564	-1.572103
Н	-2.472556	-2.732736	-0.979023
Н	-3.281668	-2.438880	-2.529985
С	-4.223490	-1.526066	-0.809518
С	-5.254722	-0.806382	-1.431965
С	-4.305129	-1.749209	0.575003
С	-6.334850	-0.316630	-0.693725
Н	-5.207738	-0.625868	-2.509817
С	-5.384064	-1.258963	1.316953
Н	-3.505325	-2.308322	1.069646
С	-6.401967	-0.538121	0.685484
Н	-7.129528	0.240260	-1.197053
Н	-5.431385	-1.447321	2.392861

Н	-7.247876	-0.156932	1.262998
Br	-0.183605	-2.681139	1.280794
S	1.225330	2.580415	-1.117907
Ν	2.169728	0.288465	0.985221
С	3.443531	0.020885	0.668628
С	1.818745	1.371281	1.686635
С	3.621362	-1.201429	-0.152704
С	4.470899	0.865281	1.100483
С	0.359213	1.502956	1.909219
С	2.799424	2.250090	2.166585
Ν	2.477766	-1.790264	-0.553864
С	4.869908	-1.739374	-0.486667
Н	5.510214	0.664924	0.842095
С	4.133255	1.986434	1.864475
Ν	-0.401223	0.588845	1.274531
С	-0.208459	2.453246	2.766209
Н	2.525794	3.134496	2.740539
С	2.521284	-2.918219	-1.260356
С	4.919561	-2.908494	-1.244799
Н	5.789079	-1.259112	-0.151199
Н	4.915867	2.663458	2.212649
С	-1.714303	0.553509	1.500118
С	-1.587852	2.442288	2.969467
Н	0.419293	3.183586	3.276282
С	3.725172	-3.514965	-1.637448
Н	1.556670	-3.361794	-1.518164
Н	5.882302	-3.346338	-1.517110
С	-2.358183	1.467780	2.333775
Н	-2.270989	-0.245038	1.012573
Н	-2.051565	3.178072	3.630168
Н	3.719806	-4.437400	-2.220142
Н	-3.438178	1.400853	2.473114
С	-0.220437	3.614004	-1.680624
С	-1.511335	3.113252	-1.030268
Н	-2.368030	3.725228	-1.362378
Н	-1.705349	2.069167	-1.309946
Н	-1.451257	3.172460	0.065608
С	-0.329577	3.571889	-3.206412
Н	-1.171401	4.200609	-3.545879
Н	0.594227	3.941028	-3.676776
Н	-0.501853	2.542183	-3.551499
С	0.102086	5.035214	-1.199928
Н	-0.707827	5.723192	-1.497942
Н	0.195336	5.071168	-0.103101

Н

35			
Р	E = -1304.16941973	G = -1303.917	428
S	1.502866	0.858701	0.860215
S	3.312402	1.124972	-0.122598
С	0.337663	0.503067	-0.523143
Η	0.396752	1.335906	-1.239948
Η	0.659847	-0.413925	-1.037479
С	-1.074990	0.352281	0.032114
Η	-1.103001	-0.468710	0.768604
Η	-1.362799	1.266538	0.578131
С	-2.108332	0.075355	-1.073294
Η	-1.818011	-0.838589	-1.618142
Η	-2.082502	0.900074	-1.805069
С	-3.507172	-0.079264	-0.526984
С	-3.987292	-1.335057	-0.126756
С	-4.338685	1.037668	-0.356518
С	-5.262446	-1.473233	0.426653
Η	-3.352764	-2.216875	-0.254693
С	-5.614509	0.905020	0.196430
Η	-3.980844	2.024178	-0.665189
С	-6.080784	-0.352232	0.590631
Η	-5.619887	-2.460941	0.728416
Η	-6.248739	1.786779	0.317340
Η	-7.079419	-0.458392	1.021041
С	4.159248	-0.550830	-0.021874
С	4.439180	-0.893427	1.441157
Η	3.499776	-0.968133	2.009318
Η	4.958748	-1.864556	1.509733
Η	5.070158	-0.126621	1.914413
С	3.301107	-1.629068	-0.680742
Η	2.351271	-1.753977	-0.139790
Η	3.081630	-1.380446	-1.729854
Η	3.830497	-2.596707	-0.656477
С	5.463272	-0.333464	-0.798184
Η	6.068177	0.470552	-0.350604
Η	6.061976	-1.258946	-0.777768
Η	5.267275	-0.076870	-1.850804

References

[1] Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652.

[2] Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. *Phys. Rev. A* **1988**, *38*, 3098–3100.

[3] Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B* **1988**, *37*, 785–789.

[4] Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. *J. Comput. Chem.* **2011**, *32*, 1456–1465.

[5] Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297–3305.

[6] Dolg, M.; Wedig, U.; Stoll, H.; Preus, H. Energy-Adjusted ab Initio
Pseudopotentials for the First Row Transition Elements. *J. Chem. Phys.* 1987, *86*, 866–872.

[7] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem.* B, **2009**, *113*, 6378– 6396.

[8] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Iz-maylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, revision B.01. Gaussian, Inc., Wallingford CT, **2016**.

VI. References

Elderfield, R. C.; Mertel, H. E.; Mitch, R. T.; Wempen, I. M.; Werble, E. Synthesis of Primaquine and Certain of its Analogs. *J. Am. Chem. Soc.* **1955**, *77*, *18*, 4816–4819.
 Quang, T. Do.; Giang, T. Nguyen.; Victor, Celis.; Robert, S. Phillips. Inhibition of Escherichia coli Tryptophan Indole-Lyase by Tryptophan Homologues. Archives of Biochemistry and Biophysics **2014**, *560*, 20–26.

[3] Zhou, F.; Zhu, J.; Zhang, Y.; Zhu, S. NiH-Catalyzed Reductive Relay Hydroalkylation: A Strategy for the Remote C(sp³)–H Alkylation of Alkenes. *Angew. Chem. Int. Ed.* **2018**, *57*, 4058-4062.

[4] Yan, X.; Li, C.; Jin, W.; Guo, P.; Shu, X. Reductive Coupling of Benzyl Oxalates with Highly Functionalized Alkyl Bromides by Nickel Catalysis. *Chem. Sci.* **2018**, *9*, 4529–4534.

[5] Doyle, E. D.; Hunter, C. A. Phillips, H. C. Webb, S. J. Williams, N. H. Cooperative Binding at Lipid Bilayer Membrane Surfaces. *J. Am. Chem. Soc.* 2003, *125*, 4593–4599.
[6] Wang, F.; Chen, Y.; Rao, W. et al. Efficient Preparation of Unsymmetrical Disulfides by Nickel-Catalyzed Reductive Coupling Strategy. *Nat. Commun.* 2022, *13*, 2588.

[7] a) Wu, Z.; Pratt, D. A. A Divergent Strategy for Site-Selective Radical Disulfuration of Carboxylic Acids with Trisulfide-1,1-Dioxides. *Angew. Chem., Int. Ed.* 2021, *60*, 15598–15605. b) Gao, W.; Tian, J.; Shang, Y.; Jiang, X. F. Steric and stereoscopic disulfide construction for cross-linkage via N-dithiophthalimides. *Chem. Sci.* 2020, *11*, 3903–3908.

[8] Wang, J.; Lei, T.; Wu, H.; Nan, X.; Li, X.; Chen, B.; Tung, C.; Wu, L.-Z. Thiol Activation toward Selective Thiolation of Aromatic C–H Bond. *Org. Lett.* **2020**, *22*, 3804–3809.

[9] Bhattacherjee, D.; Sufian, A. et al. Trisulfides over Disulfides: Highly Selective Synthetic Strategies, Anti-Proliferative Activities and Sustained H₂S Release Profiles. *Chem. Commun.* **2019**, *55*, 13534–13537.

VII. NMR spectrum of the products

3aa

4aa

