Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supplementary Information

for

Expedient Deaminative Phosphorylation and Sulfonylation of

Benzylic Tertiary Amines Enabled by Difluorocarbene

Chengbo Li^{*a*}, Yu Guo^{*a*}, Jianke Su^{*a*}, Xinyuan Hu^{*a*}, Qingqing Xuan^{*a*}* and Qiuling Song^{*a,b,c,d**}

^aInstitute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian, 361021, China ^bKey Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China.

^cState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China ^dSchool of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.

> *email: <u>qsong@fzu.edu.cn</u> <u>xuanqingqing@hqu.edu.cn</u>

Table of Contents

1. Supplementary methods	3
1.1 General information	3
1.2 General process	3
2. Supplementary discussion	8
2.1 Optimization studies	8
2.2 Crystal data	13
2.3 Characterization data for products	14
2.4 NMR spectroscopic data	38
2.5 HPLC spectra	97
2.6 References	99

1. Supplementary methods

1.1 General information

All chemicals were purchased from Leyan.com (BrCF₂COOK, BrCF₂COONa), Energy chemical company (BrCF₂COOEt, BrCF₂PO(OEt)₂, ClCF₂COONa), Adamas Reagent, Bide Pharmatech Ltd (TMSCF₂Br,), and Shang Fluoro Company (ClCF₂H). Unless otherwise stated, all experiments were conducted in a sealed tube under N₂ atmosphere. Reactions were monitored by TLC or GC-MS analysis. Flash column chromatography was performed over silica gel (200-300 mesh).

¹H-NMR and ¹³C-NMR spectra were recorded in CDCl₃ and DMSO-d₆ on a Bruker Avance 500 spectrometer (500 MHz ¹H, 125 MHz ¹³C (CPD), 202 MHz ³¹P, 470 MHz ¹⁹F) at room temperature. Chemical shifts were reported in ppm on the scale relative to CDCl₃ (δ = 7.26 for ¹H-NMR, δ = 77.00 for ¹³C-NMR) as an internal reference. Coupling constants (*J*) were reported in Hertz (Hz).

1.2 General process

General process 1A:^[1] NaOH (75 mg, 0.5 equiv) was added under stirring to a solution of Acetophenone (3 mmol, 1 equiv) and Benzaldehyde (3 mmol, 1 equiv) in ethanol (2 mL). The mixture was stirred for 24 h at room temperature. After, the

reaction mixture was neutralized with HCl 5% until pH \approx 7 and extracted with ethyl acetate (3 × 30 mL). Then, the organic layer was dried, concentrated, and purified by flash column chromatography (silica gel, petroleum ether: EtOAc =30:1, v/v) to give the desired products

General process $1B^{[2]}$: Under argon atmosphere, NaBH₄ (1.2 equiv.) was amed to a stirred solution of chalcone (1.0 equiv) in dry THF and methanol at 0 °C. The reaction mixture was stirred at 0 °C for 1 hour, and the reaction was quenched with water. Then, water (20 mL) was amed and the mixture was extracted with EtOAc (3 × 30 mL). Then, the organic layer was dried, concentrated, and purified by flash column chromatography (silica gel, petroleum ether: EtOAc =10:1, v/v) to give the desired products.

General process $1C^{[2]}$: To a solution of the alcohol (1 equiv) and triethylamine (5 equiv) was amed Ethanesulfonyl chlorid (1 equiv) at 0 °C. The reaction was stirred for 1h at room temperature and then, a solution of dimethylamine (2 M in THF, 5 equiv) was amed to the mixture. The temperature was raised to 50 °C and the reaction mixture was stirred for 16 h. Then, the organic layer was dried, concentrated, and purified by flash column chromatography (silica gel, petroleum ether: EtOAc =3:1, v/v) to give the desired products.

General process 2^[3]: Preparation of 1H-indol-3-yl methaneamines 1

A three-necked round bottom flask equipped with a magnetic stirring bar and a dropping funnel was charged with a mixture of formaldehyde (37 wt% in water, 1.1 equiv), water (15 mL), Et₃N (1.1 equiv), dimethylamine hydrochloride (1.1 equiv), indole (10 mmol, 1.1 equiv) and glacial acetic acid (1.5 equiv) in dioxane (15 mL). The mixture was stirred for 24 h at room temperature. The mixture was extracted with EtOAc (3 × 30 mL). Then, the organic layer was dried, concentrated, and purified by

flash column chromatography (silica gel, petroleum ether: EtOAc = 1:1, v/v) to give the desired products.

General process 3: For synthesis of diarylmethyl alkynes $2^{[4]}$ ArSO₂Cl $\xrightarrow{\text{NaHCO}_3, \text{ Na}_2\text{SO}_3} \xrightarrow{\text{O}}_{\text{H}_2\text{O}, 80 \,^\circ\text{C}, 4h} \xrightarrow{\text{O}}_{\text{Ar}} \xrightarrow{\text{O}}_{\text{ONa}}$

Sodium sulfite (20.0 mmol, 2.0 equiv), sodium bicarbonate (20.0 mmol, 2.0 equiv) and the corresponding aryl sulfonyl chloride (10.0 mmol, 1.0 equiv) were dissolved in distilled water (10.0 mL). The reaction mixture was stirred for 4 h at 80 °C using oil bath. After cooling down to room temperature, water was removed in vacuo. Ethanol (25 mL) was then added to this white residue and the resulting heterogeneous solution was filtered. The filtrate was concentrated under reduced pressure and the desired sodium sulfinates were obtained as white crystalline powders in 82-96% yields.

In air, amines (0.20 mmol), BrCF₂COOK (3.0 eq, 0.6 mmol) CH₃COOLi (3.0 eq, 0.6 mmol (**Only when Ph₂P(O)H is used as a nucleophilic reagent, the base is required**)) and nucleophile (1.0 eq, 0.2 mmol) were amed to a Schlenk tube equipped with a stir bar. The vessel was evacuated and filled with argon (three cycles). CH₃CN (2 mL) was added by syringe under argon atmosphere. The resulting reaction mixture was stirred vigorously at 100 °C for 12 h. Upon completion of the reaction, the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate =5:1~1:1, v/v) to give the desired products.

General process 5: Gram-scale synthesis of 4a

In air, propargyl amines **1a** or allylic amines **5a** (1.0 eq, 5.0 mmol), BrCF₂COOK (3.0eq, 15.0 mmol), CH₃COOLi (3.0 eq, 15.0 mmol) and diphenylphosphine oxide (1.0 eq, 5.0 mmol) were amed to a Schlenk tube equipped with a stir bar. The vessel was evacuated and filled with argon (three cycles). CH₃CN (15 mL) was added by syringe under argon atmosphere. The resulting reaction mixture was stirred vigorously at 100 °C for 24 h. Upon completion of the reaction, the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate = 3:1, v/v) to give the desired products.

General process 6A: To an oven-dried round bottom flask was added the corresponding aryl iodine (1.2 equiv), Pd(PPh₃)₂Cl₂ (0.04 equiv) and copper(I) iodine (0.08 equiv). The flask was connected to an argon-vacuum line, evacuated and backfilled with argon (Three times). Diisopropylamine (2.8 mL/mmol alcohol) was added and the reaction mixture was stirred at 0 °C for 5 min. 3-Butyn-2-ol (1 equiv) was added dropwise at 0 °C and the reaction mixture was stirred for 16 h at room temperature. Silica gel was added to the mixture and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography using the appropriate mixture of solvents.

General process 6B: Solution of phenylacetylene (10 mmol, 1.1 equiv) in anhydrous THF (10 mL) was cooled to -78 °C, 2.5 M solution of *n*-butyllithium in THF (4.8 mL, 12 mmol; 1.2 equiv) was amed dropwise, and solution was stirred with cooling under an argon atmosphere for 1 h. Then, solution of corresponding aldehyde (10 mmol, 1.0 equiv) in anhydrous THF (5 mL) was amed dropwise and solution was warmed to room temperature for 1 h. Then, water (20 mL) was amed and the mixture

was extracted with EtOAc (3×30 mL). Then, the organic layer was dried, concentrated, and purified by flash column chromatography (silica gel, petroleum ether: EtOAc =10:1, v/v) to give the desired products.

In air, amines (0.20 mmol), BrCF₂COOEt (3.0 eq, 0.6 mmol), K₃PO₄ (3.0 eq, 0.6 mmol and p-Toluenethiol (1.5 eq, 0.3 mmol) were amed to a Schlenk tube equipped with a stir bar. The vessel was evacuated and filled with argon (three cycles). CH₃CN (2 mL) was added by syringe under argon atmosphere. The resulting reaction mixture was stirred vigorously at 90 °C for 12 h. Upon completion of the reaction, the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (silica gel, petroleum ether: Dichloromethane =100:1, v/v) to give the desired products.

2. Supplementary discussion

2.1 Optimization studies

1.1.1 The condition screening for the diarylmethyl alkynes synthesis Supplementary Table 1. The effects of base

Reaction condition: **1a** (1.0 equiv., 0.2 mmol), **2a** (1.5 equiv., 0.2 mmol), BrCF₂COOK (3.0 eq, 0.6 mmol) base (3 equiv.), CH₃CN (2 mL) at 90 °C for 12 h under argon; ^{*a*} isolated yields.

Supplementary Table 2. The effects of leaving group

Reaction condition: 1 (1.0 equiv., 0.2 mmol), 2a (1.5 equiv., 0.3 mmol), BrCF₂COOK (3.0 eq, 0.6 mmol) CH₃COOLi (3 equiv.0.6mmol), CH₃CN (2 mL) at 90 °C for 12 h under argon; ^{*a*} isolated yields.

Supplementary Table 3. The effects of solvent

Reaction condition: 1a (1.0 equiv., 0.2 mmol), 2a (1.5 equiv., 0.3 mmol), BrCF₂COOK (3.0 eq, 0.6 mmol) CH₃COOLi (3 equiv.0.6mmol), solvent (2 mL) at 90 °C for 12 h under argon; ^{*a*} isolated yields.

Supplementary Table 4. The effects of halodifluorinated reagents

Entries	Base	Yield $(\%)^a$
1	2a	32
2	2b	47
3	2c	ND
4	2d	61
5	2e	45
6	2f	53
7	2g	ND

Reaction condition: 1a (1.0 equiv., 0.2 mmol), 2a (1.5 equiv., 0.3 mmol), halodifluorinated reagents (3.0 eq, 0.6 mmol) CH₃COOLi (3 equiv.0.6mmol), MeCN (2 mL) at 90 °C for 12 h under argon; ^{*a*} isolated yields. ND = not detected.

Supplementary Table 5. The effects of temperature, equivalent of BrCF₂COOK and CH₃COOLi.

	+ Ph	O _P_P _h + BrC H	F₂COOK <u>CH₃COOLi</u> argon, MeCN	Ph. ^O _P .Ph
1a		2a	3a	4a
Entries	CH ₃ COOLi	T °C	BrCF ₂ COOK	Yield $(\%)^a$
1	3eq	80	3eq	55
2	3eq	90	3eq	61
3	3eq	100	3eq	86
4	3eq	110	3eq	71
5	2eq	100	3eq	77
6	1eq	100	3eq	64
7	0eq	100	3eq	46
8	3eq	100	2eq	75
9	3eq	100	leq	57

Reaction condition: **1a** (1.0 equiv., 0.2 mmol), **2a** (1.5 equiv., 0.3 mmol), BrCF₂COOK (1-3 equiv.) CH₃COOLi (0-3 equiv.), CH₃CN (2 mL) at 80 ~ 110 °C for 12 h under argon; ^{*a*} isolated yields.

Experiments with leaving group monitoring

In air, 1f (0.2 mmol), BrCF₂COOK (3.0 eq, 0.6 mmol) CH₃COOLi (3.0 eq, 0.6 mmol and 2a (1.5 eq, 0.3 mmol) were amed to a Schlenk tube equipped with a stir bar. The vessel was evacuated and filled with argon (three cycles). CH₃CN (2 mL) was added by syringe under argon atmosphere. The resulting reaction mixture was stirred vigorously at 100 °C for 12 h. Upon completion of the reaction, the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate =1:1, v/v) to give the desired products.

2.2 Crystal data

Crystallographic data for compound 4m (CCDC-2305694) has been deposited with the Cambridge Crystallographic Data Centre, Copies of the data can be obtained, free of charge, on application to CCDC (Email: deposit@ccdc.cam.ac.uk).

Bond precision:	C-C = 0.0019 A	Wavelength=1.54178		
Cell:	a=18.1661(7)	b=5.6830(2)	c=17.2863(7)	
	alpha=90	beta=97.593(1)	gamma=90	
Temperature:	100 K			
	Calculated	Reported		
Volume	1768.95(12)	1768.95(1	12)	
Space group	P 21/c	P 1 21/c 1		
Hall group	-P 2ybc	-P 2ybc		
Moiety formula	C22 H20 O2 S	C22 H20 C	D2 S	
Sum formula	C22 H20 O2 S	C22 H20 C	02 S	
Mr	348.44	348.44		
Dx,g cm-3	1.308	1.308		
Z	4	4		
Mu (mm-1)	1.712	1.711		
F000	736.0	736.0		
F000'	739.25			
h,k,lmax	21,6,20	21,6,20		
Nref	3221	3191		
Tmin,Tmax	0.512,0.531	0.562,0.7	753	
Tmin'	0.464			
Correction metho	d= # Reported T Li	mits: Tmin=0.562 Tr	nax=0.753	
AbsCorr = MULTI-	SCAN			
Data completeness= 0.991		Theta(max) = 68.19	91	
R(reflections)=	0.0357(3132)		wR2(reflections	

Npar= 227

S = 1.078

s) = 0.0900(3191)

2.3 Characterization data for products

(E)-N,N-dimethyl-1,3-diphenylprop-2-en-1-amine(1a)

Following the **general procedure 1** on 20 mmol scale, yellow oil, yield: 59% (2.8g), $R_f = 0.3$ (silica gel, PE: EA = 5:1, v/v), column chromatography (silica gel, PE: EA = 20:1, v/v).

¹**H NMR** (500 MHz, Chloroform-d) δ 7.48 – 7.44 (m, 2H), 7.44 – 7.36 (m, 4H), 7.36 – 7.29 (m, 3H), 7.29 – 7.22 (m, 1H), 6.62 (d, J = 15.8 Hz, 1H), 6.44 (dd, J = 15.8, 8.8 Hz, 1H), 3.76 (d, J = 8.7 Hz, 1H), 2.31 (s, 6H).

(E)-1,3-bis(4-fluorophenyl)-N,N-dimethylprop-2-en-1-amine(1b)

Following the **general procedure 1** on 10 mmol scale, yellow oil, yield: 63% (1.7 g), $R_f = 0.3$ (silica gel, PE: EA = 5:1, v/v), column chromatography (silica gel, PE: EA = 20:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 7.34 (ddd, J = 18.1, 8.7, 5.5 Hz, 4H), 7.01 (dt, J = 24.0, 8.7 Hz, 4H), 6.51 (d, J = 15.8 Hz, 1H), 6.24 (dd, J = 15.8, 8.7 Hz, 1H), 3.69 (d, J = 8.7 Hz, 1H), 2.26 (s, 6H). (E)-1,3-bis(4-chlorophenyl)-N,N-dimethylprop-2-en-1-amine(1c)

Following the **general procedure 1** on 10 mmol scale, yellow oil, yield: 53% (1.6 g), $R_f = 0.3$ (silica gel, PE: EA = 5:1, v/v), column chromatography (silica gel, PE: EA = 20:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 7.39 – 7.32 (m, 4H), 7.32 – 7.25 (m, 4H), 6.54 (d, J = 15.8 Hz, 1H), 6.31 (dd, J = 15.8, 8.7 Hz, 1H), 3.72 (d, J = 8.7 Hz, 1H), 2.26 (s, 6H).

(E)-1,3-bis(4-bromophenyl)-N,N-dimethylprop-2-en-1-amine(1d)

Following the **general procedure 1** on 10 mmol scale, yellow oil, yield: 66% (2.6 g), $R_f = 0.3$ (silica gel, PE: EA = 5:1, v/v), column chromatography (silica gel, PE: EA = 20:1, v/v).

¹**H NMR** (500 MHz, Chloroform-d) δ 7.52 – 7.45 (m, 2H), 7.45 – 7.38 (m, 2H), 7.34 – 7.26 (m, 2H), 7.26 – 7.18 (m, 2H), 6.52 (d, J = 15.8 Hz, 1H), 6.31 (dd, J = 15.8, 8.7 Hz, 1H), 3.70 (d, J = 8.7 Hz, 1H), 2.25 (s, 6H).

(E)-1,3-bis(4-iodophenyl)-N,N-dimethylprop-2-en-1-amine(1e)

Following the **general procedure 1** on 10 mmol scale, yellow oil, yield: 68% (3.3 g), $R_f = 0.3$ (silica gel, PE: EA = 5:1, v/v), column chromatography (silica gel, PE: EA = 20:1, v/v).

¹**H NMR** (500 MHz, Chloroform-d) δ 7.69 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 8.5 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 7.10 (d, J = 8.5 Hz, 2H), 6.49 (d, J = 15.8 Hz, 1H), 6.31 (dd, J = 15.8, 8.7 Hz, 1H), 3.67 (d, J = 8.7 Hz, 1H), 2.24 (s, 6H).

(E)-3-(4-ethylphenyl)-N,N-dimethyl-1-phenylprop-2-en-1-amine(1f)

Following the **general procedure 1** on 10 mmol scale, yellow oil, yield: 72% (1.9 g), $R_f = 0.3$ (silica gel, PE: EA = 5:1, v/v), column chromatography (silica gel, PE: EA = 20:1, v/v).

¹**H NMR** (500 MHz, Chloroform-d) δ 7.48 – 7.44 (m, 1H), 7.44 – 7.39 (m, 1H), 7.39 – 7.31 (m, 4H), 7.31 – 7.26 (m, 1H), 7.24 (dd, J = 7.8, 3.1 Hz, 1H), 7.20 – 7.17 (m, 1H), 6.61 (dd, J = 15.8, 4.4 Hz, 1H), 6.42 (ddd, J = 25.6, 15.8, 8.7 Hz, 1H), 3.75 (dd, J = 8.8, 6.5 Hz, 1H), 2.68 (dq, J = 12.6, 7.6 Hz, 2H), 2.31 (d, J = 0.8 Hz, 6H), 1.28 (dt, J = 11.3, 7.6 Hz, 3H).

(E)-3-(4-fluorophenyl)-N,N-dimethyl-1-(p-tolyl)prop-2-en-1-amine(1g)

Following the **general procedure 1** on 10 mmol scale, yellow oil, yield: 65% (1.7 g), $R_f = 0.3$ (silica gel, PE: EA = 5:1, v/v), column chromatography (silica gel, PE: EA = 20:1, v/v).

¹**H NMR** (500 MHz, Chloroform-d) δ 7.45 – 7.37 (m, 2H), 7.36 – 7.30 (m, 2H), 7.17 (d, J = 7.9 Hz, 2H), 7.11 – 6.99 (m, 2H), 6.58 (d, J = 15.7 Hz, 1H), 6.33 (dd, J = 15.7, 8.8 Hz, 1H), 3.75 (d, J = 8.8 Hz, 1H), 2.39 (d, J = 8.3 Hz, 3H), 2.30 (d, J = 5.6 Hz, 6H).

(2E,4E)-N,N-dimethyl-1,5-diphenylpenta-2,4-dien-1-amine(1h)

Following the **general procedure 1** on 10 mmol scale, yellow oil, yield: 53% (1.4 g), $R_f = 0.3$ (silica gel, PE: EA = 5:1, v/v), column chromatography (silica gel, PE: EA = 20:1, v/v).

¹**H NMR** (500 MHz, Chloroform-d) δ 7.42 – 7.34 (m, 6H), 7.35 – 7.30 (m, 2H), 7.30 – 7.26 (m, 1H), 7.26 – 7.21 (m, 1H), 6.79 (ddd, J = 15.7, 10.5, 0.8 Hz, 1H), 6.54 (d, J = 15.7 Hz, 1H), 6.40 (dd, J = 15.1, 10.5 Hz, 1H), 6.01 (dd, J = 15.1, 8.9 Hz, 1H), 3.66 (d, J = 8.8 Hz, 1H), 2.27 (s, 6H).

N,N-dimethyl-4-phenylbut-3-yn-2-amine (1g)

Following the **general procedure 7** on 0.2 mmol scale, yellow oil, yield: 87% (1.5 g), $R_f = 0.3$ (silica gel, PE: EA = 5:1, v/v), column chromatography (silica gel, PE: EA = 10:1, v/v).

HPLC analysis: The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel OD-H, hexane/2-propanol = 90:10, 0.5 mL/min, λ = 254 nm, τ_R (major) = 7.4 min and τ_R (minor) = 7.9 min. ¹**H NMR** (500 MHz, Chloroform-d) δ 7.45 – 7.41 (m, 2H), 7.29 (dt, J = 4.6, 2.8 Hz, 3H), 3.70 (q, J = 7.0 Hz, 1H), 2.33 (s, 6H), 1.41 (d, J = 7.1 Hz, 3H).

sodium 4-isopropylbenzenesulfinate(5a)

Following the **general procedure 3** on 10 mmol scale, white solid, yield: 93% (1.9 g). ¹H NMR (500 MHz, DMSO-d6) δ 7.46 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 8.1 Hz, 2H), 2.88 (hept, J = 6.9 Hz, 1H), 1.19 (d, J = 6.9 Hz, 6H).

sodium cyclopropanesulfinate(5b)

Following the **general procedure 3** on 10 mmol scale, white solid, yield: 95% (1.2 g). ¹**H NMR** (500 MHz, DMSO-d6) δ 1.58 (tt, J = 8.1, 5.0 Hz, 1H), 0.48 (dt, J = 5.6, 2.8 Hz, 2H), 0.37 – 0.19 (m, 2H).

sodium naphthalene-2-sulfinate(5c)

Following the **general procedure 3** on 10 mmol scale, white solid, yield: 89% (1.9 g). ¹**H NMR** (500 MHz, DMSO-d6) δ 7.99 – 7.82 (m, 4H), 7.70 (d, J = 1.5 Hz, 1H), 7.56 – 7.42 (m, 2H).

sodium thiophene-2-sulfinate(5d)

Following the **general procedure 3** on 10 mmol scale, white solid, yield: 82% (1.4 g). ¹**H NMR** (500 MHz, DMSO-d6) δ 7.39 (dd, J = 4.7, 1.5 Hz, 1H), 7.03 – 6.81 (m, 2H).

(E)-(1,3-diphenylallyl)diphenylphosphine oxide (4a)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 203-205 °C), yield: 86% (67.8 mg), $R_f = 0.4$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 7.92 – 7.83 (m, 2H), 7.67 – 7.56 (m, 2H), 7.48 (ddd, J = 14.3, 7.3, 2.2 Hz, 3H), 7.42 – 7.34 (m, 3H), 7.30 (td, J = 7.6, 3.1 Hz, 2H), 7.25 – 7.20 (m, 6H), 7.20 – 7.13 (m, 2H), 6.61 (ddd, J = 16.0, 9.2, 7.1 Hz, 1H), 6.34 (dd, J = 15.7, 3.9 Hz, 1H), 4.40 (t, J = 9.4 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 136.7 (d, J = 2.4 Hz), 135.9 (d, J = 5.9 Hz), 134.4 (d, J = 11.4 Hz), 132.0 (d, J = 37.4 Hz), 131.8 (d, J = 2.8 Hz), 131.7 (d, J = 8.4 Hz), 131.6 (d, J = 2.9 Hz), 131.3 (d, J = 8.7 Hz), 131.1, 129.5 (d, J = 5.8 Hz), 128.6 (d, J = 1.7 Hz), 128.5, 128.4 (d, J = 1.7 Hz), 128.2 (d, J = 11.4 Hz), 127.6, 127.2 (d, J = 2.7 Hz), 126.4 (d, J = 1.4 Hz), 124.6 (d, J = 7.2 Hz), 52.4 (d, J = 65.0 Hz).

³¹**P NMR** (202 MHz, CDCl3) δ 31.52.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₇H₂₄OP⁺ 395.1559.; Found: 395.1562

(E)-(1,3-diphenylallyl)di-p-tolylphosphine oxide (4b)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 210-211 °C), yield: 68% (57.4 mg), $R_f = 0.4$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 7.76 – 7.66 (m, 2H), 7.44 (dd, J = 10.9, 8.1 Hz, 2H), 7.37 – 7.31 (m, 2H), 7.29 – 7.20 (m, 8H), 7.20 – 7.14 (m, 2H), 7.10 (dd, J = 8.0, 2.8 Hz, 2H), 6.59 (ddd, J = 16.0, 9.1, 7.1 Hz, 1H), 6.33 (ddd, J = 15.8, 3.8, 0.9 Hz, 1H), 4.34 (t, J = 9.6 Hz, 1H), 2.38 (s, 3H), 2.30 (s, 3H).

¹³C NMR (126 MHz, Chloroform-d) δ 136.9 (d, J = 2.5 Hz), 136.2 (d, J = 5.9 Hz), 134.2 (d, J = 11.3 Hz), 131.7 (d, J = 8.7 Hz), 131.4 (d, J = 9.1 Hz), 129.5 (d, J = 5.8 Hz), 129.2 (d, J = 11.8 Hz), 128.9 (d, J = 12.1 Hz), 128.7, 128.5 (d, J = 1.8 Hz), 128.4, 128.3, 128.0, 127.5, 127.0 (d, J = 2.3 Hz), 126.4 (d, J = 1.5 Hz), 125.0 (d, J = 7.1 Hz), 52.5 (d, J = 65.3 Hz), 21.6 (d, J = 8.6 Hz).

³¹**P NMR** (202 MHz, Chloroform-d) δ 31.85.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₉H₂₈OP⁺445.1692.; Found: 445.1686.

(E)-bis(3,5-dimethylphenyl)(1,3-diphenylallyl)phosphine oxide (4c)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 210-212 °C), yield: 71% (63.9 mg), $R_f = 0.4$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR 1H NMR (500 MHz, Chloroform-d) δ 7.47 (dt, J = 11.2, 2.2 Hz, 2H), 7.44 – 7.35 (m, 2H), 7.30 – 7.23 (m, 6H), 7.20 (dp, J = 6.0, 4.1, 2.9 Hz, 4H), 7.14 (s, 1H), 7.03 (s, 1H), 6.61 (dddt, J = 13.1, 8.8, 6.9, 2.0 Hz, 1H), 6.34 (dt, J = 15.8, 3.4 Hz, 1H), 4.38 (td, J = 9.6, 4.5 Hz, 1H), 2.34 (s, 6H), 2.22 (s, 6H).

¹³C NMR (126 MHz, Chloroform-d) δ 138.0 (d, J = 12.2 Hz), 137.7 (d, J = 12.1 Hz), 136.9 (d, J = 2.6 Hz), 136.3 (d, J = 5.9 Hz), 134.3 (d, J = 11.2 Hz), 133.5 (d, J = 2.8 Hz), 133.2 (d, J = 3.0 Hz), 131.7 (d, J = 32.6 Hz), 131.0 (d, J = 32.7 Hz), 129.6 (d, J = 5.7 Hz), 129.4 (d, J = 8.4 Hz), 129.0 (d, J = 8.7 Hz), 128.5 (d, J = 1.9 Hz), 128.4, 127.5, 127.0 (d, J = 2.3 Hz), 126.4 (d, J = 1.4 Hz), 125.0 (d, J = 7.2 Hz), 52.3 (d, J = 64.4 Hz), 21.3 (d, J = 14.6 Hz).

 ^{31}P NMR (202 MHz, Chloroform-d) δ 32.23.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₃₁H₃₂OP⁺ 451.2185.; Found: 451.2182.

(E)-(1,3-diphenylallyl)bis(3-methoxyphenyl)phosphine oxide (4d)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 164-165 °C), yield: 62% (56.3 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 7.85 – 7.73 (m, 1H), 7.50 – 7.42 (m, 1H), 7.41 – 7.33 (m, 3H), 7.31 – 7.22 (m, 6H), 7.18 (ddd, J = 15.0, 7.7, 3.7 Hz, 5H), 7.04 (ddd, J = 11.8, 8.3, 5.2 Hz, 2H), 6.78 (dt, J = 15.8, 8.9 Hz, 1H), 6.50 (dd, J = 15.9, 3.1 Hz, 1H), 4.53 (t, J = 8.6 Hz, 1H), 2.37 (s, 3H), 2.19 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 143.1 (d, J = 7.2 Hz), 142.6 (d, J = 7.6 Hz), 137.0 (d, J = 5.5 Hz), 136.9, 134.22 (d, J = 11.5 Hz), 132.1 (d, J = 10.3 Hz), 131.9, 131.8, 131.7 – 131.5 (m), 131.3 (d, J = 2.5 Hz), 130.8 (d, J = 48.4 Hz), 129.6 (d, J = 5.5 Hz), 128.5, 127.6, 127.0 (d, J = 2.0 Hz), 126.4, 125.7 (d, J = 6.4 Hz), 125.2 (dd, J = 26.3, 11.9 Hz), 50.7 (d, J = 66.0 Hz), 21.2 (dd, J = 38.1, 3.7 Hz). ³¹P NMR (202 MHz, Chloroform-d) δ 35.16.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₉H₂₈O₃P⁺ 455.1771.; Found: 455.1769.

(E)-(1,3-diphenylallyl)bis(4-fluorophenyl)phosphine oxide (4e)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 195-197 °C), yield: 59% (50.8 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 7.91 – 7.77 (m, 2H), 7.64 – 7.49 (m, 2H), 7.34 (dt, J = 8.0, 1.7 Hz, 2H), 7.31 – 7.15 (m, 10H), 7.03 (tt, J = 8.7, 2.2 Hz, 2H), 6.59 (ddd, J = 16.2, 9.2, 7.2 Hz, 1H), 6.36 (dd, J = 15.8, 3.9 Hz, 1H), 4.32 (t, J = 9.4 Hz, 1H).

¹³C NMR (126 MHz, Chloroform-d) δ 166.0 (d, J = 3.4 Hz), 165.8 (d, J = 3.4 Hz), 164.0 (d, J = 3.3 Hz), 163.8 (d, J = 3.2 Hz), 135.5 (d, J = 6.0 Hz), 134.7 (d, J = 11.6 Hz), 134.1 (t, J = 9.3 Hz), 133.9 – 133.6 (m), 129.4 (d, J = 5.7 Hz), 128.7 (d, J = 1.8 Hz), 128.5, 127.9, 127.6 (d, J = 3.4 Hz), 127.4 (d, J = 2.3 Hz), 127.1, 126.8 (d, J = 3.3 Hz), 126.4, 124.0 (d, J = 7.3 Hz), 115.9 (ddd, J = 37.0, 21.3, 12.6 Hz), 52.6 (d, J = 66.3 Hz).

³¹**P** NMR (202 MHz, Chloroform-d) δ 30.42.

 ^{19}F NMR (471 MHz, Chloroform-d) δ -106.48, -106.72.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₇H₂₂F₂OP⁺ 431.1371.; Found: 431.1374.

(E)-bis(3-chlorophenyl)(1,3-diphenylallyl)phosphine oxide (4f)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 233-235 °C), yield: 66% (61.0 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹**H NMR** (500 MHz, Chloroform-d) δ 7.76 (dd, J = 10.4, 8.1 Hz, 2H), 7.51 – 7.42 (m, 4H), 7.36 – 7.27 (m, 4H), 7.26 – 7.13 (m, 8H), 6.56 (ddd, J = 16.2, 9.2, 7.3 Hz, 1H), 6.37 (dd, J = 15.7, 3.8 Hz, 1H), 4.33 (t, J = 9.3 Hz, 1H).

¹³**C NMR** (126 MHz, Chloroform-d) δ 138.7 (d, J = 3.4 Hz), 138.4 (d, J = 3.4 Hz), 136.4 (d, J = 2.6 Hz), 135.3 (d, J = 6.1 Hz), 134.9 (d, J = 11.5 Hz), 133.4 (d, J = 10.5 Hz), 133.0 (d, J = 9.2 Hz), 132.6 (d, J = 9.5 Hz), 129.6 (d, J = 3.6 Hz), 129.4 (d, J = 5.9 Hz), 129.0 (d, J = 12.0 Hz), 128.8 (d, J = 1.8 Hz), 128.7 (d, J = 12.2 Hz), 128.6, 127.91, 127.5 (d, J = 2.4 Hz), 126.4 (d, J = 1.5 Hz), 123.8 (d, J = 7.3 Hz), 52.3 (d, J = 66.2 Hz).

³¹**P NMR** (202 MHz, Chloroform-d) δ 30.41.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₇H₂₂Cl₂OP⁺ 463.0780.; Found: 463.0783.

(E)-bis(2-bromophenyl)(1,3-diphenylallyl)phosphine oxide (4g)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 241-243 °C), yield: 63% (69.3 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 8.29 (ddd, J = 11.6, 7.7, 1.7 Hz, 1H), 7.91 – 7.81 (m, 1H), 7.60 – 7.49 (m, 3H), 7.46 – 7.37 (m, 2H), 7.34 – 7.28 (m, 3H), 7.28 – 7.22 (m, 2H), 7.22 – 7.09 (m, 6H), 6.82 (dt, J = 16.0, 9.2 Hz, 1H), 6.67 (dd, J = 15.9, 3.0 Hz, 1H), 5.17 (t, J = 8.6 Hz, 1H).

¹³C NMR (126 MHz, Chloroform-d) δ 137.0 (d, J = 7.0 Hz), 136.8 (d, J = 5.7 Hz), 136.7, 136.3 (d, J = 8.2 Hz), 134.7 – 134.3 (m), 133.6 (d, J = 7.8 Hz), 133.1 (dd, J = 30.9, 2.2 Hz), 132.1 (d, J = 43.7 Hz), 129.2 (d, J = 6.1 Hz), 128.7, 128.5, 127.8, 127.3 (d, J = 2.1 Hz), 126.8 (d, J = 10.6 Hz), 126.6, 126.5, 125.2 (d, J = 4.1 Hz), 123.8 (d, J = 5.6 Hz), 48.0 (d, J = 71.0 Hz).

³¹**P NMR** (202 MHz, Chloroform-d) δ 31.21.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₇H₂₂Br₂OP⁺ 550.9770.; Found: 550.9774.

(E)-(1,3-diphenylallyl)di(naphthalen-2-yl)phosphine oxide (4h)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 213-214 °C), yield: 83% (82.0 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 8.52 (dd, J = 12.8, 1.4 Hz, 1H), 8.21 (dd, J = 13.2, 1.5 Hz, 1H), 7.97 - 7.83 (m, 4H), 7.82 - 7.74 (m, 3H), 7.63 (td, J = 8.7, 1.6 Hz, 1H), 7.58 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H), 7.53 (td, J = 8.0, 1.4 Hz, 2H), 7.48 (ddd, J = 8.1, 6.8, 1.3 Hz, 1H), 7.43 (dt, J = 8.0, 1.6 Hz, 2H), 7.25 - 7.12 (m, 8H), 6.68 (ddd, J = 16.0, 9.1, 7.2 Hz, 1H), 6.41 (dd, J = 15.8, 3.8 Hz, 1H), 4.61 (t, J = 9.5 Hz, 1H).

¹³C NMR (126 MHz, Chloroform-d) δ 136.6 (d, J = 2.3 Hz), 135.9 (d, J = 5.9 Hz), 134.7, 134.6, 134.5 (d, J = 2.2 Hz), 134.2 (d, J = 7.3 Hz), 133.7 (d, J = 7.8 Hz), 132.64, 132.55, 132.4, 132.3, 129.6 (d, J = 5.7 Hz), 129.4, 129.0 (d, J = 13.6 Hz), 128.7 (d, J = 1.6 Hz), 128.6, 128.4, 128.2, 128.1, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.3 (d, J = 2.2 Hz), 126.9, 126.8, 126.4, 126.1 (d, J = 9.8 Hz), 124.6 (d, J = 7.2 Hz), 52.3 (d, J = 65.3 Hz).

³¹**P** NMR (202 MHz, Chloroform-d) δ 31.68.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₃₅H₂₈OP⁺ 495.1872.; Found: 495.1869.

(E)-(1,3-diphenylallyl)di(naphthalen-1-yl)phosphine oxide (4i)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 235-237 °C), yield: 76% (75.1 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 8.80 (d, J = 8.5 Hz, 1H), 8.62 (d, J = 8.6 Hz, 1H), 8.16 (dd, J = 14.3, 7.1 Hz, 1H), 7.97 (d, J = 8.3 Hz, 1H), 7.91 – 7.84 (m, 2H), 7.83 – 7.71 (m, 2H), 7.49 (td, J = 7.7, 2.6 Hz, 1H), 7.44 – 7.28 (m, 7H), 7.24 – 7.04 (m, 8H), 6.81 (dt, J = 15.6, 8.8 Hz, 1H), 6.41 (dd, J = 15.9, 3.3 Hz, 1H), 4.82 (t, J = 9.0 Hz, 1H).

¹³C NMR (126 MHz, Chloroform-d) δ 136.9 (d, J = 5.6 Hz), 136.8 (d, J = 1.8 Hz), 134.3, 134.23, 134.17, 134.0 (d, J = 3.3 Hz), 133.9 (d, J = 2.0 Hz), 133.6 (d, J = 9.1 Hz), 133.0 (d, J = 3.0 Hz), 132.8 (d, J = 3.0 Hz), 132.1 (d, J = 2.8 Hz), 132.0 (d, J = 2.8 Hz), 129.9 (d, J = 28.6 Hz), 129.6 (d, J = 5.9 Hz), 129.1 (d, J = 29.0 Hz), 128.8, 128.6, 128.5 (d, J = 1.7 Hz), 128.3, 127.6, 127.2, 127.1 (d, J = 4.6 Hz), 127.0, 126.6 (d, J = 4.4 Hz), 126.4, 126.2 (d, J = 22.5 Hz), 125.8 (d, J = 6.4 Hz), 124.4, 124.25, 124.2, 124.1, 52.0 (d, J = 66.9 Hz).

³¹P NMR (202 MHz, Chloroform-d) δ 36.10.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₃₅H₂₈OP⁺ 495.1872.; Found: 495.1869.

dimethyl (E)-(1,3-diphenylallyl)phosphonate (4j)

Following the **general procedure 4** on 0.2 mmol scale, yellow oil, yield: 89% (53.8 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v).

¹**H NMR** (500 MHz, Chloroform-d) δ 7.49 – 7.43 (m, 2H), 7.42 – 7.34 (m, 4H), 7.32 – 7.27 (m, 3H), 7.24 (d, J = 7.7 Hz, 1H), 6.63 – 6.47 (m, 2H), 4.03 (dd, J = 24.8, 8.2 Hz, 1H), 3.73 (d, J = 10.7 Hz, 3H), 3.55 (d, J = 10.6 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-d) δ 136.6 (d, J = 2.7 Hz), 135.6 (d, J = 7.5 Hz), 133.9 (d, J = 14.0 Hz), 129.0 (d, J = 7.1 Hz), 128.8 (d, J = 2.4 Hz), 128.6, 127.8, 127.5 (d, J = 2.8 Hz), 126.5 (d, J = 1.8 Hz), 124.2 (d, J = 9.6 Hz), 53.6 (d, J = 7.2 Hz), 49.5, 48.4.

³¹P NMR (202 MHz, Chloroform-d) δ 27.14.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₇H₂₀O₃P⁺ 303.1145.; Found: 303.1143.

diethyl (E)-(1,3-diphenylallyl)phosphonate (4k)

Following the **general procedure 4** on 0.2 mmol scale, yellow oil, yield: 96% (63.4 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v).

¹**H NMR** (500 MHz, Chloroform-d) δ 7.49 – 7.43 (m, 2H), 7.40 – 7.33 (m, 4H), 7.33 – 7.26 (m, 3H), 7.25 – 7.19 (m, 1H), 6.63 – 6.47 (m, 2H), 4.14 – 4.04 (m, 2H), 4.03 – 3.93 (m, 2H), 3.81 (ddq, J = 10.2, 8.4, 7.1 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H), 1.13 (t, J = 7.1 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-d) δ 136.8 (d, J = 2.9 Hz), 136.0 (d, J = 7.3 Hz), 133.7 (d, J = 13.9 Hz), 129.1 (d, J = 7.1 Hz), 128.7 (d, J = 2.2 Hz), 128.5, 127.69, 127.3 (d, J = 2.9 Hz), 126.5 (d, J = 1.9 Hz), 124.7 (d, J = 9.6 Hz), 62.7 (dd, J = 15.7, 7.1 Hz), 49.5 (d, J = 137.2 Hz), 16.4 (dd, J = 23.7, 5.8 Hz). ³¹P NMR (202 MHz, Chloroform-d) δ 24.83.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₉H₂₄O₃P⁺ 331.1458.; Found: 331.1456.

(E)-(3-(phenylsulfonyl)prop-1-ene-1,3-diyl)dibenzene (6a)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 149-150 °C), yield: 63% (42.1 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:5, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 7.75 – 7.66 (m, 2H), 7.59 (td, J = 7.4, 1.4 Hz, 1H), 7.44 (t, J = 7.8 Hz, 2H), 7.41 – 7.27 (m, 10H), 6.66 – 6.50 (m, 2H), 4.88 (d, J = 8.7 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 138.2, 137.4, 135.9, 133.7, 132.3, 129.7, 129.3, 129.0, 128.74, 128.70, 128.66, 128.5, 126.7, 120.0, 75.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₁₉O₂S⁺ 335.1100.; Found: 335.1099.

(E)-(3-tosylprop-1-ene-1,3-diyl)dibenzene (6b)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 162-164 °C), yield: 64% (44.6 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:5, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 7.61 – 7.53 (m, 2H), 7.41 – 7.32 (m, 9H), 7.32 – 7.27 (m, 1H),

7.23 (d, J = 8.0 Hz, 2H), 6.67 – 6.52 (m, 2H), 4.86 (d, J = 8.3 Hz, 1H), 2.42 (s, 3H).

¹³C NMR (126 MHz, Chloroform-d) δ 144.6, 138.0, 136.0, 134.5, 132.5, 129.7, 129.4, 129.3, 128.9, 128.7, 128.6, 128.5, 126.8, 120.3, 75.4, 21.6.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₂H₂₁O₂S⁺ 349.1257.; Found: 349.1254.

(E)-(3-((4-isopropylphenyl)sulfonyl)prop-1-ene-1,3-diyl)dibenzene (6c)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 158-160 °C), yield: 68% (51.2 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:5, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 7.58 (d, J = 8.0 Hz, 2H), 7.37 – 7.29 (m, 9H), 7.26 (t, J = 8.0 Hz), 7.26 (t

3H), 6.58 (dd, J = 15.7, 9.0 Hz, 1H), 6.49 (d, J = 15.7 Hz, 1H), 4.82 (d, J = 8.9 Hz, 1H), 2.94 (p, J = 6.9 Hz, 1H), 1.23 (d, J = 6.9 Hz, 6H).

¹³C NMR (126 MHz, Chloroform-d)δ 155.3, 138.0, 136.0, 134.7, 132.4, 129.7, 129.5, 128.9, 128.7, 128.6, 128.5, 126.8, 126.8, 120.3, 75.5, 34.2, 23.6.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₄H₂₅O₂S⁺ 377.1570.; Found: 377.1579.

(E)-(3-((4-methoxyphenyl)sulfonyl)prop-1-ene-1,3-diyl)dibenzene (6d)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 114-115 °C), yield: 67% (48.8 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:3, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 7.58 (d, J = 8.9 Hz, 2H), 7.40 – 7.24 (m, 10H), 6.87 (d, J = 8.9 Hz, 2H), 6.68 – 6.48 (m, 2H), 4.83 (d, J = 7.8 Hz, 1H), 3.83 (s, 3H).

¹³C NMR (126 MHz, Chloroform-d) δ 163.7, 137.9, 136.0, 132.7, 131.5, 129.7, 128.9, 128.9, 128.69, 128.65, 128.5, 126.8, 120.4, 113.9, 75.6, 55.7.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₂H₂₁O₃S⁺ 365.1206.; Found: 387.1029.

(E)-(3-((4-fluorophenyl)sulfonyl)prop-1-ene-1,3-diyl)dibenzene (6e)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 115-117 °C), yield: 57% (40.1 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:5, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR 1H NMR (500 MHz, Chloroform-d) δ 7.82 (d, J = 8.1 Hz, 2H), 7.70 (d, J = 8.2 Hz, 2H), 7.40 – 7.30 (m, 10H), 6.60 (d, J = 4.1 Hz, 2H), 4.89 (t, J = 4.1 Hz, 1H).

¹³C NMR (126 MHz, Chloroform-d)δ 141.0, 138.9, 135.6, 131.7, 129.9, 129.7, 129.3, 128.9, 128.79, 128.75, 126.8, 125.8 (d, J = 3.8 Hz), 119.1, 75.6.

¹⁹**F NMR** (471 MHz, Chloroform-d) δ -63.18.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₁₈FO₂S⁺ 353.1006.; Found: 353.1002.

(E)-(3-((4-chlorophenyl)sulfonyl)prop-1-ene-1,3-diyl)dibenzene (6f)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 138-139 °C), yield: 54% (39.8 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:5, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 7.63 – 7.54 (m, 2H), 7.41 – 7.31 (m, 11H), 7.29 (d, J = 7.0 Hz, 1H), 6.62 – 6.53 (m, 2H), 4.84 (dd, J = 5.3, 3.0 Hz, 1H).

¹³C NMR (126 MHz, Chloroform-d) δ 140.4, 138.6, 136.0, 135.7, 132.1, 130.8, 129.7, 129.1, 129.0, 128.9, 128.7, 126.82 119.5, 75.5.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₁₈ClO₂S⁺ 369.0711.; Found: 369.0712

(E)-(3-((4-bromophenyl)sulfonyl)prop-1-ene-1,3-diyl)dibenzene (6g)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp:153-155 °C), yield: 60% (49.4 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:5, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 7.63 – 7.47 (m, 4H), 7.43 – 7.28 (m, 10H), 6.66 – 6.53 (m, 2H), 4.85 (dd, J = 6.2, 2.1 Hz, 1H).

¹³C NMR (126 MHz, Chloroform-d) δ 138.6, 136.5, 135.7, 132.0, 132.0, 130.8, 129.7, 129.2, 129.1, 128.9, 128.7, 128.7, 126.8, 119.5, 75.5.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₁₈BrO₂S⁺ 413.0205.; Found: 413.0207.

(E)-(3-((4-(trifluoromethyl)phenyl)sulfonyl)prop-1-ene-1,3-diyl)dibenzene (6h)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 118-120 °C), yield: 49% (39.4 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:3, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 7.74 (dd, J = 58.3, 8.2 Hz, 4H), 7.35 (dt, J = 7.1, 5.4 Hz, 9H), 7.30 (d, J = 6.9 Hz, 1H), 6.63 - 6.52 (m, 2H), 4.92 - 4.82 (m, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 141.1, 138.9, 135.6, 135.3 (d, J = 33.0 Hz), 131.7, 129.9, 129.7,

129.3, 128.9, 128.8, 128.7, 126.8, 125.8 (q, J = 3.6 Hz), 119.1, 75.6.

¹⁹**F NMR** (471 MHz, Chloroform-d) δ -63.17.

7.7 Hz, 2H), 4.90 (dd, J = 7.1, 1.1 Hz, 1H).

HRMS (ESI) m/z: $[M+Na]^+$ Calcd. for $C_{22}H_{18}F_3O_2S^+$ 425.0974.; Found: 425.0792.

(E)-(3-((3-nitrophenyl)sulfonyl)prop-1-ene-1,3-diyl)dibenzene (6i)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 180-182 °C), yield: 46% (34.9 mg), $R_f = 0.2$ (silica gel, PE: EA = 1:3, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 8.50 (t, J = 2.0 Hz, 1H), 8.40 (ddd, J = 8.2, 2.3, 1.1 Hz, 1H), 7.95 (dt, J = 7.9, 1.4 Hz, 1H), 7.61 (t, J = 8.0 Hz, 1H), 7.39 – 7.31 (m, 9H), 7.31 – 7.27 (m, 1H), 6.60 (d, J = 8.2, 2.3, 1.1 Hz, 1H), 7.61 (t, J = 8.0 Hz, 1H), 7.39 – 7.31 (m, 9H), 7.31 – 7.27 (m, 1H), 6.60 (d, J = 8.2, 2.3, 1.1 Hz, 1H), 7.61 (t, J = 8.0 Hz, 1H), 7.95 (t, J = 2.0 Hz, 1H), 7.95 (t, J = 2

¹³C NMR (126 MHz, Chloroform-d) δ 148.0, 139.7, 139.3, 135.5, 134.8, 131.5, 130.0, 129.7, 129.5, 129.0, 128.9, 128.8, 128.1, 126.9, 124.5, 118.7, 75.7.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₁₈NO₄S⁺ 380.0951.; Found: 380.0953.

(E)-(3-((4-(trifluoromethoxy)phenyl)sulfonyl)prop-1-ene-1,3-diyl)dibenzene (6j)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 134-136 °C), yield: 57% (47.7 mg), $R_f = 0.4$ (silica gel, PE: EA = 1:5, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 7.71 (dd, J = 8.6, 1.3 Hz, 2H), 7.38 – 7.31 (m, 9H), 7.31 – 7.27 (m, 1H), 7.23 (d, J = 8.4 Hz, 2H), 6.58 (d, J = 6.4 Hz, 2H), 4.85 (dd, J = 6.8, 1.5 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 152.9, 138.7, 135.7, 132.0, 131.6, 129.7, 129.2, 128.9, 128.7 (d, J = 1.5 Hz), 128.6 (d, J = 7.3 Hz), 127.8, 126.8, 126.5 (d, J = 32.7 Hz), 120.4, 119.4, 75.6.

¹⁹**F NMR** (471 MHz, Chloroform-d) δ -57.70.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{22}H_{18}F_3O_3S^+$ 419.0923.; Found: 410.0922.

(E)-N-(4-((1,3-diphenylallyl)sulfonyl)phenyl)acetamide (6k)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 193-195 °C), yield: 46% (36.0 mg), $R_f = 0.4$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR (500 MHz, DMSO-d6) δ 10.35 (s, 1H), 7.80 – 7.52 (m, 4H), 7.50 – 7.22 (m, 10H), 6.68 (dd, J = 15.6, 9.6 Hz, 1H), 6.56 (d, J = 15.6 Hz, 1H), 5.38 (d, J = 9.6 Hz, 1H), 2.08 (s, 3H).

¹³**C NMR** (126 MHz, DMSO-d6) δ 169.7, 144.4, 137.8, 136.2, 133.3, 131.2, 130.5, 130.3, 129.2, 129.0, 128.85, 127.1, 121.4, 118.5, 73.7, 24.7.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₃H₂₂NO₃S⁺ 392.1315.; Found: 392.1312.

(E)-(3-(ethylsulfonyl)prop-1-ene-1,3-diyl)dibenzene (6l)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 104-105 °C), yield: 65% (37.2 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:3, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 7.58 – 7.53 (m, 2H), 7.43 (tdd, J = 8.6, 5.9, 4.2 Hz, 5H), 7.37 – 7.31 (m, 2H), 7.31 – 7.26 (m, 1H), 6.77 (d, J = 15.7 Hz, 1H), 6.65 (dd, J = 15.7, 9.1 Hz, 1H), 4.88 (d, J = 9.1 Hz, 1H), 2.94 (q, J = 7.5 Hz, 2H), 1.36 (t, J = 7.4 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-d) δ 137.7, 135.7, 132.3, 129.5, 129.18, 129.16, 128.72, 128.68, 126.9, 120.4, 71.6, 45.2, 6.5.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₇H₁₉O₂S⁺ 287.1100.; Found: 287.1097.

(E)-(3-(cyclopropylsulfonyl)prop-1-ene-1,3-diyl)dibenzene (6m)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 159-161 °C), yield: 77% (45.9 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:3, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 7.60 – 7.54 (m, 2H), 7.47 – 7.37 (m, 5H), 7.37 – 7.31 (m, 2H), 7.31 – 7.26 (m, 1H), 6.80 (d, J = 15.7 Hz, 1H), 6.67 (dd, J = 15.7, 9.1 Hz, 1H), 4.89 (d, J = 9.1 Hz, 1H), 2.25 (tt, J = 8.1, 4.8 Hz, 1H), 1.29 – 1.11 (m, 2H), 1.02 – 0.85 (m, 2H).

¹³C NMR (126 MHz, Chloroform-d) δ 137.7, 135.9, 132.6, 129.7, 129.1, 129.0, 128.7, 128.6, 126.9, 120.4, 73.1, 28.1, 5.20, 5.0.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₈H₁₉O₂S⁺ 299.1100.; Found: 299.1106.

(E)-2-((1,3-diphenylallyl)sulfonyl)naphthalene (6n)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 172-174 °C), yield: 52% (39.9 mg), $R_f = 0.4$ (silica gel, PE: EA = 1:5, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H **NMR** (500 MHz, Chloroform-d) δ 8.28 (d, J = 1.8 Hz, 1H), 7.98 – 7.82 (m, 3H), 7.74 – 7.56 (m, 3H), 7.34 (dtdd, J = 19.8, 12.1, 8.2, 4.2 Hz, 10H), 6.67 (dd, J = 15.7, 8.9 Hz, 1H), 6.58 (d, J = 15.7 Hz, 1H), 4.97 (d, J = 8.8 Hz, 1H).

¹³C NMR (126 MHz, Chloroform-d)δ 138.3, 135.9, 135.2, 134.4, 132.4, 131.9, 131.3, 129.8, 129.4, 129.3, 129.0, 128.7, 128.7, 128.6, 128.5, 127.9, 127.5, 126.8, 124.0, 120.0, 75.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{25}H_{21}O_2S^+$ 385.1257.; Found: 385.1259.

(E)-2-((1,3-diphenylallyl)sulfonyl)thiophene (60)

Following the **general procedure 4** on 0.2 mmol scale, White solid (mp: 195-197 °C), yield: 56% (38.1 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:3, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v). ¹H NMR (500 MHz, Chloroform-d) δ 7.63 (dd, J = 4.9, 1.3 Hz, 1H), 7.44 – 7.31 (m, 10H), 7.31 – 7.26 (m, 1H), 7.03 (dd, J = 4.9, 3.8 Hz, 1H), 6.68 – 6.58 (m, 2H), 4.95 (dd, J = 5.7, 2.6 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 138.5, 138.1, 135.9, 135.4, 134.6, 132.4, 129.7, 129.1, 128.8, 128.7, 128.62, 127.56, 126.9, 119.9.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₉H₁₇O₂S₂⁺ 341.0664.; Found: 341.0665.

diethyl (E)-(1,3-bis(4-fluorophenyl)allyl)phosphonate (7a)

Following the **general procedure 4** on 0.2 mmol scale, yellow oil, yield: 65% (47.6 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v).

¹**H NMR** (500 MHz, Chloroform-d) δ 7.41 (ddd, J = 8.9, 5.2, 2.3 Hz, 2H), 7.36 – 7.30 (m, 2H), 7.07 – 7.01 (m, 2H), 7.01 – 6.95 (m, 2H), 6.51 (dd, J = 15.8, 4.3 Hz, 1H), 6.39 (dt, J = 16.0, 8.3 Hz, 1H), 4.16 – 4.03 (m, 2H), 4.03 – 3.89 (m, 2H), 3.83 (ddq, J = 10.1, 8.5, 7.1 Hz, 1H), 1.26 (t, J = 7.0 Hz, 3H), 1.14 (t, J = 7.1 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-d) δ 164.0 – 162.8 (m), 161.7 – 160.8 (m), 132.8 (t, J = 3.0 Hz), 132.6 (d, J = 13.7 Hz), 131.7 (dd, J = 7.3, 3.3 Hz), 130.6 (t, J = 7.5 Hz), 128.0 (dd, J = 8.2, 1.7 Hz), 124.1 (dd, J = 9.5, 2.3 Hz), 115.5 (d, J = 21.7 Hz), 62.8 (dd, J = 15.6, 7.2 Hz), 48.4 (d, J = 138.3 Hz), 16.4 (dd, J = 20.4, 5.9 Hz).

³¹**P** NMR (202 MHz, Chloroform-d) δ 24.48 (d, J = 4.6 Hz).

¹⁹**F NMR** (471 MHz, Chloroform-d) δ -114.09 (d, J = 2.3 Hz), -115.15 (d, J = 4.4 Hz). **HRMS (ESI) m/z**: [M+H]⁺ Calcd. for C₁₉H₂₂F₂O₃P⁺ 367.1269.; Found: 367.1271.

diethyl (E)-(1,3-bis(4-chlorophenyl)allyl)phosphonate (7b)

Following the **general procedure 4** on 0.2 mmol scale, yellow oil, yield: 71% (52.5 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v).

¹**H NMR** (500 MHz, Chloroform-d) δ 7.40 – 7.30 (m, 4H), 7.30 – 7.23 (m, 4H), 6.52 – 6.39 (m, 2H), 4.13 – 4.03 (m, 2H), 4.03 – 3.89 (m, 2H), 3.89 – 3.80 (m, 1H), 1.26 (t, J = 7.1 Hz, 3H), 1.15 (t, J = 7.0 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-d) δ 135.0 (d, J = 1.8 Hz), 134.3 (d, J = 6.9 Hz), 133.5, 133.3 (d, J = 2.6 Hz), 132.8 (d, J = 13.4 Hz), 130.4 (d, J = 6.4 Hz), 128.9, 128.8, 127.7, 124.8 (d, J = 9.1 Hz), 62.9 (dd, J = 13.5, 6.6 Hz), 49.3, 48.2.

³¹P NMR (202 MHz, Chloroform-d) δ 23.98.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{19}H_{22}Cl_2O_3P^+$ 399.0678.; Found: 399.0679.

diethyl (E)-(1,3-bis(4-bromophenyl)allyl)phosphonate (7c)

Following the **general procedure 4** on 0.2 mmol scale, yellow oil, yield: 75% (72.9 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v).

¹**H** NMR (500 MHz, Chloroform-d) δ 7.48 (d, J = 8.2 Hz, 2H), 7.45 – 7.39 (m, 2H), 7.32 (dd, J = 8.5, 2.3 Hz, 2H), 7.23 (d, J = 8.3 Hz, 2H), 6.53 – 6.38 (m, 2H), 4.14 – 4.03 (m, 2H), 4.03 – 3.89 (m, 2H), 3.85 (dddd, J = 10.0, 8.2, 7.0, 2.2 Hz, 1H), 1.26 (d, J = 5.1 Hz, 3H), 1.15 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (126 MHz, Chloroform-d) δ 135.4 (d, J = 2.5 Hz), 134.8 (d, J = 7.3 Hz), 132.9 (d, J = 13.6 Hz), 131.9. (d, J = 1.8 Hz), 131.7, 130.7 (d, J = 6.8 Hz), 128.0, 124.9 (d, J = 9.4 Hz), 121.7, 121.4 (d, J

= 3.5 Hz), 62.9 (dd, J = 12.9, 7.0 Hz), 49.3, 48.2.

³¹**P** NMR (202 MHz, Chloroform-d) δ 23.72.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₉H₂₂Br₂O₃P⁺ 508.9487.; Found: 508.9489.

diethyl (E)-(1,3-bis(4-iodophenyl)allyl)phosphonate (7d)

Following the **general procedure 4** on 0.2 mmol scale, yellow oil, yield:69% (80.3 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v).

¹**H NMR** (500 MHz, Chloroform-d) δ 7.67 (d, J = 8.1 Hz, 2H), 7.64 – 7.58 (m, 2H), 7.18 (dd, J = 8.5, 2.2 Hz, 2H), 7.09 (d, J = 8.2 Hz, 2H), 6.51 – 6.39 (m, 2H), 4.08 (dtd, J = 11.7, 7.2, 3.2 Hz, 2H), 4.03 – 3.80 (m, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.15 (t, J = 7.1 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-d) δ 137.8 (d, J = 2.2 Hz), 137.7, 136.0 (d, J = 2.8 Hz), 135.5 (d, J = 7.4 Hz), 133.0 (d, J = 13.7 Hz), 131.0 (d, J = 6.9 Hz), 128.2 (d, J = 1.9 Hz), 125.0 (d, J = 9.6 Hz), 93.2, 92.9 (d, J = 4.1 Hz), 62.9 (dd, J = 10.9, 7.2 Hz), 49.4, 48.3.

³¹**P NMR** (202 MHz, Chloroform-d) δ 23.66.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₉H₂₂I₂O₃P⁺ 582.9390.; Found: 582.9385.

diethyl ((2-phenyl-1H-indol-3-yl)methyl)phosphonate (7e)

Following the **general procedure 4** on 0.2 mmol scale, yellow oil, yield: 76% (52.2 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v).

¹**H NMR** (500 MHz, Chloroform-d) δ 9.12 (s, 1H), 7.81 – 7.72 (m, 3H), 7.40 (dd, J = 8.3, 7.0 Hz, 2H), 7.36 – 7.29 (m, 2H), 7.16 (dddd, J = 20.0, 8.1, 7.1, 1.2 Hz, 2H), 4.03 – 3.85 (m, 4H), 3.42 (d, J = 20.3 Hz, 2H), 1.17 (t, J = 7.1 Hz, 6H).

¹³C NMR (126 MHz, Chloroform-d) δ 136.5 (dd, J = 9.5, 4.6 Hz), 136.0 (d, J = 5.9 Hz), 132.7 (d, J = 3.3 Hz), 128.9 (d, J = 2.6 Hz), 128.8 (d, J = 2.5 Hz), 128.4, 127.8 (d, J = 3.1 Hz), 122.3 (d, J = 4.5 Hz), 120.0 (d, J = 3.2 Hz), 119.6 (d, J = 4.6 Hz), 111.1 (d, J = 7.7 Hz), 103.2 – 99.4 (m), 62.1 (d, J = 6.7 Hz), 23.7 (d, J = 145.2 Hz), 16.4 (d, J = 6.1 Hz).

³¹**P NMR** (202 MHz, Chloroform-d) δ 27.56.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₉H₂₃NO₃P⁺ 344.1410.; Found: 344.1409.

diethyl (E)-(3-(4-ethylphenyl)-1-phenylallyl)phosphonate (7f)

Following the **general procedure 4** on 0.2 mmol scale, yellow oil, yield: 85% (60.9 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v).

¹**H NMR** (500 MHz, Chloroform-d) δ 7.50 – 7.46 (m, 1H), 7.43 – 7.35 (m, 3H), 7.32 (td, J = 8.0, 3.0 Hz, 2H), 7.29 – 7.23 (m, 1H), 7.23 – 7.13 (m, 2H), 6.64 – 6.47 (m, 2H), 4.16 – 4.06 (m, 2H), 4.05 – 3.95 (m, 2H), 3.84 (ddt, J = 10.2, 8.4, 7.0 Hz, 1H), 2.66 (h, J = 7.6 Hz, 2H), 1.31 – 1.22 (m, 6H), 1.16 (td, J = 7.0, 5.4 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-d) δ 143.9, 143.3 (d, J = 3.0 Hz), 136.9 (d, J = 2.7 Hz), 136.2 (d, J = 7.3 Hz), 134.3 (d, J = 2.8 Hz), 133.6 (dd, J = 13.8, 11.9 Hz), 133.1 (d, J = 7.4 Hz), 129.0 (dd, J = 13.8, 7.0 Hz), 128.7 (d, J = 2.3 Hz), 128.5, 128.2 (d, J = 2.3 Hz), 128.1, 127.6, 127.2 (d, J = 2.9 Hz), 126.4 (d, J = 1.9 Hz), 124.9 (d, J = 9.4 Hz), 123.6 (d, J = 9.6 Hz), 66.8 – 57.3 (m), 28.6 (d, J = 13.6 Hz), 16.5 (d, J = 5.9 Hz), 16.3 (d, J = 5.8 Hz), 15.5.

³¹**P** NMR (202 MHz, Chloroform-d) δ 25.09, 24.97.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₂₈O₃P⁺ 359.1771.; Found: 359.1775.

diethyl (E)-(3-(4-fluorophenyl)-1-(p-tolyl)allyl)phosphonate (7g)

Following the **general procedure 4** on 0.2 mmol scale, yellow oil, yield: 86% (62.3 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v).

¹**H NMR** (500 MHz, Chloroform-d) δ 7.48 – 7.27 (m, 4H), 7.16 (dd, J = 25.2, 7.9 Hz, 2H), 7.03 (dt, J = 32.3, 8.7 Hz, 2H), 6.54 (dt, J = 15.8, 4.2 Hz, 1H), 6.45 (dt, J = 15.9, 8.2 Hz, 1H), 4.17 – 4.05 (m, 2H), 4.05 – 3.91 (m, 2H), 3.85 (dddd, J = 17.2, 10.1, 8.2, 6.9 Hz, 1H), 2.42 – 2.28 (m, 3H), 1.28 (dt, J = 7.0, 3.6 Hz, 3H), 1.16 (td, J = 7.1, 3.1 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-d) δ 162.3 (d, J = 246.9 Hz), 137.7, 137.0 (d, J = 3.1 Hz), 133.8 (d, J = 3.3 Hz), 133.7, 133.0 (t, J = 3.0 Hz), 132.7 (d, J = 7.3 Hz), 132.3 (d, J = 13.8 Hz), 131.9 (dd, J = 7.5, 3.2 Hz), 130.6 (t, J = 7.5 Hz), 129.5 (d, J = 2.3 Hz), 129.3, 128.9 (d, J = 6.9 Hz), 127.9 (dd, J = 7.9, 1.8 Hz), 126.4 (d, J = 1.8 Hz), 124.7 (dd, J = 9.5, 2.3 Hz), 123.2 (d, J = 9.5 Hz), 115.5 (dd, J = 21.6, 15.6 Hz), 65.5 – 55.1 (m), 48.7 (dd, J = 137.8, 48.1 Hz), 21.2 (d, J = 13.3 Hz), 16.4 (dd, J = 20.9, 5.8 Hz). ¹⁹F NMR (471 MHz, Chloroform-d) δ -114.38, -115.33 (d, J = 4.4 Hz).

³¹**P** NMR (202 MHz, Chloroform-d) δ 24.99, 24.72.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₀H₂₅FO₃P⁺ 363.1520.; Found: 363.1521.

diethyl (E)-(3-(4-bromophenyl)-1-phenylallyl)phosphonate (7h)

Following the **general procedure 4** on 0.2 mmol scale, yellow oil, yield: 79% (64.5 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v).

¹**H NMR** (500 MHz, Chloroform-d) δ 7.71 – 7.39 (m, 3H), 7.39 – 7.27 (m, 4H), 7.25 – 7.07 (m, 2H), 6.63 – 6.38 (m, 2H), 4.15 – 4.04 (m, 2H), 4.04 – 3.90 (m, 2H), 3.90 – 3.74 (m, 1H), 1.26 (td, J = 7.1, 2.5 Hz, 3H), 1.14 (dt, J = 24.3, 7.0 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-d) δ 137.8 (d, J = 2.2 Hz), 137.6, 136.5 (d, J = 2.6 Hz), 136.1 – 135.5 (m), 135.1 (d, J = 7.3 Hz), 134.1 (d, J = 13.8 Hz), 132.5 (t, J = 14.0 Hz), 131.8 (d, J = 2.2 Hz), 131.7, 131.0 (d, J = 6.8 Hz), 130.8 (d, J = 7.0 Hz), 129.1 (d, J = 6.8 Hz), 128.8 (d, J = 2.2 Hz), 128.6, 128.2 (d, J = 1.7 Hz), 128.0 (d, J = 1.7 Hz), 127.9, 127.4 (d, J = 2.8 Hz), 126.5 (d, J = 1.7 Hz), 125.6 (dd, J = 14.5, 9.5 Hz), 123.9 (d, J = 9.5 Hz), 122.2 – 120.1 (m), 64.8 – 58.8 (m), 49.1 (dd, J = 137.5, 81.1 Hz), 18.6 – 11.5 (m).

³¹**P NMR** (202 MHz, Chloroform-d) δ 24.47 (d, J = 5.1 Hz), 24.05.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₉H₂₃BrO₃P⁺ 409.0563.; Found: 409.0566.

diethyl (E)-(3-([1,1'-biphenyl]-4-yl)-1-phenylallyl)phosphonate (7i)

Following the **general procedure 4** on 0.2 mmol scale, yellow oil, yield: 79% (64.2 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v).

¹**H NMR** (500 MHz, Chloroform-d) δ 7.67 – 7.60 (m, 3H), 7.60 – 7.55 (m, 2H), 7.54 – 7.41 (m, 5H), 7.41 – 7.31 (m, 3H), 7.31 – 7.24 (m, 1H), 6.71 – 6.56 (m, 2H), 4.15 (dddd, J = 12.3, 10.2, 6.2, 2.6 Hz, 2H), 4.12 – 3.97 (m, 2H), 3.97 – 3.82 (m, 1H), 1.32 (td, J = 7.0, 2.9 Hz, 3H), 1.19 (dt, J = 14.1, 7.0 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-d) δ 140.7 (d, J = 2.6 Hz), 140.5, 140.2 (d, J = 3.1 Hz), 136.8 (d, J = 2.7 Hz), 136.0 (d, J = 7.3 Hz), 135.8 (d, J = 2.8 Hz), 135.1 (d, J = 7.6 Hz), 133.9 (d, J = 13.8 Hz), 133.3 (d, J = 13.9 Hz), 129.5 (d, J = 7.0 Hz), 129.1 (d, J = 7.1 Hz), 128.8 (d, J = 2.3 Hz), 128.6, 127.8, 127.42 (d, J = 2.4 Hz), 127.37, 127.3, 127.1, 126.9 (d, J = 1.7 Hz), 126.5 (d, J = 1.8 Hz), 124.8 (d, J = 9.6 Hz), 124.5 (d, J = 9.5 Hz), 62.8 (t, J = 7.7 Hz), 49.3 (dd, J = 137.2, 52.8 Hz), 16.5 (dd, J = 21.3, 5.8 Hz). ³¹P NMR (202 MHz, Chloroform-d) δ 24.79 (d, J = 9.8 Hz).

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₅H₂₈O₃P⁺ 407.1771.; Found: 407.1770.

diethyl ((2E,4E)-1,5-diphenylpenta-2,4-dien-1-yl)phosphonate (7j)

Following the **general procedure 4** on 0.2 mmol scale, yellow oil, yield: 77% (54.8 mg), $R_f = 0.3$ (silica gel, PE: EA = 1:1, v/v), column chromatography (silica gel, PE: EA = 3:1, v/v).

¹**H NMR** (500 MHz, Chloroform-d) δ 7.45 – 7.39 (m, 2H), 7.39 – 7.33 (m, 4H), 7.32 – 7.26 (m, 3H), 7.24 – 7.19 (m, 1H), 6.80 (ddt, J = 15.6, 10.3, 1.0 Hz, 1H), 6.50 (dd, J = 15.7, 2.2 Hz, 1H), 6.43 – 6.31 (m, 1H), 6.15 (dt, J = 15.0, 8.7 Hz, 1H), 4.09 (dq, J = 8.0, 7.0 Hz, 2H), 4.01 – 3.87 (m, 2H), 3.86 – 3.74 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-d) δ 137.1 (d, J = 1.7 Hz), 135.9 (d, J = 7.5 Hz), 134.1 (d, J = 14.0 Hz), 132.6 (d, J = 3.9 Hz), 129.1 (d, J = 6.9 Hz), 128.8, 128.7 (d, J = 2.6 Hz), 128.64, 128.59, 128.5, 128.4, 128.3 (d, J = 4.3 Hz), 128.2, 127.6, 127.3 (d, J = 2.9 Hz), 126.7 (d, J = 13.1 Hz), 126.4, 62.8 (dd, J = 26.0, 7.2 Hz), 62.0 (d, J = 5.4 Hz), 49.8, 48.8, 16.4 (dd, J = 24.4, 5.9 Hz).

³¹**P** NMR (202 MHz, Chloroform-d) δ 24.71, 24.62, 18.70.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₂₆O₃P⁺ 357.1614.; Found: 357.1609.

1-(difluoromethyl)-1H-benzo[d]imidazole

¹**H NMR** (500 MHz, Chloroform-d) δ 8.14 (s, 1H), 7.94 – 7.80 (m, 1H), 7.72 – 7.57 (m, 1H), 7.49 – 7.21 (m, 3H).

 ^{19}F NMR (471 MHz, Chloroform-d) δ -93.71.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₂₆O₃P⁺ 169.0572.; Found: 169.0576.

N,N-dimethyl-4-phenylbut-3-yn-2-amine (12)

Following the **general procedure 6** on 0.2 mmol scale, yellow oil, yield: 87% (28.2 mg), $R_f = 0.7$ (silica gel, PE: DCM = 10:1, v/v), column chromatography (silica gel, PE: DCM = 100:1, v/v).

HPLC analysis: The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel AD-H, hexane, 0.5 mL/min, $\lambda = 254$ nm, $\tau_R(major) = 19.8$ min and $\tau_R(minor) = 21.5$ min.

¹**H NMR** (500 MHz, Chloroform-d) δ 7.50 (d, J = 7.7 Hz, 2H), 7.38 – 7.34 (m, 2H), 7.28 (dd, J = 4.8, 2.1 Hz, 3H), 7.16 (d, J = 7.7 Hz, 2H), 4.06 (q, J = 7.0 Hz, 1H), 2.36 (s, 3H), 1.59 (d, J = 6.8 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-d) δ 138.30, 134.25, 131.62, 129.88, 129.59, 128.20, 128.05, 123.15, 90.33, 83.68, 34.56, 21.86, 21.24.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{17}H_{17}S^+$ 253.1045.; Found: 253.1048.

2.4 NMR spectroscopic data

(E)-N,N-dimethyl-1,3-diphenylprop-2-en-1-amine ¹H NMR (500 MHz, Chloroform-d)

(E)-1,3-bis(4-fluorophenyl)-N,N-dimethylprop-2-en-1-amine ¹H NMR (500 MHz, Chloroform-d)

(E)-1,3-bis(4-chlorophenyl)-N,N-dimethylprop-2-en-1-amine ¹H NMR (500 MHz, Chloroform-d)

(E)-1,3-bis(4-bromophenyl)-N,N-dimethylprop-2-en-1-amine ¹H NMR (500 MHz, Chloroform-d)

(E)-1,3-bis(4-iodophenyl)-N,N-dimethylprop-2-en-1-amine ¹H NMR (500 MHz, Chloroform-d)

(E)-3-(4-ethylphenyl)-N,N-dimethyl-1-phenylprop-2-en-1-amine ¹H NMR (500 MHz, Chloroform-d)

(E)-3-(4-fluorophenyl)-N,N-dimethyl-1-(p-tolyl)prop-2-en-1-amine ¹H NMR (500 MHz, Chloroform-d)

(2E,4E)-N,N-dimethyl-1,5-diphenylpenta-2,4-dien-1-amine ¹H NMR (500 MHz, Chloroform-d)

N,N-dimethyl-4-phenylbut-3-yn-2-amine (1g)

sodium cyclopropanesulfinate ¹H NMR (500 MHz, DMSO-d6)

$\begin{array}{c} 1,1,5,0\\ 1,1,1$

sodium thiophene-2-sulfinate ¹H NMR (500 MHz, DMSO-d6)

¹³C NMR (126 MHz, Chloroform-d)

(E)-(1,3-diphenylallyl)di-p-tolylphosphine oxide (4b) ¹H NMR (500 MHz, Chloroform-d)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

³¹P NMR (202 MHz, Chloroform-d)

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

(E)-bis(3,5-dimethylphenyl)(1,3-diphenylallyl)phosphine oxide (4c) ¹H NMR (500 MHz, Chloroform-d)

(E)-(1,3-diphenylallyl)bis(3-methoxyphenyl)phosphine oxide (4d) ¹H NMR (500 MHz, Chloroform-d)

7,28 7,28 7,77 7,78 7,77 7,78 7,778 7,79 7,79 7,79 7,70

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

(E)-(1,3-diphenylallyl)bis(4-fluorophenyl)phosphine oxide (4e) ¹H NMR (500 MHz, Chloroform-d)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

¹⁹F NMR (471 MHz, Chloroform-d)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

(E)-bis(3-chlorophenyl)(1,3-diphenylallyl)phosphine oxide (4f) ¹H NMR (500 MHz, Chloroform-d)

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

(E)-bis(2-bromophenyl)(1,3-diphenylallyl)phosphine oxide (4g) ¹H NMR (500 MHz, Chloroform-d)

¹³C NMR (126 MHz, Chloroform-d).

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

³¹P NMR (202 MHz, Chloroform-d)

-31.21

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

(E)-(1,3-diphenylallyl)di(naphthalen-2-yl)phosphine oxide (4h) ¹H NMR (500 MHz, Chloroform-d)

(E)-(1,3-diphenylallyl)di(naphthalen-1-yl)phosphine oxide (4i) ¹H NMR (500 MHz, Chloroform-d)

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

³¹P NMR (202 MHz, Chloroform-d)

diethyl (E)-(1,3-diphenylallyl)phosphonate (4k) ¹H NMR (500 MHz, Chloroform-d)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

(E)-(3-(phenylsulfonyl)prop-1-ene-1,3-diyl)dibenzene (6a) ¹H NMR (500 MHz, Chloroform-d)

(E)-(3-((4-isopropylphenyl)sulfonyl)prop-1-ene-1,3-diyl)dibenzene (6c) ¹H NMR (500 MHz, Chloroform-d)

(E)-(3-((4-methoxyphenyl)sulfonyl)prop-1-ene-1,3-diyl)dibenzene (6d) ¹H NMR (500 MHz, Chloroform-d)

¹⁹F NMR (471 MHz, Chloroform-d)

.0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

(E)-(3-((4-chlorophenyl)sulfonyl)prop-1-ene-1,3-diyl)dibenzene (6f) ¹H NMR (500 MHz, Chloroform-d)

(E)-(3-((4-bromophenyl)sulfonyl)prop-1-ene-1,3-diyl)dibenzene (6g) ¹H NMR (500 MHz, Chloroform-d)

¹³C NMR (126 MHz, Chloroform-d)

(E)-(3-((4-(trifluoromethyl)phenyl)sulfonyl)prop-1-ene-1,3-diyl)dibenzene (6h) ¹H NMR (500 MHz, Chloroform-d)

¹⁹F NMR (471 MHz, Chloroform-d)

-90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) 0 10 0 -10 -20 -30 -40 -50 -60 -70 -80

(E)-(3-((3-nitrophenyl)sulfonyl)prop-1-ene-1,3-diyl)dibenzene (6i) ¹H NMR (500 MHz, Chloroform-d)

8.51 8.51 8.841 8.841 8.841 8.841 8.833 8.733 8.

(E)-(3-((4-(trifluoromethoxy)phenyl)sulfonyl)prop-1-ene-1,3-diyl)dibenzene (6j) ¹H NMR (500 MHz, Chloroform-d)

¹⁹F NMR (471 MHz, Chloroform-d)

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

(E)-(3-(ethylsulfonyl)prop-1-ene-1,3-diyl)dibenzene (6l) ¹H NMR (500 MHz, Chloroform-d)

(E)-(3-(cyclopropylsulfonyl)prop-1-ene-1,3-diyl)dibenzene (6m) ¹H NMR (500 MHz, Chloroform-d)

¹³C NMR (126 MHz, Chloroform-d)

(E)-2-((1,3-diphenylallyl)sulfonyl)naphthalene (6n) ¹H NMR (500 MHz, Chloroform-d)

¹³C NMR (126 MHz, Chloroform-d)

(E)-2-((1,3-diphenylallyl)sulfonyl)thiophene (60)

7,64 7,7,741 7,7,41 7,7,41 7,7,41 7,7,41 7,7,41 7,7,41 7,7,41 7,7,41 7,7,41 7,7,32 7,7,337,7,3

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

diethyl (E)-(1,3-bis(4-fluorophenyl)allyl)phosphonate (7a) ¹H NMR (500 MHz, Chloroform-d)

¹⁹F NMR (471 MHz, Chloroform-d)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

diethyl (E)-(1,3-bis(4-chlorophenyl)allyl)phosphonate (7b) ¹H NMR (500 MHz, Chloroform-d)

diethyl (E)-(1,3-bis(4-bromophenyl)allyl)phosphonate (7c) ¹H NMR (500 MHz, Chloroform-d)

³¹P NMR (202 MHz, Chloroform-d)

diethyl (E)-(1,3-bis(4-iodophenyl)allyl)phosphonate (7d) ¹H NMR (500 MHz, Chloroform-d)

diethyl ((2-phenyl-1H-indol-3-yl)methyl)phosphonate (7e) ¹H NMR (500 MHz, Chloroform-d)

diethyl (E)-(3-(4-ethylphenyl)-1-phenylallyl)phosphonate (7f) ¹H NMR (500 MHz, Chloroform-d)

¹³C NMR (126 MHz, Chloroform-d)

diethyl (E)-(3-(4-fluorophenyl)-1-(p-tolyl)allyl)phosphonate (7g)

¹H NMR (500 MHz, Chloroform-d)

³¹P NMR (202 MHz, Chloroform-d)

.0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

diethyl (E)-(3-(4-bromophenyl)-1-phenylallyl)phosphonate (7h) ¹H NMR (500 MHz, Chloroform-d)

³¹P NMR (202 MHz, Chloroform-d)

diethyl (E)-(3-([1,1'-biphenyl]-4-yl)-1-phenylallyl)phosphonate (7i) ¹H NMR (500 MHz, Chloroform-d)

¹³C NMR (126 MHz, Chloroform-d)

diethyl ((2E,4E)-1,5-diphenylpenta-2,4-dien-1-yl)phosphonate (7j) ¹H NMR (500 MHz, Chloroform-d)

³¹P NMR (202 MHz, Chloroform-d)

1-(difluoromethyl)-1H-benzo[d]imidazole ¹H NMR (500 MHz, Chloroform-d)

.0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) (S)-(4-phenylbut-3-yn-2-yl)(p-tolyl)sulfane ¹H NMR (126 MHz, Chloroform-d)

2.5 HPLC spectra

检测器A Ch1 254nm			
峰号	保留时间	面积%	
1	19.582	50.635	
2	21.020	49.365	
总计		100.000	

位测츕A CNI 254nm		
峰号	保留时间	面积%
1	19.812	75.632
2	21.461	24.368
总计		100.000

2.6 References

[1]. Zhou, X.; Zhang, G.; Huang, R.; Huang, H., Palladium-Catalyzed Allyl–Allyl Reductive Coupling of Allylamines or Allylic Alcohols with H2 as Sole Reductant. *Org Lett* **2021**, *23*, 365-369.

[2]. Guisán-Ceinos, M.; Martín-Heras, V.; Tortosa, M., Regio- and Stereospecific Copper-Catalyzed
Substitution Reaction of Propargylic Ammonium Salts with Aryl Grignard Reagents. J. Am. Chem. Soc.
2017, 139, 8448-8451.

[3]. Zhu, M.; Zheng, C.; Zhang, X.; You, S.-L., Synthesis of Cyclobutane-Fused Angular Tetracyclic Spiroindolines via Visible-Light-Promoted Intramolecular Dearomatization of Indole Derivatives. *Journal of the American Chemical Society* **2019**, *141*, 2636-2644.

[4]. Zhang, X.; Xu, A.; Ran, Y.; Wei, C.; Xie, F.; Wu, J., Design, synthesis and biological evaluation of phenyl vinyl sulfone based NLRP3 inflammasome inhibitors. *Bioorganic Chemistry* **2022**, *128*, 106010.