Supporting Information

Photocatalytic Phosphine-Mediated H₂O/D₂O as Only H/D Source for Radical Transfer Hydrogenation/Deuteration of α-Aryl Imino Esters

Yao Zhong[†], Xinhan Li[†], Xiaohan Zhao, Jianbin Xu^{*} and Baomin Fan^{*}

School of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan, 650504, People's Republic of China

Corresponding Author: Jianbin Xu (xujianbin@ymu.edu.cn);

Baomin Fan (adams.bmf@hotmail.com)

List of Contents

1.	General information	S2				
2. (2. General procedure for the synthesis of α-aryl iminoester					
3.	General Procedure for Photoredox Reactions	S7				
4.	Emission Spectrum of blue LED Strip	S8				
5.	Optimization of reaction condition	S8				
6.	Gram-scale reaction	S9				
7.	Mechanistic studies	S10				
8.	Characterization data of all products	S18				
9.	References	S42				
10.	Copies of NMR spectra of all substrates	S43				
11.	Copies of NMR spectra of all products	S51				

1. General information

Unless stated otherwise, all reactions were carried out under argon. Column chromatography was performed using silica gel (200-300 mesh) or thin layer chromatography was performed using silica gel (GF254). All catalytic experiments were performed under an atmosphere of argon by using Glove Box. ¹H NMR spectra were recorded using a Bruker 400 MHz instrument with tetramethylsilane (TMS) as an internal standard. Abbreviations used in the NMR follow-up experiments: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. ¹³C {¹H} NMR spectra were obtained at 101 MHz and referenced to the internal solvent signals. ¹⁹F NMR spectra were obtained at 376 MHz. ³¹P NMR spectra are referenced according to the proton signal as the primary reference for the unified chemical shift scale. High resolution mass spectra (HRMS) were performed on an Agilent 6540 spectrometer with ESI ionization. Commercially available reagents were used without further purification unless indicated otherwise, all solvents were dried. The light source was 30 W blue LED (449 nm, 1 W*30, 30-50 cd/m², made in Everlight Electronics., Ltd.); borosilicate glass Schlenk tube was used as the irradiation vessel; the distance from the light source to the irradiation vessel; 2-3 cm and no filter was used.

2. General procedure for the synthesis of α -aryl esters ^[1,2]

Step 1: Benzoylformic acid (1.50g, 10 mmol, 1.0 equiv.), alcohol (10 mmol, 1 equiv.), and EDCI (2.10 g, 11 mmol, 1.1 equiv.) were added to a dry flask and dissolved in DCM (30 mL). The mixture was then cooled to 0 °C, followed by the slow addition of DMAP (0.062g, 0.5 mmol, 0.05 equiv.) dissolved in DCM into the system. After stirring at 0 °C for 1 h, the reaction was allowed to proceed at room temperature overnight. When the reaction was completed as determined by TLC, the mixture was quenched with a saturated aqueous NH_4Cl solution (10 mL) and then extracted with DCM (3×30 mL). The organic phase was washed by brine, dried over Na_2SO_4 , filtered and

concentrated under reduced pressure. The crude product was purified by flash column chromatography to give S1.

Step 2: The mixture of anisidine (1.05 equiv.), **S1** (1.0 equiv.) and *p*-toluenesulfonic acid (5 mol%) in toluene was refluxed overnight with azeotropic removal of water. The solvent was evaporated and the residue was purified by flash column chromatography to give the corresponding α aryl imino ester.

Methyl (Z)-4-((2-methoxy-2-oxo-1-phenylethylidene)amino)benzoate (9a)

Purified by silica gel chromatography (PE: EA/20:1), the desired product **9a** was obtained as a yellow solid, M.P. 100-102 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 – 8.01 (m, 2H), 7.89 – 7.85 (m, 2H), 7.54 – 7.44 (m, 3H), 6.99 – 6.96 (m, 2H), 3.90 (s, 3H), 3.62 (s, 3H), ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 166.9, 164.9, 160.6, 154.4, 133.4, 132.4, 130.8, 129.0, 128.3, 126.7, 119.4, 52.2. HRMS (ESI) m/z calcd for C₁₇H₁₆NO₄⁺ (M+H)⁺ 298.1074, found 298.1071.

Methyl (Z)-2-phenyl-2-((4-(trifluoromethoxy)phenyl)imino)acetate (10a)

Purified by silica gel chromatography (PE: EA/50:1), the desired product **10a** was obtained as a yellow solid, M.P. 40-44 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.89 (m, 2H), 7.54 – 7.45 (m, 3H), 7.21 (d, *J* = 8.3 Hz, 2H), 7.00 (dd, *J* = 8.8, 1.7 Hz, 2H), 3.65 (s, 3H), ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -58.11. ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 165.2, 161.0, 148.9 (d, ¹*J*_{C-F} = 3.1 Hz), 146.4 (d,

 ${}^{2}J_{C-F} = 2.0$ Hz), 133.6, 132.3, 128.9, 128.2, 124.6 – 116.7 (m), 121.7, 120.9, 52.0. HRMS (ESI) m/z calcd for C₁₆H₁₃F₃NO₃⁺ (M+H)⁺ 324.0842, found 324.0839.

Methyl (Z)-2-((4-(1,5-dimethyl-2,4-dioxa-3-borabicyclo[3.1.0]hexan-3-yl)phenyl)imino)-2-ph enylacetate (14a)

Purified by silica gel chromatography (PE: EA/2:1), the desired product **14a** was obtained as a yellow solid, M.P. 87-89 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.86 (m, 2H), 7.82 – 7.79 (m, 2H), 7.47 (dtd, *J* = 14.5, 7.0, 1.7 Hz, 3H), 6.98 – 6.95 (m, 2H), 3.63 (s, 3H), 1.35 (s, 12H), ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.3, 160.0, 152.8, 135.7, 133.8, 132.0, 128.9, 128.2, 118.9, 83.9, 52.1, 25.0. HRMS (ESI) m/z calcd for C₂₁H₂₅BNO₄⁺ (M+H)⁺ 366.1875, found 366.1872.

Methyl (Z)-2-phenyl-2-(quinolin-5-ylimino)acetate (29a)

Purified by silica gel chromatography (PE: EA/10:1), the desired product **29a** was obtained as a yellow solid, M.P. 73-75 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.91 – 8.89 (m, 1H), 8.35 – 8.31 (m, 1H), 7.98 – 7.95 (m, 2H), 7.90 (d, *J* = 8.5 Hz, 1H), 7.61 – 7.56 (m, 1H), 7.53 – 7.45 (m, 3H), 7.33 (dd, *J* = 8.5, 4.2 Hz, 1H), 6.92 (d, *J* = 7.3 Hz, 1H), 3.49 (s, 3H), ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 161.1, 150.9, 148.5, 146.7, 133.5, 132.6, 132.4, 129.2, 129.0, 128.3, 126.5, 122.7, 120.8, 113.3, 52.1. HRMS (ESI) m/z calcd for C₁₈H₁₅N₂O₂⁺ (M+H)⁺ 291.1128, found 291.1117.

(3aR,5R,6S,6aR)-5-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]di oxol-6-yl (Z)-2-((4-methoxyphenyl)imino)-2-phenylacetate (31a)

Purified by silica gel chromatography (PE: EA/10:1), the desired product **31a** was obtained as a yellow solid, M.P. 46-49 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 – 8.01 (m, 2H), 7.50 – 7.41 (m, 3H), 7.06 – 7.02 (m, 2H), 6.88 – 6.84 (m, 2H), 5.82 (d, *J* = 3.9 Hz, 1H), 4.85 (dd, *J* = 5.2, 3.8 Hz, 1H), 4.76 (ddd, *J* = 7.5, 5.2, 2.6 Hz, 1H), 4.12 – 4.08 (m, 2H), 3.89 – 3.84 (m, 1H), 3.79 (s, 3H), 3.54 – 3.49 (m, 1H), 1.44 (s, 3H), 1.35 – 1.31 (m, 9H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 164.8, 158.4, 157.7, 143.1, 134.2, 131.8, 128.6, 128.5, 121.7, 114.4, 113.4, 110.0, 104.5, 77.8, 77.7, 75.2, 74.0, 65.4, 55.4, 27.0, 26.8, 26.4, 25.3. HRMS (ESI) m/z calcd for C₂₇H₃₂NO₈⁺ (M+H)⁺ 498.2122, found 498.2100.

(3R,5R,8S,9R,10R,13R,14R)-10,13-dimethyl-17-oxohexadecahydro-1H-cyclopenta[a]phenanthre n-3-yl (Z)-2-((4-methoxyphenyl)imino)-2-phenylacetate (32a)

Purified by silica gel chromatography (PE: EA/15:1), the desired product **32a** was obtained as a yellow solid, M.P. 67-70 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 – 7.84 (m, 2H), 7.47 (tt, *J* = 9.0, 6.2 Hz, 3H), 6.96 – 6.92 (m, 2H), 6.88 – 6.83 (m, 2H), 4.79 (tt, *J* = 10.8, 4.9 Hz, 1H), 3.80 (s, 3H), 2.43 (dd, *J* = 19.2, 8.8 Hz, 1H), 2.06 (dt, *J* = 18.9, 9.0 Hz, 1H), 1.92 (dt, *J* = 12.4, 4.3 Hz, 1H), 1.81 – 1.75 (m, 2H), 1.71 – 1.58 (m, 4H), 1.50 (qd, *J* = 9.2, 8.4, 5.1 Hz, 2H), 1.43 – 1.34 (m, 2H), 1.29 – 1.22 (m, 4H), 1.17 – 1.09 (m, 2H), 1.02 – 0.92 (m, 2H), 0.84 (s, 3H), 0.76 (s, 3H), 0.67 (td, *J* = 11.1, 4.0 Hz, 1H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 165.2, 160.2, 157.5, 143.7, 134.3, 131.7, 128.9, 128.0, 121.4, 114.2, 75.3, 55.7, 54.4, 51.5, 48.0, 44.8, 36.8, 36.0, 35.8, 35.2, 33.7, 31.7, 31.0, 28.4, 27.2, 22.0, 20.6, 14.0, 12.3. HRMS (ESI) m/z calcd for C₃₄H₄₂NO₄⁺ (M+H)⁺ 528.3108, found 528.3105.

3,7-dimethyloctyl (Z)-2-((4-methoxyphenyl)imino)-2-phenylacetate (34a)

Purified by silica gel chromatography (PE: EA/80:1), the desired product **34a** was obtained as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 – 7.89 (m, 2H), 7.50 – 7.42 (m, 3H), 7.02 – 6.97 (m, 2H), 6.90 – 6.85 (m, 2H), 4.17 (ddd, *J* = 7.2, 5.8, 3.3 Hz, 2H), 3.77 (q, *J* = 2.6, 1.9 Hz, 3H), 1.57 – 1.44 (m, 2H), 1.28 – 1.11 (m, 7H), 1.03 (td, *J* = 7.3, 6.5, 4.1 Hz, 1H), 0.89 (d, *J* = 6.7 Hz, 6H), 0.77 (d, *J* = 6.2 Hz, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 165.7, 159.5, 157.4, 143.4, 134.2, 131.5, 128.7, 127.9, 121.3, 114.1, 63.9, 55.3, 39.2, 37.0, 35.2, 29.4, 28.0, 24.5, 22.8, 22.7, 19.2. HRMS (ESI) m/z calcd for C₂₅H₃₄NO₃⁺ (M+H)⁺ 396.2533, found 396.2518.

(R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl (Z)-2-((4-methoxy phenyl)imino)-2-phenylacetate (35a)

Purified by silica gel chromatography (PE: EA/60:1), the desired product **35a** was obtained as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 – 8.08 (m, 2H), 7.59 – 7.50 (m, 3H), 7.12 – 7.07 (m, 2H), 6.97 – 6.92 (m, 2H), 3.84 (s, 3H), 2.54 (t, *J* = 6.8 Hz, 2H), 2.07 (s, 3H), 1.79 (dq, *J* = 13.7, 6.7 Hz, 2H), 1.66 (s, 3H), 1.61 – 1.54 (m, 6H), 1.42 (tt, *J* = 11.7, 6.0 Hz, 4H), 1.31 (dq, *J* = 13.3, 4.3, 3.8 Hz, 7H), 1.25 (s, 3H), 1.22 – 1.17 (m, 3H), 1.15 – 1.06 (m, 4H), 0.93 (s, 3H), 0.92 – 0.89 (m, 9H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 163.8, 159.7, 157.5, 149.9, 143.4, 139.8, 134.4, 131.8, 128.8, 128.2, 127.0, 125.4, 123.3, 121.6, 117.6, 114.6, 75.2, 55.7, 39.5, 37.6, 37.6, 37.4, 33.0, 32.8, 28.1, 25.0, 24.6, 22.9, 22.8, 21.2, 20.7, 19.9, 19.8, 13.0, 12.1, 12.0. HRMS (ESI) m/z calcd for C₄₄H₆₂NO₄⁺ (M+H)⁺ 668.4673, found 668.4678.

3. General Procedure for Photoredox Reactions

3.1 General procedure for the synthesis of α -aryl amino acid ester

To an oven dried 25 mL Schlenk-tube, α aryl imino esters (0.2 mmol), (Ir[dF(CF₃)ppy]₂(dtbbpy))PF₆ (2 mol%), HAT (20 mol%), P(*p*-MePh)₃ (0.5 mmol), H₂O (160 uL) and MeCN (0.1 M) were added under argon atmosphere. The reaction mixture was stirred under the irradiation of 30 W blue LEDs at room temperature, the solution was concentrated in vacuum and the product was purified by flash column chromatography.

3.2 General procedure for the synthesis of deuterated a-aryl amino acid ester

To an oven dried 25 mL Schlenk-tube, α aryl imino ester (0.2 mmol), (Ir[dF(CF₃)ppy]₂(dtbbpy))PF₆ (2 mol%), HAT (20 mol%), P(*p*-MePh)₃ (0.5 mmol), D₂O (160 uL) and MeCN (0.1 M) were added under argon atmosphere. The reaction mixture was stirred under the irradiation of 30 W blue LEDs at room temperature. After completion of the reaction (indicated by TLC), the solution was concentrated in vacuum and the product was purified by flash column chromatography.

4. Emission Spectrum of blue LED Strip

Figure S1 Emission spectrum of 30 W blue LED strip

5. Optimization of reaction condition

3	PC 1	HAT 1	MeCN	$P(p-MePh)_3$	160	99
4	PC 1	HAT 1	MeCN	$P(p-FPh)_3$	160	23
5	PC 1	HAT 1	MeCN	$P(p-CF_3Ph)_3$	160	trace
6	PC 1	HAT 2	MeCN	$P(p-MePh)_3$	160	trace
7	PC 1	HAT 3	MeCN	$P(p-MePh)_3$	160	n.d.
8	PC 1	HAT 4	MeCN	$P(p-MePh)_3$	160	52
9	PC 1	HAT 5	MeCN	$P(p-MePh)_3$	160	trace
10	PC 1	HAT 1	THF	$P(p-MePh)_3$	160	93
11	PC 1	HAT 1	1,4-dioxane	$P(p-MePh)_3$	160	94
12	PC 1	HAT 1	DMF	$P(p-MePh)_3$	160	trace
13	PC 1	HAT 1	DCE	$P(p-MePh)_3$	160	72
14	PC 1	HAT 1	Toluene	$P(p-MePh)_3$	160	31
15	PC 1	HAT 1	EtOAc	$P(p-MePh)_3$	160	89
16	PC 2	HAT 1	MeCN	$P(p-MePh)_3$	160	92
17	PC 3	HAT 1	MeCN	$P(p-MePh)_3$	160	67
18	PC 4	HAT 1	MeCN	$P(p-MePh)_3$	160	83
19	PC 5	HAT 1	MeCN	$P(p-MePh)_3$	160	trace
20	PC 6	HAT 1	MeCN	$P(p-MePh)_3$	160	87
21	PC 7	HAT 1	MeCN	$P(p-MePh)_3$	160	88
22	PC 8	HAT 1	MeCN	$P(p-MePh)_3$	160	95
23	PC 1	HAT 1	MeCN	$P(p-MePh)_3$	36	n.d.
24	PC 1	HAT 1	MeCN	$P(p-MePh)_3$	72	67
25	PC 1	HAT 1	MeCN	$P(p-MePh)_3$	200	87

^{*a*}Reaction conditions of **2**: **1** (0.20 mmol), **PC 1** (2 mol%), **HAT 1** (20 mol%), P(*p*-MePh)₃ (0.5 mmol, 2.5 eq.) and H₂O (160 uL) in MeCN (0.1 M), under 30 W blue LEDs irradiation at room temperature. ^{*b*}Isolated yield.

6. Gram-scale reaction

To an oven dried 100 mL Schlenk flask, α -aryl imino ester **1** (3.8 mmol, 1.02 g, 1 equiv), (Ir[dF(CF₃)ppy]₂(dtbbpy))PF₆ (0.076 mmol, 83.6 mg), **HAT 1** (0.76 mmol, 95mg), P(*p*-MePh)₃ (9.50 mmol, 2.89g, 2.5 equiv), H₂O (3.04 mL) and MeCN (38 mL, 0.1M) were added under argon atmosphere. The reaction mixture was stirred under the irradiation of 30 W blue LEDs at room temperature for 44 h. After completion of the reaction (indicated by TLC), the solution was concentrated in vacuum and the product was purified by flash column chromatography.

7. Mechanistic studies

7.1 Control experiments

Schlenk-tube, imino 1 То an oven dried 25 mL α-aryl ester (0.2)mmol), (Ir[dF(CF₃)ppy]₂(dtbbpy))PF₆ (2 mol%), HAT 1 (20 mol%), P(p-MePh)₃ (0.5 mmol), H₂O (160 uL) and MeCN (0.1 M) were added under argon atmosphere. The reaction mixture was stirred under dark at room temperature and the product 2 was not detected.

To an oven dried 25 mL Schlenk-tube, α -aryl imino ester **1** (0.2 mmol), **HAT 1** (20 mol%), P(*p*-MePh)₃ (0.5 mmol), H₂O (160 uL) and MeCN (0.1 M) were added under argon atmosphere. The reaction mixture was stirred under the irradiation of 30 W blue LEDs at room temperature and the product **2** was not detected.

Schlenk-tube, То oven dried 25 mL α-aryl imino ester 1 (0.2 mmol), an (Ir[dF(CF₃)ppy]₂(dtbbpy))PF₆ (2 mol%), HAT 1 (20 mol%), H₂O (160 uL) and MeCN (0.1 M) were added under argon atmosphere. The reaction mixture was stirred under the irradiation of 30 W blue LEDs at room temperature and the product 2 was not detected.

То dried 25 mL Schlenk-tube, α-aryl imino ester 1 (0.2 mmol), an oven (Ir[dF(CF₃)ppy]₂(dtbbpy))PF₆ (2 mol%), P(p-MePh)₃ (0.5 mmol), H₂O (160 uL) and MeCN (0.1 M) were added under argon atmosphere. The reaction mixture was stirred under the irradiation of 30 W blue LEDs at room temperature and the product 2 was not detected.

То an oven dried 25 mL Schlenk-tube, α-aryl imino ester 1 (0.2)mmol), (Ir[dF(CF₃)ppy]₂(dtbbpy))PF₆ (2 mol%), HAT (20 mol%), P(p-MePh)₃ (0.5 mmol), and MeCN (0.1 M) were added under argon atmosphere. The reaction mixture was stirred under the irradiation of 30 W blue LEDs at room temperature and the product 2 was not detected.

7.2 Radical trapping experiments

According to general procedure **2**, when DPE or TEMPO was added. After completion of the reaction, the crude residues were analyzed by GC-MS. Yield of **2** was reduced or no detected and the DPE-adduct and TEMPO-adduct products were detected by GC-MS.

Figure S2 Radical trapping experiments

Figure S3 GC-MS analysis of radical trapping adducts

7.3 D-labeling experiment

To an oven dried 25 mL Schlenk-tube, α -aryl imino ester **1** (0.2 mmol), (Ir[dF(CF₃)ppy]₂(dtbbpy))PF₆ (2 mol%), **HAT 1** (20 mol%), P(*p*-MePh)₃ (0.5 mmol), D₂O (160 uL) and MeCN (0.1 M) were added under argon atmosphere. The reaction mixture was stirred under the

irradiation of 30 W blue LEDs at room temperature. After completion of the reaction (indicated by TLC), the solution was concentrated in vacuum and the product was purified by flash column chromatography, and the product detected by ¹H NMR (**Figure S4**).

Schlenk-tube, То dried 25 mL α-aryl imino ester 1 (0.2)mmol), an oven (Ir[dF(CF₃)ppy]₂(dtbbpy))PF₆ (2 mol%), HAT 1 (20 mol%), P(p-MePh)₃ (0.5 mmol), H₂O (160 uL) and MeCN- d_3 (0.1 M) were added under argon atmosphere. The reaction mixture was stirred under the irradiation of 30 W blue LEDs at room temperature. After completion of the reaction (indicated by TLC), the solution was concentrated in vacuum and the product was purified by flash column chromatography, and the product detected by ¹H NMR (Figure S4).

То an oven dried 25 mL Schlenk-tube, α-aryl imino ester 1 (0.2 mmol), (Ir[dF(CF₃)ppy]₂(dtbbpy))PF₆ (2 mol%), HAT 1 (20 mol%), P(*p*-MePh)₃ (0.5 mmol), D₂O (160 uL) and MeCN- d_3 (0.1 M) were added under argon atmosphere. The reaction mixture was stirred under the irradiation of 30 W blue LEDs at room temperature. After completion of the reaction (indicated by TLC), the solution was concentrated in vacuum and the product was purified by flash column chromatography, and the product detected by ¹H NMR (Figure S4).

To an oven dried 25 mL Schlenk-tube, α -aryl imino ester 1 (0.2 mmol), (Ir[dF(CF₃)ppy]₂(dtbbpy))PF₆ (2 mol%), HAT 1 (20 mol%), P(*p*-MePh)₃ (0.5 mmol), D₂O (160 uL) S13

and MeCN- d_3 (0.1 M) were added under argon atmosphere. The reaction mixture was stirred under the irradiation of 30 W blue LEDs at room temperature. After completion of the reaction (indicated by TLC), the reaction mixture was detected by ¹H NMR (**Figure S5**).

Figure S4 ¹H NMR of D-labeling product

7.4 ³¹P NMR Tracer Experiments

То an oven dried 25 mL Schlenk-tube, α-aryl imino ester 1 (0.2)mmol), (Ir[dF(CF₃)ppy]₂(dtbbpy))PF₆ (2 mol%), HAT 1 (20 mol%), P(*p*-MePh)₃ (0.5 mmol), H₂O (160 uL) and MeCN (0.1 M) were added under argon atmosphere. The reaction mixture was stirred under the irradiation of 30 W blue LEDs at room temperature. After completion of the reaction (indicated by TLC), the solution was concentrated in vacuum and the product was purified by flash column chromatography, and the product detected by ³¹P NMR (Figure S6).

Figure S6 ³¹P NMR of mixed reaction system.

7.5 Stern-Volmer Quenching Experiments

Formulation solution: α -aryl imino ester (1, 134.5 mg) was dissolved in MeCN in a 5 mL volumetric flask to set the concentration to be 0.1 M. P(*p*-MePh)₃ (380.5 mg) was dissolved in MeCN in a 5 mL volumetric flask to set the concentration to be 0.25 M. *p*-MePhSH (12.4 mg) was dissolved in MeCN in a 5 mL volumetric flask to set the concentration to be 0.02 M. H₂O (400 uL) was dissolved in MeCN in a 5 mL volumetric flask to set the concentration to be 4.44 M.

Photocatalyst ($Ir[dF(CF_3)ppy]_2(dtbbpy)$)PF₆ (1.1 mg) was dissolved in MeCN (5.0 mL) to set the concentration to be 0.2 mM.

Experimental procedure: The resulting 0.2 mM solution of $(Ir[dF(CF_3)ppy]_2(dtbbpy)))PF_6$ in MeCN (100 µL) was added to cuvette to obtain different concentrations of catalyst solution. This solution was then diluted to a volume of 2.0 mL by adding MeCN to prepare a 10 µM solution. The resulting mixture was sparged with argon for 3 minutes and then irradiated at 378 nm. Fluorescence emission spectra were recorded (3 trials per sample). Into this solution, 0.5 µL of a α -aryl imino ester (1) solution was successively added and uniformly stirred, and the resulting mixture was bubbled with argon for 3 minutes and irradiated at 378 nm. Fluorescence emission spectra of 0 µL, 0.5 µL, 1.0 µL, 1.5 µL, 2.0 µL, fluorescence intensity. Follow this method and make changes to the amount to obtain the Stern–Volmer relationship in turn. The results were shown in the following figures.

Figure S7 Emission quenching of PC 1 with α -aryl imino ester (1) in MeCN

Experimental procedure: The resulting 0.2 mM solution of $(Ir[dF(CF_3)ppy]_2(dtbbpy))PF_6$ in MeCN (100 µL) was added to cuvette to obtain different concentrations of catalyst solution. This solution was then diluted to a volume of 2.0 mL by adding MeCN to prepare a 10 µM solution. The resulting mixture was sparged with argon for 3 minutes and then irradiated at 378 nm. Fluorescence emission spectra were recorded (3 trials per sample). Into this solution, 20.0 µL of a P(*p*-MePh)₃ solution was successively added and uniformly stirred, and the resulting mixture was bubbled with argon for 3 minutes and irradiated at 378 nm. Fluorescence emission spectra of 0 uL, 20.0 µL, 40.0 µL, 60.0 µL, 80.0 µL, fluorescence intensity. Follow this method and make changes to the amount to obtain the Stern–Volmer relationship in turn. The results were shown in the following figures.

Figure S8 Emission quenching of PC 1 with P(p-MePh)₃ in MeCN

Figure S9 Emission quenching of PC 1 with HAT 1 in MeCN

Figure S10 Emission quenching of PC 1 with H₂O in MeCN

7.6 Cyclic voltammetry measurements

Cyclic voltammograms were taken on a CHI660E electrochemical analyzer/workstation (Shanghai Chen Hua Instrument Co., Ltd) in MeCN (Energy Chemical, 99.9%, with molecular sieves, water \leq 50 ppm (by K.F.)) at room temperature using a glass carbon working electrode, a S21 platinum auxiliary electrode and 0.1 M NBu₄PF₆ as supporting electrolyte. All potentials are referenced against the Ag/AgCl redox couple. 20 mM α -aryl imino ester 1 was dissolved in an anhydrous MeCN solution containing 0.1 M NBu₄PF₆. According to the above method, 20.0 mM **PC 1**, 20 mM and **P 1**, 20mM were prepared sequentially. The solution was degassed with nitrogen bubbling for 5 min prior to voltammetric studies. The scan rate was 100 mV/s.

Figure S11 Cyclic Voltammetry of each reaction component

8. Characterization data of all products

Methyl 2-((4-methoxyphenyl)amino)-2-phenylacetate (2)^[3]

Purified by silica gel chromatography (PE: EA/30:1), the desired product **2** was obtained as a white solid, M.P. 105-107 °C, 53.7 mg, 99% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 – 7.47 (m, 2H), 7.42 – 7.28 (m, 3H), 6.79 – 6.70 (m, 2H), 6.60 – 6.51 (m, 2H), 5.05 (s, 1H), 4.71 (s, 1H), 3.73 (s, 3H), 3.71 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.7, 152.7, 140.3, 138.0, 129.0, 128.4, 127.4, 115.0 (d, *J* = 6.6 Hz), 61.8, 55.8, 52.8. (Known compounds, HRMS data detailed in Ref. 3.)

Methyl 2-phenyl-2-(phenylamino)acetate (3)^[4]

Purified by silica gel chromatography (PE: EA/50:1), the desired product **3** was obtained as a white solid, M.P. 80-82 °C, 42.9 mg, 89% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 – 7.49 (m, 2H), 7.39 – 7.30 (m, 3H), 7.16 – 7.11 (m, 2H), 6.71 (tt, *J* = 7.4, 1.1 Hz, 1H), 6.59 – 6.56 (m, 2H), 5.09 (s, 1H), 4.96 (s, 1H), 3.74 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.5, 146.1, 137.8, 129.4, 129.1, 128.5, 127.5, 118.3, 113.6, 61.0, 53.0. (Known compounds, HRMS data detailed in Ref. 4.)

Methyl 2-([1,1'-biphenyl]-4-ylamino)-2-phenylacetate (4)^[3]

Purified by silica gel chromatography (PE: EA/30:1), the desired product **4** was obtained as a white solid, M.P. 127-129 °C, 49.5 mg, 78% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (ddt, *J* = 10.8, 8.2, 1.4 Hz, 4H), 7.41 – 7.28 (m, 7H), 7.25 – 7.17 (m, 1H), 6.64 – 6.57 (m, 2H), 5.10 (s, 1H), 5.06 (s, 1H), 3.70 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.4, 145.5, 141.2, 137.7, 131.2, 129.1, 128.8, 128.6, 128.1, 127.4, 126.5, 126.3, 113.9, 60.9, 53.0. (Known compounds, HRMS data detailed in Ref. 3.)

Methyl 2-((4-(tert-butyl)phenyl)amino)-2-phenylacetate (5)^[5]

Purified by silica gel chromatography (PE: EA/30:1), the desired product **5** was obtained as a white solid, M.P. 115-117 °C, 44.6 mg, 75% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.48 (m, 2H), 7.37 – 7.29 (m, 3H), 7.17 – 7.12 (m, 2H), 6.53 – 6.49 (m, 2H), 5.04 (s, 1H), 4.85 (s, 1H), 3.70 (s, 3H), 1.23 (s, 9H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.7, 143.9, 141.0, 138.1, 129.0, 128.4, 127.5, 126.2, 113.3, 61.3, 52.9, 34.0, 31.7. (Known compounds, HRMS data detailed in Ref. 5.)

Purified by silica gel chromatography (PE: EA/4:1), the desired product **6** was obtained as a white solid, M.P. 98-101 °C, 53.6 mg, 89% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.44 (m, 2H), 7.37 – 7.28 (m, 3H), 5.86 (t, *J* = 2.2 Hz, 1H), 5.75 (d, *J* = 2.1 Hz, 2H), 5.05 (d, *J* = 4.5 Hz, 1H), 4.98 (d, *J* = 4.9 Hz, 1H), 3.71 (s, 3H), 3.68 (s, 6H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.4, 161.8, 148.0, 137.8, 129.1, 128.5, 127.4, 92.5, 90.7, 60.9, 55.3, 53.0. (Known compounds, HRMS data detailed in Ref. 6.)

Methyl 2-phenyl-2-((3,4,5-trimethoxyphenyl)amino)acetate (7)^[6]

Purified by silica gel chromatography (PE: EA/2:1), the desired product **7** was obtained as a white solid, M.P. 105-107 °C, 65.5 mg, 99% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.47 (m, 2H), 7.39 – 7.28 (m, 3H), 5.80 (s, 2H), 5.03 (s, 1H), 4.88 (s, 1H), 3.73 – 3.70 (m, 12H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.4, 154.0, 142.9, 137.9, 130.7, 129.1, 128.5, 127.3, 91.3, 61.4, 61.1, 55.9, 52.9. (Known compounds, HRMS data detailed in Ref. 6.)

Methyl 2-((4-acetamidophenyl)amino)-2-phenylacetate (8)^[7]

Purified by silica gel chromatography (PE: EA/2:1), the desired product **8** was obtained as a yellow oil, 59.0 mg, 99% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.46 (m, 2H), 7.36 – 7.34 (m, 2H), 7.33 – 7.26 (m, 2H), 7.03 – 6.99 (m, 2H), 6.69 – 6.65 (m, 1H), 6.27 (dd, *J* = 8.0, 2.3 Hz, 1H), 5.07 (d, *J* = 4.3 Hz, 1H), 5.00 (d, *J* = 5.8 Hz, 1H), 3.71 (s, 3H), 2.08 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.4, 168.6, 146.8, 139.2, 137.6, 129.8, 129.1, 128.5, 127.4, 109.6, 109.4, 105.1, 60.8, 53.0, 24.8. (Known compounds, HRMS data detailed in Ref. 7.)

Methyl 4-((2-methoxy-2-oxo-1-phenylethyl)amino)benzoate (9)

Purified by silica gel chromatography (PE: EA/10:1), the desired product **9** was obtained as a white solid, M.P. 100-102 °C, 58.0 mg, 97% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 – 7.77 (m, 2H), 7.48 – 7.42 (m, 2H), 7.37 – 7.27 (m, 3H), 6.54 – 6.47 (m, 2H), 5.48 (s, 1H), 5.12 (s, 1H), 3.80 (s, 3H), 3.72 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 171.8, 167.3, 149.7, 136.9, 131.6, 129.2, 128.7, 127.3, 119.5, 112.5, 60.2, 53.1, 51.7. HRMS (ESI) m/z calcd for C₁₇H₁₈NO₄⁺ (M+H)⁺ 300.1230, found 300.1231.

Methyl 2-phenyl-2-((4-(trifluoromethoxy)phenyl)amino)acetate (10)

Purified by silica gel chromatography (PE: EA/30:1), the desired product **10** was obtained as a colorless oil, 62.4 mg, 96% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 – 7.45 (m, 2H), 7.38 – 7.28 (m, 3H), 7.00 – 6.93 (m, 2H), 6.52 – 6.46 (m, 2H), 5.07 (s, 1H), 5.02 (s, 1H), 3.72 (s, 3H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -58.44; ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.2, 144.9, 141.1 (d, ²*J*_{*C*-*F*} = 2.2 Hz), 137.4, 129.2, 128.7, 127.4, 122.6, 120.9 (q, ¹*J*_{*C*-*F*} = 255.3 Hz), 113.9, 61.0, 53.1.HRMS (ESI) m/z calcd for C₁₆H₁₅F₃NO₃⁺ (M+H)⁺ 326.0999, found 326.0996.

Methyl 2-((4-hydroxyphenyl)amino)-2-phenylacetate (11)

Purified by silica gel chromatography (PE: EA/5:1), the desired product **11** was obtained as a white solid, M.P. 131-133 °C, 45.7 mg, 89% yield; ¹H NMR (400 MHz, DMSO- d_6) δ 8.53 – 8.50 (m, 1H), 7.52 – 7.48 (m, 2H), 7.38 – 7.29 (m, 3H), 6.57 – 6.52 (m, 4H), 5.73 (dd, J = 8.7, 1.4 Hz, 1H), 5.13 (dd, J = 8.7, 2.2 Hz, 1H), 3.61 (s, 3H); ¹³C{¹H} NMR (101 MHz, DMSO- d_6) δ 172.6, 149.1, 139.6, 138.1, 128.5, 127.9, 127.5, 115.6, 114.6, 60.7, 52.1. HRMS (ESI) m/z calcd for C₁₅H₁₆NO₃⁺ (M+H)⁺ 258.1125, found 258.1117.

Nethyl 2-((4-bromophenyl)amino)-2-phenylacetate (12)^[8]

Purified by silica gel chromatography (PE: EA/40:1), the desired product **12** was obtained as a white solid, M.P. 130-131 °C, 48.0 mg, 75% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 – 7.47 (m, 2H), 7.39 – 7.32 (m, 3H), 7.23 – 7.18 (m, 2H), 6.46 – 6.42 (m, 2H), 5.05 (s, 2H), 3.74 (s, 3H); ¹³C{¹H} NMR

(101 MHz, Chloroform-*d*) δ 172.1, 145.0, 137.2, 132.1, 129.1, 128.6, 127.4, 115.2, 110.0, 60.7, 53.1. (Known compounds, HRMS data detailed in Ref. 8.)

Methyl 2-((4-chlorophenyl)amino)-2-phenylacetate (13)^[8]

Purified by silica gel chromatography (PE: EA/40:1), the desired product **13** was obtained as a white solid, M.P. 90-93 °C, 39.6 mg, 72% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.43 (m, 2H), 7.38 – 7.28 (m, 3H), 7.07 – 7.02 (m, 2H), 6.51 – 6.41 (m, 2H), 5.02 (s, 2H), 3.72 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.2, 144.6, 137.3, 129.3, 129.2, 128.7, 127.4, 123.0, 114.7, 60.9, 53.1. (Known compounds, HRMS data detailed in Ref. 8.)

Methyl 2-phenyl-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)amino)acetate (14)^[9]

Purified by silica gel chromatography (PE: EA/30:1), the desired product **14** was obtained as a white solid, M.P. 114-117 °C, 52.8 mg, 72% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 – 7.57 (m, 2H), 7.49 – 7.46 (m, 2), 7.37 – 7.29 (m, 3H), 6.56 – 6.52 (m, 2H), 5.19 (s, 1H), 5.14 (s, 1H), 3.74 (s, 3H), 1.30 (d, *J* = 1.4 Hz, 12H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.3, 148.5, 137.4, 136.5, 129.1, 128.6, 127.4, 112.8, 83.4, 60.3, 53.0, 25.0, 25.0. (Known compounds, HRMS data detailed in Ref. 9.)

Methyl 2-((4-cyanophenyl)amino)-2-phenylacetate (15)^[10]

Purified by silica gel chromatography (PE: EA/10:1), the desired product **15** was obtained as a colorless oil, 36.2 mg, 68% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 – 7.43 (m, 2H), 7.39 – 7.36 (m, 2H), 7.36 – 7.30 (m, 3H), 6.54 – 6.49 (m, 2H), 5.58 (d, *J* = 5.6 Hz, 1H), 5.09 (d, *J* = 5.6 Hz, 1H), 3.75 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 171.6, 149.1, 136.4, 133.8, 129.3, 128.9, 127.3, 120.2, 113.3, 100.1, 60.0, 53.3. (Known compounds, HRMS data detailed in Ref. 10.)

Isopropyl 2-((4-methoxyphenyl)amino)-2-phenylacetate (16)^[11]

Purified by silica gel chromatography (PE: EA/40:1), the desired product **16** was obtained as a yellow oil, 57.4 mg, 96% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 – 7.50 (m, 2H), 7.39 – 7.30 (m, 3H), 6.76 – 6.72 (m, 2H), 6.59 – 6.54 (m, 2H), 5.09 – 5.02 (m, 1H), 5.01 (s, 1H), 4.70 (s, 1H), 3.71 (s, 3H), 1.28 (d, *J* = 6.3 Hz, 3H), 1.10 (d, *J* = 6.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 171.7, 152.6, 140.5, 138.1, 128.9, 128.2, 127.3, 115.0, 114.9, 69.5, 61.9, 55.8, 21.9, 21.5. (Known compounds, HRMS data detailed in Ref. 11.)

tert-butyl 2-((4-methoxyphenyl)amino)-2-phenylacetate (17)^[11]

Purified by silica gel chromatography (PE: EA/30:1), the desired product **17** was obtained as a yellow solid, M.P. 86-87 °C, 57.6 mg, 92% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 – 7.48 (m, 2H), 7.38 – 7.28 (m, 3H), 6.75 – 6.71 (m, 2H), 6.57 – 6.53 (m, 2H), 4.93 (s, 1H), 4.70 (s, 1H), 3.71 (s, 3H), 1.40 (s, 9H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 171.3, 152.5, 140.6, 138.6, 128.8, 128.1, 127.3, 115.0, 114.8, 82.3, 62.3, 55.9, 28.0. (Known compounds, HRMS data detailed in Ref. 11.)

Phenethyl 2-((4-methoxyphenyl)amino)-2-phenylacetate (18)

Purified by silica gel chromatography (PE: EA/25:1), the desired product **18** was obtained as a colorless oil, 68.6 mg, 95% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 (dd, *J* = 7.8, 1.9 Hz, 2H), 7.30 (q, *J* = 6.6 Hz, 3H), 7.21 (td, *J* = 7.4, 5.4 Hz, 3H), 7.06 – 7.02 (m, 2H), 6.71 – 6.66 (m, 2H), 6.49 (d, *J* = 8.6 Hz, 2H), 4.97 (s, 1H), 4.64 (s, 1H), 4.31 (td, *J* = 6.8, 2.3 Hz, 2H), 3.67 (s, 3H), 2.84 (td, *J* = 6.9, 3.1 Hz, 2H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.1, 152.7, 140.4, 137.9, 137.6, 129.0, 129.0, 128.6, 128.4, 127.5, 126.7, 115.0, 114.9, 66.2, 61.9, 55.8, 35.0. HRMS (ESI) m/z calcd for C₂₃H₂₄NO₃⁺ (M+H)⁺ 362.1751, found 362.1747.

Cyclohexyl 2-((4-methoxyphenyl)amino)-2-phenylacetate (19)

Purified by silica gel chromatography (PE: EA/30:1), the desired product **19** was obtained as a yellow oil, 65.8 mg, 97% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 – 7.50 (m, 2H), 7.38 – 7.29 (m, 3H), 6.76 – 6.71 (m, 2H), 6.59 – 6.54 (m, 2H), 5.02 (s, 1H), 4.86 – 4.80 (m, 1H), 3.71 (s, 3H), 1.88 – 1.81 (m, 1H), 1.74 – 1.47 (m, 5H), 1.44 – 1.22 (m, 5H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 171.6, 152.6, 140.5, 138.3, 128.8, 128.2, 127.3, 115.0, 114.9, 74.0, 62.0, 55.8, 31.5, 31.1, 25.4, 23.5, 23.3. HRMS (ESI) m/z calcd for C₂₁H₂₆NO₃⁺ (M+H)⁺ 340.1907, found 340.1904.

Methyl 2-(4-methoxyphenyl)-2-((4-methoxyphenyl)amino)acetate (20)^[12]

Purified by silica gel chromatography (PE: EA/20:1), the desired product **20** was obtained as a colorless oil, 57.8 mg, 96% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.39 (m, 2H), 6.90 – 6.87 (m, 2H),

6.75 – 6.72 (m, 2H), 6.57 – 6.53 (m, 2H), 4.98 (s, 1H), 4.64 (s, 1H), 3.79 (s, 3H), 3.72 (s, 3H), 3.71 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 173.0, 159.72, 152.7, 140.4, 129.9, 128.6, 115.0, 114.9, 114.4, 61.2, 55.8, 55.4, 52.8. (Known compounds, HRMS data detailed in Ref. 12.)

Methyl 2-(4-bromophenyl)-2-((4-methoxyphenyl)amino)acetate (21)^[13]

Purified by silica gel chromatography (PE: EA/30:1), the desired product **21** was obtained as a colorless oil, 47.6 mg, 68% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.46 (m, 2H), 7.39 – 7.36 (m, 2H), 6.74 – 6.70 (m, 2H), 6.51 – 6.48 (m, 2H), 4.98 (s, 1H), 4.71 (s, 1H), 3.73 (s, 3H), 3.71 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.1, 152.8, 140.0, 137.2, 132.2, 129.2, 122.4, 115.1, 115.0, 61.2, 55.9, 53.1. (Known compounds, HRMS data detailed in Ref. 13.)

Methyl 2-((4-methoxyphenyl)amino)-2-(m-tolyl)acetate (22)^[9]

Purified by silica gel chromatography (PE: EA/30:1), the desired product **22** was obtained as a yellow oil, 48.5 mg, 85% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 7.20 (m, 3H), 7.13 – 7.09 (m, 1H), 6.74 – 6.69 (m, 2H), 6.57 – 6.50 (m, 2H), 4.97 (s, 1H), 4.63 (s, 1H), 3.69 (d, *J* = 4.3 Hz, 6H), 2.33 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.9, 152.7, 140.5, 138.8, 137.9, 129.3, 128.9, 128.0, 124.6, 115.0, 114.9, 61.9, 55.8, 52.8, 21.6. (Known compounds, HRMS data detailed in Ref. 9.)

Methyl 2-(4-cyclohexylphenyl)-2-(phenylamino)acetate (23)^[6]

Purified by silica gel chromatography (PE: EA/50:1), the desired product **23** was obtained as a colorless oil, 34.2 mg, 53% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.40 (m, 2H), 7.23 – 7.20 (m, 2H), 7.17 – 7.13 (m, 2H), 6.72 (tt, *J* = 7.3, 1.1 Hz, 1H), 6.61 – 6.58 (m, 2H), 5.08 (s, 1H), 4.90 (s, 1H), 3.74 (s, 3H), 2.51 (ddt, *J* = 11.5, 6.4, 3.7 Hz, 1H), 1.89 – 1.73 (m, 5H), 1.48 – 1.30 (m, 5H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.8, 148.4, 146.3, 135.0, 129.4, 127.5, 127.3, 118.2, 113.5, 60.7, 52.9, 44.4, 34.6, 34.5, 27.1, 26.3. (Known compounds, HRMS data detailed in Ref. 6.)

Methyl 2-(4-chlorophenyl)-2-(phenylamino)acetate (24)^[6]

Purified by silica gel chromatography (PE: EA/40:1), the desired product **24** was obtained as a colorless oil, 34.1 mg, 62% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 – 7.44 (m, 2H), 7.35 – 7.32 (m, 2H), 7.16 – 7.11 (m, 2H), 6.75 – 6.71 (m, 1H), 6.56 – 6.53 (m, 2H), 5.07 (s, 1H), 5.01 (s, 1H), 3.75 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.0, 145.8, 136.4, 134.3, 129.5, 129.3, 128.8, 118.5, 113.6, 60.3, 53.1. (Known compounds, HRMS data detailed in Ref. 6.)

Methyl 2-(2-bromophenyl)-2-(phenylamino)acetate (25)^[6]

Purified by silica gel chromatography (PE: EA/40:1), the desired product **25** was obtained as a colorless oil, 49.9 mg, 78% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.45 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.25 (td, *J* = 7.5, 1.3 Hz, 1H), 7.16 – 7.08 (m, 3H), 6.69 (tt, *J* = 7.2, 1.1 Hz, 1H), 6.56 (dt, *J* = 7.7, 1.1 Hz, 2H), 5.59 (s, 1H), 5.09 (s, 1H), 3.71 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.0, 145.8, 137.5, 133.5, 129.9, 129.5, 128.6, 128.3, 124.7, 118.5, 113.6, 59.7, 53.1. (Known compounds, HRMS data detailed in Ref. 6.)

Methyl 2-(naphthalen-2-yl)-2-(phenylamino)acetate (26)^[6]

Purified by silica gel chromatography (PE: EA/40:1), the desired product **26** was obtained as a white solid, M.P. 101-105 °C, 34.9 mg, 60% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (d, *J* = 1.8 Hz, 1H), 7.85 – 7.80 (m, 3H), 7.60 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.50 – 7.44 (m, 2H), 7.13 – 7.07 (m, 2H), 6.68 (tt, *J* = 7.4, 1.1 Hz, 1H), 6.60 (dt, *J* = 7.7, 1.1 Hz, 2H), 5.23 (s, 1H), 5.08 (s, 1H), 3.72 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.5, 146.2, 135.3, 133.6, 133.5, 129.5, 129.0, 128.3, 127.9, 126.7, 126.5, 126.5, 125.1, 118.4, 113.7, 61.1, 53.1. (Known compounds, HRMS data detailed in Ref. 6.)

Methyl 2-(benzo[d][1,3]dioxol-5-yl)-2-(phenylamino)acetate (27)

Purified by silica gel chromatography (PE: EA/20:1), the desired product **27** was obtained as a colorless oil, 36.5 mg, 64% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.17 – 7.12 (m, 2H), 7.01 – 6.98 (m, 2H), 6.80 – 6.78 (m, 1H), 6.72 (tt, *J* = 7.4, 1.1 Hz, 1H), 6.59 – 6.55 (m, 2H), 5.96 – 5.93 (m, 2H), 5.00 (s, 1H), 4.96 (s, 1H), 3.75 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.5, 148.3, 147.8, 146.0, 131.6, 129.4, 121.0, 118.31, 113.6, 108.7, 107.7, 101.4, 60.5, 53.0. HRMS (ESI) m/z calcd for C₁₆H₁₆NO₄⁺ (M+H)⁺ 286.1074, found 286.1068.

Purified by silica gel chromatography (PE: EA/20:1), the desired product **28** was obtained as a yellow oil, 44.9 mg, 81% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.12 (dt, *J* = 3.6, 1.1 Hz, 1H), 6.97 (dd, *J* = 5.1, 3.6 Hz, 1H), 6.78 – 6.71 (m, 2H), 6.63 – 6.58 (m, 2H), 5.28 (d, *J* = 0.9 Hz, 1H), 4.63 (s, 1H), 3.76 (s, 3H), 3.71 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 171.8,

153.2, 141.6, 140.1, 127.2, 125.8, 125.7, 115.4, 115.0, 58.0, 55.8, 53.1. (Known compounds, HRMS data detailed in Ref. 9.)

Methyl 2-phenyl-2-(quinolin-5-ylamino)acetate (29)

Purified by silica gel chromatography (PE: EA/6:1), the desired product **29** was obtained as a yellow solid, M.P. 190-191 °C, 36.2 mg, 62% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.88 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.37 (dt, *J* = 8.5, 1.3 Hz, 1H), 7.56 – 7.52 (m, 2H), 7.48 (dt, *J* = 8.5, 1.0 Hz, 1H), 7.43 – 7.38 (m, 2H), 7.38 – 7.33 (m, 3H), 6.37 (dd, *J* = 7.7, 1.0 Hz, 1H), 5.79 (d, *J* = 5.3 Hz, 1H), 5.22 (d, *J* = 5.2 Hz, 1H), 3.77 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.4, 150.3, 149.3, 141.3, 137.1, 130.3, 129.2, 129.0, 128.7, 127.4, 119.8, 119.5, 118.7, 106.2, 60.9, 53.2. HRMS (ESI) m/z calcd for C₁₈H₁₇N₂O_{2⁺} (M+H)⁺ 293.1285, found 293.1280.

(2R,5S)-2-isopropyl-5-methylcyclohexyl2-((4-methoxyphenyl)amino)-2-phenylacetate (30)

Purified by silica gel chromatography (PE: EA/60:1), the desired product **30** was obtained as a colorless oil, 62.4 mg, 79% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.46 (m, 2H), 7.36 – 7.29 (m, 3H), 6.73 – 6.70 (m, 2H), 6.57 – 6.53 (m, 2H), 4.99 (s, 1H), 4.73 – 4.59 (m, 2H), 3.70 (s, 3H), 1.84 (td, *J* = 7.0, 2.7 Hz, 1H), 1.70 – 1.63 (m, 3H), 1.38 (ddd, *J* = 14.6, 8.5, 3.1 Hz, 2H), 1.05 – 0.99 (m, 1H), 0.88 (d, *J* = 7.0 Hz, 3H), 0.81 (d, *J* = 6.6 Hz, 4H), 0.72 (d, *J* = 7.0 Hz, 4H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 171.9, 152.7, 140.6, 138.1, 128.9, 128.3, 127.4, 115.1, 115.1, 76.0, 62.1, 56.0, 47.1, 40.3, 34.3, 31.5, 26.5, 23.5, 22.1, 21.0, 16.4. HRMS (ESI) m/z calcd for C₂₅H₃₄NO₃⁺ (M+H)⁺ 396.2533, found 396.2530.

(3aR,5R,6S,6aR)-5-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]di oxol-6-yl 2-((4-methoxyphenyl)amino)-2-phenylacetate (31)

Purified by silica gel chromatography (PE: EA/10:1), the desired product **31** was obtained as a colorless oil, 94.8 mg, 95% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 (ddd, *J* = 7.9, 3.4, 1.5 Hz, 2H), 7.37 – 7.29 (m, 3H), 6.75 – 6.70 (m, 2H), 6.59 – 6.55 (m, 2H), 5.83 (d, *J* = 3.9 Hz, 0.5H), 5.78 (d, *J* = 3.7 Hz, 0.5H), 5.07 (d, *J* = 1.7 Hz, 1H), 4.88 (dd, *J* = 5.2, 3.9 Hz, 0.5H), 4.83 – 4.76 (m, 1.5H), 4.64 – 4.58 (m, 1H), 4.27 (dt, *J* = 6.8, 5.2 Hz, 0.5H), 4.16 – 4.06 (m, 2H), 3.90 (dd, *J* = 8.7, 5.5 Hz, 0.5H), 3.76 (dd, *J* = 8.7, 6.4 Hz, 0.5H), 3.70 (s, 3H), 3.25 (dd, *J* = 8.7, 6.7 Hz, 0.5H), 1.58 (s, 1.5H), 1.43 (s, 1.5H), 1.35 (d, *J* = 8.2 Hz, 3H), 1.24 (s, 1.5H), 1.18 (s, 1.5H), 1.11 (d, *J* = 10.8 Hz, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 171.3, 171.2, 152.8, 152.7, 140.4, 140.3, 137.4, 129.0, 128.7, 128.6, 128.3, 127.8, 127.6, 115.0, 114.9, 114.8, 113.2, 113.0, 110.1, 109.8, 104.5, 104.3, 78.0, 77.6, 77.5, 77.4, 77.2, 76.9, 75.3, 74.7, 74.0, 73.2, 66.0, 65.1, 61.9, 61.7, 55.8, 26.9, 26.8, 26.5, 26.2, 26.0, 25.4, 25.2. HRMS (ESI) m/z calcd for C₂₇H₃₄NO₈⁺ (M+H)⁺ 500.2279, found 500.2274.

(3R,5R,8S,9R,10R,13R,14R)-10,13-dimethyl-17-oxohexadecahydro-1H-cyclopenta[a]phenanthre n-3-yl 2-((4-methoxyphenyl)amino)-2-phenylacetate (32)

Purified by silica gel chromatography (PE: EA/15:1), the desired product **32** was obtained as a white solid, M.P. 88-90 °C, 78.3 mg, 74% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 – 7.45 (m, 2H), 7.31 (dtd, *J* = 16.0, 6.9, 1.8 Hz, 2H), 6.73 – 6.68 (m, 3H), 6.55 – 6.50 (m, 2H), 4.97 (s, 2H), 4.71 (tt, *J* = 10.9, 4.9 Hz, 1H), 4.65 (s, 1H), 3.68 (s, 3H), 2.46 – 2.36 (m, 1H), 2.09 – 1.99 (m, 1H), 1.89 (ddd, *J* = 13.6, 8.5, 5.6 Hz, 1H), 1.77 (ddd, *J* = 12.2, 7.7, 3.6 Hz, 2H), 1.62 (tdd, *J* = 18.0, 8.6, 4.2 Hz, 3H), 1.55 –

1.41 (m, 3H), 1.29 - 1.18 (m, 6H), 1.03 - 0.92 (m, 2H), 0.88 - 0.85 (m, 2H), 0.82 (d, J = 8.8 Hz, 6H), 0.67 (td, J = 11.4, 3.9 Hz, 1H); ${}^{13}C{}^{1}H$ NMR (101 MHz, Chloroform-*d*) δ 171.7, 152.6, 140.5, 138.1, 128.8, 128.2, 127.3, 114.9, 114.9, 75.1, 75.1, 61.9, 55.8, 54.4, 51.4, 47.9, 44.7, 44.7, 36.8, 36.6, 35.9, 35.7, 35.1, 35.1, 34.0, 33.5, 31.6, 30.9, 28.4, 28.3, 27.5, 27.1, 21.9, 20.6, 20.6, 13.9, 12.3. HRMS (ESI) m/z calcd for C₃₄H₄₄NO_{4⁺} (M+H)⁺ 530.3265, found 530.3262.

(3R,8R,9R,10S,13S,14R,17S)-10,13-dimethyl-17-((S)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13, 14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 2-((4-methoxyphenyl)amino)-2-p henylacetate (33)^[9]

Purified by silica gel chromatography (PE: EA/80:1), the desired product **33** was obtained as a white solid, M.P. 114-116 °C, 117.5 mg, 94% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 – 7.49 (m, 2H), 7.34 (ddd, *J* = 15.7, 7.7, 6.2 Hz, 3H), 6.76 – 6.71 (m, 2H), 6.58 – 6.53 (m, 2H), 5.41 – 5.28 (m, 1H), 5.01 (s, 1H), 4.66 (tt, *J* = 11.5, 4.7 Hz, 1H), 3.71 (s, 3H), 2.37 (d, *J* = 8.1 Hz, 1H), 2.20 – 2.08 (m, 1H), 2.06 – 1.96 (m, 2H), 1.92 – 1.78 (m, 3H), 1.65 – 1.41 (m, 7H), 1.39 – 1.26 (m, 4H), 1.21 – 1.06 (m, 8H), 1.01 (s, 4H), 0.93 (dd, *J* = 6.6, 1.5 Hz, 4H), 0.89 (dd, *J* = 6.6, 1.8 Hz, 7H), 0.69 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 171.6, 152.6, 140.5, 139.5, 139.4, 138.2, 128.9, 128.3, 127.4, 123.2, 123.1, 115.0, 114.9, 75.6, 62.0, 56.9, 56.3, 55.9, 50.2, 42.5, 39.9, 39.7, 38.2, 37.7, 37.1, 37.0, 36.7, 36.4, 36.0, 32.1, 32.0, 28.4, 28.2, 27.9, 27.5, 24.5, 24.0, 23.0, 22.8, 21.2, 19.5, 18.9, 12.0. (Known compounds, HRMS data detailed in Ref. 9.)

3,7-dimethyloctyl 2-((4-methoxyphenyl)amino)-2-phenylacetate (34)

Purified by silica gel chromatography (PE: EA/60:1), the desired product **34** was obtained as a yellow oil, 67.5 mg, 85% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 (dt, *J* = 6.1, 1.5 Hz, 2H), 7.39 – 7.31 (m, 3H), 6.76 – 6.72 (m, 2H), 6.56 (dd, *J* = 9.0, 1.1 Hz, 2H), 5.03 (d, *J* = 1.4 Hz, 1H), 4.75 (s, 1H), 4.21 – 4.16 (m, 2H), 3.71 (s, 3H), 1.66 – 1.53 (m, 2H), 1.38 (dd, *J* = 7.8, 3.1 Hz, 1H), 1.27 – 1.06 (m, 7H), 0.90 (dt, *J* = 6.6, 1.9 Hz, 6H), 0.86 – 0.79 (m, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.3, 152.6, 140.4, 138.2, 128.9, 128.3, 127.4, 115.0, 114.9, 64.3, 61.9, 55.8, 39.3, 37.2, 37.1, 35.6, 29.8, 28.1, 24.8, 22.9, 22.8, 19.5. HRMS (ESI) m/z calcd for C₂₅H₃₆NO₃⁺ (M+H)⁺ 398.2690, found 398.2682.

(R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl 2-((4-methoxyphenyl)a mino)-2-phenylacetate (35)

Purified by silica gel chromatography (PE: EA/40:1), the desired product **35** was obtained as a yellow oil, 95.0 mg, 71% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 – 7.63 (m, 2H), 7.43 – 7.34 (m, 3H), 6.79 – 6.74 (m, 2H), 6.66 – 6.62 (m, 2H), 5.34 (s, 1H), 4.88 (s, 1H), 3.73 (s, 3H), 2.52 (d, *J* = 34.1 Hz, 2H), 2.04 (d, *J* = 30.9 Hz, 6H), 1.75 (dd, *J* = 13.4, 6.9 Hz, 2H), 1.54 (q, *J* = 6.5 Hz, 3H), 1.43 – 1.33 (m, 7H), 1.31 – 1.26 (m, 5H), 1.22 (s, 5H), 1.19 – 1.04 (m, 7H), 0.90 (s, 3H), 0.87 (d, *J* = 3.7 Hz, 6H), 0.85 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 170.8, 152.8, 149.8, 140.4, 140.3, 138.1, 129.1, 128.7, 127.8, 126.9, 125.1, 123.3, 117.6, 115.1, 115.1, 75.3, 61.9, 55.9, 39.6, 37.7, 37.6, 37.5, 33.0, 32.9, 28.2, 25.0, 24.6, 22.9, 22.8, 21.2, 20.7, 20.0, 19.9. HRMS (ESI) m/z calcd for C₄₄H₆₄NO₄⁺ (M+H)⁺ 670.4830, found 670.4817.

Methyl 2-((4-methoxyphenyl)amino)-2-phenylacetate-d (36)^[14]

Purified by silica gel chromatography (PE: EA/30:1), the desired product **36** was obtained as a white solid, M.P. 107-109 °C, 41.9 mg, 77% yield; 99% D, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.48 (m, 2H), 7.38 – 7.31 (m, 3H), 6.75 – 6.71 (m, 2H), 6.56 – 6.53 (m, 2H), 5.03 (s, 0.01H), 4.66 (s, 1H), 3.73 (s, 3H), 3.71 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.8, 152.8, 140.4, 137.9, 129.1, 128.5, 127.5, 115.1, 115.0, 61.7, 61.5, 61.3, 55.9, 52.9. (Known compounds, HRMS data detailed in Ref. 14.)

Methyl 2-phenyl-2-((3,4,5-trimethoxyphenyl)amino)acetate-d (37)^[6]

Purified by silica gel chromatography (PE: EA/10:1), the desired product **37** was obtained as a white solid, M.P. 110-111 °C, 55.8 mg, 84% yield; 97% D, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 – 7.47 (m, 2H), 7.38 – 7.30 (m, 3H), 5.80 (s, 2H), 5.03 (s, 0.03H), 4.86 (s, 1H), 3.72 (s, 3H), 3.71 (s, 9H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.4, 154.0, 142.9, 137.8, 130.6, 129.1, 128.5, 127.3, 91.2, 61.1, 61.0, 55.9, 52.9. (Known compounds, HRMS data detailed in Ref. 6.)

Methyl 2-(2-bromophenyl)-2-(phenylamino)acetate-d (38)

Purified by silica gel chromatography (PE: EA/40:1), the desired product **38** was obtained as a yellow oil, 48.2 mg, 75% yield; 96% D, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.45 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.25 (td, *J* = 7.5, 1.3 Hz, 1H), 7.13 (qd, *J* = 7.6, 7.2, 1.8 Hz, 3H), 6.69 (tt,

 $J = 7.3, 1.1 \text{ Hz}, 1\text{H}, 6.58 - 6.52 \text{ (m, 2H)}, 5.59 \text{ (s, 0.04H)}, 5.08 \text{ (s, 1H)}, 3.72 \text{ (s, 3H)}; {}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR (101}$ MHz, Chloroform-*d*) δ 172.0, 145.8, 137.4, 133.4, 129.9, 129.5, 128.5, 128.3, 124.7, 118.5, 113.6, 59.5, 59.3, 59.1, 53.1. HRMS (ESI) m/z calcd for C₁₅H₁₄DBrNO₂⁺ (M+H)⁺ 321.0343, found 321.0327.

Methyl 4-((2-methoxy-2-oxo-1-phenylethyl-1-d)amino)benzoate (39)

Purified by silica gel chromatography (PE: EA/10:1), the desired product **39** was obtained as a white solid, M.P. 146-149 °C, 58.8 mg, 98% yield; 97% D, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 – 7.79 (m, 2H), 7.48 – 7.45 (m, 2H), 7.38 – 7.31 (m, 3H), 6.54 – 6.50 (m, 2H), 5.48 (s, 1H), 5.13 (s, 0.03H), 3.81 (s, 3H), 3.74 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 171.8, 167.3, 149.7, 136.8, 131.6, 129.2, 128.7, 127.3, 119.5, 112.5, 60.0, 59.8, 59.6, 53.2, 51.7. HRMS (ESI) m/z calcd for C₁₇H₁₇DNO₄⁺ (M+H)⁺ 301.1293, found 301.1283.

Methyl 2-phenyl-2-((4-(trifluoromethoxy)phenyl)amino)acetate-d (40)

Purified by silica gel chromatography (PE: EA/40:1), the desired product **40** was obtained as a colorless oil, 57.4 mg, 88% yield; 90% D, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.48 (m, 2H), 7.40 – 7.33 (m, 3H), 7.01 – 6.97 (m, 2H), 6.54 – 6.49 (m, 2H), 5.08 (s, 1H), 5.05 (s, 0.10H), 3.74 (s, 3H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -58.43; ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.2, 144.9, 141.1, 141.1, 137.3, 129.2, 128.7, 127.4, 122.6, 120.84 (d, ¹*J*_{*C*-*F*} = 255.3 Hz),113.9, 61.0, 60.6, 60.4, 53.1. HRMS (ESI) m/z calcd for C₁₆H₁₄DF₃NO₃⁺ (M+H)⁺ 327.1061, found 327.1056.

Methyl 2-((4-hydroxyphenyl)amino)-2-phenylacetate-d (41)

Purified by silica gel chromatography (PE: EA/10:1), the desired product **41** was obtained as a white solid, M.P. 130-132 °C, 43.9 mg, 85% yield; 90% D, ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.55 – 8.52 (m, 1H), 7.53 – 7.49 (m, 2H), 7.38 – 7.29 (m, 3H), 6.56 (dd, *J* = 6.3, 3.8 Hz, 4H), 5.75 (d, *J* = 2.1 Hz, 1H), 5.14 (d, *J* = 9.1 Hz, 0.10H), 3.61 (s, 3H); ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆) δ 172.7, 149.2, 139.7, 138.1, 128.6, 128.0, 127.6, 115.6, 114.7, 60.7, 60.4, 59.8, 52.1. HRMS (ESI) m/z calcd for C₁₅H₁₅DNO₃⁺ (M+H)⁺ 258.1115, found 258.1116.

Purified by silica gel chromatography (PE: EA/40:1), the desired product **42** was obtained as a colorless oil, 40.2 mg, 67% yield; 93% D, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 – 7.47 (m, 2H), 7.37 – 7.26 (m, 3H), 6.75 – 6.70 (m, 2H), 6.57 – 6.51 (m, 2H), 5.03 (p, *J* = 6.3 Hz, 1H), 4.98 (s, 0.07H), 4.65 (s, 1H), 3.71 (s, 3H), 1.27 (d, *J* = 6.2 Hz, 3H), 1.08 (d, *J* = 6.3 Hz, 3H), ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 171.8, 152.6, 140.5, 138.1, 128.9, 128.3, 127.3, 115.0, 114.9, 69.5, 55.9, 22.0, 21.6. (Known compounds, HRMS data detailed in Ref. 14.)

Purified by silica gel chromatography (PE: EA/40:1), the desired product **43** was obtained as a white solid, M.P. 83-84 °C, 57.1 mg, 91% yield; 96% D, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.48 (m, 2H), 7.37 – 7.29 (m, 3H), 6.74 – 6.71 (m, 2H), 6.56 – 6.53 (m, 2H), 4.92 (s, 0.04H), 4.68 (s, 1H), 3.71

(s, 3H), 1.40 (s, 12H); ${}^{13}C{}^{1}H$ NMR (101 MHz, Chloroform-*d*) δ 171.3, 152.5, 140.6, 138.5, 128.8, 128.1, 127.3, 115.0, 114.8, 82.3, 61.9, 55.9, 28.0. HRMS (ESI) m/z calcd for C₁₉H₂₃DNO₃⁺ (M+H)⁺ 315.1813, found 315.1809.

Phenethyl 2-((4-methoxyphenyl)amino)-2-phenylacetate-d (44)

Purified by silica gel chromatography (PE: EA/30:1), the desired product **44** was obtained as a colorless oil, 50.7 mg, 70% yield; 95% D, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.42 (m, 2H), 7.36 – 7.30 (m, 3H), 7.23 (dt, *J* = 8.3, 2.3 Hz, 3H), 7.07 – 7.03 (m, 2H), 6.73 – 6.67 (m, 2H), 6.52 – 6.47 (m, 2H), 4.97 (s, 0.05H), 4.61 (d, *J* = 7.0 Hz, 1H), 4.33 (td, *J* = 6.8, 1.9 Hz, 2H), 3.69 (s, 3H), 2.86 (td, *J* = 6.8, 3.1 Hz, 2H), ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.2, 152.7, 140.4, 137.9, 137.6, 129.0, 128.7, 128.4, 127.5, 126.8, 115.0, 114.9, 66.2, 55.9, 35.1. HRMS (ESI) m/z calcd for C₂₃H₂₃DNO₃⁺ (M+H)⁺ 363.1813, found 363.1806.

Purified by silica gel chromatography (PE: EA/40:1), the desired product **45** was obtained as a colorless oil, 55.1 mg, 81% yield; 93% D, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 – 7.49 (m, 2H), 7.37 – 7.28 (m, 3H), 6.75 – 6.71 (m, 2H), 6.57 – 6.53 (m, 2H), 5.01 (s, 0.07H), 4.82 (tt, *J* = 8.4, 3.8 Hz, 1H), 4.73 – 4.69 (m, 1H), 3.71 (s, 3H), 1.87 – 1.80 (m, 1H), 1.75 – 1.67 (m, 1H), 1.65 – 1.58 (m, 1H), 1.49 (ddt, *J* = 12.4, 8.4, 3.5 Hz, 3H), 1.42 – 1.35 (m, 1H), 1.28 (t, *J* = 9.7 Hz, 3H), ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 171.6, 152.5, 140.5, 138.2, 128.9, 128.2, 127.3, 115.0, 114.9, 74.1, 61.9, 61.8, 61.4, 55.9, 31.6, 31.1, 25.4, 23.6, 23.3. HRMS (ESI) m/z calcd for C₂₁H₂₅DNO₃⁺ (M+H)⁺ 341.1970, found 341.1967.
Methyl 2-(4-chlorophenyl)-2-(phenylamino)acetate-d (46)

Purified by silica gel chromatography (PE: EA/40:1), the desired product **46** was obtained as a colorless oil, 27.6 mg, 50% yield; 93% D, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 – 7.43 (m, 2H), 7.33 (d, *J* = 8.3 Hz, 2H), 7.13 (t, *J* = 7.7 Hz, 2H), 6.72 (t, *J* = 7.3 Hz, 1H), 6.54 (d, *J* = 8.0 Hz, 2H), 5.06 (s, 0.07H), 4.97(s, 1H), 3.75 (s, 3H), ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.0, 145.8, 136.3, 134.4, 129.5, 129.3, 128.8, 118.5, 113.6, 59.9, 59.7, 53.2. HRMS (ESI) m/z calcd for C₁₅H₁₄DClNO₂⁺ (M+H)⁺ 277.0849, found 277.0845.

Methyl 2-((4-methoxyphenyl)amino)-2-(m-tolyl)acetate-d (47)^[14]

Purified by silica gel chromatography (PE: EA/30:1), the desired product **47** was obtained as a yellow oil, 36.0 mg, 63 % yield; 99% D, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 7.21 (m, 3H), 7.12 – 7.09 (m, 1H), 6.75 – 6.69 (m, 2H), 6.56 – 6.51 (m, 2H), 4.97 (s, 0.01H), 4.61 (s, 1H), 3.70 (d, *J* = 4.1 Hz, 6H), 2.34 (s, 3H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.9, 152.7, 140.5, 138.8, 137.8, 129.3, 128.9, 128.0, 124.6, 61.7, 61.5, 61.3, 55.8, 52.8, 21.6. (Known compounds, HRMS data detailed in Ref. 14.)

Methyl 2-((4-methoxyphenyl)amino)-2-(thiophen-2-yl)acetate-d (48)^[6]

Purified by silica gel chromatography (PE: EA/30:1), the desired product **48** was obtained as a yellow oil, 41.1 mg, 74% yield; 99% D, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.24 (dd, J = 5.2, 1.2 Hz, 1H), 7.12 (dd, J = 3.5, 1.3 Hz, 1H), 6.97 (dd, J = 5.1, 3.6 Hz, 1H), 6.77 – 6.72 (m, 2H), 6.63 – 6.59 (m, 2H), 5.28 (d, J = 1.0 Hz, 0.01H), 4.59 (s, 0.78H), 3.76 (s, 3H), 3.71 (s, 3H); ¹³C{¹H} NMR (101 MHz,

Chloroform-*d*) δ 171.8, 153.1, 141.5, 140.1, 127.3, 125.8, 125.7, 115.4, 115.0, 57.6, 57.4, 55.8, 53.1. (Known compounds, HRMS data detailed in Ref. 6.)

Purified by silica gel chromatography (PE: EA/80:1), the desired product **49** was obtained as a colorless oil, 68.9 mg, 87% yield; 97% D, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.45 (m, 2H), 7.31 (dt, *J* = 12.8, 6.9 Hz, 3H), 6.74 – 6.69 (m, 2H), 6.55 (d, *J* = 8.9 Hz, 2H), 4.96 (s, 0.03H), 4.73 (s, 1H), 4.62 (td, *J* = 10.9, 4.4 Hz, 1H), 3.70 (s, 3H), 2.03 – 1.97 (m, 1H), 1.67 – 1.46 (m, 3H), 1.24 (tt, *J* = 11.3, 3.2 Hz, 1H), 1.07 – 0.94 (m, 3H), 0.90 (d, *J* = 6.6 Hz, 3H), 0.81 (td, *J* = 12.5, 3.3 Hz, 1H), 0.58 (d, *J* = 7.0 Hz, 3H), 0.35 (d, *J* = 6.9 Hz, 3H), ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 171.9, 152.5, 140.5, 138.4, 128.8, 128.3, 127.5, 115.0, 114.8, 76.0, 55.9, 47.3, 40.9, 34.3, 31.6, 25.4, 23.0, 22.2, 20.8, 15.7. (Known compounds, HRMS data detailed in Ref. 14.)

(3aR,5R,6S,6aR)-5-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]di oxol-6-yl 2-((4-methoxyphenyl)amino)-2-phenylacetate-d (50)

Purified by silica gel chromatography (PE: EA/10:1), the desired product **50** was obtained as a yellow oil, 66.0 mg, 66% yield; 95%D, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 (dt, *J* = 7.9, 1.9 Hz, 2H), 7.37 – 7.30 (m, 3H), 6.73 (dd, *J* = 9.0, 2.7 Hz, 2H), 6.59 – 6.54 (m, 2H), 5.83 (d, *J* = 3.9 Hz, 0.4H), 5.79 (d, *J* = 3.9 Hz, 0.6H), 5.06 (s, 0.05H), 4.89 (dd, *J* = 5.2, 3.9 Hz, 0.4H), 4.84 – 4.75 (m, 1.6H), 4.59 (s, 1H), 4.28 (dt, *J* = 6.7, 5.1 Hz, 0.6H), 4.18 – 4.05 (m, 2H), 3.91 (dd, *J* = 8.7, 5.6 Hz, 0.6H), 3.75 (dd, *J* = 8.7, 6.5 Hz, 0.4H), 3.71 (s, 3H), 3.21 (dd, *J* = 8.7, 6.9 Hz, 0.4H), 1.58 (s, 1H), 1.43 (s, 2H), 1.35 (d, *J* = 8.4 Hz, 3H), 1.24 (s, 1H), 1.17 (s, 2H), 1.09 (d, *J* = 11.0 Hz, 3H), ¹³C{¹H} NMR (101 MHz, Chloroform-*d*)

δ 171.4, 171.3, 152.8, 152.7, 140.4, 140.3, 137.3, 129.1, 128.8, 128.8, 128.5, 128.0, 127.7, 115.0, 115.0, 114.9, 113.3, 113.1, 110.2, 109.9, 104.6, 104.3, 78.0, 77.5, 77.4, 75.3, 74.7, 74.0, 73.2, 66.0, 65.1, 55.9, 27.0, 27.0, 26.6, 26.2, 26.0, 25.5, 25.2. HRMS (ESI) m/z calcd for C₂₇H₃₃DNO₈⁺ (M+H)⁺ 501.2342, found 501.2334.

(3R,5R,8S,9R,10R,13R,14R)-10,13-dimethyl-17-oxohexadecahydro-1H-cyclopenta[a]phenanthre n-3-yl 2-((4-methoxyphenyl)amino)-2-phenylacetate-d (51)

Purified by silica gel chromatography (PE: EA/20:1), the desired product **51** was obtained as a white solid, M.P. 63-65°C, 59.4 mg, 56% yield; 96%D, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (dt, *J* = 8.0, 1.3 Hz, 2H), 7.32 (dtd, *J* = 15.3, 6.9, 1.8 Hz, 3H), 6.74 – 6.69 (m, 2H), 6.55 – 6.51 (m, 2H), 4.97 (s, 0.04H), 4.72 (dq, *J* = 11.4, 6.1, 5.5 Hz, 1H), 4.63 (s, 1H), 3.70 (s, 3H), 2.43 (dd, *J* = 19.2, 8.9 Hz, 1H), 2.10 – 2.02 (m, 1H), 1.90 (dd, *J* = 8.8, 5.5 Hz, 1H), 1.81 – 1.75 (m, 2H), 1.64 (ddd, *J* = 14.6, 8.9, 3.3 Hz, 3H), 1.55 – 1.45 (m, 3H), 1.30 – 1.22 (m, 6H), 1.18 – 1.08 (m, 2H), 1.02 – 0.94 (m, 2H), 0.86 – 0.81 (m, 6H), 0.68 (td, *J* = 11.5, 4.0 Hz, 1H), ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 171.8, 152.6, 140.5, 138.0, 128.9, 128.3, 127.3, 115.0, 114.9, 75.1, 55.9, 54.4, 51.5, 48.0, 44.8, 44.7, 36.8, 36.7, 36.0, 35.8, 35.1, 34.0, 33.5, 31.7, 30.9, 28.4, 28.3, 27.6, 27.1, 21.9, 20.6, 14.0, 12.4. HRMS (ESI) m/z calcd for C₃₄H₄₃DNO₄⁺ (M+H)⁺ 531.3328, found 531.3324.

(3R,8R,9R,10S,13S,14R,17S)-10,13-dimethyl-17-((S)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13, 14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 2-((4-methoxyphenyl)amino)-2-p henylacetate-d (52)

Purified by silica gel chromatography (PE: EA/80:1), the desired product **52** was obtained as a white solid, M.P. 97-100°C, 75.2 mg, 60% yield; 95% D, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (d, *J* = 7.1 Hz, 2H), 7.37 – 7.29 (m, 3H), 6.75 – 6.70 (m, 2H), 6.56 – 6.52 (m, 2H), 5.33 (dd, *J* = 35.8, 5.1 Hz, 1H), 4.99 (s, 0.05H), 4.64 (ddt, *J* = 11.6, 6.9, 4.2 Hz, 1H), 3.71 (s, 3H), 2.35 (d, *J* = 8.1 Hz, 1H), 2.19 – 2.08 (m, 1H), 2.03 – 1.94 (m, 2H), 1.91 – 1.77 (m, 3H), 1.64 – 1.40 (m, 9H), 1.38 – 1.28 (m, 3H), 1.10 (ddd, *J* = 17.7, 13.8, 8.1 Hz, 7H), 0.99 (s, 4H), 0.91 (d, *J* = 6.3 Hz, 4H), 0.86 (dd, *J* = 6.6, 1.9 Hz, 7H), 0.67 (s, 3H), ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 171.7, 152.6, 140.5, 139.5, 139.4, 138.1, 128.9, 128.3, 127.4, 123.2, 123.1, 115.0, 114.9, 75.6, 56.8, 56.3, 55.9, 50.1, 42.5, 39.9, 39.7, 38.2, 37.7, 37.1, 37.0, 36.7, 36.4, 36.0, 32.1, 32.0, 28.4, 28.2, 27.9, 27.5, 24.5, 24.0, 23.0, 22.8, 21.2, 19.5, 18.9, 12.1. HRMS (ESI) m/z calcd for C₄₂H₅₉DNO₃⁺ (M+H)⁺ 627.4630, found 627.4626.

3,7-dimethyloctyl 2-((4-methoxyphenyl)amino)-2-phenylacetate-d (53)

Purified by silica gel chromatography (PE: EA/60:1), the desired product **53** was obtained as a yellow oil, 49.4 mg, 62% yield; 98% D, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.47 (m, 2H), 7.37 – 7.29 (m, 3H), 6.74 – 6.70 (m, 2H), 6.55 – 6.52 (m, 2H), 5.00 (s, 0.02H), 4.70 (s, 1H), 4.19 – 4.11 (m, 2H), 3.71 (s, 3H), 1.61 – 1.48 (m, 2H), 1.35 (dt, *J* = 6.1, 3.5 Hz, 1H), 1.25 – 1.02 (m, 7H), 0.87 (dd, *J* = 6.6, 2.2 Hz, 6H), 0.80 (dd, *J* = 17.9, 6.1 Hz, 3H), ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 172.3, 152.6, 140.4, 138.0, 129.0, 128.4, 127.4, 115.0, 114.9, 64.4, 55.9, 39.3, 37.2, 37.1, 35.6, 35.6, 29.8, 28.2, 24.8, 24.8, 22.9, 22.8, 19.6, 19.4. HRMS (ESI) m/z calcd for C₂₅H₃₅DNO₃⁺ (M+H)⁺ 399.2752, found 399.2746.

(R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl 2-((4-methoxyphenyl)a mino)-2-phenylacetate-d (54)

Purified by silica gel chromatography (PE: EA/60:1), the desired product **54** was obtained as a colorless oil, 85.9 mg, 64% yield; 99% D, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 – 7.65 (m, 2H), 7.44 – 7.34 (m, 3H), 6.80 – 6.75 (m, 2H), 6.68 – 6.64 (m, 2H), 5.36 (s, 0.01H), 4.91 (s, 1H), 3.74 (s, 3H), 2.54 (d, *J* = 42.5 Hz, 2H), 2.13 – 1.95 (m, 6H), 1.83 – 1.72 (m, 2H), 1.55 (h, *J* = 6.7 Hz, 3H), 1.39 (d, *J* = 16.6 Hz, 6H), 1.32 – 1.23 (m, 9H), 1.17 (td, *J* = 6.7, 6.1, 3.4 Hz, 3H), 1.13 – 1.06 (m, 4H), 0.89 (dd, *J* = 10.3, 6.4 Hz, 14H), ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 170.8, 152.7, 149.7, 140.3, 140.2, 137.9, 129.1, 128.7, 127.8, 125.1, 123.3, 117.6, 115.1, 115.0, 75.2, 55.8, 40.5, 39.6, 37.6, 37.6, 37.5, 33.0, 32.9, 31.1, 28.2, 25.0, 24.6, 22.9, 22.8, 21.2, 20.7, 20.0, 19.8. HRMS (ESI) m/z calcd for C₄₄H₆₃DNO₄⁺ (M+H)⁺ 671.4893, found 671.4888.

N-(1-(4-bromophenyl)ethyl)aniline (56)^[15]

Purified by silica gel chromatography (PE: EA/60:1), the desired product **56** was obtained as a colorless oil, 18.2 mg, 66% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 (d, *J* = 8.0 Hz, 1H), 7.24 (d, *J* = 7.9 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.65 (t, *J* = 7.3 Hz, 0H), 6.46 (d, *J* = 7.9 Hz, 1H), 4.42 (q, *J* = 6.8 Hz, 0H), 4.00 (s, 0H), 1.48 (d, *J* = 6.7 Hz, 1H); ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 147.1, 144.6, 131.9, 129.3, 127.8, 120.7, 117.7, 113.5, 53.2, 25.3. (Known compounds, HRMS data detailed in Ref. 15.)

9. References

- [1]. Zhu C.-M., Liang R.-B., Zhong J.-J., et al., Green Chem. 2023, 25, 960-965.
- [2]. Chen. J., Li. F., Wang. F., et al., Org. Lett. 2019, 21, 9060-9065.
- [3]. X.-H. Hu and X.-P. Hu, Adv. Synth. Catal., 2019, 361, 5063-5068.
- [4]. I-K. Mangion, I-K. Nwamba, M. Shevlin, et al., Org. Lett., 2009, 11, 3566-3569.
- [5]. Zardi, P.; Caselli, A.; Macchi, P.; et al., Organometallics, 2014, 33, 2210-2218.
- [6]. G-L Shen, H-J Liu, J-C Chen, et al., Org. Biomol. Chem., 2021, 19, 3601-3610.
- [7]. W. Wu, H-Y Zhao, J-C Chen, et al., Chem. Eur. J. 2022, 28.
- [8]. D. Enders, A. Rembiak and B. A. Stçckel, Adv. Synth. Catal., 2013, 355, 1937-1942
- [9]. W-G Guo, Z-G Han, H. Hai, et al, Chem. Sci., 2021, 12, 11191-11196.
- [10]. H. Ishikawa, T. Yurino, R. Komatsu, M-Y Gao, et al., Org. Lett., 2023, 25, 2355-2360.
- [11]. Q. Kang, Z-A Zhao, S-L You, Adv. Synth. Catal., 2007, 349, 1657–1660.
- [12]. Y. S. Park, and P. Beak, J. Org. Chem., 1997, 62, 1574-1575.
- [13]. M.-S. Park, H.-S. Park, Yakhak Hoechi, 2003, 47, 276-282.
- [14]. Y. Fan, W, Ou, M-Y Chen, et al., Org. Lett., 2023, 25, 432-437.
- [15]. H.-B. Kim, H.-T. Kim and D.-K. An, et al, RSC Adv., 2020, 10, 34421.

10. Copies of NMR spectra of all substrates

9a, ¹H NMR(400 MHz, CDCI₃)

10a, ¹H NMR(400 MHz, CDCI₃)

-3.65

10a, ¹⁹F NMR(376 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10a, ¹³C NMR(101 MHz CDCl₃)

-52.0

8.8.13 8.8.11 8.8.11 9.9.12 9.9.

35a, ¹H NMR(400 MHz, CDCI₃)

11. Copies of NMR spectra of all products

11, ¹H NMR(400 MHz, DMSO-d₆)

-3.61

12, ¹H NMR(400 MHz, CDCI₃)

15, ¹H NMR(400 MHz, CDCl₃)

50

30 20

40

-1(

ò

10

90 180 170 160 150 140 130 120 110 100 90 80 fl (ppm)

244 (2011) (2011

23, ¹H NMR(400 MHz, CDCI₃)

90 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1(fl (ppm)

7,447 7,748 7,749

24, ¹H NMR(400 MHz, CDCl₃)

25, ¹H NMR(400 MHz, CDCl₃)

29, ¹H NMR(400 MHz, CDCI₃)

30, ¹H NMR(400 MHz, CDCI₃)

$\begin{array}{c} 7.75\\$

31, ¹H NMR(400 MHz, CDCl₃)

31, ¹³C NMR(101 MHz, CDCI₃)

34, ¹H NMR(400 MHz, CDCI₃)

77,067 77,067 77,068 77,737

36, 99% D, ¹H NMR(400 MHz, CDCI₃)

37, 97% D, ¹H NMR(400 MHz, CDCI₃)

38, 96% D, ¹H NMR(400 MHz, CDCI₃)

7.83 7.82 7.82 7.82 7.7.82 7.7.82 7.7.82 7.7.83 7.7.84 7.7.46 7.7.46 7.7.46 7.7.46 7.7.46 7.7.347 7.7.347 7

39, 97% D, ¹H NMR(400 MHz, CDCl₃)

~3.74

40, 90% D, ¹H NMR(400 MHz, CDCI₃)

40, 90% D, ¹⁹F NMR(376 MHz, CDCI₃)

41, 90% D, ¹³C NMR(101 MHz, DMSO-d₆)

42, 93% D, ¹H NMR(400 MHz, CDCI₃)

43, 96% D, ¹³C NMR(101 MHz, CDCl₃)

.OMe

ΗŅ ,D [] 0

44, 95% D, ¹H NMR(400 MHz, CDCI₃)

45, 93% D, ¹H NMR(400 MHz, CDCI₃)

S96

48, 99% D, ¹³C NMR(101 MHz, CDCl₃)

49, 97% D, ¹H NMR(400 MHz, CDCI₃)

50, 95% D, ¹H NMR(400 MHz, CDCI₃)

53, 98% D, ¹H NMR(400 MHz, CDCI₃)

53, 98% D, ¹³C NMR(101 MHz, CDCl₃)

