Supporting Information

Synthesis of Axially Chiral Biaryl-2-Carboxamides through Pd(II)-Catalyzed Atroposelective C–H Olefination

Bo-Yang, Jiang,^a Gang Zhou,^a Ao-Lian, Jiang,^c Tao Zhou,^{*a,b} Bing-Feng Shi^{*a,b}

^aCenter of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China

^bCollege of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China

^cSchool of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China

E-mail: bfshi@zju.edu.cn (for B.-F. Shi); taozhou@zju.edu.cn (for T. Zhou)

Table of contents

1. General Information	2
2.Experiment Details and Characterization Data	
2.1 Preparation of Substrates	
2.2 Optimization of Reaction Conditions	
2.4 Procedure for 5 mmol Scale Reaction of 3ga	
2.5 Transformations and Applications of the Olefination Reaction	
2.6 Measurements of Rotation Barriers	
3.Crystal Structure	
4. References	
5.NMR Spectra	
6. HPLC Charts	

1. General Information

All the materials and solvents were purchased from commercial suppliers and used without additional purification. $Pd(OAc)_2$ was purchased from Laajoo (China), NMR spectra were recorded on a Bruke Avance operating for ¹H NMR at 400 MHz, ¹³C NMR at 101 MHz, ¹⁹F NMR at 376 MHz using TMS as internal standard. The peaks were internally referenced to $CDCl_3$ (7.26 ppm) or residual undeuterated solvent signal of $CDCl_3$ (77.16 ppm for ¹³C NMR). The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, brs = broad singlet. Mass spectroscopy data of the products were collected on an HRMS-TOF instrument. The ee value was determined on Shimadzu HPLC using CHIRALPAK or Guangzhou FLM Scientific Instrument column with hexane and 2-propanol as eluent, Wavelength = 254 nm.

2.Experiment Details and Characterization Data

2.1 Preparation of Substrates

General Preparation A: A Schlenk tube was charged with a solution of S_1 (5 mmol) and Pd(PPh₃)₄ (200 mg, 0.05 equiv) in dioxane (35 mL). The reaction vessel was evacuated and back-filled with argon, and this sequence was repeated three times. A solution of K₂CO₃ (2.7 g, 11 mmol) in H₂O (5 mL) and a solution of the corresponding S_2 (6 mmol) in dioxane (5 mL) were sequentially added. The reaction mixture was stirred at 85 °C overnight, cooled to room temperature, quenched with H₂O (20 mL) and extracted with CH₂Cl₂ (3 × 40 mL). The organic layer was dried over MgSO₄, filtered, concentrated, and purified with a silica gel column to obtain the S₃.

A 100 mL vial was filled with methanol (20 mL) and water (20 mL), than S_3 (5 mmol) and NaOH (4 equiv) was added. The solution was heated for 5 h at 70 °C. The reaction mixture was acidified with 6N HCl (5 mL), and the precipitation was filtrated and washed with water (3 × 20 mL) to afford S_4 .

To a solution of the S_4 (5 mmol) in DCM (30 mL) was added (COCl₂)₂ (2 equiv) and some drops of dry DMF at 0 °C. The reaction was allowed to stir at 0 °C to rt for 3 hours. The solvent was then removed under reduced pressure to afford the corresponding crude acid chloride. Then DCM (30 mL) was added and the solution was cooled to 0 °C followed by drop wise addition of NEt₃ (2.0 equiv) and secondary amine (1.2 equiv). The reaction mixture was stirred at rt for 2 h, and then quenched with 1N HCl (15 ml). Then the mixture was extracted by DCM, and the organic layer was dried over Na₂SO₄. The solvent was evaporated, then purified by flash chromatography to gain the **1**.

General Preparation B: To a solution of the S5 in DCM (30 mL) at room temperature was added (COCl₂)₂ (2

equiv.) and some drops of dry DMF. The reaction was allowed to stir at 0 °C to rt for 3 hours. The solvent was then removed under reduced pressure to afford the corresponding crude acyl chloride. Then DCM (30 mL) was added and the solution was cooled to 0°C followed by drop wise addition of NEt₃ (2.0 equiv) and secondary amine (1.2 equiv). The reaction mixture was stirred at rt for 2 h, extracted by DCM, the organic layer was dried over Na₂SO₄ and the solvent was evaporated, then purified by flash chromatography to gain compound S₆.

Place S_6 (5mmol), S_2 (6mmol), Pd(PPh₃)₄ (0.05 equiv), potassium carbonate (2.1 equiv), then add a mixed solution of 35 mL dioxane and 5 mL water, vacuum and fill with nitrogen for three cycles, stirring at 95°C for 12 hours, cooling to room temperature, using Dichloromethane and water were mixed, and the dichloromethane layer was spin-dried, and then separated and purified with a silica gel column to obtain compound 1.

Due to the weak resistance of the carbon carbon axis, multiple brs peaks and carbon peaks appear in spectra, and some of the height of the carbon peaks is too low.

N,N-diethyl-2'-isopropyl-[1,1'-biphenyl]-2-carboxamide 1a

1a was prepared following General Preparation A and purified by flash chromatography in petroleum ether : ethyl acetate = 10 : 1 to give as white solid (1.15g, 78% yield)

¹**H NMR (400 MHz, CDCl₃)** δ 7.47 – 6.91 (m, 8H), 3.74 – 3.69 (m, 1H), 3.22 – 2.67 (m, 4H), 1.33 – 0.85 (m, 9H), 0.66 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, d6-DMSO) δ 168.5, 146.6 (brs), 137.8, 137.0 (brs), 131.4, 123.0, 128.6, 128.0, 127.9, 127.7, 127.2, 125.1 (brs), 124.5, 42.0, 37.1, 29.3, 25.2 (brs), 22.7 (brs), 13.6, 11.6.
(ESI) calcd for C₂₀H₂₆NO (M+H)⁺: 296.2014, found: 296.2013
Melting Point: 102.7-103.2 °C

N,N,2'-triethyl-[1,1'-biphenyl]-2-carboxamide 1b

1b was prepared following General Preparation B and purified by flash chromatography in petroleum ether : ethyl acetate = 5 : 1 to give as white solid. (1.07g, 76% yield)

¹**H NMR (400 MHz, CDCl₃)** δ 7.60 – 6.90 (m, 8H), 3.71 (q, *J* = 7.0 Hz, 1H), 3.33 – 2.62 (m, 3H), 2.54 (t, *J* = 7.8 Hz, 2H), 1.29 – 0.76 (m, 6H), 0.66 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.1, 143.5 (brs), 140.8 (brs), 138.8 (brs), 137.2 (brs), 132.0, 130.4, 128.3, 128.2, 128.0, 127.5, 125.9, 124.9 (brs), 42.5 (brs), 37.9, 26.2 (brs), 15.5 (brs), 13.9, 11.9.
(ESI) calcd for C₁₉H₂₂NO (M+H)⁺: 282.1858, found: 282.1859

Melting Point: 90.8- 92.1 °C

N,N-diethyl-2'-(trifluoromethyl)-[1,1'-biphenyl]-2-carboxamide 1c

1c was prepared following General Preparation B and purified by flash chromatography in petroleum ether : ethyl acetate = 3 : 1 to give as yellow solid (1.26g, 76% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.8 Hz, 1H), 7.66 – 7.30 (m, 7H), 3.76 – 3.46 (m, 1H), 3.25 – 2.73 (m, 3H), 0.95 (t, J = 7.2 Hz, 3H), 0.76 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃, ppm; list of signals, C-F coupling not resolved) δ 169.7, 139.3, 137.8, 136.8, 136.1, 131.0, 130.6, 130.5, 130.0, 128.3, 128.1, 128.0, 127.9, 127.0, 126.5, 126.4, 126.2, 125.8, 123.1, 42.4, 38.2, 13.9, 12.1.

(ESI) calcd for $C_{18}H_{19}F_3NO (M+H)^+$: 322.1419, found: 322.1419 Melting Point: 115.1- 115.4 °C

N,N-diethyl-2'-methyl-[1,1'-biphenyl]-2-carboxamide 1d

1d was prepared following General Preparation B and purified by flash chromatography in petroleum ether : ethyl acetate = 5 : 1 to give as white solid. (1.09g, 82% yield)

¹**H NMR (400 MHz, CDCl₃)** δ 7.52 – 7.11 (m, 8H), 3.71 (q, J = 7.0 Hz, 1H), 2.85 (brs, 3H), 2.22 (s, 3H), 1.05 – 0.77 (m, 3H), 0.69 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.2, 139.1, 137.3, 131.1, 130.2, 128.3, 127.8, 127.5, 125.8, 125.2, 42.4, 38.0, 20.3, 13.8, 11.9.

(ESI) calcd for C₁₈H₂₂NO (M+H)⁺: 268.1701, found: 268.1701 Melting Point: 86.2- 88.1 °C

N,N-diethyl-2'-methoxy-[1,1'-biphenyl]-2-carboxamide 1e

1e was prepared following General Preparation B and purified by flash chromatography in petroleum ether : ethyl acetate = 5 : 1 to give as white solid (1.16g, 82% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.42 – 7.24 (m, 6H), 6.94 (q, *J* = 8.4, 7.9 Hz, 2H), 3.75 (s, 4H), 3.16 (s, 1H), 2.89 (s, 1H), 2.72 (s, 1H), 0.84 (t, *J* = 7.1 Hz, 3H), 0.77 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.5, 156.4, 137.3, 135.3, 131.7, 131.1, 129.1, 128.5, 128.1, 127.4, 126.6, 120.5, 110.6, 55.4, 42.1, 38.1, 13.8, 12.0.

(ESI) calcd for C₁₈H₂₂NO₂ (M+H)⁺: 284.1651, found: 284.1652 **Melting Point:** 96.2 - 96.8 °C

N,N,2'-triisopropyl-[1,1'-biphenyl]-2-carboxamide 1f

1f was prepared following General Preparation A and purified by flash chromatography in petroleum ether : ethyl acetate = 5 : 1 to give as white solid (1.41g, 87% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 7.57 (d, *J* = 7.7 Hz, 0.25H), 7.38 – 7.08 (m, 7H), 6.99 (d, *J* = 7.5 Hz, 0.75H), 3.63 (dp, *J* = 76.9, 6.6 Hz, 1H), 3.23 (p, *J* = 6.8 Hz, 1H), 3.04 (dp, *J* = 46.1, 6.8 Hz, 1H), 1.47 (dd, *J* = 27.4, 6.8 Hz, 3H), 1.35 (d, *J* = 6.7 Hz, 0.75H), 1.26 (d, *J* = 6.8 Hz, 2.5H), 1.22 (d, *J* = 6.9 Hz, 0.75H), 1.16 (d, *J* = 6.9 Hz, 0.75H), 1.04 (d, *J* = 6.6 Hz, 2.25H), 0.95 (dd, *J* = 15.5, 6.8 Hz, 7.5H), 0.47 (d, *J* = 6.7 Hz, 0.75H).

¹³C NMR (101 MHz, CDCl₃) δ 169.5, 148.3, 138.6, 138.3, 130.3, 129.5, 128.1, 128.0, 127.7, 127.2, 125.2, 125.1, 124.3, 50.2, 45.3, 30.2, 25.5, 22.2, 21.2, 20.5, 19.9.

¹⁹F NMR (376 MHz, CDCl₃) δ -54.99.

(ESI) calcd for C₂₂H₃₀NO (M+H)⁺: 324.2327, found: 324.2326 Melting Point: 113.9 - 114.6 °C

N,N,2'-triisopropyl-[1,1'-biphenyl]-2-carboxamide 1g

1g was prepared following General Preparation A and purified by flash chromatography in petroleum ether : ethyl acetate = 5 : 1 to give as white solid (1.25g, 85% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 7.45 – 7.25 (m, 6H), 7.22 – 7.12 (m, 2H), 3.33 (td, *J* = 7.0, 3.8 Hz, 2H), 3.09 (dt, *J* = 10.3, 6.4 Hz, 1H), 2.99 (dq, *J* = 13.6, 6.9 Hz, 2H), 1.76 – 1.52 (m, 4H), 1.18 (dd, *J* = 10.2, 6.8 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 169.2, 146.9, 138.5, 138.4, 137.9, 130.8, 129.9, 128.4, 128.2, 127.4, 126.9, 125.8, 125.0, 48.2, 45.3, 29.8, 26.0, 25.8, 24.4, 23.5.

(ESI) calcd for C₂₀H₂₄NO (M+H)⁺: 294.1858, found: 294.1859

Melting Point: 101.1 - 102.3 °C

(2'-isopropyl-[1,1'-biphenyl]-2-yl)(piperidin-1-yl)methanone 1h

1h was prepared following General Preparation A and purified by flash chromatography in petroleum ether : ethyl acetate = 5 : 1 to give as white solid (1.33g, 87% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.61 – 6.77 (m, 8H), 4.02 – 3.44 (m, 1H), 3.37 – 2.52 (m, 4H), 1.59 – 0.66 (m, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 169.5, 148.0, 138.9, 136.7, 130.7, 129.2, 128.5, 128.2, 128.0, 127.9, 127.3,4 126.7, 126.1, 125.6, 125.4, 124.8, 48.2, 47.7, 42.4, 30.0, 29.4, 26.3, 25.5, 25.3, 24.5, 24.0, 22.9. (ESI) calcd for C₂₁H₂₆NO (M+H)⁺: 308.2014, found: 308.2014

Melting Point: 107.8 - 108.1 °C

(2'-isopropyl-[1,1'-biphenyl]-2-yl)(morpholino)methanone 1i

1i was prepared following General Preparation A and purified by flash chromatography in petroleum ether : ethyl acetate = 5 : 1 to give as white solid (.1.22g, 79% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.60 – 6.86 (m, 8H), 3.79 – 2.69 (m, 9H), 1.41 – 0.82 (m, 6H).
¹³C NMR (101 MHz, CDCl₃) δ 170.2, 149.8, 145.9, 139.8, 138.2, 136.0, 130.8, 129.2, 128.5, 127.6, 127.0, 125.7, 125.1, 66.7, 47.4, 41.9, 30.0, 25.5, 24.0, 22.7.
(ESI) calcd for C₂₀H₂₄NO₂ (M+H)⁺: 310.1807, found: 310.1808

Melting Point: 108.2 - 108.6 °C

N,N-diethyl-4-fluoro-2'-isopropyl-[1,1'-biphenyl]-2-carboxamide 1j

1j was prepared following General Preparation A and purified by flash chromatography in petroleum ether : ethyl acetate = 5 : 1 to give as white solid (0.36g, 58% yield for 3 mmol scale).

¹**H NMR (400 MHz, CDCl₃)** δ 7.46 – 6.95 (m, 7H), 3.95 – 3.52 (m, 1H), 2.88 (dt, *J* = 13.6, 6.8 Hz, 4H), 1.41 – 0.91 (m, 9H), 0.64 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃, ppm; list of signals, C-F coupling not resolved) δ 168.6, 163.1, 160.6, 138.9, 132.2, 128.9, 128.4, 125.6, 124.9, 115.3, 115.1, 112.9, 42.6, 38.1, 29.9, 25.6, 22.6, 14.0, 11.8.
¹⁹F NMR (376 MHz, CDCl₃) δ -114.61.

(ESI) calcd for C₂₀H₂₅FNO (M+H)⁺: 314.1920, found: 314.1921 **Melting Point:** 111.4 - 111.9 °C

N,N-diethyl-2'-isopropyl-4-methoxy-[1,1'-biphenyl]-2-carboxamide 1k

1k was prepared following General Preparation B and purified by flash chromatography in petroleum ether : ethyl acetate = 5 : 1 to give as white foam (1,17g, 72% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.45 – 6.72 (m, 7H), 3.86 (s, 4H), 3.34 – 2.50 (m, 4H), 1.29 – 0.85 (m, 9H), 0.65 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.8, 158.8, 148.6, 138.2, 136.9, 131.7, 129.2, 128.0, 125.5, 124.6, 114.2, 110.9, 55.5, 42.6, 38.0, 29.9, 25.5, 24.1, 14.0, 11.9.

(ESI) calcd for C₂₁H₂₈NO₂ (M+H)⁺: 326.2120, found: 326.2120

N,N-diethyl-3-fluoro-2'-isopropyl-[1,1'-biphenyl]-2-carboxamide 11

11 was prepared following General Preparation B and purified by flash chromatography in petroleum ether : ethyl acetate = 5 : 1 to give as yellow solid (1.43g, 91% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.43 – 6.89 (m, 7H), 3.90 – 3.61 (m, 1H), 3.33 – 2.64 (m, 4H), 1.27 (dd, J = 10.9, 6.7 Hz, 3H), 1.18 – 1.05 (m, 3H), 1.00 (dd, J = 13.0, 6.9 Hz, 3H), 0.66 (td, J = 7.1, 3.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃, ppm; list of signals, C-F coupling not resolved) δ 164.9, 164.6, 160.3, 159.5, 157.9, 157.1, 148.1, 146.1, 141.5, 141.48, 140.3, 140.3, 137.4, 137.3, 136.1, 136.0, 131.3, 129.5, 129.4, 129.0, 128.9, 128.5, 128.5, 128.4, 126.46, 126.4, 126.1, 126.1, 125.7, 125.6, 125.6, 125.5, 125.3, 125.2, 125.1, 124.6, 114.7, 114.4, 42.9, 42.5, 38.2, 38.0, 30.3, 29.7, 26.3, 25.4, 23.9, 22.7, 13.9, 13.8, 11.9, 11.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -115.23, -115.95.

(ESI) calcd for $C_{20}H_{25}FNO (M+H)^+$: 314.1920, found: 314.1921

Melting Point: 114.2 - 114.7 °C

N,N-diethyl-1-(2-isopropylphenyl)-2-naphthamide 1m

1m was prepared following General Preparation B and purified by flash chromatography in petroleum ether : ethyl acetate = 10 : 1 to give as yellow solid (1.37g, 78% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 8.3, 5.5 Hz, 2H), 7.49 (ddd, J = 8.1, 6.2, 1.7 Hz, 1H), 7.45 – 7.36 (m, 5H), 7.23 – 6.99 (m, 2H), 3.82 – 3.72 (m, 1H), 3.29 (dt, J = 14.5, 7.3 Hz, 1H), 2.94 – 2,80 (m, 2H), 2.69 (p, J = 6.9 Hz, 1H), 1.24 (d, J = 7.1 Hz, 3H), 1.02 (t, J = 7.1 Hz, 3H), 0.86 (d, J = 6.9 Hz, 3H), 0.65 (t, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.0, 149.4, 135.8, 135.5, 134.3, 133.3, 133.0, 129.3, 128.5, 128.1, 127.1, 126.4, 126.4, 125.9, 124.7, 123.3, 42.9, 37.9, 30.5, 25.2, 23.1, 14.1, 11.9.

(ESI) calcd for C₂₄H₂₈NO (M+H)⁺: 346.2171, found: 346.2172

Melting Point: 137.1 - 137.4 °C

4'-chloro-N,N-diethyl-2'-methyl-[1,1'-biphenyl]-2-carboxamide 1n

1n was prepared following General Preparation B and purified by flash chromatography in petroleum ether : ethyl acetate = 5 : 1 to give as white solid. (1.13g, 75% yield)

¹H NMR (400 MHz, CDCl₃) δ 7.48 – 6.74 (m, 7H), 4.17 – 2.41 (m, 4H), 2.19 (s, 3H), 0.92 (d, J = 14.4 Hz, 3H), 0.77 (t, J = 7.1 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 169.9, 137.1, 133.3, 130.1, 129.9, 128.4, 127.7, 126.3, 125.2, 42.4, 38.0, 20.2, 13.8, 11.9.
(ESI) calcd for C₁₈H₂₁ClNO (M+H)⁺: 302.1312, found: 302.1312
Melting Point: 98.1 - 99.2 °C

N,N-diethyl-2',4'-dimethyl-[1,1'-biphenyl]-2-carboxamide 10

10 was prepared following General Preparation B and purified by flash chromatography in petroleum ether : ethyl acetate = 5 : 1 to give as white solid (1.07g, 78% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.50 – 6.76 (m, 7H), 3.96 – 3.54 (m, 1H), 2.89 (s, 3H), 2.32 (s, 3H), 2.18 (s, 3H), 0.88 (brs, 3H), 0.73 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.3, 137.3, 136.1, 130.9, 130.5, 128.3, 127.3, 126.0, 42.4, 38.0, 21.2, 20.3, 13.8, 11.9.

(ESI) calcd for $C_{19}H_{22}NO (M+H)^+$: 282.1858, found: 282.1859

Melting Point: 90.1 - 91.3 °C

N,N-diethyl-2-(naphthalen-1-yl)benzamide 1p

1p was prepared following General Preparation B and purified by flash chromatography in petroleum ether : ethyl acetate = 5 : 1 to give as white solid (1.31g, 86% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 8.04 – 7.31 (m, 11H), 3.80 – 3.47 (m, 1H), 3.36 – 2.14 (m, 3H), 1.03 – 0.13 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 170.1, 138.1, 136.4, 133.8, 131.5, 128.6, 128.1, 127.9, 127.1, 126.1, 125.6, 125.4, 42.6, 37.9, 13.6, 11.8.

(ESI) calcd for $C_{21}H_{22}NO (M+H)^+$: 304.1701, found: 304.1701 Melting Point: 117.5 - 118.0 °C

2.2 Optimization of Reaction Conditions

Table S1. Optimization of Ag(I) Salt^[a]

iPr +	O OMe 2a	H ₂ O (10 μL) (10 mol%) Pd(OAc)2 L- <i>p</i> Glu-OH (20 mol%) Ag Salt CsOPiv (1.5 equiv.) HFIP(1.5 mL) 80 °C, air , 36 h	ⁱ Pr Jaa
Ag Salt		Yield (%) ^[b]	ee (%)[c]
Ag ₂ SO ₄		23	95
CH ₃ SO ₃ Ag		10	93
CF ₃ CO ₂ Ag		34	55
Ag ₃ PO ₄		19	67
Ag ₂ CO ₃		46	93
AgNO ₃		65	94

^[a]Reacition Conditions: **1a** (0.1 mmol), **2a** (50 µL) Pd(OAC) (0.3 mmol), CSOPiv **3 (0.15 mmol)** in **1.5 mE** HFIP at **30** °C under air for 36 h. ^[b]The yield was determined by ¹H NMR using dibromomethane as the internal standard ^[c]The ee value was determined by chiral HPLC.

N_N_	0 11	additive (10 μL) (10 mol%) Pd(OAc) ₂ L- <i>p</i> Glu-OH (20 mol%) AgOAc (3 equiv)	
iPr 0 +	OMe 2a	CsOPiv (1.5 equiv) HFIP (1.5 mL) 80 [°] C, air , 36 h	[/] Pr CO ₂ Me
Additive		Yield ^[a] %	ee ^[b] %
DMSO		46	72
DMF		54	88
H ₂ O		87	93

Table S2. Optimization of solvent to combine with CsOPiv^[a]

^[a]The yiled was determined by ¹H NMR using dibromomethane as the internal standard ^{[^{DJ}}The ee value was determined by chiral HPLC. ^[c]Reacition Conditions: **1a** (0.1 mmol), **2a** (50 μ L), Pd(OAc)₂ (0.01 mmol), L-*p*Glu-OH (0.02 mmol), AgOAc (0.3 mmol), CsOPiv (0.15 mmol) and **additive** ⁽¹⁾ μ L) in 1.5 mL HFIP at 80 °C under air for 36 h.

iPr +	O OMe 2a	H ₂ O (10 μL) (10 mol%) Pd(OAc) ² (20 mol%) Ligand AgOAc (3 eq.) CsOPiv (1.5 mL) HFIP (1.5 mL) 80 °C, air , 36 h	Pr CO ₂ Me
Ligand		Yield (%) ^[b]	ee (%)[c]
L1		45	20
L2		27	69
L3		65	56
L4		72	0
L5		41	41
L6		N.D	-
L-pGlu-OH ^[d]		89	69
L-pGlu-OH ^[e]		91	87

Table S3. Optimization of Ligand^[a]

[a] Reacition Conditions: **1a** (0.1 mmol), **2a** (50 μ L), Pd(OAc)₂ (0.01 mmol), **Ligand** (0.02 mmol), AgOAc (0.3 mmol), CsOPiv (0.15 mmol) in 1.5 mL HFIP at 80 $^{\circ}$ C under air for 36 h.[b] The yield was determined by ¹H NMR using dibromomethane as the internal standard [c] The ee value was determined by chiral HPLC. [d] L-*p*Glu-OH (0.005 mmol). [e] L-*p*Glu-OH (0.01 mmol).

2.3 General Procedure for the Intermolecular Atroposelective

C-H Olefination.

General Procedure for the synthesis of racemic products: To a 10 mL Schlenk tube was added substrate 1 (0.10 mmol), acrylate 2 (0.30 mmol), Ac-Gly-OH (2.3 mg, 20 mol%), Pd(OAc)₂ (2.2 mg, 10 mol%), AgOAc (54.1 mg, 3.0 equiv.), CsOPiv (33.1mg, 1.5 equiv.), H₂O (10 μ L) and HFIP (1.5 mL). The reaction mixture was stirred at 80 °C (aluminum heat transfer block) for 36 h. After cooling to room temperature, the mixture was diluted with ethyl acetate, filtrated through celite. After concentration, the resulting residue was purified by preparative TLC using Hexane/EtOAc as the eluent to afford the desired product.

General Procedure for the synthesis of chiral products: To a 10 mL Schlenk tube was added substrate 1 (0.10 mmol), acrylate 2 (0.30 mmol), L-pGlu-OH (2.6 mg, 20 mol%), $Pd(OAc)_2$ (2.2 mg, 10 mol%), AgOAc (54.1 mg, 3.0 equiv.), CsOPiv (33.1mg, 1.5 equiv.), $H_2O(10 \mu L)$ and HFIP (1.5 mL). The reaction mixture was stirred at 80 °C (aluminum heat transfer block) for 36 h. After cooling to room temperature, the mixture was diluted with ethyl acetate, filtrated through celite. After concentration, the resulting residue was purified by preparative TLC using Hexane/EtOAc as the eluent to afford the desired product.

methyl (R,E)-3-(2'-(diethylcarbamoyl)-6-isopropyl-[1,1'-biphenyl]-2-yl)acrylate 3aa

A purification by flash chromatography in petroleum ether : ethyl acetate= 4 : 1 to give **3aa** as colorless oil (34.2 mg, 93%). The ee value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 90/10, flow = 1.0 mL/min, 254 nm) with tr = 5.0 min (major), 4.6 min (minor): 93% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.49 (m, 1H), 7.45 (tt, J = 7.4, 5.6 Hz, 2H), 7.41 – 7.31 (m, 4H), 7.25 – 7.14 (m, 1H), 6.29 (d, J = 16.0 Hz, 1H), 3.67 (s, 3H), 3.47 (brs, 1H), 3.24 – 2.62 (m, 4H), 1.24 (d, J = 6.8 Hz, 3H), 1.06 (t, J = 7.1 Hz, 3H), 0.99 (d, J = 6.9 Hz, 3H), 0.72 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.2, 167.5, 144.4, 139.3, 136.8, 136.5, 131.1, 128.7, 128.4, 127.6, 127.4, 126.0, 123.0, 117.6, 51.7, 43.2, 38.1, 30.6, 25.6, 22.5, 14.2, 11.9. (ESI) calcd for C₂₄H₃₀NO₃ (M+H)⁺: 380.2226, found: 380.2229

ethyl (S,E)-3-(2'-(dimethylcarbamoyl)-6-isopropyl-[1,1'-biphenyl]-2-yl)acrylate 3ab

A purification by flash chromatography in petroleum ether : ethyl acetate= 4 : 1 to give **3ab** as colorless oil (36.2 mg, 92%). The ee value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 90/10, flow = 0.5 mL/min, 254 nm) with tr = 10.4 min (major), 9.3 min (minor): 90% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H** NMR (400 MHz, CDCl₃) δ 7.54 – 7.48 (m, 1H), 7.47 – 7.41 (m, 2H), 7.40 – 7.29 (m, 4H), 7.23 – 7.17 (m, 1H), 6.27 (d, *J* = 15.9 Hz, 1H), 4.16 – 4.08 (m, 2H), 3.48 (s, 1H), 3.20 – 3.14 (m, 1H), 3.11 – 2.75 (m, 2H), 2.74 – 2.62 (m, 1H), 1.25 (d, *J* = 6.5 Hz, 3H), 1.21 (d, *J* = 7.1 Hz, 3H), 1.05 (t, *J* = 7.1 Hz, 3H), 0.98 (d, *J* = 6.9 Hz, 3H), 0.72 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 167.0, 144.2, 139.4, 137.0, 136.6, 131.1, 128.6, 128.3, 127.5, 122.9, 118.0, 60.3, 43.2, 38.0, 30.6, 25.5, 22.5, 14.4, 14.2, 12.0.
(ESI) calcd for C₂₅H₃₂NO₃ (M+H)⁺: 394.2328, found: 394.2327

butyl (S,E)-3-(2'-(dimethylcarbamoyl)-6-isopropyl-[1,1'-biphenyl]-2-yl)acrylate 3ac

A purification by flash chromatography in petroleum ether : acetone= 20 : 1 to give **3ac** as colorless oil (31.1 mg, 74%). The ee value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm) with tr = 4.9 min (major), 3.8 min (minor): 86% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 7.5 Hz, 1H), 7.48 – 7.40 (m, 2H), 7.40 – 7.28 (m, 4H), 7.23 – 7.17 (m, 1H), 6.27 (d, J = 15.9 Hz, 1H), 4.08 – 4.04 (m, 2H), 3.48 (s, 1H), 3.19 – 3.12 (m, 1H), 3.09 – 2.79 (m, 2H), 2.73 – 2.64 (m, 1H), 1.64 – 1.50 (m, 2H), 1.27 (dd, J = 17.5, 7.4 Hz, 5H), 1.04 (t, J = 7.0 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H), 0.89 (td, J = 7.3, 1.3 Hz, 3H), 0.71 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 167.0, 144.1, 139.2, 136.9, 136.5, 131.0, 128.5, 128.3, 127.5, 127.2, 125.8, 122.8, 117.9, 64.2, 60.3, 43.1, 38.0, 30.7, 30.6, 27.1, 25.5, 22.4, 19.2, 14.3, 14.1, 13.8, 11.9.

(ESI) calcd for C₂₇H₃₆NO₃ (M+H)⁺: 422.2695, found: 422.2695

phenyl (S,E)-3-(2'-(diethylcarbamoyl)-6-isopropyl-[1,1'-biphenyl]-2-yl)acrylate 3ad

A purification by flash chromatography in petroleum ether : ethyl acetate= 5 : 1 to give **3ad** as yellow oil (32.4 mg, 72%). The ee value was determined by HPLC analysis on a Chiralcel IBN-5 column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm) with tr = 7.5 min (major), 6.8 min (minor): 91% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H** NMR (400 MHz, CDCl₃) δ 7.59 (dd, J = 7.5, 1.4 Hz, 1H), 7.51 (d, J = 15.9 Hz, 1H), 7.48 – 7.41 (m, 3H), 7.39 – 7.31 (m, 4H), 7.24 – 7.17 (m, 2H), 7.08 – 6.99 (m, 2H), 6.48 (d, J = 15.9 Hz, 1H), 3.49 (brs, 1H), 3.28 – 3.17 (m, 1H), 3.16 – 2.88 (m, 2H), 2.71 (p, J = 6.9 Hz, 1H), 1.27 (d, J = 6.9 Hz, 3H), 1.08 (t, J = 7.0 Hz, 3H), 1.01 (d, J = 6.9 Hz, 3H), 0.77 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 165.4, 150.9, 146.2, 139.7, 136.9, 136.5, 131.1, 129.4, 128.7, 128.4, 127.7, 127.6, 126.0, 125.8, 123.1, 121.6, 116.9, 67.2, 43.2, 38.1, 30.6, 29.8, 27.2, 25.5, 22.5, 14.2, 12.0.

(ESI) calcd for C₂₉H₃₂NO₃ (M+H)⁺: 442.2382, found: 442.2381

benzyl (S,E)-3-(2'-(diethylcarbamoyl)-6-isopropyl-[1,1'-biphenyl]-2-yl)acrylate 3ae

A purification by flash chromatography in petroleum ether : ethyl acetate= 1 : 1 to give **3ae** as yellow oil (42.6 mg, 93%). The ee value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm) with tr = 8.6 min (major), 7.1 min (minor): 87% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.49 (m, 1H), 7.45 – 7.41 (m, 3H), 7.39 – 7.30 (m, 6H), 7.27 – 7.24 (m, 2H), 7.22 – 7.19 (m, 1H), 6.33 (dd, *J* = 16.0, 2.5 Hz, 1H), 5.12 (d, *J* = 2.5 Hz, 2H), 3.46 (brs, 1H), 3.11 (td, *J* = 8.6, 8.1, 3.8 Hz, 1H), 3.04 – 2.56 (m, 3H), 1.26 (dd, *J* = 7.0, 2.7 Hz, 3H), 1.22 (d, *J* = 2.5 Hz, 3H), 0.99 (dd, *J* = 7.0, 2.5 Hz, 3H), 0.92 (d, *J* = 7.5 Hz, 3H), 0.70 (td, *J* = 7.1, 2.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 166.7, 144.8, 139.4, 137.0, 136.6, 136.2, 131.1, 128.7, 128.6, 128.4, 128.2, 127.9, 127.5, 125.9, 122.8, 117.5, 66.1, 43.2, 38.0, 30.6, 27.1, 25.5, 22.5, 14.1, 11.9.

(ESI) calcd for C₃₀H₃₄NO₃ (M+H)⁺: 456.2539, found: 456.2540

Cyclohexyl (S,E)-3-(2'-(diethylcarbamoyl)-6-isopropyl-[1,1'-biphenyl]-2-yl)acrylate 3af

A purification by flash chromatography in petroleum ether : ethyl acetate= 1 : 1 to give **3af** as

yellow oil (33.1 mg, 74%). The ee value was determined by HPLC analysis on a Chiralcel NQ column (hexane/isopropanol = 70/30, flow = 0.8 mL/min, 254 nm) with tr = 5.8 min (major), 7.1 min (minor): 93% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H NMR (400 MHz, CDCl**₃) δ 7.55 – 7.48 (m, 1H), 7.45 – 7.42 (m, 2H), 7.39 – 7.28 (m, 4H), 7.21 (dd, J = 6.8, 1.9 Hz, 1H), 6.26 (d, J = 15.9 Hz, 1H), 4.80 – 4.75 (m, 1H), 3.52 (brs, 1H), 3.20 – 3.15 (m, 1H), 3.06 – 2.77 (m, 2H), 2.75 – 2.69 (m, 1H), 1.75 (dt, J = 9.0, 5.0 Hz, 2H), 1.60 (q, J = 8.1, 7.6 Hz, 2H), 1.54 – 1.31 (m, 6H), 1.24 (d, J = 15.2 Hz, 3H), 1.04 (t, J = 7.1 Hz, 3H), 0.99 (d, J = 6.8 Hz, 3H), 0.71 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0, 166.9, 158.6, 145.0, 139.5, 136.5, 131.1, 129.6, 128.6, 128.4, 127.6, 126.0, 122.9, 121.3, 117.4, 114.7, 114.7, 69.2, 66.0, 62.8, 61.1, 43.2, 38.0, 30.6, 25.5, 22.5, 14.2, 12.0.

(ESI) calcd for C₂₉H₃₈NO₃ (M+H)⁺: 448.2852, found: 448.2852

2,2,2-trifluoroethyl(*S*,*E*)-3-(2'-(diethylcarbamoyl)-6-isopropyl-[1,1'-biphenyl]-2-yl)acrylate 3ag

A purification by flash chromatography in petroleum ether : ethyl acetate= 1 : 1 to give **3ag** as yellow oil (40.2 mg, 89%). The ee value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 70/30, flow = 0.8 mL/min, 254 nm) with tr = 13.9 min (major), 14.8 min (minor): 91% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H** NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.7 Hz, 1H), 7.49 – 7.39 (m, 4H), 7.40 – 7.33 (m, 2H), 7.20 (dt, J = 6.2, 1.7 Hz, 1H), 6.32 (d, J = 15.9 Hz, 1H), 4.45 (q, J = 8.5 Hz, 2H), 3.46 (s, 1H), 3.15 (dd, J = 14.5, 7.2 Hz, 1H), 3.12 – 2.75 (m, 2H), 2.70 (p, J = 7.0 Hz, 1H), 1.26 (d, J = 6.7 Hz, 5H), 1.06 (t, J = 7.1 Hz, 3H), 1.00 (d, J = 6.8 Hz, 3H), 0.73 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.9, 165.0, 146.7, 136.8, 136.2, 130.9, 128.5, 128.3, 127.9, 127.6, 125.9, 123.0 (d, $J_{CF} = 276.7$ Hz), 122.9, 115.4, 60.1 (q, $J_{CF} = 36.4$ Hz), 43.0, 37.9, 30.5, 27.1, 25.4, 22.4, 14.0, 11.9.

¹⁹F NMR (376 MHz, CDCl₃) δ -73.90.

(ESI) calcd for C₂₅H₂₉F₃NO₃ (M+H)⁺: 448.2100 found: 448.2101

<u>1,1,1,3,3,3-hexafluoropropan-2-yl(*S*,*E*)-3-(2'-(diethylcarbamoyl)-6-isopropyl-[1,1'-biphenyl]-2-yl)acrylate 3ah</u>

 CF_3

A purification by flash chromatography in petroleum ether : ethyl acetate= 1 : 1 to give **3ah** as yellow oil (34.8 mg, 67%). The ee value was determined by HPLC analysis on a Chiralcel IBN-5 column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm) with tr = 4.0 min (major), 4.7

min (minor): 91% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H NMR (400 MHz, CDCl₃)** δ 7.46 – 7.39 (m, 2H), 7.37 – 7.30 (m, 3H), 7.29 – 7.23 (m, 2H), 7.10 – 7.08 (m, 1H), 6.23 (dd, J = 15.9, 1.7 Hz, 1H), 5.67 – 5.58 (m, 1H), 3.34 (brs, 1H), 3.04 – 2.56 (m, 4H), 1.15 (d, J = 6.5 Hz, 3H), 0.93 (t, J = 7.1 Hz, 3H), 0.89 (dd, J = 6.9, 1.7 Hz, 3H), 0.61 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.9, 163.4, 149.1, 140.2, 136.9, 136.2, 131.0, 128.7, 128.6, 128.6, 127.8, 126.0, 123.2, 120.62 (d, *J*_{CF} = 279.9 Hz), 113.6, 67.69 – 65.55 (m), 43.1, 38.1, 30.7, 29.8, 25.5, 22.5, 14.1, 11.9.

¹⁹F NMR (**376** MHz, CDCl₃) δ -73.39, -73.41, -73.43, -73.48, -73.51, -75.66.

(ESI) calcd for $C_{26}H_{28}F_6NO_3$ (M+H)⁺: 516.1973 found: 516.1974

(tetrahydrofuran-2-yl)methyl(E)-3-((S)-2'-(diethylcarbamoyl)-6-isopropyl-[1,1'-biphenyl]-2-

A purification by flash chromatography in petroleum ether : ethyl acetate= 3 : 1 to give **3ai** as yellow oil (41.5 mg, 92%). The ee value was determined by HPLC analysis on a Chiralcel NX column (hexane/isopropanol = 90/10, flow = 0.5 mL/min, 254 nm) with tr = 54.9 min (major), tr = 35.5 min (major), 34.2 min (minor), 30.6 min(minor): 95% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H NMR (400 MHz, CDCl**₃) δ 7.50 (dd, J = 7.7, 1.4 Hz, 1H), 7.46 - 7.41 (m, 2H), 7.40 - 7.31 (m, 4H), 7.19 (dd, J = 6.6, 2.2 Hz, 1H), 6.33 (d, J = 15.9 Hz, 1H), 4.18 - 3.99 (m, 3H), 3.85 - 3.70 (m, 2H), 3.46 (brs, 1H), 3.18 - 3.13 (m, 1H), 2.98 - 2.85 (m, 2H), 2.70 - 2.64 (m, 1H), 1.99 - 1.81 (m, 3H), 1.56 (dq, J = 11.5, 7.3 Hz, 1H), 1.24 (d, J = 6.8 Hz, 3H), 1.04 (t, J = 7.0 Hz, 3H), 0.97 (d, J = 6.8 Hz, 3H), 0.70 (t, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 166.9, 144.6, 139.3, 137.0, 136.5, 131.1, 131.1, 128.6, 128.6, 128.4, 127.6, 127.4, 125.9, 125.9, 122.9, 117.6, 76.6, 68.5, 66.4, 43.2, 38.0, 30.6, 27.9, 27.2, 25.6, 25.5, 22.5, 14.2, 11.9.

(ESI) calcd for C₂₈H₃₆NO₄ (M+H)⁺: 450.2644, found: 450.2645

2-phenoxyethyl (S,E)-3-(2'-(diethylcarbamoyl)-6-isopropyl-[1,1'-biphenyl]-2-yl)acrylate 3aj

A purification by flash chromatography in petroleum ether : ethyl acetate= 5 : 1 to give **3aj** as colorless oil (38.9 mg, 79%). The ee value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm) with tr = 10.5 min (major), 9.1 min (minor): 91% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 7.7 Hz, 1H), 7.45 – 7.24 (m, 9H), 7.19 (d, *J* = 7.3 Hz, 1H),

7.02 - 6.83 (m, 4H), 6.33 (d, J = 15.9 Hz, 1H), 4.47 - 4.40 (m, 2H), 4.13 (t, J = 4.7 Hz, 2H), 3.47 (brs, 1H), 3.15 (dq, J = 14.5, 7.7, 7.2 Hz, 1H), 3.10 - 2.74 (m, 2H), 2.67 (dq, J = 16.1, 9.5, 8.1 Hz, 1H), 1.23 (d, J = 11.4 Hz, 3H), 1.02 - 0.97 (m, 6H), 0.71 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 166.9, 158.5, 145.0, 134.0, 136.4, 131.1, 129.6, 129.6, 128.6, 128.4, 127.6, 125.9, 122.9, 121.3, 117.3, 114.7, 114.6, 66.0, 62.8, 43.2, 38.0, 30.6, 27.2, 25.5, 22.5, 14.2, 11.9

(ESI) calcd for C₃₁H₃₆NO₄ (M+H)⁺: 486.2644 found: 486.2644

(S,E)-2'-isopropyl-N,N-dimethyl-6'-(3-oxoprop-1-en-1-yl)-[1,1'-biphenyl]-2-carboxamide 3ak

A purification by flash chromatography in petroleum ether : ethyl acetate= 4 : 1 to give **3ak** as yellow oil (21.2 mg, 60%). The ee value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm) with tr = 6.2 min (major), 7.1 min (minor): 87% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H NMR (400 MHz, CDCl**₃) δ 9.38 (d, J = 7.8 Hz, 1H), 7.55 (d, J = 7.5 Hz, 1H), 7.49 – 7.35 (m, 5H), 7.24 – 7.11 (m, 2H), 6.56 (dd, J = 15.9, 7.8 Hz, 1H), 3.55 – 2.98 (m, 4H), 2.72 – 2.58 (m, 1H), 1.22 (s, 3H), 1.09 (d, J = 6.9 Hz, 3H), 1.02 (d, J = 6.9 Hz, 3H), 0.74 (t, J = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 194.2, 183.5, 169.0, 152.9, 140.5, 136.4, 131.3, 128.8, 128.7, 128.6, 128.1, 127.8, 126.1, 123.6, 43.0, 38.3, 30.6, 27.2, 25.7, 22.6, 14.3, 12.1.

(ESI) calcd for C₂₃H₂₈NO₃ (M+H)⁺: 350.2120 found: 350.2119

(S,E)-N,N-diethyl-2'-isopropyl-6'-(3-oxopent-1-en-1-yl)-[1,1'-biphenyl]-2-carboxamide 3al

A purification by flash chromatography in petroleum ether : ethyl acetate= 4 : 1 to give **3al** as yellow oil (20.1 mg, 53%). The ee value was determined by HPLC analysis on a Chiralcel IBN-5 column (hexane/isopropanol = 90/10, flow = 0.5 mL/min, 254 nm) with tr = 6.3 min (major), 7.1 min (minor): 93% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H NMR (400 MHz, CDCl₃)** δ 7.52 (d, J = 7.4 Hz, 1H), 7.43 (q, J = 6.2, 5.0 Hz, 2H), 7.41 – 7.30 (m, 3H), 7.26 – 7.14 (m, 2H), 6.54 (d, J = 16.2 Hz, 1H), 3.63 – 2.79 (m, 4H), 2.68 (p, J = 7.0 Hz, 1H), 2.42 (q, J = 7.3 Hz, 2H), 1.24 (d, J = 6.9 Hz, 3H), 1.03 (dt, J = 19.8, 7.1 Hz, 9H), 0.72 (t, J = 7.1 Hz, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 202.3, 169.0, 144.4, 139.6, 136.8, 136.5, 131.2, 128.5, 128.3, 127.6, 127.2, 126.1, 125.9, 122.9, 42.9, 38.0, 30.5, 27.1, 26.0, 22.4, 14.1, 12.0, 8.3. **(ESI)** calcd for C₂₅H₃₂NO₂ (M+H)⁺: 378.2433 found: 378.2434

<u>(S,E)-2'-(3-(dimethylamino)-3-oxoprop-1-en-1-yl)-6'-isopropyl-N,N-dimethyl-[1,1'-biphenyl]-</u> 2-carboxamide 3am

A purification by flash chromatography in petroleum ether : ethyl acetate= 1 : 1 to give **3am** as yellow oil (25.6 mg, 65%). The ee value was determined by HPLC analysis on a Chiralcel IA column (hexane/isopropanol = 80/20, flow = 1.2 mL/min, 254 nm) with tr = 17.1 min (major), 13.1 min (minor): 78% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H** NMR (400 MHz, CDCl₃) δ 7.48 (dd, J = 7.1, 1.8 Hz, 1H), 7.45 – 7.38 (m, 2H), 7.38 – 7.27 (m, 4H), 7.19 (dd, J = 7.2, 1.7 Hz, 1H), 6.68 (d, J = 15.4 Hz, 1H), 3.49 (s, 1H), 3.24 – 3.18 (m, 1H), 3.07 (s, 3H), 3.06 – 2.98 (m, 1H), 2.96 (s, 3H), 2.90 – 2.84 (m, 1H), 2.70 (p, J = 6.8 Hz, 1H), 1.25 – 1.22 (m, 3H), 1.03 (t, J = 7.1 Hz, 3H), 0.96 (d, J = 6.8 Hz, 3H), 0.72 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.3, 166.7, 141.7, 137.0, 131.2, 128.6, 128.2, 127.5, 126.6, 126.0, 122.9, 117.8, 43.3, 38.0, 37.5, 35.9, 30.6, 29.8, 25.6, 22.5, 14.2, 12.1.

(ESI) calcd for C₂₅H₃₃N₂O₂ (M+H)⁺: 393.2542 found: 393.2542

Diethyl(*S*,*E*)-(2-(2'-(diethylcarbamoyl)-6-isopropyl-[1,1'-biphenyl]-2-yl)vinyl)phosphonate

A purification by flash chromatography in petroleum ether : ethyl acetate= 1 : 1 to give **3an** as yellow oil (43.4 mg, 94%). The ee value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 80/20, flow = 1 mL/min, 254 nm) with tr = 5.2 min (major), 4.7 min (minor): 86% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 – 7.41 (m, 3H), 7.36 (q, J = 7.4 Hz, 3H), 7.22 – 7.17 (m, 1H), 7.06 (dd, J = 23.0, 17.5 Hz, 1H), 6.10 (t, J = 18.3 Hz, 1H), 3.97 (p, J = 7.3 Hz, 4H), 3.47 (brs, 1H), 3.20 – 2.87 (m, 3H), 2.77 – 2.65 (m, 1H), 1.21 (ddd, J = 11.0, 7.2, 3.5 Hz, 9H), 1.06 (t, J = 7.1 Hz, 3H), 0.96 (d, J = 6.8 Hz, 3H), 0.70 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃, ppm; list of signals, C-P coupling not resolved) δ 168.9, 155.4, 140.7, 131.2, 128.4, 128.3, 127.5, 125.9, 116.8, 113.0, 61.7, 37.9, 30.5, 25.5, 22.3, 16.3, 16.3, 14.0, 11.9.
(ESI) calcd for C₂₆H₃₇NO₄P (M+H)⁺: 458.2460 found: 458.2460

(*1R*,2*S*,5*S*)-2-isopropyl-5-methylcyclohexyl(*E*)-3-((*S*)-2'-(diethylcarbamoyl)-6-isopropyl-[1,1'biphenyl]-2-yl)acrylate 3ao

A purification by flash chromatography in petroleum ether : ethyl acetate= 1 : 1 to give **3ao** as yellow oil (44.6 mg, 88%). The ee value was determined by HPLC analysis on a Chiralcel IC

column (hexane/isopropanol = 90/10, flow = 0.3 mL/min, 254 nm) with tr = 21.2 min (major), 22.3 min (minor): 92% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H NMR (400 MHz, CDCl₃)** δ 7.51 (t, *J* = 6.9 Hz, 1H), 7.46 – 7.41 (m, 2H), 7.40 – 7.32 (m, 3H), 7.28 (t, *J* = 5.8 Hz, 1H), 7.23 – 7.19 (m, 1H), 6.27 (dd, *J* = 16.0, 6.2 Hz, 1H), 4.67 – 4.61 (m, 1H), 3.52 (brs, 1H), 3.24 – 3.17 (m, 1H), 3.12 – 2.77 (m, 2H), 2.71 (dt, *J* = 13.6, 6.9 Hz, 1H), 2.03 – 1.95 (m, 1H), 1.89 – 1.60 (m, 4H), 1.47 (dt, *J* = 15.8, 5.1 Hz, 1H), 1.26 (d, *J* = 6.3 Hz, 3H), 1.07 (t, *J* = 6.8 Hz, 3H), 1.00 (t, *J* = 6.6 Hz, 3H), 0.87 (dt, *J* = 13.1, 6.6 Hz, 8H), 0.76 – 0.68 (m, 7H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 166.5, 143.9, 139.4, 136.92, 136.7, 131.1, 128.5, 128.3, 127.5, 127.2, 125.8, 122.8, 118.3, 74.2, 47.2, 43.2, 41.1, 38.0, 34.4, 34.3, 31.4, 30.6, 26.5, 25.5, 23.7, 22.5, 22.1, 20.8, 20.8, 16.6, 14.1, 11.8.

(ESI) calcd for C₃₃H₄₆NO₃ (M+H)⁺: 504.3470 found: 504.3471

methyl (S,E)-3-(2'-(diethylcarbamoyl)-6-ethyl-[1,1'-biphenyl]-2-yl)acrylate 3ba

A purification by flash chromatography in petroleum ether : ethyl acetate= 1 : 1 to give **3ba** as yellow oil (31.7 mg, 85%). The ee value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm) with tr = 5.8 min (major), 5.3 min (minor): 91% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H** NMR (400 MHz, CDCl₃) δ 7.57 – 7.49 (m, 1H), 7.49 – 7.40 (m, 2H), 7.40 – 7.28 (m, 4H), 7.21 (d, J = 6.9 Hz, 1H), 6.29 (d, J = 16.0 Hz, 1H), 3.68 (s, 3H), 3.49 (brs, 1H), 3.17 (dd, J = 14.6, 7.4 Hz, 1H), 3.11 – 2.71 (m, 2H), 2.51 (dq, J = 15.3, 7.7 Hz, 1H), 2.35 (dq, J = 14.7, 7.4 Hz, 1H), 1.10 – 1.01 (m, 6H), 0.70 (t, J = 6.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 167.3, 144.1, 140.0, 136.9, 136.4, 130.9, 129.8, 128.7, 128.1, 127.6, 125.9, 122.8, 117.6, 51.6, 43.1, 37.9, 26.7, 15.0, 14.2, 11.8.
(ESI) calcd for C₂₃H₂₈NO₃ (M+H)⁺: 366.2069 found: 366.2069

methyl (R,E)-3-(2'-(diethylcarbamoyl)-6-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)acrylate 3ca

A purification by flash chromatography in petroleum ether : ethyl acetate= 1 : 1 to give **3ca** as yellow oil (25.9 mg, 64%). The ee value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm) with tr = 5.1 min (major), 5.8 min (minor): 89% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H NMR (400 MHz, CDCl₃)** δ 7.83 (d, J = 7.9 Hz, 1H), 7.72 (d, J = 7.9 Hz, 1H), 7.57 – 7.28 (m, 5H), 7.24 – 7.19 (m, 1H), 6.30 (d, J = 16.0 Hz, 1H), 3.66 (s, 3H), 3.44 – 3.09 (m, 4H), 1.18 (t, J = 7.1 Hz, 3H), 0.85 (t, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃, ppm; list of signals, C-F coupling not resolved) δ 168.7, 167.0, 143.0, 139.1, 135.7, 135.4, 131.4, 129.0, 128.2, 128.2, 127.9, 127.2, 126.0, 119.7, 51.8, 43.0, 38.4, 27.2, 14.2, 11.9.

¹⁹F NMR (376 MHz, CDCl₃) δ -55.96.

(ESI) calcd for C₂₃H₂₈NO₃ (M+H)⁺: 406.1630 found: 406.1632

methyl (S,E)-3-(2'-(diethylcarbamoyl)-6-methyl-[1,1'-biphenyl]-2-yl)acrylate 3da

A purification by flash chromatography in petroleum ether : ethyl acetate= 5 : 1 to give **3da** as white foam (33.2 mg, 95%). The ee value was determined by HPLC analysis on a Chiralcel IBN-5 column (hexane/isopropanol = 90/10, flow = 0.5 mL/min, 254 nm) with tr = 13.3 min (major), 14.3 min (minor): 83% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.49 (m, 1H), 7.49 – 7.34 (m, 4H), 7.26 (dd, J = 6.8, 2.0 Hz, 2H), 7.19 (dt, J = 7.4, 1.9 Hz, 1H), 6.30 (dd, J = 16.0, 1.8 Hz, 1H), 3.68 (s, 3H), 3.51 (brs, 1H), 3.31 – 3.12 (m, 1H), 3.13 – 2.73 (m, 2H), 2.11 (d, J = 1.8 Hz, 3H), 1.06 (t, J = 6.2 Hz, 3H), 0.71 (t, J = 6.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.2, 167.4, 144.0, 140.8, 136.9, 136.9, 131.8, 130.6, 129.0, 128.0, 127.6, 126.0, 122.9, 117.7, 51.6, 43.2, 38.0, 21.0, 14.2, 11.8.

(ESI) calcd for C₂₂H₂₆NO₃ (M+H)⁺: 352.1913 found: 352.1913

methyl (R,E)-3-(2'-(diethylcarbamoyl)-6-methoxy-[1,1'-biphenyl]-2-yl)acrylate 3ea

A purification by flash chromatography in petroleum ether : ethyl acetate= 4 : 1 to give **3ea** as yellow oil (11.4 mg, 31%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 – 7.37 (m, 4H), 7.35 – 7.27 (m, 2H), 7.18 (dd, J = 6.9, 1.8 Hz, 1H), 7.01 – 6.87 (m, 1H), 6.30 (d, J = 16.0 Hz, 1H), 3.70 (s, 3H), 3.67 (s, 3H), 2.98 (brs, 4H), 1.04 (t, J = 6.9 Hz, 3H), 0.76 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.2, 167.4, 144.0, 140.8, 136.9, 136.9, 131.8, 130.6, 129.0, 128.0, 127.6, 126.0, 122.9, 117.7, 51.6, 43.2, 38.0, 21.0, 14.2, 11.8.

(ESI) calcd for C₂₂H₂₆NO₄ (M+H)⁺: 368.1862 found: 368.1863

methyl (S,E)-3-(2'-(diisopropylcarbamoyl)-6-isopropyl-[1,1'-biphenyl]-2-yl)acrylate 3fa

A purification by flash chromatography in petroleum ether : ethyl acetate= 5 : 1 to give 3ea as

white foam (33.3 mg, 82%). The ee value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm) with tr = 4.2 min (major), 4.0 min (minor): 89% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H** NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.6 Hz, 1H), 7.47 – 7.27 (m, 6H), 7.14 (d, J = 7.7 Hz, 1H), 6.32 (d, J = 15.8 Hz, 1H), 3.68 (s, 3H), 3.66 – 3.53 (m, 1H), 3.27 – 3.12 (m, 1H), 3.03 – 2.81 (m, 1H), 1.42 (d, J = 6.7 Hz, 3H), 1.31 (d, J = 6.7 Hz, 3H), 1.04 (d, J = 6.5 Hz, 3H), 0.94 (d, J = 6.7 Hz, 3H), 0.87 (d, J = 6.9 Hz, 3H), 0.71 (d, J = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0, 167.4, 150.2, 143.8, 139.4, 138.2, 134.8, 132.6, 131.5, 128.4, 127.9, 127.4, 125.8, 122.7, 117.8, 51.6, 49.8, 45.5, 30.8, 25.8, 21.7, 21.3, 20.6, 20.1.
(ESI) calcd for C₂₆H₃₄NO₃ (M+H)⁺: 408.2539 found: 408.2540

methyl (S,E)-3-(6-isopropyl-2'-(pyrrolidine-1-carbonyl)-[1,1'-biphenyl]-2-yl)acrylate 3ga

A purification by flash chromatography in petroleum ether : ethyl acetate= 5 : 1 to give **3ga** as yellow solid (36.2 mg, 96%). The ee value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm) with tr = 7.3 min (major), 9.2 min (minor): 87% ee.

The absolute stereochemistry was assigned by X-ray diffraction analysis.

¹H NMR (400 MHz, CDCl₃) δ 7.44 (td, J = 16.8, 15.3, 7.7 Hz, 5H), 7.37 – 7.30 (m, 2H), 7.18 (d, J = 6.5 Hz, 1H), 6.27 (d, J = 16.0 Hz, 1H), 3.66 (s, 3H), 3.39 (dt, J = 12.5, 6.3 Hz, 1H), 3.35 – 3.21 (m, 3H), 2.74 – 2.56 (m, J = 7.0 Hz, 1H), 1.77 (tt, J = 12.0, 6.5 Hz, 3H), 1.57 (m, 1H), 1.22 (d, J = 6.8 Hz, 3H), 1.05 (d, J = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.9, 167.4, 148.8, 144.5, 139.8, 137.3, 137.2, 132.6, 131.1, 129.1, 128.3, 127.5, 127.4, 127.0, 123.1, 117.5, 51.6, 49.1, 45.7, 30.6, 26.2, 25.1, 24.3, 23.0.
(ESI) calcd for C₂₄H₂₈NO₃ (M+H)⁺: 378.2069 found: 378.2068

Melting Point: 187.1 - 188.3 °C

methyl (S,E)-3-(6-isopropyl-2'-(piperidine-1-carbonyl)-[1,1'-biphenyl]-2-yl)acrylate 3ha

A purification by flash chromatography in petroleum ether : ethyl acetate= 5 : 1 to give **3ha** as yellow oil (34.5 mg, 88%). The ee value was determined by HPLC analysis on a Chiralcel NT(2) column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm) with tr = 19.1 min (major), 32.9 min (minor): 87% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H NMR (400 MHz, CDCl**₃) δ 7.51 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.48 – 7.38 (m, 3H), 7.36 (dd, *J* = 7.1, 1.9 Hz, 2H), 7.31 (d, *J* = 15.9 Hz, 1H), 7.22 – 7.12 (m, 1H), 6.28 (d, *J* = 15.9 Hz, 1H), 3.30 – 2.70 (m, 4H), 3.43 – 2.51 (m, 4H), 1.57 – 1.32 (m, 6H), 1.30 – 1.24 (m, 3H), 0.99 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 184.0, 168.5, 167.4, 139.5, 131.4, 128.9, 128.4, 127.6, 126.9, 123.12, 117.7, 64.5, 51.6, 42.7, 30.8, 27.1, 26.5, 25.6, 25.4, 24.6.
(ESI) calcd for C₂₅H₃₀NO₃ (M+H)⁺: 392.2226 found: 392.2227

methyl (S,E)-3-(6-isopropyl-2'-(morpholine-4-carbonyl)-[1,1'-biphenyl]-2-yl)acrylate 3ia

A purification by flash chromatography in petroleum ether : ethyl acetate= 1 : 1 to give **3ia** as yellow oil (17.8 mg, 45%). The ee value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm) with tr = 24.0 min (major), 15.0 min (minor): 87% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H NMR (400 MHz, CDCl**₃) δ 7.54 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.51 – 7.28 (m, 6H), 7.19 (dd, *J* = 6.9, 1.9 Hz, 1H), 6.32 (d, *J* = 15.9 Hz, 1H), 3.67 (s, 3H), 3.66 – 3.06 (m, 8H), 2.68 (s, 1H), 1.27 – 1.25 (m, 3H), 1.00 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.6, 167.4, 144.2, 131.6, 129.3, 128.6, 127.7, 127.2, 123.1, 117.8, 66.9, 51.7, 47.8, 42.1, 30.7, 27.2, 25.4, 22.6.

(ESI) calcd for C₂₄H₂₈NO₄ (M+H)⁺: 394.2018 found: 394.2018

methyl (S,E)-3-(2'-(diethylcarbamoyl)-4'-fluoro-6-isopropyl-[1,1'-biphenyl]-2-yl)acrylate 3ja

A purification by flash chromatography in petroleum ether : ethyl acetate= 4 : 1 to give **3ja** as yellow oil (28.1 mg, 69%). The ee value was determined by HPLC analysis on a Chiralcel NQ column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm) with tr = 6.2 min (major), 9.5 min (minor): 89% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 (dd, J = 7.3, 1.6 Hz, 1H), 7.43 – 7.30 (m, 3H), 7.22 – 7.10 (m, 2H), 7.08 (dd, J = 8.2, 1.9 Hz, 1H), 6.29 (d, J = 15.9 Hz, 1H), 3.69 (s, 3H), 3.48 (brs, 1H), 3.15 (dd, J = 14.4, 7.2 Hz, 1H), 2.94 (d, J = 48.3 Hz, 2H), 2.67 (p, J = 6.8 Hz, 1H), 1.25 (d, J = 6.7 Hz, 3H), 1.07 (d, J = 7.1 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H), 0.70 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃, ppm; list of signals, C-F coupling not resolved) δ 167.6, 167.4, 160.5, 144.1, 138.2, 132.9 (d, *J* = 7.6 Hz), 132.4, 128.6, 127.5, 123.0, 117.9, 115.8 (d, *J* = 21.1 Hz), 113.3 (d, *J* = 22.5 Hz), 51.7, 43.2, 38.1, 30.6, 25.5, 22.4, 14.2, 11.9.

¹⁹F NMR (376 MHz, CDCl₃) δ -113.64.

(ESI) calcd for C₂₄H₂₉FNO₃ (M+H)⁺: 398.2131 found: 398.2131

<u>Methyl(*S*,*E*)-3-(2'-(diethylcarbamoyl)-6-isopropyl-4'-methoxy-[1,1'-biphenyl]-2-yl)acrylate</u> <u>3ka</u>

A purification by flash chromatography in petroleum ether : ethyl acetate= 3 : 1 to give **3ka** as yellow oil (29.6 mg, 72%). The ee value was determined by HPLC analysis on a Chiralcel NQ column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm) with tr = 15.3 min (major), 9.4 min (minor): 87% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H NMR (400 MHz, CDCl₃)** δ 7.49 (d, J = 7.5 Hz, 1H), 7.44 – 7.28 (m, 3H), 7.10 (d, J = 8.4 Hz, 1H), 6.98 (dd, J = 8.3, 2.5 Hz, 1H), 6.89 (s, 1H), 6.29 (d, J = 16.0 Hz, 1H), 3.88 (s, 3H), 3.69 (s, 3H), 3.48 (brs, 1H), 3.18 (s, 1H), 3.13 – 2.65 (m, 3H), 1.23 (d, J = 2.0 Hz, 3H), 1.05 (t, J = 7.1 Hz, 3H), 0.97 (d, J = 6.8 Hz, 3H), 0.70 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.9, 167.5, 158.7, 144.6, 139.1, 132.2, 128.3, 127.4, 122.9, 117.5, 114.3, 111.5, 55.5, 51.7, 38.0, 30.5, 27.2, 25.6, 22.5, 14.3, 11.9.

(ESI) calcd for C₂₅H₃₂NO₄ (M+H)⁺: 410.2331 found: 410.2331

Methyl(S,E)-3-(2'-(diethylcarbamoyl)-3'-fluoro-6-isopropyl-[1,1'-biphenyl]-2-yl)acrylate 3la

A purification by flash chromatography in petroleum ether : ethyl acetate= 5 : 1 to give **3la** as yellow oil (27.5 mg, 69%). The ee value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 90/10, flow = 0.8 mL/min, 254 nm) with tr = 4.9 min (major), 5.5 min (minor): 92% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 (dd, J = 7.6, 1.4 Hz, 1H), 7.44 – 7.27 (m, 4H), 7.20 – 7.13 (m, 1H), 6.98 (dd, J = 13.8, 7.6 Hz, 1H), 6.28 (dd, J = 24.6, 16.0 Hz, 1H), 3.68 (d, J = 18.1 Hz, 3H), 3.56 (dq, J = 14.2, 7.3 Hz, 1H), 3.44 – 3.15 (m, 1H), 3.08 – 2.51 (m, 3H), 1.30 (d, J = 6.8 Hz, 3H), 1.04 (t, J = 7.2 Hz, 3H), 0.96 (d, J = 6.9 Hz, 3H), 0.82 – 0.64 (m, 3H).

¹³C NMR (101 MHz, CDCl₃, ppm; list of signals, C-F coupling not resolved) δ 167.7, 167.4, 164.3, 159.9, 157.4, 150.0, 146.8, 144.8, 143.7, 138.80, 137.9, 132.1, 130.0, 130.0, 128.8, 128.7, 127.7, 126.8, 126.7, 126.5, 125.3, 125.1, 123.7, 122.8, 118.3, 117.8, 115.3, 115.1, 69.2, 64.6, 51.8, 51.6, 43.4, 42.9, 38.4, 37.9, 30.8, 30.4, 26.0, 25.6, 22.7, 22.2, 21.1, 19.2, 13.8, 13.8, 12.3, 11.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -113.21, -114.29.

(ESI) calcd for C₂₄H₂₉FNO₃ (M+H)⁺: 398.2131 found: 398.2131

methyl (S,E)-3-(2-(2-(diethylcarbamoyl)naphthalen-1-yl)-3-isopropylphenyl)acrylate 3ma

A purification by flash chromatography in petroleum ether : ethyl acetate= 5 : 1 to give **3ma** as yellow oil (27.1 mg, 62%). The ee value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 90/10, flow = 0.8 mL/min, 254 nm) with tr = 4.8 min (major), 5.5 min (minor): 87% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H** NMR (400 MHz, CDCl₃) δ 7.99 – 7.88 (m, 2H), 7.59 (d, J = 7.4 Hz, 1H), 7.54 – 7.41 (m, 4H), 7.37 (t, J = 7.6 Hz, 1H), 7.29 – 7.25 (m, 1H), 7.09 (d, J = 15.9 Hz, 1H), 6.29 (d, J = 15.9 Hz, 1H), 3.57 (s, 4H), 3.28 – 2.66 (m, 3H), 2.42 (p, J = 6.8 Hz, 1H), 1.27 (d, J = 12.7 Hz, 3H), 1.09 (s, 3H), 0.80 (d, J = 6.9 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 169.3, 167.3, 144.3, 133.2, 128.7, 128.3, 128.2, 126.9, 126.8, 126.75, 123.2, 117.7, 60.5, 51.5, 43.2, 43.1, 30.8, 27.2, 25.2, 14.3, 14.2.

(ESI) calcd for $C_{28}H_{32}NO_3$ (M+H)⁺: 430.2382 found: 430.2382

methyl (S,E)-3-(4-chloro-2'-(diethylcarbamoyl)-6-methyl-[1,1'-biphenyl]-2-yl)acrylate 3na

A purification by flash chromatography in petroleum ether : ethyl acetate= 5 : 1 to give **3na** as yellow oil (15.2 mg, 39%). The ee value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm) with tr = 7.2 min (major), 5.6 min (minor): 99% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H NMR (400 MHz, CDCl**₃) δ 7.53 – 7.40 (m, 3H), 7.36 (d, J = 6.4 Hz, 1H), 7.29 (s, 1H), 7.25 (s, 1H), 7.15 (d, J = 6.6 Hz, 1H), 6.28 (d, J = 16.0 Hz, 1H), 3.69 (brs, 3H), 3.51 (brs, 1H), 3.20 (brs, 1H), 3.03 brs(s, 1H), 2.83 (dd, J = 16.4, 7.0 Hz, 1H), 2.09 (s, 3H), 1.08 (t, J = 7.1 Hz, 3H), 0.79 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0, 167.0, 142.6, 139.3, 136.9, 136.0, 133.8, 131.4, 130.6, 129.2, 127.9, 126.1, 122.7, 119.0, 51.8, 43.3, 38.2, 20.9, 14.3, 12.0.

(ESI) calcd for C₂₂H₂₅ClNO₃ (M+H)⁺: 386.1532 found: 386.1532

methyl (S,E)-3-(2'-(diethylcarbamoyl)-4,6-dimethyl-[1,1'-biphenyl]-2-yl)acrylate 30a

A purification by flash chromatography in petroleum ether : ethyl acetate= 5 : 1 to give **30a** as yellow oil (15.6 mg, 43%). The ee value was determined by HPLC analysis on a Chiralcel IBN-5

column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm) with tr = 8.6 min (major), 6.2 min (minor): 90% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H NMR (400 MHz, CDCl₃)** δ 7.43 (dtd, *J* = 18.8, 7.4, 1.5 Hz, 2H), 7.37 – 7.30 (m, 3H), 7.19 – 7.14 (m, 1H), 7.10 (s, 1H), 6.28 (d, *J* = 15.9 Hz, 1H), 3.52 – 3.18 (s, 3H), 3.35 (m, 2H), 3.12 – 2.72 (m, 2H), 2.34 (s, 3H), 2.06 (s, 3H), 1.05 (t, *J* = 7.1 Hz, 3H), 0.74 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.3, 167.5, 144.1, 138.2, 137.4, 137.0, 132.8, 130.8, 129.0, 127.5, 125.9, 123.3, 117.4, 51.6, 43.2, 38.0, 27.2, 21.3, 20.9, 14.2, 11.8.

(ESI) calcd for C₂₃H₂₈NO₃ (M+H)⁺: 366.2069 found: 366.2069

methyl (R,E)-3-(1-(2-(diethylcarbamoyl)phenyl)naphthalen-2-yl)acrylate 3pa

A purification by flash chromatography in petroleum ether : ethyl acetate= 5 : 1 to give **3pa** as yellow oil (28.6 mg, 74%). The ee value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm) with tr = 5.2 min (major), 4.7 min (minor): 91% ee.

The absolute stereochemistry was assigned by analogy to compound 3ga.

¹**H NMR (400 MHz, CDCl₃)** δ 7.97 – 7.68 (m, 3H), 7.64 – 7.19 (m, 8H), 6.19 (dd, J = 211.4, 15.8 Hz, 1H), 3.64 (d, J = 57.1 Hz, 3H), 3.56 – 2.57 (m, 4H), 1.15 – 0.92 (m, 3H), 0.72 – 0.22 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.9, 167.5, 148.3, 143.7, 138.0, 137.0, 135.4, 134.7, 134.0, 131.8, 130.6, 129.1, 128.8, 128.6, 128.2, 127.9, 127.8, 127.5, 127.1, 126.4, 126.2, 125.7, 124.7, 118.2, 51.7, 42.6, 37.9, 27.2, 14.1, 14.1, 11.5.

(ESI) calcd for C₂₃H₂₈NO₃ (M+H)⁺: 388.1913 found: 388.1915

2.4 Procedure for 5 mmol Scale Reaction of 3ga

To a 100 mL Schlenk tube was added substrate **1g** (1.46 g, 5.0 mmol), **2a** (1.92g, 15 mmol), L-pGlu-OH (129 mg, 20 mol%), CsOPiv (1.75 g, 7.5 mmol), Pd(OAc)₂ (110 mg, 10 mol%), AgOAc (2.49g, 15 mmol), H₂O (5 mL) and HFIP (50 mL). The reaction mixture was stirred at 80 °C (oil bath) for 36 h. After cooling to room temperature, the the mixture was diluted with ethyl acetate, filtrated through celite. After concentration, the resulting residue was purified by flash chromatography in petroleum ether : ethyl acetate = 5 : 1 to give **3ga** as yellow solid (1.68g, 89% 91% ee)

2.5 Transformations and Applications of the Olefination Reaction

2.5.1 Prepration of Chiral Carboxylic Acids

General Preparation C: To a solution of **3** (0.1 mmol, 1 equiv) in THF (1.8 mL) and H₂O (0.9 mL), K₂OsO₄·2H₂O (15 mol %) and NaIO₄ (10 equiv) were added at 25 °C, the reaction mixture was stirred at 50 °C for 16 h. The reaction mixture was then quenched with sat. aqueous Na₂S₂O₃ (5 mL) and stirred vigorously for 30 min. The biphasic reaction mixture was extracted with EtOAc ($3 \times 20 \text{ mL}$) and then the combined organic layers were washed with brine (20 mL), dried over Na₂SO₄, and concentrated. To a solution of crude product and 2-methyl-2-butene (10 equiv) in *tert*-BuOH:THF (0.7:0.3 mL) were added aqueous solutions of NaH₂PO₄ (0.5 M, 5.0 equiv) and NaClO₂ (1.0 M, 3.0 equiv) sequentially at 0 °C. After stirring vigorously at room temperature for 1 hour, the resulting reaction mixture was quenched by the addition of 1.0 M aqueous solution of HCl (2.5 mL) and diluted with EtOAc ($2 \times 3.0 \text{ mL}$). The organic layer was separated, and the aqueous layer was further extracted with EtOAc ($2 \times 3.0 \text{ mL}$). The combined organic layers were then extracted with a 2.0 M aqueous solution of NaOH ($3 \times 5.0 \text{ mL}$) before reacidifying by addition of a 1.0 M aqueous solution of HCl. The aqueous layer was extracted with EtOAc ($3 \times 15 \text{ mL}$) and the combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo to give **4**.

(R)-2'-(diethylcarbamoyl)-6-isopropyl-[1,1'-biphenyl]-2-carboxylic acid 4aa

4aa was prepared following General Preparation **C** and purified by flash chromatography in petroleum ether : ethyl acetate: acetic acid = 50: 10: 1 to give as white solid. (84% yield, 0.57 g for 5 mmol scale). The ee value was determined by HPLC analysis on a Chiralcel NQ column (hexane/isopropanol = 80/20, flow = 1 mL/min, 254 nm) with tr = 15.9 min (major), 13.9 min (minor): 90% ee.

¹H NMR (400 MHz, CDCl₃) δ 14.08 (brs, 1H), 7.54 – 7.33 (m, 6H), 7.25 (d, J = 1.7 Hz, 1H), 3.70 – 3.60 (m, 2H), 3.24 - 3.13 (m, 2H), 2.45 (hept, J = 6.9 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H), 1.16 (d, J = 7.0 Hz, 3H), 0.97 (dd, J = 8.5, 6.8 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 172.0, 171.4, 146.2, 137.9, 136.8, 134.1, 133.5, 131.6, 130.6, 128.9, 127.9, 126.9, 125.7, 125.4, 43.3, 39.6, 30.2, 25.3, 22.7, 14.2, 12.3.

(ESI) calcd for C₂₁H₂₄NO₃⁻ (M-H)⁻: 338.1756 found: 338.1756

Melting Point: 192.1 - 192.3 °C

(R)-2'-(diisopropylcarbamoyl)-6-isopropyl-[1,1'-biphenyl]-2-carboxylic acid 4fa

4fa was prepared following General Preparation C and purified by flash chromatography in petroleum ether : ethyl acetate: acetic acid = 50: 10: 1 to give as white solid. (83% yield, 0.62 g for 5 mmol scale). The ee value was determined by HPLC analysis on a Chiralcel IBN-5 column (hexane/isopropanol = 90/10, flow = 1.2 mL/min, 254 nm) with tr = 24.2 min (major), 22.2 min (minor): 90% ee.

¹H NMR (400 MHz, CDCl₃) δ 14.42 (brs, 1H), 7.50 – 7.37 (m, 5H), 7.34 (dd, J = 7.3, 1.8 Hz, 1H), 7.24 (d, J = 1.8 Hz, 1H), 4.32 (hept, J = 6.6 Hz, 1H), 3.49 (hept, J = 6.9 Hz, 1H), 2.55 (hept, J = 6.8 Hz, 1H), 1.44 (d, J = 6.8 Hz, 3H), 1.38 (d, J = 6.5 Hz, 3H), 1.27 (d, J = 6.9 Hz, 3H), 1.20 (d, J = 6.6 Hz, 3H), 1.15 (d, J = 6.8 Hz, 3H), 0.93 (d, J = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.7, 171.5, 145.4, 138.0, 137.2, 135.0, 134.0, 132.6, 130.3, 128.7, 127.8, 126.5, 125.8, 125.7, 51.5, 47.8, 30.2, 25.7, 23.1, 21.7, 20.8, 20.2, 20.1.

(ESI) calcd for C₂₃H₂₈NO₃⁻ (M-H)⁻: 366.2096 found: 366.2096

Melting Point: 211.3 - 211.5 °C

(R)-6-isopropyl-2'-(pyrrolidine-1-carbonyl)-[1,1'-biphenyl]-2-carboxylic acid 4ga

4ga was prepared following General Preparation **C** and purified by flash chromatography in petroleum ether : ethyl acetate: acetic acid = 50: 10: 1 to give as white solid. (89% yield, 0.21 g for 2 mmol scale). The ee value was determined by HPLC analysis on a Chiralcel NT(2) column (hexane/isopropanol = 80/20, flow = 1.2 mL/min, 254 nm) with tr = 8.1 min (major), 9.6 min (minor): 91% ee.

¹**H NMR (400 MHz, CDCl₃)** δ 14.11 (brs, 1H), 7.51 – 7.34 (m, 6H), 7.24 – 7.17 (m, 1H), 3.69 (td, J = 10.0, 6.5 Hz, 1H), 3.58 (ddd, J = 12.2, 7.6, 4.0 Hz, 1H), 3.50 – 3.30 (m, 2H), 2.45 (p, J = 6.9 Hz, 1H), 2.09 – 1.76 (m, 4H), 1.09 (d, J = 7.0 Hz, 3H), 1.00 (d, J = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.4, 170.3, 146.1, 137.9, 136.6, 134.5, 133.9, 131.5, 130.8, 128.88, 128.0, 127.2, 126.4, 125.7, 49.6, 46.5, 30.3, 26.3, 24.8, 24.4, 23.5.

(ESI) calcd for $C_{21}H_{22}NO_3^-$ (M-H)⁻: 336.1600 found: 336.1601

Melting Point: 191.6 - 192.0 °C

(R)-2'-(diethylcarbamoyl)-3'-fluoro-6-isopropyl-[1,1'-biphenyl]-2-carboxylic acid 4la

4la was prepared following General Preparation C and purified by flash chromatography in petroleum ether : ethyl acetate: acetic acid = 50: 10: 1 to give as white solid. (80% yield, 127 mg for 1.5 mmol scale) The ee value was determined by HPLC analysis on a Chiralcel NT(2) column (hexane/isopropanol = 90/10, flow = 1.2 mL/min, 254 nm) with tr = 12.7 min (major), 20.7 min (minor): 87% ee.

¹**H NMR (400 MHz, CDCl₃)** δ 13.93 (brs, 1H), 7.50 – 7.35 (m, 4H), 7.18 (t, J = 8.9 Hz, 1H), 7.06 (d, J = 7.5 Hz, 1H), 3.59 (tq, J = 13.6, 7.4 Hz, 2H), 3.28 - 3.18 (m, 2H), 2.47 (hept, J = 6.7 Hz, 1H), 1.32 (t, J = 7.1 Hz, 4H), 1.20 (d, J = 6.9 Hz, 3H), 0.95 (dt, J = 7.2, 3.8 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃, ppm; list of signals, C-F coupling not resolved) δ 171.1, 166.8, 146.0, 136.9, 132.0, 131.9, 129.3, 127.3, 126.9, 125.9, 115.8, 115.6, 43.5, 39.2, 30.2, 25.6, 22.5, 13.3, 12.3.
(ESI) calcd for C₂₁H₂₃FNO₃⁻ (M-H)⁻: 356.1662 found: 356.1661
Melting Point: 254.1 - 254.7 °C

(R)-2-(2-(diethylcarbamoyl)naphthalen-1-yl)-3-isopropylbenzoic acid 4ma

4ma was prepared following General Preparation C and purified by flash chromatography in petroleum ether : ethyl acetate: acetic acid = 50: 10: 1 to give as white solid. (85% yield, 240 mg) The ee value was determined by HPLC analysis on a Chiralcel NQ column (hexane/isopropanol = 90/10, flow = 1.0 mL/min, 254 nm) with tr = 15.9 min (major), 22.5 min (minor): 85% ee.

¹H NMR (400 MHz, CDCl₃) δ 14.19 (brs, 1H), 7.95 (d, J = 8.5 Hz, 1H), 7.88 (d, J = 8.2 Hz, 1H), 7.62 – 7.46 (m, 4H), 7.46 – 7.33 (m, 2H), 7.19 (d, J = 8.5 Hz, 1H), 3.92 – 3.53 (m, 2H), 3.27 - 3.16 (m, 2H), 2.36 (h, J = 6.8 Hz, 1H), 1.37 (t, J = 7.1 Hz, 3H), 1.13 (d, J = 6.9 Hz, 3H), 1.03 (t, J = 7.1 Hz, 3H), 0.82 (d, J = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.7, 171.2, 147.1, 137.7, 135.8, 134.1, 133.3, 131.5, 130.7, 129.30, 128.8, 128.2, 127.8, 127.7, 127.5, 127.1, 126.0, 121.9, 43.4, 39.6, 30.4, 25.4, 23.5, 14.1, 12.4.
(ESI) calcd for C₂₅H₂₆NO₃⁻ (M-H)⁻: 388.1913 found: 388.1914
Melting Point: 311.1 - 311.4 °C

2.5.2 Ru(II)-Catalyzed Asymmetric C-H Functionalization

According to the methods previously reported by the Shi group.² To a 10 mL Schlenk tube was added sulfoximines **5** (0.10 mmol), diazoniums **6** (25 μ L, 0.15 mmol), **4** (20 mol%), AgSbF₆ (6.9 mg, 20 mol%), [(*p*-cymene)RuCl₂]₂ (2.0 mg, 2.5 mol%) and DCE (1.0 mL). The reaction flask was degassed three times with N₂. Then stirred at 50 °C (aluminum heat transfer block) for 36 h. After cooling to room temperature, the mixture was diluted with ethyl acetate, filtrated through celite. After concentration, the resulting residue was purified by preparative TLC using hexane/EtOAc as the eluent to afford the desired product **7**.¹

ethyl (R)-3,6-dimethyl-1-(p-tolyl)-114-benzo[e][1,2]thiazine-4-carboxylate 1-oxide 7

7 was purified by flash chromatography in petroleum ether : ethyl acetate= 6:1 to give as white solid. The ee value was determined by HPLC analysis on a Chiralcel AS-H column (hexane/isopropanol = 60/40, flow = 1.0 mL/min) with tr = 7.7 min (minor), 9.7 min (major): 72% ee.

¹**H NMR (400 MHz, CDCl₃)** δ 7.77 (d, J = 8.3 Hz, 2H), 7.48 (s, 1H), 7.36 (d, J = 8.1 Hz, 2H), 7.18 (d, J = 8.2 Hz, 1H), 7.04 (dd, J = 8.3, 1.6 Hz, 1H), 4.42 (q, J = 7.1 Hz, 2H), 2.45 (s, 3H), 2.44 (s, 3H), 2.38 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H).

2.6 Measurements of Rotation Barriers

2.6.1 Experimental Procedure

Diaryl (0.1 mmol) and a magnetic stir bar were added into a short test tube to which a rubber septum was mounted. The air in the tube was then carefully flushed with argon via a syringe needle and an argon balloon is remained to equalize the pressure during the following process. Solvent (5 mL) was added to dissolve the solid. The test tube was submerged into an oil bath preheated to the desired temperature. About 3 minutes later, 0.1 mL of solution was extracted via a long needle, transferred into a small vial and dissolved in 1.5 mL of HPLC grade isopropanol. The solution was filtered before HPLC analysis. The time of each extraction was precisely recorded.

2.6.2 Data processing

According to the reversible first-order reaction dynamics, the rate constant of racemization krac is the slope of the function of -ln ee to time

$$-\ln ee = k_{rac}t + C$$

where C is a constant.

The Gibbs free energy is degenerated in an achiral environment for a pair of enantiomers. Therefore, the forward rate constant is equal to the backward one.

$$k_{\rm atrp+} = k_{\rm atrp-}$$

Since an atropisomerization of one molecule eliminates a molecule of one configuration and adds one molecule to the other configuration, the rate constant of atropisomerization k_{atrp} is half of k_{rac} .

$$k_{\rm atrp} = 1/2 k_{\rm rac}$$

The energy barrier of atropisomerization can be calculated by Erying equation

$$\Delta G_{\rm atrp}^{\neq} = -RT \ln \frac{k_{\rm artp}h}{k_{\rm B}T}$$

where R is ideal gas constant, T is absolute temperature, h is Planck constant, k_B is Boltzmann constant.

Data for 3da in Xylene

Me	$CO_2 Me $	vlene, 145 °C k_{artp+} k_{artp-} k_{artp-} k_{artp-} k_{artp-}	CO ₂ Me
N ^o	Δ t/s	ee/%	-In ee
1	0	76	0.2744
2	1800	74	0.3011
3	3600	72	0.3285
4	7200	68	0.3857
5	10800	65	0.4308
6	24000	53	0.6349
7	30000	48	0.7340

 $k_{\rm rac}$ (145°C) = 0.0000152 s⁻¹

 k_{artp} (145°C) = 0.0000076 s⁻¹ $\Delta G_{artp}^{\neq} = 144.6 \ kJ/mol = 34.54 \ kcal/mol$ $t_1/_2 \ 145^{\circ}C) = \frac{\ln 2}{k_{rac}} = 45601s^{-1}$

0.02M, Xylene, 165 °C k_{artp+} 0 Ö k_{artp-} ⁱPr. ⁱPr_v CO₂Me CO₂Me $k_{\text{artp+}} = k_{\text{artp-}}$ ee/% No ∆t/s -In ee 1 0 91 0.0943 2 1800 88 0.1278 3 3600 86 0.1508 4 10800 75 0.2877 18000 0.3710 5 69 6 28800 59 0.5276 7 39600 48 0.7340 8 54000 40 0.9162

 $k_{\rm rac}$ (165°C) = 0.0000153 s⁻¹

 k_{artp} (165°C) = 0.0000076 s⁻¹ $\Delta G_{artp}^{\neq} = 151.7 \ kJ/mol = 36.24 \ kcal/mol$ $t_{1/2}(160°C) = \frac{\ln 2}{k_{rac}} = 45304 s^{-1}$

3.Crystal Structure

A single crystal of **3ga** suitable for X-ray crystallography was obtained by crystallization via evaporation from its hexane/ethyl acetate solution.

$R_{\rm int}$	0.0403
Parameters	511
Restraints	3
Largest Peak	0.156
Deepest Hole	-0.162
GooF	1.079
wR_2 (all data)	0.085
wR_2	0.0846
R_I (all data)	0.0344
R_I	0.0338

A single crystal of **4ga** suitable for X-ray crystallography was obtained by crystallization via evaporation from its hexane/ethyl acetate solution.

Compound	4ga
Formula	C ₂₁ H ₂₃ NO ₃
$D_{calc.}$ / g cm ⁻³	1.241
μ/mm^{-1}	0.422
Formula Weight	337.4
Colour	colourless
Shape	block-shaped
Size/mm ³	0.15×0.09×0.05
T/\mathbf{K}	170
Crystal System	orthorhombic
Flack Parameter	0.03(5)
Hooft Parameter	0.02(5)
Space Group	$P2_{1}2_{1}2_{1}$
a/Å	8.6551(4)
<i>b</i> /Å	10.6157(4)
c/Å	19.6488(8)
α	90
$eta^{ ho}$	90
γ^{\prime} °	90
$V/Å^3$	1805.33(13)
Ζ	4
Z'	1

Wavelength/Å	1.34139
Radiation type	GaK_{\square}
$\Theta_{min}/^{\circ}$	3.915
$\Theta_{max}/^{\circ}$	60.778
Measured Refl's.	31307
Indep't Refl's	4147
Refl's I $\geq 2 \sigma(I)$	4035
R _{int}	0.0307
Parameters	229
Restraints	0
Largest Peak	0.121
Deepest Hole	-0.181
GooF	1.092
wR_2 (all data)	0.0776
wR_2	0.0767
R_1 (all data)	0.0311
R_{I}	0.0302
4. References

1. J.-Y. Li, P.-P. Xie, T. Zhou, P.-F. Qian, Y.-B. Zhou, H.-C. Li, X. Hong and B.-F. Shi, Ir(III)-Catalyzed Asymmetric C–H Activation/Annulation of Sulfoximines Assisted by the Hydrogen-Bonding Interaction, *ACS Catal.* 2022, **12**, 9083-9091.

1b, ¹H NMR (400 MHz, CDCl₃)

100 90 f1 (ppm)

1c, ¹H NMR (400 MHz, CDCl₃)

1c, ¹⁹F NMR (376 MHz, CDCl₃)

-54, 99

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -150 -150 -150 -200 -200 -210 f1 (ppm)

1d, ¹H NMR (400 MHz, CDCl₃)

1d, ¹³C NMR (101 MHz, CDCl₃)

1e, ¹H NMR (400 MHz, CDCl₃)

1f, ¹H NMR (400 MHz, CDCl₃)

1g, ¹H NMR (400 MHz, CDCl₃)

1911 - 1912 - 1913 - 1914 - 19

1g, ¹³C NMR (101 MHz, CDCl₃)

1h, ¹H NMR (400 MHz, CDCl₃)

110 100 f1 (ppm)

1i, ¹H NMR (400 MHz, CDCl₃)

f1 (ppm) ₂ł

1j, ¹H NMR (400 MHz, CDCl₃)

1j, ¹⁹F NMR (376 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -50 -50 -50 -50 -10 -10 -10 -120 -130 -140 -150 -150 -150 -150 -200 -200 -210 f1 (ppm)

1k, ¹H NMR (400 MHz, CDCl₃)

11, ¹H NMR (400 MHz, CDCl₃)

¹l, ¹³C NMR (101 MHz, CDCl₃)

11, ¹⁹F NMR (376 MHz, CDCl₃)

-95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 f1 (ppm)

1m, ¹H NMR (400 MHz, CDCl₃)

444444444444444444 51122568347855588888888888888888888888888888888	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

1n, ¹H NMR (400 MHz, CDCl₃)

1p, ¹H NMR (400 MHz, CDCl₃)

-0.5

3ab, ¹H NMR (400 MHz, CDCl₃)

230

220 210

200 190

160 150

140 130

120

110 100 f1 (ppm) -10 -20 -30

3ac, ¹H NMR (400 MHz, CDCl₃)

3ad, ¹H NMR (400 MHz, CDCl₃)

3af, ¹H NMR (400 MHz, CDCl₃)

3ag, ¹H NMR (400 MHz, CDCl₃)

3ag, ¹⁹F NMR (376 MHz, CDCl₃)

-73. 90

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -200 -210 f1 (ppm)

3ah, ¹H NMR (400 MHz, CDCl₃)

3ah, ¹³C NMR (101 MHz, CDCl₃)

3ah, ¹⁹F NMR (376 MHz, CDCl₃)

 $\overbrace{-73, 51}^{-73, 39}$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -150 -150 -150 -200 -200 -210 f1 (ppm)

3ai, ¹H NMR (400 MHz, CDCl₃)

³ai, ¹³C NMR (101 MHz, CDCl₃)

3aj, ¹H NMR (400 MHz, CDCl₃)

אר אר די דאור ו אר
--

3aj, ¹³C NMR (101 MHz, CDCl₃)

100 90 f1 (ppm)

3ak, ¹H NMR (400 MHz, CDCl₃)

10

3ak, ¹³C NMR (101 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120

110 100 f1 (ppm)

3al, ¹H NMR (400 MHz, CDCl₃)

3am, ¹H NMR (400 MHz, CDCl₃)

3an, ¹H NMR (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)
3ao, ¹H NMR (400 MHz, CDCl₃)

3ba, ¹H NMR (400 MHz, CDCl₃)

3ca, ¹H NMR (400 MHz, CDCl₃)

110 100 f1 (ppm)

3ca, ¹³C NMR (101 MHz, CDCl₃)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

3da, ¹H NMR (400 MHz, CDCl₃)

90 ' 80 f1 (ppm)

3ga, ¹H NMR (400 MHz, CDCl₃)

3ga, ¹³C NMR (101 MHz, CDCl₃)

110 100 f1 (ppm)

3ia, ¹H NMR (400 MHz, CDCl₃)

Ö CO₂Me İE M 片. F 1. 0 1 90 9 7.5 .0 0.96 -8.0 -0.5 0.0 7.0 6.5 5.0 2.0 0.5 6.0 4.5 4.0 f1 (ppm) 2.1 1.5 3ia, ¹³C NMR (101 MHz, CDCl₃) -144.22 -144.22 131.59 -127.21 -127.21 -123.13 -123.13 ~ 168.59 ~ 167.43 8 CO₂Me ⁱPr 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 80 70 60 50 40 30 20 10

3ja, ¹H NMR (400 MHz, CDCl₃)

3ja, ¹⁹F NMR (376 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

-113, 64

3ka, ¹H NMR (400 MHz, CDCl₃)

8	#	4	읛	8	8	8	2	8	s	Ξ	8	8	8	8	8	88	2.2
r,	1-1	1-1	1-1-	ĥ	5	5	5	77	17.	14	5	6	.6	.6	.9	6.	٩Ŷ

3la, ¹H NMR (400 MHz, CDCl₃)

3ja, ¹⁹F NMR (376 MHz, CDCl₃)

-95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 f1 (ppm)

3ma, ¹H NMR (400 MHz, CDCl₃)

3pa, ¹H NMR (400 MHz, CDCl₃)

4ga, ¹H NMR (400 MHz, CDCl₃)

170 165 160 155

150 145 140 135 130 125 120 115 110

100 95 f1 (ppm) 30 25 20

4ma, ¹H NMR (400 MHz, CDCl₃)

7, ¹H NMR (400 MHz, CDCl₃)

6. HPLC Charts

3aa, Chiralcel AD-H column (hexane/isopropanol = 90/10, flow = 1.0 mL/min, 254 nm)

<Chromatogram>

mAU PDA Multi 1 254nm,4nm 1.860 100-5.498 75-50-25-0-4 2 3 5 6 Ó 1 min <Peak Table> PDA Ch1 254nm

FDA CITI Z	341111		
Ret. Time	Area	Area%	Height
4.860	1468851	50.110	104633
5.498	1462401	49.890	76649
	2931251	100.000	181282

<Chromatogram>

PDA Ch1 2	54nm		
Ret. Time	Area	Height	Area%
4.618	339597	39127	3.568
5.075	9177877	654654	96.432
	9517474	693782	100.000

<Peak Table>

Detector A 254nm						
Ret. Time	Area	Height	Area%			
9.262	9101591	358257	43.003			
10.376	12063560	404059	56.997			
	21165152	762317	100.000			

<Chromatogram>

mV

Detector A 254nm					
Ret. Time	Area	Height	Area%		
9.318	1827914	71691	4.412		
10.395	39604359	1398144	95.588		
	41432274	1469835	100.000		

<Peak Table>

Detect	or A 254nm		
Peak#	Ret. Time	Area	Area%
1	3.842	8965020	50.967
2	4.984	8624949	49.033
Total		17589969	100.000

<Chromatogram>

mV

Detector A 254nm					
Peak#	Ret. Time	Area	Height	Area%	
1	3.836	1444946	182017	7.155	
2	4.951	18749502	1503830	92.845	
Total		20194447	1685847	100.000	

3ad, IBN-5 column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm)

<Chromatogram> mV Detector A 254nm 6.760 750 500-250-0 2 3 5 6 7 4 1 8 9 Ó min

<Peak Table>

Detector A 254nm					
Ret. Time	Area	Height	Area%		
6.760	10125806	762482	49.379		
7.507	10380459	774049	50.621		
	20506266	1536531	100.000		

Detector A 254nm					
Ret. Time	Area	Height	Area%		
6.836	378601	25928	4.121		
7.467	8807650	698480	95.879		
	9186252	724408	100.000		

3ae, AD-H column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm)

<Peak Table>

Detector A 254nm						
Ret. Time	Area	Height	Area%			
7.089	3990023	197304	50.156			
8.614	3965222	123940	49.844			
	7955245	321245	100.000			

<Chromatogram>

mV

Detector A 254nm					
Ret. Time	Area	Height	Area%		
7.103	1327186	65107	6.683		
8.611	18531497	581413	93.317		
	19858682	646520	100.000		

3af, NQ column (hexane/isopropanol = 70/30, flow = 0.8 mL/min, 254 nm)

<Peak Table>

Detector A 254nm					
Ret. Time	Area	Height	Area%		
4.393	15259672	1330340	51.587		
6.524	14320819	533688	48.413		
	29580491	1864028	100.000		

<Chromatogram>

mAU

<Peak Table>

PDA Ch1 254nm

Ret. Time	Area	Height	Area%
5.804	2387347	226198	96.586
7.101	84378	6554	3.414
	2471725	232752	100.000

3ag, NX column (hexane/isopropanol = 70/30, flow = 0.8 mL/min, 254 nm)

<Peak Table>

PDA Ch1 254nm					
Ret. Time	Area	Height	Area%		
13.922	4442191	259976	51.343		
14.816	4209850	181380	48.657		
	8652041	441356	100.000		

mAU

PDA Ch1 254nm					
Ret. Time	Area	Height	Area%		
13.913	30999752	1802080	95.731		
14.807	1382306	55019	4.269		
	32382058	1857098	100.000		

3ah, IBN-5 column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm)

<Peak Table>

	Jetector A	254nm		
	Ret. Time	Area	Height	Area%
	4.005	6760606	916339	50.778
ſ	4.608	6553466	635502	49.222
		13314071	1551841	100.000

Detector A 254nm			
Ret. Time	Area	Height	Area%
3.378	161808	12667	2.682
4.009	5871410	707208	97.318
	6033219	719875	100.000

3ai, NX column (hexane/isopropanol = 90/10, flow = 0.5 mL/min, 254 nm)

<Peak Table>

PDA Ch1 254nm			
Ret. Time	Area	Height	Area%
29.583	8418509	208303	25.437
32.984	8093632	178403	24.456
34.491	8177884	167908	24.710
53.063	8405081	110496	25.397
	33095106	665111	100.000

<Chromatogram>

mAU

² DA Chi 254nm			
Ret. Time	Area	Height	Area%
30.614	395922	9244	1.345
34.179	328919	7715	1.118
35.525	13918333	277575	47.290
54.899	14788763	184687	50.247
	29431936	479221	100.000

3aj, AD-H column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm)

<Peak Table>

Detector A 254nm				
	Ret. Time	Area	Height	Area%
	9.077	7193545	245781	49.304
	10.456	7396703	210099	50.696
		14590247	455880	100.000

<Chromatogram>

Detector A			
Ret. Time	Area	Height	Area%
9.106	223110	7267	4.357
10.493	4897435	136527	95.643
	5120546	143794	100.000

<Peak Table>

Detector A 254nm					
Ret. Time	Area	Height	Area%		
6.185	2645627	202610	48.563		
7.057	2802208	132868	51.437		
	5447835	335478	100.000		

<Chromatogram>

mV

Detector A 254nm					
Ret. Time	Area	Height	Area%		
6.234	49989	3840	6.443		
7.119	725811	35371	93.557		
	775799	39211	100.000		
3al, IBN-5 column (hexane/isopropanol = 90/10, flow = 0.5 mL/min, 254 nm) **<Chromatogram>**

<Peak Table>

Detector A 254nm					
Ret. Time	Area	Height	Area%		
11.088	5294865	179652	41.503		
12.256	7463045	274788	58.497		
	12757910	454440	100.000		

mV

Detector A 254nm					
Ret. Time	Area	Height	Area%		
12.446	659224	28624	3.330		
13.413	19136408	858424	96.670		
	19795632	887049	100,000		

3am, IA column (hexane/isopropanol = 80/20, flow = 1.2 mL/min, 254 nm)

<Peak Table>

Detector A 254nm					
Ret. Time	Area	Height	Area%		
5.516	4633503	304968	50.074		
7.656	4619880	228228	49.926		
	9253383	533196	100.000		

Detector A 254nm					
Ret. Time	Area	Height	Area%		
5.849	731594	58381	11.209		
8.087	5795462	293222	88.791		
	6527056	351603	100.000		

3an, IBN-5 column (hexane/isopropanol = 80/20, flow = 0.8 mL/min, 254 nm)

<Chromatogram> mV

<Peak Table>

Detector A 254nm					
Ret. Time	Area	Height	Area%		
4.928	7656636	857697	50.159		
5.359	7608182	833918	49.841		
	15264818	1691615	100.000		

<Chromatogram>

Detector A 254nm					
Ret. Tir	ne	Area	Height	Area%	
4.7	61	1335625	137774	6.985	
5.1	75	17785877	1878240	93.015	
		19121501	2016015	100.000	

3ao, IC column (hexane/isopropanol = 90/10, flow = 0.3 mL/min, 254 nm)

Detector A 254nm					
Ret. Time	Area	Height	Area%		
21.557	39103567	1277206	57.384		
22.673	29039956	823466	42.616		
	68143522	2100672	100.000		

Detector A 254nm					
Ret. Time	Area	Height	Area%		
21.205	36700221	1300644	96.246		
22.328	1431528	48690	3.754		
	38131749	1349334	100.000		

3ba, AD-H column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm)

<Chromatogram>

<Peak Table>

Detector A 254nm					
Ret. Time	Area	Height	Area%		
5.290	8892291	761192	49.493		
5.826	9074301	698232	50.507		
	17966592	1459424	100.000		

mV

Detector A 254nm					
Ret. Time	Area	Height	Area%		
5.292	427883	28806	4.799		
5.826	8488580	642418	95.201		
	8916463	671224	100.000		

3ca, AD column (hexane/isopropanol = 90/10, flow = 1.0 mL/min, 254 nm)

<Chromatogram> mV Detector A 254nm 0-5.114 -10 5.847 -20--30--40--50 2 3 5 6 4 1 min

<Peak Table>

Detector A 254nm				
Ret. Time	Area	Height	Area%	
5.114	461865	38399	52.157	
5.847	423657	34043	47.843	
	885522	72441	100.000	

<Peak Table> Detector A 254nm

Ret. Time	Area	Height	Area%		
5.129	3409866	284802	92.588		
5.835	272988	21603	7.412		
	3682854	306405	100.000		

<Chromatogram> mV Detector A 254nm 1500 13.0 14.101 1000-500-0 2.5 5.0 7.5 10.0 12.5 0.0 min

3da, IBN-5 column (hexane/isopropanol = 90/10, flow = 0.5 mL/min, 254 nm)

Detector A 254nm				
	Ret. Time	Area	Height	Area%
	13.067	26802412	1588119	49.929
	14.101	26878756	926185	50.071
		53681168	2514304	100.000

<Peak Table> Detector A 254nm

Ret. Time	Area	Height	Area%
13.338	16766468	1022758	91.396
14.361	1578321	58586	8.604
	18344789	1081344	100.000

3fa, AD-H column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm)

<Chromatogram>

<Peak Table>

Detector A	254nm		
Ret. Time	Area	Height	Area%
4.005	6760606	916339	50.778
4.608	6553466	635502	49.222
	13314071	1551841	100.000

<Chromatogram>

mV

Detector A 254nm				
Ret. Time	Height	Area	Area%	
3.964	69996	659630	5.363	
4.253	1102443	11639693	94.637	
	1172438	12299323	100.000	

3ga, AD-H column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm) **<Chromatogram>**

<Peak Table>

Detector A	254nm		
Ret. Time	Area	Height	Area%
7.432	1621584	86186	50.256
9.394	1605076	50397	49.744
	3226661	136583	100.000

Detector A 254nm				
Ret. Time	Area	Area%	Height	
7.377	2270271	6.658	99099	
9.226	31830052	93.342	993651	
	34100323	100.000	1092749	

3ha, NT(2) column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm)

Detector A 254nm				
	Ret. Time	Area	Height	Area%
	20.627	9009939	105770	50.436
	32.840	8854051	32327	49.564
		17863990	138097	100.000

Delector A 254mm				
	Ret. Time	Area	Height	Area%
	19.108	106302171	1050329	93.392
	32.902	7521566	32464	6.608
		113823738	1082793	100.000

3ia, AD-H column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm)

<Peak Table>

Detector A 254nm				
	Ret. Time	Area	Height	Area%
	14.084	7719653	254252	50.151
	22.937	7673020	146035	49.849
		15392673	400288	100.000

Detector A 254nm				
Ret. Time	Area	Height	Area%	
15.059	164522	5681	6.739	
23.965	2276775	45785	93.261	
	2441297	51466	100.000	

3ja, NQ column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm) **<Chromatogram>**

PDA Ch1 254nm				
Ret. Time	Area	Height	Area%	
6.210	6097958	663810	49.838	
9.383	6137697	405225	50.162	
	12235655	1069035	100.000	

<Chromatogram>

mAU

PDA GNT 254nm			
Ret. Time	Area	Height	Area%
6.270	8139055	862893	94.843
9.526	442515	28327	5.157
	8581570	891220	100.000

3ka, NQ column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm)

PDA Ch1 254nm				
Ret. Time	Area	Height	Area%	
9.414	6531035	494715	49.308	
15.410	6714218	304119	50.692	
	13245252	798834	100.000	

<Chromatogram>

PDA Ch1 254nm				
Ret. Time	Area	Height	Area%	
9.498	1774974	123807	6.415	
15.383	25893270	1177363	93.585	
	27668244	1301170	100.000	

3la, AD-H column (hexane/isopropanol = 90/10, flow = 0.8 mL/min, 254 nm)

<Peak Table>

Detector A 254nm				
	Ret. Time	Area	Height	Area%
	4.892	4881281	257837	96.299
Γ	5.548	187583	12034	3.701
		5068864	269871	100.000

<Chromatogram>

Detector A 254nm				
Ret. Time	Area	Height	Area%	
4.892	4881281	257837	96.299	
5.548	187583	12034	3.701	
	5068864	269871	100.000	

3ma, IBN-5 column (hexane/isopropanol = 90/10, flow = 0.8 mL/min, 254 nm)

<Peak Table>

PDA Ch1 254nm				
Ret. Time	Area	Height	Area%	
6.210	6097958	663810	49.838	
9.383	6137697	405225	50.162	
	12235655	1069035	100.000	

mAU

<Peak Table> PDA Ch1 254nm

Ret. Time	Area	Height	Area%
6.270	8139055	862893	94.843
9.526	442515	28327	5.157
	8581570	891220	100.000

3na, AD-H column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm)

PDA Ch1 254nm				
Ret. Time	Area	Height	Area%	
5.654	5004644	415136	50.171	
7.228	4970577	187865	49.829	
	9975222	603001	100.000	

mAU

PDA Ch1 254nm				
Ret. Time	Area	Height	Area%	
5.652	138206	11375	99.457	
7.214	754	45	0.543	
	138960	11420	100.000	

30a, IBN-5 column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm) **<Chromatogram>** mV

<Peak Table>

Detector A 254nm			
Ret. Time	Area	Height	Area%
6.173	9660731	854459	50.630
8.547	9420285	595424	49.370
	19081017	1449883	100.000

Detector A 254nm				
Ret. Time	Area	Height	Area%	
6.237	347021	29143	4.957	
8.583	6653072	423155	95.043	
	7000093	452297	100.000	

3pa, AD-H column (hexane/isopropanol = 90/10, flow = 1 mL/min, 254 nm)

<Chromatogram>

<Peak Table>

Detector A 254nm				
Ret. Time	Area	Height	Area%	
4.115	1039099	94726	50.669	
4.518	1011646	75049	49.331	
	2050746	169775	100.000	

Detector A	254nm		
Ret. Time	Height	Area	Area%
4.719	21755	201340	4.584
5.206	280362	4191092	95.416
	302117	4392433	100.000

4aa, Chiralcel NQ column (hexane/isopropanol = 80/20, flow = 1 mL/min, 254 nm)

Detector A 254nm				
Ret. Time	Area	Height	Area%	
14.313	8026010	292848	48.910	
16.440	8383721	322589	51.090	
	16409731	615437	100.000	

<Chromatogram>

Detector A 254nm				
Ret. Time	Area	Height	Area%	
13.968	1012523	27853	4.748	
15.933	20312576	724053	95.252	
	21325099	751906	100.000	

4fa, Chiralcel IBN-5 column (hexane/isopropanol = 90/10, flow = 1.2 mL/min, 254 nm)

<Chromatogram>

<Peak Table>

Detector A 254nm					
Ret.	Time	Area	Height	Area%	
21	.685	27241736	1004081	43.524	
23	8.541	35348155	2079978	56.476	
		62589892	3084060	100.000	

Delector A 254nm				
Ret. Time	Area	Height	Area%	
22.247	3227539	125266	5.193	
24.266	58927146	2021302	94.807	
	62154685	2146569	100.000	

mV

<Peak Table>

Detector A 254nm				
Ret. Time	Area	Height	Area%	
8.196	8769918	705576	50.505	
9.512	8594391	350311	49.495	
	17364309	1055887	100.000	

mV

Detector A 254nm				
Ret. Time	Area	Height	Area%	
8.156	8332902	628439	95.559	
9.665	387229	13265	4.441	
	8720131	641704	100.000	

4la, Chiralcel NT(2) column (hexane/isopropanol = 90/10, flow = 1.2 mL/min, 254 nm) **<Chromatogram>**

<Peak Table>

Detector A 254nm				
	Ret. Time	Area	Height	Area%
	12.774	11835517	574069	50.752
	20.591	11484562	307250	49.248
		23320078	881319	100.000

<Chromatogram>

mV

Detector A 254nm				
	Ret. Time	Area	Height	Area%
	12.661	41417611	1851000	93.729
	20.710	2771072	75800	6.271
		44188682	1926800	100.000

4ma, Chiralcel NQ column (hexane/isopropanol = 90/10, flow = 1.0 mL/min, 254 nm)

<Peak Table>

Detector A 254nm				
Ret. Time	Area	Area%	Height	
17.208	6416430	52.130	84426	
23.290	5892201	47.870	27057	
	12308630	100.000	111483	

Detector A 254nm				
Ret. Time	Area	Height	Area%	
15.947	99793591	1063688	92.490	
22.506	8103153	44872	7.510	
	107896743	1108560	100.000	

7, Chiralcel AS-H column (hexane/isopropanol = 60/40, flow = 1.0 mL/min, 254 nm)

mAU PDA Multi 1 254nm,4nm 2500-8.438 2000-1500-12.267 1000-500-0-5 10 15 20 25 ò min

<Chromatogram>

<Peak Table> PDA Ch1 254nm

PDA GHT 2341111				
Ret. Time	Area	Area%	Height	
8.438	71789417	51.576	2449370	
12.267	67402734	48.424	1120634	
	139192151	100.000	3570005	

<Chromatogram>

mAU

PDA Ch1 254nm				
Ret. Time	Area	Height	Area%	
8.525	67413853	2251328	85.140	
12.556	11766239	208262	14.860	
	79180092	2459590	100.000	