Supporting Information

Triazatriangulenium salts – hosts and guests in supramolecular assemblies in solution

Sayan Sarkar, Michael Böck, Agnes Uhl, Aleksandr Agafontsev, Jürgen Schatz,* and Evgeny A. Kataev*

Table of Contents

NMR data	2
Comparison of the UV and Excitation spectra of Triangulenium salts	9
Dilution experiment of TATA dyes in CHCl₃	10
Temperature-dependent fluorescence change experiments of triangulenium dyes	14
Fluorescence titration of trianguleniums dyes with polycyclic aromatic compounds in CHCl ₃	18
UV-Vis measurements	22
Fluorescence titration data of macrocycles 6 and 7 with 1-Bu	24
Fluorescence titration data of triangulenium dyes (1-Pr and 1-Bu) with macrocycles 6 and 7	25
Temperature-dependent and lifetime studies of the mixtures of 1-Bu and 7	27
UV-vis and Fluorescence spectra of Compound 6 and 7 at different pH values	28
UV-vis and Fluorescence of compound 7 with and without 1-Bu	29
ROESY and NMR titrations	30
DFT calculations	32

NMR data

Figure S2. ¹H and ¹³C NMR spectrum of 7 in DMSOd₆.

Figure S3. ¹H and ¹³C NMR spectrum (75 MHz) of 1-Pr in CD₃CN

Figure S4. ¹H and ¹³C NMR spectrum (100 MHz) of **1-Bu** in CD₃CN

Figure S5. 1 H and 13 C NMR spectrum (100 MHz) of 1-Pen in CD₃CN

Figure S6. 1 H and 13 C NMR spectrum (100 MHz) of 1-Hex in CD₃CN

Figure S7. ¹³C NMR spectrum (75 MHz) of **1-Oct** in CD₃CN

Comparison of the UV and Excitation spectra of Triangulenium salts-

(a) 0.6 ······ Exc PrTATA 0.5 UV PrTATA Relative intensities 0.4 0.3 0.2 0.1 0 315 365 415 465 515 565 Wavelength/ nm (b) 0.14 UV BuTATA 0.12 Exc BuTATA Relative intensities 0.1 0.08 0.06 0.04 0.02 0 310 360 410 460 510 560 Wavelength/ nm (c) se 0.45 0.4 UV PenTATA Exc PenTATA 0.35 Relative intensities 0.3 0.25 0.2 0.15 0.1 0.05 0 380 430 330 480 530 580 Wavelength/ nm (d)

The purity of dyes was checked also by the comparison of excitation and UV-Vis spectrum¹

Figure S9. Fluorescence changes of TATA dyes upon dilution (excited at 500 nm, slit 1) in CHCl₃.

The equation used for making inner-filter effect correction-

$$F_{corr} = F_{obs} * 10^{[(A_{ex} + A_{em})/2]}$$

 F_{corr} is the corrected fluorescence spectrum, F_{obs} is the measured or observed fluorescence intensity, A_{ex} is the absorbance at the excitation wavelength and A_{em} is the absorbance of the sample at the emission wavelength.

Figure S10. Corrected spectra of TATA dyes measured at different concentrations in CHCl₃.

Figure S11. a)-d) UV-Vis dilution profiles for TATA dyes in CHCl₃. In case of **1-Hex** and **1-Oct** non-linear relation is observed. (e) UV-Vis dilution profile of **1-Bu** at Abs 545 nm

Temperature-dependent fluorescence change experiments of triangulenium dyes

Figure S12. Change of emission spectra (excited at 500 nm, slit 3 and solvent CHCl₃) of **1-Pr** in different concentrations upon increasing the temperature of the solution from 0 to 50°C (spectra measured in each 5°C interval).

Figure S13. Change of emission spectra (excited at 500 nm, slit 3 and solvent CHCl₃) of **1-Bu** in different concentrations upon increasing the temperature of the solution upto 323 K (spectra measured in each 5 K interval).

Figure S14. Change of emission spectra (excited at 500 nm, slit 3 and solvent $CHCl_3$) of **1-Pen** in different concentrations upon increasing the temperature of the solution from 0 to 50°C (spectra measured in each 5°C interval).

Figure S15. Change of emission spectra (excited at 500 nm, slit 3 and solvent $CHCl_3$) of **1-Hex** in different concentrations upon increasing the temperature of the solution from 0 to 50 °C (spectra measured in each 5°C interval).

Figure S16. Change of emission spectra (excited at 500 nm, slit 3 and solvent CHCl₃) of **1-Oct** in different concentrations upon increasing the temperature of the solution from 0 to 50 °C (spectra measured in each 5°C interval).

Fluorescence titration of trianguleniums dyes with polycyclic aromatic compounds in \mbox{CHCl}_3

Figure S17. Fluorescence changes of **1-Pr** (10^{-6} M) upon (a) addition of anthracene, (b) fitting curves at 554 nm for addition of anthracene, (c) addition of pyrene, (d) fitting curves at 558 nm for addition of pyrene, (e) addition of coronene, (f) fitting curves at 560 nm for addition of coronene, (g) addition of NDI and (h) fitting curves at 560 nm for addition of NDI; Excitation at 500nm, slit 3 and solvent CHCl₃, addition of upto 400 equiv of guests for each cases.

Figure S18. Fluorescence changes of **1-Bu**(10^{-6} M) upon (a) addition of anthracene, (b) fitting curves at 554 nm for addition of anthracene, (c) addition of pyrene, (d) fitting curves at 555 nm for addition of pyrene, (e) addition of coronene, (f) fitting curves at 555 nm for addition of coronene, (g) addition of NDI and (h) fitting curves at 546 nm for addition of NDI; Excitation at 500nm, slit 3 and solvent CHCl₃, addition of upto 400 equiv of guests for each cases.

Figure S19. Fluorescence changes of **1-Pen** (10⁻⁶ M) upon (a) addition of anthracene, (b) fitting curves at 543 nm for addition of anthracene, (c) addition of pyrene, (d) fitting curves at 540 nm for addition of pyrene, (e) addition of coronene, (f) fitting curves at 540 nm for addition of coronene, (g) addition of NDI and (h) fitting curves at 542 nm for addition of NDI; Excitation at 500nm, slit 3 and solvent CHCl₃, addition of upto 400 equiv of guests.

UV-Vis measurements

Figure S20. UV-vis of the mixture **1-Bu** ($5x10^{-6}$ M) with pyrene (10 eq) showing no overlap at 500 nm.

Figure S21. UV-vis titrations of 1-Pr (2x10⁻⁵ M) with aromatic compounds.

Figure S22. UV-vis titrations of 1-Bu (2x10⁻⁵ M) with aromatic compounds.

Figure S23. Temperature dependent studies of a) **1-Bu** and b) **1-Hex** (also for **1-Oct**) in CHCl₃. Temperature range 0°C ->50°C. **1-Pen** shows similar behaviour as **1-Bu**.

Figure S24. (a) Fluorescence changes of **6** (10^{-6} M) upon addition of **1-Bu** (upto 20 equiv) in 1% CH₃CN-MOPSO buffer (50mM) pH 7.4, (b) fitting curves at 388 nm for addition of **1-Bu**; Excitation at 350 nm, slit 4.

Figure S25. (a) Fluorescence changes of **7** (10⁻⁶ M) upon addition of **1-Bu** (upto 25 equiv) in 1% CH₃CN-MOPSO buffer (50mM) pH 7.4, (b) fitting curves at 380 nm for addition of **1-Bu**; Excitation at 350 nm, slit 4.

Fluorescence titration data of triangulenium dyes (1-Pr and 1-Bu) with macrocycles 6 and 7

Figure S26. (a) Fluorescence changes of **1-Pr** (10^{-6} M) upon addition of **6** (upto 75 equiv) in 1% CH₃CN-MOPSO buffer (50mM) pH 7.4, (b) fitting curves at 561 nm for addition of **6**; Excited at 500 nm, slit 4.

Figure S27. (a) Fluorescence changes of **1-Pr** (10^{-6} M) upon addition of **7** (upto 400 equiv) in 1% CH₃CN-MOPSO buffer (50mM) pH 7.4, (b) fitting curves at 562 nm for addition of **7**; Excited at 500 nm, slit 4.

Figure S28. (a) Fluorescence changes of **1-Bu** (10⁻⁶ M) upon addition of **6** (upto 75 equiv) in 1% CH₃CN-MOPSO buffer (50mM) pH 7.4, (b) fitting curves at 560 nm for addition of **6**; Excited at 500 nm, slit 4.

Figure S29. (a) Fluorescence changes of **1-Bu** (10⁻⁶ M) upon addition of **7** (upto 400 equiv) in 1% CH₃CN-MOPSO buffer (50mM) pH 7.4, (b) fitting curves at 562 nm for addition of **7**; Excited at 500 nm, slit 4.

logK binding constants of triangulenium receptors (**ProTATA** and **BuTATA**) for macrocycles **6** and **7** obtained by fluorescence titrations in 1% CH₃CN-MOPSO 7.4 (50mM); <u>excitation 500 nm</u>.

Host	ProTATA	BuTATA
6	4.90	5.33
7	5.01	5.44

The emission of BuTATA at 564 nm undergoes a 4 nm bathochromic shift after the addition of 30 equiv of compound **7**.

Figure S30. Emission of 1-Bu without and with compound 7 (30 eq)

Temperature-dependent and lifetime studies of the mixtures of 1-Bu and 7

a) Fluorescence titration at different temperatures (and Stern-Volmer plot)

To prove the static quenching of **1-Bu** by **7**, we conducted titrations at two different temperatures: at 298K and at 323K. At 323K the linear Stern-Volmer plot shows smaller slope value than the titration at 298K. The dissociation of supramolecular complexes at higher temperatures is more effective and hence the quenching is weaker.

Figure S31. Plotted data of (a) F_o/F_{max} vs equivalents of **7** added to the solution of **1-Bu** (10⁻⁶ M⁻¹); (b) Fluorescence titration of **1-Bu** (10⁻⁶ M⁻¹) with **7** at 298K; and (c) Fluorescence titration of **1-Bu** (10⁻⁶ M⁻¹) with **7** at 323K.

b) Lifetime measurement studies of 7 to understand the excimer and monomer lifetime-

equiv of 1-Bu	τ, ns
0	4.22
1	4.21
5	4.17
10	4.12
20	4.05

Figure S32. Lifetimes of excimer of 6 upon addition of 20 equiv of 1-Bu. Excitation laser 370 nm.

UV-vis and Fluorescence spectra of Compound 6 and 7 at different pH values

Figure S33. UV-vis and Fluorescence plot of compound 6 and 7 in different pH systems

UV-vis and Fluorescence of compound 7 with and without 1-Bu

Figure S34. (a) UV-vis and (b) Fluorescence of compound 7 with and without 1-Bu (5 eq)

ROESY and NMR titrations

mdd

mdd

Figure S35. ROESY plots of 1-Hex, 1-Bu, 1-Pen and 1-Oct ($5x10^{-4}$ M) in CDCl₃ containing 5% DMSO-d₆

Figure S36. NMR titration of 1-Pr (1mM) with 7 (up to 8 equiv) in 1:1 CD₃CN-MOPSO pH 7.4 (50mM). Mass spectra

Figure S37. Mass spectrum of the observed adduct between pyrene and 1-Bu.

Figure S38. Mass spectrum (HRMS) of 6

DFT calculations CARTESIAN COORDINATES (ANGSTROEM)

0 5.854230 -2.191570 -0.366173

Ν	-5.112405	0.912763	-2.553644
Ν	5.687037	0.467172	-1.900151
С	-6.196046	0.091913	-3.100328
н	-5 7/2617	-0 7/0136	-3 681649
	-5.742017	0.740130	2 705714
П	-0.8311/1	0.090885	-3.795714
C	-4.062814	1.203058	-3.542574
Н	-4.408944	2.016002	-4.231039
Н	-3.953672	0.300865	-4.170797
С	-2.695590	1.609855	-2.993189
С	-2.522258	2.882943	-2.403067
н	-3 392754	3 55/13/	-2 310868
 C	-3.332734	2 224 220	-2.310000
C	-1.200/38	3.331238	-1.977012
н	-1.173075	4.317729	-1.495357
С	-0.097997	2.563097	-2.192446
С	-0.226810	1.279886	-2.822563
С	-1.539364	0.789687	-3.183309
С	-1.611380	-0.514328	-3.787975
н	-2 594828	-0 939461	-4 026608
c	0 485600	1 246246	4 060180
	-0.465099	-1.240540	-4.009180
н	-0.578592	-2.235357	-4.540740
С	0.826867	-0.767671	-3.744038
С	1.989756	-1.515386	-4.032436
Н	1.883528	-2.504291	-4.506310
С	3.255958	-0.993690	-3.757418
н	4,150957	-1.569577	-4.043663
с С	2 424210	0.264022	2 1 5 4 1 2 5
c	3.434310	0.204033	-3.134123
C	2.2/3432	1.018232	-2.788279
С	0.957087	0.510352	-3.104911
С	1.215388	3.027848	-1.839034
Н	1.303128	3.992758	-1.315081
С	2.345018	2.294747	-2.125800
н	3.328974	2.676256	-1.822301
c	4 853089	0 822437	-3 053862
ц	E 27072/	0.022407	2 006680
п	5.576754	0.510004	-3.990080
н	4.790800	1.928499	-3.101280
С	6.657640	-0.604239	-2.124775
Н	7.572972	-0.331771	-1.553637
Н	6.949495	-0.656813	-3.211632
С	6.222748	-2.022476	-1.714645
н	5.325368	-2.331223	-2.294555
н	7 052735	-2 723788	_1 998920
 C	6.0722733	2.123700	-1.550520
C	6.8/2343	-2.15/808	0.639977
н	7.641106	-1.386810	0.409666
Н	7.362995	-3.163009	0.691626
С	6.284427	1.653198	-1.265484
0	-6.539714	-1.620598	-1.356650
Ν	5.250303	-2.722894	2.493530
N	-5.175687	-3.041177	0.887145
c	6 251740	1 7701/6	1 086625
	0.231743	0.70017	1.980033
н	5.808611	-0.769817	1.876624
н	7.076514	-1.645874	2.725265
С	4.035282	-2.117026	3.027671
н	4.146336	-1.944968	4.129568
н	3.934336	-1.110816	2.574723
С	2.753920	-2.886889	2.751719
C	2,796287	-4.175689	2 189843
ч	2 770717		1 9765045
· · ·	1 626000	4 042COC	2.011545
C	1.030998	-4.942606	2.011545
Н	1.706302	-5.960996	1.594873
С	0.361161	-4.426044	2.327066
С	0.269981	-3.068267	2.796276
С	1.474996	-2.309867	3.033163

С	1.334245	-0.945472	3.472342
н	2.239213	-0.354531	3.668717
С	0.097733	-0.353048	3.587644
н	0.016651	0.709102	3,869606
c	-1 113001	-1 073037	3 301384
c	1.115001	0 450374	2 224066
с 	-2.565652	-0.456274	5.554900
н	-2.453200	0.610047	3.594726
С	-3.535653	-1.179167	3.004233
Н	-4.510346	-0.666359	2.989565
С	-3.495777	-2.546191	2.664112
С	-2.229762	-3.204687	2.635088
С	-1.024917	-2.458354	2.931226
С	-0.852922	-5.167498	2.111323
н	-0.779062	-6.210160	1.763548
С	-2.092436	-4.594733	2,268517
н	-2 996024	-5 186577	2 060922
r r	-1 202/21	2 220117	2.000322
	-4.002421	-3.239117	2.290282
	-5.002172	-2.///988	2.913516
н	-4./82035	-4.32/550	2.536683
C	-6.595785	-3.127736	0.577754
Н	-6.804910	-4.032538	-0.037183
Н	-7.186735	-3.267676	1.510900
С	-7.166601	-1.880982	-0.107667
Н	-7.038965	-0.992561	0.563939
Н	-8.270546	-2.026924	-0.254459
С	-7.125727	-0.526513	-2.054105
н	-8.057740	-0.868846	-2.573066
н	-7.447577	0.258605	-1.328187
C	-4.350880	-3.803534	-0.046741
r r	5 828/71	-3 761036	3 338/07
c c	5.520471	2 120200	1 975979
с ц	1 500050	2.120200	1 070472
	-4.582955	-3.408550	-1.078473
H	-3.291810	-3.536261	0.130035
C	-4.428142	-5.377022	0.007049
0	-3.672252	-5.951076	-0.823691
0	-5.196221	-5.887403	0.873776
С	6.407168	-3.332586	4.769724
Н	5.073861	-4.551542	3.540584
Н	6.655728	-4.261439	2.790178
0	6.991738	-4.277317	5.358807
0	6.194573	-2.144724	5.129413
С	-5.964599	3.351815	-2.771860
н	-6.420617	1.885233	-1.220656
н	-4.751714	2,446412	-1.187692
0	-5 636559	4 480909	-2 287872
0	-6 560002	2 102660	2.207072
c c	-0.300032 6 061430	1 226200	0.111106
	0.901420	1.550295	1.000050
H	5.4/1949	2.386261	-1.096956
н	7.050215	2.136856	-1.936423
0	8.114312	0.829589	0.059240
0	6.271825	1.599803	1.145438
С	-1.568465	-0.480013	-0.140977
Ν	-0.402343	-1.224834	-0.296537
С	0.849313	-0.662463	-0.056371
С	-1.503580	0.821744	0.459888
С	-1.279329	4.681498	2.241365
с	1.169036	4.506534	2.306470
С	-0.017492	5.207642	2.546437
c	-0.245678	1.374754	0.788962
c	0 938444	0 652302	0 510112
N	2 25/07/	2 460202	1 476647
с 1	1 110622	2.703202	1 724446
L	1.110023	J.ZI41/1	1.124440

С	-0.170402	2.662936	1.396600
С	-1.373910	3.388177	1.669774
Ν	-2.602491	2.798326	1.385022
С	2.032305	-1.383054	-0.292192
С	3.262526	-0.795988	0.003101
С	3.378679	0.486552	0.561145
С	2.214320	1.211341	0.846421
С	-3.976342	-0.291585	-0.198178
С	-2.813901	-0.991570	-0.519935
С	-2.707182	1.534947	0.772691
С	-3.938211	0.935140	0.484470
с	-0.483357	-2.704232	-0.337611
C	-0.283913	-3.468553	-1.657772
C	-1.558832	-3.924957	-2.376079
C	-1.264714	-4.826825	-3.577418
н	0 289410	-3 038937	0 371274
н	-1 //9//3	-2 082388	0.11033/
н	0 200078	-// 379028	-1 303866
 	0.233370	2 000007	2 220504
п 	0.572155	-2.000997	-2.529504
н	-2.143526	-3.039894	-2.706298
н	-2.216319	-4.502773	-1.684501
н	-2.203489	-5.154130	-4.069572
н	-0.627324	-4.329757	-4.343327
н	-0.727584	-5.744682	-3.254764
С	-3.818362	3.544123	1.726395
С	-4.227317	4.608187	0.700807
С	-5.451083	5.411652	1.156944
С	-5.845835	6.488980	0.140357
н	-4.637558	2.817875	1.874681
н	-3.653421	4.008263	2.722118
н	-4.474254	4.159560	-0.286221
н	-3.371455	5.295234	0.522565
н	-5.262895	5.861716	2.162280
н	-6.304495	4.708481	1.296099
н	-6.771175	7.023210	0.446649
н	-5 038525	7 247100	0 038147
н	-5 997801	6.016920	-0.855188
Ċ	2 555072	2 0/2//0	1 842606
c	3.333072 4.0707E2	1 042427	0.807008
C	4.078755	4.043427	0.807008
C	5.421790	4.648887	1.223493
C	6.032658	5.539131	0.138516
н	3.452783	3.517562	2.840271
Н	4.301915	2.235957	1.944941
н	3.324563	4.838966	0.611432
н	4.206939	3.494832	-0.149060
н	6.104499	3.801410	1.450382
н	5.290095	5.232188	2.164760
н	7.000735	5.976621	0.461933
н	6.228540	4.952837	-0.783981
н	5.357707	6.379021	-0.139911
н	-2.885014	-1.935211	-1.063407
н	-4.931002	-0.726084	-0.497728
н	-4.884795	1.426400	0.723074
н	2.005717	-2.391282	-0.717812
н	4.185803	-1.368861	-0.158469
н	4 300375	0 885807	0 746266
ц	-2 1725//	5 28/065	2 / 218/2
ц	-2.1/2044	6 2150/0	2.431043
п U	0.042000	1 060601	2.300323
	2.1209/9	4.303001	2.333743
Dispersion correction -0.599324955 EINAL SINCLE DOINT ENERGY 4246 52652697925			
FINAL SINGLE POINT ENERGY -4346.526526807825			