Supporting Information

Catalytic Ortho C-H Methylation and Trideuteromethylation of Arylthianthrenium Salts via the Catellani Strategy

${ }^{\text {a Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of }}$ Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
${ }^{\mathrm{b}}$ School of Pharmacy, Yancheng Teachers University, Yancheng 224007, P. R. China.

Table of Contents

General Information S02
General Procedure for the Synthesis of Substrates S02
Experimental Procedure S05
Control Experiments
S07
Characterization of Products S10
References S40
X-ray Date S41
NMR Spectra S47

General Information:

The ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and ${ }^{31} \mathrm{P}$ NMR were recorded with Bruker 400 MHz spectrometer instruments in CDCl_{3}. The chemical shifts (δ) of ${ }^{1} \mathrm{H} \mathrm{NMR},{ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and ${ }^{31} \mathrm{P}$ NMR were measured in ppm, referenced to residual ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals of nondeuterated $\mathrm{CDCl}_{3}(\delta=7.26$ and 77.00$)$ as internal standards. All solvents were obtained from commercial sources and were purified according to standard procedures. Purification of products was accomplished by flash chromatography using silica gel (200~300 mesh). Thin layer chromatography (TLC) was performed on Merck silica gel GF254 plates and visualized by UV-light (254 $\mathrm{nm})$. Melting points were obtained on a Yanaco-241 apparatus and are uncorrected. HRMS were recorded on Agilent 6520 Q-TOF mass spectrometer with ESI resource.

General Procedure for the Synthesis of Substrates:

1. General Procedure for the Synthesis of Aryl Thianthrenes

(1)

A 50 mL two-necked flask was charged with thianthrene S-oxide (TTSO, 5.0 mmol, 1.0 equiv), DCM (10.0 mL) and arenes ($5.0 \mathrm{mmol}, 1.0$ equiv) under a nitrogen atmosphere. The reaction mixture was then cooled to $-40{ }^{\circ} \mathrm{C}$ and stirred at this temperature. $\mathrm{Tf}_{2} \mathrm{O}$ ($6.0 \mathrm{mmol}, 1.2$ equiv) was added dropwise. The reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 1 h , and then allowed to stir at room temperature for 12 h , neutralized by a saturated NaHCO_{3} solution, and extracted with DCM. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness under reduced pressure. The crude product was purified by crystallization from DCM/MTBE system as a white solid.

(2)

A 50 mL two-necked flask was charged with thianthrene S-oxide (TTSO, 5.0 $\mathrm{mmol}, 1.0$ equiv), $\mathrm{DCM}(10.0 \mathrm{~mL})$ and arenes ($5.0 \mathrm{mmol}, 1.0$ equiv) under a nitrogen atmosphere. The reaction mixture was then cooled to $-40{ }^{\circ} \mathrm{C}$ and stirred at this temperature, trifluoroacetic anhydride (TFAA, $15.0 \mathrm{mmol}, 3.0$ equiv) and trifluoromethanesulfonic acid (TfOH, $7.5 \mathrm{mmol}, 1.5$ equiv) were added dropwise. The reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 1 h , and then allowed to stir at room temperature for 12 h , neutralized by a saturated aqueous NaHCO_{3} solution, and extracted with DCM. Drying of organic phase with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to dryness under reduced pressure. The crude product was purified by crystallization from DCM/MTBE system as a white solid.

(3)

A 50 mL two-necked flask was charged with thianthrene S-oxide (TTSO, 5.0 $\mathrm{mmol}, 1.0$ equiv), DCM (10.0 mL) and Flurbiprofen ($5.0 \mathrm{mmol}, 1.0$ equiv) under a nitrogen atmosphere. The reaction mixture was then cooled to $-40^{\circ} \mathrm{C}$ and stirred at this temperature. $\mathrm{Tf}_{2} \mathrm{O}$ ($6.0 \mathrm{mmol}, 1.2$ equiv) was added dropwise. The reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 1 h , and then allowed to stir at room temperature for 12 h , extracted with DCM. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness under reduced pressure. The crude product was purified by crystallization from DCM/MTBE system as a white solid.
(4)

In a 38 mL sealed tube, the mixture of (4-(methoxycarbonyl)phenyl)boronic acid ($3.0 \mathrm{mmol}, 1.0$ equiv), thianthrene (TT, $4.5 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Cu}(\mathrm{OTf})_{2}(6.0 \mathrm{mmol}$, 2.0 equiv), $\mathrm{H}_{2} \mathrm{O}$ ($6.0 \mathrm{mmol}, 2.0$ equiv) were added in 3.0 mL MeCN . Then, the tube was purged with N_{2} for three times and sealed with PTEF cap. The reaction mixture was heated to $100{ }^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, the reaction mixture was added into ammonia solution ($50 \mathrm{~mL}, 25 \%-28 \%$ solution in water), and the water phase was extracted with DCM ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness under reduced pressure. The crude product was purified by crystallization from $\mathrm{DCM} / \mathrm{Et}_{2} \mathrm{O}$ system as a white solid.

2. General Procedure for the Synthesis of Activated Olefins

(1)

In a 50 mL round bottom flask, acryloyl chloride ($6.0 \mathrm{mmol}, 1.2$ equiv) was added dropwise to a solution of corresponding alcohols and amines ($5.0 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}\left(7.5 \mathrm{mmol}, 1.5\right.$ equiv) in $\mathrm{DCM}(10.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After the addition was
complete, the ice bath was removed, and the reaction mixture was stirred at room temperature. The progress of the reaction was monitored by TLC. Upon completion of the reaction, the reaction mixture was diluted with water and extracted with DCM. The combined organic layer was washed with saturated aqueous NaHCO_{3}. The organic extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude mixture was purified by silica gel flash column chromatography using EtOAc and PE as the eluent to afford the activated olefins.
(2)

Indoline ($5.0 \mathrm{mmol}, 1.0$ equiv) was dissolved in THF (10.0 mL) in a 50 mL twonecked flask, $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($10.0 \mathrm{mmol}, 2.0$ equiv) was added and the mixture was cooled to $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. Acryloyl chloride ($5.5 \mathrm{mmol}, 1.1$ equiv) was added dropwise via syringe with rapid stirring. The formation of a white precipitate was immediately observed. After the addition was complete, the mixture was stirred vigorously for 20 min , then poured into a large beaker of water $(100.0 \mathrm{~mL})$ cooled in an ice-water bath. The aqueous mixture was stirred slowly for 1 h under an open atmosphere and solid NaCl (approximately 2.0 g) was added to enhance precipitation. When a large amount of white precipitate was visible, the solid was collected by filtration, air dried for 2 h and dried under vacuum overnight to give 1-(indolin-1-yl)prop-2-en-1-one as an off-white solid.

Experimental Procedure:

General procedure A: In a 38 mL sealed tube, the mixture of $\mathbf{1}(0.2 \mathrm{mmol}, 1.0$ equiv), 2 ($0.4 \mathrm{mmol}, 2.0$ equiv), $\mathbf{3}$ ($0.4 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($10 \mathrm{~mol} \%$), $\mathrm{P}(4-$ $\left.\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}\left(25 \mathrm{~mol} \%\right.$), $\mathbf{N} 1\left(0.2 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($0.6 \mathrm{mmol}, 3.0$ equiv) were added in $2.0 \mathrm{~mL} \mathrm{PhCF}_{3} / \mathrm{MeCN}$ (1:1). Then, the tube was purged with N_{2} for
three times and sealed with PTEF cap. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 12 h . When the reaction was finished, the mixture was cooled to room temperature and the solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography to give the products $\mathbf{4 a}-\mathbf{4 e}, \mathbf{4 g}-\mathbf{4 i}, \mathbf{4 o}, \mathbf{4 q}-\mathbf{4 r}, \mathbf{4 a}-\boldsymbol{d}_{3^{-}}$ $4 \mathrm{c}-d_{3}$.

The same procedure as General procedure A except changing the amount of $\mathbf{3}$ to 0.2 mmol (1.0 equiv) give the products $\mathbf{4 f}, \mathbf{4 j}-\mathbf{4 n}, 4 \mathrm{p}, \mathbf{4 s}, \mathbf{4 s}-\boldsymbol{d}_{\mathbf{3}}, \mathbf{4 a f}-\mathbf{4 a l}, 4 \mathrm{an}-\boldsymbol{d}_{\mathbf{3}}, \mathbf{4 a m}-\boldsymbol{d}_{3}$.

General procedure B: In a 38 mL sealed tube, the mixture of $\mathbf{1}(0.2 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2}$ ($0.8 \mathrm{mmol}, 4.0$ equiv), $\mathbf{3}$ (0.4 mmol , 2.0 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($10 \mathrm{~mol} \%$), $\mathrm{P}(4-$ $\left.\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}(25 \mathrm{~mol} \%)$, $\mathbf{N} 1\left(0.4 \mathrm{mmol}, 2.0\right.$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($0.6 \mathrm{mmol}, 3.0$ equiv) were added in $2.0 \mathrm{~mL}_{\mathrm{PhCF}}^{3} 3 / \mathrm{MeCN}(1: 1)$. Then, the tube was purged with N_{2} for three times and sealed with PTEF cap. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 12 h . When the reaction was finished, the mixture was cooled to room temperature and the solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography to give the products $\mathbf{4 a}, \mathbf{4 t} \mathbf{- 4} \mathbf{z}, \mathbf{4 a a}-\mathbf{4 a e}, \mathbf{4 m}, \mathbf{4 n}$, 4a- $d_{6}, 4 \mathrm{t}-d_{6}, 4 \mathrm{ac}-d_{6}, 4 \mathrm{u}-d_{6}, 4 \mathrm{w}-d_{6}, 4 \mathrm{aa}-d_{6}, 4 \mathrm{ad}-d_{6}, 4 \mathrm{ae}-d_{6}, 4 \mathrm{al}, 4 \mathrm{ao}, 4 \mathrm{ap}, 4 \mathrm{as}$.

The same procedure as General procedure B except changing the amount of 3 to 0.2 mmol (1.0 equiv) give the products $\mathbf{4 m}, \mathbf{4 n}, \mathbf{4 a g}-\boldsymbol{d}_{\boldsymbol{6}}, \mathbf{4 a q}, \mathbf{4 a r}-\boldsymbol{d}_{\boldsymbol{6}}$.

General procedure C: In a 38 mL sealed tube, the mixture of $\mathbf{1}(0.2 \mathrm{mmol}, 1.0$ equiv), 2 ($0.4 \mathrm{mmol}, 2.0$ equiv), $\mathrm{MeB}(\mathrm{OH})_{2}\left(0.4 \mathrm{mmol}, 2.0\right.$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10$ $\mathrm{mol} \%), \mathrm{P}\left(4-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}(25 \mathrm{~mol} \%)$, $\mathbf{N} \mathbf{1}\left(0.2 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.6 \mathrm{mmol}, 3.0$ equiv) were added in $2.0 \mathrm{~mL} \mathrm{PhCF}_{3} / \mathrm{MeCN}$ (1:1). Then, the tube was purged with N_{2} for three times and sealed with PTEF cap. The reaction mixture was heated to $80^{\circ} \mathrm{C}$
for 12 h . When the reaction was finished, the mixture was cooled to room temperature and the solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography to give the product 5 .

The same procedure as General procedure C except changing the amount of $\mathbf{2}$ to 0.8 mmol (4.0 equiv) and $\mathbf{N} \mathbf{1}$ to 0.4 equiv (2.0 equiv) give the products $\mathbf{6}$, 4at, 4at- $\boldsymbol{d}_{\boldsymbol{g}}$.

General procedure D: In a 38 mL sealed tube, the mixture of $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0$ equiv), 2-7 ($0.3 \mathrm{mmol}, 1.5$ equiv), $\mathrm{MeB}(\mathrm{OH})_{2}$ ($0.4 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10$ $\mathrm{mol} \%$), $\mathrm{P}\left(4-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}(25 \mathrm{~mol} \%)$, $\mathbf{N 1}\left(0.2 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.6 \mathrm{mmol}, 3.0$ equiv) were added in $2.0 \mathrm{~mL} \mathrm{PhCF}_{3} / \mathrm{MeCN}$ (1:1). Then, the tube was purged with N_{2} for three times and sealed with PTEF cap. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 12 h . When the reaction was finished, the mixture was cooled to room temperature and the solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography to give the product 7.

General procedure E: In a 38 mL sealed tube, the mixture of $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0$ equiv), ${ }^{n} \mathrm{BuI}\left(0.4 \mathrm{mmol}, 2.0\right.$ equiv), $\mathrm{MeB}(\mathrm{OH})_{2}\left(0.4 \mathrm{mmol}, 2.0\right.$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10$ $\mathrm{mol} \%), \mathrm{P}\left(4-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}(25 \mathrm{~mol} \%)$, $\mathbf{N} 1\left(0.2 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.6 \mathrm{mmol}, 3.0$ equiv) were added in $2.0 \mathrm{~mL} \mathrm{PhCF}_{3} / \mathrm{MeCN}$ (1:1). Then, the tube was purged with N_{2} for three times and sealed with PTEF cap. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 12 h . When the reaction was finished, the mixture was cooled to room temperature and the solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography to give the product 8 .

Control Experiments:

1. One-pot C-H methylation:

A 25 mL two-necked flask was charged with thianthrene S-oxide (TTSO, 0.2 $\mathrm{mmol}, 1.0$ equiv), $\mathrm{DCM}(1.0 \mathrm{~mL})$ and 1,3-dimethylbenzene ($0.2 \mathrm{mmol}, 1.0$ equiv) under a nitrogen atmosphere. The reaction mixture was then cooled to $-40^{\circ} \mathrm{C}$ and stirred at this temperature, trifluoroacetic anhydride (TFAA, $0.6 \mathrm{mmol}, 3.0$ equiv) and trifluoromethanesulfonic acid (TfOH, $0.3 \mathrm{mmol}, 1.5$ equiv) were added dropwise. The reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 0.5 h , and then allowed to stir at room temperature for 12 h . The mixture was concentrated to dryness under reduced pressure to give the crude product of $\mathbf{1 a}$.

In a 38 mL sealed tube, the mixture of the crude product of $\mathbf{1 a}, \mathbf{2 a}(0.4 \mathrm{mmol}, 2.0$ equiv), 3a ($0.4 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{P}\left(4-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}(25 \mathrm{~mol} \%)$, $\mathbf{N} 1\left(0.2 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol}, 5.0$ equiv) were added in 2.0 mL $\mathrm{PhCF}_{3} / \mathrm{MeCN}$ (1:1). Then, the tube was purged with N_{2} for three times and sealed with PTEF cap. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 12 h . When the reaction was finished, the mixture was cooled to room temperature and the solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography to give product $\mathbf{4 a}$ in 85% yield.

2. Competition experiments:

(1)

In a 38 mL sealed tube, the mixture of $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2 a}(0.4 \mathrm{mmol}$, 2.0 equiv), $\mathbf{2 b}$ ($0.4 \mathrm{mmol}, 2.0$ equiv), ethyl acrylate ($0.4 \mathrm{mmol}, 0.2$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$
$(10 \mathrm{~mol} \%), \mathrm{P}\left(4-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}(25 \mathrm{~mol} \%)$, $\mathbf{N} 1\left(0.2 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.6$ mmol, 3.0 equiv) were added in $2.0 \mathrm{~mL} \mathrm{PhCF}_{3} / \mathrm{MeCN}(1: 1)$. Then, the tube was purged with N_{2} for three times and sealed with PTEF cap. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 12 h . When the reaction was finished, the mixture was cooled to room temperature and the solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography to give a mixture of $\mathbf{4 a}$ and $\mathbf{4 a}-\boldsymbol{d}_{\mathbf{3}}$. ${ }^{1} \mathrm{H}$ NMR was carried out by adding $1,3,5$-trimethoxybenzene ($0.2 \mathrm{mmol}, 1.0$ equiv) as an internal standard in a mixture of $\mathbf{4 a}$ and $\mathbf{4 a} \mathbf{-} \boldsymbol{d}_{3}$. (the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product is shown below).

(2)

In a 38 mL sealed tube, the mixture of $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2 a}(0.4 \mathrm{mmol}$, 2.0 equiv), 3a ($0.4 \mathrm{mmol}, 0.2$ equiv), $\mathbf{3 r}$ ($0.4 \mathrm{mmol}, 0.2$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$,
$\mathrm{P}\left(4-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}(25 \mathrm{~mol} \%)$, $\mathbf{N} 1$ (1.0 equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($0.6 \mathrm{mmol}, 3.0$ equiv) were added in $2.0 \mathrm{~mL} \mathrm{PhCF}_{3} / \mathrm{MeCN}$ (1:1). Then, the tube was purged with N_{2} for three times and sealed with PTEF cap. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 12 h . When the reaction was finished, the mixture was cooled to room temperature and the solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography to give a mixture of $\mathbf{4 a}$ and $\mathbf{4 r}$. ${ }^{1} \mathrm{H}$ NMR was carried out by adding 1,3,5-trimethoxybenzene ($0.2 \mathrm{mmol}, 1.0$ equiv) as an internal standard in a mixture of $\mathbf{4 a}$ and $\mathbf{4 r}$. (the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product is shown below).

Characterization of Products:

(E)-3-(2,4,6-trimethylphenyl) ethyl acrylate(4a) ${ }^{[1]}$

4a
Yield: $96 \%, 41.9 \mathrm{mg}$; appearance: white solid, M.P.: $35-36^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $_{3}$) $\delta 7.84(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 6.06(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=6.8$

Hz, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 166.91,143.07,138.15,136.71,130.85,129.05$, 123.08, 60.35, 20.99, 20.93, 14.24.
(E)-3-(2,4-dimethoxy-6-methylphenyl) ethyl acrylate(4b) ${ }^{[2]}$

4b
Yield: $71 \%, 35.5 \mathrm{mg}$; appearance: white solid, M.P.: $68-70^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.88(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.36-6.32(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}$, $3 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 168.51,161.09,160.93,141.42,138.25,119.06$, $115.18,107.50,96.17,60.01,55.29,55.16,21.45,14.31$.
(E)-3-(8-methoxy-6-methylquinolin-5-yl) ethyl acrylate(4c)

Yield: $75 \%, 40.7 \mathrm{mg}$; appearance: yellow solid, M.P.: $108-109^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.84-8.82(\mathrm{~m}, 1 \mathrm{H}), 8.36-8.33(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 166.54,155.10,148.28,140.78,138.94,136.15$, $132.82,127.55,124.67,122.48,121.90,110.60,60.58,55.93,21.46,14.24$.

ESI-MS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$272.1281, found 272.1284.
(E)-3-(2,4,6-trimethylphenyl) cyclohexyl acrylate(4d)

4d

Yield: 83%, 45.2 mg ; appearance: white solid, M.P.: $72-73^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.83(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.87(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.92(\mathrm{~m}, 2 \mathrm{H})$, $1.81-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.36(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 166.45,142.79,138.13,136.78,130.99,129.09$, 123.67, 72.68, 31.73, 25.43, 23.80, 21.07, 20.99.

ESI-MS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$273.1849, found 273.1848.
(E)-3-(2,4,6-trimethylphenyl) tert butyl acrylate(4e) ${ }^{[3]}$

Yield: $85 \%, 41.9 \mathrm{mg}$; appearance: colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.75(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H}), 5.98(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33 ($\mathrm{s}, 6 \mathrm{H}$), 2.28 ($\mathrm{s}, 3 \mathrm{H}$), 1.55 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 166.40,142.00,138.01,136.79,131.04,129.05$, 124.82, 80.41, 28.21, 21.13, 21.01.
(E)-3-(2,4,6-trimethylphenyl) phenyl acrylate(4f) ${ }^{[4]}$

4f
Yield: 94%, 50.1 mg ; appearance: white solid, M.P.: $60-62^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.96(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.18$
$-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{~s}, 2 \mathrm{H}), 6.19(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 165.34,150.83,145.11,138.73,137.06,130.53$, $129.35,129.29,125.68,122.02,121.61,21.16,21.03$.

(E)-3-(2,4,6-trimethylphenyl) Benzyl acrylate(4g)

Yield: $66 \%, 37.0 \mathrm{mg}$; appearance: colorless oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.82(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.79$ (s, 2H), 6.02 (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (s, 2H), 2.24 (s, 6H), 2.18 ($\mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 166.18,143.75,138.38,136.87,136.05,130.75$, 129.16, 128.55, 128.26, 128.20, 122.64, 66.29, 21.10, 21.01.

ESI-MS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$281.1536, found 281.1537.
(Z)-2-fluoro-3-(2,4,6-trimethylphenyl) methyl acrylate(4h)

Yield: 60%, 26.7 mg ; appearance: yellow oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.06(\mathrm{~d}, J=35.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$, 2.29 ($\mathrm{s}, 3 \mathrm{H}$), 2.24 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 161.46(\mathrm{~d}, J=35.0 \mathrm{~Hz}), 146.38(\mathrm{~d}, J=262.0 \mathrm{~Hz})$, $138.33,136.59,128.35,126.30,116.98(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 52.64,21.02,20.33(\mathrm{~d}, J=$ 3.0 Hz).
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-121.82 (s).
ESI-MS: Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{FO}_{2}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right] 223.1129$, found 223.1128.
(E)-3-(2,4,6-trimethylbenzylidene)dihydrofuran-2(3H)-one/3-(2,4,6-trimethylbenzyl)furan- $\mathbf{2 (5 H) - o n e (4 i) ~}$

$4 i(1: 0.8)$
Yield: $53 \%, 22.9 \mathrm{mg}$; appearance: white solid, M.P.: $98-99^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.65(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 1.6 \mathrm{H}), 6.61(\mathrm{~s}$,
$0.8 \mathrm{H}), 4.73$ (s, 1.6H), 4.38 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.55 ($\mathrm{s}, 1.6 \mathrm{H}$), 2.68 (td, $J=7.2,2.4$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.29 ($\mathrm{s}, 3 \mathrm{H}$), 2.28 ($\mathrm{s}, 2.4 \mathrm{H}$), $2.20(\mathrm{~s}, 4.8 \mathrm{H}), 2.18$ ($\mathrm{s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 174.07,171.21,144.73,137.86,137.19,136.32$, $136.19,135.29,133.04,131.15,131.04,128.98,128.36,127.80,70.33,65.52$, 26.52, 25.56, 20.96, 20.81, 20.00, 19.75.

ESI-MS: Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$217.1223, found 217.1224.
(E)-N,N-diethyl-3-(2,4,6-trimethylphenyl) acrylamide(4j)

4j
Yield: 92\%, 45.1 mg ; appearance: colorless oil.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.79(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 6.42(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.42(\mathrm{~m}, 4 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 6 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 165.61,140.71,137.53,136.41,132.41,128.88$, 123.13, 42.18, 41.09, 21.04, 20.97, 15.06, 13.28.

ESI-MS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$246.1852, found 246.1852.
(E)-1-(indolin-1-yl)-3-mesitylprop-2-en-1-one(4k)

Yield: $84 \%, 49.0 \mathrm{mg}$; appearance: yellow solid, M.P.: $152-154^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 8.44(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 6 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 164.16,142.94,141.51,137.85,136.52,131.68$, 129.00, 127.40, 124.39, 124.07, 123.69, 117.31, 47.88, 27.82, 21.04, 20.90.

ESI-MS: Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$292.1696, found 292.1695.

(E)-N-((3s,5s,7s)-adamantan-1-yl)-3-mesitylacrylamide(41)

4I
Yield: $71 \%, 45.9 \mathrm{mg}$; appearance: white solid, M.P.: 219-220 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{3}^{2}$) $\delta 7.68(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 2 \mathrm{H}), 5.94(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 2.27$ (s, 3H), 2.10 (s, 9H), 1.71 (s, 6H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 164.90,138.53,137.40,136.52,131.53,128.85$, 126.78, 52.12, 41.65, 36.32, 29.40, 21.04, 22.09.

ESI-MS: Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$324.2322, found 324.2318.

(E)-3-mesityl- N -phenylacrylamide(4m)

Yield: $77 \%, 40.9 \mathrm{mg}$; appearance: white solid, M.P.: $187-188^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d \boldsymbol{d}_{6}) $\delta 10.17$ (s, 1H), 7.72 - 7.66 (m, 3H), 7.34 (t, $J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (s, 6H), 2.23 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (100 MHz, DMSO- $_{\boldsymbol{6}}$) δ 163.62, 139.32, 138.06, 137.35, 136.32, 130.96, 129.11, 128.86, 126.67, 123.39, 119.20, 20.95, 20.67.

ESI-MS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$266.1539, found 266.1540.
(E)-1,3,5-trimethyl-2-(2-(phenylsulfonyl)vinyl) benzene $(4 n)^{[5]}$

4n

Yield: $61 \%, 34.9 \mathrm{mg}$; appearance: white solid, M.P.: $116-118^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.97-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65$ - $7.60(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}$, $6 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 140.81,140.76,139.41,137.06,133.25,131.51$, 129.37, 129.28, 128.35, 127.47, 21.03, 20.99.
(E)-1-mesitylpent-1-en-3-one (40) ${ }^{[2]}$

40
Yield: $97 \%, 39.2 \mathrm{mg}$; appearance: white solid, M.P.: $43-45^{\circ} \mathrm{C}$.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.72(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 200.97,140.66,138.29,136.75,131.12,131.01$, 129.13, 33.98, 21.04, 20.99, 8.18.
diethyl (E)-(2,4,6-trimethylstyryl) phosphonate(4p) $)^{[6]}$

Yield: $63 \%, 35.6 \mathrm{mg}$; appearance: yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.59(\mathrm{dd}, J=23.6,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 2 \mathrm{H}), 5.86$ (dd, $J=20.4,18.0, H z, 1 \mathrm{H}), 4.18-4.10(\mathrm{~m}, 4 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 147.49(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 138.08,136.04,131.98(\mathrm{~d}, J$ $=22.0 \mathrm{~Hz}), 129.01,119.96(\mathrm{~d}, J=184.0 \mathrm{~Hz}), 61.72(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 20.95,20.84$, $16.38(\mathrm{~d}, J=6.0 \mathrm{~Hz})$.
${ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 18.77$ (s).

1,3,5-trimethyl-2-(($1 E, 3 E)$-4-phenylbuta-1,3-dien-1-yl) benzene($4 q$)

Yield: $62 \%, 30.8 \mathrm{mg}$; appearance: yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.25-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=15.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=15.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H})$, $2.30(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 137.38,136.32,136.05,134.20,133.62,131.76$, 131.06, 129.77, 128.80, 128.61, 127.39, 126.28, 21.17, 20.95.

ESI-MS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{20}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$249.1638, found 249.1635.
(E)-1,3,5-trimethyl-2-(3-phenylprop-1-en-1-yl) benzene $(4 r)^{[7]}$

$4 r$
Yield: 70\%, 33.1 mg ; appearance: colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.38$ - $7.30(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~s}$, 2H), $6.37-6.26(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.37$ (s, 6H), 2.34 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 137.60,136.60,135.51,133.07,129.81,128.84$, $128.39,127.67,126.85,125.96,32.55,20.85,19.88$.
(E)-1,3,5-trimethyl-2-(4-phenylbut-1-en-1-yl)benzene(4s)

4s
Yield: 53\%, 26.5 mg ; appearance: colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.39$ - 7.36 (m, 2H), $7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-$ $7.20(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dt}, J=15.6,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.80-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 137.65,135.94,135.42,135.10,130.34,129.91$, $128.90,128.50,126.92,125.93,32.62,29.28,20.80,19.80$.

ESI-MS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$251.1794, found 251.1788.
ethyl (E)-3-(4-isopropyl-2,6-dimethylphenyl)acrylate(4t)

$4 t$
Yield: $71 \%, 35.0 \mathrm{mg}$; appearance: yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.84(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 2 \mathrm{H}), 6.07(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.89-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}), 1.35(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 167.02,149.21,143.21,136.87,131.41,126.49$, 123.23, 60.44, 33.78, 23.81, 21.26, 14.31 .

ESI-MS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$247.1693, found 247.1692.
ethyl (E)-3-(4-cyclohexyl-2,6-dimethylphenyl)acrylate (4u)

Yield: 80%, 45.8 mg ; appearance: pink solid, M.P.: $58-59^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 7.85(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 2 \mathrm{H}), 6.07(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}), 1.87-$ $1.84(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 167.00,148.44,143.20,136.80,131.38,126.90$, 123.16, 60.40, 44.27, 34.25, 26.83, 26.11, 21.24, 14.29.

ESI-MS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$287.2006, found 287.2005.
ethyl (E)-3-(4-methoxy-2,6-dimethylphenyl)acrylate(4v)

Yield: $55 \%, 25.8 \mathrm{mg}$; appearance: white solid, M.P.: $63-64^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{t}, J=6.8$

Hz, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 167.23,159.25,142.66,139.02,126.30,122.08$, 113.81, 60.38, 55.09, 21.66, 14.32 .

ESI-MS: Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$235.1329, found 235.1325.
ethyl (E)-3-(2,6-dimethyl-4-phenoxyphenyl)acrylate(4w)

Yield: $61 \%, 36.2 \mathrm{mg}$; appearance: yellow oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.82(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.16$ - $7.11(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 2 \mathrm{H}), 6.06(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 166.98,157.10,156.53,142.48,139.07,129.77$, $128.68,123.58,123.09,119.36,118.00,60.48,21.41,14.31$.

ESI-MS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$297.1485, found 297.1485.
ethyl (E)-3-(4-(difluoromethoxy)-2,6-dimethylphenyl)acrylate(4x)

Yield: 53\%, 28.6 mg ; appearance: yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.76(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 2 \mathrm{H}), 6.50(\mathrm{t}, J=$ $73.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 1.35$ (t, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 166.61,150.59(\mathrm{t}, J=3.0 \mathrm{~Hz}), 142.08,138.87$, 131.19, 124.25, 118.73, 115.78 ($\mathrm{t}, \mathrm{J}=258.0 \mathrm{~Hz}$), 60.61, 21.20, 14.27.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-80.66$.
ESI-MS: Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{3}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$271.1140, found 271.1140.
ethyl (E)-3-(3,4',5-trimethyl-[1,1'-biphenyl]-4-yl)acrylate(4y)

Yield: $60 \%, 35.3 \mathrm{mg}$; appearance: yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.81(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.21(\mathrm{~s}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 166.92,142.88,140.97,137.56,137.30,132.59$, 129.46, 126.84, 123.65, 60.54, 21.36, 21.11, 14.32.

ESI-MS: Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2}$: $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$317.1512, found 317.1516.
ethyl (E)-3-(4-fluoro-2,6-dimethylphenyl)acrylate(4z)

Yield: $62 \%, 27.6 \mathrm{mg}$; appearance: yellow oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} \mathbf{3}_{3}$) $\delta 7.76(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.03(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 166.71,161.98(\mathrm{~d}, J=246.0 \mathrm{~Hz}), 142.23,139.25$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}), 129.91,123.98,114.88(\mathrm{~d}, J=20.0 \mathrm{~Hz}), 60.58,21.23(\mathrm{~d}, J=1.0$ Hz), 14.29.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-114.17.
ESI-MS: Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{FO}_{2}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right] 223.1129$, found 223.1130.
ethyl (E)-3-(4-chloro-2,6-dimethylphenyl)acrylate(4aa) ${ }^{[1]}$

Yield: 70\%, 33.4 mg ; appearance: colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.75(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 166.55,142.06,138.42,133.59,132.41,128.00$, 124.38, 60.64, 20.93, 14.26.
ethyl (E)-3-(4-iodo-2,6-dimethylphenyl)acrylate(4ab)

Yield: $68 \%, 44.9 \mathrm{mg}$; appearance: yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.72(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 166.51,142.18,138.57,136.90,133.63,124.50$, 94.35, 60.66, 20.61, 14.27.

ESI-MS: Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{IO}_{2}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$331.0189, found 331.0190.
ethyl (E)-3-(4-((N,4-dimethylphenyl)sulfonamido)-2,6-dimethylphenyl)acrylate (4ac)

Yield: 70%, 54.2 mg ; appearance: white solid, M.P.: $124-126^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.70(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~s}, 2 \mathrm{H}), 5.98(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}$, 2H), 3.05 (s, 3H), 2.35 ($\mathrm{s}, 3 \mathrm{H}$), 2.21 ($\mathrm{s}, 6 \mathrm{H}), 1.27(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 166.62,143.57,142.28,141.12,137.47,133.63$, $132.90,129.29,127.86,125.95,124.23,60.59,37.93,21.53,21.11,14.26$.

ESI-MS: Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$388.1577, found 388.1576.
methyl (E)-4-(3-ethoxy-3-oxoprop-1-en-1-yl)-3,5-dimethylbenzoate(4ad)

4ad
Yield: $83 \%, 43.5 \mathrm{mg}$; appearance: white solid, M.P.: $52-54^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.77(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 2 \mathrm{H}), 6.06(\mathrm{~d}, J=$ $16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 1.33(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 166.79,166.25,142.25,138.64,136.63,129.27$, 128.96, 125.06, 60.63, 52.00, 20.85, 14.19.

ESI-MS: Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$263.1278, found 263.1274.

(E)-5-cyclohexyl-1,3-dimethyl-2-(3-phenylprop-1-en-1-yl)benzene(4ae)

Yield: 63\%, 38.4 mg ; appearance: yellow oil.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.39-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (s, 2H), $6.38-6.29(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}$, $6 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.34(\mathrm{~m}$, $1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 145.86,137.60,136.49,133.54,129.88,128.38$, 127.70, 126.84, 126.59, 125.96, 44.12, 34.49, 32.79, 26.96, 26.20, 20.08.

ESI-MS: Calcd for $\mathrm{C}_{23} \mathrm{H}_{28}$: $\left[\mathrm{M}-\mathrm{H}^{+}\right] 303.2118$, found 303.2124.
ethyl (E)-3-(2,4-dimethyl-6-(methyl- d_{3})phenyl)acrylate(4a- d_{3})

Yield: $88 \%, 39.0 \mathrm{mg}$; appearance: yellow solid, M.P.: $33-35^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.85(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 6.06(\mathrm{~d}, J=$
$16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 167.00,143.13,138.24,136.80,136.69,130.95$, 129.11, 123.13, $60.43,21.05,21.00,14.29$.

ESI-MS: Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{D}_{3} \mathrm{O}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$222.1568, found 222.1569.
ethyl (E)-3-(2,4-dimethoxy-6-(methyl- d_{3})phenyl)acrylate (4b- d_{3})

Yield: $65 \%, 32.9 \mathrm{mg}$; appearance: white solid, M.P.: $68-70^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.88(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.35(\mathrm{dd}, J=12.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 168.59,161.15,160.99,141.41,138.33,119.15$, $115.32,107.53,96.27,60.09,55.38,55.25,14.38$.

ESI-MS: Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{D}_{3} \mathrm{O}_{4}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$254.1466, found254.1465.
ethyl (E)-3-(8-methoxy-6-(methyl- d_{3})quinolin-5-yl)acrylate(4c- d_{3})

Yield: $70 \%, 38.4 \mathrm{mg}$; appearance: yellow solid, M.P.: $104-106^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.87$ - 8.85 (m, 1H), $8.40-8.36$ (m, 1H), 8.07 (d, J $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 166.58,155.21,148.35,140.83,139.06,136.06$, $132.82,127.62,124.71,122.59,121.93,110.63,60.60,55.96,14.28$.

ESI-MS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{D}_{3} \mathrm{NO}_{3}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$275.1470, found 275.1469.
ethyl (E)-3-(4-methyl-2,6-bis(methyl- d_{3}) phenyl)acrylate (4a- \boldsymbol{d}_{6})

Yield: $71 \%, 31.9 \mathrm{mg}$; appearance: yellow solid, M.P.: $36-37^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.84(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, ~ J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 167.03,143.14,138.27,136.72,130.98,129.13$, 123.11, 60.45, 21.02, 14.31.

ESI-MS: Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{D}_{6} \mathrm{O}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$225.1756, found 225.1753.
ethyl (E)-3-(4-isopropyl-2,6-bis(methyl- d_{3})phenyl)acrylate(4t- d_{6})

Yield: $69 \%, 34.8 \mathrm{mg}$; appearance: yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.85(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 2 \mathrm{H}), 6.07(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.88-2.80(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 167.05,149.22,143.16,136.79,131.39,126.49$, 123.11, 60.45, 33.77, 23.81, 14.30.

ESI-MS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{D}_{6} \mathrm{O}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$253.2069, found 253.2067.
ethyl (E)-3-(4-((N,4-dimethylphenyl)sulfonamido)-2,6-bis(methyl- $\left.d_{3}\right)$ phenyl) acrylate (4ac- d_{6})

Yield: 68%, 53.5 mg ; appearance: yellow solid, M.P.: $124-125^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.70(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$,
7.18 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~s}, 2 \mathrm{H}), 5.98$ (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 159.58,136.54,135.21,134.09,130.34,126.57$, 125.87, 122.26, 120.81, 118.91, 117.14, 53.55, 30.89, 14.48, 7.22.

ESI-MS: Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{D}_{6} \mathrm{NO}_{4} \mathrm{~S}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$394.1954, found 394.1954.
ethyl (E)-3-(4-cyclohexyl-2,6-bis(methyl- d_{3})phenyl)acrylate $\left(4 \mathrm{u}-\boldsymbol{d}_{6}\right.$)

Yield: $76 \%, 44.5 \mathrm{mg}$; appearance: pink solid, M.P.: $56-58^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.84(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 2 \mathrm{H}), 6.06(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.47-2.39(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.84(\mathrm{~m}, 4 \mathrm{H})$, $1.77-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 167.04,148.47,143.19,136.74,131.42,126.92$, 123.11, $60.42,44.28,34.26,26.84,26.12,14.31$.

ESI-MS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{D}_{6} \mathrm{O}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$293.2382, found 293.2380 .
ethyl (E)-3-(2,6-bis(methyl- d_{3})-4-phenoxyphenyl)acrylate ($4 w-d_{3}$)

Yield: $62 \%, 37.5 \mathrm{mg}$; appearance: yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.18(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.50$ $-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.63$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.70(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 166.93,157.07,156.45,142.39,138.94,129.72$, 128.62, 123.53, 122.92, 119.31, 117.96, 60.42, 14.26.

ESI-MS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{D}_{6} \mathrm{O}_{3}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$303.1862, found 303.1858.
ethyl (E)-3-(4-chloro-2,6-bis(methyl- \boldsymbol{d}_{3})phenyl)acrylate(4aa- \boldsymbol{d}_{6})

Yield: $66 \%, 32.3 \mathrm{mg}$; appearance: yellow solid, M.P.: $37-38^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.74(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 166.50,141.97,138.28,133.57,132.38,127.98$, 124.27, 60.58, 14.23 .

ESI-MS: Calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{D}_{6} \mathrm{ClO}_{2}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right] 245.1210$, found 245.1209.
methyl (E)-4-(3-ethoxy-3-oxoprop-1-en-1-yl)-3,5-bis(methyl- d_{3})benzoate
(4ad- d_{6})

Yield: $81 \%, 43.5 \mathrm{mg}$; appearance: white solid, M.P.: $50-52^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 2 \mathrm{H}), 6.06(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 166.79,166.26,142.23,138.67,136.54,129.29$, 128.99, 125.03, 60.63, 51.99, 14.19.

ESI-MS: Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{D}_{6} \mathrm{O}_{4}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$269.1654, found 269.1656.
(E)-5-cyclohexyl-1,3- bis(methyl- d_{3})-2-(3-phenylprop-1-en-1-yl)benzene(4ae- d_{6})

Yield: $57 \%, 35.4 \mathrm{mg}$; appearance: yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.35-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~s}$, $2 \mathrm{H}), 6.34-6.26(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.53(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.85(\mathrm{~m}$, $4 H), 1.80-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.35(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 145.86,137.61,136.38,133.60,129.87,128.39$, $127.74,126.84,126.59,125.96,44.13,34.49,32.78,26.96,26.21$.

ESI-MS: Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{D}_{6}$: $\left[\mathrm{M}-\mathrm{H}^{+}\right] 309.2495$, found 309.2500.
(E)-1,5-dimethyl-3-(methyl- d_{3})-2-(4-phenylbut-1-en-1-yl)benzene(4s- d_{3})

Yield: $47 \%, 23.8 \mathrm{mg}$; appearance: yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.37(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.37-6.29(\mathrm{~m}$, $1 \mathrm{H}), 2.80-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 137.66,135.96,135.45,135.10,130.35,129.92$, $128.90,128.50,126.92,125.94,32.64,29.28,20.80,19.79$.

ESI-MS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{D}_{3}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$254.1983, found 254.1979.
(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (E)-3-mesitylacrylate(4af)

Yield: 94\%, 61.8 mg ; appearance: colorless oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.85(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 6.06(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.80(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.10(\mathrm{~m}, 1 \mathrm{H})$, $1.99-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.02(\mathrm{~m}, 2 \mathrm{H})$, $0.96-0.92$ (m, 7H), 0.83 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 166.58,142.82,138.16,136.81,130.89,129.12$, 123.41, 74.22, 47.12, 41.01, 34.28, 31.39, 26.49, 23.71, 22.02, 21.11, 21.00, 20.66, 16.63.

ESI-MS: Calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{2}$: $\left[\mathrm{M}-\mathrm{H}^{+}\right]$327.2330, found 327.2335.

Yield: $81 \%, 50.3 \mathrm{mg}$; appearance: white solid, M.P.: $89-91^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.06(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.01 (s, 2H), 2.41 ($\mathrm{s}, 6 \mathrm{H}$), 2.33 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 165.60,147.93,145.23,145.12,145.09,138.73$, 137.04, 130.46, 129.27, 121.81, 113.91, 107.87, 103.77, 101.61, 21.13, 21.00.

ESI-MS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$311.1278, found 311.1277.
$(R)-2,5,7,8$-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl (E)-

3-mesitylacrylate(4ah)

Yield: $75 \%, 90.4 \mathrm{mg}$; appearance: colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.13$ (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.97 (s, 2H), 6.37 (d, $J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 6 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.13$ (s, 3H), 2.09 (s, 3H), 1.92 - 1.78 (m, 2H), $1.65-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 4 \mathrm{H})$, $1.31-1.26(\mathrm{~m}, 7 \mathrm{H}), 1.22-1.10(\mathrm{~m}, 7 \mathrm{H}), 0.93-0.89(\mathrm{~m}, 14 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 165.45,149.32,144.58,140.48,138.54,136.92$, $130.60,129.26,126.80,125.01,122.97,121.96,117.30,74.94,39.32,37.40,37.24$, $32.74,32.65,31.07,27.92,24.77,24.41,22.68,22.59,21.16,21.02,20.98,20.58$, 19.71, 19.62, 12.97, 12.13, 11.80.

ESI-MS: Calcd for $\mathrm{C}_{41} \mathrm{H}_{62} \mathrm{O}_{3}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$603.4772, found 603.4767 .

5-formyl-2-methoxyphenyl (E)-3-mesitylacrylate(4ai)

Yield: $73 \%, 47.4 \mathrm{mg}$; appearance: red solid, M.P.: $130-131^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 9.89$ (s, 1H), $8.08(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J$ $=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 2 \mathrm{H})$, 6.32 (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ (s, 3H), 2.41 (s, 6H), 2.31 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 189.97,164.57,156.44,145.60,140.22,138.87$, 137.14, 130.23, 129.93, 129.86, 129.30, 123.57, 120.89, 111.94, 56.17, 21.18, 20.99 .

ESI-MS: Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$325.1434, found 325.1432.
5-chloro-2-(2,4-dichlorophenoxy)phenyl (E)-3-mesitylacrylate(4aj)

Yield: $83 \%, 76.7 \mathrm{mg}$; appearance: colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.94(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$,
7.33 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32$ (s, 6H), 2.29 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 164.04,151.36,146.42,146.09,142.07,139.06$, $137.20,130.31,130.24,129.58,129.35,129.09,128.00,126.93,125.47,124.71$, 120.94, 120.62, 119.65, 21.12, 21.08.

ESI-MS: Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{O}_{3}$: $\left[\mathrm{M}-\mathrm{H}^{+}\right] 459.0327$, found 459.0337.
1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl (E)-3-mesitylacrylate(4ak)

Yield: 89%, 58.1 mg ; appearance: yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.87(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 6.09(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.80(\mathrm{~m}$, $1 \mathrm{H}), 1.77-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.21(\mathrm{~m}$, $2 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 167.39,142.80,138.20,136.76,130.89,129.13$, $123.17,86.12,48.40,48.38,41.42,39.70,29.73,26.70,25.85,21.07,21.02,20.14$, 19.44.

ESI-MS: Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2}:\left[\mathrm{M}-\mathrm{H}^{+}\right] 325.2173$, found 325.2179.
(3aS,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-
dimethyltetrahydrofuro [3,4-d][1,3]dioxol-4-yl (E)-3-mesitylacrylate(4al)

4al
Yield: $89 \%, 77.0 \mathrm{mg}$; appearance: white solid, M.P.: $114-116^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.90(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H})$, 6.02 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.91$ (dd, $J=6.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.46-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.07(\mathrm{~m}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H})$, 1.47 (s, 3H), 1.39 (s, 3H), 1.36 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 165.28,144.83,138.70,137.04,130.41,129.24$, $121.81,113.19,103.30,101.00,85.14,82.27,79.29,72.90,66.81,26.97,25.90$, 25.08, 24.59, 21.16, 21.02.

ESI-MS: Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{7}:\left[\mathrm{M}+\mathrm{H}^{+}\right] 433.2221$, found 433.2220 .
(3S, $\mathbf{8 S}, 9 \mathrm{~S}, 10 R, 13 R, 14 S, 17 R)-10,13-$ dimethyl-17-((R)-6-methylheptan-2-yl)-

$\mathbf{2 , 3 , 4 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7 - t e t r a d e c a h y d r o - 1 H -}$

cyclopenta[a]phenanthren-3-yl (E)-3-mesitylacrylate(4am)

Yield: $95 \%, 106.2 \mathrm{mg}$; appearance: white solid, M.P.: $109-111{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.85(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-4.73(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.41(\mathrm{~m}, 2 \mathrm{H})$, $2.35(\mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.87(\mathrm{~m}, 5 \mathrm{H}), 1.71-1.47(\mathrm{~m}, 8 \mathrm{H}), 1.41-1.29(\mathrm{~m}$, $4 \mathrm{H}), 1.21-1.10(\mathrm{~m}, 7 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.04-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 0.91-0.88(\mathrm{~m}, 6 \mathrm{H}), 0.70(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 166.31,142.86,139.62,138.08,136.75,130.86$, $129.09,123.37,122.57,73.97,56.60,56.06,49.94,42.22,39.65,39.46,38.18$, $36.97,36.53,36.13,35.75,31.84,31.78,28.18,27.95,27.83,24.22,23.80,22.78$, 22.53, 21.09, 20.98, 19.27, 18.66, 11.78.

ESI-MS: Calcd for $\mathrm{C}_{39} \mathrm{H}_{58} \mathrm{O}_{2}$: $\left[\mathrm{M}+\mathrm{Na}^{+}\right] 581.4329$, found 581.4336.
(E)-N-(((1R,4aS,10aR)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl)methyl)-3-mesitylacrylamide(4an)

Yield: 83\%, 76.0 mg ; appearance: yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.77(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.03-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 2 \mathrm{H}), 6.01(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{t}, J$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.02-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.31$
(s, 6H), $2.29(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.69(\mathrm{~m}, 1 \mathrm{H})$, $1.51-1.34(\mathrm{~m}, 5 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 166.11,147.10,145.58,139.55,137.58,136.55$, $134.76,131.33,128.91,126.86,125.49,124.11,123.78,49.94,45.25,38.24,37.50$, $37.39,36.18,33.36,30.13,26.85,25.22,23.92,21.10,20.95,18.90,18.74,18.54$.

ESI-MS: Calcd for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{NO}_{3}:\left[\mathrm{M}+\mathrm{H}^{+}\right] 458.3417$, found 458.3405 .
(E)-3-(2,4-dimethyl-6-(methyl- $\left.d_{3}\right)$ phenyl)- N-(((1R,4aS,10aR)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-
yl)methyl)acrylamide(4an- \boldsymbol{d}_{3})

Yield: 79\%, 72.8 mg ; appearance: yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.80(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.07-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 6.13-6.05(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.27(\mathrm{~m}$, $2 \mathrm{H}), 3.01-2.84(\mathrm{~m}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.84-$ $1.68(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.27(\mathrm{~m}, 10 \mathrm{H}), 1.01$ (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 166.18,147.03,145.40,139.19,137.38,136.44$, $136.32,134.69,131.28,128.83,126.76,125.53,124.02,123.65,49.90,45.15$, $38.14,37.44,37.29,36.08,33.28,30.06,25.16,23.88,21.02,20.88,18.82,18.61$, 18.48

ESI-MS: Calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{D}_{3} \mathrm{NO}:\left[\mathrm{M}+\mathrm{Na}^{+}\right] 483.3425$, found 483.3430 .
($3 S, 8 S, 9 S, 10 R, 13 R, 14 S, 17 R)$-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-
$\mathbf{2 , 3 , 4 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7 - t e t r a d e c a h y d r o - 1 H -}$
cyclopenta[a]phenanthren-3-yl
(E)-3-(2,4-dimethyl-6-(methyl$\left.d_{3}\right)$ phenyl)acrylate(4am- d_{3})

$4 a m-d_{3}$
Yield: $87 \%, 97.8 \mathrm{mg}$; appearance: yellow solid, M.P.: $117-119^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 7.83(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.72(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 2 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.81(\mathrm{~m}, 5 \mathrm{H}), 1.67-1.44(\mathrm{~m}, 8 \mathrm{H}), 1.35-1.25(\mathrm{~m}$, $4 \mathrm{H}), 1.22-1.08(\mathrm{~m}, 7 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.02-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 H), 0.88-0.86(\mathrm{~m}, 6 \mathrm{H}), 0.69(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 166.53,143.02,139.78,138.28,136.93,136.81$, $131.02,129.19,123.50,122.70,74.13,56.72,56.15,50.05,42.35,39.76,39.56$, $38.28,37.07,36.22,35.84,31.97,31.90,28.29,28.07,27.93,24.34,23.87,22.88$, 22.62, 21.20, 21.10, 19.41, 18.76, 11.90.

ESI-MS: Calcd for $\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{D}_{3} \mathrm{O}_{2}:\left[\mathrm{M}+\mathrm{H}^{+}\right] 562.4698$, found 562.4696.
benzo $[d][1,3]$ dioxol-5-yl (E)-3-(4-methyl-2,6-bis(methyl- d_{3})phenyl)acrylate
(4ag- d_{6})

Yield: 76\%, 48.1 mg ; appearance: colorless oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 8.05(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 165.67,147.92,145.23,145.11,145.04,138.78$, 136.99, 130.46, 129.29, 121.70, 113.92, 107.90, 103.78, 101.62, 21.03.

ESI-MS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{D}_{6} \mathrm{O}_{4}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$317.1654, found 317.1657.
ethyl (E)-3-(4,6-dimethylbenzo[d][1,3]dioxol-5-yl)acrylate(4ao)

Yield: $76 \%, 37.7 \mathrm{mg}$; appearance: yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.76(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.33$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 167.00,146.72,144.73,142.30,131.52,127.17$, $122.40,117.99,108.32,100.73,60.38,21.22,14.26,13.23$.

ESI-MS: Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$249.1121, found 249.1121.

8-methoxy-5-methyl-6-(methyl- d_{3})quinoline(5)

Yield: 78%, 29.7 mg ; appearance: yellow solid, M.P.: $88-89^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} \mathbf{3}_{3}$) $\delta 8.85(\mathrm{dd}, J=4.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{dd}, J=8.4,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=8.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 152.91,147.62,139.15,133.67,132.01,128.52$, 122.47, 121.17, 110.68, 55.73, 13.51.

ESI-MS: Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{D}_{3} \mathrm{NO}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$191.1258, found 191.1258 .
$N, 4$-dimethyl- N-(3,4,5-trimethylphenyl)benzenesulfonamide(6)

6
Yield: $65 \%, 39.4 \mathrm{mg}$; appearance: red solid, M.P.: $93-95^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$,
6.76 (s, 2H), 3.14 (s, 3H), 2.47 (s, 3H), 2.25 (s, 6H), 2.17 ($\mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 143.26,138.50,136.99,134.51,134.02,129.17$, 128.00, 125.77, 38.38, 21.52, 20.54, 15.14.

ESI-MS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}$: $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$326.1185, found 326.1189.

4-(2,3,5-trimethylphenyl)morpholine(7)

7
Yield: 52\%, 21.4 mg ; appearance: yellow oil.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 3.89-3.87(\mathrm{~m}, 4 \mathrm{H}), 2.89$ (t, $J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 151.20,137.85,135.35,127.89,125.98,117.23$, 67.44, 52.61, 21.09, 20.53, 13.59.

ESI-MS: Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$206.1539, found 206.1536.

6-butyl-8-methoxy-5-methylquinoline(8)

Yield: 86\%, 39.4 mg ; appearance: yellow oil.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.84-8.83(\mathrm{~m}, 1 \mathrm{H}), 8.29-8.23(\mathrm{~m}, 1 \mathrm{H}), 7.41-$ $7.36(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.62$ $-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$) δ 153.30, 147.58, 139.14, 138.64, 132.17, 128.71, 121.77, 121.07, 109.97, 55.67, 34.41, 33.16, 22.65, 13.93, 13.18.

ESI-MS: Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$230.1539, found 230.1538.
ethyl (E)-3-(2,6-dimethyl-4-(4-(2-(pyridin-2-yloxy)propoxy)phenoxy)phenyl)acrylate(4ap)

Yield: $50 \%, 44.8 \mathrm{mg}$; appearance: yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.15(\mathrm{dd}, J=5.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=16.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 4 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.64-5.56(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{dd}, J=9.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=10.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}$, $6 \mathrm{H}), 1.49$ (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 167.00,163.02,158.29,155.37,149.40,146.66$, 142.45, 139.01, 138.66, 127.83, 122.69, 121.13, 116.79, 116.71, 115.68, 111.60, 70.87, 69.17, 60.40, 21.43, 16.93, 14.27.

ESI-MS: Calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{5}:\left[\mathrm{M}+\mathrm{H}^{+}\right] 448.2118$, found 448.2113 .
(3aS,4R,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-
dimethyltetrahydrofuro $[3,4-d][1,3]$ dioxol-4-yl $\quad(E)$-3-(2,6-dimethyl-4-(4-(2-

(pyridin-2-yloxy)propox-

y)phenoxy)phenyl)acrylate(4aq)

Yield: $50 \%, 66.2 \mathrm{mg}$; appearance: yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.15-8.13(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.62-$ $7.52(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 4 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.62(\mathrm{~s}, 2 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.63-5.55(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{dd}$, $J=6.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=$ 9.6, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.06(\mathrm{~m}, 4 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=6.4 \mathrm{~Hz}$,
$3 \mathrm{H}), 1.47$ (s, 3H), 1.38 (s, 3H), 1.36 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 165.34,163.02,158.65,155.45,149.22,146.66$, 144.13, 139.40, 138.67, 127.28, 121.22, 116.84, 116.72, 115.70, 113.17, 111.61, $109.28,100.95,85.10,82.22,79.26,72.87,70.87,69.16,66.79,26.96,25.88$, 25.06, 24.57, 21.58, 16.93.

ESI-MS: Calcd for $\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{NO}_{10}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$662.2960, found 662.2957 .
benzo[d] [1,3]dioxol-5-yl (E)-3-(2,6-bis(methyl-d3)-4-(4-(2-(pyridin-2-yloxy)pro-poxy)phenoxy)phenyl)acrylate(4ar- \boldsymbol{d}_{6})

Yield: 48%, 52.4 mg ; appearance: yellow oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} \mathbf{3}_{3}$) $\delta 8.16(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.94(\mathrm{~m}, 4 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 2 \mathrm{H}), 6.63(\mathrm{dd}, J$ $=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 2 \mathrm{H}), 5.65-5.57(\mathrm{~m}, 1 \mathrm{H})$, $4.21(\mathrm{dd}, J=10.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 165.76,163.03,158.74,155.47,149.23,147.92$, $146.67,145.23,145.05,144.45,139.38,138.68,127.37,121.25,121.15,116.90$, $116.73,115.72,113.92,111.61,107.91,103.79,101.63,70.87,69.17,16.94$.

ESI-MS: Calcd for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{D}_{6} \mathrm{NO}_{7}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right] 546.2393$, found 546.2394.
ethyl (E)-3-(2'-fluoro-4'-(1-methoxy-1-oxopropan-2-yl)-3,5-dimethyl-[1,1'-bip-henyll-4-yl)acrylate(4as)

Yield: 59\%, 45.4 mg ; appearance: colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 7.87(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24(\mathrm{~s}, 2 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.12(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.76(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 6 \mathrm{H}), 1.53(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 174.39,166.80,159.68(\mathrm{~d}, J=247.0 \mathrm{~Hz}), 142.77$, $141.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 136.92,135.34,133.38,130.65(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 128.72(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}), 127.23(\mathrm{~d}, J=14.0 \mathrm{~Hz}), 124.05,123.51(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 115.23(\mathrm{~d}, J=$ 23.0 Hz), 60.59, 52.22, 44.88, 21.25, 18.40, 14.30.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-117.11.
ESI-MS: Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{FO}_{4}$: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$385.1810, found 385.1807.
methyl 2-(2-fluoro-3',4',5'-trimethyl-[1,1'-biphenyl]-4-yl)propanoate(4at)

Yield: 85%, 51.1 mg ; appearance: yellow oil.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.39(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 2 \mathrm{H}), 7.15-7.09$ (m, 2H), $3.77(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 174.47,159.67(\mathrm{~d}, J=246.0 \mathrm{~Hz}), 141.24(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}), 136.51,134.76,132.32,130.74(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 128.04(\mathrm{~d}, J=3.0 \mathrm{~Hz})$, $127.91,123.32(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 115.06(\mathrm{~d}, J=24.0 \mathrm{~Hz}), 52.15,44.86,20.64,18.40$, 15.22.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-117.35$.
ESI-MS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FO}_{2}$: $\left[\mathrm{M}-\mathrm{H}^{+}\right]$299.1453, found 299.1455.
methyl- d_{3} 2-(2-fluoro-4'-methyl-3',5'-bis(methyl- $\left.d_{3}\right)$-[1,1'-biphenyl]-4-yl)propanoate (4at- \boldsymbol{d}_{9})

Yield: $80 \%, 49.5 \mathrm{mg}$; appearance: yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.41(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 2 \mathrm{H}), 7.17-7.12$ (m, 2H), $3.78(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 174.46,159.67(\mathrm{~d}, J=246.0 \mathrm{~Hz}$), $141.24(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}), 136.36,134.76,132.32,130.72(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 128.03(\mathrm{~d}, J=1.0 \mathrm{~Hz})$, 127.92, $123.30(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 115.05(\mathrm{~d}, J=24.0 \mathrm{~Hz}), 44.85,18.37,15.16$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-117.30$.
ESI-MS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{D}_{9} \mathrm{FO}_{2}:\left[\mathrm{M}+\mathrm{Na}^{+}\right]$332.1983, found 332.1986.

References:

[1] Zhang, Z.; Chen, X.; Li, X.-S.; Wang, C.-T.; Niu, Z.-J.; Zhang, B.-S.; Liu, X.-Y.; Liang, Y.-M. Ortho C-H Hydroxyalkylation or Methylation of Aryl Iodides by Ethers and TMSI via a Catellani Strategy. Org. Lett. 2022, 24, 6897-6902.
[2] Lemhadri, M.; Fall, Y.; Doucet, H.; Santelli, M. Palladium-Catalysed Heck Reactions of Alk-1-en-3-ones with Aryl Bromides: A Very Simple Access to (E)-1-Arylalk-1-en-3-ones. Synthesis 2009, 6, 1021-1035.
[3] Gao, Q.; Shang, Y.; Song, F.; Ye, J.; Liu, Z.-S.; Li, L.; Cheng, H.-G.; Zhou, Q. Modular DualTasked C-H Methylation via the Catellani Strategy. J. Am. Chem. Soc. 2019, 141, 15986-15993.
[4] Fuson, R. C.; Thomas, N. Extension of the Reformatsky Reaction to New Types of Compounds. J. Org. Chem. 1953, 18, 1762-1766.
[5] Liang, X.; Xiong, M.; Zhu, H.; Shen, K.; Pan, Y. Aerobic Copper-Catalyzed Synthesis of (E)Vinyl Sulfones by Direct C-S Bond Oxidative Coupling. J. Org. Chem. 2019, 84, 11210-11218.
[6] Wang, L.; Yang, Z.; Zhu, H.; Liu, H.; Lv, S.; Xu, Y. TEMPO and Silver-Mediated Intermolecular Phosphonylation of Alkenes: Stereoselective Synthesis of (E)Alkenylphosphonates. Eur. J. Org. Chem. 2019, 2019, 2138-2142.
[7] Sai, M. Direct Reduction of Allylic Alcohols Using Isopropanol as Reductant. Adv. Synth. Catal. 2018, 360, 3482-3487.

X-ray Date:

CCDC: 2323662

Figure S1. ORTEP drawing for the product 4ag.
N240104A
Table 1 Crystal data and structure refinement for N240104A.
Identification code N240104A

Empirical formula C19H18O4
Formula weight 310.33
Temperature/K 296.15
Crystal systemmonoclinic
Space group P21/c
$\mathrm{a} / \AA 13.6705(14)$
b/ \AA 7.2456(7)
c/ $\AA 16.9158(17)$
$\alpha{ }^{\circ} \quad 90$
$\beta /{ }^{\circ} \quad 105.335(2)$
$\gamma /{ }^{\circ} \quad 90$
Volume/Å3 1615.9(3)
Z 4
$\rho c a l c g / \mathrm{cm} 3 \quad 1.276$
$\mu / \mathrm{mm}-1 \quad 0.089$
$F(000) \quad 656.0$
Crystal size $/ \mathrm{mm} 3 \quad 0.22 \times 0.21 \times 0.18$

Radiation $\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ} 4.994$ to 50.016
Index ranges $-15 \leq \mathrm{h} \leq 16,-8 \leq \mathrm{k} \leq 8,-20 \leq 1 \leq 20$
Reflections collected 8941
Independent reflections $2836[$ Rint $=0.0180$, Rsigma $=0.0180]$
Data/restraints/parameters 2836/0/208
Goodness-of-fit on F2 1.054
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R} 1=0.0399, \mathrm{wR} 2=0.1088$
Final R indexes [all data] $\mathrm{R} 1=0.0489, \mathrm{wR} 2=0.1172$
Largest diff. peak/hole / e Å-3 0.16/-0.15
Table 2 Fractional Atomic Coordinates ($\times 104$) and Equivalent Isotropic Displacement Parameters ($\AA 2 \times 103$) for N240104A. Ueq is defined as $1 / 3$ of of the trace of the orthogonalised UIJ tensor.

```
Atom x y z U(eq)
O1 7901.5(9)1321.9(17) 4096.1(7)68.2(4)
O2 9059.2(9)3155.7(18) 4917.2(7)68.5(4)
O3 10024.1(11) 4470(2) 2418.0(9)97.1(5)
O4 11544.6(10) 2925.8(19) 2861.9(8)78.5(4)
C1 10867.6(16) 3784(3) 2171.5(12) 80.0(6)
C2 10108.2(12) 3749(2) 3180.4(10) 57.1(4)
C3 11012.1(11) 2830(2) 3447.1(10) 53.2(4)
C4 11278.9(12) 1984(2) 4189.6(10) 58.1(4)
C5 10595.5(12) 2081(2) 4668.5(10) 57.4(4)
C6 9697.0(12) 3001(2) 4392.2(9)52.5(4)
C7 9424.9(12) 3872(2) 3636.5(10) 58.3(4)
C8 8138.1(12) 2317(2) 4682.9(9)51.9(4)
C9 7530.0(13) 2764(2) 5247.7(10) 57.9(4)
C10 6589.4(11) 2155(2) 5106.2(9)49.9(4)
C11 5830.1(11) 2433.5(18) 5568.2(9)45.2(3)
C12 6073.0(12) 2499(2) 6431.8(9)52.8(4)
```



```
C16 53.5(9) 40.1(7) 51.9(8) -1.8(6) 12.1(7) -4.8(6)
C17 63.0(10) 61.6(10) 53.6(9) -0.5(7) 5.6(8) -3.5(8)
C18 67.2(11) 122.3(17)47.2(9) 6.6(10) 8.2(8) 0.3(11)
C19 81.4(15) 142(2) 106.0(17)-30.0(16) 54.4(13) -8.8(14)
```

Table 4 Bond Lengths for N240104A.

```
Atom Atom Length/\AÅ Atom Atom Length/\AA
O1 C8 1.2001(18) C8 C9 1.459(2)
O2 C6 1.4041(18) C9 C10 1.320(2)
O2 C8 1.3592(19) C10 C11 1.469(2)
O3 C1 1.416(2) C11 C12 1.411(2)
O3 C2 1.3679(19) C11 C16 1.407(2)
O4 C1 1.427(2) C12 C13 1.386(2)
O4 C3 1.3769(18) C12 C18 1.506(2)
C2 C3 1.371(2) C13 C14 1.381(3)
C2 C7 1.363(2) C14 C15 1.382(2)
C3 C4 1.358(2) C14 C19 1.512(2)
C4 C5 1.391(2) C15 C16 1.386(2)
C5 C6 1.367(2) C16 C17 1.507(2)
C6 C7 1.385(2)
```

Table 5 Bond Angles for N240104A.

Atom		Atom	m Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C8	O2	C6	117.53(12)	O2 C8	C9 1	110.75(13)		
C2	O3	C1	105.76(14)	C10 C9	C8 1	120.24(15)		
C3	O4	C1	104.99(13)	C9 C 10	C11 1	130.49(15)		
O3	C1	O4	108.33(14)	C12 C11	C10 1	123.34(14)		
O3	C2	C3	109.85(14)	C16 C11	C10 1	117.33(13)		
C7	C2	O3	127.55(15)	C16 C11	C12 1	119.27(14)		
C7	C2	C3	122.60(14)	C11 C12	C18	122.81(15)		
C2	C3	O4	109.93(14)	C13 C12	C11 1	119.01(15)		

| C4 | C3 | O4 | $128.61(15)$ | | C13 C12 C18 118.16(15) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C4 | C3 | C2 | $121.46(15)$ | | C14 C13 C12 $122.50(15)$ |
| C3 | C4 | C5 | $117.29(14)$ | | C13 C14 C15 117.62(15) |
| C6 | C5 | C4 | $120.45(14)$ | | C13 C14 C19 121.30(17) |
| C5 | C6 | O2 | $118.35(14)$ | | C15 C14 C19 121.08(18) |
| C5 | C6 | C7 | $122.38(14)$ | | C14 C15 C16 $122.67(15)$ |
| C7 | C6 | O2 | $119.16(14)$ | | C11 C16 C17 121.74(14) |
| C2 | C7 | C6 | $115.82(14)$ | | C15 C16 C11118.90(14) |
| O1 | C8 | O2 | $122.42(14)$ | | C15 C16 C17 $119.35(14)$ |
| O1 | C8 | C9 | $126.81(14)$ | | |

Table 6 Hydrogen Atom Coordinates $(\AA \times 104)$ and Isotropic Displacement Parameters $(\AA 2 \times 103)$ for N 240104 A .

Atom $x \quad y \quad z \quad U(e q)$
H1A11208.85 $4786.81 \quad 1973.13 \quad 96$
H1B $10643.942894 .8 \quad 1732.12 \quad 96$
H4 $\quad 11893.671365 .24 \quad 4370.61 \quad 70$
H5 $\quad 10750.921515 .61 \quad 5180.21 \quad 69$
$\begin{array}{lllll}\text { H7 } & 8813.96 & 4501 & 3451.98 & 70\end{array}$
H9 $\quad 7806.12 \quad 3479.57 \quad 5709.19 \quad 69$
H10 $6372.13 \quad 1433.48 \quad 4637.97 \quad 60$
H13 $5457.68 \quad 2682.8 \quad 7382.44 \quad 73$
H15 $3395.16 \quad 2870.29 \quad 5231.87 \quad 71$
H17A $\quad 4842.12 \quad 3505.61 \quad 3988.98 \quad 92$
$\begin{array}{lllll}\text { H17B } & 3782.02 & 2689.91 & 3994.88 & 92\end{array}$
$\begin{array}{lllll}\mathrm{H} 17 \mathrm{C} & 4690.32 & 1362.51 & 4003.38 & 92\end{array}$
$\begin{array}{llllll}\mathrm{H} 18 \mathrm{~A} & 7480.2 & 1341.06 & 6785.09 & 120\end{array}$
$\begin{array}{lllll}\mathrm{H} 18 \mathrm{~B} & 7134.3 & 2171.36 & 7523.29 & 120\end{array}$
$\begin{array}{lllll}\mathrm{H} 18 \mathrm{C} & 7501.6 & 3481.96 & 6922.49 & 120\end{array}$
$\begin{array}{llllll}H 19 A & 3351.22 & 1730.87 & 7029.77 & 156\end{array}$
$\begin{array}{lllll}H 19 B & 2838.72 & 3312.07 & 6429.67 & 156\end{array}$
$\begin{array}{lllll}\mathrm{H} 19 \mathrm{C} & 3646.32 & 3794.17 & 7250.57 & 156\end{array}$

NMR Spectra:

(100

4am
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(

