Visible-light-induced Markovnikov addition of olefin for construction of deuterated α-tertiary amino acid derivatives

Rui Chen ${ }^{\text {a }}$, Cong Lu ${ }^{\text {a }}$, Yujun Lia ${ }^{\text {a }}$, and Ke Zheng*a
${ }^{a}$ Key Laboratory of Green Chemistry \& Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

Table of contents

1 General information S1
2 Reaction Optimization S4
3 The Application of the Reaction S7
4 Mechanistic studies S10
5 Preparation of Starting Materials S22
6 Characterization Data S29
7 References S56

1 General information

1.1 Solvents and Reagent

Dry solvents and deuterated solvents were purchased from $J \& K^{\circledR}\left(\right.$ Extra Dry, $\left.\mathrm{H}_{2} \mathrm{O}<30 \mathrm{ppm}\right)$ stored under molecular sieves. All reagents were purchased from Adamas, TCI, Aldrich and Alfa and used without further purification, unless otherwise stated.

1.2 Experimental chemicals

All reactions were performed under a positive pressure of $\mathrm{N}_{2}(\geqq 99.99 \%)$ in oven-dried glassware using standard Schlenk techniques, unless otherwise stated. In the process of reaction, Schlenk tube was heated by circulating water to ensure that transformation process was around $40^{\circ} \mathrm{C}$. For thin layer chromatography (TLC) analysis throughout this work, HuangHai- HSGF254 TLC plates ($0.2 \pm 0.03 \mathrm{~mm}$ thickness, F254 indicator) were employed. Flash column chromatography was performed with glass columns and the purification of products was accomplished using forced-flow chromatography on Silica Gel (300-400 mesh). Organic solvents were concentrated under reduced pressure on an EYELA N-1300 rotary evaporator (in vacuo at $30-45^{\circ} \mathrm{C}$). Yields refer to isolated materials of $>95 \%$ purity, as determined by ${ }^{1} \mathrm{H}$ NMR analysis. Deuterated ratio ([D] or D/H) and diastereoselectivity ratio (d.r.) also determined by ${ }^{1} \mathrm{H}$ NMR analysis. Regioisomeric ratio (r.r.) was determined by ${ }^{1} \mathrm{H}$ NMR or HPLC analysis using C18 column.

1.3 Analytical Instrumentation

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data were recorded on Bruker AVANCE III HD-400, spectrometers using CDCl 3 or DMSOd_{6} as solvents, typically at $20-23^{\circ} \mathrm{C}$. Chemical shifts (δ) are reported in ppm relative to the residual solvent signal ($\delta 7.26$ for ${ }^{1} \mathrm{H}$ NMR, $\delta 77.00$ for ${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}, \delta 2.50$ for ${ }^{1} \mathrm{H}$ NMR, $\delta 39.52$ for ${ }^{13} \mathrm{C}$ NMR in DMSO- $d_{6}, \delta 4.79$ for ${ }^{1} \mathrm{H}$ NMR in $\left.\mathrm{D}_{2} \mathrm{O}\right) .{ }^{19} \mathrm{~F}$ NMR spectra were taken on a Bruker AVANCE III HD (400 MHz) instrument. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift ($\delta \mathrm{ppm}$), integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $m=$ multiplet, $b r=$ broad $)$, and coupling constant (Hz). Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift and no special nomenclature is used for equivalent carbons. High-resolution mass spectra (HRMS) were recorded on a UPLC of Thermo Q Exactive Focus. UV-Vis absorption spectra were recorded using 1 cm quartz cuvettes on a Thermo Scientific NanoDrop 2000C spectrophotometer. Regioisomeric ratio was recorded on Bruker AVANCE III HD-400 or Waters e2695 HPLC.

1.4 Light Sources and Standard Reaction Setup

The setup (shown below) is employed to photochemical organic synthesis reaction, which is made up of separable base and reaction hole (PhotoSyn 3.0 reactor). The integrated light panel with certain wavelength can be embedded into the sliding groove of the base. Due to the hollow design, the reaction can be kept at an ideal temperature through cold or hot medium. In a typical reaction, Schlenk tube was inserted into the hole and the reaction mixture is irradiated under 10 W LEDs with 1.0 cm distance.

Figure S1. The detailed set-up of the photoreaction.

Figure S2. Reaction temperature

Figure S3. Schematic photoreactor

Figure S4. The detail of LEDs board

2 Reaction Optimization

2.1 General procedure

A 10 mL Schlenk tube was equipped with a magnetic stir bar, the 2-(4-methoxyphenyl)-4- phenyloxazol-5(4H)-one 1 (0.1 mmol) was added. In glove box, α-methyl-styrene $2\left(0.2 \mathrm{mmol}, 2.0\right.$ equiv), NEt_{3} (triethylamine) additive (0.3 mmol, 3.0 equiv) and super dry 1,4-dioxane (0.95 mL) and deuterium oxide ($\mathrm{D}_{2} \mathrm{O}$) (0.05 mL) were added. The tube was sealed and removed from the glove box. The reaction mixture was irradiated under 10 W LEDs (405 nm), continuous circulating water was introduced to ensure that the reaction was carried out at $40^{\circ} \mathrm{C}$. Monitored by TLC until the completely consumption of 2-(4-methoxyphenyl)-4- phenyloxazol-5(4H)-one 1, and analysed by HPLC until the regioisomers were completely converted ($\mathbf{C} 2$ to $\mathbf{C} 4$), the mixture was concentrated and purified by column chromatography (PE/EtOAc $=50 / 1$) to afford pure product 3.

2.2 Evaluation of reaction parameter

For optimization studies, 2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one 1, α-methyl-styrene 2, $\mathrm{D}_{2} \mathrm{O}$ and NEt_{3} was selected as the standard substrate and the reaction conditions, such as light sources, solvents, temperature, concentration, as well as base additives were investigated.

Note: the polarities of products $\mathbf{3}$ and $\mathbf{3}$ ' are very similar, it's difficult to separate them by chromatography column.

Table S1. Investigation of light sources. ${ }^{[a]}$

1

2

$\mathrm{N}_{2}, 40^{\circ} \mathrm{C}, \mathrm{Y} \mathrm{h}$

3

3^{\prime}

Entry	Light sources (nm)	Yield ${ }^{[b]}[\%]\left(\right.$ r.r. $=3: 3{ }^{\prime}$)		[D]
		1 h	24 h	
1	385	79\% (1.2 : 1)	79\% (> $20: 1$)	> $20: 1$
2	395	77\% (1.1: 1)	86\% (> $20: 1$)	> $20: 1$
3	405	98\% (1.1: 1)	87\% (> $20: 1$)	> $20: 1$
4	415	-	84\% (> $20: 1$)	> $20: 1$
5	425	76\% (1.1: 1)	95\% (1.4 : 1)	> $20: 1$
6	435	-	95\% (1.1 : 1)	> $20: 1$
7	445	88\% (1: 1)	97\% (1:1)	> $20: 1$

[a] Reaction conditions: 1 (0.1 mmol), $\mathbf{2}(0.2 \mathrm{mmol}), \mathrm{NEt}_{3}(0.2 \mathrm{mmol})$, super dry 1,4 -dioxane (0.9 mL), $\mathrm{D}_{2} \mathrm{O}$ $(0.1 \mathrm{~mL}), 40^{\circ} \mathrm{C}$. [b] Isolated yield. The regioselectivity of $3 / 3^{\prime}$ in parentheses. The [D] and r.r. were determined by ${ }^{1} \mathrm{H}$ NMR analysis. $[\mathrm{D}]=$ deuterated ratio, r.r. $=$ regioselectivity.

Table S2. Investigation of solvents. ${ }^{[a]}$

[a] Reaction conditions: $1(0.1 \mathrm{mmol}), \mathbf{2}\left(0.2 \mathrm{mmol}^{2}\right), \mathrm{NEt}_{3}(0.2 \mathrm{mmol})$, super dry 1,4-dioxane (0.9 mL), $\mathrm{D}_{2} \mathrm{O}$ $(0.1 \mathrm{~mL}), 40^{\circ} \mathrm{C}$, irradiation with a 10 W purple LED $(405 \mathrm{~nm})$. [b] Isolated yield. The regioselectivity of $\mathbf{3 / 3} \mathbf{3}^{\prime}$ in parentheses. The [D] and r.r. were determined by ${ }^{1} \mathrm{H}$ NMR analysis. $\mathrm{n} . \mathrm{d} .=$ not detected. $[\mathrm{D}]=$ deuterated ratio, r.r. = regioselectivity.

Table S3. Investigation of base additives. ${ }^{[a]}$

4	DIPEA	$88 \%(>20: 1)$	$>20: 1$
5	DBU	$28 \%(>20: 1)$	$>20: 1$
6	$\mathrm{NEt}_{3}(0.2$ equiv)	$90 \%(15: 1)$	$>20: 1$
7	$\mathrm{NEt}_{3}(0.5$ equiv)	$80 \%(>20: 1)$	$>20: 1$
8	$\mathrm{NEt}_{3}(1.0$ equiv)	$84 \%(>20: 1)$	$>20: 1$
9	$\mathrm{NEt}_{3}(3.0$ equiv)	$94 \%(>20: 1)$	$>20: 1$
10	$\mathrm{NEt}_{3}(5.0$ equiv)	$86 \%(>20: 1)$	$>20: 1$
11	No base	$69 \%(12: 1)$	$>20: 1$

[a] Reaction conditions: $\mathbf{1}$ (0.1 mmol), $\mathbf{2}(0.2 \mathrm{mmol})$, base additive (0.1 x mmol$)$, super dry 1,4 -dioxane (0.9 $\mathrm{mL}), \mathrm{D}_{2} \mathrm{O}(0.1 \mathrm{~mL}), 40^{\circ} \mathrm{C}$, irradiation with a 10 W purple LED (405 nm) for 24 h . [b] Isolated yield. The regioselectivity of $3 / 3$ ' in parentheses. The [D] and r.r. were determined by ${ }^{1} \mathrm{H}$ NMR analysis. [D] = deuterated ratio, r.r. $=$ regioselectivity.

Table S4. Investigation of dosage of deuterium oxide. ${ }^{\text {a] }}$

 1		405 nm LED (10 W)	
Entry	$\mathrm{D}_{2} \mathrm{O}(\mathrm{x} \mu \mathrm{L})$	Yield ${ }^{[b]}[\%]\left(\right.$ r.r. $=3: 3{ }^{\prime}$)	[D]
1	$80 \mu \mathrm{~L}$	94\% (> 20 :1)	> 20:1
2	$60 \mu \mathrm{~L}$	93\% (> $20: 1$)	> 20 : 1
3	$50 \mu \mathrm{~L}$	96\% (> $20: 1$)	> $20: 1$
4	$40 \mu \mathrm{~L}$	89\% (> $20: 1$)	> $20: 1$
5	$30 \mu \mathrm{~L}$	88\% (> $20: 1$)	9:1

[a] Reaction conditions: $\mathbf{1}(0.1 \mathrm{mmol})$, $\mathbf{2}(0.2 \mathrm{mmol})$, base additive $(0.1 \mathrm{x} \mathrm{mmol})$, super dry 1,4 -dioxane, $\mathrm{D}_{2} \mathrm{O}, 40^{\circ} \mathrm{C}$, irradiation with a 10 W purple LED $(405 \mathrm{~nm})$ for 24 h . [b] Isolated yield. The regioselectivity of $3 / 3$ ' in parentheses. The [D] and r.r. were determined by ${ }^{1} \mathrm{H}$ NMR analysis. $[\mathrm{D}]=$ deuterated ratio, $r . r$. $=$ regioselectivity.

Table S5. Investigation of temperature and concentration. ${ }^{[a]}$

7	No $\mathrm{D}_{2} \mathrm{O}$	40	90% [c]	-
8	Air instead of N_{2}	40	46%	-
9	In dark	40	n. d.	-

[a] Reaction conditions: 1 (0.1 mmol), $\mathbf{2}(0.2 \mathrm{mmol}), \mathrm{NEt}_{3}$ (0.3 mmol), super dry 1,4-dioxane ($0.62-1.95$ mL), $\mathrm{D}_{2} \mathrm{O}$. [b] Isolated yield. n. d. = not detected. The regioselectivity of $3 / 3$ ' in parentheses. The [D] and r.r. were determined by ${ }^{1} \mathrm{H}$ NMR analysis. n. d. = not detected. $[\mathrm{D}]=$ deuterated ratio, r.r. $=$ regioselectivity. [c] At this time, it is a standard product without deuterium substitution 3".

3 The Application of the Reaction

3.1 General Procedures for the continuous circulation flow photoreactions.

1
5.0 mmol

2
10.0 mmol

Standard conditions
5 days $10 \mathrm{~mL} / \mathrm{min}$

3, 1.29 g, 67\% yield
$[\mathrm{D}]>20: 1$, r.r. $>20: 1$

Figure S5: Process of gram-scale synthesis by continuous circulation flow reactor
A 100 mL oven-dried eggplant type flask was charged with the oxazolone 1 ($5.0 \mathrm{mmol}, 1.34 \mathrm{~g}$). Then, anhydrous 1,4-dioxane (47.5 mL) and $\mathrm{D}_{2} \mathrm{O}(2.5 \mathrm{~mL})$ were added in glove box, followed by alkene $2(10 \mathrm{mmol}, 1.3 \mathrm{~mL}, 2.0$ equiv) and NEt_{3} ($15 \mathrm{mmol}, 2.1 \mathrm{~mL}, 3.0$ equiv). The eggplant type flask was taken out of the glove box and continuous circulation flow reactor pipeline was degassed by N_{2} sparging for 10 min . Both feed and outlet pipes
were inserted into the eggplant type reaction flask and kept under an N_{2} atmosphere. The solution was delivered to the flow reactor through a peristaltic pump (Chuang Rui) set at $10 \mathrm{~mL} / \mathrm{min}$. The solution was irradiated with 405 nm LED (10 W x 20) at $25 \sim 35^{\circ} \mathrm{C}$ and flow back into the reaction flask. After complete consumption of oxazolone and regioisomers were completely converted ($\mathbf{C} 2$ to $\mathbf{C 4}$), the volatiles were removed in vacuo, then the residue purified by flash column chromatography on silica (PE/EtOAc $=50 / 1$) to afford the product $3(1.29 \mathrm{~g}, 67 \%$ yield) as a colorless oil.

3.2 Gram-scale synthesis

Figure S6: Process of gram-scale synthesis by batch reactor

A 250 mL Schlenk tube was equipped with a magnetic stir bar, the 2-(4-methoxyphenyl)-4- phenyloxazol-5(4H)one 1 (5.0 mmol) was added. In glove box, α-methyl-styrene 2 ($10 \mathrm{mmol}, 2.0$ equiv), NEt_{3} (triethylamine) additive ($30 \mathrm{mmol}, 3.0$ equiv) and super dry 1,4-dioxane $\left(47.5 \mathrm{~mL}\right.$) and deuterium oxide $\left(\mathrm{D}_{2} \mathrm{O}\right)(2.5 \mathrm{~mL})$ were added. The tube was sealed and removed from the glove box. The Schlenk tube was irradiated under 60 W LEDs (405 nm) for 24 h . Monitored by TLC until the completely consumption of 2-(4-methoxyphenyl)-4- phenyloxazol-5(4H)-one 1, and analysed by HPLC until the regioisomers were completely converted ($\mathbf{C 2}$ to $\mathbf{C 4}$), the mixture was concentrated and purified by column chromatography ($\mathrm{PE} / E t \mathrm{OAc}=50 / 1$) to afford pure product $3(1.54 \mathrm{~g}, 80 \%$ yield $)$.

3.3 Derivatization reaction

(1)

Figure $\mathbf{S 7}$
(1) To a solution of product $3(53.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ in methanol (4 mL) was added anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(14 \mathrm{mg}$, $0.1 \mathrm{mmol})$. The mixture was stirred for 1 h at room temperature. After removing solvent, the crude mixture was purified by flash column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=3 / 1$) to give the title compound $42(75.2 \mathrm{mg}, 90 \%$ yield $) .{ }^{1}$
(2) The oxazolone 41 ($67.6 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.) was stirred in aq. $\mathrm{HCl}(1 \mathrm{M}, 15 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 6 h . The mixture was subsequently filtered and after dilution with demineralized water the filtrate was washed twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. All volatiles were removed under reduced pressure to yield 43 as a colorless solid $(28.0 \mathrm{mg}, 63 \%) .{ }^{2}$

3.4 Unsuccessful substrates

Figure S8
Pyridine, quinoline and quinoxaline-substituted alkene and cyclohexyl-substituted allene are not compatible due to
reduction potential reason. Isoxazole-substituted alkene and 1,1-diphenylethylene are not compatible due to steric hindrance; 9-vinylanthracene and 4-vinylbenzonitrile are not compatible due to low reduction potentials of phenyl and cyano groups. Bromo-substituted oxazolone yield debrominated standard C4 products with 46% yield due to the low reduction potential of bromobenzene. Benzothiophene, alkyl sulfide substituted oxazolone and unsubstituted oxazolone are not compatible due to reduction potential reason.

4 Mechanistic studies

4.1 UV-Vis absorption spectrum

UV-Vis spectra experiment was measured on a Thermo Scientific NanoDrop 2000C spectrophotometer.

Figure S9. UV-Vis absorption spectra of oxazolone $1\left(10^{-3} \mathrm{M}\right)$, alkene $2\left(10^{-3} \mathrm{M}\right)$ and $\mathrm{NEt}_{3}\left(10^{-3} \mathrm{M}\right)$ were measured in super dry 1,4-dioxane

Figure S10. UV-Vis absorption spectra of $\mathbf{C 2}\left(10^{-3} \mathrm{M}\right)$ and $\mathbf{C 4}\left(10^{-3} \mathrm{M}\right)$ were measured in super dry 1,4-dioxane

4.2 Time variation curve

Figure S11. Time variation curve of regioisomers conversion (C2 to C4)
Procedure: Seven oven-dried 10 mL Schlenk tubes were equipped with a magnetic stir bar, the oxazolone 1 (0.1 $\mathrm{mmol})$ was added, respectively. In glove box, α-methyl-styrene 2 ($0.2 \mathrm{mmol}, 2.0$ equiv), NEt_{3} (triethylamine) additive ($0.3 \mathrm{mmol}, 3.0$ equiv) and super dry 1,4-dioxane (0.95 mL) and deuterium oxide ($\mathrm{D}_{2} \mathrm{O}$) (0.05 mL) were added, respectively. The tubes were sealed and removed from the glove box. Each reaction solution was irradiated under 10 W LEDs (405 nm), continuous circulating water was introduced to ensure that the reaction was carried out at $40{ }^{\circ} \mathrm{C}$. Seven identical reactions represent different reaction times, and when a certain time was reached, the corresponding reaction was removed. The mixture was concentrated and purified by column chromatography to
afford pure product. The yields first increased and then slowly decreased with the increase of time. The proportion of regioisomers (C4/C4+C2) was determined by ${ }^{1} \mathrm{H}$ NMR.

4.3 Control experiments of regioisomers conversion

Procedure: Six oven-dried 10 mL Schlenk tubes equipped with a magnetic stir bar were charged with $\mathbf{C 2}$ (38.6 mg , 0.1 mmol), respectively. In glove box, NEt_{3} ($0.3 \mathrm{mmol}, 3.0$ equiv) and super dry 1,4-dioxane (0.95 mL) and deuterium oxide $\left(\mathrm{D}_{2} \mathrm{O}\right)(0.05 \mathrm{~mL})$ were added for tube 1 . Similar to tube 1 , without $\mathrm{D}_{2} \mathrm{O}$ for tube 2 , without NEt_{3} for tube 3, without $\mathrm{D}_{2} \mathrm{O}$ and NEt_{3} for tube 4. And without $\mathrm{D}_{2} \mathrm{O}$ and NEt_{3}, but $\mathbf{C 4}(7.72 \mathrm{mg}, 20 \mathrm{~mol} \%)$ was added for tube 5. Under standard conditions, the light-shielded reaction was conducted in tube number 6. The preceding five reaction Schlenk tubes were sealed and removed from the glove box, and the reaction mixture was irradiated using 10 W 405 nm LEDs at $40^{\circ} \mathrm{C}$. The proportion of regioisomers (C4/C2) was determined by ${ }^{1} \mathrm{H}$ NMR.

Table S6. Investigation of conversion of C2 to C4

C2	405 nm LED (10 W)	
	NEt_{3} (3.0 equiv)	
	$\begin{gathered} \text { 1,4-dioxane/ } \mathrm{D}_{2} \mathrm{O}(95 / 5,0.1 \mathrm{~N} \\ \mathrm{N}_{2}, 40^{\circ} \mathrm{C}, 24 \mathrm{~h} \end{gathered}$	
entry	Conditions	C4/C2
1	None	1 : 1.2
2	w/o $\mathrm{D}_{2} \mathrm{O}$	1:1.5
3	w/o NEt_{3}	1.1:1
4	w/o $\mathrm{D}_{2} \mathrm{O}$ and NEt_{3}	1:1.5 or $>20: 1^{\text {a }}$
5	C4 (20 mol \%), w/o $\mathrm{D}_{2} \mathrm{O}$ and NEt_{3}	> $20: 1$
6	No light	0

${ }^{a}$ Reaction was performed for 48 h

Table S7. Investigation of conversion of C4 to C2

C4	405 nm LED (10 W)	(C2)
	NEt_{3} (3.0 equiv)	
	1,4-dioxane/ $\mathrm{D}_{2} \mathrm{O}(95 / 5,0.1 \mathrm{M})$	
	$\mathrm{N}_{2}, 40^{\circ} \mathrm{C}, 24 \mathrm{~h}$	
entry	Conditions	C2 (\%)
1	None	0
2	w/o $\mathrm{D}_{2} \mathrm{O}$	0
3	w/o NEt_{3}	0
4	w/o $\mathrm{D}_{2} \mathrm{O}$ and NEt_{3}	0

Procedure: Four oven-dried 10 mL Schlenk tubes equipped with a magnetic stir bar were charged with C4 (38.6 $\mathrm{mg}, 0.1 \mathrm{mmol}$), respectively. Similar to Table S6. The reaction mixture was irradiated using 10 W 405 nm LEDs for 24 h at $40^{\circ} \mathrm{C}$. During the reaction, HPLC analysis of crude sample from reaction mixture was taken to monitor the reaction.

These control experiments (Table S6, S7) showed: (1) Under standard conditions, it takes 2 days for $\mathbf{C 2}$ to fully convert to $\mathbf{C 4}$, while $\mathbf{C} 4$ cannot convert to $\mathbf{C} 2$; (2) $\mathrm{D}_{2} \mathrm{O}$ has a slightly promoting effect on the conversion of $\mathbf{C} 2$ to C4, while NEt_{3} has a slightly inhibitory effect, adding a small amount of C4 can greatly promote the conversion of $\mathbf{C} 2$ to $\mathbf{C} 4$ within 24 hours. (3) C4 is stable, which can't be converted to $\mathbf{C} 2$ under any conditions.

Figure S12. A view of the transformation of regioisomers

4.4 Crossover experiments

73

Figure S13
S13

Procedure: A oven-dried 10 mL Schlenk tube was equipped with a magnetic stir bar, the $\mathbf{3}^{\prime}$ ($19.3 \mathrm{mg}, 0.05 \mathrm{mmol}$) and $73(22.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ were added. In glove box, super dry 1,4 -dioxane (0.5 mL) was added. The tube was sealed and removed from the glove box. The reaction mixture was irradiated under 10 W LEDs $(405 \mathrm{~nm})$ at $40^{\circ} \mathrm{C}$ for 48 h . After completion, the total ratio of products (74:3:11:33 $=6: 42: 18: 34$, due to the different structures of the substrates, the corresponding absorbance values differ as well. The use of this ratio is for reference purposes only) were obtained by HPLC analysis of crude reaction mixture, which revealed that the conversion of regioisomers is a process of C-C bond cleavage followed by intermolecular reaction, rather than intramolecular rearrangement.

4.5 Radical clock experiment

$0.1 \mathrm{mmol}, 1.0$ equiv

76, 80\%
[D] > $20: 1$, r.r. $>20: 1$

Figure S14
Procedure: An oven-dried 10-mL Schlenk tube equipped with a stirrer was charged with the oxazolone 1 (0.1 mmol , 1.0 equiv). Then, super dry 1,4-dioxane $(0.95 \mathrm{~mL})$ and $\mathrm{D}_{2} \mathrm{O}(0.05 \mathrm{~mL})$ were added in glove box, followed by alkene ($0.2 \mathrm{mmol}, 44 \mu \mathrm{~L}, 2.0$ equiv) and $\mathrm{NEt}_{3}(0.3 \mathrm{mmol}, 42 \mu \mathrm{~L}, 3.0$ equiv). The tube was sealed with a screw cap and took out form glove box. The reaction mixture was inserted into the PhotoSyn 3.0 reactor and irradiated using a 10W LED lamp (405 nm) at $40^{\circ} \mathrm{C}$ for 24 h . After complete consumption of oxazolone and regioisomers were completely converted (C-2 to C-4), the volatiles were removed in vacuo. Then, the crude product was purified by flash chromatography ($\mathrm{PE} / \mathrm{EtOAc}=50 / 1$) to afford the ring-opening product 76 in 80% yield.

4.6 β-elimination experiment

Figure S15
Procedure: An oven-dried 10-mL Schlenk tubes equipped with a stirrer were charged with the oxazolone 1 (0.1 mmol, 1.0 equiv), respectively. Then, super dry 1,4 -dioxane $(0.95 \mathrm{~mL})$ and $\mathrm{D}_{2} \mathrm{O}(0.05 \mathrm{~mL})$ were added in glove box, followed by alkene 77 ($0.2 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{NEt}_{3}(0.3 \mathrm{mmol}, 42 \mu \mathrm{~L}, 3.0$ equiv). Two tubes were sealed with a screw cap and took out form glove box. One reaction mixture was inserted into the PhotoSyn 3.0 reactor and irradiated using a 10 W LED lamp (405 nm) at $40^{\circ} \mathrm{C}$ for 24 h . After complete consumption of oxazolone and regioisomers were completely converted ($\mathbf{C - 2}$ to $\mathbf{C}-4$), the volatiles were removed in vacuo. Then, the crude product was purified by flash chromatography ($\mathrm{PE} / \mathrm{EtOAc}=50 / 1$) to afford the non-deuterated product 78 in 35% yield. Other reaction mixture was allowed to react in the dark for one hour, the result revealed that the desired product was not obtained, and indicate it is not a SN2 reaction.

4.7 Radical anion trapping experiment

Figure S16

Figure S17

Figure S18

2-(4-methoxyphenyl)-4-phenyl-4-(2-phenylbutan-2-yl)oxazol-5(4H)-one (80)

HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+} 400.1907$, found 400.1912

Figure S19

2-(4-methoxyphenyl)-4-methyl-4-phenyloxazol-5(4H)-one (79)

${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3) $\delta 8.09-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.04-6.97(\mathrm{~m}$, $2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H})$.

Procedure: A 10 mL Schlenk tube was equipped with a magnetic stir bar, the 2-(4-methoxyphenyl)-4-
 (triethylamine) additive ($0.3 \mathrm{mmol}, 3.0$ equiv) and super dry 1,4-dioxane (1.0 mL) and Mel (5.0 equiv) were added. The tube was sealed and removed from the glove box. The reaction mixture was irradiated under 10 W LEDs (405 nm), continuous circulating water was introduced to ensure that the reaction was carried out at $40^{\circ} \mathrm{C}$. Monitored by TLC until the completely consumption of 2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one 1, and analysed by HPLC until the regioisomers were completely converted ($\mathbf{C} 2$ to $\mathbf{C 4}$). Column chromatography and ${ }^{1} \mathrm{HNMR}$ analysis confirmed the presence of the three-component product, but due to its low polarity and yield, it was not possible to obtain the pure three-component product (Figure S17). The main product is oxazolone, which undergoes a twocomponent SN2 reaction with Mel to afford the pure product 79 (Figure S19).

The ${ }^{1} \mathrm{HNMR}$ spectrum of the mixture product (Figure $\mathbf{S 1 7}$) shows that product 80 has obvious characteristic peaks. And we speculate that the reason why the integral of the methyl at position 3 is less than 3 is because there is a hydrogenated product $\mathbf{3}^{\prime \prime}$ generated in the system, and the peak of $\mathbf{3}^{\prime \prime}$ is very close to that of $\mathbf{8 0}$. In addition, the
molecular weight of the product 80 was also detected by HRMS analysis (Figure S18). The above data all indicate that the alkene generated a radical anion intermediate during the reaction.

4.8 Light on/off experiments

The light on/off experiments showed that no further conversion after initial irradiation in the dark, the fluctuation of yields in the dark are within the range of flash column chromatography error.

Figure S20 Light on/off experiments
Procedure: Eight oven-dried round bottom flasks (25 ml) with eight stir bars were charged with the oxazolone 1(1.0 mmol, 26.7 mg), respectively. In glove box, α-methyl-styrene 2 ($0.2 \mathrm{mmol}, 2.0$ equiv), NEt_{3} (triethylamine) additive ($0.3 \mathrm{mmol}, 3.0$ equiv) and super dry 1,4-dioxane (0.95 mL) and deuterium oxide $\left(\mathrm{D}_{2} \mathrm{O}\right)(0.05 \mathrm{~mL})$ were added. Eight tubes were sealed and removed from the glove box. The reaction mixture was irradiated under 10 W LEDs (405 nm), continuous circulating water was introduced to ensure that the reaction was carried out at $40^{\circ} \mathrm{C}$. After reaching the corresponding time, the volatiles were removed in vacuo, the mixture was concentrated and purified by flash column chromatography to afford pure products and record yield.

4.9 Quantum yield measurement

The photon flux set by the LED $(\lambda=400 \mathrm{~nm}, 10 \mathrm{~W})$ was determined using the standard potassium ferricoxalate photometric method, following a modified literature procedure.

A ferrioxalate actinometer solution was prepared by following the Hammond variation of the Hatchard and Parker procedure outlined in the Handbook of Photochemistry.

1. Potassium ferrioxalate solution: 294.8 mg of potassium ferrioxalate and $139 \mu \mathrm{~L}$ of sulfuric acid (96%) were added to a 50 mL volumetric flask, and filled to the mark with water.
2. Buffer solution with Phenanthroline: 20 mg 1,10-phenanthroline, 2.5 g of NaOAc and $400 \mu \mathrm{~L}$ of sulfuric acid (96\%) were added to a 50 mL volumetric flask, and filled to the mark with water.

Both solutions were stored in the dark.
1.0 mL of the 0.0156 M potassium ferric oxalate solution was added to a flask containing a stirring bar. Then, the solution was irradiated for $0 \mathrm{~s}, 2 \mathrm{~s}, 5 \mathrm{~s}$. Immediately after irradiation, the buffer solution with Phenanthroline (2.5 mL) was added to the cuvette and the mixture and stired in the dark for 1 h to allow the ferrous ions to completely coordinate to the phenanthroline. Take 100 uL the mixture and add water to obtain 1 mL solution. The solution was transferred to a quartz cuvette (1.0 cm path length) and the absorbance at $\lambda=510 \mathrm{~nm}$ was measured by UV/Vis spectroscopy (Figure S21).

Figure S21. UV/Vis spectra of potassium ferric oxalate/1,10-phenanthroline solutions

The number of moles of Fe^{2+} produced by light irradiation was calculated using:

$$
\mathrm{mol} \mathrm{Fe} 2+=\frac{V_{1} V_{3} \Delta A(510 \mathrm{~nm})}{V_{2} l \varepsilon(510 \mathrm{~nm})}
$$

Where
$V_{1}=$ the volume of potassium ferric oxalate solution irradiated $\left(1.0 \times 10^{-3} \mathrm{~L}\right)$.
$\mathrm{V}_{2}=$ the volume of the solution taken for measurement of the Fe^{2+} ions $\left(100 \mathrm{ul}=1.0 \times 10^{-4} \mathrm{~L}\right)$.
$V_{3}=$ the final volume of solution after complexation with 1,10-phenanthroline $\left(3.5 \times 10^{-3} \mathrm{~L}\right)$.
$\Delta A(510 n m)=$ the absorbance difference at $\lambda=510 \mathrm{~nm}$ between the irradiated solution and the solution kept in
dark.
$I=$ the optical path length of the cuvette $(1.0 \mathrm{~cm})$.
$\varepsilon(510 \mathrm{~nm})=$ the molar absorption coefficient of the Fe(phen) 3^{2+} complex at $\lambda=510 \mathrm{~nm}\left(1.11 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$.

t	$\Delta \mathrm{A}$	mol Fe
2 s	0.257	8.18×10^{-6}
5 s	0.552	1.76×10^{-5}

The moles of Fe^{2+} were plotted as a function of time (Figure. S22)

Figure S22. The molar number of Fe^{2+} as a function of time

The photon flux was then calculated using:

$$
\text { photon flux }=\frac{m o l ~ F e^{2+}}{\emptyset t\left(1-10^{-A}\right)}
$$

Where
\emptyset the quantum yield of the potassium ferric oxalate in room temperature at 400 nm is 1.13 .
$\mathrm{t}=$ the irradiated time (s).
$A=$ the potassium ferric oxalate absorbance at 400 nm , which was measured placing 1 mL of the solutionin a cuvette which path length is 1 cm by UV/Vis spectrophotometry.

We obtained an absorbance value of 2.055 .

$$
\text { photon flux }=\frac{3.6 \times 10^{-6}}{1.13 \times\left(1-10^{-2.055}\right)}=3.2 \times 10^{-6}
$$

The average photon flux was thus calculated to be 3.6×10^{-6} einsteins s^{-1}.
Determination of the reaction quantum yield:

To an oven-dried 10-mL Schlenk tube equipped with a stirrer bar were added oxazolone 1 ($0.1 \mathrm{mmol}, 26.7 \mathrm{mg}$). In glove box, α-methyl-styrene 2 (0.2 mmol, 2.0 equiv), NEt_{3} ($0.3 \mathrm{mmol}, 3.0$ equiv) and super dry 1,4-dioxane (0.95 $\mathrm{mL})$ and deuterium oxide $\left(\mathrm{D}_{2} \mathrm{O}\right)(50 \mu \mathrm{~L})$ were added. Continuous circulating water was introduced to ensure that the reaction is carried out at $40^{\circ} \mathrm{C}$. The reaction mixture was irradiated using 1 W LEDs ($\lambda \max =405 \mathrm{~nm}$) for 30 min, the volatiles were removed in vacuo, then the residue purified by flash column chromatography on silica $(P E / E t O A c=50 / 1)$ to afford the mixture product 3 and $3^{\prime}(48 \%$ yield $)$ as a colorless oil.

$$
\Phi=\frac{\text { Mol product }}{\text { flux } \cdot \mathrm{t} \cdot \mathrm{f}}
$$

An absorption spectrum gave an $A(400 \mathrm{~nm})$ value of >3, indicating that the fraction of absorbed light (f) is >0.999.

$$
\Phi=\frac{4.8 \times 10^{-5}}{3.2 \times 10^{-6} \times 30 \times 60 \times 1}=0.0083
$$

The reaction quantum yield (Φ) was thus determined to be $\Phi=0.0083$.
4.10 Proposed mechanism for the radical-radical coupling.

Figure S23. Proposed mechanism

5 Preparation of Starting Materials

5.1 Synthesis route to oxazolone 1

Step 1: 2-amino-2-phenylacetic acid (1.0 equiv) and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (3.4 equiv) was added to round bottom flask equipped with a stirring bar. The reaction mixture was dissolved in 1,4-dioxane (0.50 M) and $\mathrm{H}_{2} \mathrm{O}(0.18 \mathrm{M})$. After cooled to $0^{\circ} \mathrm{C}, 4$-methoxybenzoyl chloride (1.1 equiv) was added dropwise. The cooling bath was removed and the reaction mixture was stirred at room temperature. After 1 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was separated, and 1 M HCl aq was added to it until cloudy. It was extracted twice with EA, the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to obtain the crude product. The crude product was purified by flash chromatography $(\mathrm{PE} / \mathrm{EA}=3 / 1)$ to afford the product.

Step 2: To a solution of 2-(4-methoxybenzamido)-2-phenylacetic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.072 M) under argon atmosphere was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (1.2 equiv) at $0^{\circ} \mathrm{C}$. The cooling bath was removed and the reaction mixture was stirred at room temperature. After stirring for 1 h , the reaction mixture was washed with $\mathrm{H}_{2} \mathrm{O}$, sat. NaHCO_{3} aq and brine. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After removal of solvent under reduced pressure. The crude product was purified by flash chromatography. ${ }^{3}$

2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (1)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 2 \mathrm{H}), 5.49(\mathrm{~s}$, $1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=176.53$, 163.47, 162.31, 133.79, 130.06, 129.01, 128.69, 126.88, 117.94, 114.33, 68.14, 55.56.

HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}$268.0968, found 268.0969.
Note: The temperature of the water bath is lower than $40^{\circ} \mathrm{C}$ when the solvent was vacuumed in step2. The crude product was purified by flash chromatography (operation time is less than 15 minutes).

5.2 Synthesis of oxazolones

Step 1: Substituted aryl-methyl ketone (1.0 equiv.) and selenium dioxide ($\mathrm{SeO}_{2}, 1.5$ equiv.) were added to a dry, three-necked round-bottomed flask. The flask was then flushed with nitrogen, followed by adding anhydrous pyridine (0.5 M) via a syringe. The reaction mixture was heated in an oil bath to $110{ }^{\circ} \mathrm{C}$ for 1 h , and then the bath temperature was reduced to $90^{\circ} \mathrm{C}$ for several hours. After completion of the reaction, as determined by TLC, the solution containing precipitated selenium was filtered, and the residue was washed with ethyl acetate. The combined filtrate was concentrated and dissolved in 50 mL ethyl acetate. The organic layer was treated with 1 M HCl in a separating funnel to wash away the remaining pyridine. Then 1 M NaOH was added and the aqueous layer was separated, followed by acidification using 1 M HCl to about pH 1.0 . The mixture was extracted with ethyl acetate for several times, and the combined organic layers were dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated on a rotary evaporator. The crude product was used in the next step without further purification. ${ }^{4}$

Step 2: To a flask charged with aryl glyoxylic acid (1.0 equiv.) and L-2-(2 -chlorophenyl) glycine (2.0 equiv.) were added $\mathrm{MeCN}(0.14 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}(0.34 \mathrm{M})$ at room temperature. After the reaction mixture was stirred for 24 h at $50^{\circ} \mathrm{C}$, then it was refluxed for 12 h . Then, it was cooled to room temperature, and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The reaction mixture was stirred until the product was fully precipitated. After filtration, the precipitate was washed with
$\mathrm{Et}_{2} \mathrm{O}$. Arylglycine was obtained as a white solid. ${ }^{5}$
Step 3: To a solution of arylglycine (1.0 equiv.) in $\mathrm{MeOH}(0.25 \mathrm{M})$ was added SOCl_{2} (2.0 equiv.) slowly at $0{ }^{\circ} \mathrm{C}$. The cooling bath was removed and the reaction mixture was refluxed for 5 h . When cooled to room temperature, the reaction mixture was concentrated on a rotary evaporator. The crude product was used in the next step without further purification.

Step 4: To a solution of Amino acid methyl ester (1.0 equiv.) and $\mathrm{Et}_{3} \mathrm{~N}$ (3.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{M})$ was added dropwise 4-methoxybenzoyl chloride (1.1 equiv.) at $0^{\circ} \mathrm{C}$. The cooling bath was removed and the reaction mixture was stirred at room temperature. After 5 h , the reaction mixture was washed with 1 M HCl , sat. NaHCO_{3} aq and brine. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to obtain the crude product, which was purified by flash column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=3 / 1$) to give the amide as white solid.

Step 5: To a solution of amide (1.0 equiv.) in $\mathrm{MeOH}(0.57 \mathrm{M}$) was added $2.0 \mathrm{M} \mathrm{NaOH}(1.9 \mathrm{M})$ and stirred for 0.5 h . After volatile was removed, $\mathrm{H}_{2} \mathrm{O}$ was added to the residue and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was acidified with 1 M HCl until precipitate was generated. The white precipitate was filtered and washed with diethyl ether. It was used in the next step without further purification.

Step 6: To a solution of acid (1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$ was added EDCI (1.2 equiv. in DCM) at $0^{\circ} \mathrm{C}$ under argon atmosphere. The cooling bath was removed and the reaction mixture was stirred for 1 h . The reaction mixture was washed with $\mathrm{H}_{2} \mathrm{O}$, sat. NaHCO_{3} aq and brine. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The pure oxazolones were obtained by recrystallization (diethyl ether/n-hexane) or flash column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=6 / 1)$ as white solid. ${ }^{6}$

5.3 Synthesis of 3-Arylindolin-2-one Derivatives

Step 1:

(1) Preparation for Aryl Grignard reagent: a 50 mL round-bottomed flask was equipped with a magnetic stir bar, to a stirring mixture of magnesium (1.2 equiv) and a small piece of iodine in dry THF (1.0 M). A solution of aryl bromide (1.0 equiv) in 2 mL of dry THF was added dropwise to the round-bottom flask and stirred for 3 h under
N_{2} atmosphere. After the formation of Grignard reagent (colorless to brownish-green), the reaction mixture was cooled to $0^{\circ} \mathrm{C}$.
(2) Another 50 mL round-bottomed flask was equipped with a magnetic stir bar, to a stirring isatin (10.0 mmol) in dried THF (20 mL), then cooled to $-40^{\circ} \mathrm{C}$ for 30 min . Previously obtained Grignard reagent in THF (2.0 equiv) was added dropwise to the reaction mixture under N_{2} atmosphere, then the mixture was allowed to warm to room temperature and stirred until isatin was consumed completely. The reaction mixture was diluted with ether, cooled in an ice-bath, and then quenched with $\mathrm{HCl}(2 \mathrm{M})$. The aqueous layer was extracted with ether, combined organic layers and washed with water and brine, then dried over with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo, 3-hydroxy-3-arylindolin-2-one was obtained as solid and no purification was necessary for further transformation.

Step 2: A 50 mL round-bottomed flask was equipped with a magnetic stir bar, to a stirring the crude product (5.0 $\mathrm{mmol})$ obtained above in $\mathrm{AcOH} / \mathrm{HCl}(30 \mathrm{~mL} / 2 \mathrm{ml})$, then $\mathrm{SnCl}_{2}(10.0 \mathrm{mmol})$ was added at room temperature. The mixture was heated to reflux, monitored by TLC until the completely consumption of the starting material. Next, the solution was cooled to room temperature, concentrated in vacuo, and diluted with EtOAc. The residue was washed with water $(3 x)$, saturated aqueous NaHCO_{3}, and brine. The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was recrystallized (PE/EtOAc) to afford corresponding product as white solid. ${ }^{7}$

5.4 Synthesis of N-Boc-3-Arylindolin-2-one

Step 1: Same as above (5.3-step 1);
Step 2: A 25 mL round-bottomed flask was equipped with a magnetic stir bar, to stirring mixture of 3-hydroxy-3-arylindolin-2-one (1125 mg, 5.0 mmol) and 4-DMAP ($560 \mathrm{mg}, 5.0 \mathrm{mmol}, 1.0$ equiv) in DCM (10 mL), (Boc) $)_{2} \mathrm{O}$ (1.3 $\mathrm{mL}, 5.5 \mathrm{mmol}, 1.1$ equiv) was added at room temperature and stirred until starting material was consumed completely. The reaction mixture was diluted with DCM , quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was extracted with $\mathrm{DCM}(3 x)$, combined organic layers and dried over with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo.

The residue was purified by flash chromatography to afford provide the desired product.
Step 3: A 25 mL round-bottomed flask was equipped with a magnetic stir bar, put the product obtained above (2.0 $\mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(400 \mathrm{mg})$ into flask and seal, and then replaced with hydrogen (3x), MeOH (8 mL) was added and stirred under hydrogen atmosphere (balloon) for 6 h at room temperature. The reaction mixture was filtered to remove Pd / C, and the residue washed with DCM , dried over with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (PE/EtOAc $=10 / 1$) to afford N-Boc-3-Arylindolin-2one. ${ }^{7}$

5.5 Synthesis of terminal alkenes Derivatives

According to the reported literature ${ }^{[8]}$: In glove box, a 50 mL round-bottomed flask was equipped with a magnetic stir bar, to suspending $\mathrm{PPh}_{3} \mathrm{MeBr}\left(10.0 \mathrm{mmol}, 2.0\right.$ equiv) in dry $\mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{THF}(30 \mathrm{~mL})$, then $\mathrm{KOt}-\mathrm{Bu}(10.0 \mathrm{mmol}$, 2.0 equiv) was added in batched. The resulting yellow suspension was stirred for 1 h and the specified ketone (5.0 mmol) was added. The reaction mixture was monitored by TLC until the completely consumption of the starting material or after stirring overnight. The reaction mixture quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the organic layer was washed with water (3x), dried over with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (n-Pentane) to afford the terminal alkene. ${ }^{8}$

Note: due to the volatility of most of the terminal alkenes, filtered and concentrated must under low temperature.

5.6 Synthesis of 1,1-disubstituted allenes

Step 1: To a mixture of alkene ($5 \mathrm{mmol}, 1.0$ equiv), bromoform ($7.5 \mathrm{mmol}, 1.5$ equiv), and triethylbenzylammonium chloride ($0.05 \mathrm{mmol}, 1.0 \mathrm{~mol} \%$) was added dropwise a solution of $\mathrm{NaOH}(0.8 \mathrm{~g})$ in water $(0.8 \mathrm{~mL})$ over 1 h . The resulting mixture was stirred vigorously at $60^{\circ} \mathrm{C}$ for 24 h , then cooled to room temperature, and quenched with
water (5.0 mL). The mixture was extracted with dichloromethane and the organic phase was separated, dried over sodium sulfate, and concentrated. The residue was purified by column chromatography over silica gel with hexane as eluent to give the 1,1-Dibromocyclopropane.

Step 2: To a stirred solution of 1,1-Dibromocyclopropane ($4.5 \mathrm{mmol}, 1.0$ equiv) in dry $\mathrm{THF}(5.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise ethylmagnesium bromide ($6.75 \mathrm{~mL}, 6.75 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) under nitrogen over 0.5 h . After stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , the mixture was quenched with 3 M hydrochloric acid solution (2.0 mL) and diluted with ethyl ether (20 mL). The organic phase was washed with water $(5.0 \mathrm{~mL})$, dried over magnesium sulfate, and concentrated. The residue was purified by column chromatography over silica gel with n-pentane as eluent to give 1,1 disubstituted allene. ${ }^{9}$

5.7 L-Alanine esterified derivative

A 50 mL round-bottomed flask was equipped with a magnetic stir bar, to stirring mixture of 4 -Vinylbenzoic acid (296 $\mathrm{mg}, 2.0 \mathrm{mmol}$), methyl D-alaninate ($227 \mathrm{mg}, 2.2 \mathrm{mmol}, 1.1$ equiv), DMAP ($24.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 0.2$ equiv) and DCC ($453 \mathrm{mg}, 2.2 \mathrm{mmol}, 1.1$ equiv) in DCM (20 mL), the reaction mixture stirred at air atmosphere and monitored by TLC until the completely consumption of the starting material, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography ($\mathrm{PE} / E t O A c=10 / 1$) to afford the L-Alanine esterified derivative.

5.8 Synthesis of α-D-glucopyranosyl derivative

According to the reported literature ${ }^{[10-11]}$:
Step 1: In glove box, a 100 mL round-bottomed flask was equipped with a magnetic stir bar and covered with tin foil, to stirring beta-D-galactose pentaacetate ($9.8 \mathrm{~g}, 25 \mathrm{mmol}$) in dry DCM (40 mL) under dark. The flask was sealed and removed from the glove box, and then equipped with a N_{2} balloon, cooled to $0^{\circ} \mathrm{C}$ in an ice bath. The hydrogen bromide $33 \mathrm{wt} \%$ in acetic acid ($9.8 \mathrm{~mL}, 2.2$ equiv) was added dropwise. The reaction mixture was stirred
for 45 minutes at $0^{\circ} \mathrm{C}$ and allowed to room temperature. Stirred and monitored by TLC (PE/EtOAc = 1/1). The reaction mixture was diluted with DCM , and then washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 x)$, the aqueous layer was extracted with $\operatorname{DCM}(2 x)$, and the combined organic layers dried over with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The 2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl bromide was obtained and no purification was necessary for further transformation. ${ }^{10}$

Step 2: In glove box, a 500 mL round-bottomed flask was equipped with a magnetic stir bar, to stirring mixture of the crude product obtained above, 4-hydroxybenzaldehyde ($1.22 \mathrm{~g}, 25 \mathrm{mmol}$) and silver(I) oxid ($23.2 \mathrm{~g}, 100 \mathrm{mmol}$) in dry $\mathrm{CH}_{3} \mathrm{CN}(200 \mathrm{~mL})$, the flask was sealed and removed from the glove box, and then equipped with a N_{2} balloon. The reaction mixture was stirred at room temperature for 5 h . Monitored by TLC until the completely consumption of the starting material. The reaction mixture concentrated under reduced pressure, the residue was dissolved in DCM and filtered through a thin Celite layer, and the Celite was washed with DCM $(2 x)$. The filtrate was concentrated in vacuo. The crude product was purified by flash column chromatography to afford the desired product. ${ }^{11}$

Step 3: Same as part 5.5

6 Characterization Data

Note: When we tested the melting point of products, and found that most compounds will decompose before melting (190-210 ${ }^{\circ} \mathrm{C}$), so we did not mark the melting point of these compounds. Around 1.56 ppm (water peak) and $1.00 \mathrm{ppm}-1.42 \mathrm{ppm}$ in NMR are respectively from the CDCl_{3} and eluent (petroleum ether), which do not affect the yield of the product (background correction of yield was done for each compounds). Due to the influence of deuterium atoms, the carbon connected by deuterium atom will shatter in the carbon spectrum, resulting in unclear performance. Affected by different structures, the range of the carbon connected by deuterium atom chemical shift is between $14-30$.

2-(4-methoxyphenyl)-4-phenyl-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)-one (3)

Isolated yield $96 \%(37.0 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1),[\mathrm{D}]>20: 1$, colorless oil, eluent (PE : EA
$7.21-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.99-6.88(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}, \mathrm{CDCl} 3)$ $\delta 177.49,162.92,158.62,142.74,135.35,129.66,128.32,128.17,127.90,127.46,127.18,126.73,118.32,114.00,79.34$, 55.42, 46.08, 23.99, 23.34.

HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{H})^{+} 387.1813$, found 387.1811.

2-(4-methoxyphenyl)-4-phenyl-2-(2-phenylpropan-2-yl-1-d)oxazol-5(2H)-one (3')

Separation by prep-HPLC (Waters E600) (MeOH: $\left.\mathrm{H}_{2} \mathrm{O}=90: 10\right),[\mathrm{D}]>20: 1$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21$ (d, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.54-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.30$ (d, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.49(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 163.86,159.63,155.84,141.73,132.13,129.67,128.74,128.56,128.46,127.33,126.83,112.67$, 109.34, 55.26, 47.14, 24.36, 24.26.

HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 409.1633$, found 409.1624.

2-(4-methoxyphenyl)-4-phenyl-4-(2-phenylpropan-2-yl)oxazol-5(4H)-one (3')

Isolated yield 90% ($34.6 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$), colorless oil, eluent (PE:EA=50:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3) $\delta 7.87-7.73(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.95-$ $6.87(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 177.60,162.86$,
$158.54,142.75,135.37,129.62,128.33,128.18,127.90,127.46,127.18,126.74,118.37,113.99,79.35,55.42,46.12,24.02$, 23.38 .

HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+} 386.1751$, found 386.1752 .

2-(4-methoxyphenyl)-4-phenyl-4-(1-phenylethyl-2-d)oxazol-5(4H)-one (4)

Isolated yield 56% ($20.8 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$, d.r. $=1: 1$), [D$]>20: 1$, colorless oil, eluent (PE : EA = $50: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.94-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.86-7.80$ $(\mathrm{m}, 1 \mathrm{H}), 7.60-7.53(\mathrm{~m}, \mathrm{H}), 7.46-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 0.5 \mathrm{H}), 7.31-7.06(\mathrm{~m}, 6.5 \mathrm{H}), 7.04$ $-6.88(\mathrm{~m}, 2 \mathrm{H}), 3.94-3.78(\mathrm{~m}, 3 \mathrm{H}), 3.68(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.61(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.36-1.21(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.04,178.59,163.19,163.06,159.74,159.55,140.20,139.67,137.88,137.67,129.92,129.79,129.09$, 129.06, 128.53, 128.09, 127.95, 127.74, 127.60, 127.39, 126.79, 126.29, 126.14, 118.29, 118.25, 114.18, 114.10, 78.13, 77.88, $55.52,55.47,50.05,49.91,16.4-15.0(\mathrm{~m}, 2 \mathrm{C})$.

HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{H})^{+} 373.1657$, found 373.1656.

2-(4-methoxyphenyl)-4-phenyl-4-(1-(p-tolyl)ethyl-2-d)oxazol-5(4H)-one (5)

Isolated yield 67\% (25.9 mg, 0.1 mmol scale, r.r. > 20 : 1, d.r. = 1: 1), [D] > 20 : 1, colorless oil, eluent (PE : EA = $50: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.86-$ $7.80(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 0.5 \mathrm{H}), 7.26-7.11(\mathrm{~m}$, $2.5 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.87(\mathrm{~m}, 4 \mathrm{H}), 3.93-3.83(\mathrm{~m}, 3 \mathrm{H}), 3.65(\mathrm{t}, J=7.1 \mathrm{~Hz}, 0.5 \mathrm{H})$, $3.59(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.27-2.17(\mathrm{~m}, 3 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 178.07,177.59,162.09$, 161.97, 158.65, 158.45, 136.94, 136.70, 136.05, 135.89, 135.60, 135.21, 128.87, 128.76, 127.87, 127.81, 127.63, 127.46, $127.27,127.04,127.00,126.65,125.22,125.11,117.30,117.23,113.10,113.02,77.17,76.91,54.47,54.42,48.51,20.00,15.5$ - 14.3 (m, 2C).

HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 409.1633$, found 409.1643.

Isolated yield 41% ($18.3 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$, d.r. $=1: 1$), [D] > 20 : 1, colorless oil, eluent (PE : EA = $50: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-$ $7.13(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.74-6.61(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.23(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.50(\mathrm{~m}, 1 \mathrm{H}), 0.70(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 178.38, 163.21, 163.17, 159.99, 148.22, 148.18, 137.99, 129.85, 129.75, 128.57, 128.09, 126.32, 122.80, 118.22, 114.20, 111.58, 110.45, 78.43, 57.20, 55.64, 55.53, 55.45, 12.18.

Note: Due to the influence of the water peak in the ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$, the deuterated ratio is determined by the ${ }^{1} \mathrm{H}$ NMR spectrum in DMSO-d 6 .

HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{DNO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 469.1844$, found 469.1852.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{dd}, J=8.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.69(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.28(\mathrm{~m}$, $1 \mathrm{H}), 1.95-1.82(\mathrm{~m}, 0.5 \mathrm{H}), 1.68-1.50(\mathrm{~m}, 0.5 \mathrm{H}), 0.60(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.31,163.25,163.21$, $160.05,148.22,148.18,137.95,129.89,129.80,128.58,128.10,126.31,122.80,118.14,114.26,114.21,111.56,110.45,78.41$, 57.21, 55.64, 55.53, 55.46, 12.18.

HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{DNO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 469.1844$, found 469.1853.

4-(1-(4-fluorophenyl)ethyl-2-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (7)

Isolated yield 91% ($35.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$, d.r. $=1: 1$), [D$]>20: 1$, colorless oil, eluent (PE: EA = $50: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.84-$ $7.78(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 0.5 \mathrm{H}), 7.26-$ $7.15(\mathrm{~m}, 2.5 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.77(\mathrm{~m}$, $2 \mathrm{H}), 3.92-3.84(\mathrm{~m}, 3 \mathrm{H}), 3.67(\mathrm{t}, J=7.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.59(\mathrm{t}, J=7.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.32-1.20(\mathrm{~m}, 2 \mathrm{H}$, containing petroleum ether peak). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.91,177.52,162.23,161.00(\mathrm{~d}, \mathrm{~J}=237.35 \mathrm{~Hz}), 160.66(\mathrm{~d}, J=245.83 \mathrm{~Hz}), 158.81$, $158.69,136.60,136.52,134.89(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 134.38(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 129.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 129.47(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 128.90$, $128.76,127.54,127.14,126.80,125.19,125.00,117.06,117.01,113.66(\mathrm{~d}, J=39.3 \mathrm{~Hz}), 113.45(\mathrm{~d}, J=39.2 \mathrm{~Hz}), 113.18,113.13$, 76.98, 76.69, $54.49,54.45,48.24,48.01 .{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-115.21, -116.05.

HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{19}$ DFNO $_{3}(\mathrm{M}+\mathrm{H})^{+}$391.1563, found 391.1571.

4-(1-(3-chlorophenyl)ethyl-2-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (8)

Isolated yield 69\% (28.0 mg, 0.1 mmol scale, r.r. $>20: 1$, d.r. $=1: 1$), [D$]>20: 1$, colorless oil, eluent (PE : EA = $50: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.97-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.76$ $(\mathrm{m}, 1 \mathrm{H}), 7.55(\mathrm{dd}, \mathrm{J}=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 0.5 \mathrm{H}), 7.27-7.18(\mathrm{~m}$, $2.5 \mathrm{H}), 7.17-6.92(\mathrm{~m}, 5 \mathrm{H}), 3.92-3.84(\mathrm{~m}, 3 \mathrm{H}), 3.64(\mathrm{t}, J=7.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.58(\mathrm{t}, J=7.0 \mathrm{~Hz}, 0.5 \mathrm{H})$, $1.30-1.20$ ($\mathrm{m}, 2 \mathrm{H}$, containing petroleum ether peak). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.87,178.40,163.33,163.21,160.04$, 159.88, 142.36, 141.80, 137.47, 137.37, 133.71, 133.39, 130.02, 129.86, 129.26, 129.22, 128.82, 128.62, 128.27, 128.23, 127.96, 127.58, 127.33, 127.29, 126.97, 126.25, 126.03, 118.04, 117.99, 114.26, 114.17, 77.78, 77.49, 55.55, 55.49, 49.69, 49.50, 16.41, 16.22, 16.03, 15.45, 15.23, 15.03.

HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{DCINO}_{3}(\mathrm{M}+\mathrm{H})^{+} 407.1267$, found 407.1280.

2-(4-methoxyphenyl)-4-phenyl-4-(1-(4-(trifluoromethyl)phenyl)ethyl-2-d)oxazol-5(4H)-one (9)

Isolated yield 38% ($16.7 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$, d.r. $=1: 1$), $[\mathrm{D}]>20: 1$, colorless oil, eluent (PE: EA = $50: 1$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}$, $3 \mathrm{H}), 3.71(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.87,163.53$, 160.41, 143.79, 137.19, 130.08, 129.47, 128.69, 128.42, 126.23, 124.95 (q, J=3.8 Hz), 124.90, 117.49, 114.31, 77.60, 55.54, 49.58. ${ }^{19}$ F NMR (376 MHz , DMSO- d_{6}) δ - 60.88.

HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{DF}_{3} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+} 441.1531$, found 441.1535.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.33(\mathrm{~m}, 7 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}$, $3 \mathrm{H}), 3.74(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.56,160.26,144.27,137.05,130.17$, 129.42, 128.31, 128.10, 125.98, $124.56(q, J=3.7 \mathrm{~Hz}), 117.64,114.33,78.14,55.59,49.61 .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta-$ 60.96 .

HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{DF}_{3} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+} 441.1531$, found 441.1534.

N-(4-(1-(2-(4-methoxyphenyl)-5-oxo-4-phenyl-4,5-dihydrooxazol-4-yl)ethyl-2-d)phenyl)acetamide (10)

Isolated yield 66\% (28.3 mg, 0.1 mmol scale, r.r. > 20 : 1, d.r. = 1 : 1), [D$]>20$: 1, colorless oil, eluent (PE: EA = $50: 1) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.81(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.3 \mathrm{~Hz}, 0.5 \mathrm{H})$, $7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 2.5 \mathrm{H}), 7.17(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}$,
$J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.83(\mathrm{~m}, 3 \mathrm{H}), 3.64(\mathrm{t}, J=7.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.58(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 0.5 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.22(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 178.01, 177.58, 167.14, 167.11, 162.17, 162.07, 158.72, 158.57, 136.77, 136.59, 136.03, 135.47, 135.14, 134.56, 128.90, 128.78, 128.58, 127.50, 127.10, 126.74, $125.19,125.06,118.11,117.83,117.11,113.16,113.11,77.08,76.80,54.49,54.44,48.39,48.27,23.56,23.55,15.5-14.0(m$, $2 C)$.

HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{DN}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+} 452.1691$, found 452.1694.

4-(2-(benzo[d][1,3]dioxol-5-yl)propan-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (11)

Isolated yield 74% ($31.8 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$), $[\mathrm{D}]>20: 1$, colorless oil, eluent (PE : $\mathrm{EA}=50$: 1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.82-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.00-$ $6.91(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.48(\mathrm{~m}, 2.5 \mathrm{H}), 1.48-1.42(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 177.55,162.93,158.67,146.68,146.04,136.84,135.42,129.68,128.29,127.92,127.46,121.68,118.37$, 114.04, 109.17, 106.86, 100.78, 79.42, 55.44, 45.90, 24.36, 23.80.

HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{DNO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 453.1531$, found 453.1514.

4-(1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)ethyl-2-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (12)

Isolated yield 56% ($24.1 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$, d.r. $=1: 1$), [D] > $20: 1$, colorless oil, eluent (PE : EA = $50: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.97-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.76$ $(\mathrm{m}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 0.5 \mathrm{H}), 7.26-7.15(\mathrm{~m}, 1.5 \mathrm{H})$, $7.05-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 0.5 \mathrm{H})$, $6.60-6.54(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.02(\mathrm{~m}, 4 \mathrm{H}), 3.95-3.80(\mathrm{~m}, 3 \mathrm{H}), 3.57(\mathrm{t}, J=7.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.52(\mathrm{t}, J=7.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.25-1.18$ ($\mathrm{m}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 178.10, 177.59, 162.13, 161.98, 158.75, 158.53, 141.79, 141.64, 141.58, 141.19, 136.90, $136.65,132.59,131.96,128.93,128.81,127.47,127.08,127.02,126.69,125.21,125.09,121.33,120.80,117.32,117.20$, 117.02, 116.65, 115.52, 115.12, 113.12, 113.04, 77.13, 76.88, 63.21, 63.11, 54.48, 54.44, 48.24, 48.17, $15.5-14.0$ ($\mathrm{m}, 2 \mathrm{C}$). HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{DNO}_{5}(\mathrm{M}+\mathrm{H})^{+} 431.1712$, found 431.1721.

Isolated yield 70% (28.8 mg, 0.1 mmol scale, r.r. $>20: 1$, d.r. $=3: 2$), [D] > $20: 1$, colorless oil, eluent (PE: EA = $50: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.79(\mathrm{dd}, J=7.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.40-7.26(\mathrm{~m}, 3.5 \mathrm{H})$, $7.09-7.02(\mathrm{~m}, 1.5 \mathrm{H}), 7.01-6.78(\mathrm{~m}, 3.5 \mathrm{H}), 3.91-3.80(\mathrm{~m}, 3 \mathrm{H}), 2.82-2.70(\mathrm{~m}, 0.5 \mathrm{H}), 2.69-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.16(\mathrm{~m}$, $1 \mathrm{H}), 1.94-1.80(\mathrm{~m}, 0.5 \mathrm{H}), 1.64-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.18(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3$) \delta 178.92,177.61,162.99$, $162.76,158.95,157.84,139.88,139.40,139.06,138.90,136.02,135.66,129.79,129.45,129.07,128.73,128.66,128.27$, $127.97,127.91,127.59,127.37,126.40,126.31,125.43,124.98,118.62,118.32,114.13,113.93,80.36,80.12,55.48,55.41$, $46.26,45.90,34.52,34.46,31.49,30.61,20.45,19.98$.

HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 435.1789$, found 435.1789 .

2-(4-methoxyphenyl)-4-(1-(naphthalen-2-yl)ethyl-2-d)-4-phenyloxazol-5(4H)-one (14)

Isolated yield $32 \%(13.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$, d.r. $=1: 1$), [D] $>20: 1$, colorless oil, eluent (PE : EA = $50: 1) .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.09-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.92-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.66$ $(\mathrm{m}, 2.5 \mathrm{H}), 7.66-7.52(\mathrm{~m}, 2.5 \mathrm{H}), 7.50-7.32(\mathrm{~m}, 4.5 \mathrm{H}), 7.24-7.08(\mathrm{~m}, 1.5 \mathrm{H}), 7.04-6.96(\mathrm{~m}, 1 \mathrm{H})$, $6.95-6.88(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.71(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3) $\delta 179.09$, $178.52,163.23,163.06,159.92,159.70,137.94,137.92,137.66,137.40,133.11,133.00,132.69,132.39,129.96,129.82$, $128.57,128.34,128.15,128.13,127.97,127.85,127.79,127.43,127.37,127.01,126.75,126.31,126.13,125.78,125.69$, $125.58,125.43,118.23,114.21,114.07,78.22,77.97,55.53,55.46,50.04,49.99,16.27,16.26,16.14,15.71,15.69,15.62$. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 445.1633$, found 445.1640 .

2-(4-methoxyphenyl)-4-(1-(naphthalen-1-yl)ethyl-2-d)-4-phenyloxazol-5(4H)-one (15)

Isolated yield $44 \%(18.6 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$, d.r. $=1: 1$), [D] $>20: 1$, colorless oil, eluent (PE: EA = $50: 1) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.96$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl 3$) \delta 178.14,163.15$, $160.11,138.41,136.19,133.85,131.79,129.86,128.68,128.58,128.19,127.94,126.46,126.15,125.96,125.48,124.67$, $123.43,118.31,114.17,77.51,55.50,42.24,17.00,16.86,16.75,16.72$.

HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 445.1633$, found 445.1637 .
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.68(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.26,162.10,158.47$, $136.35,135.99,132.38,131.06,128.86,127.56,127.03,126.70,126.26,125.09,124.77,124.55,124.16,123.90,122.17$, 117.06, 113.05, 77.33, 54.46, 41.54.

HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 445.1633$, found 445.1624.

4-(2,3-dihydro-1H-inden-1-yl-2-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (16)

 Isolated yield 82% ($31.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$, d.r. $=1: 1$), $[\mathrm{D}]>20: 1$, colorless oil, eluent (PE:EA=50:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-7.73(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.05$ (m, 1H), $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{dd}, J=15.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{ddd}, J=15.7,5.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.03(\mathrm{q}, J$ $=8.7 \mathrm{~Hz}, 0.5 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.29,173.61,162.97,159.48,146.01,140.27,138.16,129.63,129.52,128.55$, $128.15,127.73,126.37,126.09,124.51,124.28,118.07,113.99,78.14,55.44,54.78,31.69$.

HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$407.1476, found 407.1477.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{dd}, \mathrm{J}=7.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.97$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{dd}, J=15.7,8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.82-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=17.6,8.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.86(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 0.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.96$, $145.45,140.76,137.52,130.06,129.95,128.46,128.25,127.48,127.21,126.68,125.81,125.47,124.43,114.21,78.08,55.52$, 54.25, 31.71.

HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 407.1476$, found 407.1478.

4-(2-(benzo[b]thiophen-2-yl)propan-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (17)

Isolated yield 69% ($30.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$), [D$]>20: 1$, colorless oil, eluent (PE :
 $\mathrm{EA}=50: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{dd}, J=6.3,2.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.70(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=6.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 2 \mathrm{H})$, $7.05(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 177.31,163.03,159.54,149.29,139.73,139.11,135.05,129.95,129.85,128.31,128.14,127.60,123.77,123.32$, $122.75,121.75,118.29,114.08,79.21,55.46,45.82,25.20$.

HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{DNO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 443.1534$, found 443.1530.

4-(2-(benzofuran-2-yl)propan-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (18)

Isolated yield 84% ($35.8 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $=1: 1$), $[\mathrm{D}]>20: 1$, colorless oil, eluent (PE : $E A=50: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J=8.4,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.47-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.47$ (s, 1H), 3.79 (s, 3H), $1.55-1.47(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.88,158.75,158.37$, $154.94,153.40,131.23,128.40,127.54,127.33,126.96,122.79,121.43,119.64,111.83,109.98,107.67,104.28,54.23,44.91$, 21.75, 21.49.

HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{DNO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 449.1582$, found 449.1586.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{dd}, J=6.5,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.22$ $-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.47(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.22$, $161.89,159.62,158.21,153.32,134.10,128.72,127.16,127.11,127.08,126.56,122.60,121.33,119.60,117.23,112.95$, 109.89, 103.07, 77.12, 54.39, 43.84, 21.36, 21.23.

HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{DNO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 449.1582$, found 449.1586.

4-(2-(benzo[d]oxazol-2-yl)propan-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (19)

Isolated yield $50 \%(21.4 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $=6: 1$), $[\mathrm{D}]>20: 1$, colorless oil, eluent (PE : $\mathrm{EA}=20: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.37-8.26(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.70$ $-1.57(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.33,163.74,160.03,156.59,150.65,140.64,132.55,129.25,129.15,128.74$, $128.68,128.40,128.03,125.07,124.27,120.10,113.15,110.56,108.01,55.28,47.05,22.49,22.27$.

HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{DN}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+} 450.1535$, found 450.1532 .
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{dd}, \mathrm{J}=6.7,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.37$ $-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $\left.{ }^{2}\right) \delta$ 177.17, 168.62, 163.08, 160.12, 150.54, 140.78, 134.77, 129.91, 129.81, 128.51, 128.33, 127.83, 124.76, 124.10, 120.08, 114.00, 110.36, 55.45, 45.82, 22.45, 22.05.

HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{DN}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+} 450.1535$, found 450.1542 .

2-(4-methoxyphenyl)-4-(1-(1-methyl-1H-pyrrol-2-yl)ethyl-2-d)-4-phenyloxazol-5(4H)-one (20)

Isolated yield 55% ($20.6 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$, d.r. $=1: 1$), [D$]>20: 1$, colorless oil, eluent (PE : EA = $50: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.91(\mathrm{t}, \mathrm{J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.04-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.51-6.44(\mathrm{~m}$, $0.5 \mathrm{H}), 6.36-6.25(\mathrm{~m}, 0.5 \mathrm{H}), 6.19(\mathrm{dd}, \mathrm{J}=3.4,1.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.04-5.98(\mathrm{~m}, 0.5 \mathrm{H}), 5.96-5.88(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.83(\mathrm{~m}, 3 \mathrm{H})$, $3.75(\mathrm{t}, J=7.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.64-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 1.5 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=11.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3$) \delta 178.91$, 178.02, 163.12, 159.90, 159.34, 137.85, 137.32, 131.28, 130.92, 129.93, 129.82, 129.73, 129.63, 128.48, 128.27, 128.15, 128.00, 126.32, 121.82, 121.39, 118.53, 114.23, 114.19, 114.11, 107.65, 107.45, 106.89, 106.69, 77.70, 77.24, 55.51, 55.48, 41.52, 40.91, 33.95, 33.61, 16.61, 16.42.

HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{DN}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 376.1766$, found 376.1765 .

2-(4-methoxyphenyl)-4-(1-(1-methyl-1H-pyrazol-5-yl)ethyl-2-d)-4-phenyloxazol-5(4H)-one (21)

Isolated yield 60% ($22.6 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$, d.r. $=1: 1$), [D$]>20: 1$, colorless oil, eluent (PE: EA = $50: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.61$ $(\mathrm{m}, 1 \mathrm{H}), 7.45-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.07-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.31(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.04(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}$ $0.5 \mathrm{H}), 3.91-3.85(\mathrm{~m}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 1.5 \mathrm{H}), 3.79(\mathrm{t}, J=7.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.69(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.51(\mathrm{~s}, 1.5 \mathrm{H}), 1.31-1.22(\mathrm{~m}$, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 178.32, 177.83, 163.40, 163.36, 160.39, 160.02, 141.41, 141.23, 138.11, 137.95, 137.06 $136.76,130.00,129.90,128.64,128.48,128.41,126.25,126.09,118.06,117.78,114.30,114.26,105.25,105.15,77.50,55.53$ $41.24,40.58,36.66,36.24,16.25,16.06,15.96,15.86,15.75,15.56$.

HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{DN}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 377.1718$, found 377.1715 .

4-(2-(4,6-dimethoxypyrimidin-2-yl)propan-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (22)

Isolated yield 46\% (20.6 mg, 0.1 mmol scale, r.r. > $20: 1$), [D] > 20: 1, colorless oil, eluent (PE : $\mathrm{EA}=20$: 1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.30$ $(\mathrm{m}, 3 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 6 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.49$ - 1.43 (m, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 177.05,171.53,169.91,161.77,158.33,143.68$, $135.86,128.52,127.55,126.97,126.58,117.79,112.97,86.32,54.39,53.08,50.59,23.15,21.31$

HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{DN}_{3} \mathrm{O}_{5}(\mathrm{M}+\mathrm{Na})^{+} 471.1749$, found 471.1740.
(2S,3R,4R,5S,6S)-2-(acetoxymethyl)-6-(4-(1-(2-(4-methoxyphenyl)-5-oxo-4-phenyl-4,5-dihydrooxazol-4-yl)ethyl-2-d)phenoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (23)

Isolated yield $60 \%(43.1 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$, d.r. $=1: 1$), $[\mathrm{D}]>20: 1$, colorless oil, eluent (PE:EA=5:1). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04-7.98(\mathrm{~m}$, $1 \mathrm{H}), 7.92-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2.5 \mathrm{H}), 7.08(\mathrm{dd}, J=8.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}$, $J=11.0,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.38(\mathrm{~m}, 2 \mathrm{H}), 5.09-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.95-4.91$ $(m, 1 H), 4.27-4.08(m, 2 H), 4.03-3.97(m, 1 H), 3.90-3.86(m, 3 H), 3.68-3.62(m, 0.5 H), 3.61-3.55(m, 0.5 H), 2.18-2.14$ $(\mathrm{m}, 3 \mathrm{H}), 2.07(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1.5 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 7.5 \mathrm{H}), 1.26(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.91,177.55,169.37$, 169.21, 169.09, 168.33, 162.20, 162.09, 158.78, 158.72, 158.62, 155.13, 155.05, 154.68, 136.70, 136.53, 134.25, 134.13, $133.74,133.60,129.16,129.14,129.12,128.88,128.86,128.76,127.51,127.11,126.77,125.17,125.05,117.09,115.44$, 115.14, 115.10, 114.94, 113.16, 113.14, 113.08, 98.77, 98.73, 98.54, 98.39, 77.07, 76.79, 69.88, 69.84, 69.77, 69.74, 67.62, $67.59,67.54,65.78,60.24,60.21,54.49,54.44,48.12,48.04,19.64,19.56,15.52,15.45,14.66,14.64$.

HRMS (ESI) calcd for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{DNO}_{13}(\mathrm{M}+\mathrm{Na})^{+} 741.2376$, found 741.2387 .

Methyl(4-(1-(2-(4-methoxyphenyl)-5-oxo-4-phenyl-4,5-dihydrooxazol-4-yl)ethyl-2-d)benzoyl)-L-alaninate

(24)

Isolated yield 29% ($14.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$, d.r. $=1: 1$), $[\mathrm{D}]>20: 1$, colorless oil, eluent (PE : EA = $5: 1$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61$ (s, 0.5 H), 8.19 $-8.11(m, 1 H), 8.07-8.02(m, 0.5 H), 7.92-7.87(m, 0.5 H), 7.83-7.79(m, 0.5 H)$, $7.76-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 1.5 \mathrm{H}), 7.59-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.15$ $(\mathrm{m}, 1.5 \mathrm{H}), 7.02(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.63(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.85-4.70(\mathrm{~m}, 1 \mathrm{H})$, $3.94-3.65(\mathrm{~m}, 7 \mathrm{H}), 2.78-2.64(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 177.86,177.30,172.69,172.64,172.60,172.53,165.41,165.36,165.09,158.92,158.86,143.47,142.92,137.90$, $136.54,136.33,131.73,131.11,130.44,129.29,128.95,128.83,128.72,128.29,127.56,127.45,127.21,126.93,126.91$, $125.72,125.38,125.19,124.95,123.67,123.47,116.85,113.22,112.55,76.69,76.42,54.51,54.46,54.34,51.65,51.55,48.67$, 48.50, 47.64, 47.38, 47.37, 47.35, 17.66, 17.62, 17.55.

HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{DN}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{Na})^{+} 524.1902$, found 524.1902.

4-(but-3-en-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (26)

Isolated yield 33% ($10.6 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. > $20: 1$), [D] > 20 : 1, colorless oil, eluent (PE : EA $=50: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 3 \mathrm{H})$, $7.05-6.93(\mathrm{~m}, 2 \mathrm{H}), 5.80-5.68(\mathrm{~m}, 0.2 \mathrm{H}), 5.67-5.53(\mathrm{~m}, 0.8 \mathrm{H}), 5.20(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 0.8 \mathrm{H}), 5.06$ (dd, $J=10.2,1.4 \mathrm{~Hz}, 0.8 \mathrm{H}), 4.97-4.87(\mathrm{~m}, 0.4 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.00(\mathrm{~m}, 1 \mathrm{H}), 1.06-0.96(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 177.84,162.16,158.64,136.49,136.15,128.94,127.43,126.99,125.14,117.30,116.14,113.13,76.71,54.49,46.93$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{H})^{+} 323.1500$, found 323.1500.

(E)-4-(but-2-en-1-yl-4-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (26)

Isolated yield 48\% (15.6 mg, 0.1 mmol scale, r.r. > 20 : 1), [D] > 20 : 1, colorless oil, eluent (PE : EA = $50: 1) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.28(\mathrm{~m}, 3 \mathrm{H})$, $7.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.70-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.21(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.56(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.56,163.22,159.70,138.29,131.80,129.95$, $128.60,128.10,125.70,123.02,118.21,114.21,74.88,55.53,44.12,18.00,17.80,17.61$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{H})^{+} 323.1500$, found 323.1503.

(E)-4-(2,3-dimethylbut-2-en-1-yl-4-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (28)

Isolated yield 58\% (20.3 mg, 0.1 mmol scale, r.r. > 20 : 1), [D] > 20 : 1, colorless oil, eluent (PE : EA = $50: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.03-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 2 \mathrm{H})$, 7.38 - $7.30(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.94$ (d, J = 13.7 $\mathrm{Hz}, 1 \mathrm{H}), 1.62(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 5.6 \mathrm{H}), 1.52(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2.3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.30$, 163.04, 158.89, 138.99, 131.59, 129.80, 129.70, 128.47, 127.93, 125.82, 121.54, 118.49, 114.24, 114.19, 75.26, 55.50, 46.64, 21.22, 20.97, 20.91, 20.71, 20.52, 20.26.

HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{H})^{+} 351.1813$, found 351.1819.

(Z)-2-(4-methoxyphenyl)-4-phenyl-4-(3-phenylbut-2-en-1-yl-2-d)oxazol-5(4H)-one (30)

Isolated yield 13\% (5.2 mg, 0.1 mmol scale, r.r. > 20 : 1), [D] > 20 : 1, colorless oil, eluent (PE : EA = $50: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}$, $5 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.93-2.77(\mathrm{~m}$, $2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 177.61,162.22,158.71,140.80,140.29,136.95$,
128.98, 127.49, 127.13, 127.01, 126.83, 125.77, 124.80, 117.17, 113.20, 73.16, 54.51, 39.25, 24.94.

HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 421.1633$, found 421.1639.
(E)-2-(4-methoxyphenyl)-4-phenyl-4-(3-phenylbut-2-en-1-yl-2-d)oxazol-5(4H)-one (30)

Isolated yield 38% ($15.1 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$), [D$]>20: 1$, colorless oil, eluent (PE : EA = 50 : 1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.37-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.98(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{q}, \mathrm{J}=14.2 \mathrm{~Hz}$, 2H), 2.01 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 177.68, 162.19, 158.78, 142.47, 139.58, 137.16, 128.91, 127.60, 127.16, 127.08, 125.95, 124.86, 124.77, 117.10, 113.19, 73.71, 54.47, 39.21, 15.46. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 421.1633$, found 421.1541.

2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)-4-(p-tolyl)oxazol-5(4H)-one (31)

Isolated yield 89% ($35.6 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. >20 : 1), [D] > 20 : 1, colorless oil, eluent (PE : $\mathrm{EA}=50: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$ $-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 5 \mathrm{H}), 6.91(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.59-$ $1.54(\mathrm{~m}, 2.5 \mathrm{H}), 1.54-1.48(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.37,161.89,157.64,141.74,136.68,131.13,128.70$, 127.17, 127.15, 127.11, 126.16, 125.68, 117.11, 112.94, 78.16, 54.39, 44.96, 22.97, 22.23, 20.04.

HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{K})^{+} 439.1529$, found 439.1530.

2,4-bis(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)-one (32)

Isolated yield 92\% (38.3 mg, 0.1 mmol scale, r.r. $>20: 1$), $[\mathrm{D}]>20: 1$, colorless oil, eluent (PE : $\mathrm{EA}=50$: 1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ (d, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.85$ $(\mathrm{s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.53(\mathrm{~m}, 2.5 \mathrm{H}), 1.53-1.47(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.83,162.83,159.23,158.45$, $142.85,129.61,129.52,128.19,127.37,127.18,126.70,118.39,113.98,112.81,78.98,55.44,55.27,46.01,23.93,23.32$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{DNO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 439.1739$, found 439.1741.

Isolated yield $86 \%(34.7 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$), [D] > $20: 1$, colorless oil, eluent (PE : $\mathrm{EA}=50: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{dd}, J=8.4,5.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.30(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.52(\mathrm{~m}, 2.5 \mathrm{H}), 1.52-1.46(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3) $\delta 176.51,161.43(\mathrm{~d}, \mathrm{~J}=248.3 \mathrm{~Hz})$, $161.92,157.69,141.39,130.00(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 129.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 128.62,127.12,126.17,125.79,117.07,113.27(\mathrm{~d}, J=$ $21.4 \mathrm{~Hz}), 112.99,77.81,54.40,45.00,22.75,22.26 .{ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.33$.

HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{DFNO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 427.1539$, found 427.1549.

4-(4-chlorophenyl)-2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)-one (34)

Isolated yield $82 \%(34.4 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$), $[\mathrm{D}]>20: 1$, colorless oil, eluent (PE : $\mathrm{EA}=50: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30$ $-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.48(\mathrm{~m}, 2.5 \mathrm{H})$, $1.48-1.43(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 177.41,163.01,158.83,142.34,134.06,133.87,129.71,129.68$, 128.17, 127.62, 127.26, 126.89, 118.08, 114.05, 78.91, 55.46, 46.10, 23.81, 23.30.

HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{DCINO}_{3}(\mathrm{M}+\mathrm{H})^{+} 421.1424$, found 421.1414 .

2-(4-methoxyphenyl)-4-(naphthalen-2-yl)-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)-one (35)

Isolated yield $20 \%(8.7 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1),[\mathrm{D}]>20: 1$, colorless oil, eluent (PE : EA $=50: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.87(\mathrm{~s}, 0.5 \mathrm{H}), 8.23(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.97-7.82(\mathrm{~m}$, $2 \mathrm{H}), 7.61-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.83$ $(\mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.54(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.99,158.60$, $154.48,140.66,131.63,129.01,128.68,128.47,128.41,127.73,127.70,127.24,126.97,126.72,126.30,125.82,125.63$, 123.19, 111.66, 108.37, 54.23, 46.17, 23.40, 23.26.

HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 459.1789$, found 459.1790.

2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)-4-(thiophen-3-yl)oxazol-5(4H)-one (36)

Isolated yield $60 \%(23.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, $r . r .>20: 1),[D]>20: 1$, colorless oil, eluent (PE : EA $=50: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=$ $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.59$
$-1.55(\mathrm{~m}, 2.5 \mathrm{H}), 1.55-1.51(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.64,161.84,158.03,141.63,134.61,128.59,126.99$, 126.96, 126.20, 125.72, 123.10, 117.21, 112.94, 77.69, 54.39, 44.83, 22.99, 22.21.

HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{DNO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 393.1378$, found 393.1374.

4-benzyl-2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)-one (37)

 Isolated yield 30% ($12.0 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$), [D] > 20 : 1, colorless oil, eluent (PE : EA $=50: 1) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.00(\mathrm{~m}, 5 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~d}$, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=12.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 2.5 \mathrm{H}), 1.72-1.68(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 178.60,162.67,158.77,143.64,134.87,130.50,129.38,127.98,127.85,127.43,126.81,126.66$, 118.15, 113.86, 79.96, 55.37, 44.10, 38.65, 23.92, 23.62.

HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 423.1789$, found 423.1792 .

2-(4-methoxyphenyl)-4-phenethyl-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)-one (38)

 Isolated yield 35% ($14.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$), [D] > $20: 1$, colorless oil, eluent (PE : EA $=50: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.22$ $(\mathrm{m}, 2 \mathrm{H}), 7.21-7.09(\mathrm{~m}, 6 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.52-2.18(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.56$ (m, 5H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 178.30, 161.98, 158.53, 142.34, 139.77, 128.68, 127.48, $127.38,126.79,126.40,125.68,125.10,116.92,113.05,77.81,54.44,43.33,33.42,29.99,22.74,22.14$.

HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 437.1946$, found 437.1956.

4-(cyclohexylmethyl)-2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)-one (39)

Isolated yield $56 \%(22.7 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. > 20 : 1), [D] > 20 : 1, colorless oil, eluent (PE : EA
$=50: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.08(\mathrm{~m}$, $3 \mathrm{H}), 6.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{qd}, J=13.9,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.43(\mathrm{~m}, 10 \mathrm{H}), 1.13$ $-0.97(\mathrm{~m}, 4 \mathrm{H}), 0.95-0.80(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.25,161.78,157.80,142.33$, 128.51, 126.92, 126.26, 125.55, 117.26, 113.01, 76.91, 54.41, 43.87, 38.61, 33.71, 33.46, 32.58, 25.11, 25.08, 25.05, 22.71, 21.93.

HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{H})^{+} 407.2439$, found 407.2442.

2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)-4-propyloxazol-5(4H)-one (40)

Isolated yield 38\% (13.4 mg, 0.1 mmol scale, r.r. > 20 : 1), [D] > 20 : 1, colorless oil, eluent (PE : EA $=50: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.92-$ $1.82(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.18-1.06(\mathrm{~m}, 1 \mathrm{H}), 1.03-0.92(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3$)$ б $179.65,162.89,159.12,143.65,129.57,127.86,127.36,126.60,118.21,114.05,79.12,55.44,44.14,34.32,23.74,23.29$, 17.87, 13.94.

HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{H})^{+} 353.1970$, found 353.1971 .

2-(4-methoxyphenyl)-4-(1-phenylethyl-2-d)-4-propyloxazol-5(4H)-one (41)

Isolated yield 71\% (23.9 mg, 0.1 mmol scale, r.r. > 20 : 1, d.r. $=1$: 1), [D] > 20 : 1, colorless oil, eluent (PE: EA = $50: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.92(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{ddd}$, $J=13.6,11.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.17-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.78(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 181.06,163.11,159.68,141.21,129.81,128.96,128.18,127.07,118.09,114.16,55.51,46.90,38.29$, 17.41, 13.79.

HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{H})^{+} 339.1813$, found 339.1815.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.11-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.27-1.13(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 179.95,162.99,159.85,140.46,129.66,128.78,127.94,127.16,118.15,114.10,55.46,46.51,37.62$, 27.89, 27.86, 17.56, 13.96.

HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{H})^{+} 339.1813$, found 339.1813.
methyl 2-(4-methoxybenzamido)-3-methyl-2,3-diphenylbutanoate-4-d (42)

Isolated yield 90% ($75.2 \mathrm{mg}, 0.2 \mathrm{mmol}$ scale), [D] > $20: 1$, white solid, eluent (PE:EA = $2: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3) $\delta 7.75-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.14$ (m, 2H), $6.92(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 2.5 \mathrm{H}), 1.47-$ $1.40(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right)$ ס 171.03, 166.32, 162.35, 143.46, 136.40, 128.82, 128.72, 128.10, 127.70, 127.52,
127.18, 127.00, 126.90, 113.87, 69.65, 55.47, 51.98, 45.67, 25.52, 25.11.

HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{DNO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 441.1895$, found 441.1893.

2-amino-2-(1-phenylethyl-2-d)pentanoic acid (43)

Isolated yield 63% ($27.9 \mathrm{mg}, 0.2 \mathrm{mmol}$ scale), [D] > $20: 1$, white solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 7.47-7.32(\mathrm{~m}, 5 \mathrm{H}), 3.50(\mathrm{t}, J=7.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.06-$ $1.94(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 0.5 \mathrm{H}), 1.76-1.56(\mathrm{~m}, 0.5 \mathrm{H}), 1.43(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.39-1.12(\mathrm{~m}, 2 \mathrm{H}), 1.05$ $-0.80(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) ~ \delta 173.16,171.54,138.61,138.23,128.93,128.87,128.76,128.19,128.16,67.82$, $67.64,44.57,43.96,36.65,35.03,16.77,16.58,14.71,14.53,14.34,13.23,13.13$.

HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{DNO}_{2}(\mathrm{M}+\mathrm{H})^{+}$223.1551, found 223.1553.

3-phenyl-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (44)

Isolated yield 88% ($28.9 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale), [D] > $20: 1$, white solid, eluent (PE : EA : DCM = $10: 1$: 7.5). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.92-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.05(\mathrm{~m}$, $4 \mathrm{H}), 6.94-6.76(\mathrm{~m}, 4 \mathrm{H}), 6.54(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 2.5 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 178.00,143.39,139.82,134.31,129.31,129.15,127.73,127.48,126.81,126.23,126.16,125.81,125.43$, 119.76, 108.20, 61.26, 43.91, 24.47, 23.72.

HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{DNO}(\mathrm{M}+\mathrm{Na})^{+} 351.1578$, found 351.1571 .

3-phenyl-3-(1-(p-tolyl)ethyl-2-d)indolin-2-one. (45)

 Isolated yield 73% ($24.0 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, d.r. $=1: 1$), $[\mathrm{D}]=13: 1$, white solid, eluent (PE : EA : $\mathrm{DCM}=10: 1: 7.5) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25(\mathrm{~s}, 0.5 \mathrm{H}), 7.70-7.54(\mathrm{~m}, 2.5 \mathrm{H}), 7.48(\mathrm{~s}, 0.5 \mathrm{H})$, $7.41-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.91-$ $6.83(\mathrm{~m}, 1.5 \mathrm{H}), 6.82-6.71(\mathrm{~m}, 3 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.15-3.85(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 1.3 \mathrm{H}), 2.16(\mathrm{~s}, 1.4 \mathrm{H}), 1.39-1.31$ ($\mathrm{m}, 1.1 \mathrm{H}$), $1.29-1.21(\mathrm{~m}, 1.1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.01,179.23,141.57,140.87,138.69,138.09,137.35,137.30$, $136.24,136.17,129.76,129.35,129.17,128.60,128.51,128.42,128.25,128.18,127.97,127.92,127.89,127.87,127.36$, 127.26, 127.16, 121.71, 121.46, 109.91, 109.61, 62.00, 61.32, 46.73, 46.50, 20.97.

HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{DNO}(\mathrm{M}+\mathrm{Na})^{+} 351.1578$, found 351.1571 .

3-(1-(4-(methylthio)phenyl)ethyl-2-d)-3-phenylindolin-2-one. (46)

Isolated yield 86% ($31.0 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, d.r. $=1: 1$), $[\mathrm{D}]>20: 1$, white solid, eluent (PE : EA : DCM = $10: 1: 7.5) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17(\mathrm{~s}, 0.5 \mathrm{H}), 7.65-7.53(\mathrm{~m}, 2.5 \mathrm{H}), 7.42-7.33$ $(\mathrm{m}, 1.5 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 2.5 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.92(\mathrm{~m}, 1.5 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1.5 \mathrm{H})$, $6.83(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.81-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.10-3.88(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 1.5 \mathrm{H}), 2.34(\mathrm{~s}, 1.5 \mathrm{H})$, $1.37-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.78,179.02,141.48,140.84,138.49,137.89,137.29$, 137.27, 136.53, 136.48, 129.75, 129.54, 129.22, 129.11, 128.55, 128.32, 128.08, 127.85, 127.42, 127.27, 127.22, 125.51, 125.26, 121.78, 121.55, 110.02, 109.68, 61.90, 61.21, 46.62, 46.44, 15.65, 15.58.

HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20}$ DNOS $(\mathrm{M}+\mathrm{Na})^{+}$383.1299, found 383.1294.

3-(1-(4-fluorophenyl)ethyl-2-d)-3-phenylindolin-2-one. (47)

Isolated yield 84% (27.9 mg, 0.1 mmol scale, d.r. = $1: 1$), [D] = 10 : 1, white solid, eluent (PE : EA : DCM $=10: 1: 7.5) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}$, $2 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.65(\mathrm{~m}, 3 \mathrm{H}), 4.05(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.36-1.31(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.87,161.66(\mathrm{~d}, \mathrm{~J}=164.0 \mathrm{~Hz}), 141.35,137.69,136.02(\mathrm{~d}, \mathrm{~J}=$ $2.0 \mathrm{~Hz}), 130.20(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}), 128.93,128.62,128.57,127.82,127.47,127.21,121.85,114.20(\mathrm{~d}, J=14.1 \mathrm{~Hz}), 109.90,61.89$, 46.24, 16.04, 15.88, 15.76, 15.63. ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.05$.

HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17}$ DFNO $(\mathrm{M}+\mathrm{Na})^{+}$355.1327, found 355.1318 .
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{td}, \mathrm{J}=7.7,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.99(\mathrm{td}, J=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.80(\mathrm{~m}, 3 \mathrm{H}), 6.78-6.73(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.30-1.26(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.58,161.66(\mathrm{~d}, J=164.1 \mathrm{~Hz}), 140.66,138.41,136.04(\mathrm{~d}, \mathrm{~J}=1.9$ $\mathrm{Hz}), 130.64(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}), 129.63,128.39,128.13,127.74,127.34,126.96,121.64,113.99(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 109.65,61.17$, 46.28, 15.51, 15.37, 15.24, 15.11. ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-116.15.

HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17}$ DFNO $(\mathrm{M}+\mathrm{Na})^{+} 355.1327$, found 355.1319.

3-phenyl-3-(1-(4-(trifluoromethoxy)phenyl)ethyl-2-d)indolin-2-one. (48)

Isolated yield $55 \%(21.9 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, d. $\mathrm{r} .=1: 1),[\mathrm{D}]>20: 1$, white solid, eluent (PE : EA : DCM = $10: 1: 7.5) .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 7.65-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.33-$ $7.26(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.92-6.82(\mathrm{~m}, 4 \mathrm{H}), 6.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.32(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.56,148.08(\mathrm{~d}, J=13.1 \mathrm{~Hz}), 141.27,139.07$, $137.54,130.07,128.74,128.60,127.82,127.54,127.24,121.93,119.77,109.88,61.75,46.44 .{ }^{19} \mathrm{~F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 57.88.

HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{DF}_{3} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 421.1245$, found 421.1240.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{td}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{td}, J=$ $7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.84(\mathrm{~m}, 5 \mathrm{H}), 6.81(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 179.37,147.98(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}), 140.63,139.07,138.25,130.50,129.53,128.45,128.23,127.74,127.42,126.88$, 121.72, $120.39(\mathrm{q}, \mathrm{J}=255.5 \mathrm{~Hz}), 119.49,109.68,61.06,46.38 .{ }^{19} \mathrm{~F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-57.86$.

HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{DF}_{3} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$421.1245, found 421.1242.

N-(4-(1-(2-oxo-3-phenylindolin-3-yl)ethyl-2-d)phenyl)acetamide. (49)
 $6.88(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.21-1.15(\mathrm{~m}, 2.1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 178.97, 168.52, 141.82, 140.33, 138.07, 135.86, 131.76, 129.45, 128.79, 128.12, 127.79, 127.28, 126.22, 121.33, 118.12, 109.64, 61.04, 45.53, 24.40, 15.85.

HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{DN}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{Na})^{+} 394.1636$, found 394.1627.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 10.03(\mathrm{~s}, 1 \mathrm{H}), 9.76(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{td}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.24-1.18(\mathrm{~m}, 2.1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) δ 178.52, 168.52, 143.06, 139.13, 138.21, 135.70, 129.39, 129.19, 128.90, 128.81, 128.00, 127.50, 127.38, 121.52, 118.20, 110.07, 61.69, 45.97, 24.41, 16.57. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{DN}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{Na})^{+} 394.1636$, found 394.1627.

3-phenyl-3-(1-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl-2-d)indolin-2-one. (50)

Isolated yield 61% ($19.1 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, d.r. $=1: 1$), $[\mathrm{D}]>20: 1$, white solid, eluent (PE : EA : DCM $=10: 1: 7.5) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{dd}, \mathrm{J}=6.8,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.13(\mathrm{~m}$, $6 \mathrm{H}), 7.09(\mathrm{td}, \mathrm{J}=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.60$ $-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.90,142.10,141.00,136.09,132.59,130.86,130.13$,
128.32, 127.23, 127.06, 126.84, 126.75, 126.52, 120.42, 108.74, 83.56, 60.63, 24.61, 24.42.

HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{DBNO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 463.2274$, found 463.2273.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.11(\mathrm{~m}, 7 \mathrm{H}), 7.11-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{td}, \mathrm{J}=7.6,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.26,140.81$, $140.13,136.06,132.09,130.98,130.85,127.73,127.54,126.82,126.56,126.50,126.26,121.23,109.32,83.36,63.33,24.70$, 24.55.

HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{DBNO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 463.2274$, found 463.2272 .

3-(1,1-diphenylethyl-2-d)-3-phenylindolin-2-one. (51)

Isolated yield 42\% (16.4 mg, 0.1 mmol scale), [D] > $20: 1$, white solid, eluent (PE : EA : DCM = $10: 1$: 7.5). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.12(\mathrm{~m}$, $4 \mathrm{H}), 7.07-6.95(\mathrm{~m}, 7 \mathrm{H}), 6.86(\mathrm{td}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.30-2.10$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 179.42, 146.41, 143.40, 141.16, 136.29, 132.07, 131.56, 129.69, 129.35, $128.45,128.08,127.48,127.41,127.25,127.15,126.53,126.49,121.24,110.04,63.45,53.50,28.10-27.58(\mathrm{~m}, 1 \mathrm{C})$. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{DNO}(\mathrm{M}+\mathrm{Na})^{+} 413.1735$, found 413.1738 .

3-(1,2-diphenylethyl-2-d)-3-phenylindolin-2-one. (52)

Isolated yield 85% ($33.2 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, d.r. $=1: 1$), $[\mathrm{D}]=2: 1$, white solid, eluent (PE : EA : DCM $=$ $10: 1: 7.5) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~s}, 0.5 \mathrm{H}), 7.82-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ $-7.31(m, 2 H), 7.31-7.24(m, 1.5 H), 7.14-6.85(m, 9 H), 6.85-6.78(m, 1 H), 6.78-6.68(m, 2 H), 4.19$ $-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.24(\mathrm{~m}, 0.3 \mathrm{H}), 3.19-3.01(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 179.99,178.85,141.86,140.52$, $140.49,140.48,140.08,140.05,140.03,140.00,139.06,138.06,137.50,137.49,131.72,130.03,129.57,129.26,128.88$, 128.79, 128.75, 128.71, 128.04, 127.94, 127.84, 127.69, 127.36, 127.32, 127.27, 127.25, 126.92, 126.66, 125.87, 125.83, 125.64, 121.96, 110.19, 109.69, 62.21, 61.80, 55.52, 55.16, $36.36,35.20$.

HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{DNO}(\mathrm{M}+\mathrm{Na})^{+} 413.1735$, found 413.1729.

3-(2-(benzo[d][1,3]dioxol-5-yl)propan-2-yl-1-d)-3-phenylindolin-2-one. (53)

Isolated yield 86% ($32.0 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale), [D] > $20: 1$, white solid, eluent (PE : EA : DCM = 10 : $1: 7.5) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{dd}, \mathrm{J}=6.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H})$, $7.19(\mathrm{td}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{td}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.76(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{dd}, J=9.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.60$ ($\mathrm{m}, 2.5 \mathrm{H}$), $1.38-1.30(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.09,146.37,145.81,140.90,138.67,135.32,130.35,130.16$, $128.76,127.92,127.32,127.29,121.80,120.89,109.49,109.35,106.57,100.82,62.46,44.92,25.93,25.18$.

HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$395.1476, found 395.1470.

3-(1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)ethyl-2-d)-3-phenylindolin-2-one. (54)

 Isolated yield $74 \%(27.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, d.r. $=1: 1$), $[\mathrm{D}]>20: 1$, white solid, eluent (PE : EA : DCM = $10: 1: 7.5$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}$, $2 \mathrm{H}), 7.27-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.07(\mathrm{~m}, 4 \mathrm{H}), 3.90(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 1H), 1.25 - 1.18 ($\mathrm{m}, 2.5 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 179.69, 142.31, 142.15, 140.75, 138.62, 133.76, 129.66, 128.29, 128.00, 127.83, 127.28, 127.23, 122.48, 121.59, 118.14, 115.74, 109.53, 64.30, 64.22, 61.27, 46.23.

HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$395.1476, found 395.1472.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{td}, \mathrm{J}=7.6,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.39-6.26(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.01(\mathrm{~m}, 4 \mathrm{H}), 3.93(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 1.32 - 1.25 ($\mathrm{m}, 2.5 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 179.00, 142.44, 142.18, 141.49, 138.07, 133.81, 129.26, 128.50, 128.48, 127.84, 127.34, 127.21, 121.77, 117.61, 116.00, 109.89, 64.22, 64.12, 61.88, 46.47.

HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$395.1476, found 395.1472.

3-(1-(naphthalen-2-yl)ethyl-2-d)-3-phenylindolin-2-one. (55)

Isolated yield 85% ($31.0 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, d.r. $=1: 1$), $[\mathrm{D}]>20: 1$, white solid, eluent (PE : EA : $\mathrm{DCM}=10: 1: 7.5) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~s}, 0.5 \mathrm{H}), 7.76-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.44(\mathrm{~m}$, $1 \mathrm{H}), 7.44-7.15(\mathrm{~m}, 8 \mathrm{H}), 6.99-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.62-6.49(\mathrm{~m}, 0.5 \mathrm{H}), 4.35-4.05(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.41$ (m, 1H), $1.37-1.29(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.86,178.95,141.52,140.90,138.54,138.10,138.05,137.93$, 132.92, 132.69, 132.40, 132.29, 129.55, 129.21, 128.58, 128.31, 128.12, 128.08, 127.94, 127.93, 127.90, 127.88, 127.44, $127.33,127.29,127.27,126.83,126.72,126.35,125.63,125.55,125.52,125.47,121.79,121.50,109.99,109.72,62.00,61.29$, 47.30, 47.06, 16.20, 15.57.

HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{DNO}(\mathrm{M}+\mathrm{Na})^{+} 387.1578$, found 387.1571 .

3-(2-(benzofuran-2-yl)propan-2-yl-1-d)-3-phenylindolin-2-one. (56)

Isolated yield $86 \%(31.6 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale), $[\mathrm{D}]>20: 1$, white solid, eluent (PE : EA : DCM $=10$: $1: 7.5) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 10.62(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.35$ $-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 1.60-$ $1.52(\mathrm{~m}, 2.5 \mathrm{H}), 1.40-1.34(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d) δ 177.77, 162.74, 153.75, 142.37, 135.78, 130.37, 129.97, $128.51,128.25,127.90,127.75,127.57,124.18,123.09,121.29,120.99,111.16,109.75,104.03,61.14,43.12,24.23,23.69$. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{DNO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$391.1527, found 391.1521.

3-(1-(1-methyl-1H-pyrazol-5-yl)ethyl-2-d)-3-phenylindolin-2-one. (57)

Isolated yield $59 \%(18.8 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, d.r. $=1: 1$), $[\mathrm{D}]>20: 1$, white solid, eluent (PE:EA=5:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.06(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.15(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.11,142.60,140.66,137.76$, 137.41, 129.56, 128.53, 128.43, 127.60, 127.57, 126.91, 121.99, 109.83, 105.91, 60.09, 39.09, 36.10. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{DN}_{3} \mathrm{O}(\mathrm{M}+\mathrm{Na})^{+}$341.1483, found 341.1484. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.27(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 178.54,142.47,141.84,137.63,137.25,128.91,128.66,127.73,127.68,127.33,121.94$, 110.14, 103.96, 60.16, 38.00, 36.78.

HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{DN}_{3} \mathrm{O}(\mathrm{M}+\mathrm{Na})^{+}$341.1483, found 341.1481.

3-(but-3-en-2-yl-1-d)-3-phenylindolin-2-one and (E)-3-(but-2-en-1-yl-4-d)-3-phenylindolin-2-one. (58)

 Isolated yield 66\% (17.4 mg, 0.1 mmol scale, d.r. $=1: 1, Z / E=3: 1$), $[D]>20: 1$, white solid, eluent (PE : EA : DCM = $10: 1: 7.5) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70$ $-8.20(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.13(\mathrm{~m}, 7 \mathrm{H}), 7.12-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.87(\mathrm{~m}, 1 \mathrm{H}), 5.80$ (ddd, $J=17.2,10.6,5.9 \mathrm{~Hz}, 0.2 \mathrm{H}), 5.52-5.36(\mathrm{~m}, 0.6 \mathrm{H}), 5.29$ (ddd, $J=17.1,10.1$, $8.2 \mathrm{~Hz}, 0.2 \mathrm{H}), 5.14-4.81(\mathrm{~m}, 1.4 \mathrm{H}), 3.53-3.37(\mathrm{~m}, 0.4 \mathrm{H}), 3.17-2.90(\mathrm{~m}, 1.2 \mathrm{H}), 1.54-1.40(\mathrm{~m}, 1.2 \mathrm{H}), 1.10-1.02(\mathrm{~m}, 0.4 \mathrm{H})$,
$0.87-0.79(\mathrm{~m}, 0.4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 180.74,180.57,180.15,179.98,141.33,140.93,139.62,139.56,138.51$, 138.31, 138.10, 138.06, 132.76, 132.68, 130.12, 130.09, 129.82, 129.42, 128.61, 128.58, 128.51, 128.46, 128.31, 128.26 128.13, 128.05, 127.82, 127.69, 127.66, 127.39, 127.34, 127.32, 127.08, 127.06, 126.65, 126.52, 125.41, 125.22, 124.43, 123.83, 122.46, 122.39, 122.01, 121.97, 116.82, 116.60, 110.05, 109.97, 109.92, 60.91, 60.40, $57.21,56.82,45.32,43.53$, 40.59, 34.79, 17.92, 17.84, 17.64, 17.45. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{DNO}(\mathrm{M}+\mathrm{Na})^{+}$287.1265, found 287.1263.

3-(2,3-dimethylbut-3-en-2-yl-1-d)-3-phenylindolin-2-one
 and
 (E)-3-(2,3-dimethylbut-2-en-1-yl-4-d)-3-phenylindolin-2-one. (59)

Isolated yield 73% ($21.3 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale), [D$]>20$: 1, white solid, eluent (PE : EA : DCM = $10: 1: 7.5) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01$ - $7.88(\mathrm{~m}, 2 \mathrm{H}), 7.81$ (s, 1H), $7.75(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{td}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 1.45-1.37(\mathrm{~m}, 5 \mathrm{H}), 1.23-1.16$ ($\mathrm{m}, 2.5 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 178.83,149.25,140.75,135.81,130.95,129.86,128.69,127.88,127.44,127.03$, 121.03, 114.55, 109.36, 61.44, 46.11, 24.73, 24.65, 22.16

HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{DNO}(\mathrm{M}+\mathrm{Na})^{+} 315.1578$, found 315.1570 .
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}$, 1H), $7.06-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 5 \mathrm{H}), 1.30$ $-1.23(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C}^{2} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.10,140.88,140.63,132.10,129.21,128.45,127.97,127.21,127.03,126.44$, 123.42, 121.87, 109.69, 57.14, 42.66, 21.08, 20.78, 19.05.

HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{DNO}(\mathrm{M}+\mathrm{Na})^{+} 315.1578$, found 315.1575.
(2S,3R,4R,5S,6S)-2-(acetoxymethyl)-6-(4-(1-(2-oxo-3-phenylindolin-3-yl)ethyl-2-d)phenoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate. (60)

Isolated yield 56% ($37.0 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, d.r. $=1: 1$), $[\mathrm{D}]>20: 1$, white solid, eluent (PE: EA: DCM = $10: 1: 7.5) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (d, J = 8.3 Hz, 2H), 7.32 - 7.27 (m, 2H), $7.26-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.92-$ $6.77(\mathrm{~m}, 4 \mathrm{H}), 6.74-6.68(\mathrm{~m}, 2 \mathrm{H}), 5.48-5.41(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{dd}, \mathrm{J}=10.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, \mathrm{J}=7.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-$ $4.08(\mathrm{~m}, 2 \mathrm{H}), 4.04-3.93(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.14(\mathrm{~m}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 1.5 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.99(\mathrm{~m}, 4.5 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.40,179.37,170.41,170.40,170.29,170.27,170.25,170.17,169.40,169.37,155.55,140.73$,
$140.68,138.49,135.35,135.32,130.36,129.57,129.37,128.32,128.30,128.11,128.09,127.87,127.81,127.29,127.28$, 127.24, 127.10, 121.55, 115.59, 115.53, 109.58, 99.54, 99.49, 70.96, 70.89, 70.82, 70.79, 68.63, 68.60, 66.83, 61.35, 61.30, 61.17, 61.14, 46.24, 46.08, 20.75, 20.71, 20.67, 20.60.

HRMS (ESI) calcd for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{DNO}_{11}(\mathrm{M}+\mathrm{Na})^{+} 683.2322$, found 683.2332.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.14$ $(\mathrm{m}, 1 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.60(\mathrm{~m}, 3 \mathrm{H}), 5.51-5.35(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{ddd}, \mathrm{J}=10.4,7.0,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.93$ (dd, $J=23.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=11.4,6.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.19-4.09(\mathrm{~m}, 1.5 \mathrm{H}), 4.06-3.96(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 1.5 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 1.5 \mathrm{H}), 2.00(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.27(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 178.66,170.51,170.40,170.27,170.25,170.16,169.39,169.37,155.62,155.51,141.42,141.39,137.83,137.80,135.47$, $135.27,129.90,129.82,129.06,128.98,128.56,128.50,127.81,127.44,127.25,121.76,116.03,115.70,109.88,99.71,99.30$, $71.03,70.90,70.84,70.78,68.56,66.86,61.87,61.84,61.37,61.30,46.34,46.31,20.75,20.74,20.72,20.66,20.59$.

HRMS (ESI) calcd for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{DNO}_{11}(\mathrm{M}+\mathrm{Na})^{+}$683.2322, found 683.2321.

3-(2-phenylpropan-2-yl-1-d)-3-(p-tolyl)indolin-2-one. (61)

Isolated yield 89% ($30.4 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale), [D] > $20: 1$, white solid, eluent (PE : EA : DCM = 10: 1 : 7.5). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.05$ $(\mathrm{m}, 4 \mathrm{H}), 6.90-6.81(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 2.5 \mathrm{H})$, $1.44-1.34(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 179.34, 144.62, 140.92, 136.87, 132.33, 130.60, 130.11, 128.69, 128.56, 128.03, 127.77, 126.85, 126.43, 120.76, 109.25, 62.13, 44.84, 25.55, 24.79, 20.95.

HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{DNO}(\mathrm{M}+\mathrm{Na})^{+} 365.1735$, found 365.1729 .

3-(4-(methylthio)phenyl)-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (62)

Isolated yield $46 \%(17.2 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale), [D] > $20: 1$, white solid, eluent (PE : EA : DCM = 10:1: 7.5). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 6 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.64(\mathrm{~m}, 2.5 \mathrm{H}), 1.41-1.36(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.66,144.39,140.70,137.52,132.06,130.65,130.23,128.70,128.54,127.92,126.93$, 126.53, 125.06, 120.88, 109.18, 61.86, 44.97, 25.43, 24.72, 15.53.

HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{24}$ DNOS $(\mathrm{M}+\mathrm{Na})^{+} 397.1455$, found 397.1453

3-(4-methoxyphenyl)-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (63)

Isolated yield 74% ($26.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale), [D] > $20: 1$, white solid, eluent (PE : EA : DCM = 10: 1: 7.5). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 10.44(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.06(\mathrm{~m}, 4 \mathrm{H}), 6.92-$ $6.75(\mathrm{~m}, 5 \mathrm{H}), 6.72-6.59(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 2.5 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 178.59,158.59,144.92,142.38,131.40,130.75,128.38,128.32,128.25,127.88,127.27$, 126.73, 120.54, 113.02, 109.57, 61.21, 55.47, 44.45, 25.88, 24.96.

HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{DNO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$381.1684, found 381.1676.

3-(4-(dimethylamino)phenyl)-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (64)

Isolated yield 77\% (28.6 mg, 0.1 mmol scale), [D] > 20 : 1, white solid, eluent (PE : EA : DCM = 10: 1: 7.5). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 10.36(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.87-$ $6.75(\mathrm{~m}, 3 \mathrm{H}), 6.73-6.52(\mathrm{~m}, 4 \mathrm{H}), 2.86(\mathrm{~s}, 6 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 2.5 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 178.84,149.52,145.26,142.33,131.10,130.92,128.32,128.29,128.01,127.23,126.62$, 122.92, 120.37, 111.38, 109.43, 61.13, 44.42, 40.37, 26.00, 24.98

HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{DN}_{2} \mathrm{O}(\mathrm{M}+\mathrm{Na})^{+}$394.2000, found 394.1996.

3-([1,1'-biphenyl]-4-yl)-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (65)

Isolated yield 47% ($19.0 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale), [D] > $20: 1$, white solid, eluent (PE : EA : DCM = 10: 1 : 7.5). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.94-6.85(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 2.5 \mathrm{H}), 1.48-1.40$ ($\mathrm{m}, 2.5 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 178.86,144.44,140.83,140.50,139.76,134.51,130.62,130.35,128.79,128.76$, 128.56, 127.93, 127.35, 127.01, 126.91, 126.52, 125.82, 120.90, 109.26, 62.19, 45.08, 25.53, 24.79. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{DNO}(\mathrm{M}+\mathrm{Na})^{+} 427.1891$, found 427.1891.

3-(5-methylthiophen-2-yl)-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (66)

Isolated yield 40% ($14.0 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale), [D] > $20: 1$, white solid, eluent (PE : EA : DCM = 10:1: 7.5). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.06(\mathrm{~m}, 4.5 \mathrm{H}), 7.00-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{td}, \mathrm{J}=$ $7.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.64-6.60(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~m}, \mathrm{~J}=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.77-1.73(\mathrm{~m}, 2.5 \mathrm{H})$,
1.48 - 1.42 (m, 2.5H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 178.24,143.97,140.57,139.53,136.48,131.31,128.57,128.17,128.15$, 127.37, 126.91, 126.48, 124.37, 124.29, 121.13, 109.14, 60.81, 44.89, 25.09, 24.12, 15.15.

HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{DNOS}(\mathrm{M}+\mathrm{Na})^{+}$371.1299, found 371.1297.

3-(6-methoxynaphthalen-2-yl)-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (67)

 Isolated yield 82% ($33.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale), [D] > 20 : 1, white solid, eluent (PE : EA : DCM = $10: 1$: 7.5). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 0.2 \mathrm{H}), 8.05-7.97(\mathrm{~m}, 0.3 \mathrm{H}), 7.73-7.63(\mathrm{~m}$, $1.5 \mathrm{H}), 7.24-7.04(\mathrm{~m}, 6 \mathrm{H}), 6.93(\mathrm{td}, \mathrm{J}=7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.78(\mathrm{~m}, 3 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.92(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 2.5 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 179.29,157.97$, 144.57, 140.98, 133.46, 130.58, 130.42, 130.17, 130.11, 129.60, 128.76, 128.59, 127.98, 127.90, 126.87, 126.50, 125.21, 120.91, 118.67, 109.36, 105.02, 62.35, 55.33, 45.17, 25.66, 24.87.

HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{DNO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 431.1840$, found 431.1841.

5-methyl-3-phenyl-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (68)

Isolated yield 92% ($31.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale), $[\mathrm{D}]>20$: 1, white solid, eluent (PE : EA : DCM = $10: 1$: 7.5). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 2.5 \mathrm{H}), 1.42-1.33(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 179.30,144.57$, 138.51, 135.51, 130.27, 130.25, 129.90, 129.78, 128.64, 128.10, 127.25, 127.16, 126.75, 126.51, 108.88, 62.38, 44.96, 25.50, 24.82, 21.41

HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{DNO}(\mathrm{M}+\mathrm{Na})^{+} 365.1735$, found 365.1729 .

5-methoxy-3-phenyl-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (69)

Isolated yield 90\% (32.2 mg, 0.1 mmol scale), [D] > 20 : 1, white solid, eluent (PE : EA : DCM = 10 : 1 : 7.5). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.44$ (s, 1H), $7.88-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.23-$
$7.08(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.77-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.69(\mathrm{~m}$, $2.5 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 179.30,154.05,144.51,135.38,134.57,131.49,130.18,128.63$, 127.28, 127.24, 126.92, 126.57, 115.89, 113.04, 109.40, 62.76, 55.68, 45.03, 44.96, 25.65, 24.81.

HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{DNO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 381.1684$, found 381.1680.

3-phenyl-3-(2-phenylpropan-2-yl-1-d)-5-(trifluoromethoxy)indolin-2-one. (70)

Isolated yield 53% ($21.8 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale), [D] > 20 : 1, white solid, eluent (PE : EA : DCM = 10 : $1: 7.5) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.87-6.73(\mathrm{~m}, 3 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 2.5 \mathrm{H}), 1.44-$ $1.36(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 179.04,143.69,143.08(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}), 143.07,143.04,139.62,134.45,131.71$, 129.98, 128.34, 127.58, 127.49, 127.14, 126.81, 122.93, 121.34, 120.61 (d, $J=257.4 \mathrm{~Hz}), 109.42,62.70,45.11,25.34,24.73$. ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.21$.

HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{DF}_{3} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 435.1401$, found 435.1396 .

7-methyl-3-phenyl-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (71)

Isolated yield 98% ($33.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale), [D] > $20: 1$, white solid, eluent (PE : EA : DCM = 10:1: 7.5). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.29(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{t}, \mathrm{J}=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.75(\mathrm{~m}, 3 \mathrm{H}), 6.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.28(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 2.5 \mathrm{H}), 1.44-1.36(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 180.07,144.54$, 139.91, 135.58, 130.28, 129.94, 129.11, 128.58, 127.21, 127.16, 126.77, 126.44, 126.20, 120.64, 118.66, 62.80, 44.91, 25.58, 24.88, 16.55.

HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{DNO}(\mathrm{M}+\mathrm{Na})^{+} 365.1735$, found 365.1730
tert-butyl 2-oxo-3-phenyl-3-(2-phenylpropan-2-yl-1-d)indoline-1-carboxylate. (72)

Isolated yield 37% ($15.8 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale), [D] > $20: 1$, white solid, eluent (PE : EA = $20: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{dd}, \mathrm{J}=6.6,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.27-$ $7.21(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{td}, J=7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.48(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 2.5 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $175.32,149.00,144.23,139.77,135.19,130.14,128.52,128.36,128.32,128.07,127.47,127.43,126.98,126.64,122.51$, 114.23, 84.24, 61.83, 46.15, 28.12, 25.83, 24.80.

HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 451.2102$, found 451.2092.
(73)

Separation by prep-HPLC (Waters E600) (MeOH: $\left.\mathrm{H}_{2} \mathrm{O}=90: 10\right),[\mathrm{D}]>20: 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{dd}, J=8.6,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90-$ $6.77(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.97-5.66(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.30(\mathrm{~d}, \mathrm{~J}=223.9 \mathrm{~Hz}), 163.82,159.66$, $154.72,146.93,146.13,135.68,130.92(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 129.62,128.60,124.99(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 122.20,115.91(\mathrm{~d}, J=21.9 \mathrm{~Hz})$, 112.72, 109.57, 109.45, 107.00, 100.91, 55.27, 47.00, 24.74, 24.60. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-106.10$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{DFNO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 471.1437$, found 471.1444.

4-(2-(benzo[d][1,3]dioxol-5-yl)propan-2-yl-1-d)-4-(4-fluorophenyl)-2-(4-methoxyphenyl)oxazol-5(4H)-one

 (74)

Isolated yield 69\% (30.9 mg, 0.1 mmol scale, r.r. >20 : 1), $[\mathrm{D}]>20: 1$, colorless oil, eluent (PE : $\mathrm{EA}=50: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{dd}, J=8.4,5.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.08-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.53-$ $1.41(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.50,163.06,162.50(\mathrm{~d}, \mathrm{~J}=248.4 \mathrm{~Hz}), 158.87,146.74,146.14,136.54,131.17$ (d, $J=8.0 \mathrm{~Hz}), 130.07(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 129.72,129.62,121.69,118.18,114.32(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 114.10,109.15,106.89,100.83$, 78.96, $55.44,45.92,24.18,23.77 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-114.21.

HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{21}$ DFNO $_{5}(\mathrm{M}+\mathrm{Na})^{+} 471.1437$, found 471.1437.

(E)-4-(1,4-diphenylpent-3-en-1-yl-5-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (76)

Isolated yield 80% ($39.0 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$), $[\mathrm{D}]>20: 1$, colorless oil, eluent

(PE: EA = $50: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.24(\mathrm{~m}, 2.5 \mathrm{H}), 7.23-7.06(\mathrm{~m}, 9 \mathrm{H})$, $6.98-6.89(\mathrm{~m}, 2.5 \mathrm{H}), 6.86(\mathrm{dd}, J=6.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.03(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.93-3.80(\mathrm{~m}, 3 \mathrm{H}), 3.54-3.44(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.72(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3$)$ $\delta 185.37,177.15,162.05,162.00,159.28,158.77,140.66,140.22,137.47,137.27,136.90,136.74,136.44,136.32,136.32$, 128.84, 128.74, 128.69, 127.46, 126.97, 126.95, 126.90, 126.66, 126.55, 126.51, 126.40, 125.65, 125.46, 125.18, 125.16, 125.06, 123.49, 122.98, 117.27, 117.16, 113.04, 113.01, 77.01, 54.96, 54.91, 54.47, 54.42, 29.56, 27.50, 24.37, 24.35.

HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{DNO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 511.2102$, found 511.2074.

4-cinnamyl-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (78)

Isolated yield 35% ($13.4 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, r.r. $>20: 1$), colorless oil, eluent ($\mathrm{PE}: \mathrm{EA}=50: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.84-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$ $-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.98(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15-5.91(\mathrm{~m}$, $1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.35,162.25,158.97$, $137.05,135.81,134.51,128.99,127.65,127.40,127.21,126.50,125.34,124.69,121.00,117.00,113.19,73.62,54.48,43.40$. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{2} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}$384.1594, found 384.1593.

7 References

1. T. Wang, Z. Yu, D. L. Hoon, C. Y. Phee, Y. Lan, Y. Lu, J. Am. Chem. Soc. 2016, 138, 265-271.
2. M. Weber, S. Jautze, W. Frey, R. Peters, Chem. Eur. J. 2012, 18, 14792-14804.
3. Y. Li, J. Yang, X. Geng, P. Tao, Y. Shen, Z. Su, K. Zheng, Angew. Chem. Int., Ed. 2022, 61, e202210755.
4. S. Xie, D. Li, H. Huang, F. Zhang, Y. Chen, J. Am. Chem. Soc. 2019, 141, 16237-16242.
5. H. Inada, M. Shibuya, Y. Yamamoto, J. Org. Chem. 2020, 85, 11047-11059.
6. T. Tsuji, T. Tanaka, T. Tanaka, R. Yazaki, T. Ohshima, Org. Lett. 2020, 22, 4164-4170.
7. J.-T. Xia, X.-P. Hu, Org. Lett. 2020, 22, 1102-1107.
8. T. Hostmann, J. J. Molloy, K. Bussmann, R. Gilmour, Org. Lett. 2019, 21, 10164-10168.
9. J. Liu, M. Nie, Q. Zhou, S. Gao, W. Jiang, L. W. Chung, W. Tang, K. Ding. Chem. Sci. 2017, 8, 5161-5165.
10. E. W. M. Flores, M. L. Uhrig, A. Postigo, Org. Biomol. Chem. 2020, 18, 8724-8734.
11. J. Taguchi, T. Takeuchi, R. Takahashi, F. Masero, H. Ito, Angew. Chem. Int., Ed. 2019, 58, 7299-7303.

8 NMR Spectra

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (1)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (1)

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(4-methoxyphenyl)-4-phenyl-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)-one (3)

$\stackrel{\infty}{\infty}$
为
80
$i j$
$i j$
$i j$

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(4-methoxyphenyl)-4-phenyl-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)-one (3)

会
$\stackrel{\sim}{\stackrel{\sim}{\circ}} \stackrel{\infty}{\stackrel{\infty}{0}}$

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(4-methoxyphenyl)-4-phenyl-2-(2-phenylpropan-2-yl-1-d)oxazol-5(2H)-one (3')

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(4-methoxyphenyl)-4-phenyl-2-(2-phenylpropan-2-yl-1-d)oxazol-5(2H)-one (3')

$\begin{array}{ll}\stackrel{2}{*} & = \\ i & \vdots \\ i\end{array}$
No
N
N
${ }^{1} \mathrm{H}$ NMR spectrum of 2-(4-methoxyphenyl)-4-phenyl-4-(2-phenylpropan-2-yl)oxazol-5(4H)-one (3")

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(4-methoxyphenyl)-4-phenyl-4-(2-phenylpropan-2-yl)oxazol-5(4H)-one (3")

${ }^{1} \mathrm{H}$ NMR spectrum of 2－（4－methoxyphenyl）－4－phenyl－4－（1－phenylethyl－2－d）oxazol－5（4H）－one（4）

웅옹NㅇN
シーデ～ \int_{π}

${ }^{13} \mathrm{C}$ NMR spectrum of 2－（4－methoxyphenyl）－4－phenyl－4－（1－phenylethyl－2－d）oxazol－5（4H）－one（4）

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(4-methoxyphenyl)-4-phenyl-4-(1-(p-tolyl)ethyl-2-d)oxazol-5(4H)-one (5)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(4-methoxyphenyl)-4-phenyl-4-(1-(p-tolyl)ethyl-2-d)oxazol-5(4H)-one (5)

${ }^{1} \mathrm{H}$ NMR spectrum of 4-(1-(3,4-dimethoxyphenyl)propyl-2-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)one (6)

ZK-20231010-CR-24-4-1.1.fid

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(1-(3,4-dimethoxyphenyl)propyl-2-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)one (6)

${ }^{1} \mathrm{H}$ NMR spectrum of 4-(1-(3,4-dimethoxyphenyl)propyl-2-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)one (6)

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(1-(3,4-dimethoxyphenyl)propyl-2-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)one (6)

${ }^{1} \mathrm{H}$ NMR spectrum of 4－（1－（4－fluorophenyl）ethyl－2－d）－2－（4－methoxyphenyl）－4－phenyloxazol－5（4H）－one（7）

为かス

${ }^{13} \mathrm{C}$ NMR spectrum of 4－（1－（4－fluorophenyl）ethyl－2－d）－2－（4－methoxyphenyl）－4－phenyloxazol－5（4H）－one（7）

${ }^{19}$ F NMR spectrum of 4-(1-(4-fluorophenyl)ethyl-2-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (7)

${ }^{1} \mathrm{H}$ NMR spectrum of 4-(1-(3-chlorophenyl)ethyl-2-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (8)

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(1-(3-chlorophenyl)ethyl-2-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (8)

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(4-methoxyphenyl)-4-phenyl-4-(1-(4-(trifluoromethyl)phenyl)ethyl-2-d)oxazol-5(4H)one (9)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(4-methoxyphenyl)-4-phenyl-4-(1-(4-(trifluoromethyl)phenyl)ethyl-2-d)oxazol-5(4H)one (9)

[^0]${ }^{19}$ F NMR spectrum of 2-(4-methoxyphenyl)-4-phenyl-4-(1-(4-(trifluoromethyl)phenyl)ethyl-2-d)oxazol-5(4H)one (9)

∞
i
i
i

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(4-methoxyphenyl)-4-phenyl-4-(1-(4-(trifluoromethyl)phenyl)ethyl-2-d)oxazol-5(4H)one (9)

$\stackrel{-2}{2}$

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(4-methoxyphenyl)-4-phenyl-4-(1-(4-(trifluoromethyl)phenyl)ethyl-2-d)oxazol-5(4H)one (9)

${ }^{19}$ F NMR spectrum of 2-(4-methoxyphenyl)-4-phenyl-4-(1-(4-(trifluoromethyl)phenyl)ethyl-2-d)oxazol-5(4H)one (9)

\circ
$\stackrel{\circ}{\circ}$
$\dot{\circ}$
i
${ }^{1} \mathrm{H}$ NMR spectrum of N -(4-(1-(2-(4-methoxyphenyl)-5-oxo-4-phenyl-4,5-dihydrooxazol-4-yl)ethyl-2d)phenyl)acetamide (10)

${ }^{13} \mathrm{C}$ NMR spectrum of N -(4-(1-(2-(4-methoxyphenyl)-5-oxo-4-phenyl-4,5-dihydrooxazol-4-yl)ethyl-2d)phenyl)acetamide (10)

${ }^{1} \mathrm{H}$ NMR spectrum of 4-(2-(benzo[d][1,3]dioxol-5-yl)propan-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (11)

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(2-(benzo[d][1,3]dioxol-5-yl)propan-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (11)

${ }^{1} \mathrm{H}$ NMR spectrum of 4-(1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)ethyl-2-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (12)

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)ethyl-2-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (12)

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(1-(methyl-d)-1,2,3,4-tetrahydronaphthalen-1-yl)-4-phenyloxazol-5(4H)-one (13)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(1-(methyl-d)-1,2,3,4-tetrahydronaphthalen-1-yl)-4-phenyloxazol-5(4H)-one (13)

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(1-(naphthalen-2-yl)ethyl-2-d)-4-phenyloxazol-5(4H)-one (14)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(1-(naphthalen-2-yl)ethyl-2-d)-4-phenyloxazol-5(4H)-one (14)

${ }^{1} \mathrm{H}$ NMR spectrum of 2－（4－methoxyphenyl）－4－（1－（naphthalen－1－yl）ethyl－2－d）－4－phenyloxazol－5（4H）－one（15）

$\begin{array}{ll}\text { ミNN } & \infty \\ \text { ジ } & \text { ín }\end{array}$
∞
\cdots
\cdots
\cdots

${ }^{13} \mathrm{C}$ NMR spectrum of 2－（4－methoxyphenyl）－4－（1－（naphthalen－1－yl）ethyl－2－d）－4－phenyloxazol－5（4H）－one（15）

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(1-(naphthalen-1-yl)ethyl-2-d)-4-phenyloxazol-5(4H)-one (15)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(1-(naphthalen-1-yl)ethyl-2-d)-4-phenyloxazol-5(4H)-one (15)

${ }^{1} \mathrm{H}$ NMR spectrum of 4-(2,3-dihydro-1H-inden-1-yl-2-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (16)

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(2,3-dihydro-1H-inden-1-yl-2-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (16) N而
${ }^{1} \mathrm{H}$ NMR spectrum of 4-(2,3-dihydro-1H-inden-1-yl-2-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (16)

 $\iiint \iint$

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(2,3-dihydro-1H-inden-1-yl-2-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (16)

${ }^{1} \mathrm{H}$ NMR spectrum of 4-(2-(benzo[b]thiophen-2-yl)propan-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (17)

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(2-(benzo[b]thiophen-2-yl)propan-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (17)

${ }^{1} \mathrm{H}$ NMR spectrum of 4-(2-(benzofuran-2-yl)propan-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (18)

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(2-(benzofuran-2-yl)propan-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)one (18)

${ }^{1} \mathrm{H}$ NMR spectrum of 4-(2-(benzofuran-2-yl)propan-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (18)

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(2-(benzofuran-2-yl)propan-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)one (18)

${ }^{1} \mathrm{H}$ NMR spectrum of 4-(2-(benzo[d]oxazol-2-yl)propan-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (19)

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(2-(benzo[d]oxazol-2-yl)propan-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (19)

${ }^{1} \mathrm{H}$ NMR spectrum of 4-(2-(benzo[d]oxazol-2-yl)propan-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (19)

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(2-(benzo[d]oxazol-2-yl)propan-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (19)

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(1-(1-methyl-1H-pyrrol-2-yl)ethyl-2-d)-4-phenyloxazol-5(4H)one (20)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(1-(1-methyl-1H-pyrrol-2-yl)ethyl-2-d)-4-phenyloxazol-5(4H)one (20)

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(1-(1-methyl-1H-pyrazol-5-yl)ethyl-2-d)-4-phenyloxazol-5(4H)one (21)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(1-(1-methyl-1H-pyrazol-5-yl)ethyl-2-d)-4-phenyloxazol-5(4H)one (21)

${ }^{1} \mathrm{H}$ NMR spectrum of 4-(2-(4,6-dimethoxypyrimidin-2-yl)propan-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (22)

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(2-(4,6-dimethoxypyrimidin-2-yl)propan-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (22)
${ }^{1} \mathrm{H}$ NMR spectrum of ($2 S, 3 R, 4 R, 5 S, 6 S$)-2-(acetoxymethyl)-6-(4-(1-(2-(4-methoxyphenyl)-5-oxo-4-phenyl-4,5-dihydrooxazol-4-yl)ethyl-2-d)phenoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (23)

${ }^{13} \mathrm{C}$ NMR spectrum of ($2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{R}, 5 \mathrm{SS}, 6 \mathrm{~S}$)-2-(acetoxymethyl)-6-(4-(1-(2-(4-methoxyphenyl)-5-oxo-4-phenyl-4,5-dihydrooxazol-4-yl)ethyl-2-d)phenoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (23)

${ }^{1} \mathrm{H}$ NMR spectrum of Methyl(4-(1-(2-(4-methoxyphenyl)-5-oxo-4-phenyl-4,5-dihydrooxazol-4-yl)ethyl-2-d)benzoyl)-L-alaninate (24)

${ }^{13} \mathrm{C}$ NMR spectrum of Methyl(4-(1-(2-(4-methoxyphenyl)-5-oxo-4-phenyl-4,5-dihydrooxazol-4-yl)ethyl-2-d)benzoyl)-L-alaninate (24)
${ }^{1} \mathrm{H}$ NMR spectrum of 4-(but-3-en-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (26)

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(but-3-en-2-yl-1-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (26)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-4-(but-2-en-1-yl-4-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (26)

${ }^{13} \mathrm{C}$ NMR spectrum of (E)-4-(but-2-en-1-yl-4-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (26)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-4-(2,3-dimethylbut-2-en-1-yl-4-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (28)

${ }^{13} \mathrm{C}$ NMR spectrum of (E)-4-(2,3-dimethylbut-2-en-1-yl-4-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (28)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-2-(4-methoxyphenyl)-4-phenyl-4-(3-phenylbut-2-en-1-yl-2-d)oxazol-5(4H)-one (30)

${ }^{13} \mathrm{C}$ NMR spectrum of (E)-2-(4-methoxyphenyl)-4-phenyl-4-(3-phenylbut-2-en-1-yl-2-d)oxazol-5(4H)-one (30)

\qquad
${ }^{1} \mathrm{H}$ NMR spectrum of (Z)-2-(4-methoxyphenyl)-4-phenyl-4-(3-phenylbut-2-en-1-yl-2-d)oxazol-5(4H)-one (30)

${ }^{13} \mathrm{C}$ NMR spectrum of (Z)-2-(4-methoxyphenyl)-4-phenyl-4-(3-phenylbut-2-en-1-yl-2-d)oxazol-5(4H)-one (30)

-73.16
-54.51
-39.25
-24.94
\qquad
${ }^{1} \mathrm{H}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)-4-(p-tolyl)oxazol-5(4H)-one (31)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)-4-(p-tolyl)oxazol-5(4H)-one (31)

\qquad
${ }^{1} \mathrm{H}$ NMR spectrum of 2，4－bis（4－methoxyphenyl）－4－（2－phenylpropan－2－yl－1－d）oxazol－5（4H）－one（32）

${ }^{13} \mathrm{C}$ NMR spectrum of 2，4－bis（4－methoxyphenyl）－4－（2－phenylpropan－2－yl－1－d）oxazol－5（4H）－one（32）

${ }^{1} \mathrm{H}$ NMR spectrum of 4-(4-fluorophenyl)-2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)-one (33)

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(4-fluorophenyl)-2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)-one (33)

${ }^{19}$ F NMR spectrum of 4-(4-fluorophenyl)-2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)-one (33)

${ }^{1} \mathrm{H}$ NMR spectrum of 4-(4-chlorophenyl)-2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)-one (34)

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(4-chlorophenyl)-2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)one (34)

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(naphthalen-2-yl)-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)-one (35)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(naphthalen-2-yl)-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)one (35)

\qquad
S101
${ }^{1} \mathrm{H}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)-4-(thiophen-3-yl)oxazol-5(4H)-one (36)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)-4-(thiophen-3-yl)oxazol-5(4H)-one (36)

${ }^{1} \mathrm{H}$ NMR spectrum of 4-benzyl-2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)-one (37)

${ }^{13} \mathrm{C}$ NMR spectrum of 4-benzyl-2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)-one (37)

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(4-methoxyphenyl)-4-phenethyl-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)-one (38)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(4-methoxyphenyl)-4-phenethyl-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)-one (38)

${ }^{1} \mathrm{H}$ NMR spectrum of 4-(cyclohexylmethyl)-2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)one (39)

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(cyclohexylmethyl)-2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)oxazol-5(4H)one (39)

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)-4-propyloxazol-5(4H)-one (40)

∞
∞
$\stackrel{\infty}{\infty}$

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(2-phenylpropan-2-yl-1-d)-4-propyloxazol-5(4H)-one (40)

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(1-phenylethyl-2-d)-4-propyloxazol-5(4H)-one (41)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(1-phenylethyl-2-d)-4-propyloxazol-5(4H)-one (41)

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(1-phenylethyl-2-d)-4-propyloxazol-5(4H)-one (41)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(4-methoxyphenyl)-4-(1-phenylethyl-2-d)-4-propyloxazol-5(4H)-one (41)

${ }^{1} \mathrm{H}$ NMR spectrum of methyl 2-(4-methoxybenzamido)-3-methyl-2,3-diphenylbutanoate-4-d (42)

${ }^{13} \mathrm{C}$ NMR spectrum of methyl 2-(4-methoxybenzamido)-3-methyl-2,3-diphenylbutanoate-4-d (42)
N
${ }^{1}$ H NMR spectrum of 2-amino-2-(1-phenylethyl-2-d)pentanoic acid (43)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-amino-2-(1-phenylethyl-2-d)pentanoic acid (43)
C
¢ín

${ }^{1} \mathrm{H}$ NMR spectrum of 3-phenyl-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (44)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-phenyl-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (44)

${ }^{1} \mathrm{H}$ NMR spectrum of 3-phenyl-3-(1-(p-tolyl)ethyl-2-d)indolin-2-one. (45)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-phenyl-3-(1-(p-tolyl)ethyl-2-d)indolin-2-one. (45)

${ }^{1} \mathrm{H}$ NMR spectrum of 3-(1-(4-(methylthio)phenyl)ethyl-2-d)-3-phenylindolin-2-one. (46)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-(1-(4-(methylthio)phenyl)ethyl-2-d)-3-phenylindolin-2-one. (46)

\qquad
${ }^{1}$ H NMR spectrum of 3-(1-(4-fluorophenyl)ethyl-2-d)-3-phenylindolin-2-one. (47)

88す
Bistrem
π

${ }^{13} \mathrm{C}$ NMR spectrum of 3-(1-(4-fluorophenyl)ethyl-2-d)-3-phenylindolin-2-one. (47)

${ }^{19}$ F NMR spectrum of 3-(1-(4-fluorophenyl)ethyl-2-d)-3-phenylindolin-2-one. (47)

$\stackrel{8}{8}$

${ }^{1}$ H NMR spectrum of 3-(1-(4-fluorophenyl)ethyl-2-d)-3-phenylindolin-2-one. (47)

$\underset{\sim}{\sim}$
C-

${ }^{13} \mathrm{C}$ NMR spectrum of 3-(1-(4-fluorophenyl)ethyl-2-d)-3-phenylindolin-2-one. (47)

${ }^{19}$ F NMR spectrum of 3-(1-(4-fluorophenyl)ethyl-2-d)-3-phenylindolin-2-one. (47)
 $\stackrel{6}{\stackrel{6}{4}}$

${ }^{1} \mathrm{H}$ NMR spectrum of 3-phenyl-3-(1-(4-(trifluoromethoxy)phenyl)ethyl-2-d)indolin-2-one. (48)

98.
$\stackrel{56 \%}{y}$

${ }^{13} \mathrm{C}$ NMR spectrum of 3-phenyl-3-(1-(4-(trifluoromethoxy)phenyl)ethyl-2-d)indolin-2-one. (48)

${ }^{19}$ F NMR spectrum of 3-phenyl-3-(1-(4-(trifluoromethoxy)phenyl)ethyl-2-d)indolin-2-one. (48)

${ }^{1} \mathrm{H}$ NMR spectrum of 3-phenyl-3-(1-(4-(trifluoromethoxy)phenyl)ethyl-2-d)indolin-2-one. (48)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-phenyl-3-(1-(4-(trifluoromethoxy)phenyl)ethyl-2-d)indolin-2-one. (48)

${ }^{19}$ F NMR spectrum of 3-phenyl-3-(1-(4-(trifluoromethoxy)phenyl)ethyl-2-d)indolin-2-one. (48)

${ }^{1} \mathrm{H}$ NMR spectrum of N -(4-(1-(2-oxo-3-phenylindolin-3-yl)ethyl-2-d)phenyl)acetamide. (49)

${ }^{13} \mathrm{C}$ NMR spectrum of N -(4-(1-(2-oxo-3-phenylindolin-3-yl)ethyl-2-d)phenyl)acetamide. (49)

${ }^{1} \mathrm{H}$ NMR spectrum of N -(4-(1-(2-oxo-3-phenylindolin-3-yl)ethyl-2-d)phenyl)acetamide. (49)

${ }^{13} \mathrm{C}$ NMR spectrum of N -(4-(1-(2-oxo-3-phenylindolin-3-yl)ethyl-2-d)phenyl)acetamide. (49)

$\begin{array}{ll}\stackrel{N}{\infty} & \text { N } \\ \stackrel{\infty}{\infty} & \infty \\ & 1\end{array}$

${ }^{1} \mathrm{H}$ NMR spectrum of 3-phenyl-3-(1-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl-2-d)indolin-2-one. (50)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-phenyl-3-(1-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl-2-d)indolin-2-one. (50)

Nu

\qquad
${ }^{1} \mathrm{H}$ NMR spectrum of 3-phenyl-3-(1-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl-2-d)indolin-2-one. (50)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-phenyl-3-(1-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl-2-d)indolin-2-one. (50)

ஹ
Ni8
\qquad
${ }^{1} \mathrm{H}$ NMR spectrum of 3-(1,1-diphenylethyl-2-d)-3-phenylindolin-2-one. (51)

추ㅊㅜㅜ

${ }^{13} \mathrm{C}$ NMR spectrum of 3-(1,1-diphenylethyl-2-d)-3-phenylindolin-2-one. (51)

$\begin{array}{ll}18 & 8 \\ 0 & 0 \\ 0 & 1 \\ 1 & 1\end{array}$

$\underbrace{\infty}$

${ }^{1} \mathrm{H}$ NMR spectrum of 3-(1,2-diphenylethyl-2-d)-3-phenylindolin-2-one. (52)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-(1,2-diphenylethyl-2-d)-3-phenylindolin-2-one. (52)

${ }^{1} \mathrm{H}$ NMR spectrum of 3-(2-(benzo[d][1,3]dioxol-5-yl)propan-2-yl-1-d)-3-phenylindolin-2-one. (53)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-(2-(benzo[d][1,3]dioxol-5-yl)propan-2-yl-1-d)-3-phenylindolin-2-one. (53)

${ }^{1} \mathrm{H}$ NMR spectrum of 3-(1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)ethyl-2-d)-3-phenylindolin-2-one. (54)

${ }^{13}$ C NMR spectrum of 3-(1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)ethyl-2-d)-3-phenylindolin-2-one. (54)

\qquad
${ }^{1} \mathrm{H}$ NMR spectrum of 3-(1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)ethyl-2-d)-3-phenylindolin-2-one. (54)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-(1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)ethyl-2-d)-3-phenylindolin-2-one. (54)

\qquad
${ }^{1} \mathrm{H}$ NMR spectrum of 3-(1-(naphthalen-2-yl)ethyl-2-d)-3-phenylindolin-2-one. (55)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-(1-(naphthalen-2-yl)ethyl-2-d)-3-phenylindolin-2-one. (55)

${ }^{1} \mathrm{H}$ NMR spectrum of 3-(2-(benzofuran-2-yl)propan-2-yl-1-d)-3-phenylindolin-2-one. (56)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-(2-(benzofuran-2-yl)propan-2-yl-1-d)-3-phenylindolin-2-one. (56)

${ }^{1} \mathrm{H}$ NMR spectrum of 3-(1-(1-methyl-1 $\left.\mathrm{H}-\mathrm{pyrazol}-5-\mathrm{yl}\right)$ ethyl-2-d)-3-phenylindolin-2-one. (57)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-(1-(1-methyl-1H-pyrazol-5-yl)ethyl-2-d)-3-phenylindolin-2-one. (57)

${ }^{1} \mathrm{H}$ NMR spectrum of 3-(1-(1-methyl-1 $\left.\mathrm{H}-\mathrm{pyrazol}-5-\mathrm{yl}\right)$ ethyl-2-d)-3-phenylindolin-2-one. (57)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-(1-(1-methyl-1H-pyrazol-5-yl)ethyl-2-d)-3-phenylindolin-2-one. (57)
 phenylindolin-2-one. (58)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-(but-3-en-2-yl-1-d)-3-phenylindolin-2-one and (E)-3-(but-2-en-1-yl-4-d)-3-phenylindolin-2-one. (58)

${ }^{1} \mathrm{H}$ NMR spectrum of 3-(2,3-dimethylbut-3-en-2-yl-1-d)-3-phenylindolin-2-one and (E)-3-(2,3-dimethylbut-2-en-1-yl-4-d)-3-phenylindolin-2-one. (59)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-(2,3-dimethylbut-3-en-2-yl-1-d)-3-phenylindolin-2-one and (E)-3-(2,3-dimethylbut-2-en-1-yl-4-d)-3-phenylindolin-2-one. (59)

\qquad
${ }^{1}$ H NMR spectrum of 3-(2,3-dimethylbut-3-en-2-yl-1-d)-3-phenylindolin-2-one and (E)-3-(2,3-dimethylbut-2-en-1-yl-4-d)-3-phenylindolin-2-one. (59)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-(2,3-dimethylbut-3-en-2-yl-1-d)-3-phenylindolin-2-one and (E)-3-(2,3-dimethylbut-2-en-1-yl-4-d)-3-phenylindolin-2-one. (59)

\qquad
${ }^{1} \mathrm{H}$ NMR spectrum of (2S,3R,4R,5S,6S)-2-(acetoxymethyl)-6-(4-(1-(2-oxo-3-phenylindolin-3-yl)ethyl-2-d)phenoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate. (60)

${ }^{13} \mathrm{C}$ NMR spectrum of (2S,3R,4R,5S,6S)-2-(acetoxymethyl)-6-(4-(1-(2-oxo-3-phenylindolin-3-yl)ethyl-2-d)phenoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate. (60)
\qquad
${ }^{1} \mathrm{H}$ NMR spectrum of (2S,3R,4R,5S,6S)-2-(acetoxymethyl)-6-(4-(1-(2-oxo-3-phenylindolin-3-yl)ethyl-2-d)phenoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate. (60)

${ }^{13} \mathrm{C}$ NMR spectrum of (2S,3R,4R,5S,6S)-2-(acetoxymethyl)-6-(4-(1-(2-oxo-3-phenylindolin-3-yl)ethyl-2-d)phenoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate. (60)

\qquad
${ }^{1} \mathrm{H}$ NMR spectrum of 3-(2-phenylpropan-2-yl-1-d)-3-(p-tolyl)indolin-2-one. (61)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-(2-phenylpropan-2-yl-1-d)-3-(p-tolyl)indolin-2-one. (61)

${ }^{1} \mathrm{H}$ NMR spectrum of 3-(4-(methylthio)phenyl)-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (62)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-(4-(methylthio)phenyl)-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (62)

ϱ
$\stackrel{\circ}{1}$
$\stackrel{1}{1}$

${ }^{1} \mathrm{H}$ NMR spectrum of 3-(4-methoxyphenyl)-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (63)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-(4-methoxyphenyl)-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (63)

6૬821-

${ }^{1} \mathrm{H}$ NMR spectrum of 3-(4-(dimethylamino)phenyl)-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (64)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-(4-(dimethylamino)phenyl)-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (64)

$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{\infty}{\infty}} \underset{\Gamma}{1}$

\qquad
${ }^{1} \mathrm{H}$ NMR spectrum of 3-([1,1'-biphenyl]-4-yl)-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (65)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-([1,1'-biphenyl]-4-yl)-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (65)

\qquad
${ }^{1} \mathrm{H}$ NMR spectrum of 3-(5-methylthiophen-2-yl)-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (66)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-(5-methylthiophen-2-yl)-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (66)

\qquad
${ }^{1} \mathrm{H}$ NMR spectrum of 3-(6-methoxynaphthalen-2-yl)-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (67)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-(6-methoxynaphthalen-2-yl)-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (67)

\qquad
${ }^{1} \mathrm{H}$ NMR spectrum of 5-methyl-3-phenyl-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (68)

${ }^{13} \mathrm{C}$ NMR spectrum of 5-methyl-3-phenyl-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (68)

${ }^{1} \mathrm{H}$ NMR spectrum of 5-methoxy-3-phenyl-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (69)

${ }^{13} \mathrm{C}$ NMR spectrum of 5-methoxy-3-phenyl-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (69)

$\stackrel{\stackrel{\circ}{2}}{\stackrel{N}{\infty}}$

${ }^{1} \mathrm{H}$ NMR spectrum of 3-phenyl-3-(2-phenylpropan-2-yl-1-d)-5-(trifluoromethoxy)indolin-2-one. (70)

$\stackrel{98}{9}$

${ }^{13} \mathrm{C}$ NMR spectrum of 3-phenyl-3-(2-phenylpropan-2-yl-1-d)-5-(trifluoromethoxy)indolin-2-one. (70)

${ }^{19}$ F NMR spectrum of 3-phenyl-3-(2-phenylpropan-2-yl-1-d)-5-(trifluoromethoxy)indolin-2-one. (70)

${ }^{1} \mathrm{H}$ NMR spectrum of 7-methyl-3-phenyl-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (71)

${ }^{13} \mathrm{C}$ NMR spectrum of 7-methyl-3-phenyl-3-(2-phenylpropan-2-yl-1-d)indolin-2-one. (71)

${ }^{1} \mathrm{H}$ NMR spectrum of tert-butyl 2-oxo-3-phenyl-3-(2-phenylpropan-2-yl-1-d)indoline-1-carboxylate. (72)

${ }^{13} \mathrm{C}$ NMR spectrum of tert-butyl 2-oxo-3-phenyl-3-(2-phenylpropan-2-yl-1-d)indoline-1-carboxylate. (72)

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(2-(benzo[d][1,3]dioxol-5-yl)propan-2-yl-1-d)-4-(4-fluorophenyl)-2-(4-methoxyphenyl)oxazol-5(2H)-one (73)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(2-(benzo[d][1,3]dioxol-5-yl)propan-2-yl-1-d)-4-(4-fluorophenyl)-2-(4-methoxyphenyl)oxazol-5(2H)-one (73)

${ }^{19} \mathrm{~F}$ NMR spectrum of 2-(2-(benzo[d][1,3]dioxol-5-yl)propan-2-yl-1-d)-4-(4-fluorophenyl)-2-(4-methoxyphenyl)oxazol-5(2H)-one (73)

${ }^{1} \mathrm{H}$ NMR spectrum of 4-(2-(benzo[d][1,3]dioxol-5-yl)propan-2-yl-1-d)-4-(4-fluorophenyl)-2-(4-methoxyphenyl)oxazol-5(4H)-one (74)

${ }^{13} \mathrm{C}$ NMR spectrum of 4-(2-(benzo[d][1,3]dioxol-5-yl)propan-2-yl-1-d)-4-(4-fluorophenyl)-2-(4-methoxyphenyl)oxazol-5(4H)-one (74)

${ }^{19} \mathrm{~F}$ NMR spectrum of 4-(2-(benzo[d][1,3]dioxol-5-yl)propan-2-yl-1-d)-4-(4-fluorophenyl)-2-(4-methoxyphenyl)oxazol-5(4H)-one (74)

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-4-(1,4-diphenylpent-3-en-1-yl-5-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (76)

${ }^{13} \mathrm{C}$ NMR spectrum of (E)-4-(1,4-diphenylpent-3-en-1-yl-5-d)-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (76)

${ }_{210}^{10}$	200	190	180	${ }_{170}^{17}$	160	150	140	${ }_{130}$	120	${ }_{110}$	${ }_{100}$	90	80	10	60	50	10	30	20	10	0	-10
S155																						

${ }^{1} \mathrm{H}$ NMR spectrum of 4-cinnamyl-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (78)

${ }^{13} \mathrm{C}$ NMR spectrum of 4-cinnamyl-2-(4-methoxyphenyl)-4-phenyloxazol-5(4H)-one (78)

[^0]:
 S69

