Supporting Information

Copper-Catalyzed Sulfonamidation of Enol Silyl Ether via SO₂ Insertion towards the Synthesis of β-Keto Sulfonamides

Qinqiong Zeng, †^a Yujia Gong, †^a Xuemei Zhang, †^{*a} and Zhong Lian^{*a}

Department of Dermatology, State Key Laboratory of Biotherapy and cancer center, West China Hospital, Sichuan University, Chengdu 610041, China.

E-mail: lianzhong@scu.edu.cn; xuemeizhang@scu.edu.cn

[†]These authors contributed equally.

Table of Contents

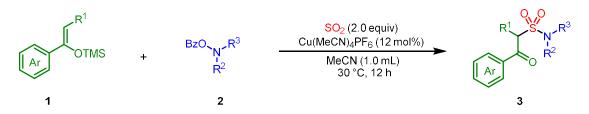
1.	General information
2.	Optimization of the Reaction Condition
3.	General procedure for the synthesis of β -carbonylsulfonamide 3
4.	Characterization data of products 3
5.	Unsuccessful silyl enol ethers
6.	Scale-up reaction
7.	Transformations of β-carbonylsulfonamide14
8.	Mechanistic Studies
9.	References
10.	NMR Spectra

1. General information

Unless otherwise noted, all commercially available reagents were obtained from commercial suppliers and used without further purification. Unless otherwise noted, all catalytic reactions were carried out using standard techniques in an argon atmosphere glovebox (Vigor, SGI800-750TS-F). The substrates and reagents for catalytic reactions were degassed and stored in the glovebox, unless otherwise noted. All work-up and purification procedures were carried out with reagent-grade solvents in air.

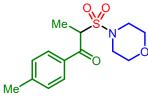
Thin Layer Chromatography analysis was performed on silica gel coated glass plates (0.25 mm) with fluorescence indicator UV254. Column chromatography was conducted with silica gel (200-300 mesh) at room temperature and under elevated pressure.

¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded at 400 MHz, 376 MHz and 100 MHz, respectively in CDCl₃ using TMS as an internal reference with chemical shift values reported in ppm. ¹H NMR was reported as follows: chemical shift, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), coupling constant (J values) in Hz and integration. Chemical shifts (δ) were reported with respect to the corresponding solvent residual peak at 7.26 ppm for CDCl₃ for ¹H NMR. ¹³C NMR spectra were reported in ppm using the central peak of CDCl₃ (77.16 ppm). High-resolution mass spectrometric measurements were provided by the Department of The State Key Laboratory of Biotherapy, Sichuan University. The molecular ion [M+H]⁺ and [M+Na]⁺ are given in m/z units.


2. Optimization of the Reaction Condition.

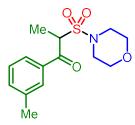
-	Me	+ <	N-OBzs	SO ₂ (2.0 equiv) Cu(I) (12 mmol%)	Me	
	1a , 0.2 mmol	2a			3a	
Entry	Cat.Cu	T (°C)	Solvent	Time (h)	SO ₂ source	3a Yield ^a (%)
1	-	60	MeCN	12	SOgen	0
2	Cu(OAc)	60	MeCN	12	SOgen	47
3	CuOTf	60	MeCN	12	SOgen	74
4	CuCl	60	MeCN	12	SOgen	29
5	CuBr	60	MeCN	12	SOgen	41
6	CuCN	60	MeCN	12	SOgen	60
7	Copper(I) thiophene-2- carboxylate	60	MeCN	12	SOgen	51
8	Cu(MeCN) ₄ PF ₆	60	MeCN	12	SOgen	84
9	Cu(MeCN)4PF6	50	MeCN	12	SOgen	83
10	CuSO ₄	30	MeCN	12	SOgen	1
11	Cu(OAc) ₂	30	MeCN	12	SOgen	16
12	Cu(OTf) ₂	30	MeCN	12	SOgen	58
13	CuCl ₂	30	MeCN	12	SOgen	24
14	CuBr ₂	30	MeCN	12	SOgen	15
15	CuF ₂	30	MeCN	12	SOgen	7
16	Cu(MeCN) ₄ PF ₆	40	MeCN	12	SOgen	91
17	Cu(MeCN)4PF6	30	MeCN	12	SOgen	91
18	Cu(MeCN)4PF6	18	MeCN	12	SOgen	68
19^{b}	Cu(MeCN) ₄ PF ₆	30	MeCN	12	SOgen	8
20 ^c	Cu(MeCN)4PF6	30	MeCN	12	SOgen	30
21^d	Cu(MeCN) ₄ PF ₆	30	MeCN	12	SOgen	84
22	Cu(MeCN)4PF6	30	DMF	12	SOgen	30
23	Cu(MeCN)4PF6	30	EtOAc	12	SOgen	12
24	Cu(MeCN) ₄ PF ₆	30	DCM	12	SOgen	33
25	Cu(MeCN)4PF6	30	Cyclohexan	e 12	SOgen	trace
26	Cu(MeCN) ₄ PF ₆	30	Toluene	12	SOgen	27
27	Cu(MeCN)4PF6	30	THF	12	SOgen	11
28	Cu(MeCN)4PF6	30	1,4-Dioxano	e 12	SOgen	8
29	Cu(MeCN) ₄ PF ₆	30	EtOH	12	SOgen	20
30	Cu(MeCN) ₄ PF ₆	30	MeCN	1	SOgen	48
31	Cu(MeCN) ₄ PF ₆	30	MeCN	3	SOgen	75
32	Cu(MeCN) ₄ PF ₆	30	MeCN	6	SOgen	85
33 ^e	Cu(MeCN) ₄ PF ₆	30	MeCN	12	DABSO	6
34 ^e	Cu(MeCN) ₄ PF ₆	30	MeCN	12	$Na_2S_2O_5$	3
35 ^e	Cu(MeCN) ₄ PF ₆	30	MeCN	12	$K_2S_2O_5$	3
36 ^e	Cu(MeCN)4PF6	30	MeCN	12	TsCl	N.D.

^{*a*}Yield was determined by GC of the crude mixture using *n*-hexadecane as an internal standard.


^b3 mol% of the catalyst was used. ^c6 mol % of the catalyst was used. ^d9 mol% of the catalyst was used. ^eThe reaction was set up in a 4 mLvial.

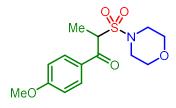
3. General procedure for the synthesis of β-carbonylsulfonamide **3**

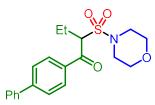
In the glovebox, compound **1** (0.2 mmol, 1.0 equiv.), compound **2** (0.6 mmol, 3.0 equiv.), $Cu(MeCN)_4PF_6$ (9.0 mg, 12.0 mol%) were added into chamber B with a magnetic stirring bar, followed by addition of MeCN (1.0 mL). Tetrabromothiophene S,S-dioxides (172.7 mg, 2.0 equiv.), 4- methylphenylene (64 μ L, 2.4 equiv.) was added to chamber B with a magnetic stirring bar, followed by addition of tetradecane (1.0 mL). The two chamber system was sealed and removed out of the glovebox. The chamber A was allowed to stir at 100 °C using heating mantle with 600-800 rpm stirring speed for 10 min. Then chamber B was heated to 30 °C in heat block. After 12 hours, two chamber was cooled to room temperature. Upon completion, the reaction mixture was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent to afford pure products **3**.


4. Characterization data of products 3

2-(morpholinosulfonyl)-1-(p-tolyl)propan-1-one (3a)

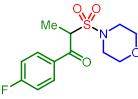
Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (5:1) as eluent (55.3 mg, 93%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 5.12 (q, J = 6.9 Hz, 1H), 3.69 – 3.59 (m, 4H), 3.40


-3.27 (m, 4H), 2.43 (s, 3H), 1.65 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.8, 145.6, 133.6, 129.8, 129.4, 67.1, 63.0, 47.2, 21.9, 13.6. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₁₉NNaO₄S 320.0927; found: 320.0926.

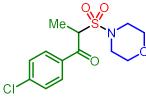

2-(morpholinosulfonyl)-1-(m-tolyl)propan-1-one (3b)

Prepared by the general procedure, isolated as colourless oil using petroleum ether/ethyl acetate (7:1) as eluent (51.7 mg, 87%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 – 7.73 (m, 2H), 7.47 – 7.37 (m, 2H), 5.14 (q, *J* = 6.9 Hz, 1H), 3.71 – 3.60 (m, 4H), 3.42 – 3.29 (m, 4H), 2.43 (s, 3H), 1.66 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*)

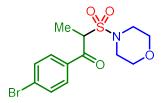
δ 193.6, 139.0, 136.2, 135.2, 129.6, 128.9, 126.5, 67.1, 63.0, 47.2, 21.5, 13.7. HRMS (ESI/Q-TOF) m/z: $[M+Na]^+$ calcd for $C_{14}H_{19}NNaO_4S$ 320.0927; found: 320.0926.



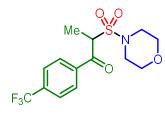
1-(4-methoxyphenyl)-2-(morpholinosulfonyl)propan-1-one (3c) Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (3:1) as eluent (58.9 mg, 94%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (d, *J* = 8.9 Hz, 2H), 6.96 (d, *J* = 8.9 Hz, 2H), 5.08 (q, *J* = 6.9 Hz, 1H), 3.87 (s, 3H), 3.72 - 3.56 (m, 4H), 3.44 - 3.24 (m, J = 4.5 Hz, 4H), 1.63 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.2, 164.4, 131.5, 128.8, 114.0, 66.8, 62.5, 55.5, 47.0, 13.4. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₁₉NNaO₅S 336.0876; found: 336.0881.


1-([1,1'-biphenyl]-4-yl)-2-(morpholinosulfonyl)butan-1-one (3d) Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (5:1) as eluent (59.8 mg, 80%).¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 – 8.08 (m, 2H), 7.77 – 7.71 (m, 2H), 7.66 – 7.61 (m, 2H), 7.52 – 7.45 (m, 2H), 7.45 – 7.39 (m,

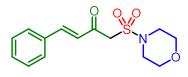
1H), 5.03 (dd, J = 10.8, 3.7 Hz, 1H), 3.71 – 3.60 (m, 4H), 3.42 – 3.28 (m, 4H), 2.45 – 2.31 (m, 1H), 2.26 – 2.14 (m, 1H), 0.95 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.9, 147.0, 139.6, 135.9, 129.7, 129.2, 128.7, 127.7, 127.4, 69.7, 67.1, 47.2, 22.3, 11.8. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₀H₂₄NO₄S 374.1421; found: 374.1412.


1-(4-fluorophenyl)-2-(morpholinosulfonyl)propan-1-one (3e) Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (4:1) as eluent (56.7 mg, 94%).¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 – 8.02 (m, 2H), 7.17 (t, *J* =

F 8.5 Hz, 2H), 5.09 (q, J = 6.9 Hz, 1H), 3.70 – 3.59 (m, 4H), 3.41 – 3.27 (m, 4H), 1.64 (d, J = 6.9 Hz, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -102.82(s, 1F). ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.8, 166.4 (d, J = 258.4 Hz), 132.5 (d, J = 2.9 Hz), 132.1 (d, J = 9.7 Hz), 116.2 (d, J = 22.1 Hz), 67.0, 63.1, 47.2, 13.5. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₃H₁₆FNNaO₄S 324.0676; found: 324.0672.

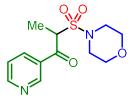

1-(4-chlorophenyl)-2-(morpholinosulfonyl)propan-1-one (3f) Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (4:1) as eluent (56.6 mg, 89%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, J = 8.6 Hz, 2H), 7.47 (d, J = 8.6 Hz, 2H), 5.08 (q, J = 6.9 Hz, 1H), 3.72 – 3.60 (m, 4H), 3.40

-3.27 (m, 4H), 1.65 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.2, 141.0, 134.4, 130.7, 129.3, 67.0, 63.2, 47.3, 13.5. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₃H₁₆ClNNaO₄S 340.0381; found: 340.0377.


1-(4-bromophenyl)-2-(morpholinosulfonyl)propan-1-one (3g) Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (4:1) as eluent (68.2 mg, 94%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 – 7.85 (m, 2H), 7.67 – 7.61 (m, 2H), 5.07 (q, *J* = 6.9 Hz, 1H), 3.69 – 3.60 (m, 4H), 3.39 – 3.26

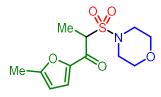
(m, 4H), 1.63 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.4, 134.8, 132.3, 130.7, 129.8, 67.0, 63.1, 47.2, 13.4. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₁₃H₁₇BrNO₄S 362.0056; found: 362.0053.

2-(morpholinosulfonyl)-1-(4-(trifluoromethyl)phenyl)propan-1-one (3h) Prepared by the general procedure, Cu(MeCN)₄PF₆ (15 mg, 20.0 mol%) instead of Cu(MeCN)₄PF₆ (9 mg, 12.0 mol%), isolated as white solid using petroleum ether/ethyl acetate (5:1) as eluent (42.9 mg, 61%).¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 (d, *J* = 8.2 Hz, 2H), 7.77 (d, *J* = 8.3 Hz, 2H), 5.13 (q, *J* = 6.9 Hz,

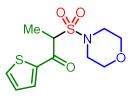

1H), 3.73 - 3.62 (m, 4H), 3.43 - 3.29 (m, 4H), 1.67 (d, J = 6.9 Hz, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.29(s, 3F). ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.8, 138.8, 135.4 (q, J = 33.0 Hz), 129.7, 126.1 (q, J = 3.7 Hz), 123.5 (q, J = 273.9 Hz), 67.1, 63.6, 47.4, 13.4. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₁₆F₃NNaO₄S 374.0644; found: 374.0645.

(E)-1-(morpholinosulfonyl)-4-phenylbut-3-en-2-one (3i) Prepared by the general procedure, isolated as white solid using

petroleum ether/ethyl acetate (2:1) as eluent (36.6 mg, 62%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, J = 16.0 Hz, 1H),


7.60 (dd, J = 7.6, 1.7 Hz, 2H), 7.49 – 7.36 (m, 3H), 6.98 (d, J = 16.0 Hz, 1H), 4.25 (s, 2H), 3.76 – 3.70 (m, 4H), 3.38 – 3.31 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 188.0, 146.6, 133.6, 131.4,129.0, 128.9, 124.8, 66.4, 59.6, 46.1. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₁₇NNaO₄S 318.0770; found: 318.0772.

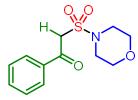
2-(morpholinosulfonyl)-1-(pyridin-3-yl)propan-1-one (3j)


Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (1:1) as eluent (28.4mg, 50%).¹H NMR (400 MHz, Chloroform-*d*) δ 9.22 (s, 1H), 8.81 (s, 1H), 8.35 – 8.23 (m, 1H), 7.50 – 7.42 (m, 1H), 5.09 (q, J = 6.9 Hz, 1H), 3.71 – 3.60 (m, 4H),

3.42 - 3.27 (m, J = 4.7 Hz, 4H), 1.66 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.6, 154.4, 150.5, 136.6, 131.5, 123.8, 67.1, 63.5, 47.3, 13.2. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₆N₂NaO₄S 307.0723; found: 307.0730.

1-(5-methylfuran-2-yl)-2-(morpholinosulfonyl)propan-1-one (3k) Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (4:1) as eluent (51.8 mg, 90%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 (d, *J* = 3.5 Hz, 1H), 6.24 (d, *J* = 3.4 Hz, 1H), 4.82 (q, *J* = 6.8 Hz, 1H), 3.69 – 3.59

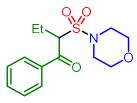
(m, 4H), 3.41 - 3.26 (m, 4H), 2.41 (s, 3H), 1.61 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 179.1, 158.9, 149.7, 121.4, 109.3, 66.0, 62.4, 46.1, 13.3 (d, J = 2.0 Hz), 12.0. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₇NNaO₅S 310.0720; found: 310.0714.



2-(morpholinosulfonyl)-1-(thiophen-2-yl)propan-1-one (31)

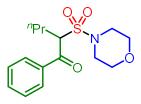
Prepared by the general procedure, isolated as colourless oil using petroleum ether/ethyl acetate (5:1) as eluent (28.3 mg, 49%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 3.9 Hz, 1H), 7.76 (d, *J* = 4.9 Hz, 1H), 7.23 – 7.16 (m, 1H), 4.89 (q, *J* = 7.0 Hz, 1H), 3.70 – 3.60 (m,

4H), 3.41 – 3.28 (m, 4H), 1.67 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 185.5,


143.4, 136.3, 134.6, 128.9, 67.0, 65.0, 47.2, 13.5. HRMS (ESI/Q-TOF) m/z: $[M+Na]^+$ calcd for $C_{11}H_{15}NNaO_4S_2$ 312.0335; found: 312.0337.

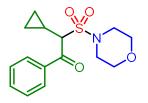
2-(morpholinosulfonyl)-1-phenylethan-1-one (3m)

Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (5:1) as eluent (32.8 mg, 61%).¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 (d, *J* = 7.5 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 2H), 4.57 (s, 2H), 3.76 – 3.69 (m, 4H),


3.40 - 3.30 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 189.2, 135.8, 134.6, 129.5, 129.1, 66.7, 57.3, 46.3. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₅NNaO₄S 292.0614; found: 292.0612.

2-(morpholinosulfonyl)-1-phenylbutan-1-one (3n)

Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (6:1) as eluent (50.6 mg, 85%).¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (d, J = 7.4 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.52 (t, J = 7.7 Hz, 2H), 4.98 (dd, J = 10.8, 3.7 Hz, 1H), 3.68

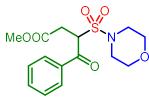

-3.56 (m, 4H), 3.39 - 3.25 (m, 4H), 2.42 - 2.27 (m, 1H), 2.23 - 2.13(m, 1H), 0.92 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.5, 137.3, 134.3, 129.1,129.0, 69.6, 67.0, 47.1, 22.3, 11.8. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₁₉NNaO₄S 320.0927; found: 320.0923.

2-(morpholinosulfonyl)-1-phenylpentan-1-one (30)

Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (7:1) as eluent (50.4 mg, 81%).¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (d, J = 7.4 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.7 Hz, 2H), 5.06 (dd, J = 10.9, 3.4 Hz, 1H), 3.68

-3.58 (m, 4H), 3.39 - 3.25 (m, 4H), 2.39 - 2.26 (m, 1H), 2.13 - 2.02 (m, 1H), 1.35 - 1.22 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.5, 137.1, 134.3, 129.1, 129.0, 68.0, 67.0, 47.2, 30.6, 20.6, 14.0. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₅H₂₁NNaO₄S 334.1083; found: 334.1084.

2-cyclopropyl-2-(morpholinosulfonyl)-1-phenylethan-1-one (3p) Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (5:1) as eluent (30.9 mg, 50%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 – 7.92 (m, 2H), 7.66 – 7.59 (m, 1H), 7.54 – 7.46 (m, 2H), 4.26 (d, J = 10.1 Hz, 1H), 3.76 – 3.63 (m, 4H),

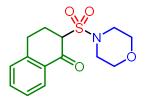

3.56 - 3.37 (m, 4H), 1.66 - 1.54 (m, 1H), 0.91 - 0.77 (m, 2H), 0.74 - 0.62 (m, 1H), 0.32 - 0.20 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.6, 136.6, 134.2, 129.0, 72.8, 67.2, 47.12, 9.9, 5.2, 4.7. HRMS (ESI/Q-TOF) m/z: [M+Na]+ calcd for C₁₅H₁₉NNaO₄S 332.0927; found: 332.0925.

4-chloro-2-(morpholinosulfonyl)-1-phenylbutan-1-one (3q)

Prepared by the general procedure, Cu(MeCN)₄PF₆ (15 mg, 20.0 mol%) instead of Cu(MeCN)₄PF₆ (9 mg, 12.0 mol%), isolated as white solid using petroleum ether/ethyl acetate (5:1) as eluent (54.4 mg, 82%).¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (d, *J* = 7.4 Hz, 2H), 7.66 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.7 Hz, 2H), 5.41 (dd, *J* = 9.9, 3.9 Hz, 1H),

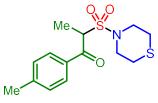
 $\begin{aligned} 3.79-3.67(m,\ 1H),\ 3.63-3.54\ (m,\ 4H),\ 3.45-3.35\ (m,\ 1H),\ 3.33-3.21\ (m,\ 4H),\ 2.86-2.75\ (m,\ 1H),\ 2.61-2.50\ (m,\ 1H).\ ^{13}C\ NMR\ (100\ MHz,\ Chloroform-{\it d})\ \delta\ 192.3,\ 136.7,\ 134.6,\ 129.2,\ 129.2,\ 66.9,\ 64.8,\ 47.0,\ 41.8,\ 31.1.\ HRMS\ (ESI/Q-TOF)\ m/z:\ [M+Na]^+\ calcd\ for\ C_{14}H_{18}ClNNaO_4S\ 354.0537;\ found:\ 354.0542. \end{aligned}$

methyl 3-(morpholinosulfonyl)-4-oxo-4-phenylbutanoate (3r) Prepared by the general procedure, Cu(MeCN)₄PF₆ (15 mg, 20.0 mol%) instead of Cu(MeCN)₄PF₆ (9 mg, 12.0 mol%), isolated as white solid using petroleum ether/ethyl acetate (2:1) as eluent (49.8 mg, 73%).¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 – 8.03 (m, 2H),


7.67 – 7.61 (m, 1H), 7.57 – 7.49 (m, 2H), 5.50 (dd, J = 10.9, 3.6 Hz, 1H), 3.64 (s, 3H), 3.61 – 3.56 (m, 4H), 3.48 (dd, J = 17.2, 10.9 Hz, 1H), 3.28 – 3.20 (m, 4H), 3.14 (dd, J = 17.2, 3.5 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.1, 170.5, 136.5, 134.4, 129.3, 129.0, 66.8, 63.6, 52.6, 46.9, 33.1. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₅H₁₉NNaO₆S 364.0825; found: 364.0826.

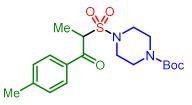
2-(morpholinosulfonyl)-1,3-diphenylpropan-1-one (3s)

Prepared by the general procedure, Cu(MeCN)₄PF₆ (15 mg, 20.0 mol%) instead of Cu(MeCN)₄PF₆ (9 mg, 12.0 mol%), isolated as white solid using petroleum ether/ethyl acetate (4:1) as eluent (44.6 mg, 62%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 – 7,75 (m, 2H), 7.57

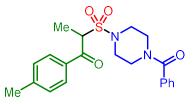

-7.50 (m, 1H), 7.43 -7.37 (m, 2H), 7.23 -7.10 (m, 5H), 5.29 (dd, *J* = 11.5, 3.1 Hz, 1H), 3.69 -3.58 (m, 5H), 3.45 (dd, *J* = 13.1, 3.0 Hz, 1H), 3.42 -3.28 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.0, 137.2, 136.2, 134.2, 129.0, 129.0, 128.9, 128.8, 127.3, 69.4, 67.0, 47.2, 34.5. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₉H₂₁NNaO₄S 382.1083; found: 382.1082.

2-(morpholinosulfonyl)-3,4-dihydronaphthalen-1(2H)-one (3t)

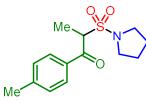
Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (4:1) as eluent (54.4 mg, 92%).¹H NMR (400 MHz, Chloroform-*d*) δ 8.07 – 8.01 (m, 1H), 7.56 – 7.49 (m, 1H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.27 (d, *J* = 8.2 Hz, 1H), 4.03 (t, *J* = 5.0 Hz,


1H), 3.79 - 3.68 (m, 4H), 3.54 - 3.33 (m, 5H), 2.98 - 2.88 (m, 1H), 2.82 - 2.72 (m, 1H), 2.62 - 2.52 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 190.0, 144.0, 134.7, 131.8, 129.2, 128.1, 127.2, 67.0, 65.8, 46.5, 26.3, 25.6. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₁₇NNaO₄S 318.0770; found: 318.0773.

2-(thiomorpholinosulfonyl)-1-(p-tolyl)propan-1-one (3u)

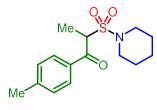

Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (15:1) as eluent (62.1 mg, 99%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 5.09 (q, J = 6.9 Hz, 1H), 3.67 – 3.43 (m, 4H),

2.68 - 2.53 (m, 4H), 2.43 (s, 3H), 1.62 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, Chloroformd) δ 192.5, 145.4, 133.4, 129.6, 129.2, 62.8, 49.0, 27.8, 21.7, 13.3. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₁₉NNaO₃S₂ 336.0699; found: 336.0697.


tert-butyl 4-((1-oxo-1-(p-tolyl)propan-2-yl)sulfonyl) piperazine-1-carboxylate (3v) Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (5:1) as eluent (77.8 mg, 98%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz,

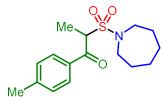
2H), 5.11 (q, J = 6.9 Hz, 1H), 3.45-3.33 (m, 4H), 3.33-3.19 (m, 4H), 2.41 (s, 3H), 1.62 (d, J = 6.9 Hz, 3H), 1.43 (s, 9H).¹³C NMR (100 MHz, Chloroform-*d*) δ 192.6, 154.2, 145.4, 133.4, 129.5, 129.2, 80.2, 62.8, 46.7, 43.9, 28.2, 21.6, 13.4. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₉H₂₈N₂NaO₅S 419.1611; found: 419.1612.

2-((4-benzoylpiperazin-1-yl)sulfonyl)-1-(p-tolyl)propan-1-one (3w) Prepared by the general procedure, $Cu(MeCN)_4PF_6$ (15 mg, 20.0 mol%) instead of $Cu(MeCN)_4PF_6$ (9 mg, 12.0 mol%), isolated as white solid using petroleum ether/ethyl acetate (5:1) as eluent (63.3 mg,


79%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 8.3 Hz, 2H), 7.46 – 7.33 (m, 5H), 7.30 (d, *J* = 8.1 Hz, 2H), 5.13 (q, *J* = 6.9 Hz, 1H), 3.73 (s, 2H), 3.39 (s, 6H), 2.42 (s, 3H), 1.64 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.8, 170.6, 145.7, 135.1, 133.5, 130.2, 129.8, 129.4, 128.7, 127.1, 63.1, 48.2, 47.1, 42.7, 21.9, 21.8, 13.6. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₂₁H₂₄N₂NaO₄S 423.1349; found: 423.1357.

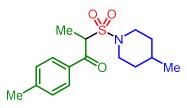
2-(pyrrolidin-1-ylsulfonyl)-1-(p-tolyl)propan-1-one (3x)

Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (6:1) as eluent (38.8 mg, 69%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 5.12 (q, J = 6.9 Hz, 1H), 3.44 - 3.27(m, 4H), 2.42


(s, 3H), 1.87 - 1.75 (m, 4H), 1.67 (d, J = 6.9 Hz, 3H).¹³C NMR (100 MHz, Chloroform-*d*) δ 193.0, 145.0, 133.8, 129.5, 129.2, 62.9, 48.8, 25.8, 21.7, 13.5. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₁₉NNaO₃S 304.0978; found: 304.0976.

2-(piperidin-1-ylsulfonyl)-1-(p-tolyl)propan-1-one (3y)

Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (10:1) as eluent (33.1 mg, 56%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 5.08 (q, J = 6.9 Hz, 1H), 3.37 – 3.18 (m, 4H), 2.42


(s, 3H), 1.63 (d, J = 6.9 Hz, 3H), 1.60 – 1.48 (m, 6H).¹³C NMR (100 MHz, Chloroform-*d*) δ 192.9, 145.1, 133.7, 129.4, 129.3, 62.8, 47.9, 26.1, 23.7, 21.7, 13.4. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₅H₂₁NNaO₃S 318.1134; found: 318.1133.

2-(azepan-1-ylsulfonyl)-1-(p-tolyl)propan-1-one (3z)

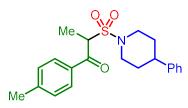
Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (15:1) as eluent (55.1 mg, 89%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 5.12 (q, *J* = 6.9 Hz, 1H), 3.38 – 3.18 (m, 4H),

2.42 (s, 3H), 1.75 - 1.61 (m, 7H), 1.61 - 1.50 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.1, 145.2, 133.9, 129.6, 129.4, 63.0, 50.0, 30.0, 26.8, 21.8, 13.7. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₆H₂₃NNaO₃S 332.1291; found: 332.1294.

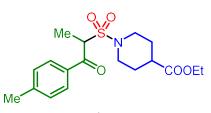

2-((4-methylpiperidin-1-yl)sulfonyl)-1-(p-tolyl)propan-1one (3aa) Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (15:1) as eluent (37.8 mg, 61%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 5.09 (q, J = 6.9 Hz, 1H),

3.85-3.71 (m, 1H), 3.71-3.57 (m, 1H), 2.99-2.74 (m, 2H), 2.42 (s, 3H), 1.63 (d, J = 6.9 Hz, 3H), 1.62-1.53 (m, 2H), 1.53-1.39 (m, 1H), 1.25-1.06 (m, 2H), 0.91 (d, J = 6.6 Hz, 3H).¹³C NMR (100 MHz, Chloroform-*d*) δ 192.9, 145.1, 133.7, 129.5, 129.3, 62.8, 47.3, 34.2, 30.3, 21.7, 21.6, 13.4. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₆H₂₃NNaO₃S 332.1291; found: 332.1295.

2-((3,5-dimethylpiperidin-1-yl)sulfonyl)-1-(p-tolyl)propan -1-one (3ab) Prepared by the general procedure, $Cu(MeCN)_4PF_6$ (15 mg, 20.0 mol%) instead of $Cu(MeCN)_4PF_6$ (9 mg, 12.0 mol%), isolated as white solid using petroleum ether/ethyl acetate (15:1) as eluent (52.4 mg,


81%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.2 Hz, 2H), 5.09 (q, J = 6.9 Hz, 1H), 3.81-3.69 (m, 1H), 3.60-3.49 (m, 1H), 2.42 (s, 3H), 2.40-2.24 (m, 2H), 1.78-1.53 (m, 6H), 0.81 (dd, J = 17.5, 6.6 Hz, 6H), 0.63 (q, J = 12.1 Hz, 1H).¹³C NMR (100 MHz, Chloroform-*d*) δ 193.1, 145.2, 133.9, 129.6, 129.4, 63.0, 53.7 (d, *J* = 8.6 Hz), 41.8, 31.9, 21.8, 18.9 (d, *J* = 2.8 Hz), 13.5. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₁₇H₂₆NO₃S 324.1628; found: 324.1623.

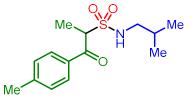
2-((4-benzylpiperidin-1-yl)sulfonyl)-1-(p-tolyl)propan-1one (3ac) Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (10:1) as eluent (45.5 mg, 59%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (d, *J* = 8.3 Hz, 2H), 7.28 – 7.15 (m, 4H), 7.15 – 7.08 (m, 1H), 7.08 –


6.98 (m, 2H), 5.01 (q, J = 6.9 Hz, 1H), 3.76 – 3.52 (m, 2H), 2.81 – 2.65 (m, 2H), 2.43 (d, J = 6.8 Hz, 2H), 2.34 (s, 3H), 1.61 – 1.47 (m, 6H), 1.24 – 1.06 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.0, 145.2, 139.9, 133.8, 129.6, 129.4, 129.2, 128.4, 126.2, 62.9, 47.4, 42.9, 37.6, 32.4, 21.8, 13.5. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₂H₂₈NO₃S 386.1784;

found: 386.1777.


2-((4-phenylpiperidin-1-yl)sulfonyl)-1-(p-tolyl)propan-1one (3ad) Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (10:1) as eluent (55.7 mg, 75%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (d, J = 8.2 Hz, 2H), 7.38-7.27 (m, 4H), 7.24-7.13 (m, 3H), 5.16 (q, J

= 6.9 Hz, 1H), 4.03-3.92 (m, 1H), 3.86-3.75 (m, 1H), 3.11-2.90(m, 2H), 2.66-2.53 (m, 1H), 2.44 (s, 3H), 1.86-1.59 (m, 7H).¹³C NMR (100 MHz, Chloroform-*d*) δ 192.8, 145.2, 145.0, 133.7, 129.5, 129.3, 128.5, 126.7, 126.5, 62.8, 47.6, 42.0, 33.4(d, *J* = 7.7 Hz), 21.7, 13.4. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₁H₂₆NO₃S 372.1628; found: 372.1620.


ethyl 1-((1-oxo-1-(p-tolyl)propan-2-yl)sulfonyl) piperidine-4-carboxylate (3ae) Prepared by the general procedure, $Cu(MeCN)_4PF_6$ (15 mg, 20.0 mol%) instead of $Cu(MeCN)_4PF_6$ (9 mg, 12.0 mol%), isolated as white solid using petroleum ether/ethyl acetate (10:1) as eluent

(60.3 mg, 82%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 5.09 (q, J = 6.9 Hz, 1H), 4.12 (q, J = 7.1 Hz, 2H), 3.80 – 3.58 (m, 2H), 3.06 – 2.90 (m, 2H), 2.47 – 2.34 (m, 4H), 1.95 – 1.83 (m, 2H), 1.78 – 1.64 (m, 2H), 1.62 (d, J = 6.9 Hz, 3H), 1.23 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.0, 174.0, 145.4, 133.7, 129.7, 129.4, 63.0, 60.8 (d, J = 2.4 Hz), 46.4 (d, J = 4.4 Hz), 40.4, 28.4 (d, J = 5.9 Hz), 21.8 (d, J = 2.6 Hz), 14.3, 13.5. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₁₈H₂₆NO₅S 368.1526; found: 368.1518.

2-((1,4-dioxa-8-azaspiro[4.5]decan-8-yl)sulfonyl)-1-(p-tolyl)propan-1-one (3af) Prepared by the general procedure, $Cu(MeCN)_4PF_6$ (15 mg, 20.0 mol%) instead of $Cu(MeCN)_4PF_6$ (9 mg, 12.0 mol%), isolated as white solid using petroleum ether/ethyl acetate (5:1) as eluent (50.2 mg,


71%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, J = 8.1 Hz, 2H), 7.28 (d, J = 8.2 Hz, 2H), 5.10 (q, J = 6.9 Hz, 1H), 3.93 (s, 4H), 3.50-3.34 (m, 4H), 2.41 (s, 3H), 1.76-1.64 (m, 4H), 1.62 (d, J = 6.9 Hz, 3H).¹³C NMR (100 MHz, Chloroform-*d*) δ 192.6, 145.1, 133.6, 129.5, 129.2, 106.2, 64.4, 62.9, 45.2, 35.4, 21.7, 13.3. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₇H₂₃NNaO₅S 376.1189; found: 376.1185.

N-isobutyl-1-oxo-1-(p-tolyl)propane-2-sulfonamide (3ag) Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (3:1) as eluent (26.6 mg, 47%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, J = 16 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H), 5.08 (q, J = 7.0 Hz, 1H),

4.68 (br s, 1H), 3.08-2.91 (m, 2H), 2.42 (s, 3H), 1.81-1.70 (m, 1H), 1.67 (d, J = 7.0 Hz, 3H), 0.92 (dd, J = 6.7, 2.2 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.1, 145.4, 133.1, 129.6, 129.1, 62.5, 51.7, 29.4, 21.7, 19.7, 14.0. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for

C₁₄H₂₁NNaO₃S 306.1134; found: 306.1127.

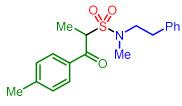

N-cyclohexyl-1-oxo-1-(p-tolyl)propane-2-sulfonamide (3ah) Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (10:1) as eluent (30.3 mg, 49%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 5.04 (q, *J* = 7.0 Hz, 1H), 4.46 – 4.39 (m, 1H), 3.36 – 3.23 (m, 1H), 2.43 (s, 3H), 2.05 – 1.92(m,

2H), 1.75 - 1.64 (m, 5H), 1.60 - 1.52 (m, 1H), 1.34 - 1.19 (m, 5H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.0, 145.5, 133.4, 129.7, 129.3, 63.0, 53.9, 35.2, 34.8, 25.3, 25.0, 25.0, 14.3. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₆H₂₃NNaO₃S 332.1285; found: 332.1291.


N-methyl-1-oxo-N-pentyl-1-(p-tolyl)propane-2sulfonamide (3ai) Prepared by the general procedure, $Cu(MeCN)_4PF_6$ (12 mg, 15.0 mol%) instead of $Cu(MeCN)_4PF_6$ (9 mg, 12.0 mol%), isolated as white solid using petroleum ether/ethyl acetate (15:1) as eluent

(57.9 mg, 93%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 5.11 (q, J = 6.9 Hz, 1H), 3.21 – 3.05 (m, 2H), 2.83 (s, 3H), 2.42 (s, 3H), 1.65 (d, J = 7.0 Hz, 3H), 1.57 – 1.45 (m, 2H), 1.33 – 1.20 (m, 4H), 0.86 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.1, 145.3, 133.8, 129.7, 129.4, 63.0, 51.2, 35.4, 28.6, 27.8, 22.4, 21.9, 14.1, 13.8. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₆H₂₅NNaO₃S 334.1447; found: 334.1450.

N-benzyl-N-methyl-1-oxo-1-(p-tolyl)propane-2-sulfonamide (**3aj**) Prepared by the general procedure, Cu(MeCN)₄PF₆ (15 mg, 20.0 mol%) instead of Cu(MeCN)₄PF₆ (9 mg, 12.0 mol%), isolated as white solid using petroleum ether/ethyl acetate (5:1) as eluent (57.7 mg, 87%).¹H NMR (400 MHz, Chloroform-*d*) δ

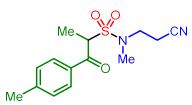

7.92 (d, J = 8.3 Hz, 2H), 7.36 – 7.15 (m, 7H), 5.17 (q, J = 7.0 Hz, 1H), 4.33 – 4.20 (m, 2H), 2.71 (s, 3H), 2.38 (s, 3H), 1.68 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.2, 145.4, 136.0, 133.8, 129.7, 129.4, 128.7, 128.3, 128.0, 63.3, 55.0, 35.4, 21.9, 13.9. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₈H₂₁NNaO₃S 354.1134; found: 354.1140.

N,N-dibenzyl-1-oxo-1-(p-tolyl)propane-2-sulfonamide (3ak)

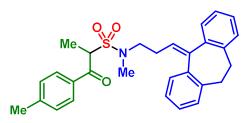
Prepared by the general procedure, Cu(MeCN)₄PF₆ (12 mg, 15.0 mol%) instead of Cu(MeCN)₄PF₆ (9 mg, 12.0 mol%), isolated as colourless oil using petroleum ether/ethyl acetate (15:1) as eluent (77.4 mg, 95%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (d, J =

8.3 Hz, 2H), 7.31 – 7.23 (m, 12H), 5.01 (q, J = 7.0 Hz, 1H), 4.40 (s, 4H), 2.45 (s, 3H), 1.70 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.8, 145.1, 135.8, 133.4, 129.4, 129.2, 128.6, 128.4, 127.7, 63.9, 52.0, 21.7, 13.8. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₄H₂₆NO₃S 408.1628; found: 408.1619.

sulfonamide (3al) Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (15:1) as eluent (66.3 mg, 96%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 – 7.88 (m, 2H), 7.34 – 7.27 (m, 4H), 7.24 – 7.16 (m, 3H),


N-methyl-1-oxo-N-phenethyl-1-(p-tolyl)propane-2-

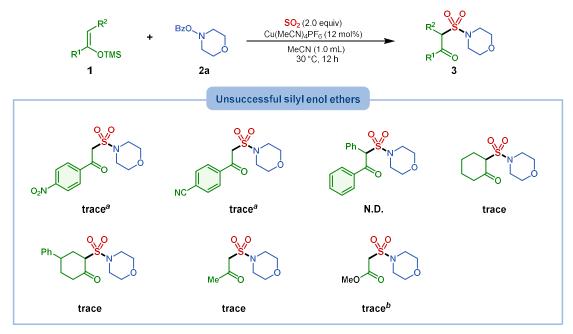
5.07 (q, J = 6.9 Hz, 1H), 3.44 – 3.35 (m, 2H), 2.91 – 2.82 (m, 5H), 2.43 (s, 3H), 1.63 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.8, 145.2, 138.3, 133.7, 129.6, 129.3, 128.9, 128.6, 126.6, 62.9, 52.8, 36.0, 35.4, 21.8, 13.7. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₁₉H₂₄NO₃S 346.1471; found: 346.1466.


N-methyl-N-(naphthalen-2-ylmethyl)-1-oxo-1-(p-tolyl)propane-2-sulfonamide (3am) Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (5:1) as eluent (46.5 mg, 61%).¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (d, *J* = 8.4 Hz, 1H), 7.99 (d, *J* = 8.3 Hz, 2H), 7.88 – 7.78 (m,

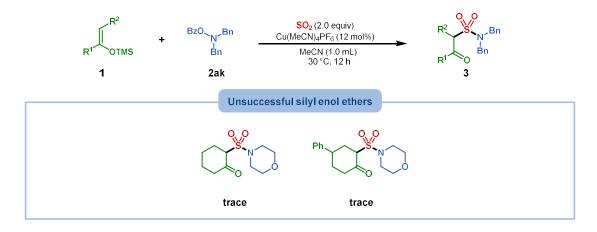
2H), 7.59 – 7.39 (m, 4H), 7.32 (d, J = 8.1 Hz, 2H), 5.26 (q, J = 7.0 Hz, 1H), 4.93 – 4.77 (m, 2H), 2.76 (s, 3H), 2.44 (s, 3H), 1.80 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.3, 145.5, 133.9, 133.8, 131.7, 131.0, 129.7, 129.5, 129.0, 128.8, 127.3, 126.7, 126.1, 125.3, 123.5, 63.5, 52.9, 35.6, 21.9, 14.1. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₂H₂₄NO₃S 382.1471; found: 382.1466.

N-(2-cyanoethyl)-N-methyl-1-oxo-1-(p-tolyl)propane-2sulfonamide (3an) Prepared by the general procedure, $Cu(MeCN)_4PF_6$ (15 mg, 20.0 mol%) instead of $Cu(MeCN)_4PF_6$ (9 mg, 12.0 mol%), isolated as white solid using petroleum ether/ethyl acetate (2:1) as eluent (35.3 mg,

60%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 5.16 (q, J = 7.0 Hz, 1H), 3.50-3.36 (m, 2H), 2.98 (s, 3H), 2.59 (t, J = 6.9 Hz, 2H), 2.43 (s, 3H), 1.67 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.9, 145.9, 133.4, 129.9, 129.4, 117.6, 63.3, 47.4, 36.8, 21.9, 18.3, 13.9. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₁₈N₂NaO₃S 317.0930; found: 317.0932.



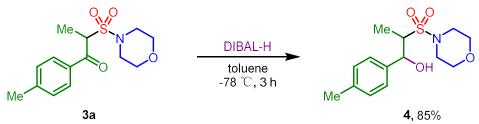
N-(3-(10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-ylidene)propyl)-N-methyl-1-oxo-1-(p-tolyl) propane-2-sulfonamide (3ao) Prepared by the general procedure, isolated as colourless oil using petroleum ether/ethyl acetate (15:1) as eluent (57.5 mg, 61%).¹H NMR (400 MHz, Chloroform-d) δ 7.92


(d, J = 8.2 Hz, 2H), 7.32 – 7.24 (m, 3H), 7.23 – 7.06 (m, 6H), 7.06 – 6.99 (m, 1H), 5.78 (t, J = 7.4 Hz, 1H), 5.10 (q, J = 7.0 Hz, 1H), 3.49 – 3.13 (m, 4H), 3.02 - 2.86 (m, 1H), 2.83 - 2.66 (m, 4H), 2.43 (s, 3H), 2.41 – 2.29 (m, 2H), 1.64 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 193.0, 145.4, 145.2, 140.9, 139.8, 139.5, 137.1, 133.7, 130.1, 129.7, 129.4,

128.7, 128.2, 128.1, 127.7, 127.3, 126.9, 126.2, 125.9, 63.0, 50.9, 35.4, 33.8, 32.0, 28.4, 21.9, 13.7. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₉H₃₂NO₃S 474.2097; found: 474.2088.

5. Unsuccessful silyl enol ethers

^aThe reaction substrate is unstable. ^bThe reaction substrate is *tert*-butyl((1-methoxyvinyl)oxy)dimethylsilane.

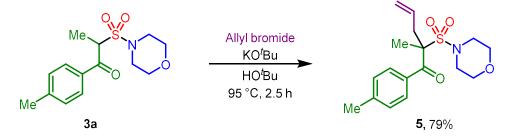

6. Scale-up reaction

In the glovebox, compound **1a** (1.0 mmol, 1.0 equiv.), compound **2a** (3.0 mmol, 3.0 equiv.), $Cu(MeCN)_4PF_6$ (44.7 mg, 12.0 mol%) were added into chamber B with a magnetic stirring bar,

followed by addition of MeCN (3.0 mL). Tetrabromothiophene S,S-dioxides (863.4 mg, 2.0 equiv.), 4- methylphenylene (320 μ L, 2.4 equiv.) was added to chamber B with a magnetic stirring bar, followed by addition of tetradecane (3.0 mL). The two chamber system was sealed and removed out of the glovebox. The chamber A was allowed to stir at 100 °C using heating mantle with 600-800 rpm stirring speed for 10 min. Then chamber B was heated to 30 °C in heat block. After 12 hours, two chamber was cooled to room temperature. Upon completion, the reaction mixture was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent to afford pure products **3a** (231 mg, 78%).

7. Transformations of β-carbonylsulfonamide Transformation A of Product 3

A mixture of compound **3a** (59.5 mg, 0.2 mmol) in toluene (3.0 mL) was added DIBAL-H (2.0 M in hexane, 1.2 mL, 2.4 mmol) dropwise at -78 °C. The reaction mixture was stirred at -78 °C for 3 h. Upon completion, the mixture was slowly quenched with 2 N NaOH (aq) and extracted with ethyl acetate. The combined organic extracts were dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent to afford the corresponding product **4** (50.9 mg, 85%).^[1]



2-(morpholinosulfonyl)-1-(p-tolyl)propan-1-ol (4)

Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (2:1) as eluent (50.9 mg, 85%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 – 7.11 (m, 4H), 4.83 (d, *J* = 9.0 Hz, 1H), 4.02 (d, *J* = 1.5 Hz, 1H), 3.78 – 3.69 (m, 4H), 3.45


-3.34 (m, 4H), 3.34 - 3.23 (m, 1H), 2.34 (s, 3H), 0.96 (d, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 138.5, 137.0, 129.5, 127.0, 74.0, 67.0, 63.6, 46.4, 21.3, 13.0. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₂₁NNaO₄S 322.1083; found: 322.1080.

Transformation B of Product 3

A mixture of compound **3a** (59.5 mg, 0.2 mmol), allyl bromide (0.3 mmol, 1.5 equiv.), potassium t-butoxide (0.3 mmol, 1.5 equiv.) in t-butyl alcohol (0.6 mL) was heated at reflux for

2.5 h under a nitrogen atmosphere. Upon completion, water was added, and the products were extracted with ethyl acetate. The combined organic extracts were dried over anhydrous Na_2SO_4 and evaporated under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent to afford the corresponding product **5** (53.3 mg, 79%).^[2]

2-methyl-2-(morpholinosulfonyl)-1-(p-tolyl)pent-4-en-1-one (5) Prepared by the general procedure, isolated as yellow oil using petroleum ether/ethyl acetate (6:1) as eluent (53.3 mg, 79%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, J = 8.2 Hz, 2H), 7.21 (d, J = 8.1 Hz, 2H), 5.53 – 5.36 (m, 1H), 5.15 – 4.99 (m, 2H), 3.77 – 3.60 (m, 4H), 3.45 – 3.25 (m, 5H), 2.57 (dd, J = 13.3, 8.3 Hz, 1H),

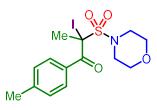
2.39 (s, 3H), 1.68 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 199.3, 142.9, 135.9, 131.0, 129.0, 128.9, 120.8, 76.3, 67.2, 47.9, 40.4, 21.7 (d, J = 2.9 Hz), 20.5. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₇H₂₃NNaO₄S 360.1240; found: 360.1244.

Transformation C of Product 3

A mixture of compound **3a** (59.5 mg, 0.2 mmol) and N-chlorosuccinimide (0.26 mmol, 1.3 equiv.) in MeCN (0.8 mL) was added saturated NaHCO₃ (0.2 mL). The reaction mixture was stirred at 40 °C for 5 h. Upon completion, water was added, and the products were extracted with DCM. The combined organic extracts were dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent to afford the corresponding product **6a** (53.6 mg, 81%).^[3]

A mixture of compound **3a** (59.5 mg, 0.2 mmol) and N-bromosuccinimide (0.26 mmol, 1.3 equiv.) in MeCN (0.8 mL) was added saturated NaHCO₃ (0.2 mL). The reaction mixture was stirred at 40 °C for 7 h. Upon completion, water was added, and the products were extracted with DCM. The combined organic extracts were dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent to afford the corresponding product **6b** (54.7 mg, 73%).^[3]

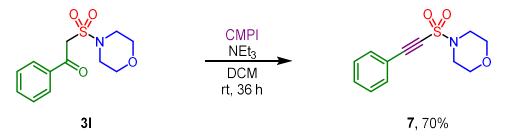
A mixture of compound **3a** (59.5 mg, 0.2 mmol) and N-iodosuccinimide (0.26 mmol, 1.3 equiv.) in MeCN (0.8 mL) was added saturated NaHCO₃ (0.2 mL). The reaction mixture was stirred at 40 °C for 7 h. Upon completion, water was added, and the products were extracted with DCM. The combined organic extracts were dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent to afford the corresponding product **6c** (35.0 mg, 41%).^[3]


2-chloro-2-(morpholinosulfonyl)-1-(p-tolyl)propan-1-one (6a) Prepared by the general procedure, isolated as pale yellow solid using petroleum ether/ethyl acetate (10:1) as eluent (53.6 mg, 81%).¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 – 8.02 (m, 2H), 7.27 – 7.21 (m, 2H), 3.75 – 3.65 m, 4H), 3.52 – 3.39 (m, 4H), 2.40

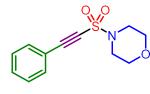
(s, 3H), 2.17 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.7, 144.6, 132.0, 130.8, 128.9, 86.4, 67.1, 48.4, 26.8, 21.8. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₁₈ClNNaO₄S 354.0537; found: 354.0541.

2-bromo-2-(morpholinosulfonyl)-1-(p-tolyl)propan-1-one (6b) Prepared by the general procedure, isolated as pale yellow solid using petroleum ether/ethyl acetate (10:1) as eluent (54.7 mg, 73%).¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 – 8.03 (m, 2H), 7.25 – 7.19 (m, 2H), 3.74 – 3.64 (m, 4H), 3.54 – 3.40 (m, 4H), 2.40

(s, 3H), 2.34 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.5, 144.4, 132.3, 130.8, 128.9, 77.0, 67.1, 48.6, 27.9 (d, J = 3.8 Hz), 21.7 (d, J = 3.9 Hz). HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₁₄H₁₉BrNO₄S 376.0213; found: 376.0208.



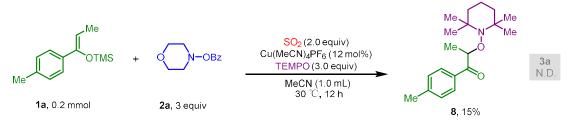
2-iodo-2-(morpholinosulfonyl)-1-(p-tolyl)propan-1-one (6c)


Prepared by the general procedure, isolated as brown solid using petroleum ether/ethyl acetate (10:1) as eluent (35.0 mg, 41%).¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 – 8.05 (m, 2H), 7.25 – 7.20 (m, 2H), 3.74 – 3.66 (m, 4H), 3.54 – 3.41 (m, 4H), 2.57 (s, 3H),

2.41 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.8, 144.2, 132.6, 130.9, 128.9, 67.2, 56.2, 49.0, 30.8, 21.8. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₁₄H₁₉INO₄S 424.0074; found: 424.0072.

Transformation D of Product 3

A mixture of compound **31** (53.9 mg, 0.2 mmol) and 2-Chloro-1-methylpyridinium iodide (0.24 mmol, 1.2 equiv.) in DCM (2.0 mL) was added Et₃N (0.36 mmol, 1.8 equiv.) dropwise. The reaction mixture was stirred at room temperature for 36 h, then 1N NaOH (0.6 mL) was added. After 5 min, water was added , and the reaction mixture was extracted with DCM. The combined organic extracts were dried over anhydrous Na₂SO₄ and the residue was filtered through a short column of Al₂O₃ using DCM as eluent to afford the corresponding product 7 (35.4 mg, 70%).^[4]



4-((phenylethynyl)sulfonyl)morpholine (7)

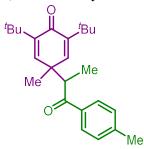

Prepared by the general procedure, isolated as white solid (35.4 mg, 70%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 – 7.56 (m, 2H), 7.54 – 7.48 (m, 1H), 7.46 – 7.39 (m, 2H), 3.89 – 3.81 (m, 4H), 3.30 – 3.21 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 133.0, 131.6,

129.0, 118.0, 91.6, 79.3, 65.9, 46.5. HRMS (ESI/Q-TOF) m/z: $[M+Na]^+$ calcd for $C_{12}H_{13}NNaO_3S$ 274.0508; found: 274.0509.

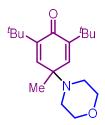
8. Mechanistic Studies Radical trapping experiments A

In the glovebox, compound **1a** (0.2 mmol, 1.0 equiv.), compound **2a** (0.6 mmol, 3.0 equiv.), Cu(MeCN)₄PF₆ (9.0 mg, 12.0 mol%), TEMPO (0.6 mmol, 3.0 equiv.) were added into chamber B with a magnetic stirring bar, followed by addition of MeCN (1.0 mL). Tetrabromothiophene S,S-dioxides (0.4 mmol, 172.7 mg), 4- methylphenylene (0.48 mmol, 64 μ L)was added to chamber A with a magnetic stirring bar, followed by addition of tetradecane (1.0 mL). The two chamber system was sealed and removed out of the glovebox. The chamber A was allowed to stir at 100 °C using heating mantle with 600-800 rpm stirring speed for 10 min. Then chamber B was heated to 30 °C in heat block. After 12 hours, two chamber was cooled to room temperature. TLC, GC and LC-MS analysis demonstrated the product **3a** is not founded. The TEMPO-adduct **5a** was detected by LC-MS. The reaction mixture was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent to afford the TEMPO-adduct **8** (9.3 mg, 15%).

2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)-1-(p-tolyl)propan-1one (8) Prepared by the general procedure, isolated as colourless oil using petroleum ether/ethyl acetate (80:1) as eluent (9.3 mg, 15%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (d, J = 8.2 Hz, 2H), 7.31 – 7.21 (m, 2H), 4.98 (q, J = 7.1 Hz, 1H), 2.41 (s, 3H), 1.53 – 1.47 (m, 5H), 1.39 (s, 2H), 1.33 – 1.26 (m, 5H), 1.18 (s, 3H), 1.04 (s, 3H), 0.87 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 201.7, 144.0,

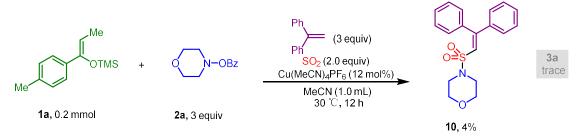

132.8, 129.5, 129.3, 86.6, 86.5, 59.8, 40.4, 21.9, 21.8, 20.5, 19.5, 19.5, 17.3. HRMS (ESI/Q-TOF) m/z: $[M+H]^+$ calcd for $C_{19}H_{30}NO_2$ 304.2271; found: 304.2276.

Radical trapping experiments B

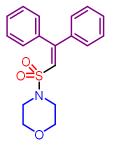


In the glovebox, compound **1a** (0.2 mmol, 1.0 equiv.), compound **2a** (0.6 mmol, 3.0 equiv.), Cu(MeCN)₄PF₆ (9.0 mg, 12.0 mol%), BHT (0.6 mmol, 3.0 equiv.) were added into chamber B with a magnetic stirring bar, followed by addition of MeCN (1.0 mL). Tetrabromothiophene S,S-dioxides (0.4 mmol, 172.7 mg), 4- methylphenylene (0.48 mmol, 64 μ L)was added to chamber A with a magnetic stirring bar, followed by addition of tetradecane (1.0 mL). The two chamber system was sealed and removed out of the glovebox. The chamber A was allowed to stir at 100 °C using heating mantle with 600-800 rpm stirring speed for 10 min. Then chamber B was heated to 30 °C in heat block. After 12 hours, two chamber was cooled to room temperature. Upon completion, the reaction mixture was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent to afford compound **9a** (8.9 mg, 12%) and compound **9b** (8.6 mg, 5%).

2,6-di-tert-butyl-4-methyl-4-(1-oxo-1-(p-tolyl)propan-2-yl)cyclohexa-2,5-dien-1-one (9a)

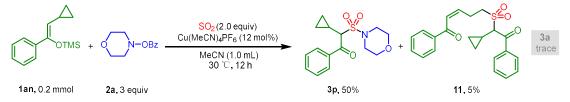


Prepared by the general procedure, isolated as pale oil using petroleum ether/ethyl acetate (50:1) as eluent (8.9 mg, 12%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 9.0 Hz, 2H), 6.88 (d, J = 2.9 Hz, 1H), 6.43 (d, J = 2.9 Hz, 1H), 3.70 (q, J = 6.9 Hz, 1H), 2.42 (s, 3H), 1.23 (s, 9H), 1.19 – 1.16 (m, 12H), 1.02 (d, J = 7.0 Hz, 3H). HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₅H₃₅O₂ 367.2632; found: 367.2625.

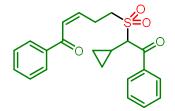


2,6-di-tert-butyl-4-methyl-4-morpholinocyclohexa-2,5-dien-1-one (9b) Prepared by the general procedure, isolated as pale oil using petroleum ether/ethyl acetate (15:1) as eluent (8.6 mg, 5%).¹H NMR (400 MHz, Chloroform-*d*) 6.60 (s, 2H), 3.61 - 3.48 (m, 4H), 3.23 - 3.09 (m, 4H), 1.71(s, 3H), 1.25 (s, 18H). HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₁₉H₃₂NO₂ 306.2428; found: 306.2427.

Radical trapping experiments C


In the glovebox, compound **1a** (0.2 mmol, 1.0 equiv.), compound **2a** (0.6 mmol, 3.0 equiv.), Cu(MeCN)₄PF₆ (9.0 mg, 12.0 mol%), 1,1-Diphenylethylene (0.6 mmol, 3.0 equiv.) were added into chamber B with a magnetic stirring bar, followed by addition of MeCN (1.0 mL). Tetrabromothiophene S,S-dioxides (0.4 mmol, 172.7 mg), 4- methylphenylene (0.48 mmol, 64 μ L)was added to chamber A with a magnetic stirring bar, followed by addition of tetradecane (1.0 mL). The two chamber system was sealed and removed out of the glovebox. The chamber A was allowed to stir at 100 °C using heating mantle with 600-800 rpm stirring speed for 10 min. Then chamber B was heated to 30 °C in heat block. After 12 hours, two chamber was cooled to room temperature. Upon completion, the reaction mixture was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent to afford compound **10** (7.5 mg, 4%).

4-((2,2-diphenylvinyl)sulfonyl)morpholine (10)


Prepared by the general procedure, isolated as pale oil using petroleum ether/ethyl acetate (5:1) as eluent (7.5 mg, 4%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.38 (m, 4H), 7.38 – 7.30 (m, 4H), 7.27 – 7.22 (m, 2H), 6.63 (s, 1H), 3.66 – 3.58 (m, 4H), 3.12 – 3.05 (m, 4H). HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₈H₁₉NNaO₃S 352.0978; found: 352.0976.

Radical clock experiment

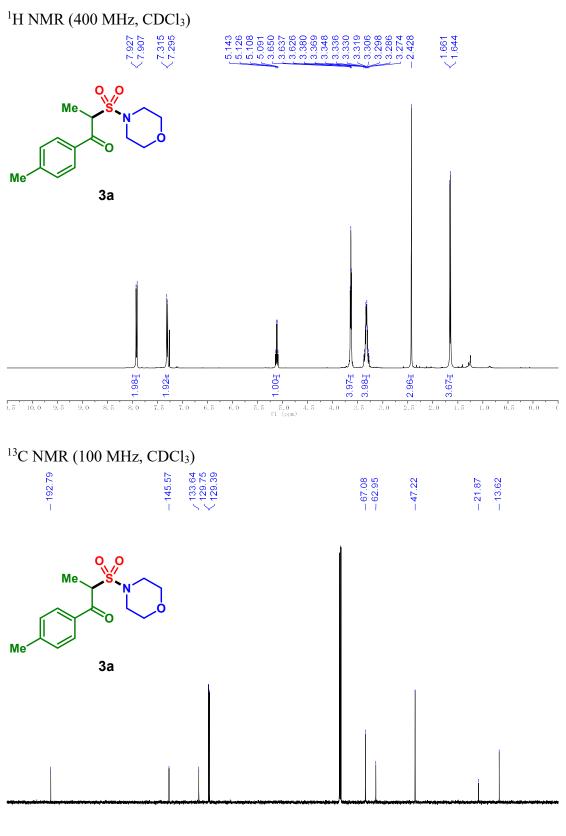
In the glovebox, compound **1an** (0.2 mmol, 1.0 equiv.), compound **2a** (0.6 mmol, 3.0 equiv.), $Cu(MeCN)_4PF_6$ (9.0 mg, 12.0 mol%) were added into chamber B with a magnetic stirring bar, followed by addition of MeCN (1.0 mL). Tetrabromothiophene S,S-dioxides (0.4 mmol, 172.7

mg), 4- methylphenylene (0.48 mmol, 64 μ L)was added to chamber A with a magnetic stirring bar, followed by addition of tetradecane (1.0 mL). The two chamber system was sealed and removed out of the glovebox. The chamber A was allowed to stir at 100 °C using heating mantle with 600-800 rpm stirring speed for 10 min. Then chamber B was heated to 30 °C in heat block. After 12 hours, two chamber was cooled to room temperature. Upon completion, the reaction mixture was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent to afford compound **3p** (30.9 mg, 50%) and compound **11** (2.0 mg, 5%).

(Z)-5-((1-cyclopropyl-2-oxo-2-phenylethyl)sulfonyl)-1phenylpent-2-en-1-one (11) Prepared by the general procedure, isolated as white solid using petroleum ether/ethyl acetate (5:1) as eluent (2.0 mg, 5%).¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 – 7.89 (m, 4H), 7.69 – 7.63 (m, 1H), 7.61 – 7.44 (m, 5H), 7.07 – 6.96 (m, 2H), 4.26 (d, J = 9.6 Hz, 1H), 3.68 – 3.57 (m, 1H), 3.55 – 3.42

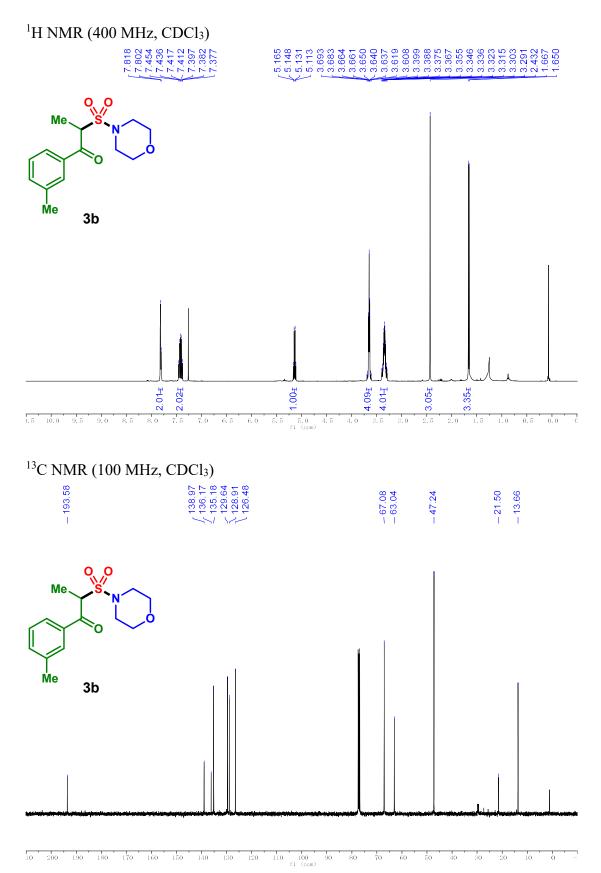
(m, 1H), 3.01 - 2.84 (m, 2H), 1.00 - 0.80 (m, 3H), 0.80 - 0.71 (m, 1H), 0.47 - 0.32 (m, 1H). HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₂₂H₂₂NaO₄S 405.1131; found: 405.1134.

9. References

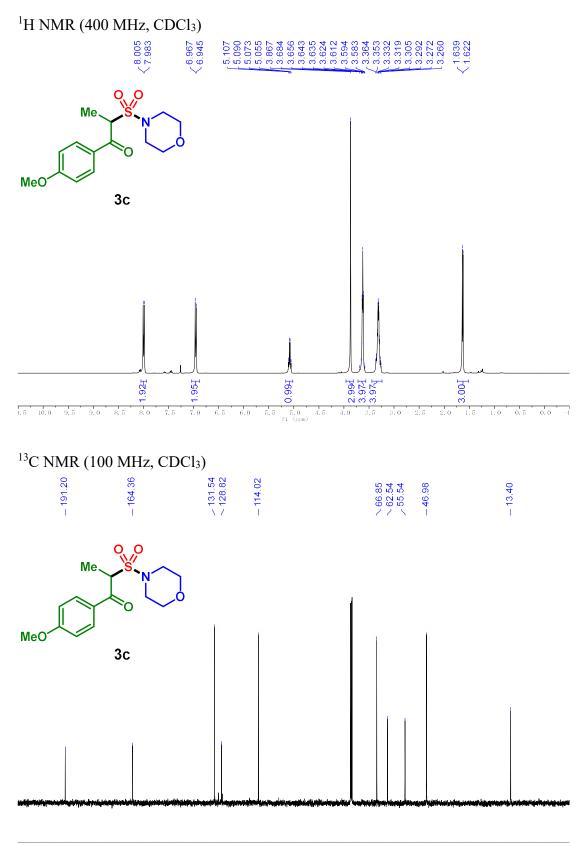

[1]Lv, H.; He, X.; Shen, L.; Zhang, X.; Lian, Z. Adv. Synth. Cat. 2022, 364, 2729-2734.

[2] Han, B.; Yang, X. L.; Fang, R.; Yu, W.; Wang, C.; Duan, X. Y.; Liu, S. Angew. Chem. Int. Ed. 2012, 51, 8816-8820.

[3] Freihammer, P. M.; Detty, M. R. J. Org. Chem. 2000, 65, 7203-7207.

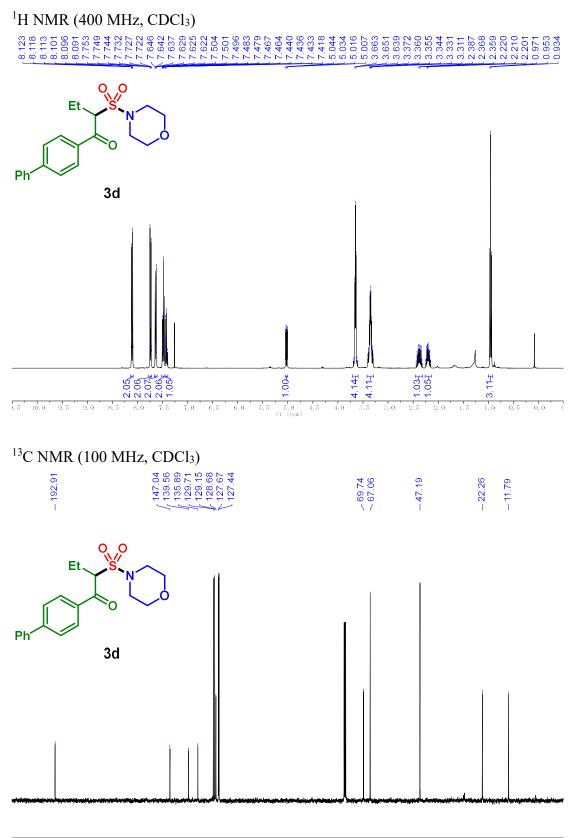

[4] Leclercq, M.; Brienne, M. J. Tetrahedron letters. 1990, 31, 3875-3878.

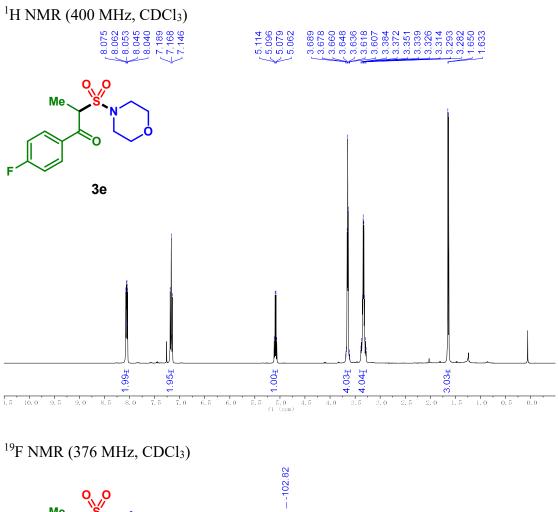
10. NMR Spectra2-(morpholinosulfonyl)-1-(p-tolyl)propan-1-one (3a)



110 100 f1 (ppm) 150 140 130 120

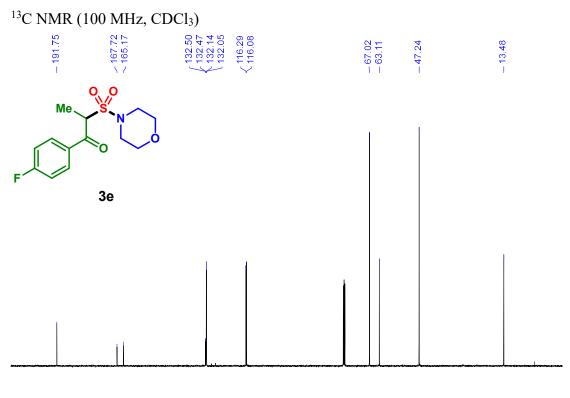
2-(morpholinosulfonyl)-1-(m-tolyl)propan-1-one (3b)



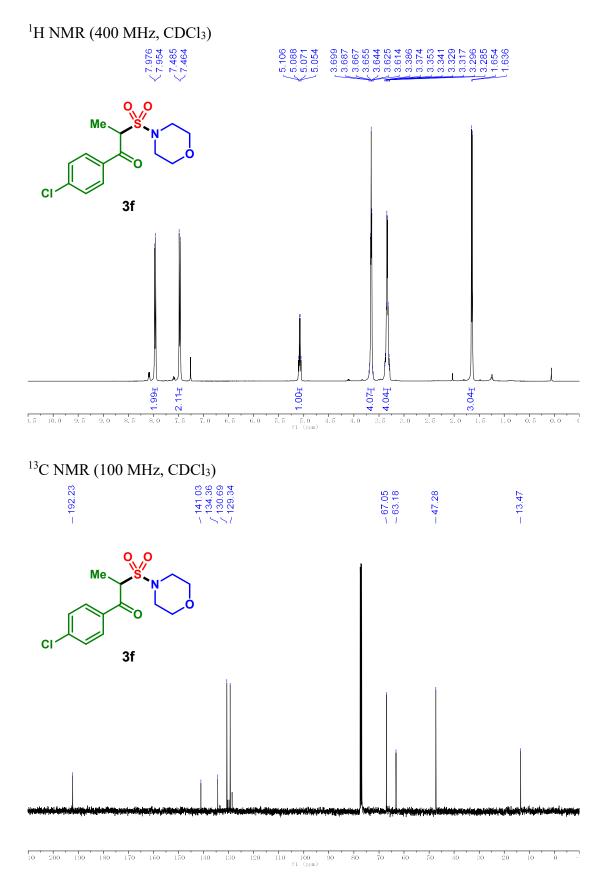


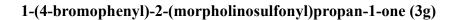
10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

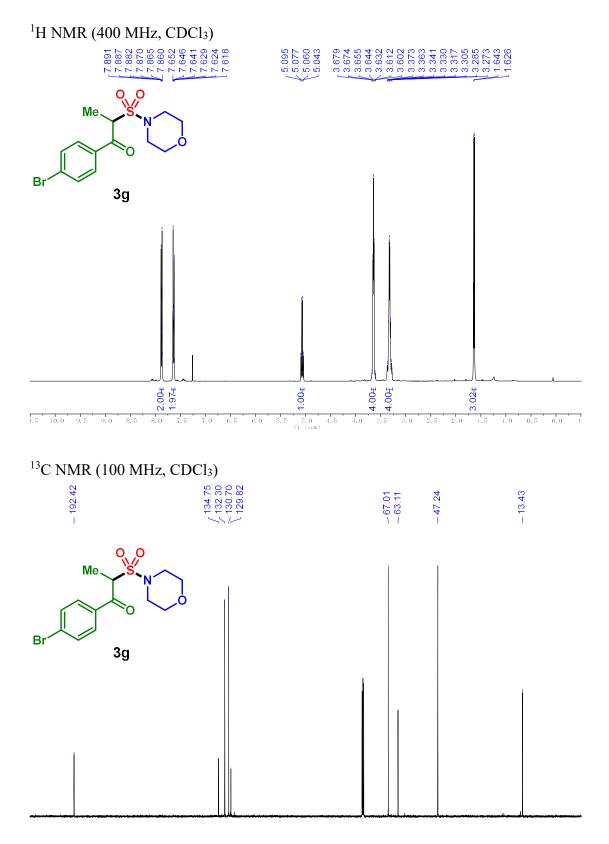
1-([1,1'-biphenyl]-4-yl)-2-(morpholinosulfonyl)butan-1-one (3d)



1-(4-fluorophenyl)-2-(morpholinosulfonyl)propan-1-one (3e)

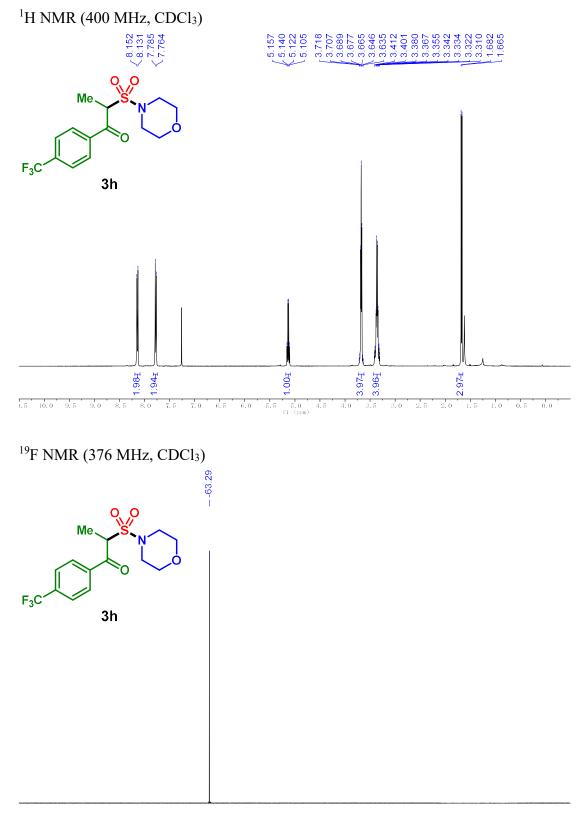


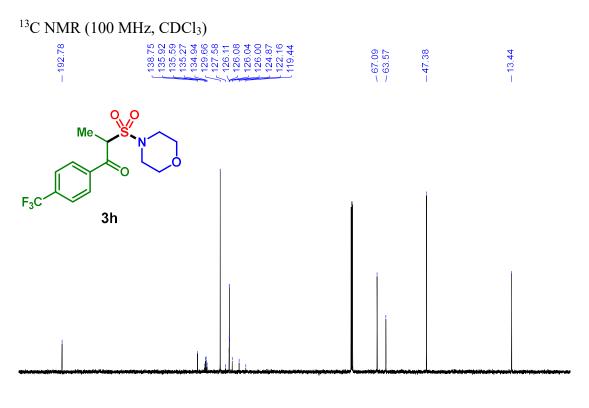

10 0 -10 20 -30 40 50 -60 70 80 -90 -100 -110 -120 -130 140 -150 -160 170 -180 -190 200 -210 f1 (ppm)



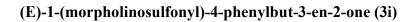
10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

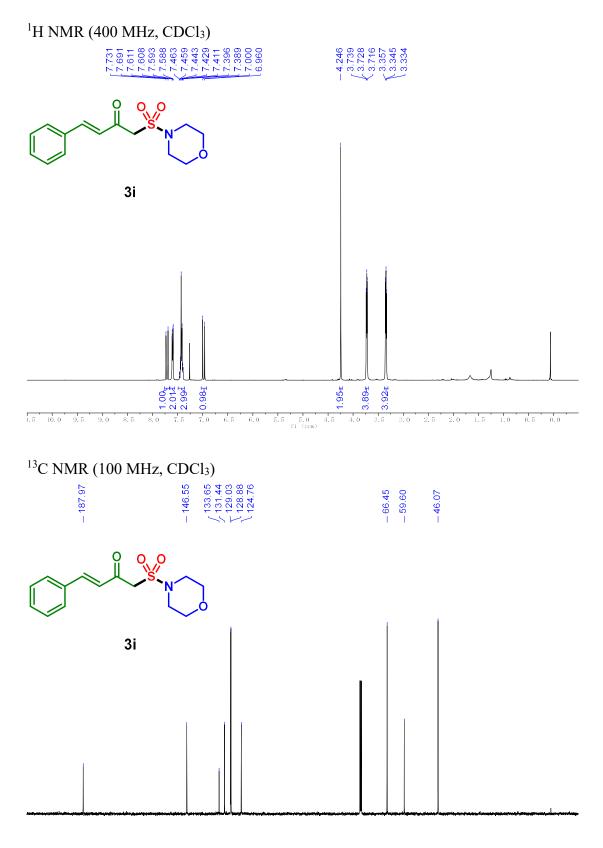

1-(4-chlorophenyl)-2-(morpholinosulfonyl)propan-1-one (3f)



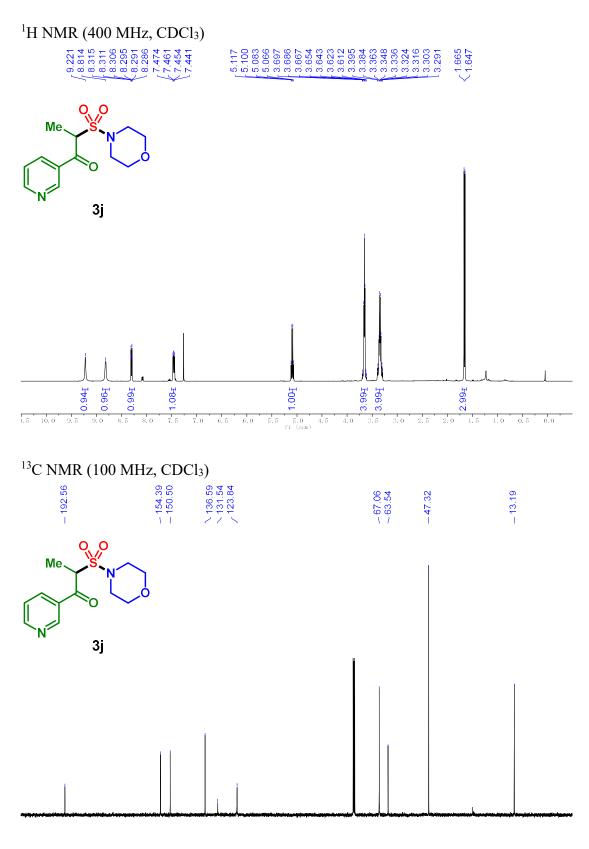


10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

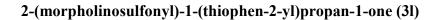


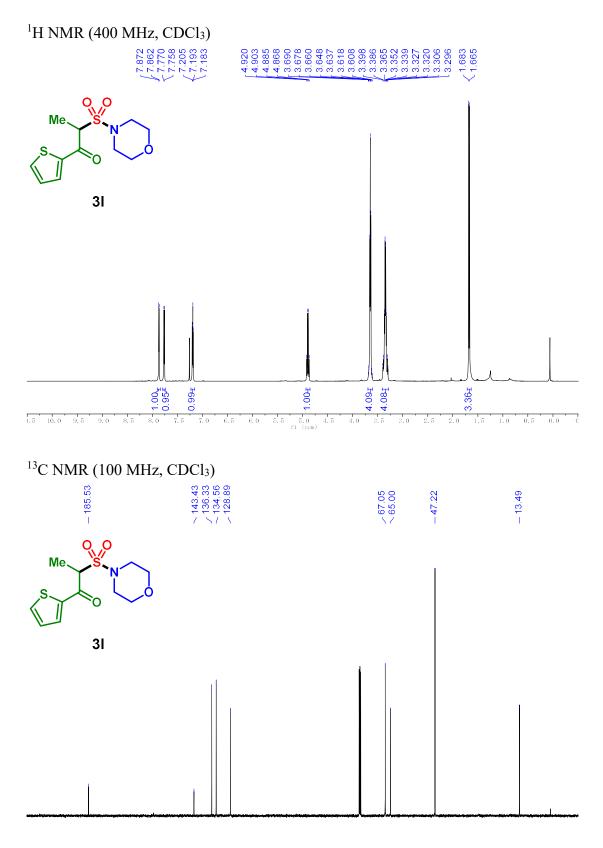


10 0 -10 20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -11 (ppm)


200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

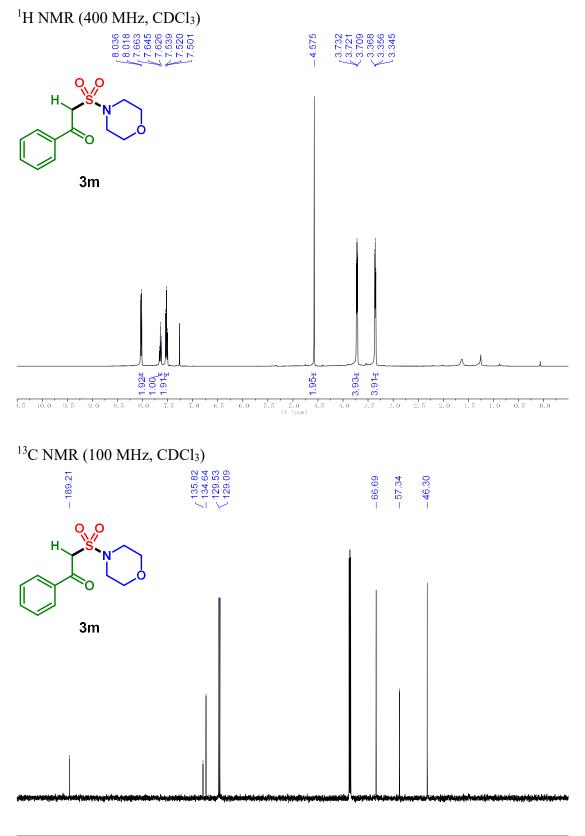

:10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -El (ppm)



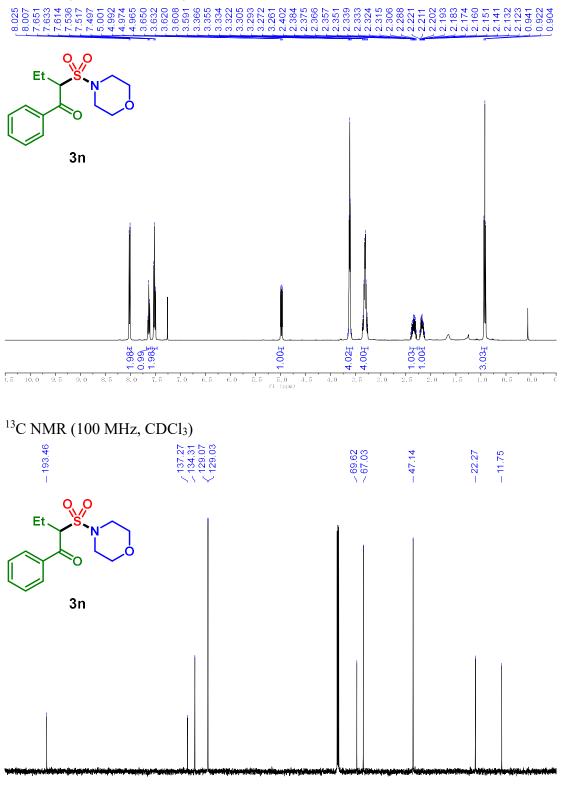


10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

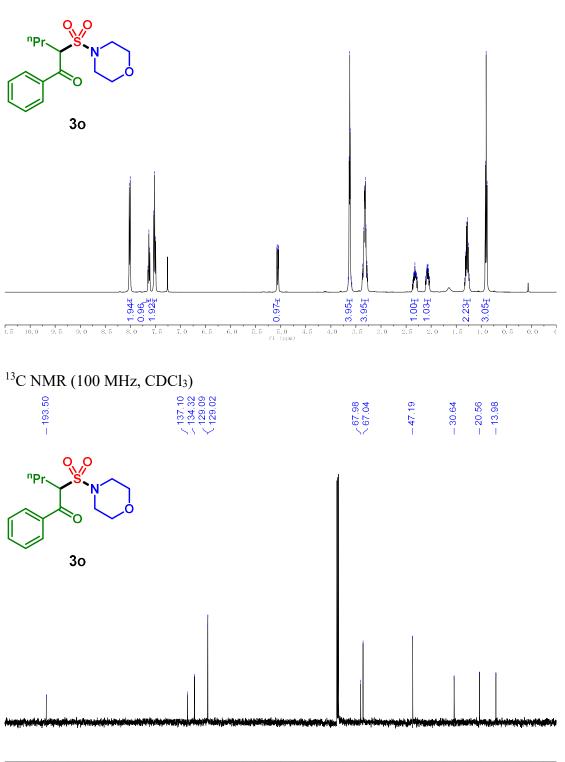
1-(5-methylfuran-2-yl)-2-(morpholinosulfonyl)propan-1-one (3k)

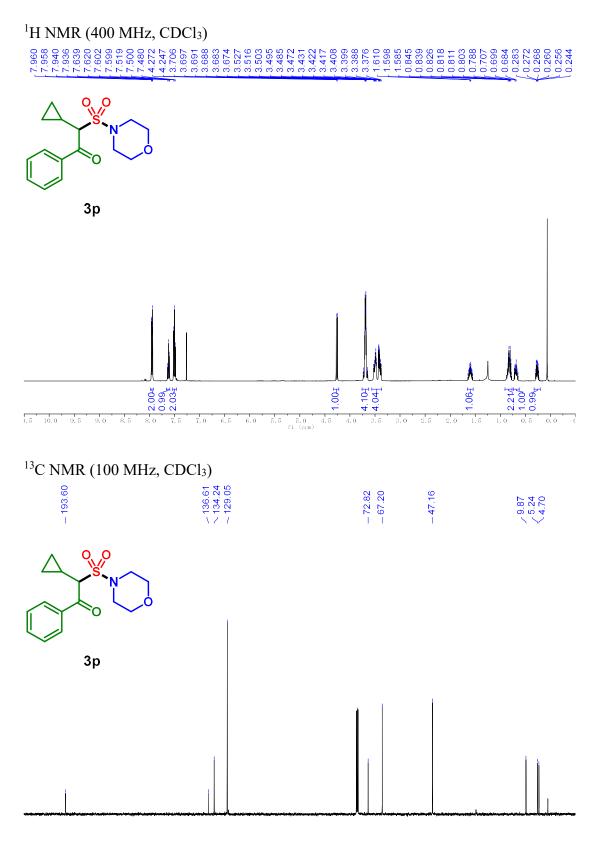



^{10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -}El (ppm)


2-(morpholinosulfonyl)-1-phenylethan-1-one (3m)

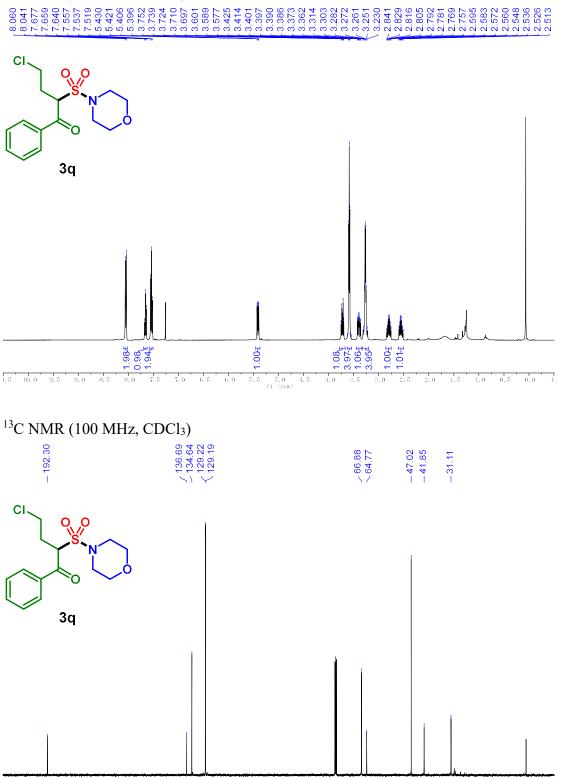
10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

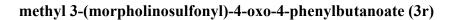

2-(morpholinosulfonyl)-1-phenylbutan-1-one (3n)

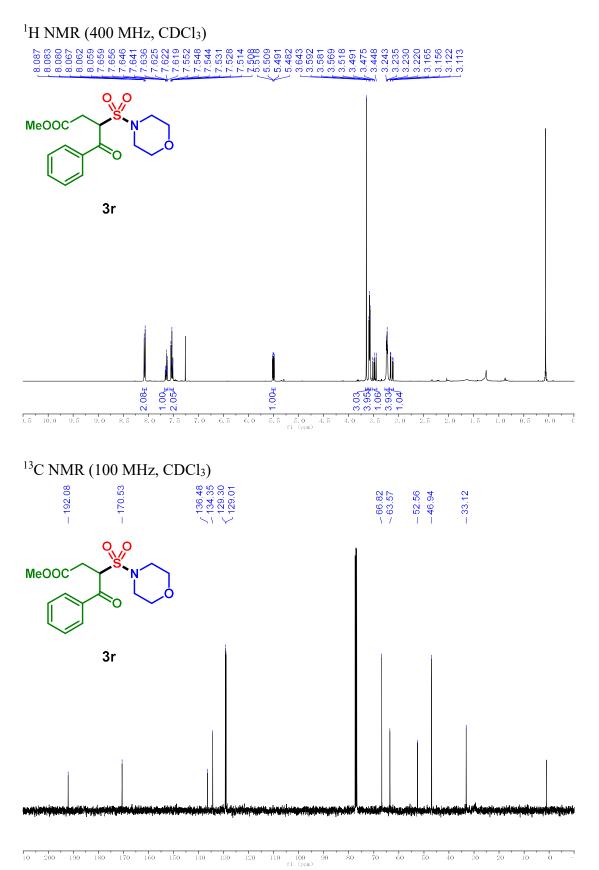


2-(morpholinosulfonyl)-1-phenylpentan-1-one (30)

¹H NMR (400 MHz, CDCl₃)

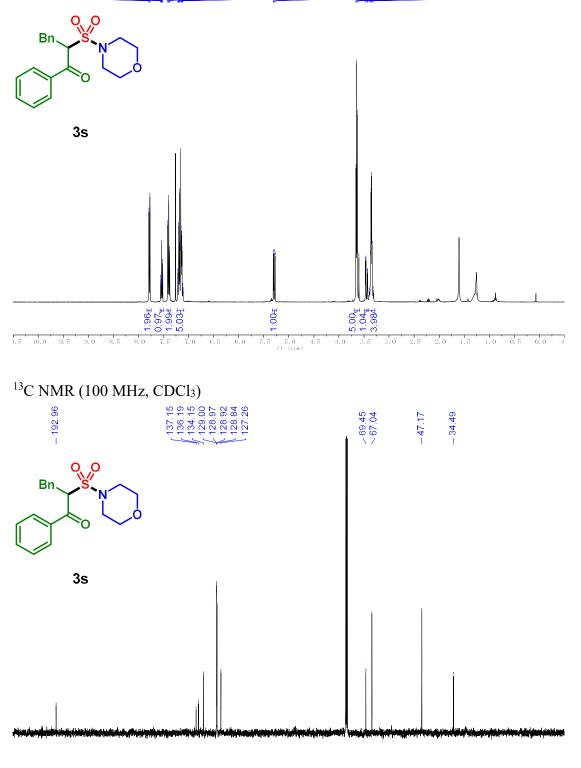

2-cyclopropyl-2-(morpholinosulfonyl)-1-phenylethan-1-one (3p)

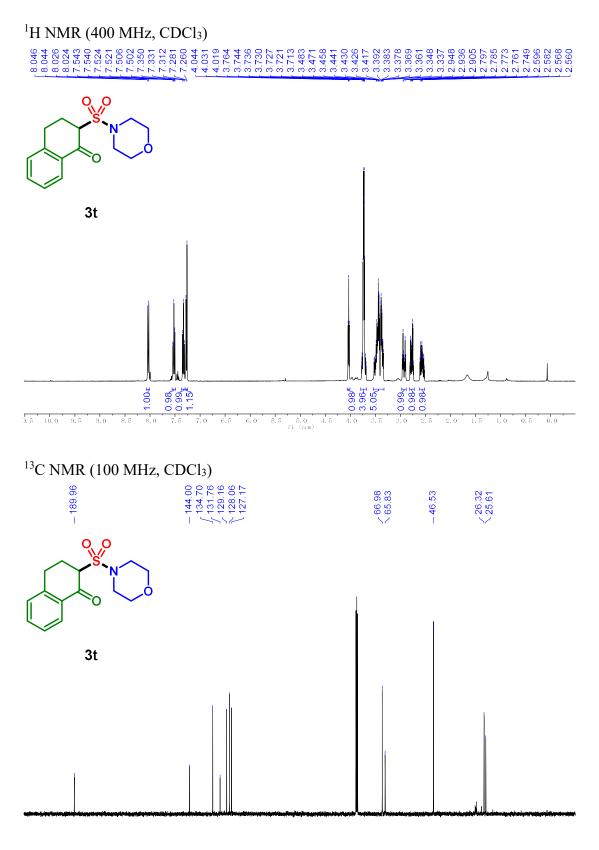



110 100 f1 (ppm) $\frac{1}{70}$ 140 130

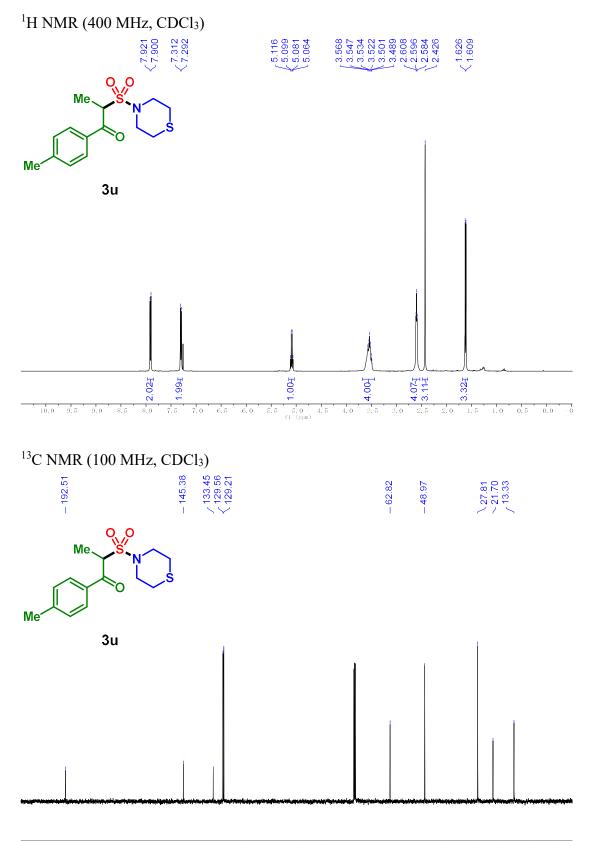
4-chloro-2-(morpholinosulfonyl)-1-phenylbutan-1-one (3q)

¹H NMR (400 MHz, CDCl₃)

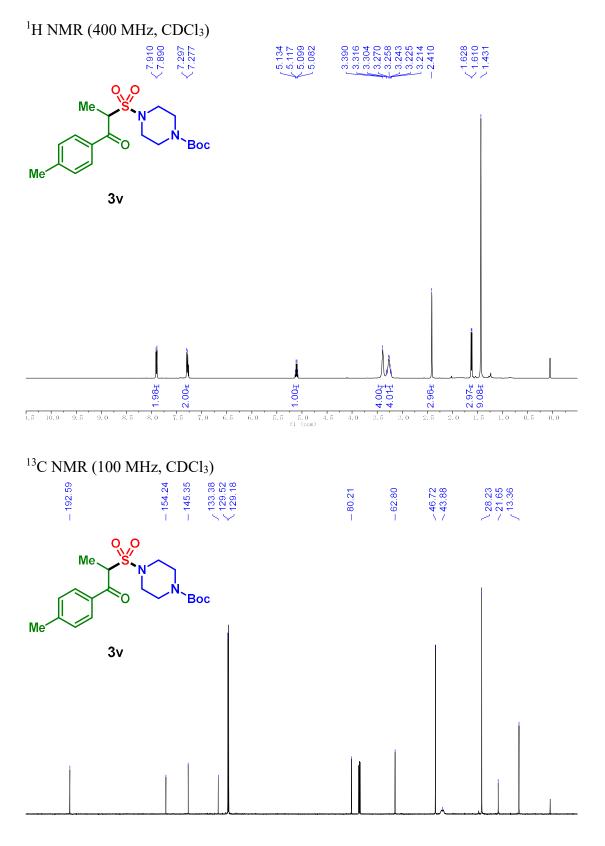



2-(morpholinosulfonyl)-1,3-diphenylpropan-1-one (3s)

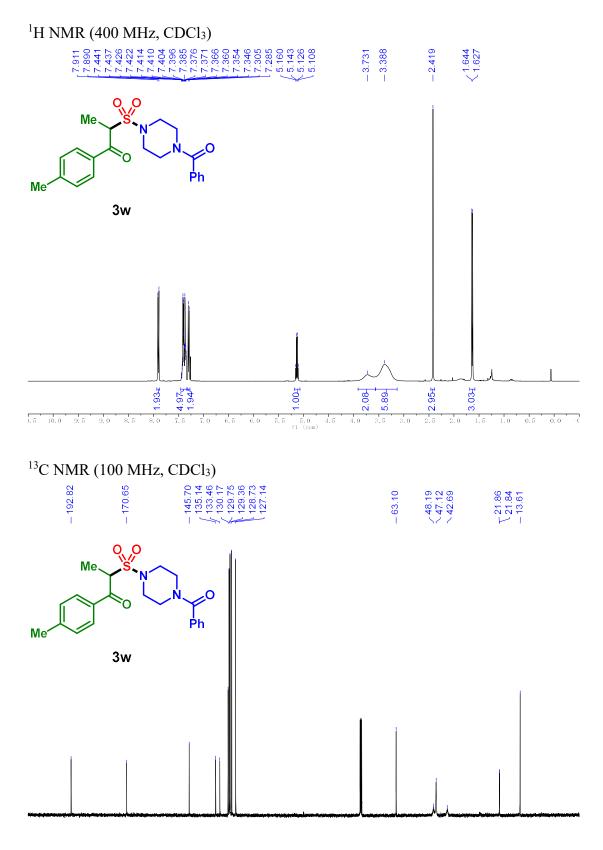
¹H NMR (400 MHz, CDCl₃)



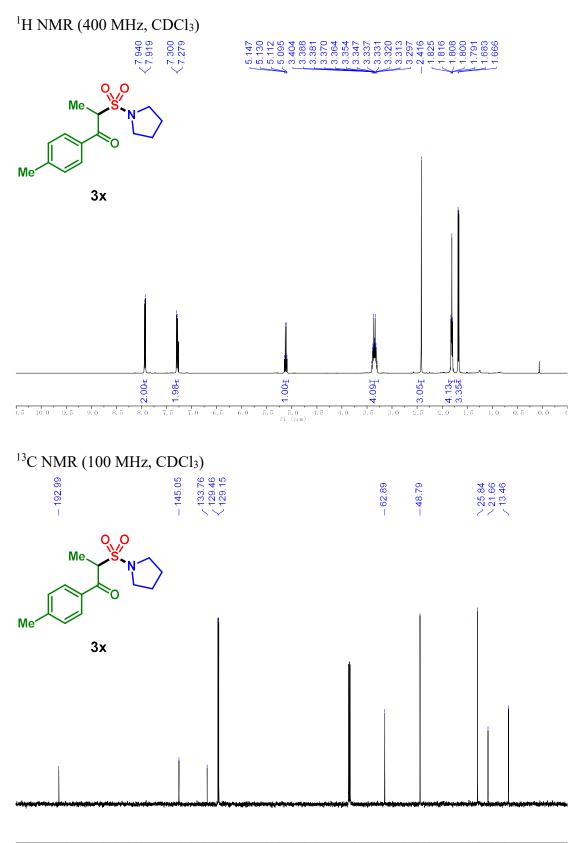
2-(morpholinosulfonyl)-3,4-dihydronaphthalen-1(2H)-one (3t)



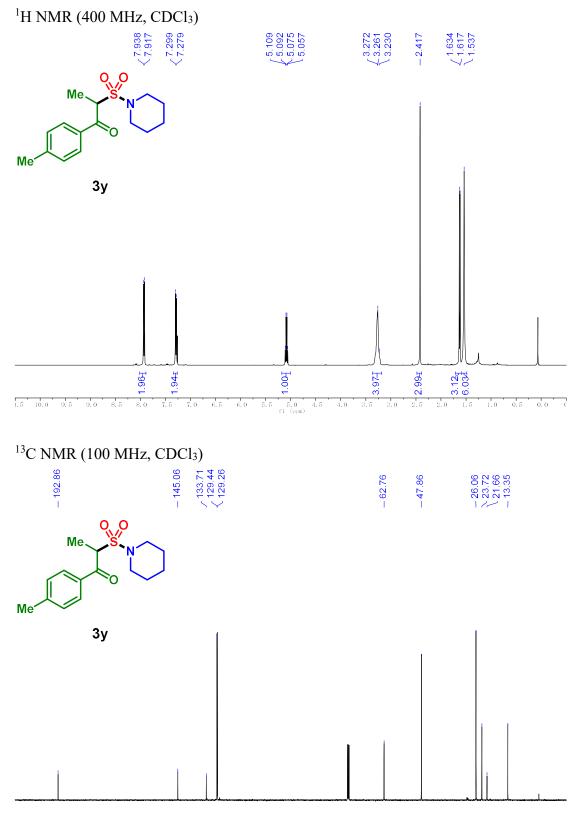
140 130 110 100 f1 (ppm)


2-(thiomorpholinosulfonyl)-1-(p-tolyl)propan-1-one (3u)

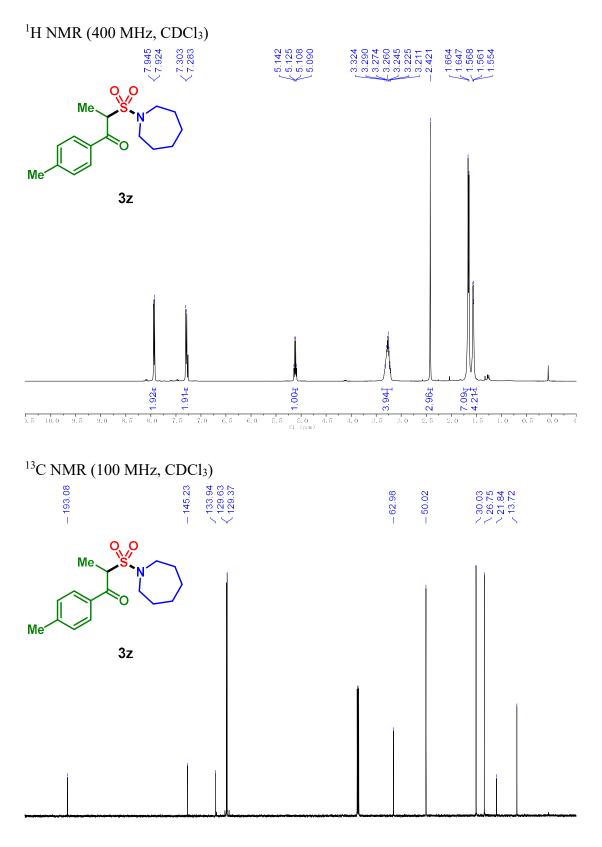
160 150 140 130 120 110 100 f1 (ppm)



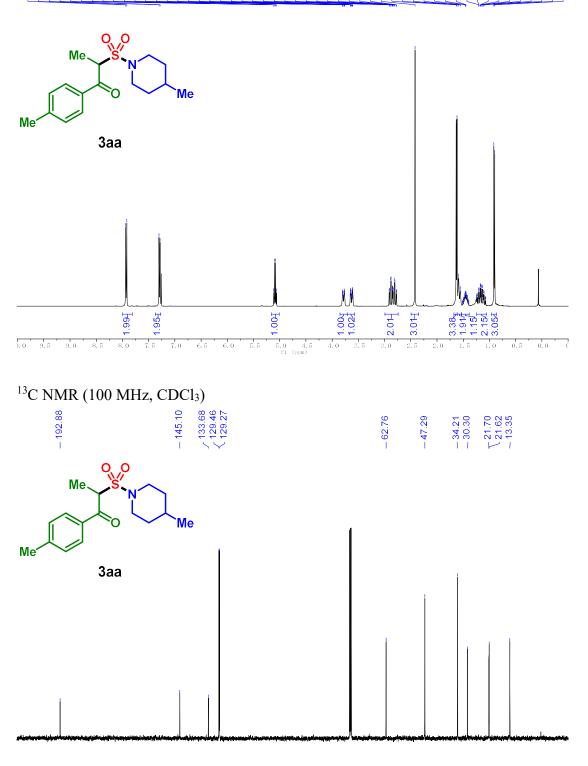
tert-butyl 4-((1-oxo-1-(p-tolyl)propan-2-yl)sulfonyl)piperazine-1-carboxylate (3v)

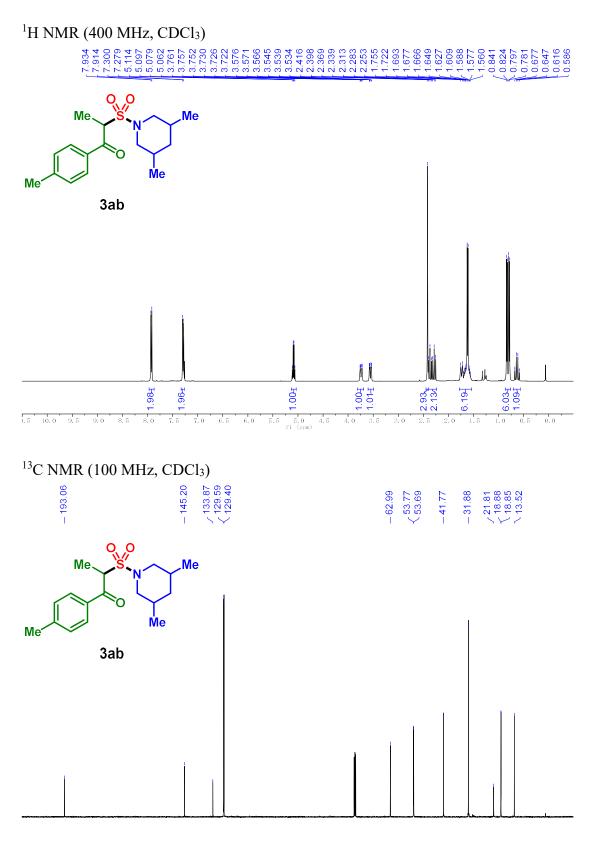


2-((4-benzoylpiperazin-1-yl)sulfonyl)-1-(p-tolyl)propan-1-one (3w)

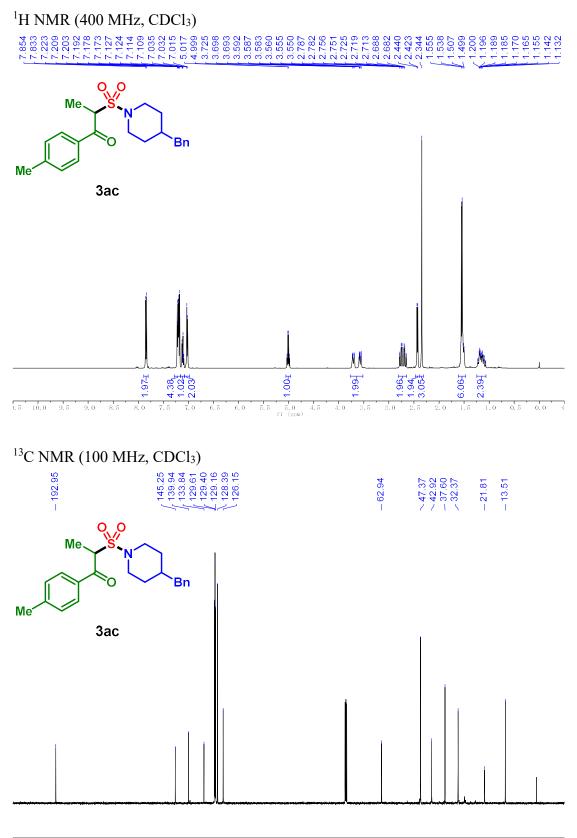

2-(pyrrolidin-1-ylsulfonyl)-1-(p-tolyl)propan-1-one (3x)

2-(piperidin-1-ylsulfonyl)-1-(p-tolyl)propan-1-one (3y)

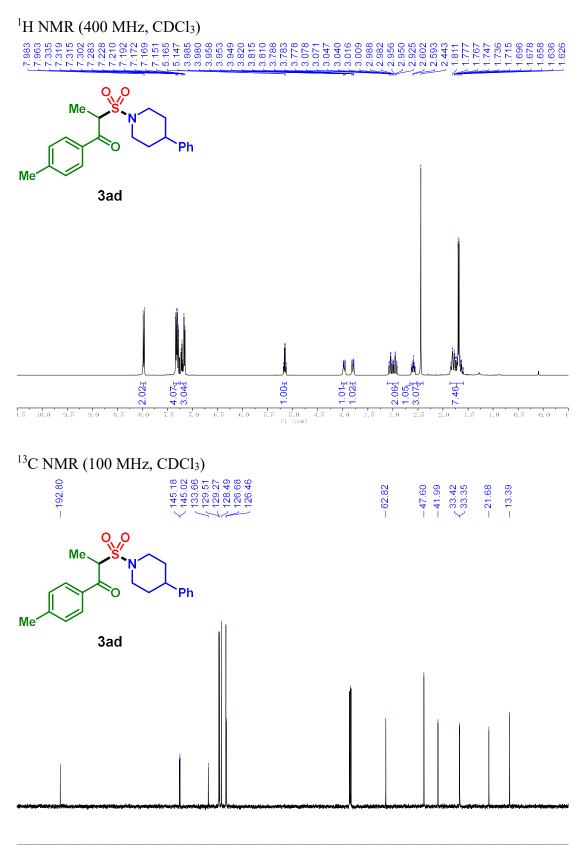

2-(azepan-1-ylsulfonyl)-1-(p-tolyl)propan-1-one (3z)

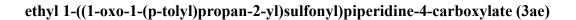

2-((4-methylpiperidin-1-yl)sulfonyl)-1-(p-tolyl)propan-1-one (3aa)

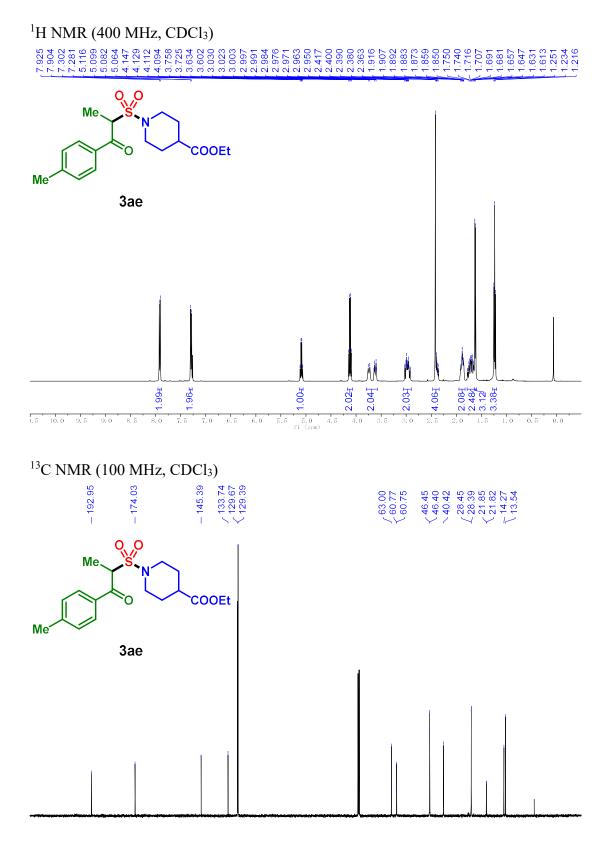
¹H NMR (400 MHz, CDCl₃)


 $\begin{array}{c} 7.938\\ 7.938\\ 7.9317\\ 7.9317\\ 7.9317\\ 7.9317\\ 7.9317\\ 7.9317\\ 7.9317\\ 7.9328\\ 7.946\\ 7.1116\\ 7.11618\\ 7.$

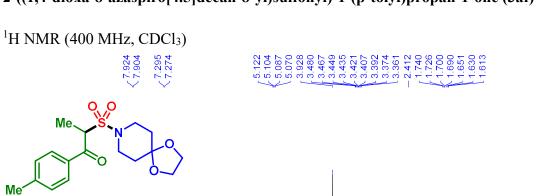
2-((3,5-dimethylpiperidin-1-yl)sulfonyl)-1-(p-tolyl)propan-1-one (3ab)

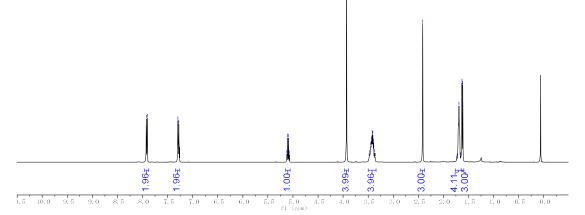



2-((4-benzylpiperidin-1-yl)sulfonyl)-1-(p-tolyl)propan-1-one (3ac)

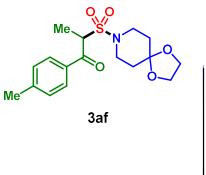


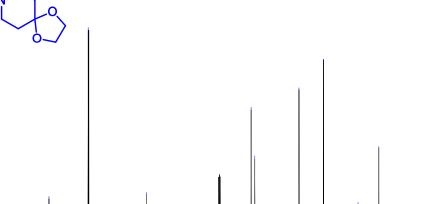
160 150 140 130 120 110 100 f1 (ppm) $\frac{1}{70}$


2-((4-phenylpiperidin-1-yl)sulfonyl)-1-(p-tolyl)propan-1-one (3ad)

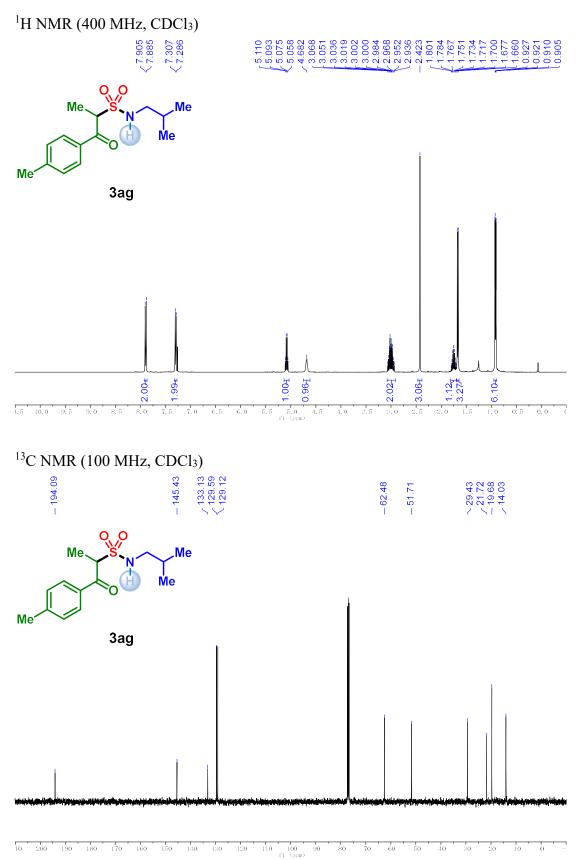


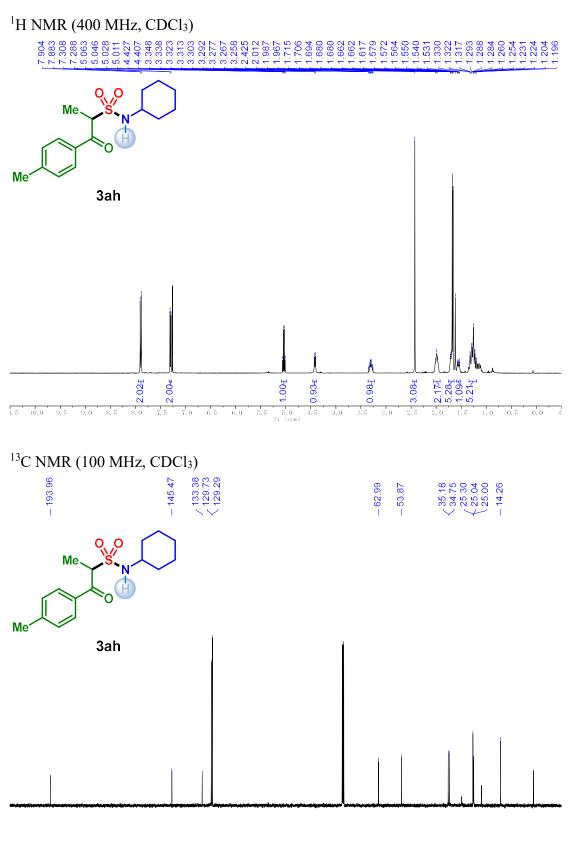
^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

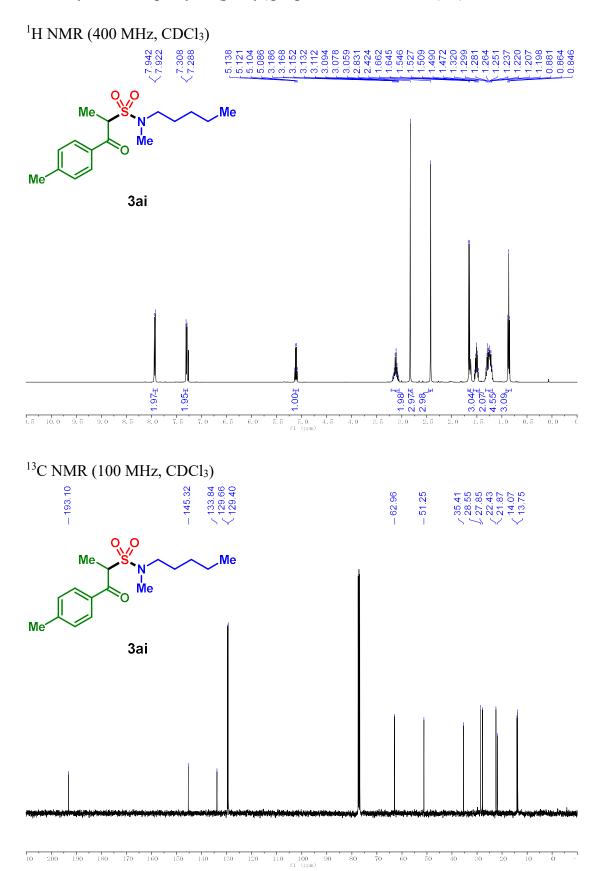

2-((1,4-dioxa-8-azaspiro[4.5]decan-8-yl)sulfonyl)-1-(p-tolyl)propan-1-one (3af)

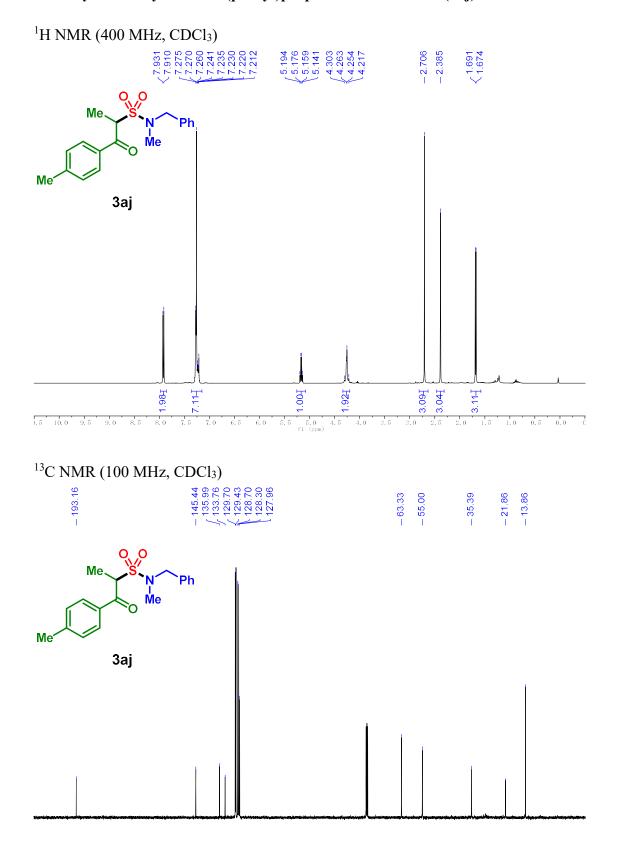


¹³C NMR (100 MHz, CDCl₃)

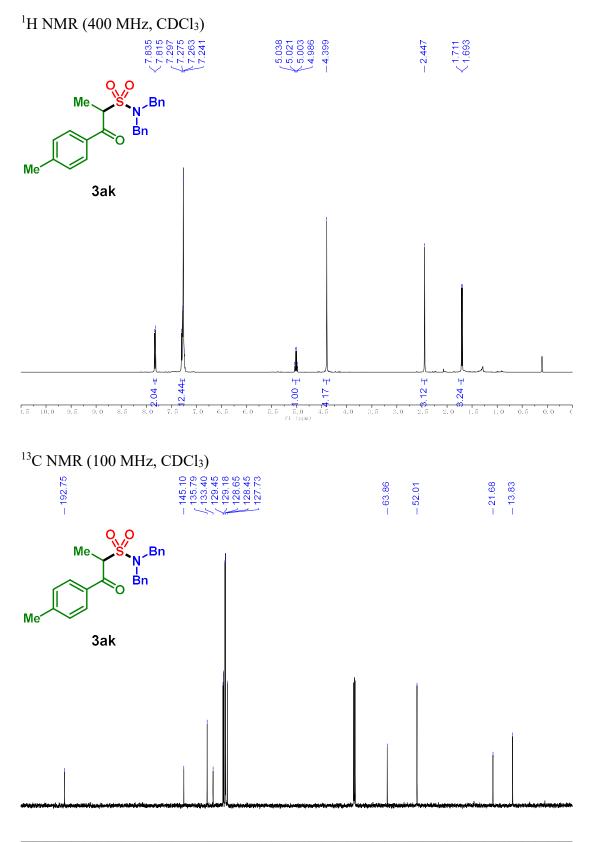


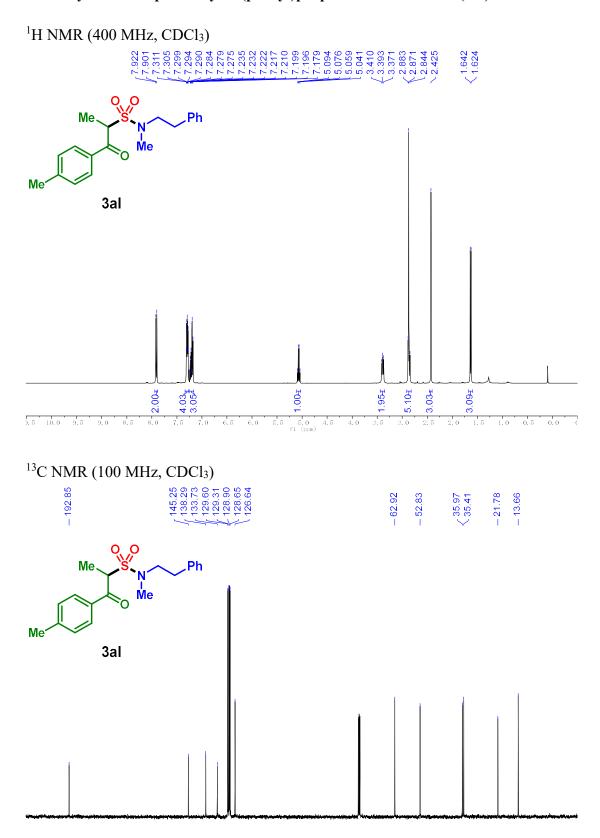



N-isobutyl-1-oxo-1-(p-tolyl)propane-2-sulfonamide (3ag)



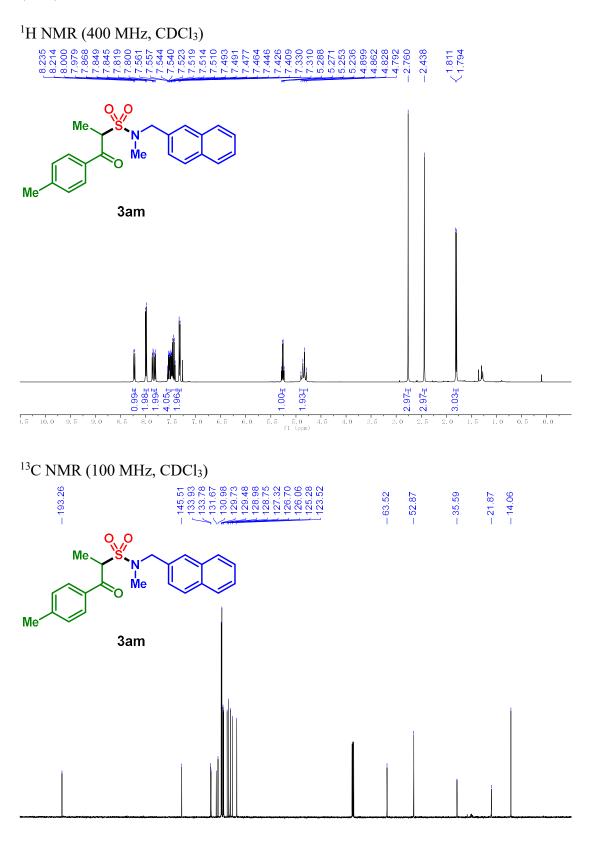
N-cyclohexyl-1-oxo-1-(p-tolyl)propane-2-sulfonamide (3ah)

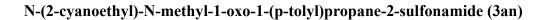

N-methyl-1-oxo-N-pentyl-1-(p-tolyl)propane-2-sulfonamide (3ai)

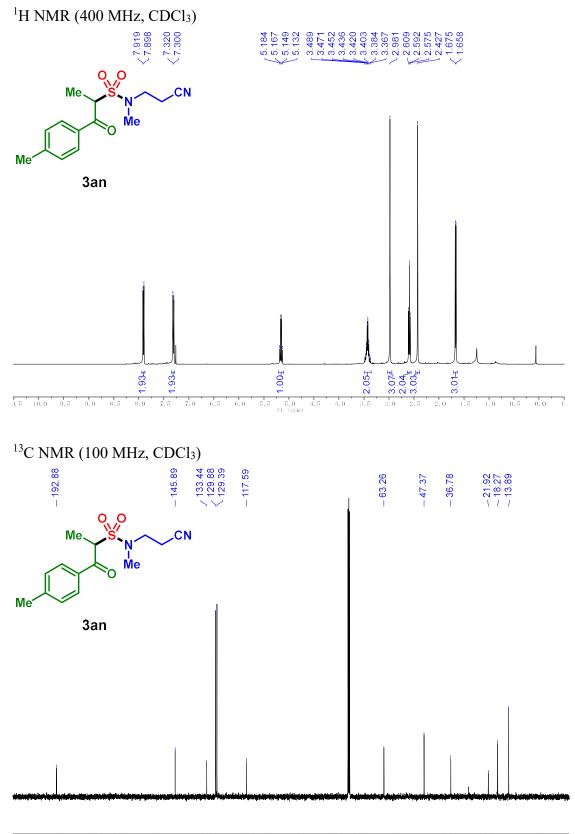


N-benzyl-N-methyl-1-oxo-1-(p-tolyl)propane-2-sulfonamide (3aj)

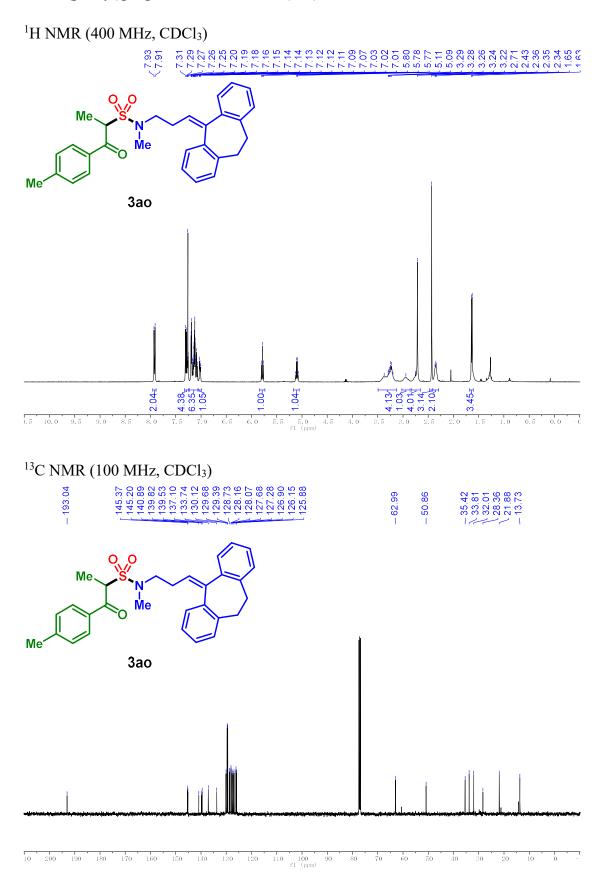
N,N-dibenzyl-1-oxo-1-(p-tolyl)propane-2-sulfonamide (3ak)



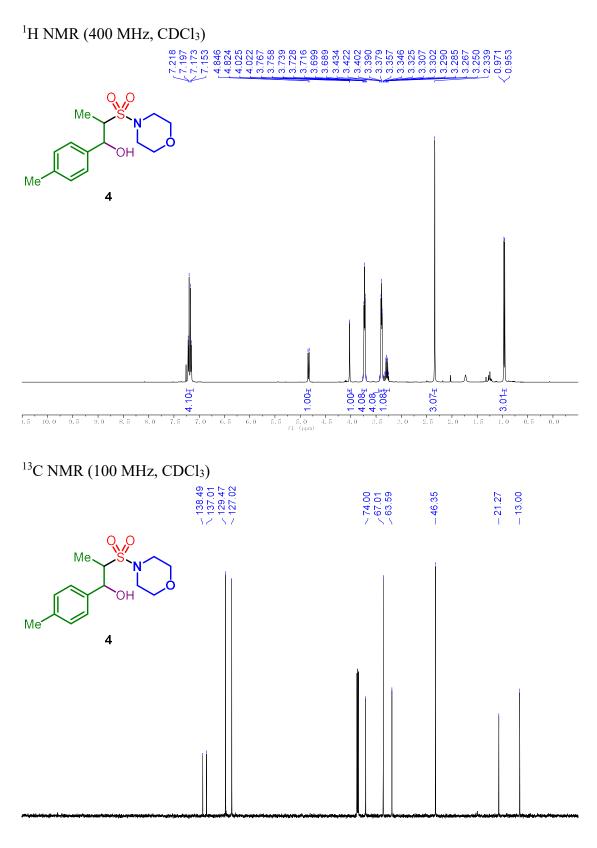

N-methyl-1-oxo-N-phenethyl-1-(p-tolyl)propane-2-sulfonamide (3al)

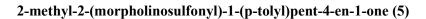

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ^[1] ^[1] ^[1] ^[1] ^[1]

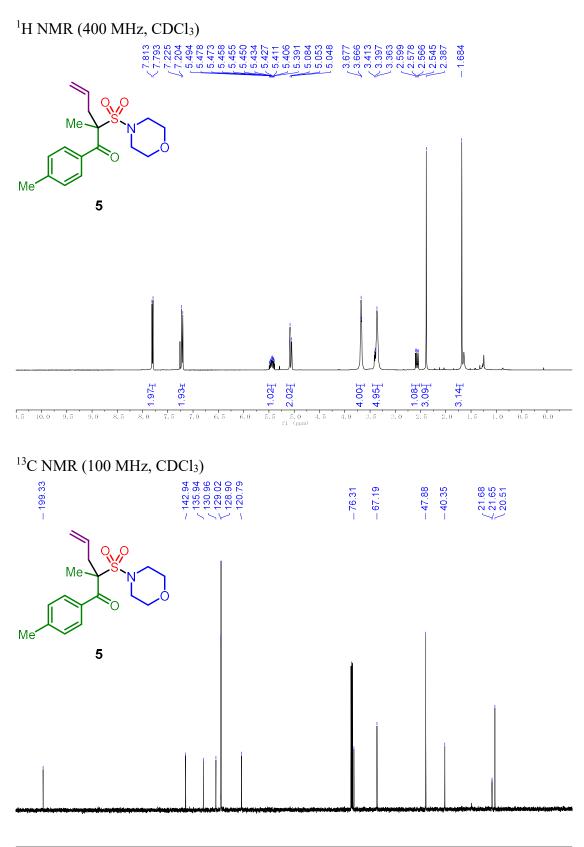
N-methyl-N-(naphthalen-2-ylmethyl)-1-oxo-1-(p-tolyl)propane-2-sulfonamide (3am)

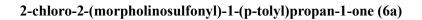


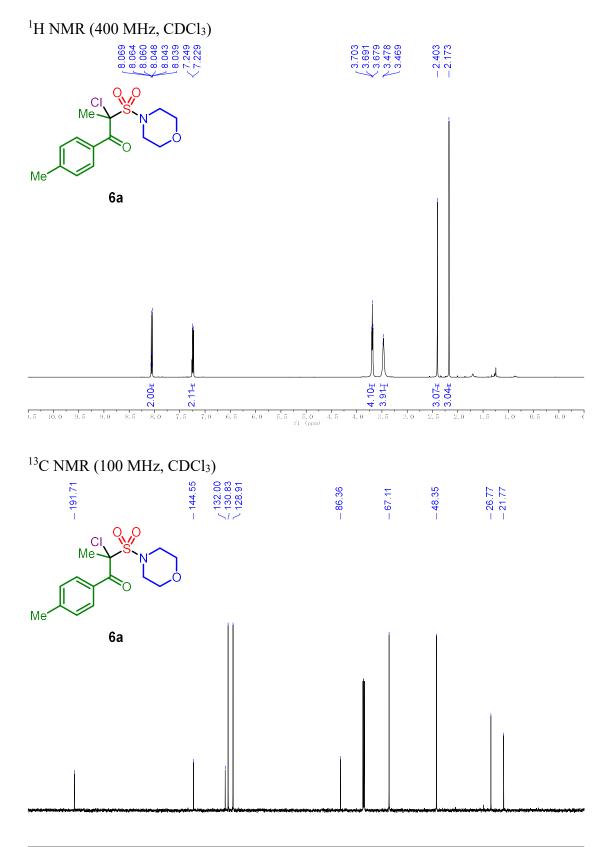
^{110 100} fl (ppm) 190 180 160 150 130 120

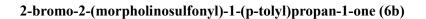


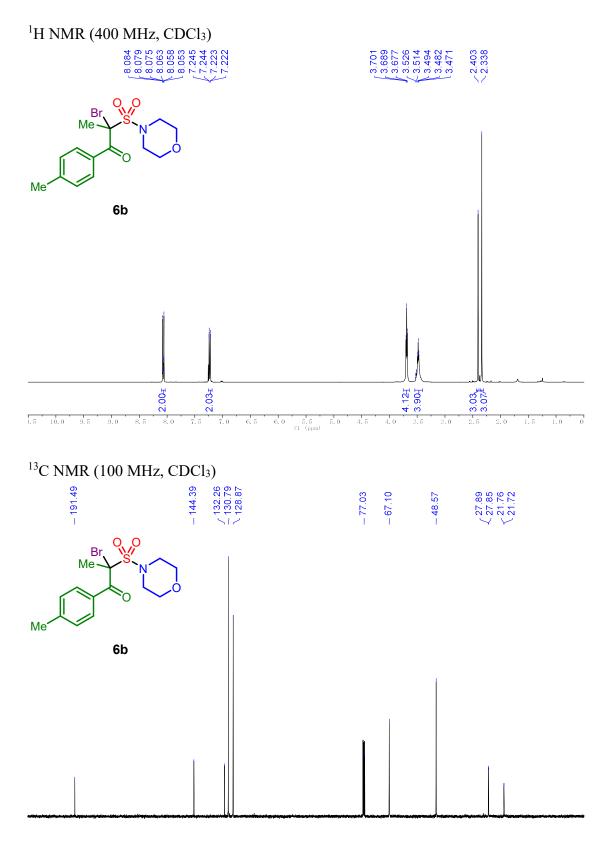


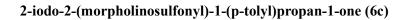

N-(3-(10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-ylidene)propyl)-N-methyl-1oxo-1-(p-tolyl)propane-2-sulfonamide (3ao)

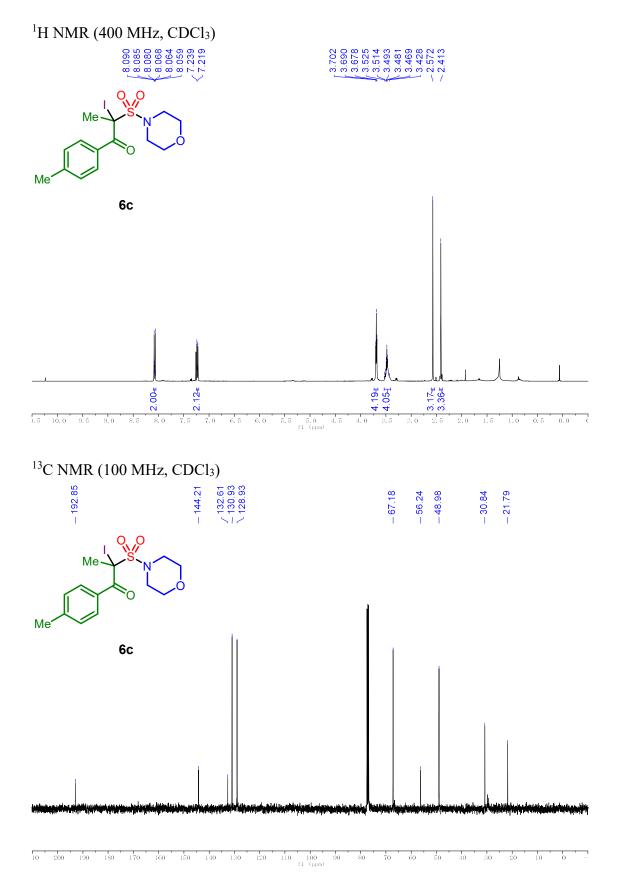

2-(morpholinosulfonyl)-1-(p-tolyl)propan-1-ol (4)

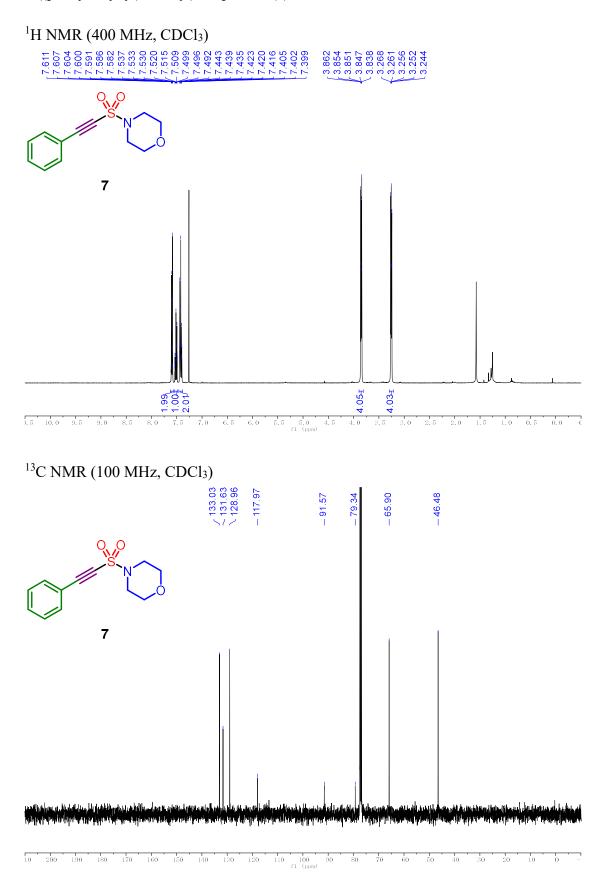


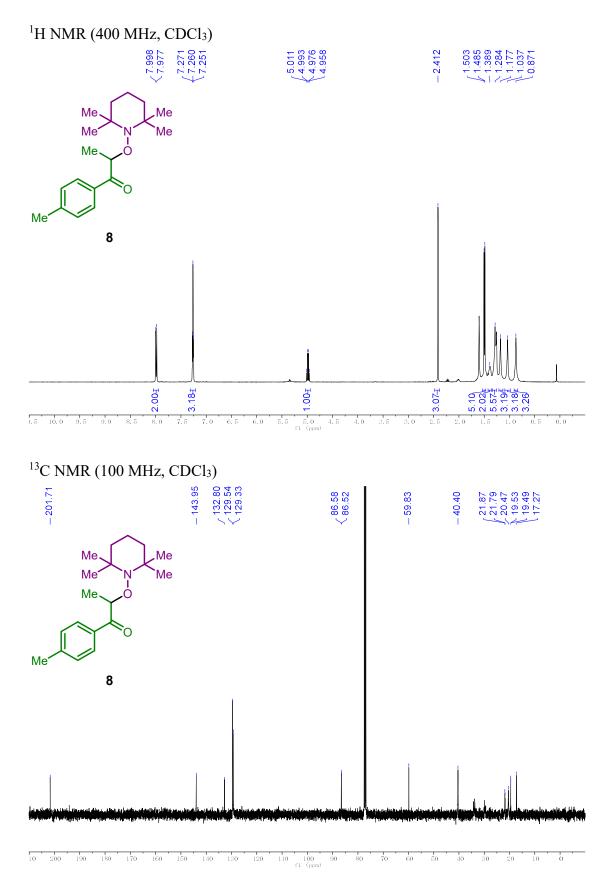


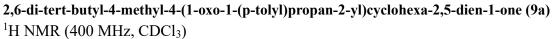


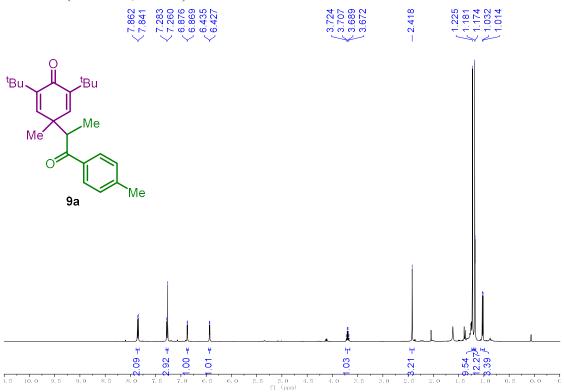

110 100 f1 (ppm) 140 130 120

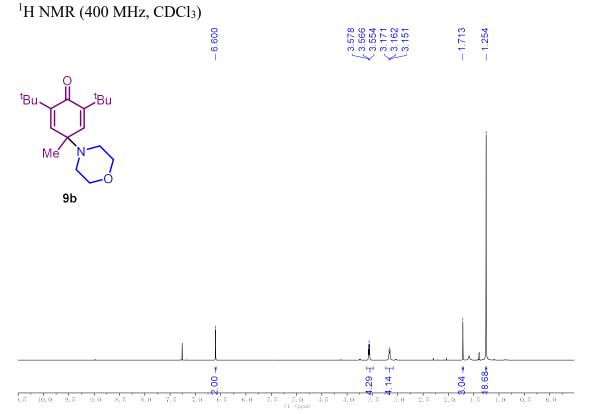


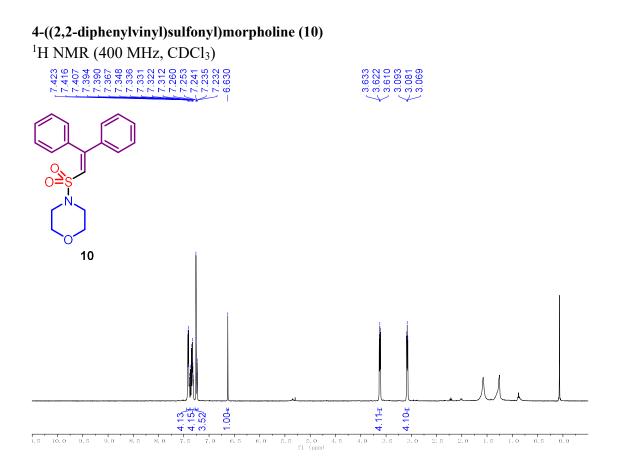


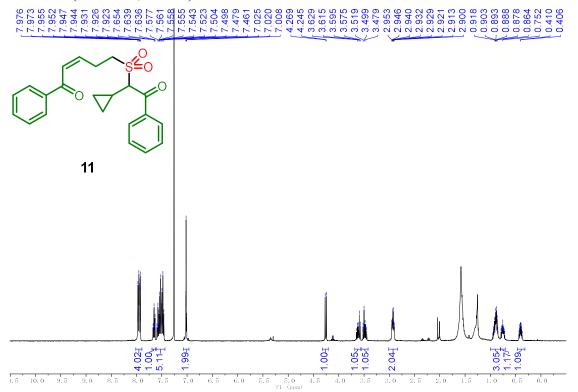





4-((phenylethynyl)sulfonyl)morpholine (7)


2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)-1-(p-tolyl)propan-1-one (8)




2,6-di-tert-butyl-4-methyl-4-morpholinocyclohexa-2,5-dien-1-one (9b)

71

(Z)-5-((1-cyclopropyl-2-oxo-2-phenylethyl)sulfonyl)-1-phenylpent-2-en-1-one (11) ¹H NMR (400 MHz, CDCl₃)

72