Ring Expansion of Unsubstituted Aziridinium Ylide to Trifluoromethylated Dehydropiperidines

Jiaqi Tang,^{*a*,†} Tian Tian,^{*a*,†} Yingyu Wang,^{*a*,†} Dandan Wei,^{*a*,†} Yong Yang,^{*a*} Xinyu Wang,^{*a*} Paramasivam Sivaguru,^{*a*} Yongquan Ning,^{*a*}* Zhaohong Liu^{*a*}* and Valentine Nenajdenko^{b*}

^{*a*} Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China

b. Department of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russia Email: ningyq508@nenu.edu.cn, liuzh944@nenu.edu.cn, nenajdenko@gmail.com.

Table of Contents

1.	General considerations	S2
2.	Experimental Procedures and Characterization Data	S2
	2.1 Rhodium-catalyzed [3 + 3] cyclization reactions	S2
	2.2 Mild functionalization of biomolecules	S21
	2.3 Late-stage modification of molecules containing an aldehyde moiety	S22
	2.4 Gram-scale experiments	S24
	2.5 Synthetic applications	S25
3.	Synthesis of starting materials	S27
	3.1 General procedure for the synthesis of N-triftosylhydrazones	S27
	3.2 General procedure for the synthesis of aziridines	S40
4.	Mechanistic Studies	S44
	4.1 DFT calculations	S44
	4.2 Carbene formation process	S44
	4.3 Gibbs free energy profile (in kcal mol ⁻¹) of one carbon insertion into C–N bond	S45
	4.4 Cartesian coordinates of all optimized structures	S45
5.	References	S70
6.	NMR Spectra of Products	S71

1. General Information

Unless otherwise noted, materials were purchased and used as received from Tokyo Chemical Industry Co., Aldrich Inc., Alfa Aesar, and other commercial suppliers. Dichloromethane (CH₂Cl₂) was dried and distilled over CaH₂ under an argon atmosphere and stored in a nitrogen-filled glovebox. Aziridines were dried and purified by column chromatography before use. All reactions dealing with air- or moisture-sensitive compounds were carried out in a flame-dried, sealed Schlenk reaction tube under an argon atmosphere. Thin layer chromatography (TLC) was performed on glass plates coated with 0.25 mm 230-400 mesh silica gel and visualized under UV light irradiation (254 nm) and/or staining with aqueous KMnO₄ stain. Manual column chromatography was carried out on silica gel. NMR spectra were recorded on a Brüker Advance 600 (1H: 600 MHz, 13C:150 MHz, 19F: 565 MHz) and Brüker Advance 500 (1H: 500 MHz, 13C: 125 MHz, ¹⁹F: 470 MHz) at ambient temperature. Data were reported as chemical shifts in ppm relative to TMS (0.00 ppm) for ¹H and CDCl₃ (77.0 ppm) for ¹³C. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, qi = quintet, m = multiplet, br = broad. High-resolution mass spectra (HRMS) were recorded on Magnetic Sector High-Resolution Gas Chromatography-Mass Spectra and Q Exactive Focus (Thermal) by using the ESI method.

2. Experimental Procedures and Characterization Data

2.1 Rhodium-catalyzed [3 + 3] cyclization reactions

General procedure A: Experiments were set up inside a glovebox under an argon atmosphere. An oven-dried glass screw-capped reaction tube was charged with trifluoromethyl vinyl *N*-triftosylhydrazone (0.2 mmol), NaH (16.0 mg, 60 wt% dispersion in mineral oil, 0.4 mmol, 2.0 equiv) in CH₂Cl₂ (3.0 mL). Then Rh₂(esp)₂ (3.0 mg, 2 mol%) and aziridine (0.4 mmol, 2.0 equiv) were added. The tube was sealed and stirred at 60 °C for 12 h, after which time the reaction mixture was cooled to room temperature and filtered through a short pad of silica gel using ethyl acetate (EA) as an eluent. The volatiles was removed from the collected filtrate under reduced pressure, and the resulting residue was purified via flash chromatography on silica gel (using petroleum ether / EtOAc as eluent) to obtain pure products.

(3) Prepared according to **General Procedure A** using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-(p-tolyl)acrylaldehyde (87.2 mg, 0.2 mmol) and propyl aziridine-1-carboxylate **2** (70.9 mg, 0.4 mmol) afforded **3** (66.5 mg, 92% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.40-7.29 (m, 7H), 7.26-7.23 (m, 1H), 7.13 (d, *J* = 7.0 Hz, 2H), 6.08 (d, *J* = 3.5 Hz, 1H), 5.25-5.18 (m, 2H), 3.84-3.77 (m, 1H), 3.64-3.55 (m, 2H), 2.22-2.16 (m, 1H), 1.85-1.77 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.20, 142.66, 135.65, 131.98 (q, *J* = 34.9 Hz), 128.91, 128.54, 128.46, 128.39, 127.49, 127.13, 124.09 (q, *J* = 3.6 Hz), 121.12 (q, *J* = 274.7 Hz), 68.39, 44.36, 39.51, 32.56. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.94 (s, 3F). HRMS (ESI) *m/z* calculated C₂₀H₁₈F₃NNaO₂ [M+Na]⁺ 384.1177, found 384.1182.

(5) Prepared according to **General Procedure A** using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-(p-tolyl)but-3-en-2-one (87.3 mg, 0.2 mmol) and propyl aziridine-1-carboxylate **2** (70.9 mg, 0.4 mmol) afforded **5** (60.8 mg, 81% yield) as a colorless oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.40-7.33 (m, 5H), δ 7.13 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.06 (d, *J* = 3.5 Hz, 1H), 5.25-5.19 (m, 2H), 3.82-3.77 (m, 1H), 3.61-3.56 (m, 2H), 2.33 (s, 3H), 2.20-2.15 (m, 1H), 1.82-1.78 (m, 1H). ¹³**C NMR** (150 MHz, CDCl₃) δ 154.20, 139.64, 136.79, 135.65, 131.75 (q, *J* = 35.0 Hz), 129.55, 128.52, 128.43, 128.36, 127.36, 124.33 (q, *J* = 3.6 Hz), 121.12 (q, *J* = 272.4 Hz), 68.36, 44.32, 39.08, 32.58, 21.01. ¹⁹**F NMR** (565 MHz, CDCl₃) δ -61.95 (s, 3F). **HRMS** (ESI) *m/z* calculated C₂₁H₂₀F₃NNaO₂ [M+Na]⁺ 398.1331, found 398.1338.

(6) Prepared according to **General Procedure A** using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-(4-isopropylphenyl)but-3-en-2-one (92.9 mg, 0.2 mmol) and propyl aziridine-1-carboxylate **2** (70.9 mg, 0.4 mmol) afforded **6** (71.1 mg, 84% yield) as a colorless oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.40-7.34 (m, 5H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 8.0 Hz, 2H), 6.08 (d, *J* = 3.0 Hz, 1H), 5.24-5.19 (m, 2H), 3.83-3.78 (m, 1H), 3.62-3.57 (m, 2H), 2.91-2.89 (m, 1H), 2.20-2.17 (m, 1H), 1.84-1.82 (m, 1H), 1.24 (d, *J* = 7.0 Hz, 6H). ¹³**C NMR** (150 MHz, CDCl₃) δ 154.17, 147.75, 139.92, 135.62, 131.72 (q, *J* = 34.6 Hz), 128.48, 128.39, 128.31, 127.39, 126.87, 124.39 (q, *J* = 3.6 Hz), 121.09 (q, *J* = 272.3 Hz), 68.31, 44.30, 39.05, 33.70, 32.46, 23.94. ¹⁹**F NMR** (565 MHz, CDCl₃) δ -61.94 (s, 3F). **HRMS** (ESI) *m/z* calculated C₂₃H₂₄F₃NNaO₂ [M+Na]⁺ 426.1651, found 426.1651.

(7) Prepared according to **General Procedure A** using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-4-([1,1'-biphenyl]-4-yl)-1,1,1-trifluorobut-3-en-2-one (99.7 mg, 0.2 mmol) and propyl aziridine-1-carboxylate **2** (70.9 mg, 0.4 mmol) afforded **7** (85.7 mg, 98% yield) as a colorless oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.59-7.55 (m, 4H), 7.47-7.35 (m, 8H), 7.23 (d, *J* = 8.0 Hz, 2H), 6.13 (d, *J* = 3.5 Hz, 1H), 5.28-5.22 (m, 2H), 3.88-3.84 (m, 1H), 3.69-3.60 (m, 2H), 2.24-2.22 (m, 1H), 1.92-1.82 (m, 1H). ¹³**C NMR** (150 MHz, CDCl₃) δ 154.22, 141.71, 140.66, 140.20, 135.68, 132.07 (q, *J* = 35.0 Hz), 128.88, 128.58, 128.51, 128.44, 127.96, 127.66, 127.43, 127.10, 124.00 (q, *J* = 3.8 Hz), 121.17 (q, *J* = 275.0 Hz), 68.46, 44.41, 39.20, 32.56. ¹⁹**F NMR** (565 MHz, CDCl₃) δ -61.89 (s, 3F). **HRMS** (ESI) *m/z* calculated C₂₆H₂₂F₃NNaO₂ [M+Na]⁺ 437.1633, found 460.1637.

(8) Prepared according to **General Procedure A** using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-(4-fluorophenyl)but-3-en-2-one (88.1 mg, 0.2 mmol) and propyl aziridine-1-carboxylate **2** (70.9 mg, 0.4 mmol) afforded **8** (68.3 mg, 90% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.40-7.33 (m, 5H), 7.11-7.08 (m, 2H), 7.07-6.98 (m, 2H), 6.04 (d, *J* = 3.5 Hz, 1H), 5.25-5.18 (m, 2H), 3.84-3.79 (m, 1H), 3.62-3.55 (m, 2H), 2.22-2.15

(m, 1H), 1.80-1.72 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 161.88 (q, J = 245.0 Hz), 154.12, 138.32, 135.58, 132.18 (q, J = 35.8 Hz), 128.94 (d, J = 7.8 Hz), 128.52, 128.47, 128.40, 123.69 (q, J = 3.6 Hz), 121.02 (q, J = 278.0 Hz), 115.73 (d, J = 21.0 Hz), 68.43, 44.32, 38.81, 32.68. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.03 (s, 3F), (-115.16)-(-115.51) (m, 1F). HRMS (ESI) m/z calculated C₂₀H₁₇F₄NNaO₂ [M+Na]⁺ 402.1097, found 402.1088.

(9) Prepared according to **General Procedure A** using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-4-(4-chlorophenyl)-1,1,1-trifluorobut-3-en-2-one (91.3 mg, 0.2 mmol) and propyl aziridine-1-carboxylate **2** (70.9 mg, 0.4 mmol) afforded **9** (67.3 mg, 85% yield) as a colorless oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.42-7.33 (m, 5H), 7.28 (d, *J* = 8.5 Hz, 2H), 7.06 (d, *J* = 8.5 Hz, 2H), 6.03 (d, *J* = 3.5 Hz, 1H), 5.24-5.18 (m, 2H), 3.84-3.78 (m, 1H), 3.61-3.53 (m, 2H), 2.21-2.16(m, 1H), 1.80-1.73 (m, 1H). ¹³**C NMR** (150 MHz, CDCl₃) δ 154.08, 141.07, 135.54, 132.99, 132.36 (q, *J* = 34.6 Hz), 129.04, 128.79, 128.53, 128.47, 128.42, 123.29 (q, *J* = 4.0 Hz), 120.90 (d, *J* = 275.0 Hz), 68.46, 44.29, 38.92, 32.50. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.04 (s, 3F). **HRMS** (ESI) *m/z* calculated C₂₀H₁₇ClF₃NNaO₂ [M+Na]⁺ 418.0798, found 418.0792.

(10) Prepared according to **General Procedure A** using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-4-(4-bromophenyl)-1,1,1-trifluorobut-3-en-2-one (100.2 mg, 0.2 mmol) and propyl aziridine-1-carboxylate **2** (70.9 mg, 0.4 mmol) afforded **10** (76.6 mg, 87% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, *J* = 8.5 Hz, 2H), 7.40-7.33 (m, 5H), 7.01 (d, *J* = 8.5 Hz, 2H), 6.02 (d, *J* = 3.5 Hz, 1H), 5.24-5.18 (m, 2H), 3.83-3.77 (m, 1H), 3.61-3.54 (m, 2H), 2.23-2.15 (m, 1H), 1.79-1.72 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.07, 141.60, 135.54, 132.41(d, *J* = 35.5 Hz), 132.00, 129.16, 128.53, 128.48, 128.42, 123.17, 121.00, 120.97 (q, *J* = 277.0 Hz), 68.46, 44.28, 38.98, 32.44. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.04 (s, 3F). **HRMS** (ESI) *m/z* calculated C₂₀H₁₇BrF₃NNaO₂ [M+Na]⁺ 462.0288, found 462.0287.

(11) Prepared according to **General Procedure A** using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-(4-(trifluoromethyl)phenyl)but-3-en-2-one (96.1 mg, 0.2 mmol) and propyl aziridine-1-carboxylate **2** (70.9 mg, 0.4 mmol) afforded **11** (67.0 mg, 78% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.57 (d, *J* = 8.0 Hz, 2H), 7.40-7.33 (m, 5H), 7.25 (d, *J* = 8.0 Hz, 2H), 6.04 (d, *J* = 3.5 Hz, 1H), 5.26-5.18 (m, 2H), 3.87-3.83 (m, 1H), 3.71-3.69 (m, 1H), 3.60-3.55 (m, 1H), 2.56-2.20 (m, 1H), 1.83-1.76 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.03, 146.59, 135.48, 132.75 (q, *J* = 35.4 Hz), 129.56 (q, *J* = 33.0 Hz), 128.55, 128.52, 128.47, 127.85, 125.88 (q, *J* = 3.6 Hz), 124.02 (q, *J* = 272.0 Hz), 122.72 (q, *J* = 4.0 Hz), 120.94 (q, *J* = 274.0 Hz), 68.53, 44.28, 39.33, 32.37. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.04 (s, 3F), -61.54 (s, 3F). HRMS (ESI) *m*/z calculated C₂₁H₁₇F₆NNaO₂ [M+H]⁺ 452.1056, found 452.1052.

(12) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-4-(4,4,4-trifluoro-3-oxobut-1-en-1-yl)phenyl acetate (96.1 mg, 0.2 mmol) and propyl aziridine-1-carboxylate 2 (70.9 mg, 0.4 mmol) afforded 12 (67.9 mg, 81% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.41-7.30 (m, 5H), 7.15 (d, *J* = 8.5 Hz, 2H), 7.03 (d, *J* = 8.5 Hz, 2H), 6.06 (d, *J* = 3.5 Hz, 1H), 5.25-5.18 (m, 2H), 3.84-3.78 (m, 1H), 3.67-3.61 (m, 1H), 3.61-3.55 (m, 1H), 2.30 (s, 3H), 2.26-2.19 (m, 1H), 1.84-1.76 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 169.49, 154.11, 149.66, 140.14, 135.57, 132.15 (q, *J* = 35.3 Hz), 128.53, 128.49, 128.46, 128.40, 123.66 (q, *J* = 3.8 Hz), 122.00, 121.03 (q, *J* = 274.0 Hz), 68.42, 44.28, 38.94, 32.51, 21.11. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.90 (s, 3F). HRMS (ESI) *m/z* calculated C₂₂H₂₀F₃NNaO4 [M+Na]⁺ 442.1237, found 442.1237.

(13) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from methyl (*E*)-4-(4,4,4-trifluoro-3-oxobut-1-en-1-yl) benzoate (96.1 mg, 0.2 mmol) and propyl aziridine-1-carboxylate 2 (70.9 mg, 0.4 mmol) afforded 13 (67.0 mg, 88% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 8.0 Hz, 2H), 7.40-7.32 (m, 5H), 7.21 (d, *J* = 8.0 Hz, 2H), 6.06 (d, *J* = 3.5 Hz, 1H), 5.25-5.19 (m, 2H), 3.90 (s, 3H), 3.87-3.83 (m, 1H), 3.71-3.66 (m, 1H), 3.60-3.54 (m, 1H), 2.24-2.18 (m, 1H), 1.83-1.75 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 166.71, 154.05, 147.76, 135.52, 132.53 (q, *J* = 35.0 Hz), 130.23, 129.13, 128.55, 128.48, 128.45, 127.51, 122.99 (q, *J* = 3.5 Hz), 121.00 (q, *J* = 274.0 Hz), 68.48, 52.15, 44.32, 39.48, 32.32. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.95 (s, 3F). HRMS (ESI) *m/z* calculated C₂₂H₂₀F₃NNaO₄ [M+Na]⁺ 442.1237, found 442.1237.

(14) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-4-(3-chlorophenyl)-1,1,1-trifluorobut-3-en-2-one (91.3 mg, 0.2 mmol) and propyl aziridine-1-carboxylate 2 (70.9 mg, 0.4 mmol) afforded 14 (66.1 mg, 88% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.42-7.30 (m, 5H), 7.26-7.22 (m, 2H), 7.13 (s, 1H), 7.05-6.97 (m, 1H), 6.03 (d, *J* = 3.5 Hz, 1H), 5.25-5.18 (m, 2H), 3.85-3.81 (m, 1H), 3.61-3.55 (m, 2H), 2.22-2.16 (m, 1H), 1.82-1.75 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.04, 144.60, 135.51, 134.70, 132.48 (q, *J* = 35.0 Hz), 130.18, 128.55, 128.47, 128.43, 127.67, 127.38, 125.63, 122.95 (q, *J* = 4.0 Hz), 120.97 (q, *J* = 274.0 Hz), 68.49, 44.27, 39.20, 32.35. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.98 (s, 3F). HRMS (ESI) *m/z* calculated C₂₀H₁₇ClF₃NNaO₂ [M+Na]⁺418.0792, found 418.0784.

(15) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-(3-(trifluoromethyl)phenyl)but-3-en-2-one (96.1 mg, 0.2 mmol) and propyl aziridine-1-carboxylate **2** (70.9 mg, 0.4 mmol) afforded **15** (78.1 mg, 91% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.52 (d, *J* = 8.0 Hz, 1H), 7.44 (t, *J* = 8.0 Hz, 1H), 7.40-7.31 (m, 7H), 6.05 (d, *J* = 3.5 Hz, 1H), 5.25-5.19 (m, 2H), 3.86-3.84 (m, 1H), 3.72-3.68 (m, 1H), 3.61-3.56 (m, 1H), 2.26-2.20 (m, 1H), 1.84-1.77(m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.02, 143.54, 135.47, 132.73 (q, *J* = 34.0 Hz), 131.28 (q, *J* = 32.0 Hz), 130.75, 129.45, 128.55, 128.48, 128.45, 124.29 (q, *J* = 4.0 Hz), 124.09 (q, *J* = 4.0 Hz), 123.94 (q, *J* = 273.0 Hz), 122.67 (q, *J* = 4.0 Hz), 120.94 (q, *J* = 274.7 Hz), 68.54, 44.29, 39.39, 32.40. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.02 (s, 3F), -62.63 (s, 3F). HRMS (ESI) *m/z* calculated C₂₁H₁₇F₆NNaO₂ [M+Na]⁺ 452.1055, found 452.1045.

(16) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-(m-tolyl)but-3-en-2-one (87.3 mg, 0.2 mmol) and propyl aziridine-1-carboxylate 2 (70.9 mg, 0.4 mmol) afforded 16 (69.1 mg, 91% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.39-7.34 (m, 5H), 7.22 (t, *J* = 7.5 Hz, 1H), 7.08 (d, *J* = 7.5 Hz, 1H), 6.98-6.95 (m, 2H), 6.09 (d, *J* = 3.5 Hz, 1H), 5.27-5.21 (m, 2H), 3.84-3.80 (m, 1H), 3.60-3.55 (m, 2H), 2.35 (s, 3H), 2.20-2.14 (m, 1H), 1.84-1.77 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.20, 142.61, 138.62, 135.68, 131.81 (q, *J* = 35.0 Hz), 128.79, 128.54, 128.43, 128.38, 128.20, 127.88, 124.53, 124.26 (q, *J* = 4.0 Hz), 121.15 (q, *J* = 274.0 Hz), 68.37, 44.42, 39.48, 32.53, 21.43.¹⁹F NMR (565 MHz, CDCl₃) δ -61.91 (s, 3F). HRMS (ESI) *m*/z calculated C₂₁H₂₀F₃NNaO₂ [M+Na]⁺ 398.1329, found 398.1338.

(17) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-4-(2-bromophenyl)-1,1,1-trifluorobut-3-en-2-one (100.2 mg, 0.2 mmol) and propyl aziridine-1-carboxylate 2 (70.9 mg, 0.4 mmol) afforded 17 (86.3 mg, 98% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.58-7.56 (m, 1H), 7.41-7.34 (m, 5H),

7.29-7.26 (m, 1H), 7.14-7.09 (m, 2H), 6.04 (d, J = 3.5 Hz, 1H), 5.26-5.20 (m, 2H), 4.11-4.07 (m, 1H), 3.79-3.77 (m, 1H), 3.65-3.60 (m, 1H), 2.35-2.28 (m, 1H), 1.72-1.69 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.08, 141.61, 135.59, 133.26, 132.89 (q, J = 35.5 Hz), 128.74, 128.61, 128.55, 128.48, 128.42, 127.97, 124.07, 123.17 (q, J = 4.0 Hz), 121.08 (q, J = 274.5 Hz), 68.44, 44.23, 38.83, 30.47. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.93 (s, 3F). HRMS (ESI) *m/z* calculated C₂₀H₁₇BrF₃NNaO₂ [M+Na]⁺ 464.0374, found 464.0370.

(18) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-(2-methoxyphenyl)but-3-en-2-one (90.5 mg, 0.2 mmol) and propyl aziridine-1-carboxylate 2 (70.9 mg, 0.4 mmol) afforded 17 (64.1 mg, 82% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.40-7.30 (m, 5H), 7.25-7.22 (m, 1H), 7.03-7.00 (m, 1H), 6.92-6.86 (m, 2H), 6.05 (d, *J* = 3.5 Hz, 1H), 5.24-5.18 (m, 2H), 4.01-3.97 (m, 1H), 3.80 (s, 3H), 3.77-3.72 (m, 1H), 3.63-3.58 (m, 1H), 2.21-2.15 (m, 1H), 1.79 -1.71 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 156.67, 154.28, 135.73, 131.91 (q, *J* = 34.0 Hz), 130.71, 128.50, 128.40, 128.31, 128.18, 128.09, 124.64 (q, *J* = 4.0 Hz), 121.19 (q, *J* = 276.0 Hz), 120.66, 68.25, 55.30, 44.48, 33.20, 30.30. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.90 (s, 3F). HRMS (ESI) *m/z* calculated C₂₁H₂₀F₃NNaO₃ [M+Na]⁺ 414.1279, found 414.1287.

(19) Prepared according to **General Procedure A** using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-(o-tolyl)but-3-en-2-one (87.3 mg, 0.2 mmol) and propyl aziridine-1-carboxylate **2** (70.9 mg, 0.4 mmol) afforded **19** (68.3 mg, 91% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.41-7.33 (m, 5H), 7.17-7.15 (m, 3H), 7.04-7.00 (m, 1H), 6.06 (d, *J* = 3.4 Hz, 1H), 5.26-5.20 (m, 2H), 3.84-3.80 (m, 1H), 3.78-3.73 (m, 1H), 3.66-3.61 (m, 1H), 2.33 (s, 3H), 2.23-2.16 (m, 1H), 1.74-1.67 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.22, 140.78, 135.65, 135.26, 132.21 (q, *J* = 35.0 Hz), 130.83, 128.52, 128.44, 128.37, 127.24, 127.06, 126.52, 124.51 (q, *J* = 4.4 Hz), 121.14 (q, *J* = 272.0 Hz), 68.37, 44.12, 35.79, 30.83, 19.23.

¹⁹F NMR (565 MHz, CDCl₃) δ -61.98 (s, 3F). HRMS (ESI) *m*/*z* calculated C₂₁H₂₀F₃NNaO₂ [M+Na]⁺ 398.1338, found 398.1336.

(20) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-4-(3,5-dimethoxyphenyl)-1,1,1-trifluorobut-3-en-2-one (96.5 mg, 0.2 mmol) and propyl aziridine-1-carboxylate 2 (70.9 mg, 0.4 mmol) afforded 20 (75.0 mg, 89% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.39-7.34 (m, 5H), 6.35 (t, *J* = 2.0 Hz, 1H), 6.29 (d, *J* = 2.0 Hz, 2H), 6.06 (d, *J* = 3.5 Hz, 1H), 5.24-5.19 (m, 2H), 3.81-3.72 (m, 1H), 3.75 (s, 6H), 3.62-3.53 (m, 1H), 2.21-2.14 (m, 1H), 1.85-1.79 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.16, 154.13, 145.07, 135.61, 131.96 (q, *J* = 35.0 Hz), 128.52, 128.42, 128.37, 123.80 (q, *J* = 4.0 Hz), 121.08 (q, *J* = 275.0 Hz), 105.73, 98.60, 68.39, 55.32, 44.33, 39.54, 32.28. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.93 (s, 3F). HRMS (ESI) *m/z* calculated C₂₂H₂₂F₃NNaO₄ [M+Na]⁺ 444.1401, found 444.1393.

(21) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-4-(2-bromo-4-chlorophenyl)-1,1,1-trifluorobut-3-en-2-one (107.1 mg, 0.2 mmol) and propyl aziridine-1-carboxylate **2** (70.9 mg, 0.4 mmol) afforded **21** (85.4 mg, 90% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, *J* = 2.0 Hz, 1H), 7.39-7.32 (m, 5H), 7.25-7.23 (m, 1H), 7.01 (d, *J* = 8.5 Hz, 1H), 5.98 (d, *J* = 3.5 Hz, 1H), 5.24-5.18 (m, 2H), 4.06-4.02 (m, 1H), 3.78-3.76 (m, 1H), 3.63-3.58 (m, 1H), 2.32-2.25 (m, 1H), 1.68-1.61 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 153.98, 140.20, 135.49, 133.70, 133.25(q, *J* = 35.0 Hz), 132.82, 129.39, 128.55, 128.51, 128.46, 128.18, 124.26, 122.46 (q, *J* = 4.2 Hz), 121.96 (q, *J* = 274.5 Hz), 68.52, 44.18, 38.35, 30.38. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.00 (s, 3F). HRMS (ESI) *m/z* calculated C₂₀H₁₆BrClF₃NNaO₂ [M+Na]⁺ 495.9902, found 495.9897.

(22) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-mesitylbut-3-en-2-one (92.9 mg, 0.2 mmol) and propyl aziridine-1-carboxylate 2 (70.9 mg, 0.4 mmol) afforded 22 (67.0 mg, 83% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.39-7.29 (m, 5H), 6.81 (s, 2H), 6.05 (d, *J* = 3.5 Hz, 1H), 5.27 (d, *J* = 12.0 Hz, 1H), 5.16 (d, *J* = 12.0 Hz, 1H), 4.46-4.42 (m, 1H), 4.04-3.98 (m, 1H), 3.23-3.17 (m, 1H), 2.37-2.07 (m, 9H), 2.05-1.96 (m, 1H), 1.95-1.85 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.31, 136.52, 135.73, 134.10, 130.71 (d, *J* = 35.4 Hz), 128.48, 128.43, 128.32, 126.64 (q, *J* = 3.6 Hz), 121.12 (d, *J* = 275.0 Hz), 68.22, 46.35, 36.64, 28.01, 20.67. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.38 (s, 3F). HRMS (ESI) *m/z* calculated C₂₃H₂₄F₃NNaO₂ [M+Na]⁺ 426.1651, found 426.1659.

(23) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-4-(9H-fluoren-3-yl)-1,1,1-trifluorobut-3-en-2-one (100.3 mg, 0.2 mmol) and propyl aziridine-1-carboxylate 2 (70.9 mg, 0.4 mmol) afforded 23 (71.9 mg, 80% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 7.5 Hz, 1H), 7.73 (d, *J* = 7.5 Hz, 1H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.44-7.29 (m, 8H), 7.16 (d, *J* = 7.5 Hz, 1H), 6.16 (d, *J* = 3.5 Hz, 1H), 5.29-5.23 (m, 2H), 3.93-3.80 (m, 3H), 3.74-3.65 (m, 1H), 3.65-3.58 (m, 1H), 2.29-2.14 (m, 1H), 1.92-1.84 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.23, 144.02, 143.25, 141.25, 140.86, 135.69, 131.89 (q, *J* = 35.0 Hz), 128.60 (q, *J* = 7.5 Hz), 128.44 (q, *J* = 7.5 Hz), 128.22, 126.85, 126.81, 126.25, 125.09, 124.34 (q, *J* = 4.0 Hz), 124.10, 121.20 (q, *J* = 274.5 Hz), 120.18, 119.89, 68.42, 44.49, 39.70, 36.90, 32.82. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.81 (s, 3F). HRMS (ESI) *m/z* calculated C₂₇H₂₂F₃NNaO₂ [M+Na]⁺ 472.1494, found 472.1495.

(24) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-(naphthalen-2-yl)but-3-en-2-one (94.5 mg, 0.2 mmol) and propyl aziridine-1-carboxylate 2 (70.9 mg, 0.4 mmol) afforded 24 (71.6 mg, 87% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.83-7.78 (m, 3H), 7.56 (s, 1H), 7.50-7.46 (m, 2H), 7.41-7.32 (m, 5H), 7.27-7.25 (m, 1H), 6.18 (d, *J* = 3.5 Hz, 1H), 5.27-5.21 (m, 2H), 3.88-3.83 (m, 1H), 3.82-3.26 (m, 1H), 3.66-3.60 (m, 1H), 2.29-2.23 (m, 1H), 1.94-1.88 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.18, 139.97, 135.64, 133.46, 132.50, 132.19 (q, *J* = 34.5 Hz), 128.78, 128.53, 128.44, 128.38, 127.68, 127.66, 126.40, 125.96, 125.94, 125.71, 123.89 (q, *J* = 4.0 Hz), 121.12 (q, *J* = 270.6 Hz), 68.42, 44.34, 39.57, 32.42. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.92 (s, 3F). HRMS (ESI) *m/z* calculated C₂₄H₂₀F₃NNaO₂ [M+Na]⁺ 434.1347, found 434.1338.

(25) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-4-(1-bromonaphthalen-2-yl)-1,1,1-trifluorobut-3-en-2-one (110.3 mg, 0.2 mmol) and propyl aziridine-1-carboxylate **2** (70.9 mg, 0.4 mmol) afforded **25** (84.3 mg, 86% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 8.32 (d, *J* = 8.5 Hz, 1H), 7.81 (d, *J* = 8.1 Hz, 1H), 7.76 (d, *J* = 8.5 Hz, 1H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.50-7.27 (m, 5H), 7.20 (d, *J* = 8.5 Hz, 1H), 6.11 (d, *J* = 3.5 Hz, 1H), 5.29-5.22 (m, 2H), 4.51-4.45 (m, 1H), 4.02-4.00 (m, 1H), 3.59-3.53 (m, 1H), 2.42-2.35 (m, 1H), 1.81-1.73 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.14, 139.28, 135.61, 133.71, 132.89 (d, *J* = 35.0 Hz), 132.54, 128.56, 128.48, 128.43, 128.18, 127.83, 127.59, 126.62, 125.33, 123.91, 123.63 (q, *J* = 3.6 Hz), 121.08 (d, *J* = 274.0 Hz), 68.48, 44.90, 40.24, 30.65. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.96 (s, 3F). HRMS (ESI) *m/z* calculated C₂₄H₁₉BrF₃NNaO₂ [M+Na]⁺ 512.0449, found 512.0451.

(26) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triflosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-(thiophen-2-yl)but-3-en-2-one (85.7 mg, 0.2 mmol) and propyl aziridine-1-carboxylate 2 (70.9 mg, 0.4 mmol) afforded 26 (59.5 mg, 81% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.41-7.30 (m, 5H), 7.20-7.19 (m, 1H), 6.95-6.93 (m, 1H), 6.81 (d, *J* = 3.5 Hz, 1H), 6.11 (d, *J* = 3.5 Hz, 1H), 5.20 (s, 2H), 3.93-3.86 (m, 1H),

3.82-3.76 (m, 1H), 3.63-3.58 (m, 1H), 2.23-2.16 (m, 1H), 1.97-1.90 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 153.96, 145.80, 135.50, 131.47 (q, *J* = 35.0 Hz), 128.53, 128.48, 128.41, 127.01, 124.44, 124.32, 122.85 (q, *J* = 3.5 Hz), 121.00 (q, *J* = 274.2 Hz), 68.48, 43.56, 34.22, 32.45. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.88 (s, 3F). HRMS (ESI) *m*/*z* calculated C₁₈H₁₆F₃NNaO₂S [M+Na]⁺ 390.0746, found 390.0741.

(27) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-(furan-2-yl)but-3-en-2-one (82.5 mg, 0.2 mmol) and propyl aziridine-1-carboxylate 2 (70.9 mg, 0.4 mmol) afforded 27 (51.3 mg, 73% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.31 (m, 6H), 6.29 (dd, *J* = 3.1, 1.9 Hz, 1H), 6.09 (d, *J* = 3.5 Hz, 1H), 6.02 (d, *J* = 3.1 Hz, 1H), 5.22-5.17 (m, 2H), 3.85-3.78 (m, 1H), 3.71-3.67 (m, 1H), 3.54-3.50 (m, 1H), 2.14-2.07 (m, 1H), 2.03-1.97 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.73, 153.94, 141.99, 135.48, 132.04 (q, *J* = 35.5 Hz), 128.51, 128.47, 128.39, 120.96 (q, *J* = 274.0 Hz), 120.77 (q, *J* = 4.5 Hz), 110.26, 105.77, 68.45, 43.48, 32.70, 28.51. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.98 (s, 3F). HRMS (ESI) *m/z* calculated C₁₈H₁₆F₃NNaO₃ [M+Na]⁺ 374.0974, found 374.0973.

(28) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-4-(5-bromofuran-2-yl)-1,1,1-trifluorobut-3-en-2-one (98.2 mg, 0.2 mmol) and propyl aziridine-1-carboxylate 2 (70.9 mg, 0.4 mmol) afforded 29 (74.8 mg, 87% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.40-7.33 (m, 5H), 6.22 (d, *J* = 3.3 Hz, 1H), 6.05 (d, *J* = 3.5 Hz, 1H), 6.02 (d, *J* = 3.5 Hz, 1H), 5.22-5.17 (m, 2H), 3.84-3.79 (m, 1H), 3.69-3.64 (m, 1H), 3.54-3.49 (m, 1H), 2.15-2.08 (m, 1H), 2.03-1.96 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 156.67, 153.83, 135.41, 132.56 (q, *J* = 35.0 Hz), 128.53, 128.50, 128.44, 121.00, 120.87 (q, *J* = 274.2 Hz), 119.66 (q, *J* = 3.8 Hz), 111.94, 108.71, 68.53, 43.32, 32.79, 28.35. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.94 (s, 3F). HRMS (ESI) *m*/z calculated C₁₈H₁₅BrF₃NNaO₃ [M+Na]⁺ 452.0080, found 452.0078.

(29) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-4-(benzo[*b*]thiophen-3-yl)-1,1,1-trifluorobut-3-en-2-one (95.7 mg, 0.2 mmol) and propyl aziridine-1-carboxylate 2 (70.9 mg, 0.4 mmol) afforded 28 (56.8 mg, 68% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.90-7.86 (m, 1H), 7.73-7.70 (m, 1H), 7.41-7.33 (m, 7H), 7.06 (s, 1H), 6.19 (d, *J* = 3.5 Hz, 1H), 5.26-5.20 (m, 2H), 4.05-3.99 (m, 1H), 3.87-3.82 (m, 1H), 3.57-3.51 (m, 1H), 2.27-2.21 (m, 1H), 1.98-1.92 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.07, 140.88, 137.23, 136.92, 135.54, 132.36 (q, *J* = 35.1 Hz), 128.56, 128.50, 128.44, 124.69, 124.29, 123.26, 122.99, 122.52 (d, *J* = 3.8 Hz), 121.26, 121.08 (d, *J* = 274.0 Hz), 68.49, 43.57, 33.04, 29.75. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.77 (s, 3F). HRMS (ESI) *m/z* calculated C₂₄H₂₀F₃NNaO₂ [M+Na]⁺ 434.1338, found 434.1333.

(30) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-4-(2-chloroquinolin-3-yl)-1,1,1-trifluorobut-3-en-2-one (101.6 mg, 0.2 mmol) and propyl aziridine-1-carboxylate 2 (70.9 mg, 0.4 mmol) afforded 30 (78.6 mg, 88% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 8.5 Hz, 1H), 7.84 (s, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.75-7.70 (m, 1H), 7.59-7.55 (m, 1H), 7.45-7.29 (m, 5H), 6.11 (d, *J* = 3.5 Hz, 1H), 5.26-5.21 (m, 2H), 4.22-4.16 (m, 1H), 3.76-3.70 (m, 2H), 2.47-2.40 (m, 1H), 1.84-1.77 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 153.91, 150.25, 146.71, 136.63, 135.41, 134.23, 133.87 (q, *J* = 35.0 Hz), 130.54, 128.58, 128.51, 128.27, 127.50, 127.41, 127.18, 121.47 (q, *J* = 4.0 Hz), 120.96 (q, *J* = 274.0 Hz), 68.60, 43.85, 36.12, 30.22. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.86 (s, 3F). HRMS (ESI) *m/z* calculated C₂₃H₁₈ClF₃N₂NaO₂ [M+Na]⁺ 469.0901, found 469.0893.

(31) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoronon-3-en-2-one (83.3 mg, 0.2 mmol) and propyl aziridine-1-carboxylate **2** (70.9 mg, 0.4 mmol) afforded **31** (54.7 mg, 77% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.40-7.29 (m, 5H), 5.95 (d, *J* = 3.5 Hz, 1H), 5.17 (s, 2H), 3.77-3.72 (m, 1H), 3.48-3.38 (m, 1H), 2.37-2.22 (m, 1H), 1.99-1.83 (m, 1H), 1.53-1.45 (m, 1H), 1.45-1.37 (m, 1H), 1.36-1.22 (m, 7H), 0.89 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 154.19, 135.73, 130.40 (q, *J* = 35.0 Hz), 128.46, 128.37, 128.38, 126.37 (q, *J* = 4.0 Hz), 121.15 (q, *J* = 274.0 Hz), 68.19, 44.55, 34.89, 33.44, 31.75, 29.36, 26.51, 22.52, 14.01. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.96 (s, 3F). HRMS (ESI) *m/z* calculated C₁₉H₂₄F₃NNaO₂ [M+Na]⁺ 378.1651, found 378.1641.

(32) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-6-phenylhex-3-en-2-one (90.1 mg, 0.2 mmol) and propyl aziridine-1-carboxylate 2 (70.9 mg, 0.4 mmol) afforded 32 (61.5 mg, 79% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.30 (m, 5H), 7.30-7.24 (m, 2H), 7.21-7.15 (m, 3H), 5.96 (d, *J* = 3.5 Hz, 1H), 5.20-5.16 (m, 2H), 3.83-3.78 (m, 1H), 3.45-3.39 (m, 1H), 2.72-2.61 (m, 2H), 2.37-2.29 (m, 1H), 1.98-1.95 (m, 1H), 1.81-1.76 (m, 1H), 1.69-1.61 (m, 1H), 1.60-1.53 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 154.14, 141.27, 135.67, 130.79 (q, *J* = 35.0 Hz), 128.54, 128.50, 128.42, 128.33, 126.13, 125.74 (q, *J* = 4.0 Hz), 121.09 (q, *J* = 274.0 Hz), 68.27, 44.54, 36.49, 33.01, 32.80, 29.24. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.96 (s, 3F). HRMS (ESI) *m/z* calculated C₂₂H₂₂F₃NNaO₂ [M+Na]⁺ 412.1534, found 412.1538.

(33) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-5,5,5-trifluoro-4-oxopent-2-en-1-yl benzoate (96.1 mg, 0.2 mmol) and propyl aziridine-1-carboxylate 2 (70.9 mg, 0.4 mmol) afforded 33 (67.1 mg, 80% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 8.04-7.98 (m, 2H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.38-7.30 (m, 5H), 6.04 (d, *J* = 3.5 Hz, 1H), 5.21-5.15 (m, 2H), 4.32-4.23 (m, 2H), 3.75-7.71 (m, 1H), 3.65-3.60 (m, 1H), 2.89-2.82 (m, 1H), 2.05-1.99 (m, 1H), 1.78-1.72 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 166.29, 153.94, 135.44, 133.28, 132.91 (q, *J* = 35.0 Hz),

129.71, 129.59, 128.52, 128.46, 128.40, 121.31 (q, J = 4.5 Hz), 120.85 (q, J = 274.0 Hz), 68.48, 66.51, 44.00, 33.11, 26.49. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.16 (s, 3F). HRMS (ESI) m/z calculated C₂₂H₂₀F₃NNaO₄ [M+Na]⁺ 442.1237, found 442.1235.

(34) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from ethyl (2*E*,4*E*)-7,7,7-trifluoro-3-methyl-6-oxohepta-2,4-dienoate (91.7 mg, 0.2 mmol) and propyl aziridine-1-carboxylate 2 (70.9 mg, 0.4 mmol) afforded 35 (69.9 mg, 88% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.36-7.33 (m, 5H), 5.87 (d, *J* = 3.5 Hz, 1H), 5.61 (s, 1H), 5.21-5.16 (m, 2H), 4.15 (q, *J* = 7.0 Hz, 2H), 3.75-3.72 (m, 1H), 3.56-3.47 (m, 1H), 3.07-7.01 (m, 1H), 2.12 (s, 3H), 2.03-1.93 (m, 1H), 1.72-1.68 (m, 1H), 1.28 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 166.26, 158.08, 153.90, 135.46, 133.02 (q, *J* = 35.0 Hz), 128.52, 128.44, 128.41, 121.78 (q, *J* = 4.0 Hz), 120.71 (q, *J* = 274.5 Hz, 2H), 117.70, 68.47, 59.94, 44.02, 42.87, 28.23, 17.46, 14.27. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.11 (s, 3F). HRMS (ESI) *m/z* calculated C₂₀H₂₂F₃NNaO₄ [M+Na]⁺ 420.1433, found 420.1439.

(35) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (3E,5E)-1,1,1-trifluoro-6-phenylhexa-3,5-dien-2-one (89.7 mg, 0.2 mmol) and propyl aziridine-1-carboxylate **2** (70.9 mg, 0.4 mmol) afforded **36** (69.7 mg, 90% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.39-7.28 (m, 9H), 7.25-7.21 (m, 1H), 6.40 (d, *J* = 16.0 Hz, 1H), 6.07 (dd, *J* = 16.0 Hz, 7.5 Hz, 1H), 5.99 (d, *J* = 3.5 Hz, 1H), 5.22-5.17 (m, 2H), 3.72-3.68 (m, 1H), 3.66-.61 (m, 1H), 3.23-3.16 (m, 1H), 2.07-2.01 (m, 1H), 1.78-1.72 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.08, 136.65, 135.56, 131.40 (q, *J* = 34.5 Hz), 131.38, 130.07, 128.64, 128.52, 128.48, 128.38, 127.72, 126.25, 123.38 (q, *J* = 4.0 Hz), 121.04 (q, *J* = 274.0 Hz), 68.41, 43.77, 36.51, 29.59 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.86 (s, 3F). HRMS (ESI) *m/z* calculated C₂₂H₂₀F₃NNaO₂ [M+Na]⁺ 410.1338, found 410.1329.

(36) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triflosylhydrazone derived from (3E,5E,7E)-1,1,1-trifluoro-8-phenylocta-3,5,7-trien-2-one (94.9 mg, 0.2 mmol) and propyl aziridine-1-carboxylate **2** (70.9 mg, 0.4 mmol) afforded **37** (69.4 mg, 84% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.39-7.28 (m, 9H), 7.24-7.21 (m, 1H), 6.72 (dd, J = 15.7, 10.4 Hz, 1H), 6.52 (d, J = 15.7 Hz, 1H), 6.20 (dd, J = 15.2, 10.4 Hz, 1H), 5.95 (d, J = 3.5 Hz, 1H), 5.68 (dd, J = 15.2, 7.5 Hz, 1H), 5.19 (s, 2H), 3.64 (t, J = 5.4 Hz, 2H), 3.16-3.08 (m, 1H), 2.04-1.97 (m, 1H), 1.73-1.66 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 153.03, 136.06, 134.54, 133.07, 131.44, 130.72, 130.29 (q, J = 35.0 Hz), 127.62, 127.48, 127.43, 127.34, 127.09, 126.61, 125.32, 122.21 (q, J = 4.0 Hz), 120.00 (d, J = 274.0 Hz), 67.35, 42.67, 35.22, 28.52. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.87 (s, 3F). HRMS (ESI) *m/z* calculated C₂₄H₂₂F₃NNaO₂ [M+Na]⁺ 436.1495, found 436.1499.

(37) Prepared according to **General Procedure A** using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-6-phenylhex-3-en-5-yn-2-one (89.3mg, 0.2 mmol) and propyl aziridine-1-carboxylate **2** (70.9 mg, 0.4 mmol) afforded **38** (54.7 mg, 71% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.40-7.32 (m, 7H), 7.31-7.27 (m, 3H), 6.04 (d, *J* = 3.5 Hz, 1H), 5.23-5.15 (m, 2H), 3.85-3.80 (m, 1H), 3.68-3.63 (m, 1H), 3.53-3.48 (s, 1H), 2.13-2.02 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 153.84, 135.42, 131.67, 131.22 (q, *J* = 35.0 Hz), 128.53, 128.43, 128.31, 122.77, 120.89 (q, *J* = 274.0 Hz), 120.57 (q, *J* = 4.0 Hz), 88.20, 82.43, 68.53, 43.66, 29.93, 26.01. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.02 (s, 3F). HRMS (ESI) *m/z* calculated C₂₂H₁₈F₃NNaO₂ [M+Na]⁺ 408.1182, found 408.1184.

(38) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-phenylbut-3-en-2-one (85.0 mg, 0.2 mmol) and aziridine (51.7 mg, 0.4 mmol) afforded 42 (59.5 mg, 95% yield) as a colorless oil. ¹H NMR

(500 MHz, CDCl₃) δ 7.33 (t, J = 7.5 Hz, 2H), 7.28-7.24 (m, 1H), 7.16 (d, J = 7.5 Hz, 2H), 6.07 (d, J = 3.5 Hz, 1H), 4.14 (t, J = 7.0 Hz, 2H), 3.82-3.78 (m, 1H), 3.66-3.55 (m, 2H), 2.24-2.18 (m, 1H), 1.88-1.79 (m, 1H), 1.76-1.66 (m, 2H), 0.97 (t, J = 7.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 154.50, 142.78, 132.10 (q, J = 34.7 Hz), 128.88, 127.47, 127.09, 123.62 (q, J = 4.0 Hz), 121.18 (q, J = 272.5 Hz), 68.40, 44.12, 39.52, 32.54, 21.97, 10.23. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.03 (s, 3F). HRMS (ESI) *m*/*z* calculated C₁₆H₁₈F₃NNaO₂ [M+Na]⁺ 336.1183, found 336.1182.

(39) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-phenylbut-3-en-2-one (85.0 mg, 0.2 mmol) and aziridine (57.3 mg, 0.4 mmol) afforded 43 (46.5 mg, 71% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.34 (t, *J* = 7.5 Hz, 2H), 7.26 (t, *J* = 7.5 Hz, 1H), 7.17 (d, *J* = 7.5 Hz, 2H), 6.09 (d, *J* = 3.5 Hz, 1H), 4.02-3.93 (m, 2H), 3.84-3.80 (m, 1H), 3.68-3.55 (m, 2H), 2.26-2.17 (m, 1H), 2.04-1.96 (m 1H), 1.97-1.80 (m, 1H), 0.96 (d, *J* = 6.5 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 154.56, 142.75, 132.19 (q, *J* = 35.0 Hz), 128.88, 127.45, 127.09, 123.83 (q, *J* = 4.0 Hz), 121.14 (q, *J* = 272.0 Hz), 72.95, 44.29, 39.55, 32.59, 27.80, 18.97, 18.96. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.07 (s, 3F). HRMS (ESI) *m/z* calculated C₁₇H₂₀F₃NNaO₂ [M+Na]⁺ 350.1344, found 350.1338.

(40) Prepared according to **General Procedure A** using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-phenylbut-3-en-2-one (85.0 mg, 0.2 mmol) and aziridine (51.7 mg, 0.4 mmol) afforded 44 (60.8 mg, 97% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.33 (t, *J* = 7.5 Hz, 2H), 7.26 (t, *J* = 7.5 Hz, 1H), 7.17 (d, *J* = 7.5 Hz, 2H), 6.05 (d, *J* = 3.5 Hz, 1H), 5.05-4.96 (m, 1H), 3.81-3.74 (m, 1H), 3.66-3.54 (m, 2H), 2.24-2.16 (m, 1H), 1.86-1.77 (m 1H), 1.30 (d, *J* = 6.0 Hz, 3H), 1.29 (d, *J* = 6.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 153.99, 142.88, 132.17 (q, *J* = 35.0 Hz), 128.87, 127.47, 127.06, 123.33 (q, *J* = 3.6 Hz), 121.22 (q, *J* = 274.0 Hz), 70.65, 43.90, 39.49, 32.53, 21.74, 21.67. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.70 (s, 3F). HRMS (ESI) *m/z* calculated C₁₆H₁₈F₃NNaO₂ [M+Na]⁺ 336.1183, found 336.1182.

(41) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-phenylbut-3-en-2-one (85.0 mg, 0.2 mmol) and aziridine (62.1 mg, 0.4 mmol) afforded 45 (60.8 mg, 97% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.33 (t, *J* = 7.5 Hz, 2H), 7.26 (t, *J* = 7.5 Hz, 1H), 7.16 (d, *J* = 7.5 Hz, 2H), 6.05 (d, *J* = 3.5 Hz, 1H), 5.24-5.16 (m, 1H), 3.79-3.75 (m, 1H), 3.67-3.61 (m, 1H), 3.60-3.51 (m, 1H), 2.24-2.15 (m, 1H), 1.93-1.70 (m, 7H), 1.66-1.53 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 154.27, 142.83, 132.13 (q, *J* = 34.8 Hz), 128.85, 127.44, 127.04, 123.44 (q, *J* = 4.0 Hz), 121.16 (q, *J* = 274.0 Hz), 79.91, 44.01, 39.47, 32.59, 32.52, 32.49, 23.60. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.85 (s, 3F). HRMS (ESI) *m/z* calculated C₁₈H₂₀F₃NNaO₂ [M+Na]⁺ 362.1338, found 362.1319.

(42) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-phenylbut-3-en-2-one (85.0 mg, 0.2 mmol) and aziridine (87.4 mg, 0.4 mmol) afforded 46 (66.8 mg, 83% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.33 (t, *J* = 7.5 Hz, 2H), 7.26 (t, *J* = 7.5 Hz, 1H), 7.20-7.06 (m, 2H), 6.20 (d, *J* = 3.5 Hz, 1H), 4.89 (d, *J* = 12.0 Hz, 1H), 4.82 (d, *J* = 12.0 Hz, 1H), 3.95-3.91 (m, 1H), 3.70-3.61 (m, 2H), 2.30-2.24 (m, 1H), 1.92-1.85 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 152.53, 142.23, 131.61 (q, *J* = 35.0 Hz), 128.99, 127.45, 127.27, 125.51 (q, *J* = 3.5 Hz), 120.88 (q, *J* = 274.0 Hz), 94.93, 75.48, 45.03, 39.55, 32.68. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.06 (s, 3F). HRMS (ESI) *m/z* calculated C₁₅H₁₃Cl₃F₃NNaO₂ [M+Na]⁺ 423.9856, found 423.9851.

(43) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-phenylbut-3-en-2-one (85.0 mg, 0.2 mmol) and aziridine (59.8 mg, 0.4 mmol) afforded 47 (62.1 mg, 93% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.33 (t, *J* = 7.5 Hz, 2H), 7.26 (t, *J* = 7.5 Hz, 1H), 7.17 (d, *J* = 7.5 Hz, 2H), 6.12 (d, *J* = 3.5 Hz, 1H), 4.47-4.39 (m, 2H), 3.86-3.81 (m, 1H), 3.72 (t, *J* = 6.0, 2H), 3.67-3.63 (m, 1H), 3.62-3.57 (m, 1H), 2.27-2.21(m, 1H), 1.89-1.75 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ

153.65, 142.51, 131.67 (q, J = 35.0 Hz), 128.93, 127.47, 127.17, 124.41 (q, J = 4.2 Hz), 121.06 (q, J = 274.0 Hz), 65.92, 44.40, 41.28, 39.50, 32.50. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.07 (s, 3F). HRMS (ESI) *m/z* calculated C₁₅H₁₅ClF₃NNaO₂ [M+Na]⁺ 356.0636, found 356.0629.

(44) Prepared according to **General Procedure A** using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-phenylbut-3-en-2-one (85.0 mg, 0.2 mmol) and aziridine (65.4 mg, 0.4 mmol) afforded 48 (61.9 mg, 89% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.34 (t, *J* = 7.5 Hz, 2H), 7.26 (t, *J* = 6.0 Hz, 1H), 7.16 (d, *J* = 7.0 Hz, 2H), 6.09 (d, *J* = 3.5 Hz, 1H), 4.35 (t, *J* = 6.0 Hz, 2H), 3.84-3.80 (m, 1H), 3.68-3.61 (m, 3H), 3.61-3.54 (m, 1H), 2.27-2.21 (m, 1H), 2.18-2.10 (m, 2H), 1.88-1.79 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.11, 142.58, 131.73 (q, *J* = 35.0 Hz), 128.93, 127.45, 127.16, 124.18 (q, *J* = 4.0 Hz), 121.15 (q, *J* = 274.0 Hz), 63.54, 44.25, 41.08, 39.51, 32.49, 31.61. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.99 (s, 3F). HRMS (ESI) *m/z* calculated C₁₆H₁₇ClF₃NNaO₂ [M+Na]⁺ 370.0792, found 370.0789.

(45) Prepared according to **General Procedure A** using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-phenylbut-3-en-2-one (85.0 mg, 0.2 mmol) and aziridine (50.8 mg, 0.4 mmol) afforded 49 (56.0 mg, 90% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.33 (t, *J* = 7.5 Hz, 2H), 7.26 (t, *J* = 7.5 Hz, 1H), 7.17 (d, *J* = 7.5 Hz, 2H), 6.09 (d, *J* = 3.5 Hz, 1H), 6.00-5.92 (m, 1H), 5.37-5.33 (m, 1H), 5.28-5.25 (m, 1H), 4.69 (d, *J* = 6.0 Hz, 2H), 3.83-3.79 (m, 1H), 3.67-3.54 (m, 2H), 2.25-2.19 (m, 1H), 1.89-1.75 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.01, 142.68, 131.98, 131.95 (q, *J* = 34.5 Hz), 128.90, 127.48, 127.12, 123.88 (q, *J* = 3.8 Hz), 121.13 (q, *J* = 273.6 Hz), 118.55, 67.32, 44.21, 39.49, 32.54. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.01 (s, 3F). HRMS (ESI) *m*/*z* calculated C₁₆H₁₆F₃NNaO₂ [M+Na]⁺ 334.1035, found 334.1025.

2.2 Mild functionalization of biomolecules

(46) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-phenylbut-3-en-2-one (85.0 mg, 0.2 mmol) and aziridine (95.7 mg, 0.4 mmol) afforded 46 (62.7 mg, 74% yield) major:minor = 3:1, as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.39-7.33 (m, major, 4H, minor, 4H), 7.31-7.26 (m, major, 1H, minor, 1H), 6.02 (s, minor,1H), 5.99 (s, major, 1H), 4.72-4.69 (m, minor,1H), 4.68-4.62 (m, major, 1H), 4.32-4.28 (m, major, 1H), 4.19-4.15 (m, minor, 1H), 3.39-3.34 (m, minor, 1H), 3.28-3.23 (m, major, 1H), 2.19-2.16 (m, minor, 2H), 2.18-2.13 (m, major, 2H), 2.08-2.01 (m, major, 1H, minor, 1H), 2.00-1.84 (m, major, 2H, minor, 2H), 1.71-1.64 (m, major, 2H, minor, 2H), 1.48-1.40 (m, major, 2H), 1.08-1.00 (m, major, 2H, minor, 2H), 0.93-0.90 (m, minor, 7H), 0.88-0.84 (m, major, 7H), 0.79-0.77 (m, major, 3H), 0.76-0.74 (m, minor, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 153.68, 144.66, 128.66, 127.86, 124.82, 124.69, 123.96, 123.94, 70.50, 46.88, 43.51, 43.41, 40.94, 40.47, 40.44, 34.17, 34.12, 31.44, 31.38, 26.78, 26.00, 23.79, 23.19, 21.98, 20.86, 20.67, 16.70, 16.13. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.03 (s, major, 3F), -62.13 (s, minor, 3F). HRMS (ESI) *m/z* calculated C₂₃H₃₀F₃NNaO₂ [M+Na]⁺ 432.2121, found 432.2129.

(47) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-phenylbut-3-en-2-one (85.0 mg, 0.2 mmol) and aziridine (88.5 mg, 0.4 mmol) afforded 47 (72.2 mg, 89% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.34-7.31 (m, 2H), 7.27-7.23 (m, 1H), 7.16 (d, *J* = 7.5 Hz, 2H), 6.00 (d, *J* = 3.5 Hz, 1H), 3.71-3.66 (m, 1H), 3.63-3.60 (m, 1H), 3.57-3.52 (m, 1H), 2.20-2.14 (m, 10H), 1.84-1.78 (m, 1H), 1.71-1.62 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) ¹³C NMR (150 MHz, CDCl₃) δ 152.97, 143.08, 132.51 (q, *J* = 34.5 Hz), 128.84, 127.51, 127.00, 122.86 (q, *J* = 3.5 Hz), 121.29 (q, *J* = 274.0 Hz), 82.34, 43.72, 41.19, 39.45, 36.16, 32.53, 30.96. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.19 (s, 3F). HRMS (ESI) *m/z* calculated C₂₃H₂₆F₃NNaO₂ [M+Na]⁺ 428.5116, found 428.5118.

Prepared according to General Procedure A using trifluoromethyl vinyl (48) N-triftosylhydrazone derived from (E)-1,1,1-trifluoro-4-phenylbut-3-en-2-one (85.0 mg, 0.2 mmol) and aziridine (182.3 mg, 0.4 mmol) afforded 48 (92.1 mg, 72% yield) as a green oil. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.33 \text{ (t, } J = 7.5 \text{ Hz}, 2\text{H}), 7.26 \text{ (t, } J = 7.5 \text{ Hz}, 1\text{H}), 7.17 \text{ (d, } J = 7.5 \text{ Hz}, 2\text{H}),$ 6.05 (d, J = 3.5 Hz, 1H), 5.41-5.37 (m, 1H), 4.65-4.57 (m, 1H), 3.82-3.75 (m, 1H), 3.66-3.57 (m, 2H), 2.47-2.34 (m, 2H), 2.24-2.16 (m, 1H), 2.07-1.92 (m, 3H), 1.91-1.78 (m, 3H), 1.72-1.62 (m, 1H), 1.62-1.43 (m, 6H), 1.41-1.30 (m, 3H), 1.30-1.22 (m, 1H), 1.21-1.09 (m, 6H), 1.04-0.93 (m, 7H), 0.92 (d, J = 6.5 Hz, 3H), 0.88-0.86 (m, 6H), 0.68 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 153.84, 142.87, 139.60, 132.11 (q, J = 35.0 Hz), 128.88, 127.50, 127.07, 123.35 (q, J = 3.5 Hz), 122.76, 121.22 (q, J = 274.0 Hz), 56.72, 56.16, 50.03, 43.90, 42.34, 39.76, 39.54, 39.47, 38.05, 37.98, 36.96, 36.60, 36.21, 35.83, 32.52, 31.94, 31.88, 28.27, 28.04, 27.70, 27.62, 24.31, 23.87, 22.85, 22.59, 21.08, 19.35, 18.74, 11.89. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.55 (s, 3F). HRMS (ESI) calculated C40H56F3NNaO2 $[M+Na]^+$ m/z662.4155, found 662.4150.

2.3 Late-stage modification of molecules containing an aldehyde moiety

(49) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from cyclamen aldehyde (100.8 mg, 0.2 mmol) and aziridine 2 (70.9 mg, 0.4 mmol) afforded 49 (65.0 mg, 73% yield), major : minor = 1:1 as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.37-7.31 (m, 10H), 7.14 (d, *J* = 8.0 Hz, 4H), 7.05 (d, *J* = 8.0 Hz, 4H), 6.02 (d, *J* = 3.5 Hz, 1H), 5.91 (d, *J* = 3.5 Hz, 1H), 5.21 (d, *J* = 12.0 Hz, 2H), 5.18-5.15 (m, 2H), 4.03-3.97 (m, 2H), 3.26-3.20 (m, 2H), 2.93-2.84 (m, 2H), 2.67-2.63 (m, 1H), 2.59-2.55 (m, 1H), 2.47-2.43 (m, 1H), 2.41-2.36 (m, 3H), 1.99-1.96 (m, 1H), 1.91-1.79 (m, 3H), 1.71-1.62 (m, 2H), 1.24 (d, *J* = 7.0 Hz, 12H), 0.85-0.81 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 154.27, 146.71, 146.66, 137.65, 137.63, 135.79, 135.77, 132.05 (q, *J* = 34.0 Hz), 131.80 (q, *J* = 34.0 Hz), 128.92, 128.78, 128.47, 128.33, 128.30, 128.27, 128.26, 126.55 (q, *J* = 3.5 Hz), 126.46, 126.43, 124.47 (q, *J* = 4.0 Hz), 121.07 (d, *J* = 274.0 Hz), 121.05 (d, *J* = 274.0 Hz), 68.17, 68.14, 45.51, 45,49, 40.08,

39.93, 38.86, 38.39, 37.98, 37.15, 33.70, 27.40, 24.44, 24.05, 16.24, 15.57. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.10 (s, 3F), -62.22 (s, 3F). HRMS (ESI) *m/z* calculated C₂₆H₃₀F₃NNaO₂ [M+Na]⁺ 468.2121, found 468.2114.

(50) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from Veratraldehyde (96.5 mg, 0.2 mmol) and aziridine 2 (70.9 mg, 0.4 mmol) afforded 50 (66.6 mg, 79% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.40-7.33 (m, 5H), 6.81 (d, *J* = 8.0 Hz, 1H), 6.67 (dd, *J* = 8.0 Hz, 2.0 Hz 1H), 6.64 (d, *J* = 2.0 Hz, 1H), 6.07 (d, *J* = 3.5 Hz, 1H), 5.22 (ABq, *J* = 12.0 Hz, 2H), 3.86 (s, 3H), 3.83 (s, 3H), 3.81-3.76 (m, 1H), 3.63-3.57 (m, 2H), 2.21-2.15 (m, 1H), 1.84-1.78 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.17, 149.23, 148.13, 135.60, 135.19, 131.75 (q, *J* = 35.0 Hz), 128.53, 128.45, 128.39, 124.21 (q, *J* = 4.0 Hz), 121.11 (q, *J* = 274.0 Hz), 119.47, 111.38, 110.64, 68.38, 55.97, 55.89, 44.30, 39.00, 32.64. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.92 (s, 3F). HRMS (ESI) *m/z* calculated C₂₂H₂₂F₃NNaO4 [M+Na]⁺ 444.4701, found 444.4705.

(51) Prepared according to General Procedure A using trifluoromethyl vinyl *N*-triftosylhydrazone derived from Vanillin acetate (102.1 mg, 0.2 mmol) and aziridine 2 (70.9 mg, 0.4 mmol) afforded 51 (71.9 mg, 80% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.43-7.28 (m, 5H), 6.96 (d, *J* = 8.5 Hz, 1H), 6.72-6.67 (m, 2H), 6.06 (d, *J* = 3.5 Hz, 1H), 5.21 (ABq, *J* = 12.0 Hz, 2H), 3.83-3.78 (m, 1H), 3.77 (s, 3H), 3.63-3.56 (m, 2H), 2.30 (s, 3H), 2.22-2.16 (m, 1H), 1.86-1.79 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 169.11, 154.11, 151.27, 141.50, 138.74, 135.55, 132.13 (q, *J* = 35.0 Hz), 128.54, 128.46, 128.42, 123.66 (q, *J* = 4.0 Hz), 123.05, 121.04 (q, *J* = 274.0 Hz), 119.63, 111.57, 68.43, 55.86, 44.33, 39.33, 32.48, 20.67. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.00 (s, 3F). HRMS (ESI) *m/z* calculated C₂₃H₂₂F₃NNaO₅ [M+Na]⁺ 472.1478, found 472.1478.

2.4 Gram-scale experiments

An oven-dried screwcap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with trifluoromethyl vinyl *N*-triftosylhydrazone (1.93 g, 5.0 mmol), NaH (400.0 mg, 60 wt% dispersion in mineral oil, 0.6 mmol, 2.0 equiv) and dry CH_2Cl_2 (50.0 mL) inside a glove box under nitrogen atmosphere. Then $Rh_2(esp)_2$ (75.6 mg, 2 mol%) and aziridine (10.0 mmol, 2.0 equiv) were added. The tube was sealed and stirred at 60 °C for 12 h, after which time the reaction mixture was cooled to room temperature and filtered through a short pad of silica gel using ethyl acetate (EA) as an eluent. The volatiles was removed from the collected filtrate under reduced pressure, and the resulting residue was purified via flash chromatography on silica gel (using petroleum ether / EtOAc as eluent) to obtain **3** (1.55 g, 86% yield) as a colorless oil.

An oven-dried screwcap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with trifluoromethyl vinyl *N*-triftosylhydrazone (1.93 g, 5.0 mmol), NaH (400.0 mg, 60 wt% dispersion in mineral oil, 0.6 mmol, 2.0 equiv) and dry CH_2Cl_2 (50.0 mL) inside a glove box with nitrogen atmosphere. Then $Rh_2(esp)_2$ (75.6 mg, 2 mol%) and aziridine (10.0 mmol, 2.0 equiv) were added. The tube was sealed and stirred at 60 °C for 12 h, after which time the reaction mixture was cooled to room temperature and filtered through a short pad of silica gel using ethyl acetate (EA) as an eluent. The volatiles was removed from the collected filtrate under reduced pressure, and the resulting residue was purified via flash chromatography on silica gel (using petroleum ether / EtOAc as eluent) to obtain **53** (1.50 g, 92% yield) as a colorless oil.

(53) Prepared according to the above-mentioned procedure using trifluoromethyl vinyl *N*-triftosylhydrazone derived from (*E*)-1,1,1-trifluoro-4-phenylbut-3-en-2-one (1.93 g, 5 mmol) and aziridine 52 (1.43g, 10.0 mmol) afforded 53 (1.50 g, 92% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.32 (m, 2H), 7.27-7.24 (m, 1H), 7.17 (d, *J* = 7.5 Hz, 2H), 6.01 (d, *J* = 3.5 Hz, 1H), 3.73-3.68 (m, 1H), 3.65-3.60 (m, 1H), 3.59-3.54 (m, 1H), 2.23-2.16 (m, 1H), 1.86-1.78 (m, 1H), 1.51 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 153.44, 143.06, 132.49 (q, *J* = 34.5 Hz), 128.86, 127.50, 127.02, 122.88 (q, *J* = 3.6 Hz), 121.29 (q, *J* = 274.0 Hz), 82.37, 43.72, 39.45,

32.57, 28.00. ¹⁹F NMR (565 MHz, CDCl₃) δ -61.37 (s, 3F). HRMS (ESI) *m/z* calculated C₁₇H₂₀F₃NNaO₂ [M+Na]⁺ 350.1520, found 350.1514.

2.5 Synthetic applications

54 were prepared according to the literature procedure¹. To a stirred solution of 53 (1.6g, 4.9 mmol, 1.0 equiv) in toluene (10 mL) was added silica gel (49.0 mmol, 10.0 equiv) and the mixture was stirred at 125 °C for 12 h. After completion, the reaction mixture was cooled to room temperature, and the solvent was evaporated under reduced pressure. The resulting crude was purified by flash column chromatography on silica gel (PE/Et₂O) to obtain 54 (1.0g, 95%) as a colorless oil.

(54) Prepared according to the above-mentioned procedure. ¹H NMR (500 MHz, CDCl₃) δ 7.35 (t, J = 7.5 Hz, 2H), 7.28-7.24 (m, 1H), 7.19 (d, J = 7.5 Hz, 2H), 4.14-4.08 (m, 1H), 3.86-3.72 (m, 1H), 2.98-2.90 (m, 1H), 2.75-2.70 (m, 1H), 2.40-2.29 (m, 1H), 2.01-1.96 (m, 1H), 1.81-1.72 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 158.60 (q, J = 33.5 Hz), 143.75, 128.87, 127.02, 126.60, 119.70 (q, J = 278.0 Hz), 50.07, 35.83, 31.34, 28.60. ¹⁹F NMR (565 MHz, CDCl₃) δ -74.61 (s, 3F). HRMS (ESI) m/z calculated C₁₂H₁₂F₃NNa [M+Na]⁺ 250.4122, found 250.4125.

55 were prepared according to the literature procedure². To a 25 mL round-bottomed flask with a magnetic stirrer bar containing imine **54** (45.4 mg, 0.2 mmol, 1.0 equiv) in methanol (2.0 mL) were added sodium cyanide borohydride (25.1 mg, 0.4 mmol, 2.0 equiv) and glacial acetic acid at 0 °C. The reaction mixture was stirred at room temperature for 8-10 hours and quenched with saturated NaHCO₃ solution (10 mL). Then the mixture was extracted by DCM (20 mL × 3), dried over anhydrous Na₂SO₄, and evaporated under reduced pressure. The residue was purified by flash column chromatography to afford **55** (34.4 mg, 75%) as a yellow oil.

(55) Prepared according to the above-mentioned procedure. ¹H NMR (500 MHz, CDCl₃) δ 7.39-7.26 (m, 2H), 7.26-7.19 (m, 3H), 3.34-3.24 (m, 2H), 2.86-2.78 (m, 1H), 2.70-2.62 (m, 1H), 2.08-2.02 (m, 1H), 1.89-1.78 (m, 2H), 1.74-1.61 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 145.08, 128.65, 126.75, 126.65, 125.66 (q, *J* = 279.0 Hz), 58.45 (q, *J* = 28.6 Hz), 46.20, 41.62, 33.16, 32.40. ¹⁹F NMR (565 MHz, CDCl₃) δ -77.73 (d, *J* = 6.5 Hz, 3F). HRMS (ESI) *m/z* calculated C₁₂H₁₄F₃NNa [M+Na]⁺ 252.4278, found 252.4280.

56 were prepared according to the literature procedure⁴. An oven-dried screw-capped reaction tube equipped with a Teflon-coated magnetic stir bar was charged with imine **54** (45.4 mg, 0.2 mmol, 1.0 equiv) and anhydrous DCM (1.0 mL) inside a glove box with nitrogen atmosphere. Then, pyrrole (0.4 mmol, 2.0 equiv) was added and the vial was sealed. After transferred out of the glove box, boron trifluoride diethyl etherate was added at 0 °C. After stirring at room temperature for 12 hours, the reaction was quenched with saturated NaHCO₃ solution (10 mL) and then extracted by DCM (20 mL × 3), dried over anhydrous Na₂SO₄. The residue was purified by flash column chromatography to afford **56** (41.8 mg, 71%) as a yellow oil.

(56) Prepared according to the above-mentioned procedure. major:minor = 10:1, yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.38 (s, minor, 1H), 8.20 (s, major, 1H), 7.35-7.28 (m, major, 2H, minor, 2H), 7.28-7.19 (m, major, 3H, minor, 3H), 6.88-6.85 (m, minor, 1H), 6.84-6.80 (m, major, 1H, minor, 1H), 6.76-6.72 (m, major, 1H), 6.31-6.25 (m, major, 1H, minor, 1H), 3.34-3.25 (m, major, 1H), 3.19-3.05 (m, major, 2H, minor, 1H), 3.02-2.96 (m, minor, 1H), 2.86-2.78 (m, minor, 1H), 2.63-2.57 (m, major, 1H), 2.41-2.36 (m, minor, 1H), 1.97 (s, major, 1H, minor, 1H), 1.92-1.84 (m, major, 2H, minor, 2H), 1.74-1.63 (m, major, 1H, minor, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 145.03, 144.66, 128.24, 127.57, 127.54, 126.32, 125.94, 125.76, 125.45, 125.43, 124.72, 117.47, 116.84, 116.75, 114.32, 107.43, 105.71, 59.46 (q, *J* = 26.81), 56.87 (q, *J* = 25.0 Hz), 41.33, 40.54, 38.60, 37.06, 36.64, 35.06, 32.38, 31.47. ¹⁹F NMR (565 MHz, CDCl₃) δ -70.69 (s, major, 3F), -81.54 (s, minor, 3F). HRMS (ESI) m/z calculatedC₁₆H₁₇F₃NNaO₂ [M+Na]⁺ 317.4544, found 317.4540.

57 were prepared according to the literature procedure⁵. To a 25 mL round-bottomed flask with a magnetic stirrer bar containing imine 54 (45.4 mg, 0.2 mmol, 1.0 equiv) dissolved in methanol (5.0 mL) was added arylhydrazine hydrochlorides (37.9 mg, 0.2 mmol, 1.0 equiv). Then the reaction mixture was refluxed for 2 hours. After evaporation of the solvent under reduced pressure, the resultant residue was purified by flash column chromatography to afford 57 (75.9 mg, 91%) as a yellow solid.

(57) Prepared according to the above-mentioned procedure. ¹H NMR (500 MHz, DMSO) δ 11.52-11.46 (m, 1H), 8.40-8.01 (m, 4H), 7.51-7.23 (m, 5H), 3.34-3.12 (m, 3H), 2.77-2.61 (m, 1H),

2.51-2.40 (m, 1H), 2.28-1.84 (m, 2H). ¹³C NMR (150 MHz, DMSO) δ 150.59, 142.12, 140.65, 128.73, 128.29, 127.43, 126.06, 125.85, 122.09 (q, J = 274.0 Hz), 113.48, 113.26, 55.41, 37.57, 32.95, 32.54. ¹⁹F NMR (565 MHz, DMSO) δ -65.55 (S, 1H). HRMS (ESI) m/z calculated C₁₈H₂₀ClF₃N₄NaO₂ [M+Na]⁺ 439.4427, found 439.4423.

3. Synthesis of starting materials

3.1 General procedures for the synthesis of N-triftosylhydrazones

To a stirred solution of TfsNHNH₂ (2.2 mmol, 1.1 equiv) in ethyl acetate (2.0 mL) were added carbonyl compounds (2.2 mmol, 1.1 equiv) and boron trifluoride etherate. The mixture was stirred at 40 °C for 5 h. After the complete consumption of ketones, the solvent was removed under reduced pressure, and the resultant residue was purified by flash chromatography on silica gel to obtain the trifluoromethyl vinyl-N- sulfonylhydrazones.

Yield 86 %. ¹H NMR (500 MHz, DMSO) δ 12.77 (s, 1H), 8.13 (d, J = 7.5 Hz, 1H), 8.06 (d, J = 7.5 Hz, 1H), 7.99-7.91 (m, 2H), 7.80-7.73 (m, 2H), 7.51-7.40 (m, 4H), 7.20-7.13 (m, 1H); ¹³C NMR (150 MHz, DMSO) δ 138.87, 137.75 (q, J = 32.0 Hz), 135.56, 134.51, 133.85, 132.16, 130.68, 129.32, 129.00 (q, J = 6.0 Hz) 128.53, 126.95 (q, J = 32.0 Hz), 125.99, 123.10 (q, J = 274.5 Hz), 120.93 (q, J = 274.5 Hz), 112.60. ¹⁹F NMR (565 MHz, DMSO) δ -56.46 (s, 3F), -64.20 (s, 3F). HRMS (ESI) m/z calculated C₁₇H₁₂F₆N₂NaO₂S [M+Na]⁺ 445.0416, found 445.0411.

Yeild 80 %. ¹**H** NMR (500 MHz, DMSO) δ 12.76 (s, 1H), 8.18 (d, J = 7.5 Hz, 1H), 8.06 (d, J = 7.5 Hz, 1H), 7.99 (t, J = 7.5 Hz, 1H), 7.94 (t, J = 7.5 Hz, 1H), 7.68 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 16.5 Hz, 1H), 7.30 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 16.5 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (150 MHz, DMSO) δ 140.96, 139.13, 138.22 (q, J = 33.0 Hz), 137.61, 134.67, 134.01, 132.99, 132.28, 130.13, 129.16 (q, J = 5.5 Hz), 128.70, 127.12 (q, J = 32.8 Hz), 123.27 (q, J = 275.0 Hz), 121.11 (q, J = 275.5 Hz), 111.70, 60.34, 21.55, 14.60. ¹⁹F NMR (565 MHz, DMSO) δ -56.46 (s, 3F), -64.18 (s, 3F). HRMS (ESI) m/z calculated C₁₈H₁₄F₆N₂NaO₂S [M+Na]⁺ 459.0572, found 459.0566.

Yeild 83 %. ¹H NMR (500 MHz, DMSO) δ 12.76 (s, 1H), 8.15 (d, J = 7.5 Hz, 1H), 8.06 (d, J = 7.5 Hz, 1H), 7.99-7.92 (m, 2H), 7.69 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 16.5 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 16.5 Hz, 1H), 2.96-2.91 (m, 1H), 1.22 (d, J = 7.0 Hz, 6H). ¹³C NMR (150 MHz, DMSO) δ 151.54, 138.89, 137.94 (q, J = 32.5Hz), 134.53, 133.88, 132.14, 129.03 (q, J = 5.5Hz), 128.67, 127.47, 127.32, 126.90 (q, J = 32.5Hz), 126.06, 123.11 (q, J = 274.5Hz), 120.97 (q, J = 274.5Hz), 111.69, 33.83, 24.02. ¹⁹F NMR (565 MHz, DMSO) δ -56.41 (s, 3F), -64.10 (s, 3F). HRMS (ESI) m/z calculated C₂₀H₁₈F₆N₂NaO₂S [M+Na]⁺ 487.0885, found 487.0878.

Yeild 90 %. ¹**H** NMR (500 MHz, DMSO) δ 12.84 (s, 1H), 8.17 (d, J = 7.5 Hz, 1H), 8.07 (d, J = 7.5 Hz, 1H), 7.99 (t, J = 7.5 Hz, 1H), 7.94 (t, J = 7.5 Hz, 1H), 7.88 (d, J = 8.0 Hz, 2H), 7.81 (d, J = 8.0 Hz, 2H), 7.77 (d, J = 7.5 Hz, 2H), 7.54-7.50 (m, 3H), 7.42 (t, J = 7.5 Hz, 1H), 7.23 (d, J = 16.5 Hz, 1H). ¹³C NMR (150 MHz, DMSO) δ 142.20, 139.60, 138.37, 137.76 (q, J = 32.0 Hz), 137.44, 134.73, 134.58, 133.92, 132.17, 129.47, 129.22, 129.06 (q, J = 6.5 Hz), 128.45, 127.51, 127.17, 126.92 (q, J = 32.5 Hz), 123.12 (q, J = 274.0 Hz), 120.97 (q, J = 274.0 Hz), 112.49. ¹⁹F NMR (565 MHz, DMSO) δ -56.43 (s, 3F), -64.15 (s, 3F). HRMS (ESI) m/z calculated C₂₃H₁₆F₆N₂NaO₂S [M+Na]⁺ 521.0729, found 521.0722.

Yeild 82 %. ¹**H** NMR (500 MHz, DMSO) δ 12.63 (s, 1H), 8.11 (d, J = 7.5 Hz, 1H), 8.04 (d, J = 7.5 Hz, 1H), 7.96 (t, J = 7.5 Hz, 1H), 7.91 (t, J = 7.5 Hz, 1H), 7.72 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 16.5 Hz, 1H), 7.11 (d, J = 16.5 Hz, 1H), 7.03 (d, J = 8.5 Hz, 2H), 3.81 (s, 3H). ¹³C NMR (150 MHz, DMSO) δ 161.56, 138.73, 138.26 (q, J = 32.0 Hz), 134.52, 133.91, 132.05, 130.34, 129.05 (q, J = 6.5 Hz), 128.16, 127.48, 126.90 (q, J = 33.0 Hz), 123.12 (q, J = 274.0 Hz), 121.00 (q, J = 274.0 Hz), 114.90, 110.12, 55.84. ¹⁹F NMR (565 MHz, DMSO) δ -56.37 (s, 3F), -64.02 (s, 3F). HRMS (ESI) m/z calculated C₁₈H₁₄F₆N₂NaO₃S [M+Na]⁺ 475.0521, found 475.0529.

Yeild 83 %. ¹**H** NMR (500 MHz, DMSO) δ 12.99 (s, 1H), 8.18 (d, J = 7.5 Hz, 1H), 8.10 (d, J = 7.5 Hz, 1H), 7.96-8.03 (m, 4H), 7.88 (d, J = 8.5 Hz, 2H), 7.60 (d, J = 16.5 Hz, 1H), 7.30 (d, J = 16.5 Hz, 1H). ¹³C NMR (150 MHz, DMSO) δ 148.44, 142.88, 133.93, 132.35, 129.42 (q, J = 32.0 Hz), 129.05, 127.21, 126.82 (q, J = 5.5 Hz), 126.66, 126.54, 126.20, 125.88 (q, J = 33.0 Hz), 124.51 (d, J = 274.5 Hz), 124.41, 124.22 (d, J = 274.5 Hz), 102.84. ¹⁹F NMR (565 MHz, DMSO) δ -55.82 (s, 3F), -60.52(s, 3F), -61.22 (s, 3F). HRMS (ESI) m/z calculated C₁₈H₁₁F₉N₂NaO₃S [M+Na]⁺ 513.0290, found 513.0284.

Yeild 80 %. ¹**H** NMR (500 MHz, DMSO) δ 12.64 (s, 1H), 8.07 (d, J = 7.5 Hz, 1H), 7.90 (d, J = 7.5 Hz, 1H), 7.84 (t, J = 7.5 Hz, 1H), 7.78 (t, J = 7.5 Hz, 1H), 7.74-7.67 (m, 2H), 7.30 (d, J = 16.5 Hz, 1H), 7.17 (t, J = 8.5 Hz, 2H), 7.05 (d, J = 16.5 Hz, 1H). ¹³C NMR (150 MHz, DMSO) δ 163.65 (d, J = 248.0 Hz), 137.68 (q, J = 32.0 Hz), 137.57, 137.35, 134.42, 133.75, 132.19, 130.72 (d, J = 8.5 Hz), 128.91 (q, J = 6.0 Hz), 128.21 (d, J = 8.6 Hz), 126.99 (q, J = 33.0 Hz), 123.08 (q, J = 274.0 Hz), 120.89 (q, J = 275.0 Hz), 116.31 (d, J = 22.0 Hz), 112.47. ¹⁹F NMR (565 MHz, DMSO) δ -56.57 (s, 3F), -64.33 (s, 3F), -110.27-(-110.32) (m, 1F). HRMS (ESI) m/z calculated C₁₇H₁₁F₇N₂NaO₂S [M+Na]⁺ 463.0322, found 463.0329.

Yeild 88 %. 189-190 °C. ¹**H** NMR (500 MHz, DMSO) δ 12.72 (s, 1H), 8.13 (d, J = 7.5 Hz, 1H), 8.01 (d, J = 7.5 Hz, 1H), 7.96-7.88 (m, 2H), 7.76 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 8.5 Hz, 2H), 7.42 (d, J = 16.5 Hz, 1H), 7.12 (d, J = 16.5 Hz, 1H). ¹³C NMR (125 MHz, DMSO) δ 141.5, 141.4 (q, J = 33.0 Hz) 141.3, 138.8, 138.5, 137.8, 136.3, 136.2, 134.4, 133.0 (q, J = 6.5 Hz), 131.0 (q, J = 33.0 Hz), 128.1, 126.4 (q, J = 272.5 Hz), 125.9, 117.3. ¹⁹F NMR (470 MHz, DMSO) δ -56.47 (s, 3F), -64.25 (s, 3F). HRMS (ESI) m/z calculated C₁₇H₁₁ClF₆N₂NaO₂S [M+Na]⁺ 479.0026, found

Yeild 85 %, m.p. 187-188 °C. ¹H NMR (500 MHz, DMSO) δ 12.75 (s, 1H), 8.13 (d, J = 8.0 Hz, 1H), 8.00 (d, J = 7.5 Hz, 1H), 7.95-7.87 (m, 2H), 7.72-7.64 (m, 4H), 7.44 (d, J = 16.5 Hz, 1H), 7.10 (d, J = 16.5 Hz, 1H). ¹³C NMR (125 MHz, DMSO) δ 141.6, 141.5 (q, J = 32.7 Hz) 141.4, 138.9, 138.6, 137.9, 136.4, 136.3, 134.5, 133.1 (q, J = 6.5 Hz), 131.0 (q, J = 32.7 Hz), 128.2, 126.5 (q, J = 272.5 Hz), 126.0, 117.4. ¹⁹F NMR (470 MHz, DMSO) δ -56.48 (s, 3F), -64.25 (s, 3F). HRMS (ESI) m/z calculated C₁₇H₁₁BrF₆N₂NaO₂S [M+Na]⁺ 522.9503, found 522.9521.

major + minor = 85 %, major/minor = 3 : 2

Yeild 85%, major: minor = 3: 2, ¹**H** NMR (500 MHz, DMSO) δ 12.70 (s, 1H), 8.05 (d, J = 7.5 Hz, 1H), 7.95 (d, J = 7.5 Hz, 1H), 7.87 (t, J = 7.5 Hz, 1H), 7.82 (t, J = 7.5 Hz, 1H), 7.49-7.43 (m, 2H), 7.33 (d, J = 16.5 Hz, 1H), 7.25 (t, J = 7.5 Hz, 1H), 7.15 (d, J = 7.5 Hz, 1H), 7.03 (d, J = 16.5 Hz, 1H), 2.26 (s, 3H). ¹³**C** NMR (150 MHz, DMSO) ¹³**C** NMR (151 MHz, DMSO) δ 148.44, 144.70, 139.09, 138.85, 138.65, 137.85 (q, J = 32.0 Hz), 137.46, 135.46, 134.52, 133.87, 132.30, 132.11, 131.45, 130.00, 129.43, 129.23, 129.01 (q, J = 6.0 Hz), 128.92, 128.51, 126.78 (q, J = 6.0 Hz), 126.62, 126.57, 125.92 (d, J = 32.5 Hz) 125.87, 125.82, 124.41, 124.22 (d, J = 274.0 Hz), 123.12, 123.10 (q, J = 274.0 Hz), 122.20 (q, J = 276.0 Hz), 120.94 (d, J = 276.0 Hz), 112.33, 101.32, 21.39, 21.33. ¹⁹F NMR (470 MHz, DMSO) δ -55.88 (s, minor, 3F), -64.14 (s, major, 3F). HRMS (ESI) m/z calculated C₁₈H₁₄F₆N₂NaO₂S [M+Na]⁺ 459.0572, found 459.0579.

Yeild 78 %. ¹**H** NMR (500 MHz, DMSO) δ 12.76 (s, 1H), 8.06-8.03 (m, 2H), 7.97 (t, *J* = 8.0 Hz, 2H), 7.89-7.82 (m, 2H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.43 (d, *J* = 16.5 Hz, 1H), 7.20 (d, *J* = 16.5 Hz, 1H). ¹³**C** NMR (125 MHz, DMSO) δ 148.44, 133.91, 132.33, 130.73, 130.48 (q, *J* = 32.0 Hz), 129.91, 126.80 (q, *J* = 5.0 Hz), 126.01, 125.79 (q, *J* = 3.5 Hz), 125.77, 125.75, 125.44 (q, *J* = 272.44 Hz), 124.40, 123.36, 124.21 (q, *J* = 3.5 Hz), 122.53 (d, *J* = 3.5 Hz), 120.07 (q, *J* = 279.0 Hz), 102.58. ¹⁹**F** NMR (470 MHz, DMSO) δ -55.86 (s, 3F), -60.56 (s, 3F), -61.30 (s, 3F). HRMS (ESI) m/z calculated C₁₈H₁₁F₉N₂NaO₃S [M+Na]⁺ 513.0290, found 513.0299.

Yeild 83 %. ¹**H** NMR (500 MHz, DMSO) δ 12.75 (s, 1H), 8.05 (d, J = 7.5 Hz, 1H), 7.96 (d, J = 7.5 Hz, 1H), 7.91-7.78 (m, 3H), 7.64-7.58 (m, 1H), 7.45-7.32 (m, 3H), 7.06 (d, J = 16.5 Hz, 1H). ¹³C NMR (125 MHz, DMSO) δ 148.35, 137.78, 137.25, 137.22 (q, J = 32.5 Hz), 134.65, 134.30, 133.96, 133.92, 132.14, 131.16, 130.29, 129.10 (q, J = 5.5 Hz), 127.68, 127.45, 123.10 (q, J = 276.0 Hz), 120.83 (q, J = 275.5 Hz), 113.94. ¹⁹F NMR (470 MHz, DMSO) δ -55.95 (s, 3F), -61.20 (s, 3F). HRMS (ESI) m/z calculated C₁₇H₁₁ClF₆N₂NaO₂S [M+Na]⁺ 479.0026, found 479.0018.

major + minor = 74 %, major/minor = 3 : 1

Yeild 74 %, major: minor = 3: 1. ¹**H** NMR (500 MHz, DMSO) δ 12.82 (s, 1H), 8.13 (d, J = 7.5 Hz, 1H), 8.03 (d, J = 7.5 Hz, 1H), 7.96 (t, J = 7.5 Hz, 1H), 7.91 (t, J = 7.5 Hz, 1H), 7.88-7.82 (m, 1H), 7.37-7.31 (m, 4H), 7.26 (d, J = 2.5 Hz, 1H), 2.33 (s, 3H). ¹³**C** NMR (125 MHz, DMSO) δ 148.47, 143.78, 137.57, 137.83 (q, J = 32.8 Hz), 137.46, 136.30, 136.05, 134.54, 134.20, 133.89, 132.31, 132.12, 131.29, 131.17, 130.51, 129.64, 129.52, 129.03 (q, J = 6.0 Hz), 128.71, 126.79 (q, J = 6.0 Hz), 126.59, 126.47, 125.90 (q, J = 32.8 Hz), 124.40, 124.22 (q, J = 275.0 Hz), 122.30 (q, J = 268.0 Hz), 120.95, 119.91, 113.49, 104.01, 20.69, 19.40. ¹⁹F NMR (471 MHz, DMSO) δ -55.86 (s, minor, 3F), -56.41 (s, major, 3F), -60.23 (s, minor, 3F), -64.16 (s, major, 3F). HRMS (ESI) m/z calculated C₁₈H₁₄F₆N₂NaO₂S [M+Na]⁺ 459.0572, found 459.0579.

major + minor = 75 %, major/minor = 3 : 2

Yeild 75 %, major: minor = 3: 2. ¹H NMR (500 MHz, DMSO) δ 12.86 (s, 1H), 8.15 (d, J = 7.5 Hz, 1H), 8.09-8.06 (m, 2H), 7.96 (t, J = 7.5 Hz, 1H), 7.90 (t, J = 7.5 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.46-7.39 (m, 2H), 7.37-7.33 (m, 1H). ¹³C NMR (150 MHz, DMSO) δ 148.39, 142.94, 137.10 (q, J = 32.0 Hz), 136.37, 134.80, 134.59, 133.89, 133.85, 133.68, 132.29, 132.26, 132.19, 131.91, 131.48, 130.12, 129.03 (q, J = 6.0 Hz), 128.62, 128.47, 128.36, 127.06, 126.83 (q, J = 3.0 Hz), 126.77 (q, J = 5.5 Hz), 125.94 (q, J = 32.0 Hz), 125.11, 125.07, 124.41, 123.29, 123.08 (q, J = 274.0 Hz), 123.02, 122.26, 122.17, 120.91 (d, J = 276.0 Hz), 115.33, 104.77. ¹⁹F NMR (565 MHz, DMSO) δ -55.90 (s, minor, 3F), -56.46 (s, major, 3F), -60.30 (s, minor, 3F), -64.38 (s, major, 3F). HRMS (ESI) m/z calculated C₁₇H₁₁BrF₆N₂NaO₂S [M+Na]⁺ 522.9521, found 522.9515.

Yeild 72 %. ¹**H** NMR (600 MHz, DMSO) δ 12.72 (s, 1H), 8.12 (d, J = 8.0 Hz, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.96 (t, J = 7.5 Hz, 1H), 7.92 (t, J = 7.5 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 16.5 Hz, 1H), 7.44 (t, J = 8.0 Hz, 1H), 7.37 (d, J = 16.5 Hz, 1H), 7.09 (d, J = 8.0 Hz, 1H), 7.06 (t, J = 7.5 Hz, 1H), 3.85 (s, 3H). ¹³C NMR (150 MHz, DMSO) δ 157.85, 138.23 (q, J = 32.0 Hz), 137.47, 134.55, 133.92, 132.80, 132.49, 132.07, 129.05 (q, J = 6.5 Hz), 126.90 (q, J = 32.0 Hz) 127.17, 123.74, 123.11 (q, J = 274.0 Hz), 121.14, 121.01 (q, J = 276.0 Hz), 112.25, 112.07, 56.26. ¹⁹F NMR (564 MHz, DMSO) δ -56.38 (s, 3F), -64.08 (s, 3F). HRMS (ESI) m/z calculated C₁₈H₁₄F₆N₂NaO₃S [M+Na]⁺ 475.0521, found 475.0526.

Yeild 84 %. ¹**H** NMR (500 MHz, DMSO) δ 12.66 (s, 1H), 8.03 (d, J = 8.0 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.90-7.81 (m, 2H), 7.84 (d, J = 7.5 Hz, 1H), 7.28 (d, J = 16.5 Hz, 1H), 7.02 (d, J = 16.5 Hz, 1H), 6.87 (d, J = 1.5 Hz, 2H), 6.51 (d, J = 1.5 Hz, 1H), 3.72 (s, 6H). ¹³C NMR (150 MHz, DMSO) δ 161.46, 161.27, 138.98, 137.45, 133.92, 132.06, 126.91 (d, J = 33.0 Hz), 126.80, 125.89 (d, J = 33.0 Hz), 124.41, 123.11 (d, J = 274.0 Hz), 120.92 (d, J = 276.0 Hz), 112.94, 106.72, 104.09, 55.90. ¹⁹F NMR (564 MHz, DMSO) δ -56.37 (s, 3F), -64.10 (s, 3F). HRMS (ESI) m/z calculated C₁₉H₁₆F₆N₂NaO₄S [M+Na]⁺ 505.0627, found 505.0627.

Yeild 80 %. ¹**H** NMR (500 MHz, DMSO) δ 13.97 (s, 1H), 8.04 (d, J = 7.5 Hz, 1H), 7.95 (d, J = 7.5 Hz, 1H), 7.91 (d, J = 8.5 Hz, 1H), 7.89-7.94(m, 2H), 7.76 (s, 1H), 7.52 (s, 1H), 7.34 (d, J = 16.5 Hz, 1H), 7.24 (d, J = 16.5 Hz, 1H). ¹³C NMR (150 MHz, DMSO) δ 148.41, 141.83, 135.25, 133.91, 133.19, 133.00, 132.34, 129.11, 128.64, 126.81 (q, J = 5.5 Hz), 125.89 (q, J = 32.5 Hz), 124.41, 124.22 (d, J = 273.0 Hz), 123.03, 105.06. ¹⁹F NMR (564 MHz, DMSO) δ -55.84 (s, 3F), -60.29 (s, 3F). HRMS (ESI) m/z calculated C₁₇H₁₀BrClF₆N₂NaO₂S [M+Na]⁺ 556.9131, found 556.9125.

major + minor = 85 %, major/minor = 3 : 1

Yeild 85 %, major: minor = 3: 1. ¹H NMR (500 MHz, DMSO) δ 12.55 (s, 1H), 8.02 (d, J = 7.5 Hz, 1H), 7.95 (d, J = 7.5 Hz, 1H), 7.89-7.82 (m, 2H), 7.12 (d, J = 17.0 Hz, 1H), 6.85 (s, 2H), 6.74 (d, J = 17.0 Hz, 1H), 2.09-2.18 (m, 9H). ¹³C NMR (150 MHz, DMSO) δ 138.89, 138.18, 137.95, 137.68, 137.47, 136.42, 136.19, 135.48, 134.56, 134.53, 133.95, 133.90, 133.85, 132.38, 132.16, 132.05, 131.81, 129.34, 129.24, 129.06 (q, J = 5.0 Hz), 128.60, 126.87 (q, J = 33.0 Hz), 125.87 (q, J = 32.0 Hz), 124.41, 123.09 (q, J = 274.0 Hz), 121.02 (q, J = 276.0 Hz), 117.41, 104.16, 21.14, 21.12, 20.90, 20.85, 20.42, 19.54. ¹⁹F NMR (565 MHz, DMSO) δ -56.28 (s, minor, 3F), -56.43 (s,

major, 3F), -64.01 (s, major, 3F), -67.76 (s, minor, 3F). **HRMS** (ESI) m/z calculated $C_{20}H_{18}F_6N_2NaO_2S [M+Na]^+ 487.0791$, found 487.0787.

Yeild 90 %. ¹**H** NMR (500 MHz, DMSO) δ 12.71 (s, 1H), 8.12 (s, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.94-7.90 (m, 2H), 7.90-7.82 (m, 4H), 7.50-7.46 (m, 3H), 7.24 (d, J =16.5 Hz, 1H). ¹³C NMR (150 MHz, DMSO) δ 138.89, 137.77 (q, J = 32.0 Hz), 137.51, 134.56, 134.16, 133.93, 133.41, 133.23, 132.12, 130.47, 129.07 (q, J = 6.5 Hz), 128.96, 128.92, 128.19, 127.87, 127.35, 126.94 (q, J = 33.0 Hz), 123.87, 123.14 (q, J = 274.0 Hz), 121.02 (d, J = 276.0Hz), 112.85. ¹⁹F NMR (564 MHz, DMSO) δ -56.33 (s, 3F), -64.00 (s, 3F). HRMS (ESI) m/z calculated C₂₁H₁₄F₆N₂NaO₂S [M+Na]⁺ 495.0564, found 495.0572.

Yeild 87%, major: minor = 3: 1. ¹H NMR (500 MHz, DMSO) δ 12.71 (s, major, 1H), 12.03 (s, minor, 1H), 8.11-8.02 (m, major, 1H, minor, 1H), 7.99-7.92 (m, major, 2H, minor, 2H), 7.91-7.71 (m, major, 4H, minor, 4H), 7.67 (d, J = 7.5 Hz, major, 1H, minor, 1H), 7.53 (d, J = 7.5 Hz, major, 1H, minor, 1H), 7.41 (d, J = 16.5 Hz, major, 1H, minor, 1H), 7.35-7.23 (m, major, 2H, minor, 2H), 7.15 (d, J = 16.0 Hz, major, 1H, minor, 1H), 3.91 (s, major, 2H), 3.71 (s, minor, 2H). ¹³C NMR (150 MHz, DMSO) δ 148.44, 144.31, 144.27, 144.18, 143.85, 143.80, 143.56, 142.70, 142.26, 141.50, 140.88, 140.83, 139.29, 137.79, 137.51, 134.56, 134.21, 133.94, 133.68, 132.36, 132.11, 131.54, 129.06, 128.50, 128.03, 127.84, 127.72, 127.44, 127.38, 126.81, 125.74, 125.69, 125.33, 124.88, 124.55, 124.41, 122.69, 122.23, 121.10, 120.93, 120.89, 120.42, 120.11, 112.74, 111.65, 36.90, 36.77. ¹⁹F NMR (564 MHz, DMSO) δ -55.81(s, minor, 3F), -55.35 (s, major, 3F), -60.44(s, minor, 3F) -63.95 (s, major, 3F). HRMS (ESI) m/z calculated C₂₄H₁₆F₆N₂NaO₂S [M+Na]⁺ 533.0729, found 533.0725.

Yeild 80 %. ¹**H** NMR (500 MHz, DMSO) δ 12.73 (s, 1H), 8.10 (d, J = 7.5 Hz, 1H), 8.03 (d, J = 7.5 Hz, 1H), 7.95 (t, J = 7.5 Hz, 1H), 7.90 (t, J = 7.5 Hz, 1H), 7.75 (d, J = 5.0 Hz, 1H), 7.54 (d, J = 3.5 Hz, 1H), 7.36 (d, J = 16.5 Hz, 1H), 7.18-7.07 (m, 2H). ¹³C NMR (150 MHz, DMSO) δ 140.75, 137.81 (q, J = 32.0 Hz), 137.52 , 134.48, 133.89, 132.49, 132.14, 131.98, 130.59, 129.01 (q, J = 6.0 Hz), 128.98, 126.94 (q, J = 33.0 Hz), 123.11 (q, J = 274.0 Hz), 120.91 (q, J = 276.0 Hz), 110.99. ¹⁹F NMR (565 MHz, DMSO) δ -56.36 (s, 3F), -64.10 (s, 3F). HRMS (ESI) m/z calculated C₁₅H₁₀F₆N₂NaO₂S₂ [M+Na]⁺ 528.0423, found 528.0419.

Yeild 78 %. ¹**H** NMR (500 MHz, DMSO) δ 12.74 (s, 1H), 8.10 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.97-7.83 (m, 3H), 7.17 (d, J = 16.5 Hz, 1H), 7.00 (d, J = 16.5 Hz, 1H), 6.95 (d, J = 3.0 Hz, 1H), 6.66 (dd, J = 3.0, 1.7 Hz, 1H). ¹³C NMR (150 MHz, DMSO) δ 154.73, 149.78, 141.54 (q, J = 32.0 Hz), 140.96, 137.74, 137.16, 135.29, 132.28 (q, J = 6.0 Hz), 130.35 (q, J = 33.0 Hz), 129.05, 126.43 (q, J = 274.0 Hz), 124.27 (q, J = 276.0 Hz), 119.66, 116.85, 112.87. ¹⁹F NMR (565 MHz, DMSO) δ -56.35 (s, 3F), -64.31 (s, 3F). HRMS (ESI) m/z calculated C₁₅H₁₀F₆N₂NaO₃S [M+Na]⁺ 435.0208, found 435.0214.

Yeild 80 %, major: minor = 6: 1. ¹**H NMR** (500 MHz, DMSO) δ 12.81 (s, 1H), 8.08 (d, *J* = 7.5 Hz, 1H), 8.03 (d, *J* = 7.5 Hz, 1H), 7.98-7.88 (m, 2H), 7.91 (d, *J* = 7.5 Hz, 1H), 7.11 (d, *J* = 16.5 Hz, 1H), 7.01-6.89 (m, 2H), 6.78 (d, *J* = 2.5 Hz, 1H). ¹³**C NMR** (125 MHz, DMSO) δ 153.44, 148.38, 137.65 (q, *J* = 32.2 Hz), 137.58, 134.45, 133.91, 133.87, 132.35, 131.94, 128.98 (q, *J* = 6.0 Hz), 126.95 (q, *J* = 275.0 Hz), 126.82 (q, *J* = 6.0 Hz), 125.99, 125.77, 124.55, 124.41, 123.10, 122.96, 120.80 (q, *J* = 275.0 Hz), 118.74, 115.63, 114.46, 111.33, 109.83, 100.86. ¹⁹**F NMR** (565 MHz,

DMSO) δ -55.84(s, minor, 3F), -56.31 (s, major, 3F), -60.55(s, minor, 3F) -64.23 (s, major, 3F). **HRMS** (ESI) m/z calculated C₁₅H₉BrF₆N₂NaO₃S [M+Na]⁺ 512.9314, found 512.9319.

Yeild 70 %. ¹**H** NMR (500 MHz, DMSO) δ 14.24 (s, 1H), 8.94 (s, 1H), 8.14 (d, J = 8.0 Hz, 1H), 8.11 (d, J = 8.0 Hz, 1H), 8.06 (d, J = 7.5 Hz, 1H), 7.97-7.91 (m, 2H), 7.92 (t, J = 7.5 Hz, 1H), 7.90-7.86 (m, 1H), 7.73 (t, J = 7.5 Hz, 1H), 7.57 (d, J = 16.5 Hz, 1H), 7.47 (d, J = 16.5 Hz, 1H). ¹³C NMR (150 MHz, DMSO) δ 148.41, 147.87, 147.09, 140.71, 133.94, 132.41, 132.37, 128.80, 128.59, 128.20, 126.95, 126.83 (q, J = 5.5 Hz), 125.87 (q, J = 33.0 Hz), 124.41, 123.22 (q, J =273.0 Hz), 122.95, 122.43, 122.06 (q, J = 269.5 Hz), 121.49, 105.84. ¹⁹F NMR (565 MHz, DMSO) δ -55.80 (s, 3F), -60.29 (s, 3F). HRMS (ESI) m/z calculated C₂₀H₁₂ClF₆N₃NaO₂S [M+Na]⁺ 530.0135, found 530.0161.

Yeild 66%, major: minor = 6: 1. ¹**H NMR** (500 MHz, DMSO) δ 12.48 (s, major, 1H, minor, 1H), 8.23-8.20 (m, minor, 1H), 8.11-8.07 (m, major, 2H), 8.03-8.01 (m, minor, 1H), 8.00-7.97 (m, major, 1H), 7.96-7.93 (m, major, 1H), 7.92-7.89 (m, minor, 1H), 7.84-7.79 (m, minor, 1H), 7.35-7.31 (m, major, 2H, minor, 2H), 7.28-7.25 (m, major, 2H, minor, 2H), 7.24-7.20 (m, major, 1H, minor, 1H), 6.72-6.69 (m, major, 1H, minor, 1H), 6.51-6.46 (m, major, 1H, minor, 1H), 2.84-2.82 (m, major, 1H, minor, 1H), 2.61-2.57 (m, major, 2H, minor, 2H), 2.55-2.54 (m, major, 1H, minor 1H). ¹³C NMR (150 MHz, DMSO) δ 143.86, 143.55, 142.24, 141.31, 138.17 (q, *J* = 32.0 Hz), 137.52, 134.48, 133.94, 133.86, 133.81, 133.42, 132.37, 131.89, 129.00 (q, *J* = 6.0 Hz), 128.80, 128.78, 128.73, 128.68, 126.94 (q, *J* = 33.0 Hz), 126.47, 126.20, 125.30, 124.41, 123.08 (q, *J* = 274.0 Hz), 120.80 (d, *J* = 276.0 Hz), 115.53, 35.42, 35.17, 34.08, 30.98. ¹⁹F NMR (565 MHz, DMSO) δ -56.34 (s, major, 3F), -56.32 (s, minor, 3F), -64.59 (s, major, 3F), -68.37 (s, minor, 3F). **HRMS** (ESI) m/z calculated C₁₉H₁₆F₆N₂NaO₂S [M+Na]⁺ 473.0729, found 473.0722.

Yeild 63%, major: minor = 10: 1. ¹H NMR (500 MHz, DMSO) δ 13.34 (s, minor, 1H), 12.49 (s, major, 1H), 8.12 (d, J = 7.5 Hz, major, 1H, minor, 1H), 8.04 (d, J = 7.5 Hz, major, 1H, minor, 1H), 7.97 (t, J = 7.5 Hz, major, 1H, minor, 1H), 7.92 (t, J = 7.5 Hz, major, 1H, minor, 1H), 6.67 (d, J = 16.0 Hz, major, 1H, minor, 1H), 6.46-6.38 (m, major, 1H, minor, 1H), 2.65 (t, J = 7.5 Hz, minor, 2H), 2.32-2.21 (m, major, 2H), 1.69-1.55 (m, minor, 2H), 1.54-1.41 (m, major, 2H), 1.37-1.22 (m, major, 4H, minor, 4H), 0.88 (t, J = 6.5 Hz, major, 3H, minor, 3H). ¹³C NMR (150 MHz, DMSO) δ 145.78, 144.32, 138.32 (q, J = 32.0 Hz), 137.56, 134.34, 133.81, 133.72, 132.24, 131.97, 128.87 (q, J = 6.0 Hz), 127.03 (q, J = 32.0 Hz), 124.40, 123.05 (d, J = 274.0 Hz), 120.80 (d, J = 276.0 Hz)Hz), 115.23, 101.63, 33.47, 31.20, 31.10, 28.65, 27.60, 25.01, 22.26, 22.14, 14.15, 14.12. ¹⁹F NMR (565 MHz, DMSO) δ -56.00 (s, minor, 3F), -56.52 (s, major, 3F), -60.47 (s, minor, 3F), -64.76 (s, major, 3F). HRMS (ESI) m/z calculated C₁₆H₁₈F₆N₂NaO₂S [M+Na]⁺ 439.0885, found 439.0880.

Yeild 75 %. ¹**H NMR** (600 MHz, CDCl₃) δ 8.69 (s, 1H), 8.41-8.34 (m, 1H), 8.06 (d, J = 7.5 Hz, 2H), 7.91-7.85 (m, 1H), 7.81-7.73 (m, 2H), 7.60 (t, J = 7.0 Hz, 1H), 7.47 (t, J = 7.5 Hz, 2H), 6.57 (dt, J = 16.5, 4.0 Hz, 1H), 6.26 (d, J = 16.5 Hz, 1H), 5.00 (d, J = 4.0 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 165.90, 138.97 (q, *J* = 35.0 Hz), 138.74, 135.75, 133.96, 133.88, 133.56, 132.59, 129.75, 129.21, 128.59, 128.42 (q, *J* = 6.5 Hz), 127.75 (q, *J* = 36.0 Hz), 122.69 (q, *J* = 274.0 Hz), 119.73 (q, J = 275.4 Hz), 114.23, 63.52. ¹⁹F NMR (565 MHz, CDCl₃) δ -58.11 (s, 3F), -67.48 (s, 3F). **HRMS** (ESI) m/z calculated $C_{19}H_{14}F_6N_2NaO_4S$ [M+Na]⁺ 503.0471, found 503.0450.

Yeild 72 %. 1H NMR (600 MHz, CDCl₃) & 8.74 (s, 1H), 8.43-8.38 (m, 1H), 7.93-7.89 (m, 1H), 7.82-7.78 (m, 2H), 6.83 (d, J = 16.5 Hz, 1H), 6.35 (d, J = 16.5 Hz, 1H), 6.02 (s, 1H), 4.20 (q, J =

7.0 Hz, 2H), 2.28 (s, 3H), 1.30 (t, J = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 165.82, 148.47, 144.50, 139.42 (q, J = 34.5 Hz), 135.58, 134.08, 134.04, 132.62, 128.45 (q, J = 6.5 Hz), 127.78 (q, J = 33.0 Hz), 126.72, 122.69 (q, J = 274.0 Hz), 119.80 (q, J = 276.0 Hz), 113.98, 60.46, 14.20, 13.06. ¹⁹F NMR (565 MHz, CDCl₃) δ -58.07 (s, 3F), -66.78 (s, 3F). HRMS (ESI) m/z calculated C₁₇H₁₆F₆N₂NaO₄S [M+Na]⁺ 481.0627, found 481.0600.

Yeild 78 %, major: minor = 3: 1. ¹**H NMR** (500 MHz, DMSO) δ 12.59 (s, 1H), 8.10 (d, J = 7.5 Hz, 1H), 8.06 (d, J = 7.5 Hz, 1H), 7.97 (t, J = 7.5 Hz, 1H), 7.92 (t, J = 7.5 Hz, 1H), 7.59 (d, J = 7.5 Hz, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.36 (t, J = 7.5 Hz, 1H), 7.15 (d, J = 15.0 Hz, 1H), 7.09-6.98 (m, 2H), 6.90 (d, J = 15.0 Hz, 1H). ¹³**C NMR** (125 MHz, DMSO) δ 148.43, 143.26, 140.48, 139.59, 137.62, 136.42, 136.39, 134.59, 134.43, 133.92, 133.84, 132.35, 132.25, 131.90, 129.55, 129.40, 129.37, 128.93, 128.37, 127.64, 127.14, 127.03, 126.82 (q, J = 5.5 Hz), 125.88 (q, J = 33.0 Hz), 124.41, 124.22 (q, J = 275.0 Hz), 122.20 (q, J = 269.0 Hz), 115.72, 115.00, 101.91. ¹⁹**F NMR** (565 MHz, DMSO) δ -55.83(s, major, 3F), -55.28 (s, minor, 3F), -60.50 (s, major, 3F) -64.32 (s, minor, 3F). **HRMS** (ESI) m/z calculated C₁₉H₁₄F₆N₂NaO₂S [M+Na]⁺ 471.0572, found 471.0578.

major + minor = 68%, major/minor = 3:1

Yeild 68 %, major: minor = 3: 1. ¹**H** NMR (600 MHz, DMSO) δ 14.40 (s, major, 1H, minor, 1H), 8.18 (d, J = 7.5 Hz, minor, 1H), 8.12 (d, J = 7.5 Hz, major, 1H), 8.03 (d, J = 7.5 Hz, major, 1H), 7.96-7.88 (m, major, 2H, minor, 1H), 7.85 (d, J = 7.5 Hz, minor, 1H), 7.77 (t, J = 7.5 Hz, minor, 1H), 7.59 (d, J = 6.0 Hz, minor, 1H), 7.53 (d, J = 6.0 Hz, major, 1H), 7.50-7.31 (m, major, 4H, minor, 4H), 7.28-7.17 (m, major, 1H), 7.12-7.07 (m, minor, 1H), 6.61-6.48 (m, major, 1H, minor, 1H). ¹³C NMR (150 MHz, DMSO) δ 148.39, 141.92, 134.33, 133.90, 133.80, 132.34, 132.09, 132.03, 131.93, 131.20, 130.24, 130.13, 129.42, 129.28, 129.16, 128.91 (q, J = 6.0 Hz), 126.81 (q, J = 5.5 Hz), 125.90 (q, J = 33.0 Hz), 124.73, 124.41, 124.34, 124.21 (q, J = 275.0 Hz), 122.19, 121.96, 121.67 (q, J = 269.0 Hz), 121.18, 120.78, 108.32, 94.35, 88.52, 84.88, 77.25. ¹⁹F NMR (565 MHz, CDCl₃) δ -55.87 (s, major, 3F), -56.35 (s, minor, 3F), -60.55 (s, minor, 3F), -64.24 (s, major, 3F). HRMS (ESI) m/z calculated C₁₉H₁₂F₆N₂NaO₂S [M+Na]⁺ 469.0416, found 469.0460.

Yeild 66%, major: minor = 3: 1. ¹H NMR (500 MHz, DMSO) δ 13.16 (s, 1H), 8.11-8.04 (m, 2H), 7.98 (t, J = 7.5 Hz, 1H), 7.93 (t, J = 7.5 Hz, 1H), 7.83 (d, J = 7.5 Hz, 2H), 7.52-7.43 (m, 3H), 7.27 (s, 1H). ¹³C NMR (150 MHz, DMSO) δ 149.41, 148.40, 140.25, 137.49, 136.14, 135.73 (q, J = 35.0 Hz), 134.65, 133.94, 133.89, 133.23, 132.33, 131.80, 130.48, 130.25, 130.13, 129.53, 129.11 (q, J = 5.5 Hz), 128.88, 128.76, 128.57, 127.77, 127.32, 127.04 (q, J = 33.0 Hz), 126.79 (q, J = 5.5 Hz), 125.91 (q, J = 32.0 Hz), 124.43, 123.04 (q, J = 274.0 Hz), 120.20 (q, J = 275.0 Hz), 114.80 (q, J = 35.0 Hz), 113.20. ¹⁹F NMR (565 MHz, DMSO) δ -55.88 (s, minor, 3F), -56.38 (s, major, 3F), -57.75(s, minor, 3F), -66.06 (s, major, 3F). HRMS (ESI) m/z calculated C₁₇H₁₁ClF₆N₂NaO₂S [M+Na]⁺ 479.0026, found 479.0026.

Yeild 83 %. ¹**H NMR** (600 MHz, CDCl₃) δ 8.41-8.37 (m, 2H), 7.93-7.89 (m, 1H), 7.80-7.78 (m, 2H), 7.68-7.64 (m, 2H), 7.52-7.42 (m, 3H), 6.34 (s, 1H). ¹³**C NMR** (150 MHz, CDCl₃) δ 145.70, 137.47 (q, *J* = 37.0 Hz), 135.97, 134.60, 133.97, 133.64, 132.63, 131.38, 128.94, 128.37 (q, *J* = 6.0 Hz), 127.89 (q, *J* = 33.0 Hz), 127.01, 122.66 (q, *J* = 274.0 Hz), 119.60 (q, *J* = 278.0 Hz), 109.53. ¹⁹**F NMR** (565 MHz, CDCl₃) δ -57.92 (s, 3F), -68.83 (s, 3F). **HRMS** (ESI) m/z calculated C₁₇H₁₁ClF₆N₂NaO₂S [M+Na]⁺ 479.0026, found 479.0006.

Yeild 72 %. ¹**H** NMR (600 MHz, DMSO) δ 8.91 (s, 1H), 8.43-8.38 (m, 1H), 7.93-7.89 (m, 1H), 7.78-7.73 (m, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 2H), 6.46 (dd, *J* = 16.5, 6.0 Hz, 1H), 5.97 (d, *J* = 16.5 Hz, 1H), 2.98-2.88 (m, 1H), 2.72-2.63 (m, 3H), 1.29 (d, *J* = 7.0 Hz, 6H), 1.11 (d, *J* = 5.8 Hz, 3H). ¹³C NMR (125 MHz, DMSO) δ 148.83, 146.46, 138.19 (q, *J* = 32.0 Hz), 137.52, 137.25, 134.45, 133.82, 131.92, 129.40, 128.98 (q, *J* = 6.0 Hz), 126.96 (q, *J* = 33.0 Hz), 126.50, 123.07 (d, *J* = 274.0 Hz), 120.81 (d, *J* = 276.0 Hz), 113.65, 41.67, 33.46, 24.34, 18.76. ¹⁹F NMR (565 MHz, DMSO) δ -56.37 (s, 3F), -64.46 (s, 3F). HRMS (ESI) m/z calculated C₂₃H₂₄F₆N₂NaO₂S [M+Na]⁺ 529.1355, found 529.1362.

Yeild 75 %. ¹**H** NMR (600 MHz, DMSO) δ 12.43 (s, 1H), 8.08-8.00 (m, 2H), 7.94 (t, J = 7.5 Hz, 1H), 7.90 (t, J = 7.5 Hz, 1H), 6.80-6.72 (m, 1H), 6.65 (d, J = 16.0 Hz, 1H), 6.31-6.19 (m, 2H), 1.89-1.79 (m, 3H). ¹³C NMR (125 MHz, DMSO) δ 140.07, 139.92, 138.91 (q, J = 32.0 Hz), 137.52, 134.47, 133.86, 131.89, 131.57, 129.00 (q, J = 6.0 Hz), 126.96 (q, J = 33.0 Hz), 123.08 (d, J = 274.0 Hz), 120.86 (d, J = 276.0 Hz), 113.44, 19.00. ¹⁹F NMR (565 MHz, DMSO) δ -56.33 (s, 3F), -64.41 (s, 3F). HRMS (ESI) m/z calculated C₁₄H₁₂F₆N₂NaO₂S [M+Na]⁺ 409.0416, found 409.0422.

3.2 General procedure for the synthesis of aziridines

To an oven-dried 50 mL round-bottomed flask with a magnetic stir bar containing 2-bromoethylamine hydrobromide (10 mmol, 1.0 equiv) was slowly added sodium hydroxide solution (1 M, 15 mL) and chloroacetate (15 mmol, 1.5 equiv) at 0 °C. After stirring overnight at room temperature, the reaction mixture was extracted with dichloromethane (3×20 mL), dried with anhydrous sodium sulfate, and concentrated under reduced pressure. The crude mixture was purified by rapid silica gel column chromatography to afford the amide product.

Under nitrogen atmosphere, a clean and oven-dried nitrogen-filled 100 ml eggplant bottle with a magnetic stir bar was charged with cesium carbonate (1.5 equiv). Then the amide (10 mmol, 1.0 equiv) obtained in the previous step was dissolved in DMF (90 ml) and injected into the

eggplant bottle. After stirring for 5-6 hours at 40 °C, the suspension was extracted with DCM (3×20 mL), dried over anhydrous sodium, and concentrated under reduced pressure. The resultant residue was purified by silica gel column chromatography to obtain pure aziridine.

Benzyl aziridine-1-carboxylate, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.34 (m, 5H), 5.13 (s, 2H), 2.22 (s, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 163.61, 135.81, 128.60, 128.37, 128.20, 68.21, 25.86. HRMS (ESI) *m/z* calculated C₁₀H₁₁NNaO₂ [M+Na]⁺ 200.0682, found 200.0678.

Propyl aziridine-1-carboxylate, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 4.06 (t, J = 7.0 Hz, 2H), 2.21 (s, 4H), 1.72-1.64 (m, 1H), 0.96 (t, J = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 163.99, 68.19, 25.74, 22.04, 10.21. HRMS (ESI) *m/z* calculated C₆H₁₁NNaO₂ [M+Na]⁺ 152.0682, found 152.0688.

Isopropyl aziridine-1-carboxylate, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 4.94-4.87 (m, 1H), 2.19 (s, 4H), 1.27 (d, J = 6.5 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 163.42, 70.04, 53.42, 25.72, 21.74. HRMS (ESI) *m*/*z* calculated C₆H₁₁NNaO₂ [M+Na]⁺ 152.0682, found 152.0682.

Isobutyl aziridine-1-carboxylate, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 3.86 (d, J = 7.0 Hz, 2H), 2.19 (s, 4H), 1.98-1.90 (m, 1H), 0.92 (d, J = 7.0 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 164.0, 77.30, 77.05, 76.79, 72.66, 27.80, 25.74, 18.94. HRMS (ESI) *m*/*z* calculated C₇H₁₃NNaO₂ [M+Na]⁺ 166.0838, found 166.0830.

Cyclopentylmethyl aziridine-1-carboxylate, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 5.09 (s, 1H), 2.18 (s, 4H), 1.89-1.83 (m, 2H), 1.77-1.70 (m, 4H), 1.63-1.55 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 163.76, 76.79, 32.63, 25.80, 23.66. HRMS (ESI) *m/z* calculated C₈H₁₃NNaO₂ [M+Na]⁺ 178.0838, found 178.0833.

Allyl aziridine-1-carboxylate, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 5.99-5.86 (m, 1H), 5.36-5.31 (m, 1H), 5.27-5.24 (m, 1H), 4.62-4.57 (m, 2H), 2.23 (s, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 163.4, 131.97, 118.44, 67.06, 25.77. HRMS (ESI) *m/z* calculated C₆H₉NNaO₂ [M+Na]⁺ 150.0525, found 150.0517.

2-Chloroethyl aziridine-1-carboxylate, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 4.36 (t, J = 6.0 Hz, 2H), 3.70 (t, J = 6.0 Hz, 2H), 2.26 (s, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 163.27, 65.80, 41.57, 25.96. HRMS (ESI) *m/z* calculated C₅H₈ClNNaO₂ [M+Na]⁺ 172.0136, found 172.0132.

3-Chloroethyl aziridine-1-carboxylate, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 4.26 (t, J = 6.0 Hz, 2H), 3.64 (t, J = 6.5 Hz, 2H), 2.22 (s, 4H), 2.16-2.10 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 163.58, 63.25, 41.08, 31.61, 25.82. HRMS (ESI) m/z calculated C₆H₁₀ClNNaO₂ [M+Na]⁺ 186.0292, found 186.0283.

(1R,2R,5S)-2-isopropyl-5-methylcyclohexyl aziridine-1-carboxylate, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 4.54 (td, J = 11.0, 4.5 Hz, 1H), 2.17 (s, 3H), 1.99 (d, J = 12.0 Hz, 1H), 1.95-1.85 (m, 1H), 1.66 (d, J = 12.0 Hz, 2H), 1.53-1.43 (m, 1H), 1.39 (t, J = 12.0 Hz, 1H), 1.25-0.91 (m, 3H), 0.88 (d, J = 7.0 Hz, 7H), 0.75 (d, J = 7.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 163.64, 47.09, 40.83, 34.20, 31.37, 26.23, 25.79, 23.40, 21.99, 20.76, 16.29. HRMS (ESI) *m/z* calculated C₁₃H₂₃NNaO₂ [M+Na]⁺ 248.1621, found 248.1627.

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((*R*)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,1 3,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl aziridine-1-carboxylate, white solid. ¹**H** NMR (600 MHz, CDCl₃) δ 5.38 (d, J = 4.0 Hz, 1H), 4.55-4.47 (m, 1H), 2.38-2.31 (m, 2H), 2.19 (s, 4H), 2.03-1.94 (m, 2H), 1.91-1.80 (m, 3H), 1.70-1.40 (m, 8H), 1.40-1.30 (m, 3H), 1.27-1.22 (m, 1H), 1.19-1.06 (m, 7H), 1.03-0.94 (m, 6H), 0.91 (d, J = 6.6 Hz, 3H), 0.86 (dd, J = 6.6, 2.8 Hz, 6H), 0.68 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 163.35, 139.50, 122.80, 76.20, 56.70, 56.16, 50.02, 42.33, 39.74, 39.53, 38.08, 36.94, 36.57, 36.20, 35.80, 31.89 (d, *J* = 6.0 Hz), 28.23, 28.02, 27.74, 25.84, 24.29, 23.84, 22.82, 22.57, 21.05, 19.31, 18.73, 11.87. **HRMS** (ESI) *m/z* calculated C₃₀H₄₉NNaO₂ [M+Na]⁺ 478.3655, found 478.3652.

4. Mechanistic Studies

4.1 DFT calculations

All DFT calculations described in this work were carried out with the Gaussian16 suite of programs^[6]. All geometry optimizations and single point calculations were presented by using the B3LYP functional^[7,8] and GD3BJ empirical dispersion^[9] and def2-SVP basis set^[10] for all atoms by using the SMD solvent model^[11] for dichloromethane. The nature of the local minima was established with analytical frequency calculations and geometry optimizations were computed without any symmetry constraints. Intrinsic reaction coordinate (IRC)^[12,13] calculations were carried out to ascertain the true nature of the transition states. 3D structures of optimized geometries were generated using CYLview visualization software.

Figure S1. Gibbs free energy profile (in kcal mol⁻¹) of the generation for trifluoromethyl vinyl rhodium carbene

4.3 Gibbs free energy profile (in kcal mol⁻¹) of one carbon insertion into C–N bond

Figure S2. Gibbs free energy profile (in kcal mol⁻¹) of one carbon insertion into C–N bond.

4.4 Cartesian coordinates of all optimized structures

1	a

Zero-point corre	ection=		0.153775 (Hartree/Particle)
Thermal corre	Thermal correction to Energy=		0.166696
Thermal corre	ction to Enthalpy=		0.167640
Thermal corre	ction to Gibbs Free Ene	ergy=	0.112227
Sum of electro	nic and zero-point Ener	rgies=	-793.558845
Sum of electro	nic and thermal Energi	es=	-793.545924
Sum of electro	nic and thermal Enthal	pies=	-793.544980
Sum of electro	nic and thermal Free E	nergies=	-793.600393
Ν	-2.63356000	1.61125900	0.00003100
Ν	-3.30484600	2.52781900	0.00004800
С	-2.52788100	-0.76711200	-0.00007700
F	-3.86273400	-0.63078100	-0.00046300
F	-2.19322600	-1.50508200	-1.07681000
F	-2.19388700	-1.50489800	1.07701200
С	4.17392300	-1.12510000	-0.00007100
С	2.78141300	-1.22360100	0.00011100
С	1.96710200	-0.07213900	0.00018600
С	2.60490800	1.18729900	0.00008000
С	3.99500500	1.28445900	-0.00010400
С	4.78908500	0.13008700	-0.00017700
Н	4.78139000	-2.03379300	-0.00013400
Н	2.30548700	-2.20796000	0.00019600
Н	2.00952800	2.10269000	0.00014200

Н	4.46618200	2.27079600	-0.00017700
С	0.51224100	-0.24335000	0.00035000
С	-0.40505500	0.75122200	-0.00000100
Н	0.17699400	-1.28379600	0.00072300
Н	-0.08713900	1.79690600	-0.00035500
С	-1.84303400	0.56774600	-0.00001300
Н	5.87878200	0.21139700	-0.00030700

Int1'

Zero-point correction=	0.827789 (Hartree/Particle)
Thermal correction to Energy=	0.883141
Thermal correction to Enthalpy=	0.884085
Thermal correction to Gibbs Free Energy=	0.741297
Sum of electronic and zero-point Energies=	-2858.586034
Sum of electronic and thermal Energies=	-2858.530683
Sum of electronic and thermal Enthalpies=	-2858.529738
Sum of electronic and thermal Free Energies=	-2858.672527

N	-0.77719100	-0.79359800	-3.09301200
Ν	-1.85455700	-0.87212600	-3.40179000
С	1.25231400	0.40558200	-3.33938000
F	0.46544500	1.45967000	-3.60323500
F	2.29943900	0.81647000	-2.62133200
F	1.74111900	-0.02127500	-4.52552900
Rh	-0.88362400	0.92322600	1.76666700
0	0.91440300	0.23096100	2.48602500
0	-0.07597400	2.76169700	1.29824000
0	1.55601600	-0.45060200	0.44468300
0	0.56616200	2.02645600	-0.72382000
С	1.74101600	-0.30835000	1.68861500
С	3.05529700	-0.82261100	2.28831000
С	2.70585200	-1.85051000	3.38026500
Н	2.08750300	-1.40010800	4.16970400
Н	3.62942000	-2.23798700	3.83839800
Н	2.15516400	-2.70332900	2.95187600
С	3.91957000	-1.48821500	1.21433500
Н	3.40806400	-2.36044400	0.78791500
Н	4.86648800	-1.83034300	1.66048800
Н	4.15137500	-0.80290700	0.38869400
С	3.79865600	0.37942600	2.94738200
Н	3.20639100	0.71302500	3.81180800
Н	4.75592300	-0.00583400	3.33205100
С	4.04059700	1.55120100	2.02636000
С	5.20190600	1.64961600	1.24466500

Н	5.97683400	0.88353400	1.32864600
С	5.37585200	2.72584000	0.37001900
Н	6.28852000	2.79815700	-0.22748000
С	4.39127800	3.71139400	0.25629400
Н	4.53523500	4.54985000	-0.42983100
С	3.22081600	3.63748400	1.02702000
С	3.07242900	2.55908100	1.91110300
Н	2.17092700	2.49698000	2.52135400
С	2.11702900	4.65984000	0.89678200
Н	2.53651600	5.63926500	0.61826000
Н	1.61642700	4.78021200	1.86850600
С	1.02904500	4.31056200	-0.16451000
С	1.61268600	4.33416700	-1.58115000
Н	2.41031600	3.59068000	-1.70772900
Н	2.02654400	5.33247800	-1.79320400
Н	0.83670400	4.11613700	-2.32889400
С	-0.11939300	5.32995600	-0.05426200
Н	-0.92092700	5.09596400	-0.77318500
Н	0.25458600	6.34145800	-0.27785200
Н	-0.55244500	5.33430000	0.95623600
С	0.46218900	2.92443800	0.16129800
Rh	-0.20495900	0.16414300	-0.41026600
0	-1.99897200	0.86203400	-1.11710100
Ο	-1.02960600	-1.66700300	0.04536700
Ο	-2.64816700	1.54349000	0.92036600
0	-1.66870500	-0.94670000	2.07321600
С	-2.82931100	1.40567800	-0.32259000
С	-4.13136400	1.92810200	-0.93774600
С	-3.75854900	2.97461000	-2.00464100
Н	-3.13001000	2.53331300	-2.79126200
Н	-4.67217200	3.37506100	-2.47126000
Н	-3.20829300	3.81586000	-1.55369000
С	-5.01658200	2.56924400	0.13502700
Н	-4.50803700	3.42475500	0.60317400
Н	-5.94916800	2.93243700	-0.32438900
Н	-5.27596300	1.85774200	0.93046700
С	-4.86360500	0.74073500	-1.63587000
Н	-4.25380600	0.42453900	-2.49423000
Н	-5.81189300	1.13618100	-2.03202200
С	-5.12779700	-0.44982600	-0.74527600
С	-6.31421100	-0.57221900	-0.00568800
Н	-7.09253700	0.18903200	-0.10200600
С	-6.50849200	-1.66561900	0.84318400
Н	-7.44030100	-1.75589600	1.40770200

С	-5.52007700	-2.64552100	0.97324800
Н	-5.68007900	-3.49715400	1.63932700
С	-4.32538100	-2.54844000	0.24355900
С	-4.15675900	-1.45298000	-0.61500700
Н	-3.23672400	-1.37398300	-1.19220900
С	-3.21825100	-3.56510100	0.38746400
Н	-3.63805100	-4.55016500	0.64439500
Н	-2.69661100	-3.67185900	-0.57488300
С	-2.15452200	-3.22507600	1.47582400
С	-2.76872200	-3.26686800	2.87831300
Н	-3.57052200	-2.52556700	2.99584800
Н	-3.18889700	-4.26698100	3.06766400
Н	-2.00782000	-3.06282700	3.64569400
С	-1.00502600	-4.24487400	1.37685000
Н	-0.20212000	-4.00642600	2.09235200
Н	-1.37954400	-5.25475000	1.60573100
Н	-0.57281000	-4.25629000	0.36681600
С	-1.57628100	-1.83639500	1.18072200
С	5.12705400	-4.67575700	-1.32048800
С	4.46415300	-3.56161700	-1.83854700
С	3.07154900	-3.40963000	-1.68974800
С	2.36450500	-4.41382600	-0.99675000
С	3.02636000	-5.52563900	-0.47953900
С	4.41149700	-5.66382300	-0.63782800
Н	6.20863400	-4.77019600	-1.44628400
Н	5.02944400	-2.78560800	-2.36134400
Н	1.29011300	-4.31263200	-0.83767600
Н	2.45917200	-6.28792400	0.06080600
С	2.43511900	-2.19882300	-2.21554600
С	1.11081000	-1.95460600	-2.22502900
Н	3.12991600	-1.44248300	-2.58613000
Н	0.40088000	-2.69390800	-1.85031600
С	0.48050700	-0.68718800	-2.62234000
Н	4.92824800	-6.53397600	-0.22565700

TS1'

Zero-point correction=	0.825248 (Hartree/Particle)
Thermal correction to Energy=	0.880691
Thermal correction to Enthalpy=	0.881635
Thermal correction to Gibbs Free Energy=	0.738537
Sum of electronic and zero-point Energies=	-2858.570508
Sum of electronic and thermal Energies=	-2858.515066
Sum of electronic and thermal Enthalpies=	-2858.514122
Sum of electronic and thermal Free Energies=	-2858.657220

N	0.81150500	0.94656300	-3.20657700
Ν	1.89354700	1.17471600	-3.28563200
С	-1.35251800	-0.28532000	-3.16013700
F	-0.57954600	-1.31618900	-3.52946600
F	-2.43888300	-0.76412800	-2.54146600
F	-1.77456400	0.29530200	-4.30860300
Rh	0.94843100	-1.01290800	1.71463700
0	-0.84530000	-0.37358400	2.51400400
0	0.14577300	-2.83574600	1.17185700
0	-1.54559800	0.38032300	0.51685800
0	-0.55396200	-2.01978800	-0.80212200
С	-1.69459900	0.18389500	1.75979800
С	-3.00578900	0.66061500	2.39822200
С	-2.65070200	1.65765600	3.51628900
Н	-2.00997700	1.19086000	4.27791000
Н	-3.57014000	2.01614100	4.00541100
Н	-2.12031600	2.53230200	3.10638400
С	-3.89977000	1.34563200	1.36002200
Н	-3.40780600	2.23570700	0.94490700
Н	-4.84092700	1.66446900	1.83498200
Н	-4.14153500	0.67908400	0.52174600
С	-3.72018800	-0.57281300	3.03023700
Н	-3.10343300	-0.92960400	3.86790000
Н	-4.67276800	-0.21413000	3.45077000
С	-3.97044900	-1.71346100	2.07275600
С	-5.15613200	-1.80514200	1.32769100
Н	-5.94174200	-1.05823300	1.46741600
С	-5.34061100	-2.85058500	0.41850600
Н	-6.27206000	-2.91835300	-0.14986500
С	-4.34259300	-3.81142300	0.23359700
Н	-4.49490400	-4.62622300	-0.47876300
С	-3.14698400	-3.74315200	0.96537800
С	-2.98763600	-2.69611800	1.88470900
Η	-2.06623200	-2.63920600	2.46482700
С	-2.03042700	-4.73848200	0.75657600
Н	-2.44296600	-5.71373200	0.45380400
Η	-1.49407900	-4.88765600	1.70488500
С	-0.98613100	-4.32775900	-0.32607000
С	-1.62054000	-4.29618500	-1.72041700
Н	-2.43033400	-3.55805800	-1.78543200
Н	-2.03105900	-5.28930100	-1.96196100
Н	-0.87461400	-4.03602000	-2.48489400
С	0.17600400	-5.33736900	-0.30353800

Н	0.94887500	-5.06084900	-1.03861900
Н	-0.19444200	-6.34237800	-0.56032500
Н	0.64500300	-5.38220700	0.68978000
С	-0.41937900	-2.95137300	0.04523200
Rh	0.19406600	-0.15139300	-0.43617300
0	1.98986300	-0.76283500	-1.21529000
0	1.00965000	1.66555700	0.10872000
0	2.68876700	-1.55900000	0.76467700
0	1.70728400	0.85897500	2.08659700
С	2.84253000	-1.34286100	-0.46752800
С	4.14134300	-1.80735200	-1.13687500
С	3.76627300	-2.76470200	-2.28310600
Н	3.12746400	-2.26504400	-3.02525400
Н	4.67790800	-3.11928600	-2.78920500
Н	3.22512200	-3.64402700	-1.89863400
С	5.03746900	-2.52902700	-0.12583600
Н	4.53535100	-3.42083400	0.27688900
Н	5.96716700	-2.85124800	-0.62041000
Н	5.30117400	-1.88222300	0.72166900
С	4.86764900	-0.56546500	-1.73915100
Н	4.26124900	-0.18934700	-2.57553700
Н	5.82060200	-0.92324300	-2.15941900
С	5.11934100	0.55916000	-0.76321300
С	6.30034100	0.64025500	-0.00937700
Н	7.08456600	-0.10801600	-0.14959900
С	6.48256900	1.67853200	0.90893900
Н	7.41024100	1.73723700	1.48435400
С	5.48891600	2.64464100	1.09369200
Н	5.64129900	3.45447200	1.81175300
С	4.29914700	2.58692300	0.35209900
С	4.14166000	1.54518700	-0.57221600
Н	3.22443900	1.49864100	-1.15634300
С	3.18363400	3.58630500	0.54420100
Н	3.59301100	4.55915200	0.85828500
Н	2.66987300	3.74149500	-0.41587100
С	2.11269000	3.17852900	1.60181500
С	2.70908000	3.17641900	3.01261900
Н	3.52979700	2.45294300	3.10784000
Н	3.09873900	4.17854500	3.25065600
Н	1.94571500	2.91730400	3.76079800
С	0.94336100	4.17758900	1.52902100
Н	0.13620500	3.89282000	2.22262900
Н	1.29255300	5.18468300	1.80555500
Н	0.52535400	4.22413100	0.51372300

С	1.57128800	1.78806200	1.24532400
С	-5.14489000	4.89100100	-1.59752000
С	-4.45863100	3.77795500	-2.08346900
С	-3.13649900	3.50799300	-1.67483600
С	-2.52752700	4.38057000	-0.74673200
С	-3.21445400	5.49038000	-0.26265500
С	-4.52470000	5.75149300	-0.68635700
Н	-6.16852200	5.08548600	-1.92633300
Н	-4.94402900	3.10055100	-2.79074200
Н	-1.51968100	4.17532700	-0.38437400
Н	-2.73131900	6.15317600	0.45929300
С	-2.46891300	2.32559700	-2.20827000
С	-1.17893700	1.97644500	-1.97171900
Н	-3.11145800	1.66851400	-2.79821300
Н	-0.53493500	2.62979500	-1.37940600
С	-0.61477000	0.66848700	-2.22902500
Н	-5.06216900	6.62050900	-0.29906500

carbene

Zero-point correction=	0.817941 (Hartree/Particle)
Thermal correction to Energy=	0.871221
Thermal correction to Enthalpy=	0.872165
Thermal correction to Gibbs Free Energy=	0.731840
Sum of electronic and zero-point Energies=	-2749.163699
Sum of electronic and thermal Energies=	-2749.110419
Sum of electronic and thermal Enthalpies=	-2749.109475
Sum of electronic and thermal Free Energies=	-2749.249801

С	1.06688800	0.42118100	3.15154300
F	0.20050000	-0.53699000	3.50725000
F	2.29926800	-0.12917700	3.15064900
F	1.03967500	1.32754300	4.16279600
Rh	-0.96210600	-1.43699300	-1.48052500
0	0.74713600	-0.94390000	-2.53437900
0	-0.04346600	-3.07059100	-0.59789500
0	1.54316300	0.27306200	-0.82000000
0	0.78451000	-1.80909000	1.06963600
С	1.61206400	-0.19691400	-1.99750400
С	2.84943800	0.17216500	-2.82584400
С	2.36814400	0.84677600	-4.12295900
Н	1.71321800	0.17828400	-4.69954300
Н	3.23311400	1.11439000	-4.75011800
Н	1.80939000	1.77023700	-3.90085300
С	3.76078300	1.12891600	-2.05007400

Н	3.23719700	2.06797500	-1.81749300
Н	4.64636300	1.37133500	-2.65832000
Н	4.09937300	0.69361600	-1.10064700
С	3.59910200	-1.14576200	-3.19241800
Н	2.95961500	-1.71727600	-3.88066600
Н	4.50604300	-0.85790500	-3.74690300
С	3.96298600	-2.01543700	-2.01248500
С	5.18532400	-1.87127600	-1.33814200
Н	5.91627700	-1.14068300	-1.69381400
С	5.47567900	-2.66393200	-0.22410800
Н	6.43471100	-2.55039600	0.28830900
С	4.54924800	-3.60374500	0.23625800
Н	4.78516800	-4.22126300	1.10658800
С	3.31980000	-3.76925100	-0.42015500
С	3.05299400	-2.97478900	-1.54461200
Н	2.10382700	-3.10117600	-2.06651100
С	2.27924100	-4.74514600	0.07522800
Н	2.76592600	-5.60462300	0.56255100
Н	1.70755600	-5.13180600	-0.78095300
С	1.26508400	-4.15142800	1.10018200
С	1.95885300	-3.78633100	2.41687700
Н	2.74056400	-3.02921900	2.27231300
Н	2.41911900	-4.68623700	2.85453900
Н	1.23703800	-3.37930100	3.13956700
С	0.15822100	-5.18820900	1.36270400
Н	-0.59053300	-4.79121600	2.06680100
Н	0.59347200	-6.09822700	1.80502200
Н	-0.35640800	-5.46498300	0.43156300
С	0.61370900	-2.91372500	0.46982000
Rh	-0.08242900	-0.09416500	0.37591400
0	-1.79673600	-0.58418900	1.39509300
Ο	-0.98619500	1.53323600	-0.49716400
Ο	-2.61068400	-1.80373200	-0.30954700
0	-1.81978500	0.30250700	-2.18359200
С	-2.67793100	-1.32622900	0.85518000
С	-3.90807800	-1.64570200	1.71381600
С	-3.42281000	-2.38970700	2.97184600
Н	-2.71524100	-1.77627800	3.54752300
Н	-4.28070600	-2.63405900	3.61800300
Н	-2.92072900	-3.33223500	2.70057800
С	-4.89530100	-2.52118100	0.93649600
Н	-4.43175900	-3.47650900	0.65029700
Н	-5.77223500	-2.73858800	1.56641900
Н	-5.24180500	-2.02909300	0.01757200

С	-4.57351300	-0.30425500	2.15055300
Н	-3.88103300	0.21382000	2.82982700
Н	-5.47158700	-0.56570900	2.73185800
С	-4.94332500	0.61951600	1.01437500
С	-6.20186200	0.56156000	0.39593800
Н	-6.95439600	-0.13947500	0.76608100
С	-6.49905000	1.39917200	-0.68277300
Н	-7.48513600	1.35068600	-1.15233000
С	-5.54310500	2.29717000	-1.16611000
Н	-5.78306800	2.94664100	-2.01190600
С	-4.27707700	2.37637600	-0.56590900
С	-4.00472600	1.54139600	0.52801400
Н	-3.02775900	1.60274500	1.00762000
С	-3.20458400	3.30141600	-1.09114200
Н	-3.66384700	4.19060200	-1.55073400
Н	-2.58209700	3.64802300	-0.25346000
С	-2.26301600	2.66972200	-2.16234400
С	-3.02827900	2.35534600	-3.45097900
Н	-3.83555300	1.63066300	-3.27917700
Н	-3.47049600	3.27993600	-3.85413300
Н	-2.35671500	1.93386500	-4.21319800
С	-1.11882100	3.65688900	-2.45931200
Н	-0.40938000	3.22961900	-3.18608400
Н	-1.52615400	4.58647100	-2.88681300
Н	-0.56552100	3.91026000	-1.54350200
С	-1.64550500	1.39279500	-1.57840900
С	4.05067600	6.27555100	2.22120500
С	3.50058000	5.05328700	2.59361600
С	2.63075000	4.35488200	1.72062100
С	2.33186700	4.92520300	0.45682900
С	2.88409300	6.14548600	0.09119000
С	3.74330800	6.82326500	0.97011600
Н	4.72006600	6.80512800	2.90240500
Н	3.73475400	4.61597200	3.56724100
Н	1.66690500	4.40787500	-0.23555100
Н	2.64934900	6.57849200	-0.88356300
С	2.09492300	3.09448700	2.16112400
С	1.25020000	2.27567800	1.42916100
Н	2.41660500	2.77852600	3.15524800
Н	0.95514100	2.60539000	0.43119900
С	0.76008500	1.01547300	1.79528700
Н	4.17458800	7.78287900	0.67495300

Int1

Zero-point corre	ection=		1.014652 (Hartree/Particle)
Thermal correct	tion to Energy=		1.081190
Thermal correction to Enthalpy=		1.082134	
Thermal correct	tion to Gibbs Free En	ergy=	0.911100
Sum of electro	nic and zero-point Ene	ergies=	-3341.481826
Sum of electron	nic and thermal Energ	ies=	-3341.415288
Sum of electron	nic and thermal Enthal	lpies=	-3341.414344
Sum of electro	nic and thermal Free E	Energies=	-3341.585378
С	-0.05542800	-0.73232300	1.90482700
С	1.11091400	-0.37189000	2.59657700
Н	1.32616800	-0.85098000	3.55609600
С	2.03201100	0.51744900	2.08422200
Н	1.80387600	0.95635000	1.11647700
С	3.28043300	0.89967300	2.69432000
С	4.08112700	1.87153100	2.04833900
С	3.75770300	0.31522200	3.89279700
С	5.31043600	2.24976500	2.58033700
Н	3.72529400	2.32168000	1.12154500
С	4.98886900	0.69112600	4.41580200
Н	3.17031800	-0.45027100	4.40040500
С	5.76766000	1.65868600	3.76335900
Н	5.91681400	3.00208300	2.07144900
Н	5.35274500	0.22779500	5.33542700
Н	6.73555300	1.94828600	4.17967100
Rh	-1.97803500	1.25454400	-1.63011300
0	-2.58269300	-0.60270800	-2.28318100
0	-3.64614600	1.44366300	-0.42812100
0	-1.50626400	-1.63288800	-0.60199400
0	-2.65392600	0.31838900	1.24627300
С	-2.24166900	-1.63241300	-1.63590000
С	-2.74538400	-2.98674800	-2.16116800
С	-2.07991400	-3.22188700	-3.53080300
Н	-2.34580100	-2.42778400	-4.24355200
Н	-2.40839900	-4.18749700	-3.94677100
Н	-0.98255200	-3.24802600	-3.43654200
С	-2.38460100	-4.12742100	-1.20482000
Н	-1.29744200	-4.25598700	-1.13557600
Н	-2.81377500	-5.07021600	-1.57880400
Н	-2.76783300	-3.94951800	-0.19170200
С	-4.28848500	-2.90522100	-2.36431800
Н	-4.49202700	-2.13846000	-3.12512500
Н	-4.60909400	-3.87463800	-2.77693700
С	-5.06903500	-2.59296600	-1.11010400

С	-5.53870500	-3.60870600	-0.26257700
Н	-5.38212500	-4.65555100	-0.53460800
С	-6.20880000	-3.28863200	0.92117900
Н	-6.57730100	-4.08759400	1.57014100
С	-6.40959000	-1.95293000	1.28097700
Н	-6.92967500	-1.70988200	2.21113100
С	-5.95385900	-0.91849000	0.44975900
С	-5.30142300	-1.25999600	-0.74391300
Н	-4.95158800	-0.46453100	-1.40137300
С	-6.10474800	0.53346900	0.83488600
Н	-6.98747700	0.66577400	1.47989100
Н	-6.26300700	1.13827500	-0.06978800
С	-4.88315100	1.12486300	1.60084600
С	-4.70584000	0.44702900	2.96313900
Н	-4.49478000	-0.62569500	2.86290300
Н	-5.62427500	0.56940600	3.55873800
Н	-3.87165200	0.89808200	3.51915800
С	-5.10121600	2.63711100	1.79414400
Н	-4.23770800	3.09556200	2.30241000
Н	-5.99393600	2.81148500	2.41533700
Н	-5.24337800	3.14534500	0.82962600
С	-3.62916700	0.94705300	0.73360200
Rh	-0.86792100	0.13137400	0.25786800
0	-0.36604200	2.02955200	0.91742000
0	0.82764200	0.06109400	-0.92596100
0	-1.33108800	3.03338300	-0.84833400
0	-0.22741400	1.01048000	-2.67036500
С	-0.71310800	3.05807700	0.24847100
С	-0.33862400	4.42878900	0.83135600
С	-0.80218900	4.47919200	2.29705800
Н	-0.33167700	3.68193200	2.88944100
Н	-0.53556300	5.45037800	2.74276000
Н	-1.89523600	4.36008100	2.36687700
С	-1.01024800	5.54849300	0.02940600
Н	-2.10533100	5.44623500	0.05063900
Н	-0.74631400	6.52390900	0.46750000
Н	-0.69363800	5.54311600	-1.02217300
С	1.21221800	4.58686700	0.79146100
Н	1.64247000	3.90115700	1.53663300
Н	1.44021800	5.61163600	1.12351800
С	1.85772500	4.31793000	-0.54699200
С	2.13167000	5.32721000	-1.48192600
Н	1.88191700	6.36573800	-1.24997300
С	2.73728900	5.00907400	-2.70264400

Н	2.95095100	5.80347100	-3.42262800
С	3.08709700	3.68855100	-3.00575600
Н	3.57811200	3.45732500	-3.95455300
С	2.82485000	2.66151100	-2.08684400
С	2.20387800	3.00355500	-0.88053800
Н	1.98374400	2.21235800	-0.17201400
С	3.18314200	1.21673400	-2.33915200
Н	4.05336200	1.15399800	-3.01108200
Н	3.47263600	0.75094300	-1.38588700
С	2.05741500	0.34256400	-2.97014400
С	1.79143000	0.77309500	-4.41588500
Н	1.46675100	1.82065200	-4.47689600
Н	2.71248200	0.65869900	-5.00900300
Н	1.00756800	0.15238900	-4.87428000
С	2.50805000	-1.12745700	-2.92493000
Н	1.73151200	-1.78912000	-3.34057800
Н	3.42174500	-1.25790700	-3.52587400
Н	2.71912600	-1.43739800	-1.89389300
С	0.78069700	0.48476500	-2.12609700
С	-0.90415300	-1.71296500	2.70122300
F	-1.60768400	-1.02461700	3.63063400
F	-0.17112400	-2.62796000	3.38124400
F	-1.78171800	-2.41194300	1.97495700
С	1.23195400	-3.40867500	-0.45935400
С	0.98388200	-4.25076500	0.75831300
Н	0.40354700	-2.89022500	-0.94346800
Н	2.07307600	-3.68948500	-1.10086300
Н	1.65246700	-5.09936100	0.93995800
Н	-0.03315400	-4.35770500	1.14566900
Ν	1.55328100	-2.93095500	0.86637000
С	2.82249200	-2.66033800	1.32440600
0	3.31878300	-3.13302900	2.32545900
0	3.40844400	-1.73488000	0.53933300
С	4.79655200	-1.42291300	0.77760300
Н	4.89406400	-0.35168400	0.56789000
Н	5.02811900	-1.60895200	1.83351500
С	5.66983400	-2.23325400	-0.14249600
С	6.11833900	-1.68687400	-1.35333200
С	5.99837600	-3.56169800	0.17128100
С	6.88347400	-2.45223200	-2.23828100
Н	5.86151800	-0.65405700	-1.60286100
С	6.76025100	-4.32877700	-0.71350700
Н	5.64760800	-3.99178600	1.11238100
С	7.20412500	-3.77556400	-1.91997800

Н	7.22920000	-2.01510100	-3.17844300
Н	7.01208700	-5.36170400	-0.46004200
Н	7.80179100	-4.37591100	-2.61058200

TS1

Zero-point correction=	1.015336 (Hartree/Particle)
Thermal correction to Energy=	1.080262
Thermal correction to Enthalpy=	1.081206
Thermal correction to Gibbs Free Energy=	0.915812
Sum of electronic and zero-point Energies=	-3341.476106
Sum of electronic and thermal Energies=	-3341.411180
Sum of electronic and thermal Enthalpies=	-3341.410236
Sum of electronic and thermal Free Energies=	-3341.575630

С	0.16335900	-0.89307800	1.78816500
С	1.21046200	-0.23548900	2.54936400
Н	1.26316900	-0.42477500	3.62646900
С	2.15762400	0.54748100	1.97584600
Н	2.10536800	0.68099900	0.89758400
С	3.28259600	1.18895800	2.64627600
С	4.22314900	1.89072100	1.86370100
С	3.48195600	1.13120300	4.04273700
С	5.32263200	2.51633800	2.45161700
Н	4.08024900	1.94364700	0.78355300
С	4.57854300	1.75839000	4.62823600
Н	2.77263400	0.59210200	4.67313800
С	5.50353500	2.45287700	3.83634900
Н	6.03904400	3.05563100	1.82738800
Н	4.71790400	1.70626300	5.71072000
Н	6.36311200	2.94195900	4.30114500
Rh	-1.91173900	1.25762200	-1.68790000
0	-2.70299800	-0.56087600	-2.25848900
0	-3.47248200	1.59767800	-0.38280000
0	-1.67254900	-1.62839900	-0.57220400
0	-2.43853300	0.47667000	1.27032700
С	-2.43311500	-1.59556500	-1.58764200
С	-3.06452500	-2.91803500	-2.05080200
С	-2.53899200	-3.21078500	-3.46879300
Н	-2.81361400	-2.40807500	-4.16807800
Н	-2.96406900	-4.15689200	-3.83963200
Н	-1.44128600	-3.30779000	-3.46962200
С	-2.69120400	-4.06921400	-1.11177400
Н	-1.60853000	-4.25465300	-1.12649000
Н	-3.19658900	-4.99129300	-1.43933200

Н	-2.98456800	-3.86234500	-0.07433100
С	-4.61115100	-2.73656500	-2.11887600
Н	-4.83016800	-1.98129300	-2.88719000
Н	-5.03354200	-3.69299700	-2.46504900
С	-5.25112400	-2.32744800	-0.81399600
С	-5.71336400	-3.27688100	0.11063000
Н	-5.65707900	-4.34100200	-0.13245900
С	-6.25099900	-2.86836300	1.33425200
Н	-6.61639500	-3.61536400	2.04402200
С	-6.32421000	-1.51012200	1.65596700
Н	-6.74254900	-1.19842900	2.61645300
С	-5.87161400	-0.54013300	0.74848300
С	-5.35296800	-0.96921000	-0.48190000
Н	-5.00501300	-0.22389400	-1.19691500
С	-5.88821500	0.93149200	1.08583900
Н	-6.71036000	1.15115800	1.78497500
Н	-6.06862300	1.51404800	0.17087400
С	-4.57514700	1.45828100	1.73961400
С	-4.35227700	0.82438400	3.11616400
Н	-4.22803900	-0.26436600	3.05080100
Н	-5.21469600	1.04065700	3.76655400
Н	-3.44982000	1.23182400	3.59312500
С	-4.66949900	2.98906900	1.87944300
Н	-3.74198500	3.40062900	2.30908700
Н	-5.50266300	3.25541600	2.54905800
Н	-4.83956200	3.46782000	0.90437700
С	-3.40145600	1.15076900	0.79841400
Rh	-0.76732500	0.08332700	0.14818600
0	-0.05456400	1.94795800	0.70830300
0	0.81964100	-0.18643300	-1.16091200
0	-1.07395900	2.99381400	-1.00188500
0	-0.25517000	0.85593500	-2.83979300
С	-0.37443800	2.98615000	0.04725900
С	0.14418500	4.33337500	0.57142600
С	-0.22324900	4.45071600	2.06054800
Н	0.21444400	3.62722900	2.64204600
Н	0.15060100	5.40383500	2.46681700
Н	-1.31620100	4.42628400	2.19808700
С	-0.48064100	5.48901000	-0.21664500
Н	-1.57698800	5.47978900	-0.12644500
Н	-0.11004500	6.44831700	0.17786100
Н	-0.23285800	5.43411800	-1.28524100
С	1.69735100	4.35721300	0.43784500
Н	2.11082400	3.65564200	1.17602800

Н	2.03174000	5.36639300	0.72516400
С	2.23493500	4.00077900	-0.92727700
С	2.52980700	4.96404100	-1.90368700
Н	2.38190300	6.02417000	-1.68207600
С	3.02545600	4.57327700	-3.15236000
Н	3.25680400	5.33257300	-3.90409900
С	3.24120100	3.22214200	-3.44382700
Н	3.64547200	2.93036900	-4.41657800
С	2.95522200	2.23971300	-2.48390200
С	2.44900200	2.65407500	-1.24643800
Н	2.21491800	1.89784700	-0.50317300
С	3.17046700	0.76596400	-2.73053400
Н	3.99081500	0.61782900	-3.45041400
Н	3.47458900	0.28904100	-1.78730400
С	1.93783000	-0.01570100	-3.27808200
С	1.61718100	0.41963500	-4.71119000
Н	1.37722000	1.48984100	-4.76787100
Н	2.48505300	0.22253000	-5.36021000
Н	0.75622400	-0.13776200	-5.10883600
С	2.27021300	-1.51709400	-3.24186800
Н	1.41208900	-2.12148100	-3.57685700
Н	3.11852800	-1.73085500	-3.91104500
Н	2.54239400	-1.83080700	-2.22606000
С	0.73361200	0.24126500	-2.35654100
С	-0.77406000	-1.62141700	2.74416100
F	-1.34259900	-0.71741200	3.56768000
F	-0.14887900	-2.51705900	3.55104300
F	-1.76927300	-2.29374000	2.14582100
С	0.89473200	-3.14040200	-0.23464600
С	0.53153100	-3.88645800	0.99427900
Н	0.11136900	-2.64623200	-0.80224000
Н	1.79269500	-3.43199500	-0.78211500
Н	1.16421700	-4.70961600	1.33575900
Н	-0.51545600	-3.93744700	1.28864600
Ν	1.13960500	-2.54889400	1.08851700
С	2.49996500	-2.47736700	1.52927800
0	2.88992500	-2.95965600	2.55949800
0	3.20952400	-1.78481800	0.65175500
С	4.63983200	-1.64600500	0.87412600
Н	4.87849200	-0.64159700	0.50676400
Н	4.83793900	-1.70183000	1.95092500
С	5.37065700	-2.70790200	0.10179900
С	5.69364100	-2.49674900	-1.24739000
С	5.68179800	-3.93920800	0.69770700

С	6.31898400	-3.50077000	-1.99050300
Н	5.45019400	-1.53918600	-1.71494700
С	6.30894300	-4.94341900	-0.04490600
Н	5.42631800	-4.10825600	1.74644700
С	6.62726600	-4.72605200	-1.38953300
Н	6.56847400	-3.32669200	-3.04012500
Н	6.55141500	-5.89840900	0.42786100
Н	7.11868100	-5.51145400	-1.96926300

Int2

С

Н

Zero-point correct	tion=		1.017289 (Hartree/Particle)
Thermal correction	ion to Energy=		1.081911
Thermal correction	ion to Enthalpy=		1.082855
Thermal correction	ion to Gibbs Free End	ergy=	0.920237
Sum of electroni	ic and zero-point Ene	ergies=	-3341.499487
Sum of electroni	ic and thermal Energi	ies=	-3341.434866
Sum of electroni	ic and thermal Enthal	pies=	-3341.433921
Sum of electroni	ic and thermal Free E	inergies=	-3341.596539
С	0.61407500	-1.80081300	0.59895400
С	1.84274400	-1.05055100	0.84951000
Н	1.86376600	-0.54637300	1.81564800
С	2.87576000	-0.88139100	-0.00602900
Н	2.83583100	-1.33522100	-1.00011700
С	4.08907700	-0.10781800	0.25265200
С	4.97686900	0.15226800	-0.81044500
С	4.42594000	0.40083500	1.52511600
С	6.13051900	0.91453200	-0.62355300
Н	4.74889800	-0.25218100	-1.79965300
С	5.57827600	1.16134400	1.71310700
Н	3.77929800	0.19139800	2.37911700
С	6.43700700	1.42979000	0.63936900
Н	6.79593300	1.10571800	-1.46953100
Н	5.81157800	1.54821100	2.70867800
Н	7.33840200	2.02891100	0.78945100
Rh	-2.16803800	2.02959700	-0.46323900
0	-3.19658000	0.88659800	-1.83854900
0	-3.44714100	1.49133200	1.06015900
0	-2.00695900	-0.94545900	-1.32361100
0	-2.23962500	-0.35293500	1.50045100
С	-2.90295200	-0.33372600	-1.97982000
С	-3.69292000	-1.12652100	-3.03050400

-4.39080400

-4.36220000

-0.43366500

0.60720000

-3.49251300

-3.84441400

Н	-4.05242100	-0.97055300	-5.17270000
Н	-2.42789100	-0.42991800	-4.67555500
С	-3.20359900	-2.57523400	-3.11324100
Н	-2.14558600	-2.61638300	-3.41040000
Н	-3.79066300	-3.12084500	-3.86843000
Н	-3.30777600	-3.09852400	-2.15370000
С	-5.20515500	-1.06912700	-2.65415300
Н	-5.54052700	-0.02761000	-2.76240700
Н	-5.74808500	-1.67012800	-3.40045800
С	-5.52531000	-1.55457800	-1.26041400
С	-5.82877400	-2.89961900	-0.99804200
Н	-5.87992000	-3.61387000	-1.82385100
С	-6.07770500	-3.32576700	0.30974300
Н	-6.32297200	-4.37362000	0.50247400
С	-6.01880400	-2.41948300	1.37223800
Н	-6.21595900	-2.76035200	2.39178000
С	-5.71904600	-1.06859900	1.13759400
С	-5.48685800	-0.65770900	-0.18298800
Н	-5.25917100	0.39075400	-0.37665700
С	-5.60319900	-0.07215300	2.26624500
Н	-6.26754500	-0.35978600	3.09628400
Н	-5.92766000	0.91710100	1.91212900
С	-4.16766400	0.07600800	2.85590300
С	-3.72434100	-1.21244100	3.55619800
Н	-3.68746200	-2.06304800	2.86340700
Н	-4.42786400	-1.45271000	4.36910900
Н	-2.72051000	-1.09769400	3.98887600
С	-4.16083900	1.24347600	3.85925400
Н	-3.15200900	1.39470500	4.27584300
Н	-4.84559100	1.02669600	4.69448800
Н	-4.48015600	2.18060000	3.38134100
С	-3.20616400	0.43206300	1.71338600
Rh	-0.83643300	0.04639000	0.05866700
0	0.15547300	1.23427100	1.43351100
0	0.41138100	0.62003500	-1.49172400
0	-1.05250800	3.05675500	0.91546800
0	-0.79485600	2.46538900	-1.92581800
С	-0.15677600	2.45562900	1.57272500
С	0.62441300	3.25420300	2.62461500
С	0.43558900	2.55846400	3.98479700
Н	0.80104600	1.52214500	3.95510500
Н	0.98967300	3.10208600	4.76637100
Н	-0.62822200	2.53919700	4.27135700
С	0.11368400	4.69598300	2.70033500

Н	-0.94855800	4.72333800	2.98431800
Н	0.68741100	5.25245600	3.45838700
Н	0.21631500	5.21574700	1.73812300
С	2.13579500	3.21821500	2.24918800
Н	2.48516200	2.18255600	2.35529900
Н	2.67185100	3.82398900	2.99677300
С	2.46270100	3.70428100	0.85759400
С	2.81920400	5.03702200	0.60103100
Н	2.88669000	5.74799300	1.42874200
С	3.10065600	5.45509000	-0.70311800
Н	3.38509900	6.49388200	-0.89125500
С	3.02905000	4.55056100	-1.76680200
Н	3.25996100	4.88217000	-2.78262600
С	2.67515000	3.21246400	-1.53635500
С	2.40017200	2.81151000	-0.22154300
Н	2.13438500	1.77349600	-0.03393300
С	2.57290100	2.20707800	-2.65803000
Н	3.24992000	2.48707300	-3.48038300
Н	2.89676000	1.22655600	-2.28521700
С	1.15072600	2.03766000	-3.27103000
С	0.70812600	3.31347400	-3.99286300
Н	0.65963400	4.17142500	-3.30880400
Н	1.42236600	3.55058800	-4.79711800
Н	-0.28747400	3.18664900	-4.44304500
С	1.17947700	0.85768200	-4.25943000
Н	0.17876900	0.67272000	-4.68219900
Н	1.86478100	1.08093300	-5.09219700
Н	1.52318000	-0.06351500	-3.76760500
С	0.17358100	1.68687500	-2.14220600
С	-0.03248000	-2.41654200	1.82132800
F	-0.14417700	-1.50938200	2.80564100
F	0.62285400	-3.46925900	2.39118900
F	-1.26304800	-2.91205400	1.55221200
С	0.49682600	-2.46731800	-1.90939400
С	-0.40203700	-3.37761100	-1.20889300
Н	0.23101400	-1.41808100	-2.01409700
Н	1.22343800	-2.87900500	-2.60908200
Н	-0.33610500	-4.44925200	-1.40035700
Н	-1.33541000	-2.98211900	-0.81892800
Ν	0.80801900	-2.83722500	-0.46803300
С	1.92814300	-3.83776200	-0.39813900
0	2.15512000	-4.55041800	-1.33686300
0	2.52745100	-3.79647700	0.74867000
С	3.69570500	-4.65572800	0.95878000

Н	3.66886100	-4.86049900	2.03487200
Н	3.54388200	-5.58419400	0.39513900
С	4.95235700	-3.93989700	0.55557800
С	5.61369900	-3.11164300	1.47415400
С	5.45624000	-4.05924100	-0.74877100
С	6.76594500	-2.41858500	1.09917500
Н	5.21734100	-3.00745300	2.48740500
С	6.60798300	-3.36348100	-1.12471600
Н	4.94007200	-4.69819700	-1.46892900
С	7.26431700	-2.54364800	-0.20098000
Н	7.26875600	-1.76861500	1.81828600
Н	6.99507000	-3.46200800	-2.14188400
Н	8.16175000	-1.99499500	-0.49628000

Int3

Zero-point correction=	0.341389 (Hartree/Particle)
Thermal correction to Energy=	0.364234
Thermal correction to Enthalpy=	0.365178
Thermal correction to Gibbs Free Energy=	0.284832
Sum of electronic and zero-point Energies=	-1276.445929
Sum of electronic and thermal Energies=	-1276.423084
Sum of electronic and thermal Enthalpies=	-1276.422140
Sum of electronic and thermal Free Energies=	-1276.502487

С	0.76125100	-1.43571600	-0.26606400
Ν	-0.18072300	-0.57087100	-0.93621000
С	-0.98648100	-1.11252900	-2.10607700
С	0.11325900	-0.18979100	-2.38051400
Н	-0.84329400	-2.18377200	-2.24544100
0	-1.53021000	1.29418700	-0.82677200
С	-0.87077000	0.44153800	-0.07709100
0	-0.78253900	0.39952400	1.11008300
Н	1.07767100	-0.58141400	-2.70365100
С	2.04336500	-0.94038100	0.02566500
С	2.56516400	0.29719500	-0.27497300
Н	2.68051200	-1.65331100	0.55684700
Н	-0.10992600	0.84930000	-2.62035600
С	0.21944700	-2.70187000	0.21726600
F	0.97987300	-3.25512700	1.18070200
F	-1.05354200	-2.59361400	0.69933300
F	0.09633800	-3.69939400	-0.74381400
Н	-2.01256300	-0.74266900	-2.12967200
С	-2.38444400	2.27693500	-0.14681700
Н	-1.84631600	2.64288600	0.73609400

Н	-2.48293700	3.08061500	-0.88522100
С	-3.70966500	1.66579000	0.20423600
С	-3.95902000	1.19122200	1.50035700
С	-4.69915000	1.52639900	-0.78208500
С	-5.18196900	0.58828200	1.80641700
Н	-3.18833900	1.29150800	2.26749600
С	-5.91926300	0.91993400	-0.47716000
Н	-4.50990000	1.89976700	-1.79229300
С	-6.16176900	0.45006100	0.81854400
Н	-5.36934500	0.22383700	2.81935200
Н	-6.68554100	0.81754900	-1.24949400
Н	-7.11764600	-0.02224300	1.05861800
Н	1.93099700	1.03992000	-0.76982700
С	3.91525900	0.74701200	0.02280900
С	4.29943800	2.07190900	-0.30509300
С	4.90464200	-0.06605400	0.63356600
С	5.58070200	2.55452200	-0.03901100
Н	3.56375700	2.72948300	-0.77832900
С	6.18330200	0.41976100	0.89997600
Н	4.66677800	-1.09810400	0.90146000
С	6.53904300	1.73443100	0.56823200
Н	5.83421900	3.58412400	-0.30840200
Н	6.91720200	-0.23951100	1.37296800
Н	7.54365800	2.10976400	0.77774200

TS2

Zero-point correction=	0.339587 (Hartree/Particle)
Thermal correction to Energy=	0.362209
Thermal correction to Enthalpy=	0.363153
Thermal correction to Gibbs Free Energy=	0.283847
Sum of electronic and zero-point Energies=	-1276.412954
Sum of electronic and thermal Energies=	-1276.390333
Sum of electronic and thermal Enthalpies=	-1276.389389
Sum of electronic and thermal Free Energies=	-1276.468694

С	0.66150400	-0.27544400	0.08779500
Ν	-0.04903600	0.95086100	0.11214900
С	0.35981300	2.11916500	-0.65190300
С	0.66628900	2.59493300	0.71493800
Н	1.20057100	1.89342700	-1.31028300
О	-2.19484800	1.71230000	0.01137300
С	-1.36818900	0.99659700	0.74651900
О	-1.59679500	0.45343900	1.78871500
Н	1.63725800	2.41172200	1.17158400

С	2.06132700	-0.39611500	-0.05756000
С	3.09185400	0.51269500	-0.13477100
Н	2.36249300	-1.44508200	-0.09333000
Н	-0.08871600	3.14290700	1.28148900
С	-0.11461000	-1.52680400	0.32394200
F	0.46484300	-2.57346400	-0.30944000
F	-0.23548400	-1.93319300	1.61694000
F	-1.38601600	-1.45367800	-0.15604400
Н	-0.46442400	2.59673700	-1.18658400
С	-3.56957200	1.85462700	0.49301500
Н	-3.54649600	1.89324600	1.58919100
Н	-3.89030400	2.82270400	0.09148200
С	-4.42536400	0.72975300	-0.01766100
С	-4.54000400	-0.46911200	0.70362900
С	-5.08965900	0.85681500	-1.24671000
С	-5.30711600	-1.52250600	0.20103000
Н	-4.01570800	-0.57625900	1.65492300
С	-5.85788300	-0.19639900	-1.74879700
Н	-5.00409000	1.78950000	-1.81089200
С	-5.96674300	-1.38825500	-1.02513200
Н	-5.39043200	-2.45236900	0.76894000
Н	-6.37401600	-0.08656200	-2.70575100
Н	-6.56777900	-2.21300600	-1.41633800
Н	2.90738700	1.58618600	-0.13458900
С	4.50345100	0.16386100	-0.23350300
С	5.46007700	1.20380700	-0.33538800
С	4.99999600	-1.16346500	-0.23151900
С	6.82572200	0.93803900	-0.43178600
Н	5.11053700	2.24047300	-0.34026500
С	6.36502500	-1.42619300	-0.32905500
Н	4.30881200	-2.00492300	-0.14901700
С	7.29319300	-0.38101200	-0.43035800
Н	7.53249400	1.76904400	-0.50960400
Н	6.71164800	-2.46349600	-0.32424000
Н	8.36243000	-0.59309000	-0.50592100

pro

Zero-point correction=	0.345871 (Hartree/Particle)
Thermal correction to Energy=	0.367654
Thermal correction to Enthalpy=	0.368599
Thermal correction to Gibbs Free Energy=	0.290744
Sum of electronic and zero-point Energies=	-1276.554047
Sum of electronic and thermal Energies=	-1276.532263
Sum of electronic and thermal Enthalpies=	-1276.531319

-1276.609174

С	0.84378800	-1.17184800	0.41454700
Ν	0.03393400	-0.02294300	0.55883600
С	0.76293000	1.25191200	0.49452800
С	1.91513200	1.22008000	1.49381000
Н	1.14087800	1.38629600	-0.53165200
0	-1.86121800	1.06360500	1.10634600
С	-1.23835100	-0.12661000	1.07825700
0	-1.73635600	-1.17113800	1.44944600
Н	1.49905800	1.05991200	2.50168400
С	2.16687300	-1.13290000	0.64831200
С	2.90038300	0.07954900	1.14855100
Н	2.76624400	-2.00882500	0.39610900
Н	2.44013600	2.18621300	1.50144700
С	0.23422100	-2.42388700	-0.19285200
F	1.14455600	-3.06226500	-0.96394200
F	-0.17161400	-3.32758500	0.71192100
F	-0.80780100	-2.13789200	-0.99032300
Н	0.06374900	2.06311700	0.71098700
С	-3.23938000	1.08103000	1.54189700
Н	-3.39221800	0.26054700	2.25529400
Н	-3.36367200	2.04167600	2.05743300
С	-4.18198200	0.97468100	0.37035300
С	-4.35465800	-0.24765900	-0.30159100
С	-4.88421800	2.10210500	-0.07751000
С	-5.21208400	-0.33403400	-1.40023400
Н	-3.80592400	-1.12764500	0.03979400
С	-5.74861600	2.01452200	-1.17336500
Н	-4.75326000	3.05707700	0.43891800
С	-5.91289800	0.79594200	-1.83771100
Н	-5.33845800	-1.28953200	-1.91575300
Н	-6.29265000	2.90081300	-1.50971400
Н	-6.58671200	0.72532800	-2.69541300
Н	3.42831200	-0.20658100	2.07372800
С	3.96991200	0.53118600	0.15911300
С	5.12187900	1.17774100	0.63631600
С	3.82066600	0.36665300	-1.22617400
С	6.09501600	1.65310000	-0.24508200
Н	5.25453900	1.30886900	1.71414500
С	4.79401200	0.84209200	-2.11195900
Н	2.93911500	-0.14451700	-1.61870600
С	5.93353700	1.48746000	-1.62542100
Н	6.98582500	2.15116200	0.14653000

Н	4.65974100	0.70312600	-3.18786000
Н	6.69512000	1.85684100	-2.31678600

TS2'

Zero-point correction=	0.338643 (Hartree/Particle)
Thermal correction to Energy=	0.361594
Thermal correction to Enthalpy=	0.362538
Thermal correction to Gibbs Free Energy=	0.281782
Sum of electronic and zero-point Energies=	-1276.401363
Sum of electronic and thermal Energies=	-1276.378412
Sum of electronic and thermal Enthalpies=	-1276.377468
Sum of electronic and thermal Free Energies=	-1276.458224

С	-0.80034300	1 61361000	0 31427100
C	-2.01261700	0.95308700	-0.00420100
Н	-2.65089800	1.54173700	-0.66892100
С	-2.47359600	-0.27544600	0.39279700
Н	-1.85569300	-0.88945700	1.05580700
С	-3.74342700	-0.87489000	0.01507700
С	-4.07613800	-2.16223500	0.50555600
С	-4.69713800	-0.24886000	-0.82748800
С	-5.28108500	-2.78441900	0.17941500
Н	-3.36259900	-2.67614500	1.15663400
С	-5.90005600	-0.87273800	-1.15137500
Н	-4.49151500	0.74346800	-1.23500100
С	-6.20788100	-2.14632300	-0.65287800
Н	-5.49911300	-3.77900200	0.57917400
Н	-6.61066600	-0.35769400	-1.80434100
Н	-7.15261500	-2.63121900	-0.91048100
С	-0.31983200	2.74505700	-0.50790900
F	-1.30211300	3.33801100	-1.21078400
F	0.65773100	2.41003600	-1.40076100
F	0.25896000	3.73633000	0.24491100
С	-0.55618200	1.16799700	2.67949000
С	0.80483000	1.47675300	2.24813700
Н	-1.34418700	1.91622300	2.76322100
Н	-0.78019000	0.13599600	2.95706100
Н	1.59872900	0.85923100	2.67618900
Н	1.07746700	2.53281600	2.16308700
Ν	0.30830900	0.91624600	0.98368300
С	0.87965400	-0.22578300	0.37617600
0	0.59073600	-0.57070700	-0.74181500
0	1.69285800	-0.86216400	1.22012700
С	2.38938800	-2.03409200	0.71244600

Н	2.57886100	-2.64019900	1.60655200
Н	1.71456000	-2.57364600	0.03583700
С	3.67321500	-1.64696800	0.02982100
С	4.84799200	-1.48807500	0.78070300
С	3.70592200	-1.40305800	-1.35184900
С	6.03666200	-1.09258700	0.16243900
Н	4.82882500	-1.68020800	1.85711400
С	4.89467900	-1.00837800	-1.97098700
Н	2.79126300	-1.51565400	-1.93721100
С	6.06116600	-0.85170600	-1.21533600
Н	6.94706600	-0.97521900	0.75556800
Н	4.91047200	-0.82255100	-3.04779900
Н	6.99084900	-0.54430400	-1.70090300

pro'

Zero-point correction=	0.343488 (Hartree/Particle)	
Thermal correction to Energy=	0.366248	
Thermal correction to Enthalpy=	0.367192	
Thermal correction to Gibbs Free Energy=	0.286060	
Sum of electronic and zero-point Energies=	-1276.531302	
Sum of electronic and thermal Energies=	-1276.508543	
Sum of electronic and thermal Enthalpies=	-1276.507599	
Sum of electronic and thermal Free Energies=	-1276.588731	

С	-0.73107300	1.34652700	0.65146200
С	-2.13397200	0.98363600	0.25916500
Н	-2.75708400	1.83119200	-0.04088400
С	-2.62128500	-0.26443700	0.30530800
Н	-1.94662600	-1.06799800	0.61578600
С	-3.98819800	-0.69186900	-0.02448300
С	-4.30765300	-2.06034000	0.06417800
С	-5.00082200	0.20254500	-0.42771200
С	-5.59023900	-2.52319200	-0.23804400
Н	-3.53256600	-2.76638600	0.37409400
С	-6.28080700	-0.25902700	-0.72960900
Н	-4.78541600	1.27021000	-0.50642200
С	-6.58291100	-1.62391800	-0.63648800
Н	-5.81437000	-3.59024900	-0.16257700
Н	-7.05163800	0.45053000	-1.04103800
Н	-7.58779700	-1.98163000	-0.87417400
С	-0.10708100	2.27113200	-0.41006700
F	-0.70241200	3.48083200	-0.37517700
F	-0.23580100	1.80731100	-1.65861200
F	1.20524100	2.46209700	-0.18415800

С	-0.54195500	1.93968300	2.09516000
С	0.46067900	0.79652200	2.37681700
Н	-0.12659200	2.95373400	2.12987600
Н	-1.46507000	1.89239100	2.68378300
Н	0.19637900	0.11745100	3.20111100
Н	1.50947100	1.11320000	2.48364900
Ν	0.15704900	0.25860700	1.04921100
С	0.81912700	-0.64601200	0.28197500
0	0.59704500	-0.85729200	-0.89508400
0	1.75017500	-1.27991600	1.02500400
С	2.63297000	-2.19219900	0.33830100
Н	2.85801000	-2.98165200	1.06671100
Н	2.09470800	-2.62643500	-0.51509800
С	3.89480500	-1.49604700	-0.10520000
С	5.10344500	-1.72209800	0.56753000
С	3.87261800	-0.59263100	-1.18181200
С	6.27259400	-1.06297300	0.17411900
Н	5.12754800	-2.42213800	1.40735600
С	5.03791300	0.07111800	-1.57063500
Н	2.93329500	-0.41055400	-1.70795400
С	6.24128100	-0.16341900	-0.89501400
Н	7.20884500	-1.25105300	0.70586800
Н	5.00886000	0.77200900	-2.40890100
Н	7.15306100	0.35461700	-1.20319500

5. References

- 1. M. Zhang, X. Yuan, L. Ma, J. Zhao, L. Gao, Chem J Chinese U. 2007, 28, 2330–2332.
- 2. P. Li, L. Liu, J. Liu, Org. Biomol. Chem, 2011, 9, 74-77.
- I. L. Odinets, O. I. Artyushin, K. A. Lyssenko, N. E. Shevchenko, V. G. Nenajdenko, G-V. Röschenthaler, *J Fluorine Chem*, 2009, 130, 662–666.
- O. I. Shmatova, N. E. Shevchenko, E. S. Balenkova, G-V. Röschenthaler, V. G. Nenajdenko, *Eur. J. Org. Chem.*, 2013, 2013, 3049–3058.
- O. I. Shmatova, N. E. Shevchenko, V. G. Nenajdenko, *Eur. J. Org. Chem.*, 2015, 2015, 6479–6488.
- Gaussian 16 Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.
- 7. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- 8. J. P. Perdew, Y. Wang, Phys. Rev. B, 1992, 45, 13244.
- 9. S. Grimme, S. Ehrlich, L. Goerigk, J. Comp. Chem., 2011, 32, 1456.
- 10. F. Weigend, R. Ahlrichs, PCCP 2005, 7, 3297.
- 11. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378.
- 12. K. Fukui, J. Phys. Chem. 1970, 74, 4161.
- 13. K. Fukui, Acc. Chem. Res. 1981, 14, 363.

6. NMR Spectra of Products

Figure S4. ¹³C NMR (150 MHz, CDCl₃) Spectrum of 3.

Figure S5. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 3.

$\begin{array}{c} 7.339\\ 7.3354\\ 7.3354\\ 7.3342\\ 7.3342\\ 7.3342\\ 7.3342\\ 7.3342\\ 7.3342\\ 7.3342\\ 7.3342\\ 7.3342\\ 7.3342\\ 7.3342\\ 7.3342\\ 7.3342\\ 7.3342\\ 7.3342\\ 7.3342\\ 7.3342\\ 7.3342\\ 7.3342\\ 7.3355\\$

Figure S8. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 5.

Figure S10. ¹³C NMR (150 MHz, CDCl₃) Spectrum of 6.

Figure S11. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 6.

Figure S14. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 7.

Figure S16. ¹³C NMR (150 MHz, CDCl₃) Spectrum of 8.

Figure S17. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 8.

Figure S20. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 9.

Figure S22. ¹³C NMR (150 MHz, CDCl₃) Spectrum of 10.

Figure S23. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 10.

Figure S24. ¹H NMR (500 MHz, CDCl₃) Spectrum of 11.

Figure S26. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 11.

Figure S28. ¹³C NMR (150 MHz, CDCl₃) Spectrum of 12.

Figure S30. ¹³C NMR (150 MHz, CDCl₃) Spectrum of 13.

Figure S31. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 13.

$\begin{array}{c} & 7.3388\\ & 7.33562\\ & 7.3$

Figure S32. ¹H NMR (500 MHz, CDCl₃) Spectrum of 14.

Figure S34. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 14.

Figure S36. ¹³C NMR (150 MHz, CDCl₃) Spectrum of 15.

Figure S37. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 15.

$\begin{array}{c} 7.418\\ 7.436\\ 7.$

Figure S40. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 16.

Figure S42. ¹³C NMR (150 MHz, CDCl₃) Spectrum of 17.

Figure S46. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 18.

Figure S49. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 19.

Figure S50. ¹H NMR (500 MHz, CDCl₃) Spectrum of 20.

Figure S52. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 20.

Figure S54 ¹³C NMR (150 MHz, CDCl₃) Spectrum of 21.

Figure S55. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of **21**.

$\begin{array}{c} 7.381\\ 7.3865\\ 7.33555\\ 7.335555\\ 7.335555\\ 7.335555\\ 7.335555\\ 7.335555\\ 7.335555\\ 7.335555\\ 7.335555\\ 7.33555\\ 7.335555\\$

Figure S58. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 22.

Figure S61. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 23.

Figure S62. ¹H NMR (500 MHz, CDCl₃) Spectrum of 24.

Figure S66. ¹³C NMR (150 MHz, CDCl₃) Spectrum of 25.

Figure S67. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 25.

Figure S68. ¹H NMR (500 MHz, CDCl₃) Spectrum of 26.

Figure S70. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 26.

Figure S72. ¹³C NMR (150 MHz, CDCl₃) Spectrum of 27.

Figure S74. ¹H NMR (500 MHz, CDCl₃) Spectrum of 28.

Figure S76. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 28.

Figure S78. ¹³C NMR (150 MHz, CDCl₃) Spectrum of 29.

Figure S79. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 29.

7.1733 8.013 7.29966 7.7733 7.7733 8.013 7.7734 7.7734 7.7735 8.013 7.7734 7.7734 7.7735 7.7734 7.7772 7.7734 7.7772 7.7734 7.7772 7.7734 7.7772 7.7734 7.7772 7.7735 7.7755 7.7756 7.7755 7.7755 7.7755 7.7755 7.7755 7.7755 7.7755 7.7755 7.7755 7.7755 7.7555 7.7755 7.7555 7.7355 7.746

Figure S84. ¹³C NMR (150 MHz, CDCl₃) Spectrum of **31**.

Figure S85. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of **31**.

Figure S86. ¹H NMR (500 MHz, CDCl₃) Spectrum of 32.

Figure S90. ¹³C NMR (150 MHz, CDCl₃) Spectrum of **33**.

Figure S91. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 33.

Figure S92. ¹H NMR (500 MHz, CDCl₃) Spectrum of 34.

Figure S94. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 34.

Figure S96. ¹³C NMR (150 MHz, CDCl₃) Spectrum of 35.

Figure S98. ¹H NMR (500 MHz, CDCl₃) Spectrum of 36.

Figure S100. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 36.

Figure S102. ¹³C NMR (150 MHz, CDCl₃) Spectrum of **37**.

Figure S104. ¹H NMR (500 MHz, CDCl₃) Spectrum of 38.

Figure S106. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 38.

Figure S108. ¹³C NMR (150 MHz, CDCl₃) Spectrum of **39**.

Figure S109. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of **39**.

Figure S110. ¹H NMR (500 MHz, CDCl₃) Spectrum of 40.

Figure S112. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 40.

Figure S114. ¹³C NMR (150 MHz, CDCl₃) Spectrum of 41.

Figure S115. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 41.

Figure S116. ¹H NMR (500 MHz, CDCl₃) Spectrum of 42.

Figure S118. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 42.

Figure S120. ¹³C NMR (150 MHz, CDCl₃) Spectrum of 43.

Figure S124. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 44.

Figure S126. ¹³C NMR (150 MHz, CDCl₃) Spectrum of 45.

Figure S127. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 45.

S133

Figure S130. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 46.

Figure S132. ¹³C NMR (150 MHz, CDCl₃) Spectrum of 47.

Figure S133. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 47.

7.3477.3777.3777.3777.7777.7777.7777.7777.7777.7777.7777.7777.7777.7777.7777.7557.7777.7557.7777.2557.7777.75

Figure S134. ¹H NMR (500 MHz, CDCl₃) Spectrum of 48.

Figure S136. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 48.

Figure S138. ¹³C NMR (150 MHz, CDCl₃) Spectrum of 49.

Figure S139. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 49.

$\begin{array}{c} 7.355 \\ 7.355 \\ 7.355 \\ 7.355 \\ 7.355 \\ 7.355 \\ 7.355 \\ 7.355 \\ 7.355 \\ 7.355 \\ 7.355 \\ 7.355 \\ 7.355 \\ 7.355 \\ 7.355 \\ 7.355 \\ 7.555 \\$

Figure S142. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 50.

Figure S144. ¹³C NMR (150 MHz, CDCl₃) Spectrum of 51.

5.0 4.5 f1 (ppm) Figure S146. ¹H NMR (500 MHz, CDCl₃) Spectrum of 53.

0.0 -0

0.0 9.5

Figure S148. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 53.

Figure S150. ¹³C NMR (150 MHz, CDCl₃) Spectrum of 54.

Figure S152. ¹H NMR (500 MHz, CDCl₃) Spectrum of 55.

Figure S154. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 55.

 $\begin{array}{c} 7.33\\ 7.34\\ 7.255\\ 7.232\\ 7.225\\ 7.255\\ 7.25$

Figure S156. ¹H NMR (500 MHz, CDCl₃) Spectrum of 56.

Figure S158. ¹⁹F NMR (565 MHz, CDCl₃) Spectrum of 56.

Figure S160. ¹H NMR (500 MHz, DMSO) Spectrum of 57.

Figure S162. ¹⁹F NMR (565 MHz, DMSO) Spectrum of 57.