Supporting Information

Visible Light-Promoted Synthesis of α,α-Difluoro-β-Ketothio(seleno)ethers from Thio(seleno)sulfonates and

Difluoroenoxysilanes

Shuang Yao,[†] Fei Wang,[†] Ying Chen,[†] Weidong Rao,[‡] Shu-Su Shen,[§] Daopeng Sheng,[¶] and Shun-Yi Wang^{†,*}

[†]Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China; E-mail: shunyi@suda.edu.cn

[‡]Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.

School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China.

[¶]State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.

Contents

I. General Information			S2
II. Synthesis of Substrates			S2
III. General Proc	edure		S3
1.	General	Procedure	А
		S3	
2. General Procedure B			
IV. Product Characterization			S4
V. References			S11
VI. Copies of ¹ H NMR and ¹³ C NMR Spectra			S12

I. General Information

Unless otherwise noted, all commercially available compounds were used as provided without further purification. Solvents for chromatography were analytical grade and used without further purification. Anhydrous DMA, was purchased from Beijing InnoChem Science & Technology Co., Ltd. Analytical thin-layer chromatography (TLC) was performed on silica gel, visualized by irradiation with UV light. For column chromatography, 300-400 mesh silica gel was used. ¹H-NMR and ¹³C-NMR were recorded on a BRUKER 400 MHz spectrometer in CDCl₃. Chemical shifts (δ) were reported referenced to an internal tetramethylsilane standard or the CDCl₃ residual peak (δ 7.26) for ¹H NMR. Chemical shifts of ¹³C NMR are reported relative to CDCl₃ (δ 77.16). Data are reported in the following order: chemical shift (δ) in ppm; multiplicities are indicated s (singlet), bs (broad singlet), d (doublet), t (triplet), m (multiplet); coupling constants (J) are in Hertz (Hz). IR spectra were recorded on a BRUKER VERTEX 70 spectrophotometer and are reported in terms of frequency of absorption (cm⁻¹). HRMS spectra were obtained by using GCT Premier TOF-MS with EI source. The starting materials were isolated by SepaBean machine Flash Chromatography, which was purchased from Santai Technologies Inc.

II. Synthesis of Substrates

General procedure for the synthesis of PhSO₂SAr or PhSO₂SeAr.^{1, 2}

A mixture of $PhSO_2Na$ (4 equiv), disulphide (1 equiv) and NBS (2 equiv) in MeCN was stirred at room temperature. After the completion of the reaction, as monitored by TLC, the reaction mixture was washed with water and extracted with ethyl acetate. The organic phase was separated and dried over anhydrous Na_2SO_4 and filtered. The filtrate was concentrated and the resulting residue was purified by column chromatography to provide the desired aryl-thiosulfonates.

General procedure for the synthesis of Difluoroenoxysilanes.^{3, 4}

To a solution of methyl benzoate (1.36 g) in toluene (50 ml) was added TMSCF₃ (2.8 g) at room temperature under Ar. The reaction mixture was cooled to -78 °C, TBAF (1 mL, 1.0 M in THF, 0.1 equiv) was then added. After stirring for 0.5 h at -78 °C, the reaction mixture was allowed to warm to room temperature and stirred for further 12 h. Hydrochloric acid (7.5 mL, 2.0 M, 1.5 equiv) was then added and the resulting mixture stirred for further 2 h. The resulting suspension was quenched with saturated aqueous NaHCO₃ and extracted with ethyl acetate. The combined organiclayers were dried over Na₂SO₄, filtered, and concentrated. The residue was purified by flash column

chromatography to give corresponding ketone.

A 100 mL oven-dried reaction bottle equipped with a magnetic stirrer bar was charged with the Mg (0.58 g, 24 mmol). The bottle was evacuated and backfilled with argon three times, followed by THF (24 mL) were added with stirring, Chlorotriethylsilane (4.0 mL, 24 mmol) was added subsequently. The bottle was capped and cooled down to -10 °C under an argon atmosphere, trifluoroacetophenone (843 μ L, 6.0 mmol) was added dropwise and then the reaction mixture was stirred for additional 1 h. After evaporation of solvent, Et₃N (3.3 mL, 24 mmol) was added and the mixture was stirred for 10 min. The mixture was filtered by petroleum ether, concentrated in vacuo, and purified by flash column chromatography on silica gel (pretreated with 3% Et₃N/Petroleum ether), eluting with petroleum ether, afforded to pure product difluoroenoxytriethylsilane. The reagent should be used as soon as possible after preparation.

III. General Procedure and Product Characterization

1. General Procedure A

A representative procedure synthesis of 1-(tert-butyl)-2-(naphthalen-2-ylmethyl) disulfane (3a) is shown below.

In glovebox, an oven-dried screw-capped 8 mL vial equipped with a magnetic stir bar was charged with 1-triethylsiloxy-2,2-difluoro-1-phenylethene **1a** (81.2 mg, 0.30 mmol) and S-Phenyl benzenethiosulfonate **2a** (50.1 mg 0.20 mmol), *fac*-Ir(ppy)₃ (2.6 mg, 2.0 mol %), DMA (1.0 mL) was added via syringe. The reaction mixture was stirred under 30 W blue LEDs for 16 hours at room temperature. After 16 h, the crude reaction mixture was diluted with ethyl acetate (20 mL) and washed with water (20 mL × 3). The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography to afford pure product **3a** (78% yield).

2. General Procedure B

The procedure scale-up synthesis of 3a is shown below.

In glovebox, an oven-dried screw-capped 50-mL vial equipped with a magnetic stir bar was charged with 1-triethylsiloxy-2,2-difluoro-1-phenylethene **1a** (81.2 mg, 0.30 mmol) and S-Phenyl benzenethiosulfonate **2a** (50.1 mg 0.20 mmol), *fac*-Ir(ppy)₃ (2.6 mg, 2.0 mol %), DMA (1.0 mL) was added via syringe. The reaction mixture was stirred under 30 W blue LEDs for 16 hours at room temperature. After16 h, the crude reaction mixture was diluted with ethyl acetate (20 mL) and washed with water (20 mL \times 3). The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography to afford pure product (63% yield).

IV. Product Characterization

2,2-difluoro-2-(phenylthio)acetophenone (3a)

Yield: 78% (41.3 mg). light yellow oil. **IR** (neat, v, cm⁻¹):1701, 1270, 1130. ¹**H NMR** (400 MHz, CDCl3) δ 8.17 – 8.11 (m, 2H), 7.68 – 7.63 (m, 1H), 7.63 – 7.59 (m, 2H), 7.53 – 7.48 (m, 2H), 7.46 (dt, J = 2.7, 1.9 Hz, 1H), 7.41

-7.36 (m, 2H).¹³C NMR (100 MHz, CDCl3) δ 185.4 (t, J = 28.3 Hz), 136.9, 134.8, 131.3, 130.6 (t, J = 2.6 Hz), 129.4, 128.8, 124.9 (t, J = 2.3 Hz), 123.9 (t, J = 291.9 Hz). ¹⁹F NMR (377 MHz, CDCl3) δ -77.2. HRMS (ESI+, MeCN) m/z calcd for C₁₄H₁₀F₂OS (M+Na)⁺: 287.0313, found 287.0310.

2,2-difluoro-1-phenyl-2-(p-tolylthio)ethan-1-one (3b)

Yield: 88% (49.0 mg). light yellow oil. **IR** (neat, v, cm⁻¹):1700, 1270, 1128. ¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, J = 7.5 Hz, 2H), 7.68 – 7.63 (m, 1H), 7.53 – 7.45 (m, 4H), 7.19 (d, J = 7.9 Hz, 2H), 2.38 (s, 3H). ¹³C **NMR** (100

MHz, CDCl₃) δ 185.5 (t, J = 28.3 Hz), 141.1, 136.9, 134.7, 131.4, 130.6 (t, J = 2.6 Hz), 130.3, 128.8,123.7 (t, J = 291.4 Hz), 121.3 (t, J = 2.5 Hz), 21.5 ¹⁹F NMR (377 MHz, CDCl₃) δ -77.9. **HRMS** (ESI+, MeCN) m/z calcd for C₁₅H₁₂F₂OS (M+Na)⁺: 301.0470, found 301.0464.

2,2-difluoro-2-((4-methoxyphenyl)thio)-1phenylethan-1-one (3c)

Yield: 82% (48.2 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1700, 1249, 1128, 1026. ¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (d, J = 7.6 Hz, 2H), 7.67 – 7.63 (m, 1H), 7.50 (dd, J = 8.4,

6.9 Hz, 4H), 6.93 – 6.87 (m, 2H), 3.83 (d, J = 5.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 185.5 (t, J = 28.3 Hz), 161.7, 138.6 134.6, 132.7, 131.3, 130.5 (t, J = 2.7 Hz), 128.7, 123.5 (t, J = 290.9 Hz), 114.9, 55.4. ¹⁹F NMR (377 MHz, CDCl₃) δ -78.6. HRMS (ESI+, MeCN) m/z calcd for C₁₅H₁₂F₂O₂S (M+Na)⁺: 317.0419, found 317.0418.

2-((4-chlorophenyl)thio)-2,2-difluoro-1-phenylethan-1one (3d)

Yield: 85% (50.8 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1696, 1272, 1143, 1009. ¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (dd, J = 8.3, 0.8 Hz, 2H), 7.69 – 7.64 (m, 1H), 7.55 – 7.49

(m, 4H), 7.38 – 7.35 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 185.2 (t, J = 28.3 Hz), 138.1, 137.4, 134.9, 131.1, 130.6 (t, J = 2.7 Hz), 129.7, 128.9, 123.9 (t, J = 292.9 Hz), 123.4 (t, J = 2.3 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -76.8. HRMS (ESI+, MeCN) m/z calcd for C₁₄H₉ClF₂OS (M+Na)⁺: 320.9923, found 320.9918.

2,2-difluoro-2-((4-fluorophenyl)thio)-1-phenylethan-1one (3e)

Yield: 76% (43.0 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1679, 1226, 1126, 1059. ¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (d, J = 7.5 Hz, 2H), 7.69 – 7.63 (m, 1H), 7.61 – 7.55 (m, 2H), 7.50 (dd, J = 10.8, 4.9 Hz, 2H), 7.12 – 7.04 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 185.3 (t, J = 28.3 Hz), 164.5 (d, J = 252.5 Hz), 139.1 (d, J = 8.9 Hz), 134.9, 131.2, 130.6 (t, J = 2.7 Hz), 128.9, 123.8, 120.2 (d, J = 3.0 Hz), 116.7 (d, J = 22.2 Hz). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -77.4, -109.3. **HRMS** (ESI+, MeCN) m/z calcd for C₁₄H₉F₃OS (M+Na)⁺: 305.0219, found 305.0213.

2-(4-bromophenylthio)-2,2-difluoro-1-phenylethanone (3f)

Yield: 71% (48.7 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1700, 1261, 1012. ¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (dd, J = 8.5, 1.0 Hz, 2H), 7.69 – 7.64 (m, 1H), 7.54 – 7.48 (m,

4H), 7.48 – 7.43 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 185.2 (t, J = 28.3 Hz), 138.3, 134.9, 132.7, 131.1, 130.6 (t, J = 2.6 Hz), 128.9, 125.7, 124.1 (t, J = 2.2 Hz), 123.8 (t, J = 292.9 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -76.6. HRMS (ESI+, MeCN) m/z calcd for C₁₄H₉BrF₂OS (M+Na)⁺: 364.9418, found 364.9410.

2-(2-bromophenylthio)-2,2-difluoro-1-phenylethanone (3g)

Yield: 75% (51.5 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1696, 1271, 1228, 1131. ¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, *J* = 7.5 Hz, 2H), 7.79 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.67 (ddd,

J = 8.6, 5.1, 1.3 Hz, 2H), 7.50 (dd, J = 10.8, 4.9 Hz, 2H), 7.36 (td, J = 7.6, 1.5 Hz, 1H), 7.30 (td, J = 7.7, 1.8 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 185.1 (t, J = 27.8 Hz), 138.9, 134.9, 133.9, 131.9, 131.3, 131.0, 130.6 (t, J = 2.7 Hz), 128.8, 128.1, 126.7, 123.7 (t, J = 293.9 Hz). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -76.6. **HRMS** (ESI+, MeCN) m/z calcd for C₁₄H₉BrF₂OS (M+Na)⁺: 364.9418, found 364.9407.

2,2-difluoro-2-((2-fluorophenyl)thio)-1-phenylethan-1one (3h)

Yield: 68% (38.4 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1700, 1269, 1130, 1031. ¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, J = 7.6 Hz, 2H), 7.69 – 7.60 (m, 2H), 7.54 – 7.45 (m,

3H), 7.22 – 7.14 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 185.1 (t, J = 28.3 Hz), 163.9 (d, J = 4.2 Hz), 139.5, 134.9, 133.5 (d, J = 8.1 Hz), 131.1, 130.6 (t, J = 2.6 Hz), 128.9, 124.9 (d, J = 4.2 Hz), 123.7 (t, J = 293.4 Hz), 116.6 (d, J = 23.2 Hz), 112.1 (d, J = 18.4 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -76.5, -104.4. HRMS (ESI+, MeCN) m/z calcd for C₁₄H₉F₃OS (M+Na)⁺: 305.0219, found 305.0205.

2,2-difluoro-2-((2-methylphenyl)thio)-1-phenylethan-1one (3i)

Yield: 69% (38.4 mg). light yellow oil. **IR** (neat, ν, cm⁻¹): 1701, 1270, 1128. ¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (d, *J*

= 8.3 Hz, 2H), 7.68 – 7.60 (m, 2H), 7.54 – 7.48 (m, 2H), 7.37 (td, J = 7.5, 1.3 Hz, 1H), 7.31 (d, J = 6.5 Hz, 1H), 7.21 (td, J = 7.5, 1.3 Hz, 1H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 185.5 (t, J = 28.3 Hz), 144.4, 138.7, 134.8, 131.3, 131.1, 131.0, 130.6 (t, J = 2.7 Hz), 128.8, 126.8, 124.3 (t, J = 1.9 Hz), 124.1 (t, J = 291.9 Hz), 21.5. ¹⁹F NMR (377 MHz, CDCl₃) δ -76.9. HRMS (ESI+, MeCN) m/z calcd for C₁₅H₁₂F₂OS (M+Na)⁺: 301.0470, found 301.0477.

2,2-difluoro-2-((2-methylphenyl)thio)-1-phenylethan-1one (3j)

Yield: 68% (37.8 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1701, 1270, 1129. ¹**H NMR** (400 MHz, CDCl₃) δ 8.14 – 8.10 (m, 2H), 7.66 – 7.61 (m, 1H), 7.51 – 7.46 (m, 2H), 7.42

-7.37 (m, 2H), 7.27 -7.22 (m, 2H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 185.5 (t, J = 28.3 Hz), 139.4, 137.4, 134.8, 133.9, 131.5, 131.4, 130.6 (t, J = 2.7 Hz), 129.2, 128.8, 124.5 (t, J = 2.3 Hz), 123.8 (t, J = 291.4 Hz), 21.3. ¹⁹F NMR (377 MHz, CDCl₃) δ -77.2. HRMS (ESI+, MeCN) m/z calcd for C₁₅H₁₂F₂OS (M+Na)⁺: 301.0470, found 301.0475.

2-((3-chlorophenyl)thio)-2,2-difluoro-1-phenylethan-1one (3k)

Yield: 81% (48.4 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1780, 1271, 1128, 1058. ¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (dd, J = 8.4, 0.9 Hz, 2H), 7.67 (ddd, J = 8.7, 2.4, 1.2 Hz,

1H), 7.61 (t, J = 1.8 Hz, 1H), 7.54 – 7.48 (m, 3H), 7.44 (ddd, J = 8.1, 2.0, 1.1 Hz, 1H), 7.32 (t, J = 7.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 185.1 (t, J = 28.3 Hz), 136.3, 135.0, 134.8, 131.0, 130.8, 130.5 (t, J = 2.5 Hz), 130.3, 128.9, 126.8 (t, J = 2.0 Hz), 124.0 (t, J = 292.9 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -76.1. HRMS (ESI+, MeCN) m/z calcd for C₁₄H₉ClF₂OS (M+Na)⁺: 320.9923, found 320.9916.

2,2-difluoro-2-((2,3-dimethylphenyl)thio)-1-phenyl ethan-1-one (3l)

Yield: 73% (42.7 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1701, 1269, 1129, 1068. ¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (dd, J = 8.5, 1.0 Hz, 2H), 7.68 – 7.62 (m, 1H), 7.49 (ddd, J

= 10.8, 8.3, 5.1 Hz, 3H), 7.15 – 7.10 (m, 1H), 7.01 (dd, J = 7.9, 1.3 Hz, 1H), 2.43 (s, 3H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 185.6 (t, J = 28.3 Hz), 144.2 (s), 141.5 (s), 138.7 (s), 134.7 (s), 132.0 (s), 131.4 (s), 130.6 (t, J = 2.6 Hz), 128.8 (s), 127.7 (s), 124.0 (s), 120.8 (s), 21.4 (s). ¹⁹F NMR (377 MHz, CDCl₃) δ -77.6 (s). HRMS (ESI+, MeCN) m/z calcd for C₁₆H₁₄F₂OS (M+Na)⁺: 315.0626 found 315.0610.

2-((3,5-dichlorophenyl)thio)-2,2-difluoro-1-phenyl ethan-1-one (3m)

Yield: 81% (54.0 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1699, 1405, 1268, 1132, 1062. ¹H NMR (400 MHz, CDCl₃)

δ 8.13 - 8.08 (m, 2H), 7.71 - 7.65 (m, 1H), 7.55 - 7.49 (m, 4H), 7.46 (t, J = 1.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 184.9 (t, J = 28.3 Hz), 135.5, 135.2, 134.6, 130.9, 130.6 (t, J = 2.8 Hz), 129.0, 128.2 (t, J = 2.0 Hz), 125.1, 124.3 (t, J = 294.4 Hz, 1C). ¹⁹F NMR (377 MHz, CDCl₃) δ -75.0. HRMS (ESI+, MeCN) m/z calcd for C₁₄H₈Cl₂F₂OS (M+Na)⁺: 354.9534, found 354.9525

2,2-difluoro-2-(naphthalen-2-ylthio)-1-phenylethan-1one (3n)

Yield: 60% (37.7 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1698, 1273, 1020. ¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, J = 8.5 Hz, 3H), 7.89 – 7.82 (m, 3H), 7.68 – 7.61 (m, 2H),

7.59 – 7.48 (m, 4H). ¹³**C NMR** (100 MHz, CDCl₃) δ 185.5 (t, J = 28.3 Hz), 137.4 (s), 134.8 (s), 133.9 (s), 133.6 (s), 132.5 (s), 131.4 (s), 130.6 (t, J = 2.7 Hz), 129.1 (s), 128.8 (s), 128.2 (s), 127.9 (s), 127.8 (s), 126.9 (s), 124.1 (t, J = 292.9 Hz), 122.1 (t, J = 2.2 Hz). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -76.9 (s). **HRMS** (ESI+, MeCN) m/z calcd for C₁₈H₁₂F₂OS (M+Na)⁺: 337.0470, found 337.0456.

2,2-difluoro-1-(4-methylphenyl)-2-(phenylthio)ethan-1one (4a)

Yield: 77% (42.8 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1697, 1272, 1058. ¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.2 Hz, 2H), 7.63 - 7.57 (m, 2H), 7.48 - 7.43 (m, 1H),

7.41 – 7.36 (m, 2H), 7.30 (d, J = 8.1 Hz, 2H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 185.0 (t, J = 28.3 Hz), 146.1, 136.9, 130.8 (t, J = 2.5 Hz), 130.6, 129.6, 129.4, 128.8, 125.1 (t, J = 2.0 Hz), 124.0 (t, J = 291.9 Hz), 22.0. ¹⁹F NMR (377 MHz, CDCl₃) δ -77.0. HRMS (ESI+, MeCN) m/z calcd for C₁₅H₁₂F₂OS (M+Na)⁺: 301.0470, found 301.0476.

2,2-difluoro-1-(4-methoxyphenyl)-2-(phenylthio)ethan-1-one (4b)

Yield: 82% (48.3 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1688, 1261, 1127, 1022. ¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (d, J = 9.1 Hz, 2H), 7.64 – 7.58 (m, 2H), 7.48 – 7.43 (m,

1H), 7.42 – 7.36 (m, 2H), 6.99 – 6.94 (m, 2H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.9 (t, J = 28.3 Hz), 164.9, 136.9, 133.2 (t, J = 2.7 Hz), 130.5, 129.4, 125.2 (t, J = 2.0 Hz), 124.2 (t, J = 291.8 Hz), 124.0, 114.2, 55.7. ¹⁹F NMR (377 MHz, CDCl₃) δ -76.3. HRMS (ESI+, MeCN) m/z calcd for C₁₅H₁₂F₂O₂S (M+Na)⁺: 317.0419, found 317.0414.

2,2-difluoro-1-(4-(tert-buty)phenyl)-2-(phenylthio) ethan -1-one (4c)

Yield: 73% (46.8 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1697, 1273, 1103, 1058. ¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.6 Hz, 2H), 7.64 – 7.59 (m, 2H), 7.54 – 7.50 (m, 2H),

7.49 – 7.44 (m, 1H), 7.42 – 7.36 (m, 2H), 1.36 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 184.9 (t, J = 28.3 Hz), 158.8, 136.8, 130.5 (t, J = 2.5 Hz), 130.4, 129.3, 128.5, 125.7, 125.0 (t, J = 2.0 Hz), 123.9 (t, J = 291.9 Hz), 35.4, 31.0. ¹⁹F NMR (377 MHz, CDCl₃) δ -76.9. HRMS (ESI+, MeCN) m/z calcd for C₁₈H₁₈F₂OS (M+Na)⁺: 343.0939, found 343.0937.

2,2-difluoro-1-(3,5-dimethoxyphenyl)-2-(phenylthio) ethan-1-one (4d)

Yield: 72% (46.7 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1693, 1299, 1202, 1153, 1017. ¹**H** NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 7.3 Hz, 2H), 7.37 (t, J = 7.4 Hz, 1H), 7.30 (t,

J = 7.4 Hz, 2H), 7.17 (s, 2H), 6.65 (t, J = 2.2 Hz, 1H), 3.75 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 185.1 (t, J = 28.3 Hz), 160.9, 136.9, 132.9, 130.6, 129.4, 125.0 (t, J = 4.0 Hz), 123.8 (t, J = 291.9 Hz), 108.2 (t, J = 2.7 Hz), 107.5, 55.8. ¹⁹F NMR (377 MHz, CDCl₃) δ -76.8. HRMS (ESI+, MeCN) m/z calcd for C₁₆H₁₄F₂O₃S (M+Na)⁺: 347.0524, found 347.0522.

2,2-difluoro-1-(naphthalen-2-yl)-2-(phenylthio)ethan-1one (4e)

Yield: 68% (42.8 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1681, 1263, 1106, 1020. ¹**H NMR** (400 MHz, CDCl₃) δ 8.72 (s, 1H), 8.11 (dd, J = 8.7, 1.4 Hz, 1H), 7.98 (d, J = 8.2 Hz,

1H), 7.94 – 7.88 (m, 2H), 7.70 – 7.62 (m, 3H), 7.61 – 7.56 (m, 1H), 7.49 – 7.44 (m, 1H), 7.43 – 7.37 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 185.6 (t, J = 27.7 Hz), 136.9, 136.3, 133.5 (t, J = 3.6 Hz), 132.3, 130.6, 130.3, 129.7, 129.4, 128.7, 128.5, 127.9, 127.2, 127.0, 125.1, 124.1 (t, J = 292.9 Hz). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -76.4. **HRMS** (ESI+, MeCN) m/z calcd for C₁₈H₁₂F₂OS (M+Na)⁺: 337.0470, found 337.0476.

2,2-difluoro-1-phenyl-2-(phenylselanyl)ethan-1-one (5a) Yield: 69% (42.9 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1696, 1270, 1129, 1043. ¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (d, J = 7.5 Hz, 2H), 7.70 – 7.61 (m, 3H), 7.51 – 7.42 (m, 3H), 7.36 (t, J = 7.5 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃)

δ 185.7 (t, J = 25.8 Hz), 137.7, 134.7, 131.1, 130.5 (t, J = 2.9 Hz), 130.2, 129.5, 128.8, 123.4 (t, J = 2.0 Hz), 121.8 (t, J = 27.7 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -77.0. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 557.3 (t, J = 35.7 Hz). HRMS (ESI+, MeCN) m/z calcd for C₁₄H₁₀F₂OSe (M+Na)⁺: 334.9758, found 334.9733.

2,2-difluoro-1-phenyl-2-(4-methylphenylselanyl)ethan-1-one (5b)

Yield: 86% (55.9 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1696, 1269, 1130, 1039. ¹**H NMR** (400 MHz, CDCl₃) δ 8.12 – 8.06 (m, 2H), 7.67 – 7.62 (m, 1H), 7.57 – 7.53 (m, 2H),

7.51 - 7.46 (m, 2H), 7.17 (dd, J = 8.4, 0.6 Hz, 2H), 2.38 (s, 3H). ¹³C NMR (100 MHz,

CDCl₃) δ 185.7 (t, J = 25.8 Hz), 140.6, 137.6, 134.7, 131.1, 130.5 (t, J = 3.0z), 130.3, 128.8, 121.5 (t, J = 307.5 Hz), 119.8 (t, J = 2.0 Hz), 21.5. ¹⁹F NMR (377 MHz, CDCl₃) δ -77.3. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 548.9 (t, J = 37.2 Hz). HRMS (ESI+, MeCN) m/z calcd for C₁₅H₁₂F₂OSe (M+Na)⁺: 348.9914, found 348.9896.

2,2-difluoro-1-phenyl-2-(4-methoxyphenylselanyl) ethan-1-one (5c)

Yield: 82% (56.0 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1695, 1247, 1172, 1130, 1026. ¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (d, J = 7.5 Hz, 2H), 7.66 – 7.60 (m, 1H), 7.58 – 7.53

(m, 2H), 7.50 – 7.44 (m, 2H), 6.90 – 6.83 (m, 2H), 3.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 185.8 (t, J = 25.8 Hz), 161.4, 139.3, 134.6, 131.2, 130.4 (t, J = 2.9 Hz), 128.8, 121.3 (t, J = 307.0 Hz), 115.2, 113.6 (t, J = 2.0 Hz), 55.4. ¹⁹F NMR (377 MHz, CDCl₃) δ -77.9. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 543.7 (t, J = 38.0 Hz). HRMS (ESI+, MeCN) m/z calcd for C₁₅H₁₂F₂O₂Se (M+Na)⁺: 364.9863, found 364.9844.

2,2-difluoro-1-phenyl-2-(4-fluorophenylselanyl)ethan-1one (5d)

Yield: 70% (46.1 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1697, 1271, 1130, 1039. ¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (d, J = 7.6 Hz, 2H), 7.68 – 7.60 (m, 3H), 7.49 (t, J = 7.9 Hz,

2H), 7.08 – 7.01 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 185.6 (t, J = 25.8 Hz), 165.5 (d, J = 252.5 Hz), 139.9 (d, J = 4.5 Hz), 134.9, 130.9, 130.5 (t, J = 2.9 Hz), 128.9, 121.8 (t, J = 308.1 Hz), 118.2 (d, J = 4.0 Hz), 116.9 (d, J = 21.2 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -76.5, -110.1. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 546.7 (t, J = 35.0 Hz). HRMS (ESI+, MeCN) m/z calcd for C₁₄H₉F₃OSe (M+Na)⁺: 352.9663, found 364.9657.

2,2-difluoro-1-phenyl-2-(2-methylphenylselanyl)ethan-1-one (5e)

Yield: 76% (49.4 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1695, 1269, 1127, 1032. ¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (d, J = 8.3 Hz, 2H), 7.70 – 7.61 (m, 2H), 7.48 (t, J = 7.9 Hz,

2H), 7.37 – 7.29 (m, 2H), 7.15 (td, J = 7.6, 1.8 Hz, 1H), 2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 185.6 (t, J = 25.8 Hz), 144.0, 139.5, 134.7, 131.1, 130.9, 130.7, 130.5 (t, J = 3.0 Hz), 128.8, 126.8, 124.6 (t, J = 2.0 Hz), 121.7 (t, J = 308.1 Hz), 23.6. ¹⁹F NMR (377 MHz, CDCl₃) δ -76.6. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 501.2 (t, J = 36.1 Hz). HRMS (ESI+, MeCN) m/z calcd for C₁₅H₁₂F₂OSe (M+Na)⁺: 348.9914, found 348.9899.

2,2-difluoro-1-phenyl-2-(2-chlorophenylselanyl)ethan-1-one (5f)

Yield: 65% (44.9 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1694, 1270, 1128, 1025. ¹**H NMR** (400 MHz, CDCl₃) δ 8.10 (d, J = 7.5 Hz, 2H), 7.81 (dd, J = 7.7, 1.4 Hz, 1H), 7.65 (dd,

J = 10.6, 4.3 Hz, 1H), 7.52 – 7.46 (m, 3H), 7.36 (td, J = 7.7, 1.6 Hz, 1H), 7.25 (dt, J = 7.5, 3.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 185.6 (t, J = 25.3 Hz), 140.0, 139.4, 134.9, 131.6, 130.8, 130.5 (t, J = 2.9 Hz), 130.2, 128.9, 127.5, 124.5, 122.2 (t, J = 310.1 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -74.5. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 531.1 (t, J = 34.6 Hz). HRMS (ESI+, MeCN) m/z calcd for C₁₄H₉ClF₂OSe (M+Na)⁺: 368.9368, found 368.9362.

2,2-difluoro-1-phenyl-2-(naphthalen-2-ylselanyl)ethan-1-one (5g)

Yield: 50% (36.1 mg). light yellow oil. **IR** (neat, v, cm⁻¹): 1693, 1268, 1129, 1041. ¹**H NMR** (400 MHz, CDCl₃) δ 8.47 – 8.39 (m, 1H), 8.03 (d, J = 7.5 Hz, 2H), 7.99 – 7.93 (m,

2H), 7.85 (dd, J = 6.4, 3.0 Hz, 1H), 7.63 – 7.58 (m, 1H), 7.56 – 7.49 (m, 2H), 7.43 (dd, J = 8.1, 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 185.7 (t, J = 25.3 Hz), 138.8, 136.0, 134.7, 134.3, 131.8, 131.1, 130.4 (t, J = 3.0 Hz), 128.7, 128.6, 128.5, 127.4, 126.6, 125.8, 123.1, 121.9 (t, J = 309.1 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -75.9. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 478.0 (t, J = 36.9 Hz). HRMS (ESI+, MeCN) m/z calcd for C₁₈H₁₂F₂OSe (M+Na)⁺: 384.9914, found 384.9910.

V. References

[1] Q. Chen; Y. L. Huang, X. F. Wang, J. W. Wu; and G. D. Yu, Metal-free NaI/TBHP mediated sulfonylation of thiols with sulfonyl hydrazides *Org. Biomol. Chem.*, 2018, **16**, 1713-1719.

[2] L.B. Cai; X.Y. Zhu, J. Y. Chen, A. J. Lin, and H. Q. Yao, Rh(iii)-Catalyzed C–H activation/annulation of salicylaldehydes with sulfoxonium ylides for the synthesis of chromones, *Org. Chem. Front.*, 2019, **6**, 3688.

[3] X. Gao, R. Cheng, Y. L. Xiao, X. L. Wan and X. G. Zhang, Copper-Catalyzed highly enantioselective difluoroalkylation of secondary propargyl sulfonates with difluoro-enoxysilanes, *Chem.*, 2019, **5**, 2987 – 2999.

[4] Y. B. Wu, G. P. Lu, B. J. Zhou, M. J. Bu, L. Wan and C. Cai, Visible-light-initiated difluoromethylation of arene diazonium tetrafluoroborates *Chem. Commun.*, 2016, **52**, 5965.

VI. Copies of ¹H NMR, ¹³C NMR, ¹⁹F NMR and ⁷⁷Se NMR

Spectra

S22

S28

S30

S32

S34

S36

S44

S45

S47

S49

S52

