Electronic Supplementary Information

Iridium(III)-Catalyzed One-Pot Synthesis of Planar ChiralEmissive Materials through C-H ActivationWenjing Liu, ${ }^{\ddagger, a}$ Honghan Ji, ${ }^{\ddagger, a, b, c}$ Wenzeng Duan, ${ }^{*, a}$ Huaiwei Wang, ${ }^{a}$ Yanmin Huo, ${ }^{\text {a }}$Xianqiang Huang, ${ }^{\text {a }}$ Pengfei Duan*b,c${ }^{\text {a }}$ School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratoryof Chemical Energy Storage and Novel Cell Technology, Liaocheng University,Liaocheng 252000, China. E-mail: duanwenzeng@1cu.edu.cn.${ }^{\mathrm{b}}$ CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center forNanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing100190, China. E-mail: duanpf@nanoctr.cn.
${ }^{c}$ University of Chinese Academy of Sciences, Beijing 100049, P. R. China
*These authors contributed equally to this work.
Table of contents

1. General Information 2
2. Experimental Section 3
2.1 Optimization of Reaction Conditions 3
2.2 General Procedure for the Preparation of Substrates 4
2.3 General Procedure for Ir(III)-Catalyzed C-H Arylation 8
2.4 Large-Scale Synthesis 8
3. Catalytic Activity of Intermediate 4 9
4. Characterization of New Compounds 12
5. HPLC Chromatograms 21
6. General Procedure for Crystal Preparation and Measurement 33
7. Photophysical Properties 35
8. Copies of NMR and HRMS Spectra 41
9. Coordinates of Optimized Structures 74
10. References 77

1. General Information

All solvents were used as received from commercial sources without further purification. Column flash chromatography was carried out on silica gel (200 - 400 mesh). Thin-layer chromatography (TLC) was performed on silica gel GF254. Reagents used to prepare the substrates and heteroaryl boron esters were purchased from Bidepharm and Energy Chemical without further purification. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker-DRX (500 MHz and 126 MHz , respectively) instruments internally referenced to SiMe_{4}, chloroform signals. HRMS spectra were recorded on an Agilent 100 ABI-API4000 spectrometer. X-ray data were collected on Bruker Smart APEX II CCD diffractometer. The optical rotation measurements were recorded on an $\mathrm{SGW}_{\circledR}-2$ automatic digital polarimeter (MA, China) at 589 nm wavelengths and at $28^{\circ} \mathrm{C}$ by using DCM as the solvent ($1 \mathrm{mg} / \mathrm{mL}$). Chiral HPLC analysis of $\left(R_{\mathrm{p}}\right) /\left(S_{\mathrm{p}}\right)$-1a, 3a, 3c, 3h, 3o, and 3p were performed using the Waters e2695 HPLC system with 2998PDA detector and CHIRALPAK IA column ($250 \times 4.6 \mathrm{~mm}, 5$ $\mu \mathrm{m}$) or CHIRALPAK IC column ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$); Mobile phase: mixed solvents of hexane and iso-propanol with the ratio of $95 \%: 5 \%$ as an eluent for $\mathbf{1 a}, \mathbf{3 a}$, and $\mathbf{3 h}$, $75 \%: 25 \%$ as an eluent for $\mathbf{3 c}, 93 \%: 7 \%$ as an eluent for $\mathbf{3 o}$, and $98 \%: 2 \%$ as an eluent for $\mathbf{3 p}$; Flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$ for 1a, 3a, $\mathbf{3 c}, \mathbf{3 h}, \mathbf{3 o}$, and $\mathbf{3 p}$; Column temperature: 20 ${ }^{\circ} \mathrm{C}$ for $\mathbf{1 a} ; 35^{\circ} \mathrm{C}$ for $\mathbf{3 a}, \mathbf{3 c}$, and $\mathbf{3 h} ; 30^{\circ} \mathrm{C}$ for $\mathbf{3 o}$ and $\mathbf{3 p}$. The absorbance spectra measurement was performed on a T9CS UV-vis spectrophotometer (Persee Instrument Co., Ltd. Beijing, China). The fluorescence spectra were measured on F-7100 (Hitachi, Japan) fluorescence spectrofluorometer (the pathlength of the quartz cell is 1 cm) with a xenon arc lamp as the light source. Circular dichroism (CD) spectra of $\left(R_{\mathrm{p}}\right) /\left(S_{\mathrm{p}}\right)$-3a, $\left(R_{\mathrm{p}}\right) /\left(S_{\mathrm{p}}\right) \mathbf{- 3} \mathbf{c},\left(R_{\mathrm{p}}\right) /\left(S_{\mathrm{p}}\right)-\mathbf{3 h},\left(R_{\mathrm{p}}\right) /\left(S_{\mathrm{p}}\right)$-30, and $\left(R_{\mathrm{p}}\right) /\left(S_{\mathrm{p}}\right)$-3p in THF solution $\left(5.0 \times 10^{-5}\right.$ $\mathrm{mol} / \mathrm{L}$) were measured using a J-810-150s spectropolarimeter (JASCO J1500 spectrophotometer, Japan), at room temperature (cell length: 10 mm , bandwidth: 1 nm , scanning speed: $100 \mathrm{~nm} / \mathrm{min}$, data pitch: 1 nm , accumulations: 2). The CD spectra were approximated using the simple moving average (SMA) method. Circularly polarized luminescence (CPL) spectra in THF solution ($5.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$) and for $\left(R_{\mathrm{p}}\right) /\left(S_{\mathrm{p}}\right) \mathbf{- 3 a}$ and $\left(R_{\mathrm{p}}\right) /\left(S_{\mathrm{p}}\right)$-3h were recorded with a JASCO CPL-200 spectrofluoropolarimeter at room temperature. The CPL spectra were approximated using the SMA method. ($\lambda_{\text {ex }}=310 \mathrm{~nm}$, cell length: $5 \mathrm{~mm}, \mathrm{E}_{\mathrm{x}} \& \mathrm{E}_{\mathrm{m}}$ slit width: $3000 \mu \mathrm{~m}$, scanning speed: $200 \mathrm{~nm} / \mathrm{min}$, data pitch: 1 nm , accumulations: 8).

2. Experimental Section

2.1 Optimization of Reaction Conditions

Table S1: Optimization of Reaction Conditions ${ }^{a}$

Entry	Oxidant	Base	Solvent	T (${ }^{\circ} \mathrm{C}$)	Yield (\%)
1	$\mathrm{Ag}_{2} \mathrm{O}$	$\mathrm{KH}_{2} \mathrm{PO}_{4}$	THF	90	nr
2	$\mathrm{Ag}_{2} \mathrm{O}$	$\mathrm{K}_{3} \mathrm{PO}_{4}$	THF	90	nr
3	$\mathrm{Ag}_{2} \mathrm{O}$	KOAc	THF	90	68
4	$\mathrm{Ag}_{2} \mathrm{O}$	KF	THF	90	12
5	$\mathrm{Ag}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	90	14
6	$\mathrm{Ag}_{2} \mathrm{O}$	KHCO_{3}	THF	90	10
7	$\mathrm{Ag}_{2} \mathrm{O}$	NaOAc	THF	90	45
8	$\mathrm{Ag}_{2} \mathrm{O}$	NaHCO_{3}	THF	90	14
9	$\mathrm{Ag}_{2} \mathrm{O}$	NaF	THF	90	13
10	$\mathrm{Ag}_{2} \mathrm{O}$	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	THF	90	10
11	$\mathrm{Ag}_{2} \mathrm{O}$	LiOAc	THF	90	47
12	$\mathrm{Ag}_{2} \mathrm{O}$	LiF	THF	90	15
13	$\mathrm{Ag}_{2} \mathrm{O}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	THF	90	nr
14	$\mathrm{Ag}_{2} \mathrm{O}$	CsOAc	THF	90	50
15	PhCOOAg	KOAc	THF	90	nr
16	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	KOAc	THF	90	nr
17	AgOPiv	KOAc	THF	90	$n \mathrm{r}$
18	AgOAc	KOAc	THF	90	$n \mathrm{r}$
19	AgNO_{3}	KOAc	THF	90	nr
20	$\mathrm{Ag}_{2} \mathrm{SO}_{4}$	KOAc	THF	90	$n \mathrm{r}$
21	AgF	KOAc	THF	90	nr
22	AgNTf_{2}	KOAc	THF	90	nr
23	$\mathrm{Ag}_{2} \mathrm{O}$	KOAc	Tol	90	35
24	$\mathrm{Ag}_{2} \mathrm{O}$	KOAc	1,4-Diox	90	57
25	$\mathrm{Ag}_{2} \mathrm{O}$	KOAc	DMSO	90	nr
26	$\mathrm{Ag}_{2} \mathrm{O}$	KOAc	DMF	90	nr
27	$\mathrm{Ag}_{2} \mathrm{O}$	KOAc	THF	130	67
$28^{\text {b }}$	$\mathrm{Ag}_{2} \mathrm{O}$	KOAc	THF	90	41
$29^{\text {c }}$	$\mathrm{Ag}_{2} \mathrm{O}$	KOAc	THF	90	nr
$30^{\text {d }}$	-	KOAc	THF	90	nr

31^{e}	$\mathrm{Ag}_{2} \mathrm{O}$	-	THF	90	nr
32^{f}	$\mathrm{Ag}_{2} \mathrm{O}$	KOAc	THF	90	nr

${ }^{a}$ Reaction Conditions: 1a ($25.2 \mathrm{mg}, 0.1 \mathrm{mmol}$), 2a ($47.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{IrCl}_{2}\right]_{2}$ $(4.0 \mathrm{mg}, 0.005 \mathrm{mmol})$, Oxidant (0.2 mmol), Base (0.2 mmol), Solvent (2 mL), $90^{\circ} \mathrm{C}$, 16 h , Nitrogen atmosphere. Yields were analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy with $1,3,5-$ trimethoxybenzene as an internal standard; ${ }^{b}\left[\mathrm{Cp} * \operatorname{Ir}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(9.2 \mathrm{mg}, 0.01$ $\mathrm{mmol})$ as the catalyst; ${ }^{c}\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(6.2 \mathrm{mg}, 0.01 \mathrm{mmol})$ as the catalyst; ${ }^{d}$ Without $\mathrm{Ag}_{2} \mathrm{O} ;{ }^{\mathrm{e}}$ Without KOAc ; ${ }^{\mathrm{f}} \mathrm{W}$ ithout the catalyst.

2.2 General Procedure for the Preparation of Substrates

I. The synthesis of the substrate 4-formyl[2.2]paracyclophane 1a.

Scheme S1. Synthetic routes for 1a.

The synthesis of the substrate 4-formyl[2.2]paracyclophane. ${ }^{1}$

$\mathrm{TiCl}_{4}(0.21 \mathrm{~mL}, 1.92 \mathrm{mmol})$ was added to a solution of [2.2]paracyclophane (0.20 $\mathrm{g}, 0.96 \mathrm{mmol})$ in dry DCM (20 mL). After the mixture was stirred at room temperature for 5 minutes, 1,1-dichlorodimethyl ether ($93 \mu \mathrm{~L}, 1.06 \mathrm{mmol}$) was added, the resulting mixture was allowed to warm to room temperature. After stirring at r.t. for 6 h , the black solution was quenched by distilled water and stirred for 1 h until it became blue. The organic phase was separated and the aqueous phase was extracted with DCM (3×50 $\mathrm{mL})$. The combined organic layers were washed with brine, dried over MgSO_{4} and gravity-filtered. The solvent was removed under reduced pressure and the crude product was purified via silica gel column chromatography using dichloromethane/petroleum ether (1:2) as the eluent. 4-Formyl[2.2]paracyclophane was isolated as amorphous white solid ($0.22 \mathrm{~g}, 95 \%$ yield).

The synthesis of the substrate: 4-carboxy[2.2]paracyclophane 1a. ${ }^{2}$
4-Formyl[2.2]paracyclophane $(0.17 \mathrm{~g}, 0.72 \mathrm{mmol})$ was dissolved in propan-2-ol (IPA) (10 mL). After the pH value of the mixed solution was adjusted to 4.5 by adding
sodium dihydrogen phosphate solution (8\%), $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%, 89 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ was added dropwise. Then, sodium chlorite solution $(0.09 \mathrm{~g}, 2 \mathrm{~mol} / \mathrm{L})$ was added dropwise to the mixture over 30 min and the reaction mixture was stirred at room temperature for 12 h . The sodium sulfite was added to destroy the oxidant, then the organic solvent was removed under reduced pressure and the residuum was acidified with dilute sulfuric acid to $\mathrm{pH}=3 \sim 4$. The organic phase was separated, and the aqueous phase was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The organic solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (dichloromethane) to give the product 1a $(0.13 \mathrm{~g}, 72 \%) .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 11.48(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=7.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-$ 6.56 (m, 3H), 6.51 (ddt, $J=6.4,4.6,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{ddd}, J=12.9,9.4,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.26-3.13(\mathrm{~m}, 4 \mathrm{H}), 3.11-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{ddd}, J=13.0,10.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.3,143.8,140.1,140.0,139.4,137.4,136.4,136.2$, 133.1, 132.8, 132.3, 131.8, 129.6, 36.3, 35.2, 35.1, 34.9. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}:[\mathrm{M}+\mathrm{Na}]^{+} 275.1043$; Found: $[\mathrm{M}+\mathrm{Na}]^{+} 275.1038$.

II. The synthesis of the substrate: 4-bromo-16-carboxy[2.2]paracyclophane $\mathbf{1 b} \mathbf{.}^{\mathbf{3}}$

Scheme S2. Synthetic route for 1b.
4,16-Dibromo-[2.2]paracyclophane (2.0 g , 5.5 mmol) was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ (30 mL), then at $-78^{\circ} \mathrm{C}$, n-butyllithium ($3.3 \mathrm{~mL}, 2.8 \mathrm{M}$ solution in hexane, 8.3 mmol) was added dropwise to the above-mixed solution under argon. The reaction mixture was stirred at room temperature for 2 h , then an excess of dry ice (10 g) was added. The resulting mixture was allowed to warm to room temperature, the organic solvent was removed under reduced pressure and the crude product was dissolved in $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$. The insoluble 4,16-dibromo-[2.2]paracyclophane was isolated by filtration and the aqueous phase was thoroughly washed with ether $(3 \times 50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The organic solvent was removed under reduced pressure to obtain final product $\mathbf{1 b}$ $(1.11 \mathrm{~g}, 61 \%){ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.60(\mathrm{~s}, 1 \mathrm{H}), 7.21$ (d, $J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~m}, 3 \mathrm{H}), 4.02(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ - $3.00(\mathrm{~m}, 4 \mathrm{H}), 2.99-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO-
$\left.d_{6}\right): \delta 168.7,157.0,142.4,142.2,139.3,138.9,137.0,136.1,135.2,134.6,132.0,130.6$, 127.1, 35.3, 34.8, 33.9, 33.0. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrO}_{2}$: $[\mathrm{M}+\mathrm{K}]^{+}$ 368.9887; Found: $[\mathrm{M}+\mathrm{K}]^{+} 368.9885$.
III. The synthesis of the substrate: 4-bromo-12-carboxy[2.2]paracyclophane $1 \mathrm{c} .{ }^{3}$

Scheme S3. Synthetic route for $1 \mathbf{c}$.
White solid ($0.93 \mathrm{~g}, 51 \%$). The product 1c was obtained by flash column chromatography on silica gel using petroleum ether/dichloromethane $=1: 2$ as the eluent. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.60(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}$, $J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.47$ (m, 1H), 3.27 (ddd, $J=13.2,10.1,6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.20-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}), 2.85$ (dddd, $J=28.6,13.4,10.3,7.1 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 171.5, 143.1, 142.1, 139.7, 139.0, 137.7, 136.2, 135.8, 135.0, 131.8, 131.1, 129.2, 126.8, 36.2, 35.8, 34.1, 32.5. HRMS (ESI) m / z : Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrO}_{2}$: $[\mathrm{M}+\mathrm{H}]^{+}$331.0328; Found: $[\mathrm{M}+\mathrm{H}]^{+} 331.0332$.
IV. The synthesis of the substrate: $\left(R_{p}\right) /\left(S_{\mathrm{p}}\right)$-4-carboxy[2.2]paracyclophane $\left(\left(R_{\mathrm{p}}\right) /\left(S_{\mathrm{p}}\right)-1 \mathrm{a}\right) .{ }^{4}$

Scheme S4. Synthetic routes for $\left(S_{\mathrm{p}}\right)$-1a and $\left(R_{\mathrm{p}}\right)-\mathbf{1 a}$.
(S)-1-(4-Nitrophenyl)ethylamine hydrochloride ((S)-NPEA $\cdot \mathrm{HCl})(0.4 \mathrm{~g}, 1.9 \mathrm{mmol})$ was dissolved in ethanol and reacted with 30% sodium hydroxide solution and the reaction was monitored to be completed by TLC. The ethanol was removed under reduced pressure, and the aqueous phase was extracted with DCM $(3 \times 20 \mathrm{~mL})$ and the combined organics was concentrated under reduced pressure to give $(-)-(S)$-NPEA (0.3 $\mathrm{g}, 80 \%)$. The $(+)-(R)$-NPEA $(0.15 \mathrm{~g}, 80 \%)$ was also synthesized following the above procedure.

The racemic $1 \mathbf{a}(0.3 \mathrm{~g}, 1.2 \mathrm{mmol})$ and (-)-(S)-NPEA ($0.2 \mathrm{~g}, 1.3 \mathrm{mmol}$) were dissolved in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ and stirred at room temperature for 1 h . Then the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h until the white solid precipitated from the solution. To complete sedimentation, the reaction mixture was stored overnight at $-5^{\circ} \mathrm{C}$. The precipitate was isolated by filtration and dried to obtain the main compound $\left(S_{\mathrm{p}}, S\right)$-2 . Then the main compound $\left(S_{\mathrm{p}}, S\right) \mathbf{- 2}$ was dissolved in methanol and hydrolyzed with 2 $\mathrm{mol} / \mathrm{L} \mathrm{HCl}$. The precipitated solid was washed twice with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$ to obtain the crude product and the crude product was recrystallized in methanol. The solid was
removed by suction filtration, and the filtrate was concentrated under reduced pressure to give pure $\left(S_{\mathrm{p}}\right)-\mathbf{1 a}(0.06 \mathrm{~g}, 20 \%),{ }^{[\alpha]_{D}^{25}}=+147\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The CHCl_{3} filtrate was evaporated and hydrolyzed to obtain a partially resolved $\left(R_{\mathrm{p}}\right) \mathbf{- 1 a}$. The mixture of $\left(R_{\mathrm{p}}\right)$-1a (main product) and $\left(S_{\mathrm{p}}\right)$-1a $(0.2 \mathrm{~g}, 0.8 \mathrm{mmol})$ and $(+)-$ (R)-NPEA ($0.15 \mathrm{~g}, 0.9 \mathrm{mmol}$) in CHCl_{3} was stirred at room temperature for 1 h , then stirred at $50^{\circ} \mathrm{C}$ for 2 h until the white optically pure diastereomers precipitated from the solution and stayed overnight at $-5^{\circ} \mathrm{C}$ to ensure enough diastereomer precipitation (R_{p}, R)-2. After recrystallization of $\left(S_{\mathrm{p}}, S\right)$-2 from ethanol and then hydrolysis, optically pure $\left(R_{\mathrm{p}}\right)$-1a was obtained $(0.09 \mathrm{~g}, 30 \%) .{ }^{[\alpha]_{D=}^{25}}=-159\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

2.3 General Procedure for Ir(III)-Catalyzed C-H Arylation. ${ }^{5}$

To a 50 mL Schlenk-type sealed tube equipped with a magnetic stirring bar was added the substrate $\mathbf{1 a}(0.1 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2}(4.0 \mathrm{mg}, 0.005 \mathrm{mmol})$, 2methoxypyridine boronic acid pinacol ester (0.2 mmol , 2 equiv), $\mathrm{Ag}_{2} \mathrm{O}(46.0 \mathrm{mg}, 0.2$ mmol, 2 equiv), KOAc ($19.6 \mathrm{mg}, 0.2 \mathrm{mmol}, 2$ equiv) and dry THF (2.0 mL) under N_{2} atmosphere. The tube was capped and subjected to a $90^{\circ} \mathrm{C}$ preheated oil bath for 16 h . After cooling to room temperature, the reaction mixture was acidified with diluted hydrochloric acid ($2 \mathrm{~mol} / \mathrm{L}$) to $\mathrm{pH}=4 \sim 5$. The filtrate was concentrated in vacuo to afford crude products, which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to give the pure product 3a

2.4 Large-Scale Synthesis.

Scheme S5. Synthetic route for compound 3h.
To a 50 mL three-necked flask with a magnetic stirring bar was added the substrate $1 \mathbf{1 a}(1.0 \mathrm{~g}, 3.97 \mathrm{mmol}),\left[\mathrm{Cp}{ }^{*} \mathrm{IrCl}_{2}\right]_{2}(0.16 \mathrm{~g}, 0.19 \mathrm{mmol}, 0.05$ equiv), $\mathbf{2 h}(2.95 \mathrm{~g}, 7.94$ $\mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}(1.84 \mathrm{~g}, 7.94 \mathrm{mmol}, 2$ equiv), $\mathrm{KOAc}(0.78 \mathrm{~g}, 7.94 \mathrm{mmol}, 2$ equiv) and dry THF (40 mL) under N_{2} atmosphere and subjected to a $90^{\circ} \mathrm{C}$ preheated oil bath for

16 h . After cooling to room temperature, the reaction mixture was acidified with diluted hydrochloric acid ($2 \mathrm{~mol} / \mathrm{L}$) to $\mathrm{pH}=4 \sim 5$, and then was filtered through a pad of Celite. The filtrate was concentrated in vacuo to afford crude products, which was purified by flash column chromatography on silica gel using dichloromethane/petroleum ether $=$ $10: 1$ as the eluent to give the pure product $\mathbf{3 h}(1.22 \mathrm{~g}, 62 \%)$.

3. Catalytic Activity of Intermediate 4

Scheme S6. Synthetic route for ntermediate 4.
An oven-dried 25 mL Schlenk tube equipped with magnetic stirring bar was sequentially charged with $\mathbf{1 a}(25.2 \mathrm{mg}, 0.1 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{IrCl}_{2}\right]_{2}(40.0 \mathrm{mg}, 0.05 \mathrm{mmol}$, 0.5 equiv), KOAc ($19.6 \mathrm{mg}, 0.2 \mathrm{mmol}, 2$ equiv), DMSO ($14.2 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2$ equiv) and THF (2 mL) in the air. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ in oil bath for 2 h . A light yellow solid precipitate was formed, and the precipitate was isolated by filtration. The crude product was recrystallized in dichloromethane/petroleum ether and the intermediate 4 was collected as yellow solid ($27 \mathrm{mg}, 41 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.80-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.21$ $(\mathrm{d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.23$ $(\mathrm{m}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H}), 3.05-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{ddd}, J=12.7,10.5,5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.80-2.72(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 184.3$, 144.6, 144.4, 141.1, 140.6, 140.0, 134.8, 133.8, 133.3, 132.1, 132.0, 130.9, 130.6, 94.1, 49.9, 42.8, 36.1, 35.1, 34.9, 30.1, 8.9. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{IrO}_{2}:[\mathrm{M}+\mathrm{K}]^{+}$ 617.1428; Found: $[\mathrm{M}+\mathrm{K}]^{+} 617.1421$.

$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$
(1)

$126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Intermediate 4 instead of $\left[\mathrm{Cp} * \mathrm{IrCl}_{2}\right]_{2}$ was used in model reaction

Scheme S7. Synthetic route for 3a.
To a 25 mL Schlenk-type sealed tube equipped with a magnetic stirring bar was added the substrate $1 \mathbf{1 a}(25.2 \mathrm{mg}, 0.1 \mathrm{mmol})$, intermediate $4(6.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv), $\mathbf{2 a}$ ($47.0 \mathrm{mg}, 0.2 \mathrm{mmol}$, 2 equiv), $\mathrm{Ag}_{2} \mathrm{O}(46.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 2$ equiv), KOAc ($19.6 \mathrm{mg}, 0.2 \mathrm{mmol}, 2$ equiv), and dry THF (2 mL) under N_{2} atmosphere. The tube was capped and subjected to a $90{ }^{\circ} \mathrm{C}$ preheated oil bath for 16 h . After cooling to room temperature, the reaction mixture was acidified with diluted hydrochloric acid (2 $\mathrm{mol} / \mathrm{L}$) to $\mathrm{pH}=4 \sim 5$, and then was filtered through a pad of Celite. The filtrate was concentrated in vacuo to afford crude products, which was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to obtain the desired product 3a ($18 \mathrm{mg}, 50 \%$).

4. Characterization of New Compounds.

$$
\left(R_{\mathrm{p}}\right) /\left(S_{\mathrm{p}}\right)-\mathbf{3 a}:
$$

White solid ($24.4 \mathrm{mg}, 68 \%$). The product 3a was obtained by flash column chromatography on silica gel using petroleum ether/ethyl acetate $=3: 1$ as the eluent. R_{p} $[\alpha]_{D}^{25}=+20.9\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), S_{\mathrm{p}}[\alpha]_{D=-22.1}^{25}\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 12.34(\mathrm{~s}, 1 \mathrm{H}), 9.03-8.86(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=19.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.76-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.80(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,162.9,145.7,142.9,140.4,140.3,139.2,138.5$, 136.9, 136.1, 134.9, 132.9, 132.1, 131.6, 130.6, 129.7, 129.4, 111.1, 54.2, 35.3, 34.8, 33.0, 29.7. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{3}$: $[\mathrm{M}+\mathrm{H}]^{+} 360.1594$; Found $[\mathrm{M}+\mathrm{H}]^{+}$ 360.1592 .

The yields of the products ($\mathbf{3 a}$: 68%) was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-trimethoxybenzene as the internal standard.

3b:
White solid ($20.9 \mathrm{mg}, 54 \%$). The product 3b was obtained by flash column chromatography on silica gel using petroleum ether/ethyl acetate $=3: 1$ as the eluent. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.97(\mathrm{~s}, 1 \mathrm{H}), 8.95(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.34(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~s}$, $1 \mathrm{H}), 6.64(\mathrm{dd}, J=15.1,7.8 \mathrm{~Hz}, 3 \mathrm{H}), 6.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.81(\mathrm{~s}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 3.13-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{~m}, 3 \mathrm{H}), 1.26$ $-1.16(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,162.0,145.9,142.8,140.9$, $140.4,139.2,138.5,136.9,136.6,134.8$, 133.1, 132.9, 132.0, 131.7, 130.4, 129.9, 111.9, 68.9, 35.4, 34.8, 33.0, 29.7, 22.1. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{3}$: $[\mathrm{M}+\mathrm{H}]^{+}$388.1907; Found: $[\mathrm{M}+\mathrm{H}]^{+} 388.1906$.

$$
\left(R_{\mathrm{p}}\right) /\left(S_{\mathrm{p}}\right)-\mathbf{3 c}:
$$

White solid ($26.1 \mathrm{mg}, 63 \%$). The product 3c was obtained by flash column chromatography on silica gel using petroleum ether/ethyl acetate $=3: 1$ as the eluent. R_{p} $[\alpha]_{D}^{25}=64.0\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), S_{\mathrm{p}}[\alpha]_{D=-64.6}^{25}\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.90(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 2 \mathrm{H}), 6.82-6.67(\mathrm{~m}, 4 \mathrm{H}), 6.65(\mathrm{~d}, J=7.8,1 \mathrm{H}), 6.55(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{t}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.42(\mathrm{~m}, 6 \mathrm{H}), 2.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.87$ $(\mathrm{m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5,156.7,145.8,140.8,139.2,138.9$, $138.2,137.6,135.7,133.6,131.8,131.0,130.6,129.9,128.9,128.8,125.2,106.7,65.5$, 44.9, 41.0, 34.3, 33.8, 32.1, 28.7, 28.3. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$: $[\mathrm{M}+\mathrm{H}]^{+} 415.2016$; Found: $[\mathrm{M}+\mathrm{H}]^{+} 415.2014$.

3d:
White solid ($18.6 \mathrm{mg}, 48 \%$). The product 3d was obtained by flash column chromatography on silica gel using dichloromethane/ethyl acetate $=10: 1$ as the eluent. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.77(\mathrm{~s}, 1 \mathrm{H}), 8.92(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.76-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{dd}, J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.12(\mathrm{dt}, J=9.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{t}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{t}, J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.05-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,162.8,145.8,142.8,140.3,140.3,139.2,138.5$, $136.8,136.3,134.8,132.9,132.0,131.6,130.7,129.8,129.1,111.2,68.3,35.4,34.8$, 33.0, 29.7, 22.2, 10.5. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{3}:[\mathrm{M}+\mathrm{H}]^{+} 388.1907$; Found: [M+H]+ 388.1908.

3e:
White solid ($27.8 \mathrm{mg}, 64 \%$). The product $\mathbf{3 e}$ was obtained by flash column chromatography on silica gel using petroleum ether/acetone $=8: 1$ as the eluent. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.65(\mathrm{~s}, 1 \mathrm{H}), 8.93(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 6 \mathrm{H}), 6.89$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.75-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 3.57-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{t}, J$ $=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.7, 162.6, 145.7, 143.0, 140.1, 140.1, 139.3, 138.7, 137.0, 136.4, 136.1, 134.9, 133.0, 132.1, 131.6, 130.7, 130.6, 129.8, 128.5, 128.2, 128.1, 111.5, 68.8, 35.4, 34.9, 34.7, 33.1. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{NO}_{3}:[\mathrm{M}+\mathrm{H}]^{+} 436.1907$; Found: $[\mathrm{M}+\mathrm{H}]^{+} 436.1911$.

3f:

White solid ($34.4 \mathrm{mg}, 67 \%$). The product 3 f was obtained by flash column chromatography on silica gel using petroleum ether/acetone $=8: 1$ as the eluent. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.40(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=7.9$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.63(\mathrm{~m}, 3 \mathrm{H}), 6.61(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74(\mathrm{~s}, 4 \mathrm{H}), 3.53-3.37(\mathrm{~m}, 6 \mathrm{H}), 3.14(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.91$ $(\mathrm{m}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{〔} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,159.5,154.7,140.5$, $140.2,139.2,138.6,137.0,135.0,133.4,133.0,132.3,131.4,130.6,129.6,122.5,80.2$, 43.9, 35.3, 34.8, 34.7, 33.1, 31.6, 28.4, 22.7, 14.1. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4}:[\mathrm{M}+\mathrm{H}]^{+}$515.2653; Found: $[\mathrm{M}+\mathrm{H}]^{+} 515.2654$.

3g:
White solid ($11.6 \mathrm{mg}, 35 \%$). The product $\mathbf{3 g}$ was obtained by flash column chromatography on silica gel using petroleum ether/ethyl acetate $=5: 1$ as the eluent. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{dd}, J=5.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-$ $6.62(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{dd}, J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=9.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.13 (t, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03 (ddd, $J=14.9,9.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.90$ (m, 2H), $2.84(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.6, 147.6, 139.7, 139.7, 139.1, 138.7, 137.0, 134.1, 133.0, 132.9, 131.9, 131.5, 129.9, 129.3, 124.8, 123.2, 122.6, 35.2, 35.0, 34.4, 33.1. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}:[\mathrm{M}+\mathrm{H}]^{+}$ 335.1100; Found: $[\mathrm{M}+\mathrm{H}]^{+} 335.1106$.

$$
\left(R_{\mathrm{p}}\right) /\left(S_{\mathrm{p}}\right)-\mathbf{3 h}:
$$

White solid ($32.1 \mathrm{mg}, 65 \%$). The product $\mathbf{3 h}$ was obtained by flash column chromatography on silica gel using dichloromethane/petroleum ether $=10: 1$ as the eluent. $R_{\mathrm{p}}{ }^{[\alpha]_{D}^{25}}=107\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), S_{\mathrm{p}}[\alpha]_{D}^{25}=-105\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 4 \mathrm{H}), 7.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.88(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.78-6.62(\mathrm{~m}, 3 \mathrm{H}), 6.55(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42$ - 3.27 (m, 2H), $3.20-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.07-2.89(\mathrm{~m}, 4 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,147.6,147.1,147.1,139.7,139.7,139.6,139.1,138.7$, 138.7, 137.0, 134.1, 133.0, 132.9, 132.9, 131.9, 131.6, 131.5, 129.9, 129.5, 129.4, $129.3,124.8,123.2,122.6,35.2,35.0,34.4,33.1$. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{NO}_{2}:[\mathrm{M}+\mathrm{H}]^{+} 496.2271$; Found: $[\mathrm{M}+\mathrm{H}]^{+} 496.2278$.

3i:
White solid ($12.7 \mathrm{mg}, 39 \%$). The product $\mathbf{3 i}$ was obtained by preparative thin-layer chromatography using dichloromethane/petroleum ether/triethylamine $=20: 1: 1$ as the eluent. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.25,(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H})$, $6.86(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.56(\mathrm{~m}, 3 \mathrm{H}), 6.50-6.39(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~m}, 2 \mathrm{H})$, $3.12-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.80(\mathrm{~m}, 3 \mathrm{H}), 2.80-2.67(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,138.8,138.7,138.6,138.4,138.1,137.6,137.2,136.0,133.3$, 131.8, 130.9, 130.5, 128.9, 128.4, 127.4, 126.4, 34.2, 33.9, 33.3, 32.0. HRMS (ESI) m / z : Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{2}:[\mathrm{M}+\mathrm{H}]^{+}$329.1536; Found: $[\mathrm{M}+\mathrm{H}]^{+} 329.1544$.

3j:
White solid ($22.6 \mathrm{mg}, 66 \%$). The product $\mathbf{3 j}$ was obtained by preparative thin-layer chromatography using dichloromethane/petroleum ether/triethylamine $=20: 1: 1$ as the eluent. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{dd}$, $J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.56(\mathrm{~m}, 3 \mathrm{H}), 6.47(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.31-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.76(\mathrm{~m}, 4 \mathrm{H}), 2.71$ (ddd, $J=$ 13.2, 9.8, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,138.8$, 138.7, 138.7, 138.0, 137.7, 136.1, 136.0, 135.4, 133.2, 131.8, 131.8, 130.8, 130.5, 128.9, 128.5, 128.1, 34.2, 33.9, 33.3, 32.0, 28.7. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{2}$: $[\mathrm{M}+\mathrm{H}]^{+}$343.1693; Found: $[\mathrm{M}+\mathrm{H}]^{+} 343.1692$.

3k:

White solid ($24.8 \mathrm{mg}, 59 \%$). The product $\mathbf{3 k}$ was obtained by preparative thin-layer chromatography using dichloromethane/petroleum ether/triethylamine $=20: 1: 1$ as the eluent. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~s}$, $1 \mathrm{H}), 7.03(\mathrm{p}, J=11.4,9.4 \mathrm{~Hz}, 5 \mathrm{H}), 6.83(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.57(\mathrm{~m}, 3 \mathrm{H})$, $6.51-6.39$ (m, 2H), $3.33-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.08$ (q, $J=11.8,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.79$ (m, 4H), 2.74 (ddd, $J=12.8,9.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.0, 155.9, 155.7, 138.7, 138.6, 138.3, 138.0, 137.7, 136.3, 136.1, 133.3, 133.2, $131.9,130.9,130.4,128.8,128.8,128.5,122.6,118.4,117.3,34.2,33.9,33.3,31.9$. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{3}:[\mathrm{M}+\mathrm{K}]^{+} 459.1357$; Found: $[\mathrm{M}+\mathrm{K}]^{+} 459.1352$.

31:

White solid ($24.6 \mathrm{mg}, 61 \%$). The product 31 was obtained by preparative thin-layer chromatography using dichloromethane/petroleum ether/triethylamine $=20: 1: 1$ as the eluent. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61$ (d, $J=7.8 \mathrm{~Hz}, 5 \mathrm{H}$), 7.41 (s, 1 H), 7.38 (s, $1 \mathrm{H}), 7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.55(\mathrm{~m}$, $3 \mathrm{H}), 6.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.95-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.68(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,139.6,139.0,138.7,138.6,138.5,138.2,137.7,137.6,137.4$, 136.1, 133.4, 131.8, 130.9, 130.5, 128.9, 128.4, 127.8, 126.4, 126.0, 126.0, 34.2, 33.9, 33.3, 32.0. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{2}$: $[\mathrm{M}+\mathrm{K}]^{+}$443.1408; Found: $[\mathrm{M}+\mathrm{K}]^{+}$ 443.1407.

3m:

White solid ($17.7 \mathrm{mg}, 49 \%$). The product $\mathbf{3 m}$ was obtained by preparative thin-layer chromatography using dichloromethane/petroleum ether/triethylamine $=20: 1: 1$ as the eluent. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=$
$8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.56(\mathrm{~m}, 3 \mathrm{H}), 6.48(\mathrm{dd}, J=8.0,2 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.32-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.69(\mathrm{~m}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,138.7,138.5,138.2,137.6,137.5$, 136.9, 136.1, 133.6, 132.6, 131.9, 131.0, 130.4, 129.8, 128.7, 128.5, 127.6, 34.2, 33.9, 33.3, 31.9. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClO}_{2}:[\mathrm{M}+\mathrm{H}]^{+}$363.1146; Found: $[\mathrm{M}+\mathrm{H}]^{+} 363.1141$.

3n:
White solid ($18.3 \mathrm{mg}, 53 \%$). The product $\mathbf{3 n}$ was obtained by preparative thin-layer chromatography using dichloromethane/petroleum ether/triethylamine $=20: 1: 1$ as the eluent. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{dd}, J=7.9,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.68-6.56(\mathrm{~m}, 3 \mathrm{H}), 6.46-6.40(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.05(\mathrm{~m}$, $1 \mathrm{H}), 2.95-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.69(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.3,162.3,160.3,138.7,138.6,138.1,137.7,137.6,136.1,134.4,134.4,133.5$, 131.9, 131.0, 130.4, 128.7, 128.6, 34.2, 33.9, 33.2, 31.9. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{FO}_{2}:[\mathrm{M}+\mathrm{K}]^{+} 385.1001$; Found: $[\mathrm{M}+\mathrm{K}]^{+} 385.1005$.

$\left(R_{\mathrm{p}}\right) /\left(S_{\mathrm{p}}\right)-\mathbf{3 o}:$
White solid ($17.4 \mathrm{mg}, 46 \%$). The product 3 o was obtained by preparative thin-layer chromatography using dichloromethane/petroleum ether/triethylamine $=20: 1: 1$ as the eluent. $\left.R_{\mathrm{p}}{ }^{[\alpha]}\right]_{D}^{25}=144\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), S_{\mathrm{p}}[\alpha]_{D}^{25}=-124\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.40-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~m}, 2 \mathrm{H})$,
$2.73(\mathrm{~m}, 1 \mathrm{H}), 2.31$ (ddd, $J=13.6,9.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 140.5,140.0,139.9,135.8,134.9,134.8,133.5,132.9,131.8,131.5,129.6,128.1$, $128.0,126.9,126.8,126.2,125.9,125.8,125.7,125.3,116.7,113.9,34.3,33.0,30.9$, 29.7. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}_{2}:[\mathrm{M}+\mathrm{H}]^{+}$379.1693; Found: $[\mathrm{M}+\mathrm{H}]^{+}$ 379.1690 .

White solid ($18.5 \mathrm{mg}, 49 \%$). The product $\mathbf{3 p}$ was obtained by preparative thin-layer chromatography using dichloromethane/petroleum ether/triethylamine $=20: 1: 1$ as the eluent. $R_{\mathrm{p}}{ }^{[\alpha]_{D}^{25}}=140\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), S_{\mathrm{p}}[\alpha]_{D}^{25}=-125\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.70-7.18(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{dd}$, $J=7.6,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.61-6.38(\mathrm{~m}, 3 \mathrm{H}), 3.20(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.96$ - $2.88(\mathrm{~m}, 1 \mathrm{H}), 2.75$ (ddd, $J=45.5,12.9,7.4 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.9,138.8,138.6,138.4,138.0,137.7,136.2,136.1,136.0,133.4,132.4$, $131.9,131.5,130.9,130.5,129.3,128.7,128.7,127.3,126.9,126.7,125.7,125.2,34.2$, 33.9, 33.3, 32.1. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}_{2}:[\mathrm{M}+\mathrm{H}]^{+}$379.1693; Found: $[\mathrm{M}+\mathrm{H}]^{+} 379.1699$.

3q:
White solid ($26.2 \mathrm{mg}, 60 \%$). The product $\mathbf{3 q}$ was obtained by flash column chromatography on silica gel using petroleum ether/tetrahydrofuran $=3: 1$ as the eluent. ${ }^{1} \mathrm{H}$ NMR (500 MHz, THF- d_{8}) $\delta 8.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}$, $J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~m}, 2 \mathrm{H}), 6.42(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.25-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.16$ ($\mathrm{td}, J=11.2,10.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.07 (ddd, $J=13.2,9.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.98-2.92$ (m, 2H), $2.90(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, THF- d_{8}) $\delta 170.2,163.2$,
$142.2,138.5,138.2,138.2,138.1,138.0,136.4,136.0,133.2,132.7,131.7,131.3$, 130.2, 128.4, 126.4, 109.9, 52.5, 34.0, 33.8, 33.2, 31.6. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrNO}_{3}:[\mathrm{M}+\mathrm{H}]^{+} 438.0699$; Found: $[\mathrm{M}+\mathrm{H}]^{+} 438.0703$.

3r:
White solid ($28.5 \mathrm{mg}, 58 \%$). The product $\mathbf{3 r}$ was obtained by flash column chromatography on silica gel using petroleum ether/ tetrahydrofuran $=3: 1$ as the eluent. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 10.86(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=7.8,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~m}$, $2 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.57(\mathrm{~m}, 4 \mathrm{H}), 3.37-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.11(\mathrm{~m}$, $1 \mathrm{H}), 3.02-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.92-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=10.4,5.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 170.2,158.2,139.5,139.3,138.3,138.2,136.0,135.9$, 133.8, 132.6, 131.8, 131.7, 131.7, 131.6, 131.3, 129.5, 125.3, 105.4, 66.5, 45.4, 34.9, 34.6, 33.9, 32.8. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{3}:[\mathrm{M}+\mathrm{H}]^{+} 493.1121$; Found: $[\mathrm{M}+\mathrm{H}]^{+} 493.1118$.

3s:
White solid ($35.5 \mathrm{mg}, 62 \%$). The product 3 s was obtained by flash column chromatography on silica gel using petroleum ether/ tetrahydrofuran $=3: 1$ as the eluent. ${ }^{1} \mathrm{H}$ NMR (500 MHz, THF- d_{8}) $\delta 10.74(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.09(\mathrm{~m}, 6 \mathrm{H}), 7.04-$ $7.01(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-6.88(\mathrm{~m}, 3 \mathrm{H}), 6.67(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.51-6.44(\mathrm{~m}, 1 \mathrm{H}), 6.40-6.32(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{td}, J=11.7,11.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-$ $3.07(\mathrm{~m}, 2 \mathrm{H}), 3.06-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.95-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.80$ (ddd, $J=11.9,9.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 170.4,147.8,146.8$, 142.1, 139.2, 138.6, 137.9, 137.8, 136.8, 136.2, 136.0, 134.8, 134.1, 133.6, 132.7, $132.2,131.6,131.4,130.2,130.1,129.1,126.4,124.5,122.9,122.4,34.0,33.9,33.2$,
31.9. HRMS (ESI) m/z: Calcd for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{BrNO}_{2}:[\mathrm{M}+\mathrm{K}]^{+}$612.0935; Found: $[\mathrm{M}+\mathrm{K}]^{+}$ 612.0931 .
5. HPLC Chromatograms

<Peak Table>

PDA Ch1 270 nm

Peak Name	Retention Time	Area	Peak Height	Area \%
1	10.318	6218.754	358.413	51.017
2	11.150	5970.859	251.858	48.983
Total		12189.614	610.271	100.000

Figure S1. Chromatogram of the racemic of $\mathbf{1 a}$.

$<$ Peak Table>
PDA Ch1 270 nm

Peak Name	Retention Time	Area	Peak Height	Area \%
1	11.067	9714.872	445.415	100.000
Total		9714.872	445.415	100.000

Figure S2. Chromatogram of $\left(R_{\mathrm{p}}\right)$-1a.

$<$ Peak Table>
PDA Ch1 270 nm

Peak Name	Retention Time	Area	Peak Height	Area \%
1	10.233	11455.167	626.811	100.000
Total		11455.167	626.811	100.000

Figure S3. Chromatogram of $\left(S_{\mathrm{p}}\right)$-1a.

<Peak Table>
PDA Ch1 257 nm

Peak Name	Retention Time	Area	Peak Height	Area \%
1	13.488	2973678	38090	49.90
2	21.525	2985988	32139	50.10
Total		5959666	70229	100.00

Figure S4. Chromatogram of the racemic of 3a.

$<$ Peak Table>
PDA Ch1 257 nm

Peak Name	Retention Time	Area	Peak Height	Area \%
1	21.746	3890908	41194	100.00
Total		3890908	41194	100.00

Figure S5. Chromatogram of $\left(R_{\mathrm{p}}\right)$-3a.

$<$ Peak Table>
PDA Ch1 257 nm

Peak Name	Retention Time	Area	Peak Height	Area \%

1	13.550	9389548	118039	100.00
Total		9389548	118039	100.00

Figure S6. Chromatogram of $\left(S_{\mathrm{p}}\right)$-3a.

$<$ Peak Table>

PDA Ch1 257 nm

Peak Name	Retention Time	Area	Peak Height	Area \%
1	7.552	1052560	17116	50.57
2	15.395	1028980	13161	49.43
Total		2081540	30277	100.00

Figure S7. Chromatogram of the racemic of 3c.

<Peak Table>
PDA Ch1 257 nm

Peak Name	Retention Time	Area	Peak Height	Area \%
1	15.136	7569353	108559	100.00
Total		7569353	108559	100.00

Figure S8. Chromatogram of $\left(R_{\mathrm{p}}\right)$-3c.

<Peak Table>
PDA Ch1 257 nm

Peak Name	Retention Time	Area	Peak Height	Area \%
1	7.389	7283196	134442	99.71
2	15.417	51136	1349	0.29
Total		7334332	135791	100.00

Figure S9. Chromatogram of $\left(S_{p}\right)$-3c.

<Peak Table>
PDA Ch1 257 nm

Peak Name	Retention Time	Area	Peak Height	Area \%
1	8.587	1535869	62766	50.07
2	19.830	1531705	29745	49.93
Total		3067574	92511	100.00

Figure S10. Chromatogram of the racemic of $\mathbf{3 h}$.

<Peak Table>

PDA Ch1 257 nm

Peak Name	Retention Time	Area	Peak Height	Area \%
1	19.544	2922142	58309	100.00
Total		2922142	58309	100.00

Figure S11. Chromatogram of $\left(R_{\mathrm{p}}\right)$ - $\mathbf{3 h}$.

<Peak Table>
PDA Ch1 257 nm

Peak Name	Retention Time	Area	Peak Height	Area \%
1	8.521	2122028	87848	99.68
2	19.728	16741	741	0.32
Total		2138769	88589	100.00

Figure S12. Chromatogram of $\left(S_{\mathrm{p}}\right)$-3h.

<Peak Table>
PDA Ch1 257 nm

Peak Name	Retention Time	Area	Peak Height	Area \%
1	6.108	6651.650	549.790	49.697
2	6.675	6732.852	292.428	50.303
Total		13384.502	842.218	100.000

Figure S13. Chromatogram of the racemic of $\mathbf{3 0}$.

$<$ Peak Table>
PDA Ch1 257 nm

Peak Name	Retention Time	Area	Peak Height	Area \%
1	6.100	8919.920	525.104	100.000
Total		8919.920	555.104	100.000

Figure S14. Chromatogram of $\left(R_{\mathrm{p}}\right)$-3o.

<Peak Table>
PDA Ch1 257 nm

Peak Name	Retention Time	Area	Peak Height	Area \%
1	6.669	9557.340	495.047	100.000
Total		9557.340	495.047	100.000

Figure S15. Chromatogram of $\left(S_{\mathrm{p}}\right)$-3o.

<Peak Table>
PDA Ch1 257 nm

Peak Name	Retention Time	Area	Peak Height	Area \%
1	19.483	38157.742	652.737	48.942
2	21.483	39806.692	699.812	51.058
Total		77964.434	1352.549	100.000

Figure S16. Chromatogram of the racemic of $\mathbf{3 p}$.

$<$ Peak Table>

PDA Ch1 257 nm

Peak Name	Retention Time	Area	Peak Height	Area \%
1	21.483	52398.164	848.223	100.000
Total		52398.164	848.223	100.000

Figure S17. Chromatogram of $\left(R_{\mathrm{p}}\right)$-3p.

$<$ Peak Table>
PDA Ch1 257 nm

Peak Name	Retention Time	Area	Peak Height	Area \%
1	19.533	27820.675	464.756	100.000
Total		27820.675	464.756	100.000

Figure S18. Chromatogram of $\left(S_{\mathrm{p}}\right)$-3p.

6. General Procedure for Crystal Preparation and Measurement.

The single crystal of compound 3a was grown by slow evaporation of solvent at room temperature. Intensity data of 3a was collected on a Rigaku Oxford Diffraction Synergy Custom DW system X-ray diffractometer with a Hypix detector using $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.54184 \AA)$ at 140 K ; The structure was solved by direct methods and refined by full-matrix least-squares methods with SHELX2018 program. Displacement parameters were refined anisotropically, and the positions of the H -atoms were generated geometrically, assigned isotropic thermal parameters, and allowed to ride on their parent carbon atoms before the final cycle
of refinement. Basic information pertaining to crystal parameters and structure refinement are summarized in Table S2, and hydrogen bonds are listed in Table S3. CCDC 2281238 contains the supplementary crystallographic data for this paper.

Figure S19. Single crystals of compound 3a (Ellipsoids are drawn to 30\% probability).

Figure S20. Molecular packing structure of 3a along a axis. The green dotted lines show weak intermolecular interactions.

Table S2. Crystallographic data and structure refinement for 3a.

Compound	3a
Empirical formula	$\mathrm{C}_{46} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{6}$
CCDC number	2281238
Formula weight	718.81
Temperature	140(2) K
Crystal	Orthorhombic
space group	P2(1)2(1)2(1)
	$\begin{gathered} \mathrm{a}=11.3401(5) \AA \\ \alpha=90^{\circ} \end{gathered}$
Unit cell	$\mathrm{b}=13.7292$ (5) \AA;
dimensions	$\beta=90^{\circ}$
	$\mathrm{c}=23.8310$ (10) \AA;
	$\gamma=90^{\circ}$
Volume	3710.3(3) \AA^{3}
Z	4
Cal. Density	$1.287 \mathrm{~g} / \mathrm{cm}^{3}$
	$-9 \leq h \leq 13$
Index ranges	$-13 \leq \mathrm{k} \leq 16$
	$-28 \leq 1 \leq 28$
F (000)	1520
Crystal size	$0.900 \times 0.080 \times 0.080 \mathrm{~mm}^{3}$
GOF	1.070
R indices	$\mathrm{R}_{1}=0.0575$
	$\mathrm{wR}_{2}=0.1127$

Table S3. Hydrogen bonds for $\mathbf{3 a}$ [\AA and ${ }^{\circ}$]
$\mathrm{D}-\mathrm{H} \cdots \mathrm{A} \quad \mathrm{D}(\mathrm{H} \cdots \mathrm{A}) \quad \angle(\mathrm{DHA})$

$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{~N} 1$	$1.8845(30) \AA$	$174.120(186)^{\circ}$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 2$	$1.9123(33) \AA$	$172.715(186)^{\circ}$
$\mathrm{C} 45-\mathrm{H} 45 \cdots \mathrm{O} 1$	$2.3660(23) \AA$	$137.766(212)^{\circ}$
$\mathrm{C} 46-\mathrm{H} 46 \mathrm{C} \cdots \mathrm{O} 2$	$2.7078(24) \AA$	$114.020(259)^{\circ}$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 4$	$2.6670(23) \AA$	$139.913(212)^{\circ}$
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B} \cdots \mathrm{O} 4$	$2.4867(24) \AA$	$143.615(306)^{\circ}$
$\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{O} 4$	$2.3787(24) \AA$	$137.440(243)^{\circ}$
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 5$	$2.4922(23) \AA$	$157.653(214)^{\circ}$
$\mathrm{C} 23-\mathrm{H} 23 \mathrm{C} \cdots \mathrm{O} 5$	$2.6865(25) \AA$	$116.534(245)^{\circ}$
$\mathrm{C} 23-\mathrm{H} 23 \mathrm{~B} \cdots \mathrm{C} 42(\pi)$	$2.8842(38) \AA$	-
$\mathrm{C} 24-\mathrm{H} 24 \mathrm{~A} \cdots \mathrm{C} 13(\pi)$	$2.8836(39) \AA$	-

7. Photophysical Properties.

Theoretical calculations

Figure S21. The angular nodal patterns of the LUMO, HOMO, HOMO-1, HOMO-2, and HOMO-3 of 3a, calculated by using B3LYP/6-31G(d) basis set with the G09 program package.

Table S4. Related wave functions, oscillator strengths, and calculated electronic excitation energies of $\mathbf{3 a}$.

Compound	State $^{[\mathrm{a}][\mathrm{b}]}$	$\lambda[\mathrm{nm}]$	$f^{[\mathrm{c}]}$	$E_{g}(\mathrm{eV})$	Orbital $(\text { coefficient })^{[\mathrm{d}]}$
$\left(R_{\mathrm{p}}\right) \mathbf{- 3 a}$	S_{1}	313.71	0.0214	3.95	$\mathrm{H}-\mathrm{L}(67.8 \%)$

	S_{2}	301.17	0.0425	4.12	$\mathrm{H}_{-1}-\mathrm{L}(67.3 \%)$
S_{3}	279.98	0.0170	4.43	$\mathrm{H}_{-2}-\mathrm{L}(62.9 \%)$	
	S_{6}	268.59	0.1482	4.62	$\mathrm{H}_{-3}-\mathrm{L}(38.7 \%)$

${ }^{[a]}$ Only selected excited states were considered; ${ }^{[b]}$ DCM was employed as the solvent for the DFT calculations; ${ }^{[c]}$ Oscillator strength; ${ }^{[d]} \mathrm{MOs}$ involved in the transitions. $\mathrm{H}=\mathrm{HOMO}, \mathrm{L}=\mathrm{LUMO}$. Coefficient of the wavefunction for each excitation.

Figure S22. The absorption spectra of 3a, 3c, 3f, 3g, 3h, 3o, 3p, and 3s in (a) THF solutions ($50 \mu \mathrm{M}$) and (b) PMMA films.

Figure S23. The CD and absorption spectra of (a) $\left(R_{\mathrm{p}}\right) /\left(S_{\mathrm{p}}\right)$-3a, (b) $\left(R_{\mathrm{p}}\right) /\left(S_{\mathrm{p}}\right) \mathbf{- 3 c}$, (c)
$\left(R_{\mathrm{p}}\right) /\left(S_{\mathrm{p}}\right)$-30, and (d) $\left(R_{\mathrm{p}}\right) /\left(S_{\mathrm{p}}\right)$-3p in THF solutions $(50 \mu \mathrm{M})$.

Figure S24. The CD and absorption spectra of (a) $\left(R_{\mathrm{p}}\right) /\left(S_{\mathrm{p}}\right)$-3c, (b) $\left(R_{\mathrm{p}}\right) /\left(S_{\mathrm{p}}\right)$-30, and (c) $\left(R_{\mathrm{p}}\right) /\left(S_{\mathrm{p}}\right)$-3p in PMMA films.

Table S5. Comparison of CPL performances of [2.2]paracyclophane derivatives.

Structure	State	CPL emission wavelength (nm)	$\Phi_{\mathrm{f}}(\%)$	$\left\|g_{\text {lum }}\right\|$	Ref.

8. Copies of NMR and HRMS Spectra.

$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

๙inco

$126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^0]

126 MHz , DMSO- d_{6}

$126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

200
190
100
$\mathrm{fl}(\mathrm{ppa})$

6.00000000
DWZ-2-170 287 (1.719) Cm (286:300)

436.200
436.210

$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

응

$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

200	190	180	170	160	150	140	130	120	110		90	80	70	60	50	${ }_{40}$	30	20
		180		160	150				110	f1 (ppa)	90	80	70	∞	50	40	30	20

$126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

1H-DV7M-103-20230802-15. 10. fid

0
0
0

| 139 | 138 | 137 | 136 | 135 | 134 | 133 | 132 | 131 | 130 | 129 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

6.00000000

500 MHz , THF- d_{8}

(0.667) $\mathrm{Cm}(103: 130)$

500 MHz ，THF－ d_{8}

\square Whent \int 1 \rightarrow $\begin{array}{llll}1.0 & 0.5 & 0.0\end{array}$

126 MHz，THF－d_{8}

9. Coordinates of Optimized Structures

Coordinates of $\mathbf{3 a}$ in the S_{0} state
Charge $=0$ Multiplicity $=1$
N

O

O

H
$6.1124 \quad 5.6136 \quad 17.8213$

O
9.1012
1.4877
15.8714

C
3.0943
7.942
14.1274

H
2.464
8.6203
13.777

H
3.9514
8.3963
14.3249

C
3.3232
$6.8861 \quad 13.0744$

C
2.2782
6.2849
12.395

H	1.4665	6.7623	12.2695
C	2.3952	5.0083	11.8988
H	1.6644	4.6114	11.4395
C	3.5827	4.291	12.0659
C	4.7066	5.0085	12.4645
H	5.5683	4.6157	12.3886
C	4.5781	6.2891	12.9703
H	5.3513	6.7655	13.2491
C	3.5963	2.7799	12.0952
H	4.469	2.4622	11.7524
H	2.893	2.4428	11.4854
C	3.3609	2.1686	13.5291
H	2.607	1.5285	13.4856
H	4.1691	1.6652	13.8003
C	3.059	3.2091	14.5755
C	1.7929	3.7739	14.6143
H	1.0515	3.2681	14.3028
C	1.5815	5.0466	15.0914
H	0.6982	5.3949	15.1239
C	2.6446	5.8293	15.5267
C	3.8479	5.1475	15.7952
C	4.0653	3.8397	15.332
C	2.5064	7.3262	15.4718
H	2.9801	7.724	16.2448
H	1.5488	7.5661	15.5466

C	4.9304	5.8994	16.5002
C	5.3979	3.1836	15.4822
C	5.5414	1.8943	16.0117
H	4.773	1.408	16.2867
C	6.7879	1.33	16.135
H	6.8937	0.4511	16.4797
C	7.8885	2.0793	15.7424
C	6.5604	3.8354	15.1377
H	6.488	4.7172	14.7918
C	10.2304	2.2243	15.3785
H	10.0499	2.5255	14.4636
H	11.0232	1.6482	15.3823
H	10.3892	3.0021	15.9532

10. References

1. M. L. Delcourt, S. Felder, S. Turcaud, C. H. Pollok, C. Merten, L. Micouin and E. Benedetti, Highly Enantioselective Asymmetric Transfer Hydrogenation: A Practical and Scalable Method To Efficiently Access Planar Chiral [2.2]Paracyclophanes, J. Org. Chem., 2019, 84, 5369-5382.
2. E. Dalcanale and F. Montanari, Selective oxidation of aldehydes to carboxylic acids with sodium chlorite-hydrogen peroxide, J. Org. Chem., 1986, 51, 567-569.
3. Y. L. Yeh and W. F. Gorham, Preparation and reactions of some [2.2] paracyclophane derivatives, J. Org. Chem., 1969, 34, 2366-2370.
4. V. Rozenberg, N. Dubrovina, E. Sergeeva, D. Antonov and Y. Belokon, An improved synthesis of $(S)-(+)-$ and $(R)-(-)-[2.2]$ paracyclophane-4-carboxylic acid, Tetrahedron: Asymmetry, 1998, 9, 653-656.
5. H. W. Wang, J. X. Wu, X. Q. Huang, D. C. Li, S. N. Wang, Y. Lu and J. M. Dou,

Rh ${ }^{\text {III-Catalyzed C-H N-Heteroarylation and Esterification Cascade of Carboxylic }}$ Acid with Organoboron Reagents and 1,2-Dichloroethane in One-Pot Synthesis, Org. Lett., 2022, 24, 5704-5709.
6. W. Z. Duan, W. J. Liu, H. T. Liu, H. H. Ji, Y. M. Huo, H. W. Wang, S. W. Gong, AIE-active aurones for circularly p.,molarized luminescence and trace water detection, Chem. Commun., 2022, 58, 13955-13958.
7. H. H. Ji, W. J. Liu, Y. M. Huo, M. Han, Q. X. Yao, S. W. Gong, W. Z. Duan, Planar chiral AIEgens based on [2.2]paracyclophane as efficient solid-state deep red circularly polarized luminescent emitters, Dyes Pigments, 2023, 209, 110915.
8. C. H. Chen, W. H. Zheng, Planar Chiral B-N Heteroarenes Based on [2.2]Paracyclophane as Circularly Polarized Luminescence Emitters, Org. Lett., 2021, 23, 5554-5558.
9. C. Liao, Y. Zhang, S. H. Ye, W. H. Zheng, Planar Chiral [2.2]ParacyclophaneBased Thermally Activated Delayed Fluorescent Materials for Circularly Polarized Electroluminescence, ACS Appl. Mater. Interfaces., 2021, 13, 2518625192.
10. K. Li, H. H. Ji, Z. R. Yang, W. Z. Duan, Y. D. Ma, H. T. Liu, H. W. Wang, S. W. Gong, 3D Boranil Complexes with Aggregation-Amplified Circularly Polarized Luminescence, J. Org. Chem., 2021, 86, 16707-16715.
11. M. Gon, Y. Morisaki, Y. Chujo, Optically Active Phenylethene Dimers Based on Planar Chiral Tetrasubstituted [2.2]Paracyclophane, Chem. Eur. J., 2017, 23, 6323-6329.
12. M. Gon, Y. Morisaki, R. Sawada, Y. Chujo, Synthesis of Optically Active, XShaped, Conjugated Compounds and Dendrimers Based on Planar Chiral [2.2]Paracyclophane, Leading to Highly Emissive Circularly Polarized Luminescence, Chem. Eur. J., 2016, 22, 2291-2298.

[^0]: 200

