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1.General Information

All reactions were performed under an atmosphere of nitrogen using standard Schlenk techniques
unless otherwise indicated. All commercial reagents were used without further purification unless
otherwise noted. Reactions were monitored by thin-layer chromatography (TLC) analysis. TLC plates
were viewed under UV light and stained with potassium permanganate. Yields refer to products isolated
after purification by column chromatography unless otherwise stated. Proton nuclear magnetic resonance
(‘H NMR) spectra, carbon nuclear magnetic resonance ('>*C NMR) spectra, and fluorine nuclear magnetic
resonance (°F NMR) were recorded on Bruker AV-400 (400 MHz), and JEOL-500 (500 MHz)
spectrometers. NMR samples were dissolved in CDCIl3 (unless specified otherwise) and chemical shifts
are reported in ppm referenced to residual nondeuterated solvent. IR spectra were obtained from Thermo
Scientific NICOLET 380 FT-IR. HRMS were obtained on an Exactive Plus LC-MS (ESI/APCI) mass
spectrometer with the use of a quadrupole analyzer.

The number-average molecular weight (Mn), weight-average molecular weight (Mw), and
polydispersity index (PDI = Mw/My) of the obtained polymers were determined by a Waters 1515 series
gel permeation chromatograph (GPC) equipped with a Waters 2414 refractive index detector, using a
Styragel HR3THF (7.8>300 mm) Column, and a Styragel HR4THF (7.8>300 mm) Column with
measurable molecular weights ranging from 102 to 106 g mol™. DSC and TGA were performed on
Instruments STA449C/6/G (purge gas: Arp, flow rate: 20 mL/min, ramp rate: 30 °C/min, temperature
range: 30 °C to 800 °C). All commercial chemical reagents were purchased from Energy Chemical and
Innochem without further purification.

2.General Procedures
General Procedure 1 (GP 1) - Co-catalyzed the synthesis of unsymmetric disiloxanes

To a Schlenk tube with a stirring bar was added aryl silanol (5 mmol), alkyl silanol (10 mmol, 2.0
equiv.), CoF4-H20 (0.025 mmol, 0.5 mol%), L6 (0.05 mmol, 1.0 mol%), and MeCN (2.5 mL) under air
for 8 h at 60 °C (heating module). Upon completion, the reaction mixture was directly concentrated by
rotary evaporation. The unsymmetrical siloxane products were isolated by silica column chromatography
(typically pure petroleum ether).

General Procedure 2 (GP 2) - Co-catalyzed the synthesis of polysiloxanes

To a Schlenk tube with a stirring bar was added aryl silanol (5 mmol), alkyl silanol (10 mmol, 2.0
equiv.), CoF4-H20 (0.025 mmol, 0.5 mol%), L6 (0.05 mmol, 1.0 mol%), and MeCN (8.0 mL) under air
for 8 h at 60 °C (heating module). After the polymerization, the reaction mixture was cooled to room
temperature, and the content was purified by the precipitation method.

All of the polymers are soluble in dichloromethane and insoluble in methanol, so these two solvents
were used in the precipitation process. The reaction mixture was first homogenized by the addition of as
low as possible amount of DCM (5 mL), then, cold methanol was added to dichloromethane (20 mL) until
it turned into a biphasic mixture. The top layer was taken out, and the bottom viscous/solid layer was
washed with methanol two times until it gave a white/light yellow color viscous/solid polymer. The
resulting polymer was dried to a constant weight and characterized by 'H NMR, *C NMR, GPC and TG.



3.0ptimization of the Reaction Conditions

3.1 Screening of catalysts

Co cat. (5 mol%)

ﬁ’h ||5t ligand (10 mol%) F"h ||5t
Me—-SIi—OH + Et—SIi—OH THF (1.0 mL), 60 °C > Me—SIi-O-SIi—Et
al =t air, 10 h Ph Et
24 2 14
0.2 mmol 1.5 equiv.
Entry? Co cat. Yield (%)°
1 Co(acac)s n.d.
2 Co(acac), 12
3 Co(OAc), n.d.
4 Co(OAc),*4H,0 trace
5 CoF, 14
6 CoF,+4H,0 60
CoCl, n.d.
CoBr, n.d.
Co(NO3),*6H,0 n.d.
10 CoCl,0g*6H,0 n.d.
11 Co(OH), n.d.
12 NaF n.d.
13 MnF, n.d.

¢ Reaction conditions: 24 (0.2 mmol, 1.0 equiv.), 2 (0.3 mmol, 1.5 equiv.), catalyst (0.01 mmol, 5 mol%) and ligand
(0.02 mmol, 10 mol%) were added to THF (1.0 mL) under air for 10 h at 60 °C. ® The yields were given with CH,Br; as
the internal standard.



3.2 Screening of solvents

CoF,*4H,0 (5 mol%)

Ph et ligand (10 mol%) Ph o Et
Me—SIi—OH + Et—SIi—OH o Me—SIi-O-SIi—Et
Ph Et Solvent (X mL), 60 °C Ph  Et
air, 10 h
24 2 14
0.2 mmol 1.5 equiv.
Entry? Solvent X Yield (%)?

1 DCM 1.0 14
2 DCE 1.0 n.d.
3 DMF 1.0 52
4 EA 1.0 38
5 Hexane 1.0 13
6 1,4-dioxane 1.0 n.d.
7 Et,0 1.0 68
8 THF 1.0 60
9 Toluene 1.0 n.d.
10 CH30OH 1.0 n.d.
1 PhCN 1.0 15
12 MeCN 1.0 72
13¢ MeCN 0.5 64
144 MeCN 2.0 66
15¢ MeCN 4.0 23
167 - - 60

¢ Reaction conditions: 24 (0.2 mmol, 1.0 equiv.), 2 (0.3 mmol, 1.5 equiv.), CoF2-4H>0 (0.01 mmol, 5 mol%) and ligand
(0.02 mmol, 10 mol%) were added to solvent (X mL) under air for 10 h at 60 °C. ® The yields were given with CH,Br,
as the internal standard.



3.3 Screening of ligands

CoF,+4H,0 (5 mol%)

Ph Et Ligand (X mol%) Ph Et
Me—Si*OH +  Et—Si—OH >  Me—Si+0-Si—Et
b L HeCN (o) 0 C b
24 2 14
0.2 mmol 1.5 equiv.
Entry? Ligand X Yield (%)?
1 L1 10 n.d.
2 L2 10 71
3 L3 10 70
4 L4 10 72
5 L5 10 50
6 L6 10 79
7 L7 10 n.d.
8 L8 10 n.d.
9 L9 10 n.d.
10 L10 10 n.d.
11¢ L6 5 59
129 L6 7.5 70
13° L6 15 78
H3C, CH;  Bu 'Bu Ph Ph
4 \ 7\ \ 7\ \ 7\ \
=N N= =N N= =N N= —N  NT
L1 L2 L3 L4 L5
X Eh ©\ /©
| | N._P. P

L6 L7 L8 L9 L10

¢ Reaction conditions: 24 (0.2 mmol, 1.0 equiv.), 2 (0.3 mmol, 1.5 equiv.), CoF2-4H>0 (0.01 mmol, 5 mol%) and ligand
(X mol%) were added to MeCN (1.0 mL) under air for 10 h at 60 °C. ® The yields were given with CH,Br; as the internal
standard.



3.4 Screening of temperature

CoF,+4H,0 (5 mol%) N
Fl’h Ilft L6 (10 mol%) F,’h Et |
Me—SIi-OH + Et—SI.i—OH - Me—SIi—O-SIi—Et = I N
b & MeCN (1.0 mL), X °C LA N M I
air, 10 h
24 2 14 L6
0.2 mmol 1.5 equiv.
Entry? X Yield (%)P
1 R.T. 51
2 40 69
3 60 79
4 80 76

¢ Reaction conditions: 24 (0.2 mmol, 1.0 equiv.), 2 (0.3 mmol, 1.5 equiv.), CoF>-4H>O (0.01 mmol, 5 mol%) and L6
(0.02 mmol, 10 mol%) were added to MeCN (1.0 mL) under air for 10 h at X °C. © The yields were given with CH,Br»
as the internal standard.

3.5 Screening of the amount of triethylsilanol

CoF5*4H,0 (5 mol%) N
ﬁ’h IIEt L6 (10 mol%) I,’h %t |
Me—sl.i-OH + Et—SIi—OH - Me—SIi—O—SIi—Et A N
Ph Et MeCN (1.0 mL), 60 °C Ph  Et SN N
air, 10 h
24 2 14 L6
0.2 mmol X equiv.
Entry? X Yield (%)P

1 1.0 73

2 1.5 79

3 2.0 88

4 25 80

“ Reaction conditions: 24 (0.2 mmol, 1.0 equiv.), 2 (X equiv.), CoF>-4H,0 (0.01 mmol, 5 mol%) and L6 (0.02 mmol, 10
mol%) were added to MeCN (1.0 mL) under air for 10 h at 60 °C. ® The yields were given with CH,Br; as the internal
standard.



3.5 Screening of reaction time

CoF5*4H,0 (5 mol%) N
F,’h Et L6 (10 mol%) Ph Et |
Me—SIi—OH + Et—SIi—OH > Me—SIi-O-SIi—Et z | N
Ph Et MeCN (1.0 mL), 60 °C Ph  Et SN N
air, X h
24 2 14 L6
0.2 mmol 2.0 equiv.
Entry? X Yield (%)?
1 1 40
2 2 48
3 4 63
4 6 75
5 8 88 (83)°
6 10 88
7 12 88
8 24 65

¢ Reaction conditions: 24 (0.2 mmol, 1.0 equiv.), 2 (0.4 mmol, 2.0 equiv.), CoF2-4H,0 (0.01 mmol, 5 mol%) and L6
(0.02 mmol, 10 mol%) were added to MeCN (1.0 mL) under air for X h at 60 °C. * The yields were given with CH,Br»
as the internal standard. ¢ Isolated yields.

3.6 Screening of the gram-scale reaction

CoF5+4H,0 (0.5 mol%) X
lfh I|Et L6 (1.0 mol%) Ph Et |
Ph—Sli—OH + Et—SIi—OH > Ph—Sli-O—SIi—Et z I N
Ph Et MeCN (X mL), 60 °C Ph  Et SN Na
air, 8 h
1 2 3 L6
5 mmol 2.0 equiv.
Entry? X Yield(%)®
1 0.5 15
2 1.0 38
3 1.5 70
4 2.0 73
5 2.5 76
6 3.0 76
7 4.0 75

¢ Reaction conditions: 1 (5 mmol, 1.0 equiv.), 2 (10 mmol, 2.0 equiv.), CoF4-H>O (0.025 mmol, 0.5 mol%), L6 (0.05
mmol, 1.0 mol%) were added to MeCN (X mL) under air for 8 h at 60 °C. ® Isolated yields.




4.Characterization of unsymmetric disiloxanes

Ph  Et

| |
Ph  Et

3, 1,1,1-triethyl-3,3,3-triphenyldisiloxanel!!

Synthesized according to GP 1. Purification via column chromatography (petroleum ether) afforded 1.48
g (76% yield) of the desired product as a colorless oil.

!H NMR (400 MHz, CDCl3) § 7.62 (d, J = 6.3 Hz, 6H), 7.47 — 7.34 (m, 9H), 0.90 (t, J = 8.0 Hz, 9H),
0.59 (g, J = 8.0 Hz, 6H).

Ph  Me

1 i
@—?i-O—?i-Me
Ph  Me

4, 1,1,1-trimethyl-3,3,3-triphenyldisiloxanel?

Synthesized according to GP 1. Purification via column chromatography (petroleum ether) afforded 1.56
g (90% yield) of the desired product as a white soild.

IH NMR (400 MHz, CDCls) § 7.60 (d, J = 7.2 Hz, 6H), 7.48 — 7.31 (m, 9H), 0.11 (s, 9H). 13C NMR (101
MHz, CDCl3) & 136.4, 135.1, 129.9, 127.9, 2.2.

Ph  Pr
©—§i-o—§i-"Pr
Ph  'Pr

5, 1,1,1-triisopropyl-3,3,3-triphenyldisiloxane

Synthesized according to GP 1. Purification via column chromatography (petroleum ether) afforded 0.04
g (2% yield) of the desired product as a white soild.

IH NMR (400 MHz, CDCls) § 7.61 (d, J = 7.1 Hz, 6H), 7.47 — 7.31 (m, 9H), 1.12 — 1.03 (m, 3H), 0.98
(d, J = 7.0 Hz, 18H). *C NMR (101 MHz, CDCl3) 5 136.5, 135.4, 129.8, 127.8, 18.1, 13.1. IR (neat, cm
1): 2941 (m), 1463 (m), 1247 (s), 1007 (m), 698 (s); HRMS (APCI) m/z: [M+H]* Calcd. for C27Hz70Siz:
433.2377; Found: 433.2378.



F|>h |\|/|e
©—§i-o—§i—f3u

Ph  Me
6, 1-(tert-butyl)-1,1-dimethyl-3,3,3-triphenyldisiloxane

Synthesized according to GP 1. Purification via column chromatography (petroleum ether) afforded 0.12
g (6% vyield) of the desired product as a white soild.

IH NMR (400 MHz, CDCl3) & 7.64 — 7.58 (m, 6H), 7.49 — 7.32 (m, 9H), 0.90 (s, 9H), 0.03 (s, 6H). 13C
NMR (101 MHz, CDCls) 5 136.3, 135.2, 129.9, 127.8, 26.0, 18.5, -2.3. IR (neat, cm™): 2954 (m), 1428
(m), 1254 (m), 1049 (m), 696 (s); HRMS (ESI) m/z: [M+H]" Calcd. for C24H310Si: 391.1908; Found:
391.1913.

Ph Me
fsu©—§i-o—§i-Me

Ph  Me
7, 1-(4-(tert-butyl)phenyl)-3,3,3-trimethyl-1,1-diphenyldisiloxane

Synthesized according to GP 1. Purification via column chromatography (petroleum ether) afforded 1.84
g (91% yield) of the desired product as a colorless oil.

'H NMR (400 MHz, CDCl3) & 7.59 (dd, J = 7.9, 1.7 Hz, 4H), 7.52 (d, J = 8.3 Hz, 2H), 7.44 — 7.32 (m,
8H), 1.32 (s, 9H), 0.09 (s, 9H). 3C NMR (101 MHz, CDCl3) § 152.8, 136.7, 135.1, 134.9, 132.7, 129.8,
127.8, 124.8, 34.9, 31.4, 2.2. IR (neat, cm™): 2959 (m), 1428 (m), 1251 (m), 1059 (s), 699 (s); HRMS
(ESI) m/z: [M+Na]* Calcd. for C25H3,0Si2Na: 427.1884; Found: 427.1877.

Ph  Me
CF3—©—§i-o—§i-Me

Ph  Me
8, 1,1,1-trimethyl-3,3-diphenyl-3-(4-(trifluoromethyl)phenyl)disiloxane

Synthesized according to GP 1. Purification via column chromatography (petroleum ether) afforded 1.33
g (64% vyield) of the desired product as a colorless oil.

'H NMR (400 MHz, CDCl3) 8 7.70 (d, J = 7.5 Hz, 2H), 7.61 (d, J = 7.7 Hz, 2H), 7.58 — 7.54 (m, 4H),
7.47 — 7.42 (m, 2H), 7.41 — 7.35 (m, 4H), 0.11 (s, 9H). 3C NMR (101 MHz, CDCl3) § 141.5, 135.4,
135.4,135.1, 131.8 (q, J = 32.1 Hz), 130.29, 128.1, 124.5 (q, J = 3.8 Hz), 124.4 (q, J = 274.7 Hz), 2.15.
19F NMR (471 MHz, CDClIs) § -62.7. IR (neat, cm™): 2958 (m), 1429 (m), 1252 (m), 1057 (s), 697 (5);
HRMS (ESI) m/z: [M+H]" Calcd. for C22HsF30Siy: 417.1313; Found: 417.1304.

10



I'Dh I\I/Ie
?i-O—?i-Me
Ph  Me

CF;
9, 1,1,1-trimethyl-3,3-diphenyl-3-(2-(trifluoromethyl)phenyl) disiloxane

Synthesized according to GP 1. Purification via column chromatography (petroleum ether) afforded 1.24
g (60% yield) of the desired product as a colorless oil.

'H NMR (400 MHz, CDCl3) 8 7.76 (d, J = 7.8 Hz, 1H), 7.65 (d, J = 7.4 Hz, 1H), 7.58 — 7.50 (m, 5H),
7.52 — 7.34 (m, 7H), 0.12 (s, 9H). *C NMR (101 MHz, CDCls3) 6 138.1, 136.4, 136.1 (q, J = 31.5 Hz),
135.1, 134.5, 130.6, 130.0, 129.9, 127.8, 126.5 (g, J = 5.1 Hz), 124.8 (q, J = 274.4 Hz), -1.9. 1%F NMR
(376 MHz, CDCls) § -57.4. IR (neat, cm™): 2958 (m), 1429 (m), 1252 (m), 1057 (s), 697 (s); HRMS
(ESI) m/z: [M+H]" Calcd. for C22H2sF30Si2: 417.1312; Found: 417.1321.

(A

I';’h I\'/Ie
ar .
Ph  Me

10, 1-(dibenzo[b,d]thiophen-4-yl)-3,3,3-trimethyl-1,1-diphenyldisiloxane

Synthesized according to GP 1. Purification via column chromatography (petroleum ether) afforded 2.02
g (89% yield) of the desired product as a white soild.

'H NMR (400 MHz, CDCls3) 6 8.30 (d, J = 7.9 Hz, 1H), 8.25 - 8.19 (m, 1H), 7.84 (dd, J = 6.0, 3.3 Hz,
1H), 7.79 (d, J = 6.5 Hz, 4H), 7.72 (d, J = 7.1 Hz, 1H), 7.57 — 7.44 (m, 9H), 0.25 (s, 9H). 13C NMR (101
MHz, CDCl3) 8 146.0, 140.2, 135.4, 135.22, 135.20, 135.1, 134.8, 130.6, 130.2, 128.0, 126.6, 124.2,
123.8,123.3,122.7,121.5, 2.2. IR (neat, cm™): 2957 (m), 1429 (m), 1250 (m), 1023 (m), 697 (s); HRMS
(ESI) m/z: [M+H]" Calcd. for C27H270SSi2N: 472.1316; Found: 472.1327.

I';’h l\|/|e
@—Si-O—Si-Me
S 1 !
Ph  Me

11, 1,1,1-trimethyl-3,3-diphenyl-3-(thiophen-2-yl) disiloxane

Synthesized according to GP 1. Purification via column chromatography (petroleum ether) afforded 1.00
g (56% yield) of the desired product as a colorless oil.

'H NMR (400 MHz, CDCl3) 6 7.78 — 7.71 (m, 5H), 7.54 — 7.43 (m, 7H), 7.29 (dd, J = 4.6, 3.4 Hz, 1H),
0.23 (s, 9H). 3C NMR (101 MHz, CDCls3) 5 137.3, 136.2, 136.1, 134.8, 132.2, 130.1, 128.2, 127.9, 2.1.
IR (neat, cm™): 2957 (m), 1429 (m), 1250 (m), 1049 (s), 696 (s); HRMS (ESI) m/z: [M+H]* Calcd. for
C19H220SSi2: 355.1003; Found: 355.1012.
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Ph  Me

~ é'Oé'M
O i >i-Me

Ph  Me
12, 1-(furan-3-yl)-3,3,3-trimethyl-1,1-diphenyldisiloxane

Synthesized according to GP 1. Purification via column chromatography (petroleum ether) afforded 1.13
g (67% yield) of the desired product as a colorless oil.

'H NMR (500 MHz, CDCl3) § 7.62 — 7.59 (m, 4H), 7.55 (t, J = 1.6 Hz, 1H), 7.45 — 7.41 (m, 2H), 7.40 —
7.36 (m, 5H), 6.47 (dd, J = 1.7, 0.9 Hz, 1H), 0.12 (s, 9H). 1¥3C NMR (126 MHz, CDCls) 6 150.3, 143.3,
136.6, 134.7, 123.0, 127.9, 115.9, 113.9, 2.13. IR (neat, cm™): 2957 (m), 1429 (m), 1250 (m), 1023 (m),
697 (s); HRMS (ESI) m/z: [M+H]" Calcd. for C19H230,Si2: 339.1232; Found: 339.1238.

Fl’h I\I/Ie
Me—?i-O—?i-Me
Ph  Me

13, 1,1,1,3-tetramethyl-3,3-diphenyldisiloxanel®!

Synthesized according to GP 1. Purification via column chromatography (petroleum ether) afforded 1.12
g (78% yield) of the desired product as a colorless oil.

IH NMR (400 MHz, CDCls) & 7.72 — 7.64 (m, 4H), 7.52 — 7.41 (m, 6H), 0.72 (s, 3H), 0.22 (s, 9H).

I';’h IIEt
Me—?i-O-.?i-Et
Ph  Et

14, 1,1,1-triethyl-3-methyl-3,3-diphenyldisiloxanet*!

Synthesized according to GP 1. Purification via column chromatography (petroleum ether) afforded 0.89
g (54% yield) of the desired product as a colorless oil.

IH NMR (400 MHz, CDCls) & 7.65 — 7.59 (m, 4H), 7.48 — 7.33 (m, 6H), 0.97 (t, J = 8.0 Hz, 9H), 0.68 (s,
3H), 0.62 (g, J = 7.9 Hz, 6H).

I\l/le I\l/le
Ph-{Si-O-SiMe
Me Me
15, 1,1,1,3,3-pentamethyl-3-phenyldisiloxanel

Synthesized according to GP 1. Purification via column chromatography (petroleum ether) afforded 0.82
g (73% yield) of the desired product as a colorless oil.

IH NMR (400 MHz, CDCls) & 7.78 — 7.72 (m, 2H), 7.57 — 7.50 (m, 3H), 0.53 (s, 6H), 0.30 (s, 9H).

12



Oy 5.
O ?i-O—?i-Me

Me Me
16, 1,1,1,3,3-pentamethyl-3-(naphthalen-2-yl)disiloxane

Synthesized according to GP 1. Purification via column chromatography (petroleum ether) afforded 0.95
g (69% yield) of the desired product as a colorless oil.

'H NMR (500 MHz, CDCls) 6 8.24 (s, 1H), 8.05 — 7.95 (m, 3H), 7.83 (dd, J = 8.1, 1.2 Hz, 1H), 7.64 (dt,
J=6.2,3.4 Hz, 2H), 0.61 (s, 6H), 0.32 (s, 9H). 13C NMR (126 MHz, CDCl3) 8 137.8, 134.1, 133.8, 133.1,
129.6, 128.4, 128.0, 127.1, 126.5, 126.0, 2.2, 1.1. IR (neat, cm™): 2956 (m), 1408 (w), 1251 (m), 1049
(m), 780 (s); HRMS (ESI) m/z: [M+H]" Calcd. for C15H230Si>: 275.1282; Found: 215.1290.

Me Me
Bn—?i-O—?i-Me
Me Me

17, 1-benzyl-1,1,3,3,3-pentamethyldisiloxane

Synthesized according to GP 1. Purification via column chromatography (petroleum ether) afforded 0.83
g (70% yield) of the desired product as a colorless oil.

'H NMR (400 MHz, CDCls) 6 7.30 (t, J = 7.6 Hz, 2H), 7.20 — 7.10 (m, 3H), 2.21 (s, 2H), 0.15 (s, 6H),
0.14 (s, 9H). 3C NMR (101 MHz, CDCls) 6 139.7, 128.5, 128.3, 124.2, 28.8, 2.0, 0.1. IR (neat, cm™):
2956 (m), 1493 (m), 1252 (s), 1050 (s), 696 (s); HRMS (ESI) m/z: [M+H]" Calcd. for C12H230Si>:
239.1282; Found: 239.1288.

?n Me
Bn—?kO—?kMe
Bn Me

18, 1,1,1-tribenzyl-3,3,3-trimethyldisiloxane

Synthesized according to GP 1. Purification via column chromatography (petroleum ether) afforded 1.47
g (75% yield) of the desired product as a white soild.

'H NMR (500 MHz, CDCls) & 7.27 — 7.22 (m, 6H), 7.12 (t, J = 7.4 Hz, 3H), 7.03 (d, J = 6.6 Hz, 6H),
2.14 (s, 6H), -0.10 (s, 9H). 3C NMR (101 MHz, CDCl3) 5 138.6, 128.9, 128.4, 124.5,24.9, 1.8. IR (neat,
cmt): 2955 (m), 1492 (m), 1251 (m), 1058 (m), 695 (s); HRMS (ESI) m/z: [M+H]" Calcd. for
C24H310Si2: 391.1908; Found: 391.1913.

13



Me ?h Me
Me—%hO—?FO—?FMe
Me Ph Me

19, 1,1,1,5,5,5-hexamethyl-3,3-diphenyltrisiloxanel®!

Synthesized according to GP 1. Purification via column chromatography (petroleum ether) afforded 0.49
g (27% yield) of the desired product as a colorless oil.

IH NMR (400 MHz, CDCls) & 7.67 — 7.61 (m, 4H), 7.46 — 7.35 (m, 6H), 0.17 (s, 18H).

Me ?h ?h Me
Me—§F0°§FO*§FO—§FMe
Me Ph Ph Me

20, 1,1,1,5,5,5-hexamethyl-3,3-diphenyltrisiloxane

Synthesized according to GP 1. Purification via column chromatography (petroleum ether) afforded 0.34
g (12% yield) of the desired product as a white soild.

!H NMR (400 MHz, CDCl3) 6 7.59 — 7.54 (m, 8H), 7.41 — 7.35 (m, 4H), 7.33 — 7.27 (m, 8H), 0.00 (s,
18H). 13C NMR (101 MHz, CDCls) § 136.1, 134.5, 129.9, 127.7, 1.9. IR (neat, cm™): 2959 (w), 1429
(m), 1251 (m), 1124 (s), 699 (s); HRMS (ESI) m/z: [M+Na]* Calcd. for C3oH3s03SisNa: 581.1790;
Found: 581.1802.

Me
9] ?h Me
H™ }/-—Q—Si-o-Si-Me
o | {

Me” e Ph  Me

21, (1S,2S,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 4-(3,3,3-trimethyl-1,1-
diphenyldisiloxaneyl)benzoate

Synthesized according to GP 1. Purification via column chromatography (petroleum ether : ethyl acetate
=50 : 1) afforded 1.74 g (66% yield) of the desired product as a colorless oil.

'H NMR (500 MHz, CDCl3) § 8.06 —8.02 (m, 2H), 7.69 — 7.66 (m, 2H), 7.58 — 7.54 (m, 4H), 7.45 - 7.41
(m, 2H), 7.42 — 7.33 (m, 4H), 5.11 (ddd, J = 9.9, 3.5, 2.1 Hz, 1H), 2.51 — 2.43 (m, 1H), 2.12 (ddd, J =
13.3,9.4, 4.4 Hz, 1H), 1.80 (tq, J = 12.1, 4.1 Hz, 1H), 1.73 (t, J = 4.5 Hz, 1H), 1.46 — 1.35 (m, 2H), 1.11
(dd, J = 13.8, 3.5 Hz, 1H), 0.97 (s, 3H), 0.91 (d, J = 3.4 Hz, 6H), 0.11 (s, 9H). ¥C NMR (126 MHz,
CDCl3) 6 166.3, 142.1, 135.3, 134.83, 134.79, 131.9, 129.9, 128.5, 127.8, 80.1, 48.9, 47.7, 44.9, 36.9,
28.0, 27.3,19.6, 18.8, 13.5, 2.0. IR (neat, cm™): 2855 (m), 1428 (m), 1262 (m), 1058 (m), 698 (s); HRMS
(ESI) m/z: [M+H]" Calcd. for C32H4103Siz: 529.2589; Found: 529.2600.
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e} I?h I\l/le
}/-—©—§i-o—§i-|\ne

Me o) Ph  Me
22, (1S,2R,5S)-2-isopropyl-5-methylcyclohexyl 4-(3,3,3-trimethyl-1,1-diphenyldisiloxaneyl)benzoate

Synthesized according to GP 1. Purification via column chromatography (petroleum cther : ethyl acetate
=50: 1) afforded 1.96 g (74% yield) of the desired product as a colorless oil.

IH NMR (500 MHz, CDCl3) & 8.02 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 8.4 Hz, 2H), 7.58 — 7.53 (m, 4H),
7.42 (d, J=6.9 Hz, 2H), 7.39 - 7.35 (m, 4H), 4.93 (td, J = 10.9, 4.4 Hz, 1H), 2.15-2.09 (m, 1H), 1.96 (td,
J=6.9, 2.6 Hz, 1H), 1.75-1.70 (m, 2H), 1.57 — 1.49 (m, 2H), 1.17 — 1.04 (m, 2H), 0.92 (t, J = 7.1 Hz,
6H), 0.79 (d, J = 7.0 Hz, 3H), 0.10 (s, 9H). *C NMR (126 MHz, CDCls) § 166.3, 142.3, 135.6, 135.06,
135.00, 132.0, 130.1, 128.6, 128.0, 75.0, 47.4,41.1, 34.4, 31.6, 26.6, 23.7, 22.2, 20.9, 16.6, 2.2. IR (neat,
cm?): 2954 (m), 1429 (m), 1251 (m), 1058 (m), 699 (s); HRMS (ESI) m/z: [M+H]" Calcd. for
C32H4303Si2: 531.2746; Found: 531.2757.

Me )
Ph  Me
o—©—§i-o—§i-|v|e
Ph Me

Pr
23, 4-(3,3,3-trimethyl-1,1-diphenyldisiloxaneyl)phenyl 2-(4-isobutylphenyl)propanoate

Synthesized according to GP 1. Purification via column chromatography (petroleum ether : ethyl acetate
=50 : 1) afforded 2.26 g (82% yield) of the desired product as a colorless oil.

IH NMR (500 MHz, CDCls) & 7.86 — 7.79 (m, 6H), 7.61 — 7.51 (m, 8H), 7.36 (d, J = 8.3 Hz, 2H), 7.27
(d, J=8.6 Hz, 2H), 4.15 (q, J = 7.2 Hz, 1H), 2.69 (d, J = 7.2 Hz, 2H), 2.16 — 2.02 (m, 1H), 1.82 (d, J =
7.2 Hz, 3H), 1.13 (d, J = 6.7 Hz, 6H), 0.34 (s, 9H). 3C NMR (126 MHz, CDCl3) § 173.1, 152.4, 140.8,
137.3, 136.3, 136.0, 135.0, 133.8, 129.9, 129.6, 127.9, 127.3, 120.9, 45.4, 45.1, 30.2, 22.5, 18.6, 2.1. IR
(neat, cm™): 2955 (m), 1429 (m), 1251 (m), 1050 (s), 699 (s); HRMS (ESI) m/z: [M+H]"* Calcd. for
C34H4103Si2: 553.2589; Found: 553.2601.

l\|/|e I\l/le Ph I\I/Ie I\|/Ie
HO §i-®—sli—o—@—o—§i—©—s|i—o H
Me Me Ph Me Me

n

26, polysilylether (Pas)

Synthesized according to GP 2. Purification by precipitation method afforded 2.16 g (68% vyield) of the
desired product as a colorless viscous oil.

IH NMR (500 MHz, CDCl3) & 7.79 — 7.30 (m, 18H), 0.60 — 0.24 (m, 24H). 3C NMR (101 MHz, CDCls)

5 141.1, 141.0, 140.43, 140.35, 136.1, 135.5, 134.7, 134.6, 134.4, 132.52, 132.46, 132.41, 132.35, 123.0,
127.8,127.7,1.1,0.9, 0.8. IR (neat, cm'%): 3392 (w), 2957 (w), 1120 (s), 1041 (s), 506 ().
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27, polysilylether (Pac)

Synthesized according to GP 2. Purification by precipitation method afforded 3.21 g (79% vyield) of the
desired product as a light yellow viscous oil.

IH NMR (400 MHz, CDCls) § 8.46 — 7.32 (m, 26H), 1.27 — 0.45 (m, 24H). 3C NMR (101 MHz, CDCl3)
5 158.2, 136.0, 135.5, 135.0, 134.9, 134.5, 134.4, 133.8, 130.0, 127.8, 118.4, 1.2, 1.0. IR (neat, cm™):
3320 (w), 2757 (m), 1112 (s), 1041 (s), 510 (S).

S5.Mechanism Studies
5.1 The radical inhibition experiment

Regarding the reaction mechanism, the possible radical pathway of this transformation was ruled out
because the addition of radical radical scavengers, such as TEMPO (2,2,6,6-tetramethylpiperidinooxy) or
BHT (2,6-di-tert-butyl-4-methylphenol), still afforded the target unsymmetric disiloxane (14) in 82% and
83%, respectivel.

CoF5-4H50 (5 mol%)

Me<Si-OH + Et:Si-OH + radical scavenger > l 1
Ph Et CH5CN, 60 °C, 8 h P E
(2.0 equiv.) Ehi : 14
24 2 with TEMPO: 82%

with BHT: 83%

¢ Reaction conditions: 24 (0.2 mmol, 1.0 equiv.), 2 (0.4 mmol, 2.0 equiv.), CoF2-4H>O (0.01 mmol, 5 mol%) and terpy
(0.02 mmol, 10 mol%), radical scavenger (10 mmol, 2.0 equiv.) were added to MeCN (1.0 mL) under air for 8 h at 60
°C. > The yields were given with CH,Br; as the internal standard.

5.2 XPS analysis of cobalt complex K1

CoF2 4H20 (1.0 mmol) and terpy (2.0 equiv.) were dissolved in MeCN (10 mL) under air for 8 h at
60 °C, filtered and washed by ethanol. Then, the filtrate removed in vacuo, giving a dark brown solid K1.
After that, this solid was washed with diethyl ether (10 mL) and dried in vacuo. (yield: 0.19 g, 51%).["]

To further investigate the valence change of Co before and after the reaction, we carried out a detailed
study using XPS. During the reaction, CoF2 4H>0 was coordinated with tripyridine to form a Co complex.
The fine XPS spectrum of Co 2p shows that 778.9 eV is due to Co%* 2pss. 779.9 eV is attributed to Co?*
2p312.L81 The fine XPS spectrum of F 1s shows that the valence electrons are closer to the F atom due to
the oxidation of the Co complex, which causes the binding energy to shift towards the low field direction.
Among them, the F signal at 683.2 eV and the bivalent Co may be caused by the inseparable CoF, 4H>0.
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Figure S1. Comparison of XPS before and after cobalt complexation.

5.3 Control experiment

The control experiment confirmed that symmetric disiloxane (24) can be a competent substrate to
proceed with a similar reactivity toward the formation of unsymmetric disiloxane (14) in 57% yield.

CoF,-4H50 (5 mol%)

I?h I.Dh I.Et terpy (10 mol%) I|Dh IIEt
Me—?i-O—?i-Me + Et-?i-OH - Me—§|-0—§|-Et

Ph  Ph Et CH4CN, 60 °C, 8 h Ph  Et

25 2 14, 57%

¢ Reaction conditions: 25 (0.2 mmol, 1.0 equiv.), 2 (0.4 mmol, 2.0 equiv.), CoF2-4H>0 (0.01 mmol, 5 mol%) and terpy
(0.02 mmol, 10 mol% were added to MeCN (1.0 mL) under air for 8 h at 60 °C. ® The yields were given with CH,Br; as
the internal standard.

5.4 Whereabouts of excess silanols

This reaction used two equiv of one silanol. To investigate the fate of excess silane alcohol, the crude
nuclear magnetic spectra and product spectra were compared, and it was found that a small portion of the
excess silane alcohol remained in the form of a silane alcohol, but more of it became a symmetrical

disiloxane. However, the corresponding fluorine signal could not be captured by the fluorine spectrum
for the formation of Si-F, so it was ruled out.
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COF,+4H,0 (5 mol%)

lI:h ||Et Terpy (10 mol%) F')h IlEt ﬁ’h ﬁ’h Et %t IlEt
Me-?i-OH + Et-?i-OH > Me—?i-O—?i-Et + Me—?i-O—?i—Me + Et—=Si-O-=Si—Et + Et'§i'OH
Ph Et CHsCN (1.0 mL), 60 °C Ph  Et Ph  Ph Bt Et
24 2 air, 8 h 14 25 26 2
0.2 mmol 2.0 equiv. yield:88%
A.Product spectrum of Ph,MeSiOSiEty
2
N
B.Reaction system
CH,Br, (internal standard)
F1
A
9.0 8.5 8.0 75 7.0 65 6.0 55 50 45 40 35 3.0 25 20 15 10 05 00 05 10
1 (ppm)
2 F2 F2
Et
Et /—?t»g-OH
PR Ph Et~?i'0—?i'—Et i
Me—?i-O-?i—Me Et Et
Ph  Ph r1 r1 r1
768 7.66 7.64 7.62 7.60 7.58 7.56 7.54 "T1b2 " 100 ' 098 ' 096 o094 092 1740 0.735 0.730 0.725 0.720
1 (ppm) 1 (ppm) 1 (ppm)

5.5 Hydrolysis of disiloxanes

We attempted to react the product with 10 equiv. amounts of water under standard conditions. By
comparing the crude nuclear magnetic resonance spectra and product spectra after hydrolysis, we found
that a small amount of corresponding symmetrical siloxanes and silanols were formed after hydrolysis.
This further indicates that the reaction is an equilibrium process. In addition, we compared the temperature.
At room temperature, the hydrolysis reaction does not occur, indicating that this step is reversible.
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COF»+4H,0 (5 mol%)

: Terpy (10 mol%) Ph Ph  Ph Bt Et Ph Et
Me-@O-?i-Et +  HO > Me-@o SI*Et + Me O-@-Me + Et-*Si-O-Si-Et + Me@OH + Et{SirOH
Ph CH3CN (1.0 mL), 60 °C Ph Ph  Ph I Ph Et

14 air, 8 h 14 25 26 24 2
0.2 mmol 10 equiv. yield:72%

A.Product spectrum of Ph,MeSiOSiEt;

| )

B.Rough spectrum of product hydrolysis

CH,Br;, (internal standard)

N

— —_— ————— — -
9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 45 4.0 3.5 3.0 25 2.0 1.5 1.0 0.5 0.0 0.5 1.0
f1 (ppm)

— T T T T T T T T T T T T T T T T U S|
7.70 7.68 7.66 7.64 7.62 7.60 7.58 7.56 0.75 0.70 0.65 0.60

1 (ppm) 1 (ppm)
L2 L2
Et
~Et-Si~oH
h £ Et  Et
Me OH b b
Ph Lol
-1
T T T ~ T "~ T~ T "~ T T T "~ T * 17 T T "~ T T T T T T T T T T T T T T T T
26 25 24 23 22 21 20 1.9 1.8 1.7 1.6 1.02 1.01 1.00 0.99 0.98 0.97 0.96 0.95 0.94 0.93
f1 (ppm) 1 (ppm)
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5.6 The sampling experiment

The sampling experiment (Figure S1) suggested symmetric disiloxane (24) was preferentially
formed at the early stage, which was consumed into unsymmetric disiloxane (14) along with the reaction
time. Taken together, symmetric disiloxane (24) should be one reaction intermediate in this transformation.

Ph Et CoF,-4H,0 (5 mol%) Fl’h I';’h Ph Et

t 1 0 LonnLor > >
Me{Si-OH + Et{Si-OH —torey (10 mol%) _ Me4$irO-<$itMe ___p Me~(SjrO~SirEt
Ph  Ph
Ph Et CH4CN, 60 °C, 8 h Ph Et
24 2 25 14
100
——14 (Product)

25 (Intermediate)

80 |- //
60 | /

;
40t /
20 - \

Yield (%)

Time (h)

Figure S1. The sampling experiment.

Based on the literature precedence and our mechanistic studies, a proposed mechanism was
illustrated in Figure S2. Firstly, CoF2-4H>O coordinated with terpy to provide cobalt complex (A) in air.
The coordination of triarylsilanol to complex (A) provides a silanol-ligated intermediate (B). Another
equivalent of triarylsilanol then reacts with the metal-coordinated triarylsilanol leading to the formation
of symmetric disiloxane-ligated cobalt complex (C). After that, a siloxane-exchange reaction between the
metal-bounded symmetric disiloxane (C) and the excess trialkylsilanol generates an unsymmetric
disiloxane-ligated cobalt complex (D). Or (B) directly reacts with silanol to form (D), which undergoes
dissociation to liberate the anticipated unsymmetric disiloxanes and regenerates cobalt complex (A) and
completes the catalytic cycle.
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CoFy-4H,0

l Terpy, Air

X

Z
R3Si—0-SiR'3 Z NN | R3Si—OH

X N—[Cc':‘”]—N N
(A)

H,0 R'3Si—OH

A A
TN o N ® C1 )
S N—[c?m]—N\ /\ N N—[Clo'”]—N\

O. O.

» O O«
Ar3Si SiR'3 H,0 R, Si—OH H SiArg
R3Si—OH Ar;Si—OH
R3Si—OH RLSI—OH  (C) H,0 R3Si—OH

A

Z N

R'3Si—OH SUN—[CoM—N I H,0
]
Oxq:
Ar;Si7 TSiArg

Scheme S2. Proposed mechanism.
6.Properties of Polysiloxanes

6.1 Thermal properties

The thermal behavior of the resulting functional polysiloxanes was evaluated by TG analysis. The
thermal decomposition temperatures of Pas, Pac were 490 and 504 <C in Figure S3, respectively. The
results of TGA indicated these polymers exhibit good thermal stability.

—Pac
100 — P

Weight (%)

60 -

40 I I I I I I I
100 200 300 400 500 600 700 800

Temperature (°C)
Figure S3. TGA thermograms of polysiloxane Pas and Pac.

6.2 UV/vis absorption spectra and fluorescence spectra

UV/vis absorption measurement: 1x<10° mol/L sample in dichloromethane was placed in the
UV/Vis spectrophotometer. The scan speed was set to high speed, scan range: from 200 nm to 800 nm.
UV/vis absorption spectra data of samples was measured by SHIMADZU UV-2600 spectrophotometer.

Fluorescence measurement: 1x<10° mol/L sample in dichloromethane was placed in the
fluorescence spectrophotometer. The scan speed was set to 240 nm/min, scan range: from 280 nm to 600
nm, and both the excitation slit and emission slit were 5 nm. The fluorescence spectra were obtained by
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irradiation at 260 nm. The fluorescence spectral data of samples was measured by HITACHI FLS-980

spectrofluorometer.

(A) 14 14
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Figure S4. Absorption (solid line) and fluorescence (dotted line) of Pas and Pac in DCM.

400

450

500

Table S1. Absorption spectra and Excitation spectrum of Pag and Pac in DCM.

Entry Structure Aaps ()/mm | ZAew (1)/nm
I\I/Ie I\I/Ie Ph I\|/Ie I\I/Ie
Pas HO Sli—©—sli—0 o—§i~©—sli—o H 208 313
Me Me Ph Me Me N
Me Me Ph Me Me
t t ¥
HOSi o S0 o—£si o Si+-O—H
ne [ O-OffFO-Odop| = |

UV/vis absorption measurement: the solid sample was placed in the UV/Vis spectrophotometer.
The scan speed was set to high speed, scan range: from 200 nm to 800 nm. UV/vis absorption spectra
data of samples was measured by SHIMADZU UV-2600 spectrophotometer.

Fluorescence measurement: the solid sample was placed in the fluorescence spectrophotometer.
The fluorescence spectra were obtained by irradiation at 260 nm. The fluorescence spectral data of

samples was measured by F-7000 spectrofluorometer.
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Figure S5. Absorption (solid line) and fluorescence (dotted line) of Pas and Pac as solid.
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Table S2. UV/vis absorption spectra and Excitation spectrum of Pas and Pac as solid.

Entry Structure Aabs (S)/NM | Aem (S)/nm
I\I/Ie I\I/Ie Ph I\I/Ie I\I/Ie
Pas HO S|i—©*8|i—0—@—0—§i—©—sli—o H 279 330
Me Me Ph Me Me N
Me Me Ph Me Me
Pac HO{E—QOOﬁ—O—%—O—EiQO@—E—O}H 286 343
e e e e
n

6.3 Thermoplastic character

Not only did we find that radiated by a UV lamp with 365 nm wavelength, the polymer Pac without
any treatment all exhibit bright blue fluorescence in the solid state, as displayed in Figure S6A-B, we also
found that it is thermoplastic. As shown in Figure S6, we heat it until the gel melts into a liquid. When it
is no longer hot, we can crumb can crumble it. Then we cool it down and get a new shape (Figure S6C-
F). This proved that the material was thermoplastic, because you could not melt and thermoform
thermosets. It also showed that the new polysiloxane could be recycled.

Figure S6. Material thermoforming process diagram.
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