Supporting Information

Arylgermylation of alkenes by cooperative photoactivation and hydrogen atom transfer strategy

Jia Cao^[a]*, Yan Liu^[a], Zhixiang Wang^[a], Le Liu^[a]

[a] Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China

*Corresponding Author: caojia213@126.com; jcao@yau.edu.cn

Table of Contents

1. General Information	3
2. Experimental Details for the Photomediated Arylgermylation of Alkenes	3
2.1 General procedure for the photomediated arylgermylation of alkenes	3
2.2 Gram scale experiments	4
2.3 Experimental studies on reaction mechanism	4
2.4 Characterization data of alkene arylgermylation products	9
3. Computational Investigations	32
4. NMR Spectra	33
5. Energies and Cartesian Coordinates of the Optimized Structures	78
6. Reference	93

1. General Information

All reactions were carried out with standard Schlenk techniques under nitrogen atmosphere-filled reaction vessel. Germyl hydrides, alkenes, (hetero)aryl nitriles, base, photocatalysis, hydrogen transfer reagent were purchased and used without purification. Commercial chemicals were purchased from TCI, Acros, Admas, Sigma-Aldrich, J&K, and Alfa Aesar Chemical Companies and used as received. Anhydrous solvents were purchased from J&K and used as received (water < 30 ppm, J&KSeal). Analytical thin-layer chromatography (TLC) was performed on silica gel 60 F₂₅₄ aluminum sheets from Qingdao Haiyang Chemical Co., Ltd. Flash chromatography was performed on silica gel (200–300 mesh, Qingdao Haiyang Chemical Co., Ltd).

¹H, ¹³C and ¹⁹F NMR spectra were recorded in CDCl₃ on a Bruker AVANCE Avance III 400 instrument. Chemical shifts are reported in parts per million (ppm) and are referenced to the residual solvent resonance as the internal standard (CDCl₃: 7.26 ppm for ¹H NMR, and 77.16 ppm for ¹³C{¹H NMR}. Data are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet), coupling constants (Hz) and integration. Infrared spectra (IR) were recorded on a ThermoFisher Nicolet iS5 FTIR using a neat thin-film technique. Stern-Volmer luminescence quenching analysis was conducted using a HITACHI F-7000 spectrofluorometer. High-resolution mass spectra (HRMS) were recorded on the Thermo Quest Finnigan LCQDECA system equipped with an ESI ionization source and a TOF detector mass spectrometer. All the photochemical reactions were performed with Blue LED (8 W or 40 W, λ = 455 nm).

2. Experimental Details for the Photomediated Arylgermylation of Alkenes

2.1 General procedure for the Photomediated Arylgermylation of Alkenes

Under nitrogen atmosphere conditions, the reaction vessel was evacuated and backfilled with nitrogen for three times. In an oven-dried reaction vial (10 mL) containing a magnetic stir bar was charged with alkene (0.2 mmol, 1.0 equiv.), (hetero)aryl nitrile derivative (0.4 mmol, 2.0 equiv.), germyl hydrides (0.4 mmol, 2.0 equiv.), base (0.4 mmol, 2.0 equiv.), photcatalysis (0.004 mmol, 2 mol%) and anhydrous acetonitrile (2 mL). After stirring under 2×40 W blue LED light irradiation at room temperature for 24 h (The temperature of the reaction was maintained at room temperature *via* a fan). Upon completion, the reaction mixture was quenched with water and extracted with EtOAc. The combined organic layer was dried over Na₂SO₄. Finally, the filtrate was concentrated under reduced pressure and the resulting crude material was purified by preparative TLC (petroleum ether/ethyl acetate) to afford the desired product.

2.2 Gram scale experiments

According to the general procedure using 2-(p-methylphenyl)propene (132 mg, 1.0 mmol, 1.0 equiv.), 1,4-dicyanobenzene (255 mg, 2.0 mmol, 2.0 equiv.), $^{n}Bu_{3}GeH$ (489.5 mg, 2 mmol, 2.0 equiv.), and anhydrous acetonitrile (10 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 18.5 mg, 0.02 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 12.0 mg, 0.1 mmol) and K₃PO₄ (273.5 mg, 2.0 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **46** (310.8 mg, 65% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1).

According to the general procedure using 2-(p-methylphenyl)propene (4.0 mmol, 1.0 equiv.), 1,4dicyanobenzene (8.0 mmol, 2.0 equiv.), ^{*n*}Bu₃GeH (8 mmol, 2.0 equiv.), and anhydrous acetonitrile (20 mL) in the presence of $[Ir(ppy)_2(dtbbpy)][PF_6]$ (2 mol%, 18.5 mg, 0.02 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 12.0 mg, 0.1 mmol) and K₃PO₄ (8.0 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **46** (1.1 g, 58% yield) as colorless oil after purification by chromatography on silica gel (petroleum PE/EA = 20:1).

¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.65 (m, 2H), 7.54 – 7.50 (m, 2H), 7.27 – 7.19 (m, 4H), 2.46 (s, 3H), 1.94 – 1.84 (m, 2H), 1.82 (s, 3H), 1.41 – 1.29 (m, 12H), 1.00 (t, J = 7.1 Hz, 9H), 0.65 – 0.59 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 157.8, 146.9, 135.5, 131.7, 128.8, 127.8, 126.8, 119.1, 109.2, 45.7, 30.1, 28.3, 27.2, 26.6, 20.8, 13.7, 13.6 ppm. **IR** (film): 2955, 2923, 2855, 2227, 1922, 1605, 1456, 1375, 1017, 906, 729, 648 cm⁻¹. **HRMS (ESI)**: calculated for C₂₉H₄₄NGe⁺ [M+H]⁺ 480.2680; found 480.2669.

2.3 Experimental Studies on Reaction Mechanism

2.3.1 Control experiment

We performed the reaction of methyl 4-vinylbenzoate and Et₃GeH under standard conditions, providing the hydrogermylation of methyl 4-vinylbenzoate product **47** in 66% yield. This result indicated the Et₃Ge radical may be involved during the photocatalyzed process.

Experimental procedure: According to the general procedure using methyl 4-vinylbenzoate (32.4 mg, 0.2 mmol, 1.0 equiv.), 1,4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [lr(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (84.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **49** (42.6 mg, 66% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (dd, J = 8.2, 1.4 Hz, 2H), 7.30 – 7.25 (m, 2H), 3.90 (s, 3H), 2.74 – 2.68 (m, 2H), 1.03 (t, J = 7.8 Hz, 9H), 0.78 – 0.71 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 151.1, 129.8, 127.9, 127.6, 52.0, 31.5, 13.3, 9.0, 3.9 ppm. IR (film): 2948, 2903, 1721, 1608, 1434, 1274, 1108, 1016, 706, 573 cm⁻¹. HRMS (ESI): calculated for C₁₆H₂₇O₂Ge⁺ [M+H]⁺ 325.1217; found 327.1209.

2.3.2 Control experiment

We performed the reaction of 1,1-diphenylethylene and Et₃GeH under standard conditions, providing the hydrogermylation of methyl 4-vinylbenzoate product **52** in 62% yield. This result indicated the Et₃Ge radical may be involved during the photocatalyzed process.

Experimental procedure: According to the general procedure using 1,1-diphenylethylene (36.0 mg, 0.2 mmol, 1.0 equiv.), 1,4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), ^{*n*}Bu₃GeH (97.9 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of $[Ir(ppy)_2(dtbbpy)][PF_6]$ (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (84.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **50** (52.7 mg, 62% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.25 (m, 8H), 7.21 – 7.10 (m, 2H), 4.12 (t, J = 8.1 Hz, 1H), 1.62 – 1.55 (m, 2H), 1.34 – 1.15 (m, 12H), 0.87 (td, J = 6.9, 2.1 Hz, 9H), 0.60 – 0.47 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 128.4, 127.6, 126.1, 48.2, 27.4, 26.7, 20.4, 13.9, 12.7 ppm. IR (film): 2954, 2921, 1598, 1492, 1451, 1375, 1081, 882, 697 cm⁻¹. HRMS (ESI): calculated for C₂₆H₄₁Ge⁺ [M+H]⁺ 427.2415; found 427.2396.

2.3.3 Radical trapping experiments

When adding the 2,2,6,6-Tetramethyl-1-piperinedinyloxy (TEMPO) or butylated hydroxytoluene (BHT) into the reaction of 4-methylstyrene, 1,4-dicyanobenzene and "Bu₃GeH under standard condition, the desired product **50** was inhibited, indicating a radical mechanism.

Experimental procedure: according to the general procedure, 4-methylstyrene (24 mg, 0.2 mmol, 1.0 equiv.), 1,4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), TEMPO (or BHT, 5.0 equiv.), $^{n}Bu_{3}GeH$ (489.5 mg, 2 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of $[Ir(ppy)_{2}(dtbbpy)][PF_{6}]$ (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (84.9 mg, 0.4 mmol, 2.0 equiv.) under 2 × 40 W blue LED light irradiation for 24 hours.

2.3.4 Stern-Volmer luminescence quenching experiments

Stern-Volmer luminescence quenching analysis was conducted using a HITACHI F-7000 spectrofluorometer. All the mixed degassed anhydrous CH_3CN solutions were excited at 400 nm. All samples used in the luminescence quenching experiments were freshly prepared under oxygen free conditions (or in a glovebox under a positive pressure of argon) and placed in a 4 mL screw-top quartz cuvette at room temperature. I_0 = emission intensity of the photocatalyst in isolation at the specified wavelength; I = observed emission intensity of the photocatalyst with added quencher.

Figure S1. Stern–Volmer plot for the spectrum of $[Ir(ppy)_2(dtbbpy)][PF_6]$ with the change of the concentration of K₃PO₄ in degassed CH₃CN with excitation at 400 nm and the emission intensity at 550 nm was observed, $[Ir(ppy)_2(dtbbpy)][PF_6] = 1.5 \times 10^{-5}$ M.

Figure S2. Stern–Volmer plot for the spectrum of $[Ir(ppy)_2(dtbbpy)][PF_6]$ with the change of the concentration of quenchar in degassed CH₃CN with excitation at 400 nm and the emission intensity at 550 nm was observed, $[Ir(ppy)_2(dtbbpy)][PF_6] = 1.5 \times 10^{-5}$ M.

Figure S3. Stern–Volmer plot for the spectrum of $[Ir(ppy)_2(dtbbpy)][PF_6]$ with the change of the concentration of quenchar in degassed CH₃CN with excitation at 400 nm and the emission intensity at 550 nm was observed, $[Ir(ppy)_2(dtbbpy)][PF_6] = 2 \times 10^{-5} \text{ M}.$

Figure S4. Stern–Volmer plot for the spectrum of $[Ir(ppy)_2(dtbbpy)][PF_6]$ with the change of the concentration of HSCH₂CO₂Et and K₃PO₄ in degassed CH₃CN with excitation at 400 nm and the emission intensity at 550 nm was observed, $[Ir(ppy)_2(dtbbpy)][PF_6] = 1.5 \times 10^{-5}$ M.

2.3.5 Light on/off experiment

We carried out the light on/off experiments by the reaction of 4-methylstyrene, 1,4-dicyanobenzene and ^{*n*}Bu₃GeH under standard conditions, indicating light irradiation is essential for this protocol.

Experimental procedure: according to the general procedure, four oven-dried reaction vials were charged respectively 4-methylstyrene (24 mg, 0.2 mmol, 1.0 equiv.), 1.4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), "Bu₃GeH (489.5 mg, 2 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (84.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation for 24 hours. The vials were irritated under 2×40 W blue LED irradiation. After 15 minutes, the lamps were turned off, and one vial was removed from the irradiation setup for analysis. The remaining three vials were stirred in the absence of light for an additional 15 minutes. Then, one vial was removed for analysis, and the other lamps were turned back on to irradiate. After an additional 15 minutes of irradiation, the lamps were turned off, and one vial was removed for analysis. The remaining vial was stirred in the absence of light for an additional 15 minutes. Then, the lamps were turned off, and the last vial was removed for analysis. The reaction mixtures were diluted by ethyl acetate, and filtered through a plug of silica (eluting with ethyl acetate). Finally, the filtrate was concentrated under reduced pressure and the resulting crude material was purified by preparative TLC (petroleum ether/ethyl acetate) to afford the corresponding product 51. ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.52 (m, 2H), 7.43 - 7.38 (m, 2H), 7.17 - 7.12 (m, 2H), 7.11 - 7.06 (m, 2H), 4.09 (t, J = 8.0 Hz, 1H), 2.30 (s, 3H), 1.62 -1.43 (m, 2H), 1.27 – 1.15 (m, 12H), 0.85 (t, J = 7.0 Hz, 9H), 0.57 – 0.49 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 142.5, 136.3, 132.3, 129.4, 128.3, 127.4, 119.1, 109.7, 48.0, 27.3, 26.7, 21.0, 20.1, 13.8, 12.7 ppm. IR (film): 2954, 2922, 2226, 1604, 1511, 1456, 1417, 1081, 809, 569 cm⁻¹. HRMS (ESI): calculated for C₂₈H₄₁NGe⁺ [M+H]⁺ 466.2524; found 466.2520.

2.4 Characterization Data of Alkene Arylgermylation Products

2.4.1 4-(1-(p-tolyl)-2-(triphenylgermyl)ethyl)benzonitrile (4)

According to the general procedure using 4-methylstyrene (24 mg, 0.2 mmol, 1.0 equiv.), 1,4dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Ph₃GeH (122 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), iPr₃SiSH (10 mol%, 3.8 mg, 0.02 mmol) and K₃PO₄ (84.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **4** (78 mg, 74% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.34 – 7.26 (m, 17H), 7.19 – 7.12 (m, 2H), 7.02 – 6.91 (m, 4H), 4.25 (t, J = 7.8 Hz, 1H), 2.37 – 2.29 (m, 2H), 2.24 (s, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 13C NMR (101 MHz, Chloroform-d) δ 151.7, 142.1, 136.5, 136.4, 134.9, 132.2, 129.4, 129.0, 128.5, 128.2, 127.5, 119.1, 109.8, 47.5, 21.9, 21.0 ppm. **IR** (film): 3067, 2920, 2851, 2225, 1604, 1510, 1484, 1429, 1304, 1187, 1089, 1018, 808, 732, 697 cm⁻¹. **HRMS (ESI)**: calculated for C₃₄H₂₉NaNGe⁺ [M+Na]⁺ 548.1404; found 548.1401.

2.4.2 4-(1-phenyl-2-(triphenylgermyl)ethyl)benzonitrile (5)

According to the general procedure using styrene (20.8 mg, 0.2 mmol, 1.0 equiv.), 1,4dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of $[Ir(ppy)_2(dtbbpy)][PF_6]$ (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (84.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **5** (49 mg, 67% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 8.1 Hz, 2H), 7.31 – 7.20 (m, 5H), 4.13 (t, J = 8.1 Hz, 1H), 1.62 – 1.49 (m, 2H), 0.91 (t, J = 8.0 Hz, 9H), 0.54 (q, J = 7.9 Hz, 6H) ppm. ¹³**C NMR** (100MHz, CDCl₃) δ 153.0, 145.5, 132.3, 128.7, 128.3, 127.5, 126.7, 119.1, 109.8, 48.3, 19.0, 8.9, 4.2 ppm. **IR** (film): 3027, 2947, 2929, 2869, 2226, 1604, 1491, 1452, 1377, 1019, 968, 865, 727, 697, 593 cm⁻¹. **HRMS (ESI)**: calculated for C₂₁H₂₇NGe⁺ [M+H]⁺ 368.1428; found 368.1422.

2.4.3 4-(1-(p-tolyl)-2-(triethylgermyl)ethyl)benzonitrile (6)

According to the general procedure using 4-methylstyrene (24 mg, 0.2 mmol, 1.0 equiv.), 1,4dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (84.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **6** (42.6 mg, 56% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.54 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 8.3 Hz, 2H), 7.14 (d, J = 8.2 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 4.09 (t, J = 8.1 Hz, 1H), 2.30 (s, 3H), 1.59 – 1.47 (m, 2H), 0.91 (t, J = 7.9 Hz, 9H), 0.53 (q, J = 7.9 Hz, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 153.3, 142.5, 136.3, 132.3, 129.4, 128.2, 127.4, 119.2, 109.7, 47.9, 21.1, 19.0, 8.9, 4.2 ppm. **IR** (film): 2947, 2093, 2869, 2226, 1604, 1511, 1456, 1424, 1165, 1018, 808, 700, 569 cm⁻¹. **HRMS (ESI)**: calculated for C₂₂H₃₀NGe⁺ [M+H]⁺ 382.1585; found 382.1582.

2.4.4 4-(1-(4-(tert-butyl)phenyl)-2-(triethylgermyl)ethyl)benzonitrile (7)

According to the general procedure using 4-tert-butylstyrene (32 mg, 0.2 mmol, 1.0 equiv.), 1,4dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), $E_{t_3}GeH$ (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of $[Ir(ppy)_2(dtbbpy)][PF_6]$ (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (84.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **7** (58.2 mg, 69% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.53 (m, 2H), 7.46 – 7.38 (m, 2H), 7.30 (d, J = 8.4 Hz, 2H), 7.23 – 7.14 (m, 2H), 4.10 (t, J = 8.1 Hz, 1H), 1.60 – 1.48 (m, 2H), 1.29 (s, 9H), 0.90 (t, J = 7.9 Hz, 9H), 0.53 (q, J = 8.0 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 149.6, 142.6, 132.3, 128.4, 127.0, 125.5, 119.2, 109.8, 47.8, 34.4, 31.4, 19.1, 8.9, 4.2 ppm. IR (film): 2591, 2903, 2869, 2225, 1604, 1500, 1461, 1424, 1363, 1269, 1017, 809, 703 572 cm⁻¹. HRMS (ESI): calculated for C₂₅H₃₆NGe⁺ [M+H]⁺ 424.2054; found 424.2050.

2.4.5 4-(1-(4-methoxyphenyl)-2-(triethylgermyl)ethyl)benzonitrile (8)

According to the general procedure using 4-methoxystyrene (26.8 mg, 0.2 mmol, 1.0 equiv.), 1,4dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (84.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **8** (57.0 mg, 72% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.51 (m, 2H), 7.40 – 7.34 (m, 2H), 7.19 – 7.13 (m, 2H), 6.85 – 6.79 (m, 2H), 4.12 – 4.03 (m, 1H), 3.77 (s, 3H), 1.59 – 1.50 (m, 1H), 1.49 – 1.42 (m, 1H), 0.91 (t, J = 7.9 Hz, 9H), 0.54 (q, J = 8.1 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 153.5, 137.5, 132.3, 128.5, 128.2, 119.2, 114.0, 109.7, 55.3, 47.4, 19.2, 8.9, 4.2 ppm. IR (film): 2948, 2903, 2869, 2226, 1606, 1508, 1462, 1301, 1245, 1177, 1036, 815, 698 cm⁻¹. HRMS (ESI): calculated for C₂₂H₃₀NOGe⁺ [M+H]⁺ 398.1534; found 398.1526.

2.4.6 4-(1-(4-fluorophenyl)-2-(triethylgermyl)ethyl)benzonitrile (9)

According to the general procedure using 4-fluorostyrene (24.4 mg, 0.2 mmol, 1.0 equiv.), 1,4dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), $E_{t_3}GeH$ (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of $[Ir(ppy)_2(dtbbpy)][PF_6]$ (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (84.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **9** (45.3 mg, 59% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.53 (m, 2H), 7.40 – 7.33 (m, 2H), 7.24 – 7.17 (m, 2H), 7.01 – 6.93 (m, 2H), 4.11 (t, J = 8.1 Hz, 1H), 1.57 – 1.42 (m, 8.1 Hz, 2H), 0.91 (t, J = 7.9 Hz, 9H), 0.53 (q, J = 7.9 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 161.6 (d, J = 245.2 Hz), 152.8, 141.2, 132.4, 129.0 (d, J = 7.9 Hz), 128.2, 119.1, 115.5 (d, J = 21.2 Hz),110.0, 47.5, 19.2, 8.9, 4.2 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -116.0 ppm. IR (film): 2948, 2929, 2903, 2870, 2226, 1605, 1507, 1459, 1223, 1157, 1014, 819, 699, 568 cm⁻¹. HRMS (ESI): calculated for C₂₁H₂₆NFGe⁺ [M+H]⁺ 386.1334; found 386.1331.

2.4.7 4-(1-(4-chlorophenyl)-2-(triethylgermyl)ethyl)benzonitrile (10)

According to the general procedure using 4-chlorostyrene (27.6 mg, 0.2 mmol, 1.0 equiv.), 1,4dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (84.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **10** (46.4 mg, 58% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20: 1). ¹H NMR (400 MHz, Chloroform-d) δ 7.62 – 7.55 (m, 2H), 7.40 – 7.36 (m, 2H), 7.30 – 7.26 (m, 2H), 7.25 – 7.17 (m, 2H), 4.13 (t, J = 8.1 Hz, 1H), 1.60 – 1.47 (m, 2H), 0.94 (t, J = 7.9 Hz, 9H), 0.57 (q, J = 7.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 152.4, 144.0, 132.4, 132.0, 128.9, 128.8, 128.2, 119.0, 110.1, 47.7, 18.9, 8.9, 4.3 ppm. **IR** (film): 2948, 2929, 2869, 2227, 1605, 1489, 1407, 1090, 1012, 808, 556 cm⁻¹. **HRMS (ESI)**: calculated for C₂₁H₂₆NCIGe⁺ [M+H]⁺ 402.1038; found 402.1032. 2.4.8 4-(1-(o-tolyl)-2-(triethylgermyl)ethyl)benzonitrile (11)

According to the general procedure using 2-methylstyrene (23.6 mg, 0.2 mmol, 1.0 equiv.), 1,4dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (84.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **11** (44.8 mg, 59% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20: 1). ¹H **NMR** (400 MHz, Chloroform-d) δ 7.56 – 7.50 (m, 2H), 7.42 – 7.37 (m, 1H), 7.35 – 7.29 (m, 2H), 7.24 – 7.19 (m, 1H), 7.16 – 7.10 (m, 2H), 4.33 (t, J = 8.0 Hz, 1H), 2.25 (s, 3H), 1.59 – 1.52 (m, 1H), 1.48 – 1.41 (m, 1H), 0.92 (t, J = 7.9 Hz, 9H), 0.56 (q, J = 7.9 Hz, 6H) ppm. ¹³C **NMR** (100 MHz, CDCl₃) δ 152.7, 142.9, 135.6, 132.3, 130.8, 128.6, 126.7, 126.6, 126.3, 119.2, 109.7, 43.8, 20.2, 20.0, 8.9, 4.4 ppm. **IR** (film): 3020, 2947, 2903, 2226, 1603, 1460, 1425, 1019, 837, 735, 559 cm⁻¹. **HRMS (ESI)**: calculated for C₂₂H₃₀NGe⁺ [M+H]⁺ 382.1585; found 382.1579.

2.4.9 4-(1-(2-methoxyphenyl)-2-(triethylgermyl)ethyl)benzonitrile (12)

According to the general procedure using 2-methoxystyrene (26.8 mg, 0.2 mmol, 1.0 equiv.), 1,4dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (41.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **12** (44.8 mg, 53% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.35 (m, 2H), 7.28 – 7.23 (m, 2H), 7.16 – 7.11 (m, 1H), 7.06 – 7.00 (m, 1H), 6.80 – 6.74 (mn, 1H), 6.67 – 6.63(m, 1H), 4.46 (t, J = 8.2 Hz, 1H), 3.63 (s, 3H), 1.41 (dd, J = 13.7, 8.6 Hz, 1H), 1.29 (dd, J = 13.7, 7.8 Hz, 1H), 0.76 (t, J = 7.9 Hz, 9H), 0.38 (q, J = 7.9 Hz, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 156.5, 153.1, 133.9, 132.0, 128.6, 127.7, 127.4, 120.6, 119.4, 110.6, 109.4, 55.3, 40.0, 18.1, 8.9, 4.2 ppm. **IR** (film): 2946, 2869, 2226, 1604, 1489, 1461, 1239, 1051, 751, 571 cm⁻¹. **HRMS (ESI)**: calculated for C₂₂H₃₀NOGe⁺ [M+H]⁺ 398.1534; found 398.1530.

2.4.10 4-(1-(2-chlorophenyl)-2-(triethylgermyl)ethyl)benzonitrile (13)

According to the general procedure using 2-chlorostyrene (27.6 mg, 0.2 mmol, 1.0 equiv.), 1,4dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [lr(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (41.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **13** (39.2 mg, 49% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.51 (m, 2H), 7.42 – 7.36 (m, 3H), 7.34 – 7.27 (m, 1H), 7.25 – 7.21 (m, 1H), 7.15 – 7.09 (m, 1H), 4.69 (t, J = 8.1 Hz, 1H), 1.55 – 1.43 (m, 2H), 0.90 (t, J = 8.0 Hz, 9H), 0.55 (q, J = 7.9 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 151.5, 142.6, 133.7, 132.3, 129.9, 128.6, 128.4, 127.9, 127.2, 119.1, 110.0, 43.6, 19.0, 8.9, 4.3 ppm. IR (film): 2947, 2929, 2870, 2226, 1605, 1471, 1019, 747, 574 cm⁻¹. HRMS (ESI): calculated for C₂₁H₂₇NCIGe⁺ [M+H]⁺ 402.1038; found 402.1035.

2.4.11 4-(1-(2-fluorophenyl)-2-(triethylgermyl)ethyl)benzonitrile (14)

According to the general procedure using 2-fluorostyrene (24.4 mg, 0.2 mmol, 1.0 equiv.), 1,4dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), $E_{t_3}GeH$ (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of $[Ir(ppy)_2(dtbbpy)][PF_6]$ (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (41.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **14** (48.3 mg, 63% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H **NMR** (400 MHz, CDCl₃) δ 7.42 – 7.38 (m, 2H), 7.29 – 7.24 (m, 2H), 7.22 – 7.15 (m, 1H), 7.06 –6.99 (m, 1H), 6.97 – 6.91 (m, 1H), 6.86 – 6.78 (m, 1H), 4.33 (t, J = 8.2 Hz, 1H), 1.46 – 1.39 (dd, J = 13.7, 8.7 Hz, 1H), 1.37 – 1.30 (m, 1H), 0.76 (t, J = 8.0 Hz, 9H), 0.40 (q, J = 7.9 Hz, 6H) ppm. ¹³C **NMR** (100 MHz, CDCl₃) δ 160.3 (d, J = 245.3 Hz), 151.8, 132.3, 128.4, 128.3, 128.3, 124.41 (d, J = 3.5 Hz), 119.1, 115.8, 115.6, 110.0, 40.4 (d, J = 2.6 Hz), 17.8, 8.8, 4.2 ppm. ¹⁹F **NMR** (376 MHz, CDCl₃) δ -117.2 ppm. **IR** (film): 2948, 2904, 2870, 2227, 1605, 1487, 1454, 1224, 1019, 757, 558 cm⁻¹. **HRMS (ESI)**: calculated for C₂₁H₂₇NFGe⁺ [M+H]⁺ 386.1334; found 386.1324.

2.4.12 4-(1-(3-methoxyphenyl)-2-(triethylgermyl)ethyl)benzonitrile (15)

According to the general procedure using 3-vinylanisole (26.8 mg, 0.2 mmol, 1.0 equiv.), 1,4dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (41.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **15** (54.6 mg, 69% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.57 (m, 2H), 7.48 – 7.42 (m, 2H), 7.28 – 7.23 (m, 1H), 6.93 – 6.88 (m, 1H), 6.86 – 6.83 (m, 1H), 6.81 – 6.76 (m, 1H), 4.15 (t, J = 8.1 Hz, 1H), 3.84 (s, 3H), 1.65 – 1.51 (m, 2H), 0.97 (t, J = 7.9 Hz, 9H), 0.60 (q, J = 7.9 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 152.8, 147.1, 132.3, 129.7, 128.3, 120.0, 119.1, 113.8, 111.4, 109.9, 55.3, 48.3, 18.0, 8.9, 4.2 ppm. IR (film): 2947, 2903, 2869, 2226, 1598, 1487, 1455, 1262, 1049, 781, 696, 572 cm⁻¹. HRMS (ESI): calculated for C₂₂H₃₀NOGe⁺ [M+H]⁺ 398.1534; found 398.1525. 2.4.13 4-(1-(3-chlorophenyl)-2-(triethylgermyl)ethyl)benzonitrile (16)

According to the general procedure using 3-chlorostyrene (27.6 mg, 0.2 mmol, 1.0 equiv.), 1,4dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (41.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **16** (46.4 mg, 58% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.52 (m, 2H), 7.40 – 7.33 (m, 2H), 7.25 – 7.13 (m, 4H), 4.09 (t, J = 8.1 Hz, 1H), 1.51 (t, J = 8.0 Hz, 2H), 0.91 (t, J = 8.0 Hz, 9H), 0.54 (q, J = 7.9 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 152.0, 147.6, 134.5, 132.5, 130.0, 128.3, 127.6, 126.9, 125.8, 119.0, 110.2, 48.0, 18.8, 8.9, 4.3 ppm. IR (film): 2948, 2903, 2869, 2227, 1592, 1473, 1425, 1092, 1018, 879, 785, 573 cm⁻¹. HRMS (ESI): calculated for C₂₂H₂₇NClGe⁺ [M+H]⁺ 402.1038; found 402.1032.

2.4.14 4-(2-(triethylgermyl)-1-(3-(trifluoromethyl)phenyl)ethyl)benzonitrile (17)

According to the general procedure using 3-(trifluoromethyl)styrene (34.4 mg, 0.2 mmol, 1.0 equiv.), 1,4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (41.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **17** (52.9 mg, 61% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.51 (m, 3H), 7.48 – 7.37 (m, 5H), 4.19 (t, J = 8.1 Hz, 1H), 1.59 – 1.47 (m, 2H), 0.91 (t, J = 8.0 Hz, 9H),

0.53 (q, J = 7.8 Hz, 6H) ppm. 13C NMR (101 MHz, Chloroform-d) δ 151.91, 146.56, 132.59, 131.20, 131.14, 129.27, 128.32, 125.52, 124.14, 124.11, 124.07, 123.71, 123.67, 122.81, 118.98, 110.41, 48.18, 18.91, 8.88, 4.28 ppm. ¹³C NMR (100 MHz, CDCl₃) δ 151.9, 146.5, 132.5, 131.1, 131.04 (q, J = 32.0 Hz), 129.2, 128.3, 125.5, 124.1, 123.6, 118.9, 110.4, 15.5, 48.1, 18.9, 8.8, 4.2 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.4 ppm. IR (film): 2950, 2871, 2227, 1605, 1503, 1445, 1325, 1161, 1122, 1073, 1018, 800, 701, 572 cm⁻¹. HRMS (ESI): calculated for C₂H₂₇NF₃Ge⁺ [M+H]⁺ 436.1302; found 436.1297.

2.4.15 methyl 3-(1-(4-cyanophenyl)-2-(triethylgermyl)ethyl)benzoate (18)

According to the general procedure using methyl 4-vinylbenzoate (32.4 mg, 0.2 mmol, 1.0 equiv.), 1,4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (65.3 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **18** (52.9 mg, 77% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.94 (m, 1H), 7.89 – 7.84 (m, 1H), 7.57 – 7.53 (m, 2H), 7.46 – 7.34 (m, 4H), 4.18 (t, J = 8.1 Hz, 1H), 3.90 (s, 3H), 1.55 (tt, J = 13.7, 6.5 Hz, 2H), 0.90 (t, J = 7.9 Hz, 9H), 0.52 (q, J = 7.9 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 152.3, 145.9, 132.4, 132.2, 130.5, 128.8, 128.5, 128.2, 128.0, 119.0, 110.1, 52.2, 48.1, 18.9, 8.8, 4.2 ppm. IR (film): 2949, 2903, 2870, 2227, 1719, 1604, 1431, 1281, 1195, 1106, 1018, 972, 864, 736, 600 cm⁻¹. HRMS (ESI): calculated for C₂₃H₃₀NO₂Ge⁺ [M+H]⁺ 426.1483; found 426.1476.

2.4.16 4-(1-(naphthalen-2-yl)-2-(triethylgermyl)ethyl)benzonitrile (19)

According to the general procedure using methyl 2-vinylnaphthalene (30.8 mg, 0.2 mmol, 1.0 equiv.), 1,4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of $[Ir(ppy)_2(dtbbpy)][PF_6]$ (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (65.3 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **19** (53.2 mg, 64% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H **NMR** (400 MHz, CDCl₃) δ 7.82 – 7.78 (m, 2H), 7.76 – 7.74 (m, 2H), 7.57 – 7.54 (m, 2H), 7.51 – 7.41 (m, 5H), 7.34 – 7.29 (m, 1H), 4.30 (t, J = 8.1 Hz, 1H), 1.73 – 1.67 (m, 1H), 1.63 – 1.54 (m, 1H), 0.92 (t, J = 7.9 Hz, 9H), 0.56 (q, J = 7.7 Hz, 6H) ppm. ¹³C **NMR** (100 MHz, CDCl₃) δ 152.8, 142.8, 133.5, 132.4, 132.2, 129.2, 128.4, 127.8, 127.7, 126.3, 126.2, 125.8, 125.6, 119.1, 109.9, 48.3, 18.8, 8.9, 4.3 ppm. **IR** (film): 3055, 2928, 2869, 2226, 1604, 1502, 1460, 1424, 1017, 814, 755, 566 cm⁻¹. **HRMS (ESI)**: calculated for C₂₅H₃₀NGe⁺ [M+H]⁺ 418.1585; found 418.1584.

2.4.17 4-(1-(2,3-dihydrobenzofuran-6-yl)-2-(triethylgermyl)ethyl)benzonitrile (20)

According to the general procedure using methyl 6-vinyl-2,3-dihydrobenzofuran (29.2 mg, 0.2 mmol, 1.0 equiv.), 1,4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (65.3 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **20** (33.4 mg, 41% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H **NMR** (400 MHz, CDCl₃) δ 7.56 – 7.53 (m, 2H), 7.39 – 7.36 (m, 2H), 7.05 (d, J = 1.9 Hz, 1H), 6.99 – 6.96 (m, 1H), 6.69 (d, J = 8.2 Hz, 1H), 4.53 (t, J = 8.7 Hz, 2H), 4.06 (t, J = 8.1 Hz, 1H), 3.15 (t, J = 8.6 Hz, 2H), 1.55 – 1.43 (m, 2H), 0.91 (t, J = 7.9 Hz, 9H), 0.53 (q, J = 7.7 Hz, 6H) ppm. ¹³C **NMR** (100 MHz, CDCl₃) δ 158.8, 153.6, 137.7, 132.3, 128.2, 127.4, 127.1, 124.0, 119.2, 109.7, 109.2, 71.3, 47.7, 29.8, 19.3, 8.9, 4.3 ppm. **IR** (film): 2947, 2902, 2226, 1605, 1489, 1322, 1098, 982, 702, 573 cm⁻¹. **HRMS (ESI)**: calculated for C₂₃H₃₀NOGe⁺ [M+H]⁺ 410.1534; found 410.1530.

2.4.18 4-(2-phenyl-1-(triethylgermyl)propan-2-yl)benzonitrile (21)

According to the general procedure using methyl 2-phenyl-1-propene (23.6 mg, 0.2 mmol, 1.0 equiv.), 1,4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [lr(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (54.7 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **21** (54.7 mg, 72% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.41 (m, 2H), 7.29 – 7.23 (m, 2H), 7.20 – 7.09 (m, 5H), 1.70 – 1.62 (m, 2H), 1.59 (s, 3H), 0.79 (t, J = 7.9 Hz, 9H), 0.38 (q, J = 8.1 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 149.9, 131.8, 128.2, 127.8, 126.9, 126.2, 119.2, 109.4, 46.0, 30.1, 27.5, 8.9, 5.2 ppm. IR (film): 2948, 2870, 2226, 1605, 1460, 1224, 1017, 908, 731, 698, 570 cm⁻¹. HRMS (ESI): calculated for C₂₂H₃₀NGe⁺ [M+H]⁺ 382.1585; found 382.1576.

2.4.19 4-(2-(p-tolyl)-1-(triethylgermyl)propan-2-yl)benzonitrile (22)

According to the general procedure using 2-(p-methylphenyl)propene (26.4 mg, 0.2 mmol, 1.0 equiv.), 1,4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (54.7 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **22** (62.2 mg, 79% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.51 (m, 2H), 7.39 – 7.34 (m, 2H), 7.12 – 7.05 (m, 4H), 2.32 (s, 3H), 1.80 – 1.68 (m, 2H), 1.67 (s, 3H), 0.89 (t, J = 7.9 Hz, 9H), 0.48 (q, J = 7.9 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 157.8, 147.0,

135.7, 131.8, 128.9, 127.8, 126.8, 119.2, 109.3, 45.6, 30.1, 27.6, 21.0, 8.9, 5.3 ppm. **IR** (film): 2947, 2869, 2226, 1604, 1511, 1457, 1375, 1224, 1017, 813, 570 cm⁻¹. **HRMS (ESI)**: calculated for $C_{23}H_{32}NGe^+$ [M+H]⁺ 396.1741; found 382.1736.

2.4.20 4-(1-(triethylgermyl)-2-(4-(trifluoromethoxy)phenyl)propan-2-yl)benzonitrile (23)

According to the general procedure using 1-(prop-1-en-2-yl)-4-(trifluoromethoxy)benzene (40.4 mg, 0.2 mmol, 1.0 equiv.), 1,4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (54.7 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **23** (60.3 mg, 65% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H **NMR** (400 MHz, CDCl₃) δ 7.58 – 7.53 (m, 2H), 7.37 – 7.32 (m, 2H), 7.25 – 7.19 (m, 2H), 7.14 – 7.07 (m, 2H), 1.73 – 1.70 (m, 2H), 1.68 (s, 3H), 0.88 (t, J = 7.9 Hz, 9H), 0.47 (q, J = 8.0 Hz, 6H) ppm. ¹³C **NMR** (100 MHz, CDCl₃) δ 156.8, 148.8, 147.5, 132.0, 128.4, 127.8, 120.7, 120.5 (q, J = 256.9 Hz), 119.3, 109.8, 45.8, 30.2, 27.7, 8.8, 5.3 ppm. ¹⁹F **NMR** (376 MHz, CDCl₃) δ -57.8 ppm. **IR** (film): 2951, 2906, 2872, 2227, 1606, 1503, 1462, 1254, 1209, 1159, 1016, 838, 690, 559 cm⁻¹. **HRMS (ESI)**: calculated for C₂₃H₂₉NOF₃Ge⁺ [M+H]⁺ 466.1408; found 466.1404.

2.4.21 4-(2-(4-(methylthio)phenyl)-1-(triethylgermyl)propan-2-yl)benzonitrile (24)

According to the general procedure using methyl(4-(prop-1-en-2-yl)phenyl)sulfane (32.8 mg, 0.2 mmol, 1.0 equiv.), 1,4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of $[Ir(ppy)_2(dtbbpy)][PF_6]$ (2 mol%, 3.7 mg,

0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (54.7 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **24** (70.7 mg, 83% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.51 (m, 2H), 7.36 – 7.33 (m, 2H), 7.17 – 7.10 (m, 4H), 2.45 (s, 3H), 1.74 – 1.67 (m, 2H), 1.66 (s, 3H), 0.88 (t, J = 7.9 Hz, 9H), 0.48 (q, J = 7.9 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 157.3, 147.0, 136.0, 131.8, 127.8, 127.4, 126.5, 119.1, 109.5, 45.6, 30.05, 27.5, 16.0, 8.9, 5.3 ppm. IR (film): 2947, 2869, 2226, 1604, 1493, 1397, 1094, 1012, 836, 703, 558 cm⁻¹. HRMS (ESI): calculated for C₂₃H₃₂NSGe⁺ [M+H]⁺ 428.1462; found 428.1455.

2.4.22 4-(2-(9H-fluoren-2-yl)-1-(triethylgermyl)propan-2-yl)benzonitrile (25)

According to the general procedure using 2-(prop-1-en-2-yl)-9H-fluorene (41.2 mg, 0.2 mmol, 1.0 equiv.), 1,4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of $[Ir(ppy)_2(dtbbpy)][PF_6]$ (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (59.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **25** (70.7 mg, 64% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H **NMR** (400 MHz, CDCl₃) δ 7.64 – 7.61 (m, 1H), 7.57 – 7.52 (m, 1H), 7.43 – 7.38 (m, 3H), 7.29 – 7.25 (m, 3H), 7.24 – 7.14 (m, 2H), 7.10 – 7.06 (m, 1H), 3.72 (s, 1H), 1.70 (d, J = 13.3 Hz, 1H), 1.60 (s, 3H), 0.76 (t, J = 7.9 Hz, 9H), 0.39 – 0.30 (m, 6H) ppm. ¹³C **NMR** (100 MHz, CDCl₃) δ 158.0, 148.6, 143.4, 143.3, 141.5, 139.8, 131.9, 127.8, 126.8, 126.6, 125.7, 125.1, 123.7, 119.9, 119.5, 119.2, 109.3, 46.1, 37.0, 30.4, 27.7, 8.9, 5.3 ppm. **IR** (film): 2947, 2869, 2226, 1603, 1500, 1455, 1403, 1017, 908, 836, 731, 570 cm⁻¹. **HRMS (ESI)**: calculated for C₂₉H₃₄NGe⁺ [M+H]⁺ 470.1898; found 470.1900.

2.4.23 4-(2-(benzo[d][1,3]dioxol-5-yl)-1-(triethylgermyl)propan-2-yl)benzonitrile (26)

According to the general procedure using 5-(prop-1-en-2-yl)benzo[d][1,3]dioxole (32.4 mg, 0.2 mmol, 1.0 equiv.), 1,4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (59.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **26** (50.0 mg, 59% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.51 (m, 2H), 7.38 – 7.33 (m, 2H), 6.73 – 6.67 (m, 2H), 6.62 – 6.59 (m, 1H), 5.92 (s, 2H), 1.67 (s, 2H), 1.63 (s, 3H), 0.89 (t, J = 7.9 Hz, 9H), 0.49 (q, J = 7.9 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 147.6, 145.8, 144.1, 131.9, 127.7, 119.7, 119.2, 109.4, 108.0, 107.6, 101.0, 45.8, 30.3, 27.8, 8.9, 5.3 ppm. IR (film): 2948, 2870, 2226, 1604, 1484, 1430, 1231, 1038, 935, 868, 539 cm⁻¹. HRMS (ESI): calculated for C₂₃H₃₀NGeO₂+ [M+H]⁺ 426.1483; found 426.1478.

2.4.24 4-(2-(benzo[d][1,3]dioxol-5-yl)-1-(triethylgermyl)propan-2-yl)benzonitrile (27)

According to the general procedure using 6-(prop-1-en-2-yl)-2,3-dihydrobenzo[b][1,4]dioxine (35.2 mg, 0.2 mmol, 1.0 equiv.), 1,4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of $[Ir(ppy)_2(dtbbpy)][PF_6]$ (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (59.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **27** (75.3 mg, 86% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.49 (m, 2H), 7.38 – 7.32 (m, 2H), 6.76 – 6.72 (m, 1H), 6.71 (d, J = 2.3 Hz, 1H), 6.65 – 6.61 (m, 1H), 4.23 (s, 4H), 1.67 (d, J = 2.4 Hz, 2H), 1.62 (s, 3H), 0.88 (t, J = 7.9 Hz, 9H), 0.48 (q, J = 7.7 Hz, 100 m) and the second secon

6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 157.6, 143.6, 143.0, 141.8, 131.8, 127.7, 120.0, 119.2, 116.8, 116.0, 109.3, 64.5, 64.4, 45.4, 30.1, 27.7, 8.9, 5.3 ppm. **IR** (film): 2946, 2870, 2226, 1604, 1500, 1457, 1308, 1284, 1069, 900, 731 cm⁻¹. **HRMS (ESI)**: calculated for C₂₄H₃₂NGeO₂⁺ [M+H]⁺ 440.1639; found 440.1636.

2.4.25 4-(1-cyclobutyl-1-phenyl-2-(triethylgermyl)ethyl)benzonitrile (28)

According to the general procedure using (1-cyclobutylvinyl)benzene (31.6 mg, 0.2 mmol, 1.0 equiv.), 1,4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of $[Ir(ppy)_2(dtbbpy)][PF_6]$ (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (59.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **28** (40.3 mg, 48% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.49 (m, 2H), 7.26 – 7.16 (m, 5H), 7.08 – 7.03 (m, 2H), 3.22 – 3.09 (m, 1H), 1.99 – 1.88 (m, 2H), 1.72 – 1.62 (m, 1H), 1.58 (s, 2H), 1.54 – 1.44 (m, 2H), 1.31 – 1.19 (m, 1H), 0.82 (t, J = 7.9 Hz, 9H), 0.36 (q, J = 7.7 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 147.6, 131.2, 130.0, 128.9, 127.7, 126.2, 119.3, 109.5, 52.2, 43.1, 25.0, 24.8, 24.1, 17.6, 8.9, 5.1 ppm. IR (film): 2944, 2903, 2869, 2226, 1604, 1500, 1457, 1250, 1018, 910, 820, 701, 565 cm⁻¹. HRMS (ESI): calculated for C₂₅H₃₄NGe⁺ [M+H]⁺ 422.1898; found 422.1891.

2.4.26 4-(1-cyclobutyl-1-phenyl-2-(triethylgermyl)ethyl)benzonitrile (29)

According to the general procedure using 3-(1-methylethenyl)pyridine (23.8 mg, 0.2 mmol, 1.0 equiv.), 1,4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of $[Ir(ppy)_2(dtbbpy)][PF_6]$ (2 mol%, 3.7 mg, 0.004

mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (59.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **29** (53.3 mg, 70% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.52 – 8.47 (m, 1H), 8.44 (d, J = 4.1 Hz, 1H), 7.57 – 7.54 (m, 2H), 7.50 – 7.45 (m, 1H), 7.35 – 7.32 (m, 2H), 7.21 – 7.16 (m, 1H), 1.73 (d, J = 3.1 Hz, 2H), 1.70 (s, 3H), 0.87 (t, J = 7.9 Hz, 9H), 0.46 (q, J = 7.9 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 156.0, 148.6, 147.5, 145.3, 134.4, 132.1, 127.8, 123.1, 118.9, 109.9, 44.9, 29.8, 27.3, 8.8, 5.3 ppm. IR (film): 2948, 2904, 2870, 2227, 1605, 1501, 1413, 1018, 835, 713, 570 cm⁻¹. HRMS (ESI): calculated for C₂₁H₂₉N₂Ge⁺ [M+H]⁺ 383.1537; found 383.1526.

2.4.27 4-(1-(4-(tert-butyl)phenyl)-2-(tributylgermyl)ethyl)benzonitrile (34)

According to the general procedure using 4-tert-butylstyrene (32 mg, 0.2 mmol, 1.0 equiv.), 1,4dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), ${}^{n}Bu_{3}GeH$ (97.9 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (59.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **34** (69.8 mg, 69% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.46 (m, 2H), 7.37 – 7.32 (m, 2H), 7.24 – 7.21 (m, 2H), 7.13 – 7.06 (m, 2H), 4.02 (t, J = 8.0 Hz, 1H), 1.21 (s, 9H), 1.16 – 1.06 (m, 12H), 0.77 (t, J = 6.9 Hz, 9H), 0.47 – 0.40 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 149.5, 142.4, 132.3, 128.3, 127.2, 125.6, 119.2, 109.7, 47.9, 34.4, 31.4, 27.3, 26.7, 20.1, 13.8, 12.7 ppm. IR (film): 2954, 2922, 2869, 2227, 1604, 1463, 1416, 1269, 1081, 809, 692, 574 cm⁻¹. HRMS (ESI): calculated for C₃₁H₄₈NGe⁺ [M+H]⁺ 508.2993; found 508.2986.

2.4.28 4-(1-(4-(tert-butyl)phenyl)-2-(dimethyl(phenyl)germyl)ethyl)benzonitrile (35)

According to the general procedure using 4-tert-butylstyrene (32 mg, 0.2 mmol, 1.0 equiv.), 1,4dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), dimethyl(phenyl)germane (73.6 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (59.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **35** (55.7 mg, 63% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.54 – 7.46 (m, 2H), 7.34 – 7.29 (m, 7H), 7.28 – 7.25 (m, 2H), 7.14 – 7.09 (m, 2H), 4.08 (t, J = 8.2 Hz, 1H), 1.85 – 1.73 (m, 2H), 1.29 (s, 9H), 0.17 (d, J = 13.7 Hz, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 152.4, 149.6, 141.9, 140.8, 133.2, 132.3, 128.4, 128.4, 128.0, 127.1, 125.6, 119.1, 109.8, 47.7, 34.4, 31.4, 23.6, -3.2, -3.3 ppm. **IR** (film): 2963, 2904, 2227, 1604, 1500, 1429, 1363, 1268, 1092, 907, 819, 727, 574 cm⁻¹. **HRMS (ESI)**: calculated for C₂₇H₃₂NGe⁺ [M+H]⁺ 444.1741; found 444.1735.

2.4.29 4-(1-(4-(tert-butyl)phenyl)-2-(methyldiphenylgermyl)ethyl)benzonitrile (36)

According to the general procedure using 4-tert-butylstyrene (32 mg, 0.2 mmol, 1.0 equiv.), 1,4dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), methyldiphenylgermane (97.1 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of $[Ir(ppy)_2(dtbbpy)][PF_6]$ (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (59.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **36** (53.4 mg, 53% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.45 (m, 2H), 7.36 – 7.31 (m, 10H), 7.29 – 7.24 (m, 4H), 7.12 – 7.05 (m, 2H), 2.12 – 2.02 (m, 2H), 1.29 (s, 9H), 0.30 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 152.0, 149.6, 141.8, 138.8, 138.7, 133.8, 132.8, 132.2, 129.2, 128.8, 128.5, 128.2, 1281, 127.2, 125.6, 119.1, 109.9, 47.5, 34.4, 31.4, 22.3, -5.0 ppm. IR (film): 2962, 2904, 2867, 2226, 1604, 1430, 1268, 1091, 907, 728, 574 cm⁻¹. HRMS (ESI): calculated for C₃₂H₃₄NGe⁺ [M+H]⁺ 506.1898; found 506.1896. 2.4.30 4-(1-(4-(tert-butyl)phenyl)-2-(triphenylgermyl)ethyl)benzonitrile (37)

According to the general procedure using 4-tert-butylstyrene (32 mg, 0.2 mmol, 1.0 equiv.), 1,4dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), triphenylgermane (121.9 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (59.9 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **37** (66.8 mg, 59% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.33 (m, 5H), 7.32 – 7.27 (m, 12H), 7.22 – 7.17 (m, 4H), 7.06 – 7.02 (m, 2H), 4.27 (t, J = 7.8 Hz, 1H), 2.44 – 2.30 (m, 2H), 1.28 (s, 9H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 151.8, 149.6, 141.9, 136.5, 134.9, 132.2, 129.0, 128.6, 128.2, 127.2, 125.6, 119.1, 109.8, 47.4, 34.4, 31.4, 22.0 ppm. **IR** (film): 2962, 2866, 2227, 1604, 1420, 1090, 906, 727 cm⁻¹. **HRMS (ESI)**: calculated for C₃₇H₃₆NGe⁺ [M+H]⁺ 568.2054; found 568.2047.

2.4.31 4-(1-(p-tolyl)-2-(triphenylgermyl)ethyl)pyridine (39)

According to the general procedure using 4-methylstyrene (24 mg, 0.2 mmol, 1.0 equiv.), 4canopyridine (41.2 mg, 0.4 mmol, 2.0 equiv.), triphenylgermane (121.9 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of $[Ir(ppy)_2(dtbbpy)][PF_6]$ (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (70.0 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **39** (65.0 mg, 65% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.43 – 8.24 (m, 2H), 7.41 – 7.33 (m, 4H), 7.32 – 7.27 (m, 11H), 7.07 (d, J = 5.0 Hz, 2H), 7.02 – 6.94 (m, 4H), 4.19 (t, J = 7.8 Hz, 1H), 2.41 – 2.32 (m, 2H), 2.28 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 149.6, 141.6, 136.5, 136.4, 134.9, 129.3, 128.9, 128.2, 127.6, 123.0, 46.8, 21.5, 21.0 ppm. **IR** (film): 3069, 2922, 2247, 1597, 1430, 1090, 904, 724, 697, 648 cm⁻¹. **HRMS (ESI)**: calculated for $C_{32}H_{30}NGe^+$ [M+H]⁺ 502.1585; found 502.1580.

2.4.32 4-(2-(p-tolyl)-1-(triethylgermyl)propan-2-yl)pyridine (40)

According to the general procedure using 2-(p-methylphenyl)propene (26.4 mg, 0.2 mmol, 1.0 equiv.), 4-canopyridine (41.2 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (70.0 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **40** (46.6 mg, 63% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.47 – 8.41 (m, 2H), 7.18 – 7.14 (m, 2H), 7.11 – 7.06 (m, 4H), 2.31 (s, 3H), 1.76 – 1.66 (m, 2H), 1.65 (s, 3H), 0.88 (t, J = 7.9 Hz, 9H), 0.52 – 0.45 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) 161.1, 149.5, 146.5, 135.7, 128.9, 126.8, 122.3, 45.1, 29.7, 27.2, 21.0, 8.9, 5.3 ppm. IR (film): 2947, 2869, 1594, 1511, 1408, 1374, 1018, 821, 693, 570 cm⁻¹. HRMS (ESI): calculated for C₂₁H₃₂NGe⁺ [M+H]⁺ 372.1741; found 372.1730.

2.4.33 2,6-dimethyl-4-(2-(p-tolyl)-1-(tributylgermyl)propan-2-yl)pyridine (41)

According to the general procedure using 2-(p-methylphenyl)propene (26.4 mg, 0.2 mmol, 1.0 equiv.), 2,6-dimethylpyridine-4-carbonitrile (52.8 mg, 0.4 mmol, 2.0 equiv.), n Bu₃GeH (97.9 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (70.0 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **41** (77.1 mg, 80% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.12 – 7.02 (m, 4H), 6.85 – 6.81 (m, 2H), 2.46 (s, 6H), 2.30 (s, 3H), 1.67 (s, 2H), 1.61 (s, 3H), 1.25 – 1.12 (m, 12H), 0.84 (t, J = 7.1 Hz, 9H), 0.51 – 0.42 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 161.3, 157.2, 147.1, 135.4, 128.8, 126.8, 118.9, 45.0, 29.8, 28.1, 27.3, 26.7, 24.7, 20.9, 13.9, 13.8 ppm. IR

(film): 2955, 2922, 2870, 2194, 1715, 1601, 1561, 1456, 1375, 1190, 1081, 906, 821, 729 cm⁻¹. **HRMS** (ESI): calculated for $C_{29}H_{48}NGe^+$ [M+H]⁺ 484.2993; found 484.2981.

2.4.34 2-(2-(p-tolyl)-1-(tributylgermyl)propan-2-yl)benzonitrile (42)

According to the general procedure using 2-(p-methylphenyl)propene (26.4 mg, 0.2 mmol, 1.0 equiv.), 1,4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [lr(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (70.0 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **42** (28.3 mg, 36% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.67 (m, 1H), 7.61 – 7.52 (m, 2H), 7.32 – 7.25 (m, 1H), 7.13 – 7.04 (m, 4H), 2.31 (s, 3H), 2.21 – 2.14 (m, 1H), 1.89 – 1.66 (m, 4H), 0.90 (t, J = 7.9 Hz, 9H), 0.51 – 0.40 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 154.2, 147.1, 135.7, 135.6, 132.2, 128.7, 127.2, 127.1, 126.5, 118.9, 112.7, 45.9, 31.0, 26.1, 21.1, 8.9, 8.8, 5.1 ppm. **IR** (film): 2948, 2904, 2870, 2221, 1595, 1511, 1456, 1225, 1018, 908, 731, 571 cm⁻¹. **HRMS (ESI)**: calculated for C₂₃H₃₂NGe⁺ [M+H]⁺ 396.1741; found 396.1741.

2.4.35 4'-(2-(p-tolyl)-1-(triethylgermyl)propan-2-yl)-[1,1'-biphenyl]-4-carbonitrile (43)

According to the general procedure using 2-(p-methylphenyl)propene (26.4 mg, 0.2 mmol, 1.0 equiv.), 4,4' -Biphenyldicarbonitrile (81.6 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (70.0 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **43** (28.2 mg, 30% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃)

δ 7.72 – 7.66 (m, 4H), 7.49 – 7.46 (m, 2H), 7.38 – 7.35 (m, 2H), 7.18 – 7.15 (m, 2H), 7.09 – 7.06 (m, 2H), 2.32 (s, 3H), 1.79 – 1.75 (m, 2H), 1.71 (s, 3H), 0.90 (t, J = 7.9 Hz, 9H), 0.50 (q, J = 7.8 Hz, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 152.9, 148.2, 145.5, 136.2, 135.3, 132.6, 128.7, 127.8, 127.6, 126.9, 126.7, 119.2, 110.6, 45.1, 30.4, 28.0, 21.0, 9.0, 5.4 ppm. **IR** (film): 2947, 2927, 2869, 2226, 1606, 1491, 1456, 1104, 1018, 907, 822, 570 cm⁻¹. **HRMS (ESI)**: calculated for C₂₉H₃₆NGe⁺ [M+H]⁺ 472.2054; found 472.2050.

2.4.36 (Adamantan-2-yl)methyl 3-(1-(4-cyanophenyl)-2-(triethylgermyl)ethyl)benzoate (44)

According to the general procedure using adamantan-2-yl)methyl 3-vinylbenzoate (59.2 mg, 0.2 mmol, 1.0 equiv.), 1,4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of [Ir(ppy)₂(dtbbpy)][PF₆] (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (70.0 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **44** (75.9 mg, 68% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 10:1). ¹H **NMR** (400 MHz, CDCl₃) δ 7.99 – 7.94 (m, 1H), 7.91 – 7.84 (m, 1H), 7.57 – 7.54 (m, 2H), 7.43 – 7.35 (m, 4H), 4.19 (t, J = 8.1 Hz, 1H), 3.93 – 3.87 (m, 2H), 2.03 – 1.99 (m, 3H), 1.75 – 1.57 (m, 14H), 0.90 (t, J = 7.9 Hz, 9H), 0.53 (q, J = 7.9 Hz, 6H) ppm. ¹³C **NMR** (100 MHz, CDCl₃) δ 166.5, 152.3, 145.9, 132.4, 132.1, 131.0, 128.8, 128.6, 128.3, 127.9, 119.0, 110.2, 74.5, 48.1, 39.5, 37.0, 33.6, 28.1, 19.0, 8.9, 4.3 ppm. **IR** (film): 2903, 2871, 2848, 2228, 1715, 1605, 1454, 1276, 1182, 1104, 906, 728, 573 cm⁻¹. **HRMS (ESI)**: calculated for C₃₃H₄₄NO₂Ge⁺ [M+H]⁺ 560.2578; found 560.2571.

2.4.37 4,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 3-((R)-1-(4-cyanophenyl)-2-triethylgermyl)ethyl)benzoate (45)

According to the general procedure using 4,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 3-vinylbenzoate (56.8 mg, 0.2 mmol, 1.0 equiv.), 1,4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), Et₃GeH (64.3 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of $[Ir(ppy)_2(dtbbpy)][PF_6]$ (2 mol%, 3.7 mg, 0.004 mmol), HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (70.0 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **45** (68.8 mg, 63% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 10:1). ¹H **NMR** (400 MHz, CDCl₃) δ 7.99 – 7.94 (m, 1H), 7.91 – 7.85 (m, 1H), 7.59 – 7.53 (m, 2H), 7.46 – 7.32 (m, 4H), 5.12 – 5.04 (m, 1H), 4.19 (t, J = 8.1 Hz, 1H), 2.51 – 2.43 (m, 1H), 2.14 – 2.02 (m, 1H), 1.88 – 1.70 (m, 3H), 1.62 – 1.52 (m, 2H), 1.45 – 1.36 (m, 1H), 1.33 – 1.23 (m, 2H), 1.14 – 1.02 (m, 2H), 0.96 (s, 3H), 0.94 – 0.87 (m, 12H), 0.54 (q, J = 7.7 Hz, 6H) ppm. ¹³C **NMR** (100 MHz, CDCl₃) δ 166.7, 152.3, 145.9, 132.4, 132.0, 131.2, 128.8, 128.6, 128.3, 127.8, 119.0, 110.2, 80.7, 49.2, 48.1, 47.9, 45.0, 37.0, 28.1, 27.4, 19.8, 19.0, 13.7, 8.9, 4.3 ppm. **IR** (film): 2951, 2871, 2228, 1711, 1605, 1455, 1284, 1185, 1114, 1017, 729, 573 cm⁻¹. **HRMS (ESI)**: calculated for C₃₂H₄₄NO₂Ge⁺ [M+H]⁺ 548.2578; found 548.2576.

2.4.38 methyl (R)-3-(1-(4-cyanophenyl)-2-(tributylgermyl)ethyl)benzoate (47)

According to the general procedure using methyl 4-vinylbenzoate (32.4 mg, 0.2 mmol, 1.0 equiv.), 1,4-dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), ^{*n*}Bu₃GeH (97.9 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (65.3 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **47** (71.1 mg, 70% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H **NMR** (400 MHz, CDCl₃) δ 7.98 – 7.93 (m, 1H), 7.90 – 7.84 (m, 1H), 7.58 – 7.52 (m, 2H), 7.45 – 7.32 (m, 4H), 4.18 (t, J = 8.0 Hz, 1H), 3.90 (s, 3H), 1.61 – 1.44 (m, 2H), 1.27 – 1.11 (m, 12H), 0.83 (t, J = 6.9 Hz, 9H), 0.55 – 0.45 (m, 6H) ppm. ¹³C **NMR** (100 MHz, CDCl₃) δ 167.0, 152.4, 145.9, 132.4, 132.3, 130.5, 128.8, 128.6, 128.3, 128.0, 119.0, 110.1, 52.2, 48.2, 27.3, 26.6, 19.8, 13.8, 12.8 ppm. **IR** (film): 2953, 2923, 2870, 2227, 1722, 1605, 1444, 1282, 1195, 1107, 846, 736 cm⁻¹. **HRMS (ESI)**: calculated for C₂₉H₄₂NO₂Ge⁺ [M+H]⁺ 510.2422; found 510.2415.

2.4.39 4-(1-(3-methoxyphenyl)-2-(tributylgermyl)ethyl)benzonitrile (48)

According to the general procedure using 3-vinylanisole (26.8 mg, 0.2 mmol, 1.0 equiv.), 1,4dicyanobenzene (51 mg, 0.4 mmol, 2.0 equiv.), ${}^{n}Bu_{3}GeH$ (97.9 mg, 0.4 mmol, 2.0 equiv.), and anhydrous acetonitrile (2 mL) in the presence of HSCH₂CO₂C₂H₅ (10 mol%, 2.4 mg, 0.02 mmol) and K₃PO₄ (65.3 mg, 0.4 mmol, 2.0 equiv.) under 2×40 W blue LED light irradiation provided the product **48** (65.3 mg, 68% yield) as colorless oil after purification by preparative TLC (petroleum PE/EA = 20:1). ¹H **NMR** (400 MHz, CDCl₃) δ 7.57 – 7.52 (m, 2H), 7.43 – 7.37 (m, 2H), 7.20 (t, J = 7.9 Hz, 1H), 6.84 (d, J = 7.9 Hz, 1H), 6.81 – 6.77 (m, 1H), 6.75 – 6.69 (m, 1H), 4.09 (t, J = 8.0 Hz, 1H), 3.77 (s, 3H), 1.60 – 1.52 (m, 1H), 1.49 – 1.42 (m, 1H), 1.26 – 1.16 (m, 12H), 0.85 (t, J = 6.9 Hz, 9H), 0.57 – 0.49 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 152.9, 147.1, 132.3, 129.7, 128.3, 120.1, 119.1, 113.9, 111.3, 109.9, 55.2, 48.3, 27.3, 26.6, 19.9, 13.8, 12.8 ppm. IR (film): 2954, 2922, 2853, 2226, 1598, 1488, 1455, 1261, 1146, 1049, 873, 780, 693, 545 cm⁻¹. HRMS (ESI): calculated for C₂₈H₄₂NOGe⁺ [M+H]⁺ 482.2473; found 482.2464.

3. Computational Investigations

3.1 DFT calculations

All calculations were performed with the Gaussian 16 package.^[1] Geometry optimizations and frequencies calculations were performed at UM06-2X^[2] level of theory. The SDD basis set is employed for the germanium atom and Iridium atom,^[3] and the 6-31+G(d,p) basis set is used for all the other atoms. Intrinsic reaction coordinate calculations are performed to confirm that each transition state connects with the desired reactants and products.^[4] To obtain more accurate energies, single-point energy calculations were done with the UM06-2X functional. The SDD basis set is employed for the germanium atom and Iridium atom, and the cc-PVTZ basis set is used for all the other atoms in conjugation with the polarizable continuum model (SMD) solvation model for acetonitrile.^[5] The 3D structures of the optimized species were generated using CYLview.^[6]

3.2 Macus theory calculations

The barrier heights of single electron transfer steps were calcualted by using Marcus-Hush theory.^[7] The free energy barrier of a single electron transfer process of outer-sphere electron transfer can be applied according to the following equation:

$$\Delta G_{ET}^{\dagger} = \frac{(\Delta G_{\rm r} + \lambda)^2}{4\lambda}$$

Where ΔG_r is the Gibbs free energy change of the studied single electron transfer step, λ is the reorganization energy which includes two components, inner reorganization energy (λ_i) and outer reorganization energy (λ_0). The outer-sphere electron transfer model is applicable and the activation barrier may be estimated from the outer-sphere Marcus-Hush model. Since the inner reorganization energies are usually small and could be neglected. Thus, the total reorganization energy $\lambda \approx \lambda_0$.

$$\lambda = \lambda_{o} = 332(\frac{1}{2a_{1}} + \frac{1}{2a_{2}} - \frac{1}{R})(\frac{1}{\varepsilon_{opt}} - \frac{1}{\varepsilon})$$

Where, a_1 and a_2 are the radii of donor and acceptor, R is the sum of a_1 and a_2 , ε_{opt} and ε is the optical dielectric constant and static dielectric constant of solvent respectively (for CH₃CN ε_{opt} = 1.80, ε = 35.68). a_1 and a_2 are calculated by using Multiwfn package.^[8]

Table S2. Calculated free energy barriers (ΔG_{ET}^{\dagger} , kcal/mol) of single electron transfer steps and their relevant parameters.

0			•		•	
entry	a ₁ (Á)	a ₂ (Á)	R (Á)	λ	$\Delta G_{\rm r}$	$\Delta G_{\rm ET}^{\dagger}$
SET1	8.18	5.53	13.71	13.70	-2.94	2.11
SET2	4.85	8.58	13.43	15.14	-31.90	4.63

4. NMR Spectra

4.1 4-(1-(p-tolyl)-2-(triphenylgermyl)ethyl)benzonitrile (4)

¹H NMR spectrum (400 MHz, CDCI₃) of compound **5**.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **5**.

4.3 4-(1-(p-tolyl)-2-(triethylgermyl)ethyl)benzonitrile (6)

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl₃) of compound 6.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 8.

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl₃) of compound 9.

-108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 -126 -127 -128 -129 -130 -1; f1 (ppm)

 ^{19}F NMR spectrum (376 MHz, CDCl_3) of compound 9.

4.7 4-(1-(4-chlorophenyl)-2-(triethylgermyl)ethyl)benzonitrile (10)

¹**H NMR** spectrum (400 MHz, CDCl₃) of compound **11**.

²²⁰ 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm) ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **11**.

4.9 4-(1-(2-methoxyphenyl)-2-(triethylgermyl)ethyl)benzonitrile (12)

¹H NMR spectrum (400 MHz, CDCl₃) of compound **12**.

4.10 4-(1-(2-chlorophenyl)-2-(triethylgermyl)ethyl)benzonitrile (13)

¹H NMR spectrum (400 MHz, CDCl₃) of compound **13**.

²20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 ^{f1 (ppm)} ¹³C{¹H} NMR spectrum (100 MHz, CDCI₃) of compound **13**.

4.11 4-(1-(2-fluorophenyl)-2-(triethylgermyl)ethyl)benzonitrile (14)

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 ft (ppm) **1H NMR** spectrum (400 MHz, CDCl₃) of compound **14**.

¹⁹F NMR spectrum (376 MHz, CDCl₃) of compound 14.

4.12 4-(1-(3-methoxyphenyl)-2-(triethylgermyl)ethyl)benzonitrile (15)

S46

4.14 4-(2-(triethylgermyl)-1-(3-(trifluoromethyl)phenyl)ethyl)benzonitrile (17)

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 f1 (ppm)

2.00 2.00 5.00 1.00

¹H NMR spectrum (400 MHz, CDCl₃) of compound **19**.

1.00-≖

9.03-

6.00-≖

1.00 €

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 19.

4.17 4-(1-(2,3-dihydrobenzofuran-6-yl)-2-(triethylgermyl)ethyl)benzonitrile (20)

¹H NMR spectrum (400 MHz, CDCl₃) of compound **21**.

¹H NMR spectrum (400 MHz, CDCl₃) of compound **4**.

¹⁹F NMR spectrum (376 MHz, CDCl₃) of compound 23.

4.21 4-(2-(4-(methylthio)phenyl)-1-(triethylgermyl)propan-2-yl)benzonitrile (24)

S57

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl₃) of compound 27.

4.25 4-(1-cyclobutyl-1-phenyl-2-(triethylgermyl)ethyl)benzonitrile (28)

4.26 4-(1-cyclobutyl-1-phenyl-2-(triethylgermyl)ethyl)benzonitrile (29)

4.27 4-(1-(4-(tert-butyl)phenyl)-2-(tributylgermyl)ethyl)benzonitrile (34)

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 34.

S62

¹³C{¹H} NMR spectrum (100 MHz, CDCI₃) of compound 36.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **37**.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **39**.

¹³C{¹H} NMR spectrum (100 MHz, CDCI₃) of compound 40.

4.33 2,6-dimethyl-4-(2-(p-tolyl)-1-(tributylgermyl)propan-2-yl)pyridine (41)

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (100 MHz, CDCl₃) of compound 42.

S69

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 44.

4.37 4,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 3-((R)-1-(4-cyanophenyl)-2-triethylgermyl)ethyl)benzoate

S72

f1 (ppm)

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 47.

$\begin{array}{c} 7.7.56\\ 6.7.7.5.56\\ 7.7.48\\ 7.7.48\\ 7.7.48\\ 7.7.49\\ 7.7.49\\ 7.7.28\\ 6.6.73\\ 6.6.73\\ 6.6.73\\ 6.6.73\\ 7.7.28\\ 6.6.73\\ 7.7.28\\ 6.6.73\\ 7.7.28\\ 6.6.73\\ 7.7.28\\ 6.6.73\\ 7.7.28\\ 6.6.73\\ 7.7.28\\ 7.7$

¹³C{¹H} NMR spectrum (100 MHz, CDCI₃) of compound **48**.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 49.

¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **50**.

4.43 4-(1-(p-tolyl)-2-(tributylgermyl)ethyl)benzonitrile (43)

5. Energies and Cartesian Coordinates of the Optimized Structures

Et₃GeH

 $\label{eq:model} \begin{array}{l} M06-2X/6-31+G(d,p) \ Electronic \ Energy: \ -241.9340902 \ a.u \\ M06-2X/6-31G(d,p) \ Gibbs \ free \ Energy: \ -242.0158473 \ a.u \\ M06-2X(SMD, \ CH_3CN)/cc-pvtz \ Electronic \ Energy: \ -241.768047 \ a.\ u \end{array}$

Center	Atomic	A	Atomic	Coordinates	(Angstroms)
Number	Numb	er	Туре	X Y	Z
1	6	0	1.775233	0.489233	-0.723238
2	6	0	2.008790	1.957892	-1.091225
3	1	0	2.525614	-0.149464	-1.201636
4	1	0	1.884265	0.344199	0.358175
5	1	0	3.012880	2.292300	-0.810576
6	1	0	1.897963	2.120644	-2.168666
7	1	0	1.291680	2.612971	-0.585708
8	6	0	-1.420976	1.106105	-0.592160
9	6	0	-2.841091	0.569856	-0.798542
10	1	0	-1.295802	2.066081	-1.104664
11	1	0	-1.233843	1.292630	0.472062
12	1	0	-3.598068	1.278715	-0.447408
13	1	0	-3.042042	0.372730	-1.857035
14	1	0	-2.993942	-0.368803	-0.255909
15	6	0	-0.351737	-1.970207	-0.523187
16	6	0	0.790851	-2.939979	-0.840864
17	1	0	-1.297254	-2.346377	-0.928631
18	1	0	-0.488710	-1.883217	0.561293
19	1	0	0.593157	-3.943019	-0.448908
20	1	0	0.944022	-3.034144	-1.921288
21	1	0	1.735162	-2.597765	-0.404876
22	32	0	-0.030060	-0.149966	6 -1.251030
23	1	0	-0.105232	-0.210948	-2.799236

Et₃Ge radical

M06-2X/6-31+G(d,p) Electronic Energy: -241.2976483 a.u M06-2X/6-31G(d,p) Gibbs free Energy: -241.140744 a.u M06-2X(SMD, CH₃CN)/cc-pvtz Electronic Energy: -241.3770483 a. u

Center	Atom	nic Ator	mic	Coordinates	(Angstroms)
Number	Nu	mber 7	Гуре	X Y	Z
1	32	0	-0.042103	-0.160216	-1.370603
2	6	0	1.782953	0.457293	-0.802995
3	6	0	2.001650	1.948457	-1.065957
4	1	0	2.536473	-0.144212	-1.321029
5	1	0	1.880218	0.232971	0.268297
6	1	0	2.998415	2.273903	-0.750338
7	1	0	1.900656	2.181969	-2.131121

8	1	0	1.270595	2.559507	-0.526341
9	6	0	-1.418183	1.116466	-0.655734
10	6	0	-2.839848	0.561704	-0.763632
11	1	0	-1.329404	2.067322	-1.190479
12	1	0	-1.157646	1.317164	0.392731
13	1	0	-3.580522	1.265049	-0.368938
14	1	0	-3.105817	0.353015	-1.805272
15	1	0	-2.945681	-0.374204	-0.205172
16	6	0	-0.383388	-1.986792	-0.607864
17	6	0	0.787317	-2.943821	-0.840450
18	1	0	-1.304814	-2.385212	-1.043992
19	1	0	-0.571923	-1.857046	0.466876
20	1	0	0.590654	-3.935005	-0.418593
21	1	0	0.986245	-3.074203	-1.909436
22	1	0	1.706835	-2.567610	-0.380069

1.4-dicyanobenzene

M06-2X/6-31+G(d,p) Electronic Energy: -416.5755436 a.u M06-2X/6-31G(d,p) Gibbs free Energy: -416.509853 a.u M06-2X(SMD, CH₃CN)/cc-pvtz Electronic Energy: -416.7243417 a. u

Center	Atomi	ic At	omic	Coordinates	(Angstroms)
Number	Num	ber	Туре	X Y	Z
1	6	0	-1.386306	0.000005	0.000012
2	6	0	-0.694128	-1.216732	0.000010
3	6	0	0.694154	-1.216719	0.000008
4	6	0	1.386306	0.000030	0.000006
5	6	0	0.694130	1.216765	0.000003
6	6	0	-0.694156	1.216752	0.000006
7	1	0	-1.245451	-2.150269	0.000013
8	1	0	1.245497	-2.150245	0.000006
9	1	0	1.245449	2.150304	-0.000001
10	1	0	-1.245494	2.150280	0.000004
11	6	0	2.827014	0.000031	-0.000003
12	7	0	3.984091	0.000102	-0.000009
13	6	0	-2.827014	-0.000012	0.000016
14	7	0	-3.984091	-0.000055	0.000018

1.4-dicyanobenzene anion radical

M06-2X/6-31+G(d,p) Electronic Energy: -416.6174972 a.u M06-2X/6-31G(d,p) Gibbs free Energy: -416.555826 a.u M06-2X(SMD, CH₃CN)/cc-pvtz Electronic Energy: -416.8265903 a. u

Center	Atomic	Atom	ic	Coordi	nates	(Angstrom	ıs)
Number	Numbe	r Ty	Туре		Y	Z	
	6	0 -	 1.428096	-0.000	 0001	0.000014	 L

2	6	0	-0.684613	-1.227467	0.000016
3	6	0	0.684671	-1.227431	0.000004
4	6	0	1.428096	0.000074	-0.000003
5	6	0	0.684615	1.227530	0.000004
6	6	0	-0.684674	1.227494	0.000008
7	1	0	-1.226940	-2.168867	0.000027
8	1	0	1.227045	-2.168804	0.000002
9	1	0	1.226929	2.168938	0.000001
10	1	0	-1.227034	2.168875	0.000011
11	6	0	2.836398	0.000094	-0.000004
12	7	0	4.008411	-0.000096	-0.000009
13	6	0	-2.836398	-0.000054	0.000008
14	7	0	-4.008411	-0.000046	0.000009

$CH_{3}CH_{2}CO_{2}CH_{2}SH$

 $\label{eq:model} \begin{array}{ll} M06-2X/6-31+G(d,p) \mbox{ Electronic Energy: -705.7240144 a.u} \\ M06-2X/6-31G(d,p) \mbox{ Gibbs free Energy: -705.639415 a.u} \\ M06-2X(SMD, CH_3CN)/cc-pvtz \mbox{ Electronic Energy: -705.8843518 a.u} \end{array}$

Center	Atomic	A	tomic	Coordinates (Angstroms)		
Number	Numb	er	Туре	X Y	Z	
1	6	0	-2.324523	3.001427	0.023672	
2	8	0	-1.130967	2.834292	0.022860	
3	8	0	-2.914409	4.205049	0.024852	
4	6	0	-2.023390	5.335334	0.025129	
5	6	0	-2.879482	6.582373	0.025994	
6	1	0	-1.382930	5.273099	-0.859378	
7	1	0	-1.382419	5.272244	0.909209	
8	1	0	-2.240492	7.469082	0.026276	
9	1	0	-3.516691	6.614277	-0.861005	
10	1	0	-3.516218	6.613372	0.913365	
11	6	0	-3.365293	1.903871	0.023330	
12	1	0	-3.993975	2.032214	-0.861124	
13	1	0	-3.993298	2.031004	0.908439	
14	16	0	-2.530890	0.286236	0.021905	
15	1	0	-3.674794	-0.415702	0.021930	

$CH_3CH_2CO_2CH_2S^{-}$

M06-2X/6-31+G(d,p) Electronic Energy: -705.1699998 a.u M06-2X/6-31G(d,p) Gibbs free Energy: -705.093733 a.u M06-2X(SMD, CH₃CN)/cc-pvtz Electronic Energy: -705.4116701 a. u

Center	Atomi	c	Atomic	Coord	linates	(Angstroms	;)
Number	Num	ber	Type	X	Y	Z	
1	6	0	-2.316376	2.98	4340	0.023362	
2	8	0	-1.114882	2.89	9297	0.022268	

3	8	0	-2.918791	4.229632	0.025081	
4	6	0	-2.028170	5.334855	0.024995	
5	6	0	-2.869747	6.596979	0.026422	
6	1	0	-1.378837	5.284546	-0.856803	
7	1	0	-1.377414	5.283532	0.905691	
8	1	0	-2.228259	7.484122	0.026470	
9	1	0	-3.511197	6.629211	-0.858734	
10	1	0	-3.509825	6.628125	0.912609	
11	6	0	-3.374534	1.903106	0.023131	
12	1	0	-4.002224	2.140611	-0.848586	
13	1	0	-4.003764	2.141481	0.893464	
14	16	0	-2.827392	0.174550	0.024391	

CH₃CH₂CO₂CH₂S radical

Center	Atomic		Atomic	Coordinates (Angstroms)		
Number	Numb	er	Туре	X Y	Z	
1	6	0	-0.183975	0.689770	0.031598	
2	8	0	-0.112153	1.533040	-0.829083	
3	8	0	0.836507	-0.089128	0.409357	
4	6	0	2.061533	0.084025	-0.325497	
5	6	0	3.065572	-0.896994	0.237351	
6	1	0	2.388935	1.121946	-0.216118	
7	1	0	1.856030	-0.094961	-1.384829	
8	1	0	4.014332	-0.802000	-0.296912	
9	1	0	3.243816	-0.702517	1.297699	
10	1	0	2.705679	-1.922584	0.126801	
11	6	0	-1.440714	0.359980	0.802019	
12	1	0	-2.141895	1.194488	0.715071	
13	1	0	-1.217148	0.200199	1.861839	
14	16	(-2.251679	9 -1.127945	0.180224	

[lr(ppy)₂(dtbbpy)][PF₆]

M06-2X/6-31+G(d,p) Electronic Energy: -2811.4821698 a.u M06-2X/6-31G(d,p) Gibbs free Energy: -2810.830093 a.u M06-2X(SMD, CH₃CN)/cc-pvtz Electronic Energy: -2812.3525827 a. u Total Energy, E(TD-HF/TD-DFT): -2812.23488332 a.u

Center	Atomic	At	omic	Coord	inates	(Angstroms)	
Number	Numbe	ər	Туре	Х	Y	Z	
1	77	0	0.117448	0.09	1699	-0.119095	
2	6	0	1.092018	-1.320	0445	0.931594	
3	6	0	0.914688	-2.65	5264	0.483529	

4	6	0	1.933235	-1.119743	2.035908
5	6	0	1.558347	-3.722156	1.124561
6	6	0	0.000099	-2.864371	-0.660387
7	6	0	2.568941	-2.185240	2.673101
8	1	0	2.091109	-0.111064	2.408362
9	6	0	2.385606	-3.491354	2.217422
10	1	0	1.419758	-4.741065	0.775115
11	6	0	-0.360392	-4.106725	-1.187675
12	1	0	3.212009	-1.995238	3.527987
13	1	0	2.881529	-4.321752	2.709455
14	6	0	-1.416145	-1.790183	-2.182632
15	6	0	-1.276883	-4.169257	-2.232395
16	1	0	0.055928	-5.016713	-0.772841
17	6	0	-1.827664	-2.996340	-2.738285
18	1	0	-1.830766	-0.846627	-2.527856
19	1	0	-1.572590	-5.132619	-2.636095
20	1	0	-2.582307	-2.988976	-3.515235
21	6	0	0.837110	1.641949	0.910777
22	6	0	2.075547	2.146545	0.446127
23	6	0	0.259627	2.279870	2.017546
24	6	0	2.706442	3.232059	1.067527
25	6	0	2.637045	1.439502	-0.709931
26	6	0	0.886353	3.359344	2,637355
_0 27	1	0	-0.690477	1.922483	2.407762
28	6	0	2 112153	3 839650	2 166024
29	1	0	3.658812	3.607029	0.702802
30	6	0	3 846159	1 737398	-1.349051
31	1	0	0.418603	3 832960	3 496149
32	1	0	2 596085	4 679741	2 652865
33	6	0	2 274199	-0 326231	-2 208764
34	6	0	4 258752	0.020201	-2.200704
35	1	0	4 454298	2 557557	-0.987066
36	6	0	3 460483	-0.073257	-2 878773
37	1	0	1 600616	-1 13/160	-2.0707750
38	1	0	5 196008	1 208057	-2.437303
20	1	0	3 7/6677	0.601969	2 720592
40	6	0	-2 731000	0.680488	0.358647
40	6	0	1 075514	0.003400	1 955051
42	6	0	-/ 03/370	0.513305	0 700///
42	6	0	2 297129	1 611249	0.799444
43	6	0	2 250005	1 117125	-0.743423
44	0	0	-3.209090	1 462252	2.344020
40	I E	0	1.120921	-1.403332	2.230249
40	1	0	4.000221	1 0/1/62	0.200705
41 10	I E	0	2 200000	0.521201	1.277902
40	0	0	-3.200000	2.031201	-1.277092
49 F0	I C	0	-3.39/0/5	-1.00113/	3.120000
00 ⊑1	Ø	U	-0.790228	2.212008	-2.303454
51	Ø	U	-2.952593	3.213183	-2.407432
52	1	0	-4.272353	2.019308	-0.842734
53	6	0	-1.659007	3.100084	-2.915102
54	1	0	0.224709	2.068068	-2.664103

55	1	0	-1.322681	3.640673	-3.793088
56	7	0	-1.148218	1.472270	-1.249906
57	7	0	1.872834	0.411391	-1.162848
58	7	0	-0.523615	-1.730985	-1.186446
59	7	0	-1.712535	-0.043719	0.870314
60	6	0	-5.792083	-0.672728	2.167252
61	6	0	-6.438220	0.644603	2.630681
62	6	0	-6.518678	-1.195353	0.912447
63	6	0	-5.921139	-1.705625	3.290658
64	1	0	-5.924233	1.048728	3.509193
65	1	0	-6.421745	1.402690	1.842650
66	1	0	-7.484944	0.465720	2.896263
67	1	0	-6.066589	-2.125609	0.555871
68	1	0	-7.569788	-1.387351	1.152549
69	1	0	-6.480209	-0.483064	0.083504
70	1	0	-6.979089	-1.850234	3.528057
71	1	0	-5.514368	-2.677635	2.993371
72	1	0	-5.415283	-1.377807	4.205730
73	6	0	-3.952048	4.176112	-3.122706
74	6	0	-5.278217	4.276585	-2.361552
75	6	0	-3.360078	5.585759	-3.285367
76	6	0	-4.229411	3.554145	-4.505345
77	1	0	-5.763839	3.299297	-2.279716
78	1	0	-5.137947	4.694596	-1.358039
79	1	0	-5.954440	4.941624	-2.906846
80	1	0	-2.437177	5.577796	-3.872920
81	1	0	-4.078102	6.227287	-3.806208
82	1	0	-3.141263	6.035634	-2.311270
83	1	0	-4.962451	4.166821	-5.040957
84	1	0	-3.319144	3.507409	-5.111798
85	1	0	-4.625232	2.539306	-4.403856
86	15	0	-4.952374	-0.439652	-2.902213
87	9	0	-6.303563	-1.247234	-2.548463
88	9	0	-4.211451	-1.099496	-1.598986
89	9	0	-4.424180	-1.666916	-3.825276
90	9	0	-5.658669	0.256388	-4.177226
91	9	0	-5.450087	0.808455	-1.951930
92	9	0	-3.568607	0.383974	-3.230045

{[lr(ppy)₂(dtbbpy)][PF₆]}⁺

 $\label{eq:model} \begin{array}{l} M06-2X/6-31+G(d,p) \mbox{ Electronic Energy: -2811.2157413 a.u} \\ M06-2X/6-31G(d,p) \mbox{ Gibbs free Energy: -2810.565005 a.u} \\ M06-2X(SMD, CH_3CN)/cc-pvtz \mbox{ Electronic Energy: -2812.1319566 a.u} \end{array}$

Center	Atomic	А	tomic	Coordina	ites	(Angstroms)	
Number	Numb	er	Туре	Х	Y	Z	
1	77	0	0.082202	0.1274	01	-0.094747	
2	6	0	1.070597	-1.3582	11	0.887352	
3	6	0	0.888338	-2.6706	32	0.407832	

4	6	0	1.907660	-1.150171	1.989926
5	6	0	1.525934	-3.743396	1.042271
6	6	0	0.009451	-2.843334	-0.764220
7	6	0	2.533490	-2.228627	2.616905
8	1	0	2.064269	-0.149498	2.379761
9	6	0	2.344125	-3.525656	2.144598
10	1	0	1.386521	-4.756475	0.679762
11	6	0	-0.285455	-4.061871	-1.370988
12	1	0	3.169889	-2.049338	3.477889
13	1	0	2.831495	-4.363304	2.631384
14	6	0	-1.361583	-1.718594	-2.289780
15	6	0	-1.143302	-4.089764	-2.466775
16	1	0	0.142603	-4.980278	-0.988738
17	6	0	-1.695979	-2.904012	-2.935192
18	1	0	-1.792727	-0.775237	-2.609058
19	1	0	-1.386449	-5.034556	-2.941860
20	1	0	-2.400658	-2.872845	-3.756381
21	6	0	0.770385	1.630564	0.958119
22	6	0	2.026887	2.140940	0.515899
23	6	0	0.155803	2.225322	2.077667
24	6	0	2.635324	3.199420	1.183871
25	6	0	2.604161	1.471177	-0.658751
26	6	0	0.772230	3.279103	2.740964
27	1	0	-0.801289	1.852346	2.430077
28	6	0	2.007744	3.763765	2.295781
29	1	0	3.591809	3.594904	0.857700
30	6	0	3.814498	1.792095	-1.272450
31	1	0	0.297341	3.729685	3.606229
32	1	0	2.483938	4.587021	2.817784
33	6	0	2.253565	-0.262239	-2.197486
34	6	0	4.238470	1.059213	-2.374140
35	1	0	4.417576	2.605869	-0.888345
36	6	0	3.448569	0.013104	-2.846602
37	1	0	1.596539	-1.066095	-2.513306
38	1	0	5.178878	1.299763	-2.858530
39	1	0	3.746671	-0.585226	-3.698927
40	6	0	-2.747475	0.696552	0.377629
41	6	0	-1.988588	-0.898574	1.891101
42	6	0	-4.042385	0.553179	0.845932
43	6	0	-2.406308	1.566160	-0.770732
44	6	0	-3.267875	-1.077960	2.397937
45	1	0	-1.140346	-1.457868	2.272008
46	6	0	-4.342741	-0.365569	1.858111
47	1	0	-4.838813	1.087841	0.343654
48	6	0	-3.274443	2.515439	-1.291664
49	1	0	-3.408730	-1.801403	3.191235
50	6	0	-0.847367	2.024371	-2.431221
51	6	0	-2.957989	3.191403	-2.471329
52	1	0	-4.227482	2.679746	-0.810856
53	6	0	-1.700895	2.926078	-3.035971
54	1	0	0.139425	1.814093	-2.833434

55	1	0	-1.385409	3.410247	-3.953214	
56	7	0	-1.192845	1.351690	-1.323138	
57	7	0	1.845537	0.455382	-1.141460	
58	7	0	-0.523668	-1.692183	-1.242524	
59	7	0	-1.732813	-0.041910	0.893498	
60	6	0	-5.793536	-0.591141	2.258636	
61	6	0	-6.413259	0.744138	2.708362	
62	6	0	-6.540069	-1.122643	1.017598	
63	6	0	-5.919113	-1.606034	3.398460	
64	1	0	-5.885438	1.154882	3.575246	
65	1	0	-6.401421	1.490178	1.908700	
66	1	0	-7.457611	0.581871	2.990036	
67	1	0	-6.103331	-2.061825	0.665452	
68	1	0	-7.587748	-1.303067	1.276964	
69	1	0	-6.512137	-0.418524	0.181257	
70	1	0	-6.974654	-1.729520	3.654323	
71	1	0	-5.536433	-2.590218	3.109394	
72	1	0	-5.396405	-1.273519	4.302169	
73	6	0	-3.941136	4.116334	-3.173169	
74	6	0	-5.226558	4.306681	-2.361529	
75	6	0	-3.284126	5.487178	-3.409943	
76	6	0	-4.302938	3.459173	-4.521579	
77	1	0	-5.755043	3.358105	-2.224114	
78	1	0	-5.027492	4.757242	-1.382393	
79	1	0	-5.893827	4.981530	-2.904064	
80	1	0	-2.390114	5.413933	-4.036195	
81	1	0	-3.991934	6.143808	-3.924055	
82	1	0	-3.004786	5.961548	-2.463523	
83	1	0	-5.026126	4.091867	-5.045308	
84	1	0	-3.424254	3.348976	-5.164750	
85	1	0	-4.744907	2.469998	-4.371789	
86	15	0	-4.857519	-0.474155	-2.823197	
87	9	0	-6.154450	-1.306804	-2.373016	
88	9	0	-4.027102	-1.057299	-1.525277	
89	9	0	-4.319525	-1.713948	-3.717227	
90	9	0	-5.626509	0.157017	-4.085268	
91	9	0	-5.340945	0.795367	-1.893793	
92	9	0	-3.502331	0.378968	-3.233088	

Styrene

M06-2X/6-31+G(d,p) Electronic Energy: -309.5163385 a.u M06-2X/6-31G(d,p) Gibbs free Energy: -309.413724 a.u M06-2X(SMD, CH₃CN)/cc-pvtz Electronic Energy: -309.6175472 a. u

Center	Atomic		Atomic	Coor	dinates	(Angstroms)	
Number	Number		Туре	Х	Y	Z	
1	6	0	-0.180249	1.3	44471	0.005429	
2	6	0	-1.024531	0.2	28317	-0.044486	
3	6	0	-0.440607	-1.0	46526	-0.074244	

4	6	0	0.941206	-1.196013	-0.038250
5	6	0	1.770813	-0.074544	0.022280
6	6	0	1.204842	1.197862	0.041996
7	1	0	-0.618836	2.339017	0.020990
8	1	0	-1.070922	-1.928115	-0.138376
9	1	0	1.375133	-2.190759	-0.064464
10	1	0	1.840079	2.077018	0.084130
11	6	0	-2.484733	0.437812	-0.068392
12	6	0	-3.427170	-0.495274	0.091710
13	1	0	-2.797103	1.470054	-0.221252
14	1	0	-4.478660	-0.232936	0.056436
15	1	0	-3.189396	-1.539602	0.270536
16	1	0	2.849003	-0.194235	0.047806

IM1

M06-2X/6-31+G(d,p) Electronic Energy: -550.8553053 a.u M06-2X/6-31G(d,p) Gibbs free Energy: -550.573497 a.u M06-2X(SMD, CH₃CN)/cc-pvtz Electronic Energy: -551.0361613 a. u

Center	Atomic	Atomic		Coordinates (Angstroms)			
Number	Numbe	ər	Туре	X Y	Z		
	 22		1 0621/0	0 252060	0.072062		
י ר	52	0	2 212010	0.621661	1 562207		
2	0	0	2.213919	0.031001	4 000005		
3	0	0	2.090100	-0.001007	-1.233333		
4	0	0	4.031554	-0.865177	-0.908371		
5	6	0	4.934528	0.201553	-0.895890		
6	6	0	4.479878	1.486403	-1.216571		
7	6	0	3.151093	1.699331	-1.541808		
8	1	0	2.016186	-1.506489	-1.230912		
9	1	0	4.373907	-1.865424	-0.659933		
10	1	0	5.172134	2.322972	-1.210481		
11	1	0	2.806294	2.699947	-1.790182		
12	6	0	-0.223385	-0.123152	-1.911454		
13	1	0	-1.025740	0.163149	-2.599169		
14	1	0	0.120650	-1.122703	-2.198379		
15	6	0	0.857643	0.881609	-1.904601		
16	1	0	0.586354	1.913536	-2.116850		
17	1	0	5.975866	0.035791	-0.640752		
18	6	0	-1.630847	1.584263	0.426786		
19	6	0	-2.608421	2.199412	-0.579382		
20	1	0	-0.730197	2.202698	0.519130		
21	1	0	-2.087289	1.544247	1.422681		
22	1	0	-2.894315	3.218509	-0.299403		
23	1	0	-2.172585	2.247892	-1.583822		
24	1	0	-3.529366	1.610381	-0.649802		
25	6	0	-2.651330	-1.457361	-0.168807		
26	6	0	-3.283150	-1.533332	-1.563008		
27	1	0	-3.385239	-1.101667	0.564473		
28	1	0	-2.343018	-2.456295	0.161056		

29	1	0	-4.167398	-2.178947	-1.571503
30	1	0	-3.595314	-0.545918	-1.919698
31	1	0	-2.577516	-1.934269	-2.297863
32	6	0	0.242755	-0.934835	1.252968
33	6	0	-0.358150	-0.994128	2.662284
34	1	0	1.129089	-0.291046	1.234234
35	1	0	0.574188	-1.931121	0.937448
36	1	0	0.356841	-1.392263	3.389337
37	1	0	-0.656584	0.000468	3.009677
38	1	0	-1.247313	-1.633735	2.693927

IM2

 $\label{eq:model} \begin{array}{ll} M06\text{-}2X/6\text{-}31\text{+}G(d,p) \mbox{ Electronic Energy: -967.5259416 a.u} \\ M06\text{-}2X/6\text{-}31G(d,p) \mbox{ Gibbs free Energy: -967.154205 a.u} \\ M06\text{-}2X(SMD,\ CH_3CN)/cc\text{-}pvtz \mbox{ Electronic Energy: -967.9048922 a. u} \end{array}$

Center	Atomic	А	tomic	Coordinates (Angstroms)			
Number	Numb	er	Туре	X Y	Z		
1	32	0	1.430964	-0.471769	-0.113895		
2	6	0	-1.368377	1.257913	-0.452455		
3	6	0	-0.854790	2.270014	-1.273752		
4	6	0	-0.841017	3.597815	-0.850963		
5	6	0	-1.338888	3.941988	0.405558		
6	6	0	-1.866566	2.947457	1.228067		
7	6	0	-1.885564	1.621837	0.796829		
8	1	0	-0.467558	2.020489	-2.257662		
9	1	0	-0.436877	4.365088	-1.505314		
10	1	0	-2.269546	3.202884	2.204033		
11	1	0	-2.316361	0.847921	1.427924		
12	6	0	-0.039286	-0.662990	-1.433694		
13	1	0	-0.115719	-1.724413	-1.699323		
14	1	0	0.224154	-0.123817	-2.353191		
15	6	0	-2.694273	-2.017246	-2.095115		
16	6	0	-3.911561	-0.035904	-1.256373		
17	6	0	-3.374976	-2.786058	-1.203205		
18	1	0	-2.141923	-2.454238	-2.920210		
19	6	0	-4.569261	-0.838861	-0.380039		
20	1	0	-4.224546	0.986364	-1.440960		
21	6	0	-4.229008	-2.218944	-0.206967		
22	1	0	-3.328993	-3.870011	-1.290909		
23	1	0	-5.425841	-0.444373	0.163420		
24	6	0	-4.922908	-3.034846	0.712906		
25	7	0	-5.488436	-3.708622	1.483590		
26	6	0	-2.608358	-0.517439	-1.866687		
27	6	0	-2.349559	0.167117	-3.150212		
28	7	0	-2.107113	0.703718	-4.148277		
29	6	0	-1.391176	-0.190200	-0.886983		
30	1	0	-1.647319	-0.796678	-0.008172		
31	1	0	-1.321706	4.976175	0.737312		

32	6	0	2.151476	1.388515	-0.017284
33	6	0	3.604515	1.459541	0.464772
34	1	0	1.490488	1.972943	0.635005
35	1	0	2.060496	1.840984	-1.011718
36	1	0	3.960298	2.494409	0.529229
37	1	0	3.727557	1.009305	1.455631
38	1	0	4.277041	0.924460	-0.215056
39	6	0	2.938593	-1.650562	-0.680498
40	6	0	3.395285	-1.337884	-2.109811
41	1	0	2.604476	-2.692316	-0.606679
42	1	0	3.772214	-1.537447	0.023468
43	1	0	4.236313	-1.966137	-2.425234
44	1	0	2.581081	-1.494255	-2.825379
45	1	0	3.712155	-0.292632	-2.207696
46	6	0	0.794152	-1.042251	1.681762
47	6	0	1.827334	-0.826916	2.791923
48	1	0	0.507923	-2.098686	1.617189
49	1	0	-0.122745	-0.487609	1.910432
50	1	0	1.473928	-1.208606	3.756401
51	1	0	2.774980	-1.330715	2.567453
52	1	0	2.044799	0.238653	2.923567

Ρ

M06-2X/6-31+G(d,p) Electronic Energy: -874.6864979 a.u M06-2X/6-31G(d,p) Gibbs free Energy: -874.323843 a.u M06-2X(SMD, CH₃CN)/cc-pvtz Electronic Energy: -875.0374661 a. u

-----Center Atomic Atomic Coordinates (Angstroms) Number Number Type ХҮ Z -----0 1.624023 -0.533451 0.271096 1 32 2 6 0 -1.304487 0.890012 0.062295 3 6 0 -1.272397 1.598926 -1.149129 4 6 0 -1.214943 2.986631 -1.168110 5 6 0 -1.201948 3.711817 0.030131 6 6 0 -1.265387 3.023789 1.239471 7 6 0 -1.318134 1.628440 1.252628 0 -1.308889 1.045229 -2.084622 8 1 9 1 0 -1.184095 3.511157 -2.119249 10 1 0 -1.273251 3.572003 2.178105 11 1 0 -1.369602 1.099995 2.202501 12 6 0 -0.050781 -1.196359 -0.563743 13 1 0 -0.076066 -2.292801 -0.519629 14 1 0 -0.006011 -0.929147 -1.627197 15 6 0 -2.760549 -1.456390 -1.923768 16 6 0 -3.797069 -1.222511 0.253387 17 0 -3.971128 -1.813025 -2.472404 6 0 -1.891018 -1.425873 -2.578645 18 1 19 6 0 -5.016855 -1.578896 -0.267572 20 1 0 -3.726773 -0.983529 1.315302

21	6	0	-5.157282	-1.895075	-1.664381	
22	1	0	-4.038768	-2.052873	-3.530178	
23	1	0	-5.891167	-1.634123	0.375365	
24	6	0	-6.395114	-2.266689	-2.213209	
25	7	0	-7.430295	-2.581646	-2.672034	
26	6	0	-2.615247	-1.157097	-0.539888	
27	6	0	-1.337717	-0.632895	0.071962	
28	1	0	-1.340135	-0.931892	1.132514	
29	1	0	-1.158776	4.796769	0.015401	
30	6	0	2.068731	1.318288	-0.325813	
31	6	0	3.555481	1.673124	-0.220837	
32	1	0	1.452890	2.024468	0.244760	
33	1	0	1.729901	1.410869	-1.364824	
34	1	0	3.753165	2.690351	-0.578679	
35	1	0	3.915275	1.615553	0.811888	
36	1	0	4.175048	0.992109	-0.815559	
37	6	0	3.126857	-1.705404	-0.327988	
38	6	0	3.244148	-1.746131	-1.855429	
39	1	0	2.955108	-2.713916	0.067169	
40	1	0	4.062251	-1.348260	0.121071	
41	1	0	4.083421	-2.364978	-2.193585	
42	1	0	2.332881	-2.152149	-2.307349	
43	1	0	3.388758	-0.741675	-2.270677	
44	6	0	1.519998	-0.631000	2.260625	
45	6	0	2.540009	0.265286	2.968648	
46	1	0	1.661676	-1.679541	2.550052	
47	1	0	0.505356	-0.357662	2.568074	
48	1	0	2.473235	0.180191	4.059510	
49	1	0	3.567194	0.010086	2.682813	
50	1	0	2.379326	1.317993	2.710633	

CN⁻

M06-2X/6-31+G(d,p) Electronic Energy: -92.8246895 a.u M06-2X/6-31G(d,p) Gibbs free Energy: -92.838755 a.u M06-2X(SMD, CH₃CN)/cc-pvtz Electronic Energy: -92.9576435 a. u

Center	Atomic		Atomic	Coord	dinates	(Angstroms)
Number	Number		Туре	Х	Y	Z
1	6	0	-2.816671	0.00	00017	0.000009
2	7	0	-3.994434	-0.00	00007	0.000011

TS1

 $\label{eq:model} \begin{array}{ll} M06-2X/6-31+G(d,p) \mbox{ Electronic Energy: } -947.0280343 \mbox{ a.u} \\ M06-2X/6-31G(d,p) \mbox{ Gibbs free Energy: } -946.770459 \mbox{ a.u} \\ M06-2X(SMD, CH_3CN)/cc-pvtz \mbox{ Electronic Energy: } -947.2656073 \mbox{ a. u} \end{array}$

Center Atomic Atomic Coordinates (Angstroms)

Number	Number		Туре	X Y	Z
	6		-1 979239	0 859856	0 111172
2	8	0	-1 464878	0 437041	1 117840
3	8	0	-3.160711	0.420451	-0.352393
4	6	0	-3.770118	-0.641631	0.400612
5	6	0	-5.028203	-1.049196	-0.333484
6	1	0	-3.977244	-0.280362	1.412185
7	1	0	-3.052876	-1.465824	0.477811
8	1	0	-5.527785	-1.857074	0.207267
9	1	0	-5.718882	-0.206498	-0.414419
10	1	0	-4.788877	-1.400730	-1.340215
11	6	0	-1.404937	1.897833	-0.834156
12	1	0	-2.122952	2.720530	-0.909034
13	1	0	-1.352204	1.444591	-1.829352
14	16	0	0.184340	2.591831	-0.331391
15	6	0	0.185090	-1.984329	-0.025163
16	6	0	-0.638148	-2.021312	-1.314937
17	1	0	-0.461953	-1.865915	0.848822
18	1	0	0.738143	-2.924191	0.099378
19	1	0	-1.337013	-2.865099	-1.321645
20	1	0	-1.230622	-1.108341	-1.443213
21	1	0	0.000174	-2.120192	-2.199087
22	6	0	2.919670	-0.745922	-1.380072
23	6	0	3.899866	0.429666	-1.423029
24	1	0	2.416952	-0.863804	-2.345834
25	1	0	3.448460	-1.686975	-1.182265
26	1	0	4.652393	0.298291	-2.207126
27	1	0	3.378197	1.372040	-1.619226
28	1	0	4.432804	0.539230	-0.473041
29	6	0	2.319941	-0.279186	1.831585
30	6	0	1.263734	0.021695	2.899208
31	1	0	3.048843	0.536120	1.769860
32	1	0	2.882388	-1.189120	2.076960
33	1	0	1.724645	0.157405	3.883051
34	1	0	0.702197	0.927025	2.652676
35	1	0	0.534648	-0.790532	2.980924
36	32	0	1.528807	-0.520270	0.027147
37	1	0	0.835751	1.070949	-0.285334

TS2

 $\label{eq:model} \begin{array}{ll} M06-2X/6-31+G(d,p) \mbox{ Electronic Energy: } -550.8202283 \mbox{ a.u} \\ M06-2X/6-31G(d,p) \mbox{ Gibbs free Energy: } -550.540223 \mbox{ a.u} \\ M06-2X(SMD, \mbox{ CH}_3CN)/cc-pvtz \mbox{ Electronic Energy: } -550.9998679 \mbox{ a. u} \\ \end{array}$

Contor	Atomic	 ۸ ۱	omic	Coord	linatos	(Angetrome)
Number	Numb	er	Type	X	Y	Z
1	32	0	-1.386761	0.2	50806	0.127896
2	6	0	2.304844	-0.83	3512	0.420841

3	6	0	2.313557	0.450179	0.993717
4	6	0	3.326166	1.356044	0.693962
5	6	0	4.350673	1.004843	-0.185677
6	6	0	4.350723	-0.262809	-0.768582
7	6	0	3.336395	-1.166972	-0.472000
8	1	0	1.518713	0.747215	1.672155
9	1	0	3.312754	2.343807	1.144850
10	1	0	5.140218	-0.544751	-1.458290
11	1	0	3.336009	-2.151449	-0.933302
12	6	0	0.242185	-1.645095	1.585957
13	1	0	-0.522639	-2.406586	1.701276
14	1	0	0.270170	-0.875747	2.350474
15	6	0	1.235858	-1.798023	0.680380
16	1	0	1.215637	-2.665941	0.023051
17	1	0	5.138449	1.714104	-0.418187
18	6	0	-0.746631	-0.415965	-1.646449
19	6	0	-1.301035	-1.799471	-1.989440
20	1	0	0.349038	-0.427236	-1.621339
21	1	0	-1.039276	0.316271	-2.410164
22	1	0	-0.912568	-2.169170	-2.944481
23	1	0	-1.037557	-2.534753	-1.220105
24	1	0	-2.393907	-1.783572	-2.065110
25	6	0	-3.372640	-0.051534	0.274197
26	6	0	-3.737533	-1.424701	0.844530
27	1	0	-3.802408	0.076921	-0.728194
28	1	0	-3.786210	0.745455	0.902355
29	1	0	-4.822128	-1.571076	0.888811
30	1	0	-3.319668	-2.235122	0.238009
31	1	0	-3.345186	-1.544096	1.859893
32	6	0	-0.993432	2 217360	0 257851
33	6	0	-1 906895	3 041187	-0.658396
34	1	0	0.059269	2 359563	-0.010647
25	1	n	-1 106057	2.555505	1 200637
36	1	0	-1 691/67	1 111950	-0 502747
00 27	1	0	1 702474	4.11100Z	1 706746
31 20	ا م	0	-1./921/4	2.140315	-1./00/40
38	1	0	-2.961414	2.911/38	-0.393506

TS3

 $\label{eq:model} \begin{array}{l} M06\text{-}2X\text{/}6\text{-}31\text{+}G(d,p) \ \text{Electronic Energy: -967.5020289 a.u} \\ M06\text{-}2X\text{/}6\text{-}31G(d,p) \ \text{Gibbs free Energy: -967.130897 a.u} \\ M06\text{-}2X(SMD, CH_3CN)\text{/cc-pvtz Electronic Energy: -967.8848319 a.u} \end{array}$

Center Number	Atomic Numb	Ato er	omic (Type	Coordinates X Y	(Angstroms) Z
1	32	0	-2.191175	-0.885627	-0.246641
2	6	0	0.124321	1.407509	-0.025654
3	6	0	-0.166168	1.933112	1.240563
4	6	0	-0.675784	3.223039	1.374743
5	6	0	-0.915392	4.013218	0.250267

6	6	0	-0.624318	3.505756	-1.014406
7	6	0	-0.105227	2.217348 -1.143650	
8	1	0	0.022341	1.332048	2.124543
9	1	0	-0.890200	3.610392	2.366725
10	1	0	-0.795809	4.110719	-1.900327
11	1	0	0.135981	1.831283	-2.131664
12	6	0	-0.324435	-1.031983	0.412080
13	1	0	0.011297	-2.052690	0.194824
14	1	0	-0.312709	-0.928353	1.502969
15	6	0	2.694901	-1.500367	-0.115159
16	6	0	3.016886	0.900368	-0.155966
17	6	0	4.038083	-1.679530	-0.333604
18	1	0	2.057092	-2.375187	-0.043512
19	6	0	4.359317	0.710807	-0.372306
20	1	0	2.623959	1.911553	-0.120301
21	6	0	4.922247	-0.582860	-0.428579
22	1	0	4,430062	-2.684998	-0.464689
23	1	0	5 002800	1 572286	-0 532195
24	6	0	6 309079	-0 774549	-0 684433
25	7	0	7 443034	-0.932146	-0.898250
26	6	0	2 128625	-0 197051	0 156914
27	6	0	1 923456	-0 164199	2 169056
21	7	0	2 085351	-0.242175	3 32/622
20	6	0	0.636810	-0.242173	-0.216580
29	1	0	0.030019	0.196225	1 202677
21	1	0	1 210200	-0.100323	0.350636
22	I E	0	2 100569	0.621724	0.559050
32 33	6	0	-3.199500	0.031724	0.504055
33 24	0	0	-4.717540	0.422200	0.000040
34	1	0	-2.934741	1.548963	0.023318
35	1	0	-2.823325	0.772183	1.584371
36	1	0	-5.236792	1.279073	1.029928
37	1	0	-5.124322	0.280347	-0.421788
38	1	0	-4.990553	-0.463768	1.169068
39	6	0	-3.146127	-2.562083	0.261857
40	6	0	-3.093742	-2.811084	1.773516
41	1	0	-2.683771	-3.397422	-0.277952
42	1	0	-4.185831	-2.503136	-0.083494
43	1	0	-3.636491	-3.717977	2.063904
44	1	0	-2.060806	-2.919520	2.120000
45	1	0	-3.531166	-1.974396	2.330747
46	6	0	-2.209089	-0.735856	-2.235391
47	6	0	-3.590141	-0.404714	-2.808987
48	1	0	-1.839069	-1.684649	-2.643189
49	1	0	-1.488108	0.033294	-2.532664
50	1	0	-3.584698	-0.381565	-3.904867
51	1	0	-4.342373	-1.140417	-2.500865
52	1	0	-3.931058	0.577292	-2.463149

6. Reference

- [1] Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- [2] a) Y. Zhao, N. E Schultz, D. G. Truhlar, J. Chem. Theory. Comput. 2006, 2, 364; b) Y. Zhao, D. G. Truhlar, J. Chem. Phys.2006, 125, 194101; c) Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 2006,110, 13126.
- [3] P. Fuentealba, H. Preuss, H. Stoll, and L. v. Szentpály. Chem. Phys. Lett. 1982, 89, 418-22.
- [4] C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
- [5] A. V. Marenich, C. J. Cramer, and D. G. Truhlar. J. Phys. Chem. B, 2019, 113, 6378–6396.
- [6] CYLview, 1.0b; C. Y. Legault, Université de Sherbrooke, 2009 (http://www.cylview.org)
- [7] (a) R. A. Marcus, J. Chem. Phys., 1956, 24, 966–978. (b) R. A. Marcus, J. Chem. Phys., 1956, 24, 979–989; (c) R. A. Marcus, J. Chem. Phys., 1957, 26, 872–877; (d) N. S. Hush, J. Chem. Phys., 1958, 28, 962–972; (e) R. A. Marcus, Can. J. Chem., 1959, 37, 155–163. (f) N. S. Hush, Trans. Faraday Soc., 1961, 57, 557–580; (g) R. A. Marcus, Faraday Discuss. Chem. Soc., 1982, 74, 7–15; (h) R. A. Marcus, N. Sutin, Biochim. Biophys. Acta, Rev. Bioenerg. 1985, 811, 265–322; (i) Z. Qi and J. Ma, ACS Catal., 2018, 8, 1456–1463; (j) F. Calogero, S. Potenti, E. Bassan, A. Fermi, A. Gualandi, J. Monaldi, B. Dereli, B. Maity, L. Cavallo, P. Ceroni, and P. G., Cozzi, Angew. Chem. Int. Ed., 2022, 61, e2021149.
- [8] T. Lu, F. Chen, Multiwfn: A Multifunctional Wavefunction Analyzer, J. Comput. Chem., 2012, 33, 580-592.