Supporting information

Diversity-Oriented Chiral Phosphoric Acid Catalyzed Alkylation of Indolizines with Aminals

Ahmad F. Kassir, a Nazar Rad, Patryk Klochowicz, Jarosław M. Granda*a

^aInstitute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. E-mail: jaroslaw.granda@icho.edu.pl.

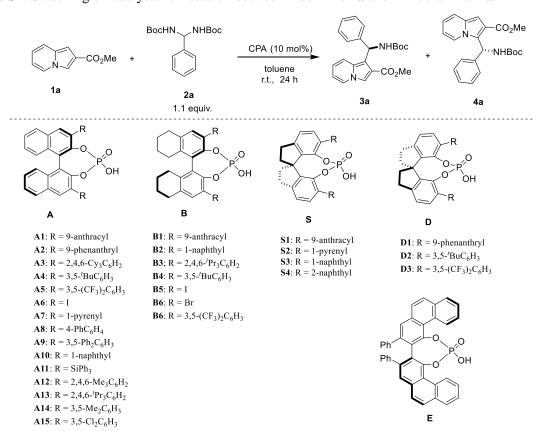
Table of contents

. General information	3
2. Optimization of reaction conditions	4
Γable S1 . Screening of catalysts for reaction between indolizine 1a and <i>N</i> -Boc aminal 2a	4
Γable S2. Screening of solvents for reaction between indolizine 1a and N-Boc aminal 2a using B5 eatalyst ^a	5
Table S3. Screening of additives for reaction between indolizine 1a and N-Boc aminal 2a using B5 eatalyst ^a	6
Γable S4. Optimization of catalyst concentration for reaction between indolizine 1a and <i>N</i> -Boc amina 2a using B5 catalyst ^a	
Γable S5 . Optimization of 2a equivalents for reaction between indolizine 1a and N-Boc aminal 2a asing B5 catalyst ^a	
Γable S6. Optimization of concentration of reaction between indolizine 1a and <i>N</i> -Boc aminal 2a using the state of the stat	_
Γable S7. Optimization of temperature of reaction between indolizine 1a and <i>N</i> -Boc aminal 2a using B5 catalyst	
Table S8. Optimization of excess of 2a equivalents for reaction between indolizine 1a and N-Boc uminal 2a using B5 catalyst	9
Table S9. Screening of solvents for reaction between 1a and 2a ^a using S2 catalyst	9
Γable S10 . Optimization of 2a equivalents for reaction between indolizine 1a and <i>N</i> -Boc aminal 2a ^a using S2 catalyst	
Fable S11. Screening of additives for reaction between indolizine 1a and N-Boc aminal 2a using S2 catalyst	1
Γable S12 . Preliminary screening of catalysts for reaction between indolizine 1a and <i>N</i> -Boc aminal 5a ^a 1	
Table S13. Screening of solvents for reaction between indolizine 1a and N-Cbz aminal 5a	4
Table S14. Optimization of catalyst concentration for reaction between indolizine 1a and N-Cbz nminal 5a 1	.5
Table S15. Screening of additives for reaction between indolizine 1a and N-Cbz aminal 5a	5
Table S16. Relation between overall e.e. of catalyst B5 and e.e. of product 3a 1	6

Table S17. Relation between overall e.e. of catalyst B1 and e.e. of product 7a	16
3. Asymmetric synthesis of chiral regioisomers	18
3.1. General procedure A	18
3.3. Procedure B	18
3.4. General procedure C	18
3.5. Procedure D	19
3.6. Procedure E	19
3.7. Products with Boc-protecting group 3a-s , 4a-s and 10	19
3.8. Products with Cbz-protecting group 6a-m , 7a-m , 8 and 9	43
4. Synthesis of N-Boc aminals	55
4.1. General procedure F for synthesis of <i>N</i> -Boc aminals	55
4.2. General procedure G for synthesis of <i>N</i> -Cbz aminals	55
4.3. N-Boc aminals	55
4.4. N-Cbz aminals	62
5. Synthesis of indolizines	68
6. ¹ H, ¹³ C and ¹⁹ F NMR Spectra	71
6.1. Products with Boc-protecting group 3a-s , 4a-s and 10	71
6.2. Products with Cbz-protecting group 6a-m , 7a-m , 8 and 9	119
6.3. N-Boc aminals 2a-m	141
6.4. N-Cbz aminals 5a-k.	156
6.5. Indolizines 1a-d	170
6.6. All NMR spectra of compounds 3a and 4a	175
8. HPLC Chiral spectra	191
8.1. Products with Boc-protecting group 3a-s , 4a-s and 10	191
8.2. Cbz-protected products 6a-m , 7a-m , 8 and 9	231
9. Absolute configuration assignment for compounds 3a , 4a , 6a , 7a using circular dichroism	248
Table S18 . Energies and Gibbs free energies (in Hartrees) calculated for conformers of (<i>R</i>)-3a	
$calculated\ at\ B3LYP-D3(BJ)/def2svp/CPCM\ (acetonitrile)\ and\ their\ Boltzmann\ distribution\ factority and their\ Boltzmann\ distribution\ factority and\ factority an$	
Table S19 . Energies and Gibbs free energies (in Hartrees) calculated for conformers of (<i>R</i>)-4a calculated at B3LYP-D3(BJ)/def2svp/CPCM (acetonitrile) and their Boltzmann distribution facto	ors.
Table S20 . Energies and Gibbs free energies (in Hartrees) calculated for conformers of (<i>R</i>)- 6a calculated at B3LYP-D3(BJ)/def2svp/CPCM (acetonitrile) and their Boltzmann distribution facto	ors.
Table S21 . Energies and Gibbs free energies (in Hartrees) calculated for conformers of (<i>R</i>)- 7a calculated at B3LYP-D3(BJ)/def2svp/CPCM (acetonitrile) and their Boltzmann distribution facto	ors.
10. Computational investigation of indolizine alkylation selectivity	
Table \$22. Pearson correlation coefficient for different location of % buried volume descriptor	

Table S23 . Comparison of Pearson correlation coefficients for <i>N</i> -Boc and <i>N</i> -Cbz aminals	. 253
11. References	. 254

1. General information


All reagents were purchased from Sigma-Aldrich, Ambeed and Fluorochem, and used without further purification. All solvents were of reagent grade quality and were dried over MS 3Å before use. Some of BINOL-based chiral phosphoric acid catalysts were purchased from Ambeed, and others were synthesized according to the literature procedure. H8-BINOL-derived chiral phosphoric acid catalysts were all synthesized according to the literature procedure. SPINOL-derived chiral phosphoric acid catalysts were also synthesized according to the literature procedure. Solvents were dried with MS 3Å.

The ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Varian Gemini 200, Bruker Avance III HD 400, Bruker model DRX Avance 500, Varian-Agilent 500 model and Varian-Agilent 600. Chemical shifts are reported in ppm. The splitting pattern of multiplets is described by abbreviations (s – singlet, bs - broad singlet, d - doublet, t - triplet, q -quartet, dd - doublet of doublets, ddd - doublet of doublet of doublets, m - complex multiplicity). Coupling constants values (J) are reported in Hz. Column chromatography was performed with Merck Kieselgel 60 (230-400 mesh). TLC was carried out on Merck Kieselgel F254 plates. Melting points were determined using a Boëtius M HMK hotstage apparatus and were uncorrected. High resolution Mass spectrometry analysis was performed using Synapt G2-S mass spectrometer (Waters) equipped with the electrospray (ESI) ion source and quadrupole-Time-of-flight (qTOF) mass analyzer. Acetonitrile (Honeywell, LC-MS ChromasolvTM, purity ≥ 99.9%) was used as a solvent and mobile phase with the flow rate 100 µl/min. Sample was dissolved and injected directly into the ESI source. Injection volume was 1 µl depending on concentration. The measurement was performed in the positive ion mode with the resolving power of TOF analyzer 30000 FWHM. The lock-spray spectrum of Leucine-enkephalin was generated by the lock-spray source and the correction was performed for the recorded spectrum. The exact mass measurement was performed within 3 mDa mass error. Nitrogen was used as desolvation and cone gas, and their flow values were set to 600 L/h and 100 L/h respectively. Desolvation gas temperature was set to 350°C. Nebulizer gas pressure was set to 5.0 bar. Capillary voltage was set to 3.0 kV, and sampling cone voltage and source offset were set to 30-50 V. The instrument was controlled and data were processed using the MassLynx V4.1 software package (Waters). Optical Rotations were measured in DCM on Jasco P-2000 digital polarimeter using a sodium lamp (λ 589 nm, D-line). [α]D values are reported at 25 °C in 10⁻¹ degrees cm²·g⁻¹ with concentration in g·100cm⁻³. HPLC analyses for the determination of enantiomeric excesses were performed on a Hitachi Elite LaChrom HPLC

System With L-2400 UV detector, L-2200 Autosampler and L-2130 pump, equipped with Chiralpak AD-H column (5 μ m, 4.6 x 250 mm), Chiralpak IC column (5 μ m, 4.6 x 250 mm), Chiralcel OD-H column (5 μ m, 4.6 x 250 mm). ECD values were measured on Jasco J-815 EDC Spectropolarimeter.

2. Optimization of reaction conditions

Table S1. Screening of catalysts for reaction between indolizine **1a** and *N*-Boc aminal **2a**^a

Entry	CPA	Conversion $(\%)^b$	3a e.e. (%) ^c	4a e.e. (%) ^c	Ratio 4a:3a
1	$\mathbf{A1}$, (R) -9-anthracenyl	66	19	8	1:1
2	$\mathbf{A2}$, (R) -9-phenanthryl	66	36	5	1.1:1
3	A3 , (<i>R</i>)-2,4,6-Cy ₃ C ₆ H ₂	66	65	54	6.5:1
4	A4 , (<i>R</i>)- 3,5- t BuC ₆ H ₃	64	12	-18	5.4:1
5	A5 , (R) -3,5- $(CF_3)_2C_6H_3$	94	13	-37	7.5:1
6	A6 , (R) -I	76	57	-1	1:1.4
7	A7 , (<i>R</i>)-1-pyrenyl	73	5	13	1:1.1
8	A8 , (R) -4-PhC ₆ H ₄	78	9	-11	1:1.1
9	A9 , (R) -3,5-Ph ₂ C ₆ H ₃	85	1	-3	4:1
10	A10 , (<i>R</i>)-1-naphthyl	83	3	1	1:1.2
11	A11 , (R) -SiPh ₃	84	7	-12	1.3:1

12	A12 , (<i>R</i>)-2,4,6-Me ₃ C ₆ H ₂	79	17	40	2.9:1
13	A13 , (<i>R</i>)-2,4,6- i Pr ₃ C ₆ H ₂	68	-	11	>20:1
14	A14 , (R) -3,5-Me ₂ C ₆ H ₃	76	13	-31	1.8:1
15	A15 , (<i>R</i>)-3,5-Cl ₂ C ₆ H ₃	56	7	-10	1.4:1
16	$\mathbf{B1}$, (R)-9-anthracenyl	90	37	12	2.4:1
17	B2 , (<i>R</i>)-1-naphthyl	78	32	2	1:1.3
18	B3 , (R) -2,4,6- i Pr ₃ C ₆ H ₂	52	60	48	9:1
19	B4 , (<i>R</i>)- 3,5- t BuC ₆ H ₃	34	-10	-28	6.8:1
20	B5 , (<i>R</i>)-I	80	78	12	1:1.1
21	B6 , (R) -Br	80	66	18	1:1.2
22	B7 , (<i>R</i>)-3,5-(CF ₃) ₂ C ₆ H ₃	70	-7	-33	4.2:1
23	$\mathbf{S1}$, (R)-9-anthracenyl	77	63	41	13:1
24	S2 , (<i>R</i>)-1-pyrenyl	74	72	76	6:1
25	S3 , (<i>R</i>)-1-naphthyl	60	44	58	4.1:1
26	S4 , (<i>R</i>)-2-naphthyl	73	44	66	6:1
27	D1 , (<i>S</i>)-9-phenanthryl	72	-44	-57	12:1
28	D2 , (S)- $3,5$ - t BuC ₆ H ₃	20	-	-	9:1
29	D3 , (<i>S</i>)-3,5-(CF ₃) ₂ C ₆ H ₃	67	-52	-50	4.3:1
30	\mathbf{E} , (R)-VAPOL	80	24	-14	2:1

[&]quot;Reaction conditions: indolizine **1a** (0.030 mmol), *N*-Boc aminal **2a** (0.033 mmol), CPA (10 mol%), Toluene (0.3 mL). ^bEstimated by HPLC. ^cDetermined by HPLC.

Table S2. Screening of solvents for reaction between indolizine **1a** and *N*-Boc aminal **2a** using **B5** catalyst^a

Entry	Solvent	Conversion $(\%)^b$	3a e.e. (%) ^c	4a e.e. (%) ^c	Ratio 4a:3a
1	toluene	73	78	12	1:1.1
2	trifluorotoluene	87	67	-	1:1
3	chlorobenzene	80	76	-	1:1
4	tert-butylbenzene	78	73	-	1:1

5	<i>p</i> -xylene	84	81	-	1:1
6	benzene	75	82	-	1:1
7	hexafluorobenzene	70	55	-	3.3:1
8	DCM	78	45	2	1:1.4
9	DCE	72	32	-	1:1.7
10	tetrachloromethane	65	66	-	1.3:1
11	EtOAc	78	78	23	1:2
12	MeCN	0	-	-	-
13	isopropanol	62	10	-	1:1
14	hexane	80	64	-6	1.5:1

^aReaction conditions: indolizine **1a** (0.030 mmol), *N*-Boc aminal **2a** (0.033 mmol), CPA (10 mol%), Solvent (0.3 mL). ^bEstimated by HPLC. ^cDetermined by HPLC.

Table S3. Screening of additives for reaction between indolizine **1a** and *N*-Boc aminal **2a** using **B5** catalyst^a

Entry	Additive	Conversion $(\%)^b$	3a e.e. (%) ^c	Ratio 4a:3a
1	-	75	82	1:1
2	Na ₂ SO ₄ (15 mg)	81	81	1.1:1
3	$MgSO_4$ (15 mg)	79	82	1.3:1
4	MS 3Å (15 mg)	84	91	1:1
5	MS 3Å (15 mg)	89	87	1:1
6	MS 3Å (7.5 mg)	82	91	1:1.1
7	MS 3Å (30 mg)	92	90	1:1

[&]quot;Reaction conditions: indolizine **1a** (0.030 mmol), *N*-Boc aminal **2a** (0.033 mmol), **B5** (10 mol%), benzene (0.3 mL). ^bEstimated by HPLC. ^cDetermined by HPLC.

Table S4. Optimization of catalyst concentration for reaction between indolizine **1a** and *N*-Boc aminal **2a** using **B5** catalyst^a

Entry	B5 (%)	Conversion $(\%)^b$	3a e.e. (%) ^c	Ratio 4a:3a
1	10	82	91	1:1.1
2	15	83	86	1:1.4
3	5	82	88	1:1

[&]quot;Reaction conditions: indolizine **1a** (0.030 mmol), *N*-Boc aminal **2a** (0.033 mmol), MS 3Å (7.5 mg), benzene (0.3 mL). ^bEstimated by HPLC. ^cDetermined by HPLC.

Table S5. Optimization of **2a** equivalents for reaction between indolizine **1a** and *N*-Boc aminal **2a** using **B5** catalyst^a

Entry	2a (equiv.)	Conversion (%) ^b	3a e.e. (%) ^c	Ratio 4a:3a
1	1.1	82	91	1:1.1
2	0.9	80	89	1:1.1
3	1.5	99	91	3.6:1
4	2.0	99	92	6.8:1
5	3.0	99	-	>20:1

^aReaction conditions: indolizine **1a** (0.030 mmol), MS 3Å (7.5 mg), **B5** (10 mol%), benzene (0.3 mL). ^bEstimated by HPLC. ^cDetermined by HPLC.

Table S6. Optimization of concentration of reaction between indolizine 1a and N-Boc aminal $2a^a$ using B5 catalyst

Entry	Concentration (mM)	Conversion (%) ^b	3a e.e. (%) ^c	Ratio 4a:3a
1	0.10	82	91	1:1.1
2	0.15	80	88	1:1.2
3	0.05	88	93	1.1:1
4	0.03	83	93	1.4:1
5^d	0.01	95	92	1.5:1

^aReaction conditions: indolizine **1a** (0.03 mmol), *N*-Boc aminal **2a** (0.033 mmol), **B5** (10 mol%), MS 3Å (7.5 mg). ^bEstimated by HPLC. ^cDetermined by HPLC. ^dTime of the reaction = 72 hours.

Table S7. Optimization of temperature of reaction between indolizine **1a** and *N*-Boc aminal **2a**^a using **B5** catalyst

Entry	Solvent	T (°C)	Conversion $(\%)^b$	3a e.e. (%) ^c	Ratio 4a:3a
1	benzene	r.t.	88	93	1.1:1
2	benzene	45	90	85	1.4:1
3	benzene	15	90	93	1:1
4^d	benzene	10	95	94	1:1
5^e	benzene:toluene (2:1)	-15	80	93	1:1
6 ^f	benzene:toluene (1:2)	-30	84	94	1:1

^aReaction conditions: indolizine **1a** (0.030 mmol), *N*-Boc aminal **2a** (0.033 mmol), MS 3Å (7.5 mg), **B5** (10 mol%), benzene (0.6 mL). ^bEstimated by HPLC. ^cDetermined by HPLC. ^dTime of the reaction = 48 hours. ^eTime of the reaction = 72 hours, solvent (1.0 mL). ^fTime of the reaction = 96 hours, solvent (2.0 mL).

Table S8. Optimization of excess of 2a equivalents for reaction between indolizine 1a and N-Boc aminal $2a^a$ using B5 catalyst

Entry	Solvent	B5 (%)	Time (h)	Conversion (%) ^b	3a (e.e.) (%) ^c	Ratio 4a:3a
1^d	benzene	10	24	99	92	6.8:1
2	benzene	10	24	99	-	>20:1
3	benzene	15	0.67	99	-	17:1
4	toluene	15	0.67	99	92	1.6:1
5^e	toluene	15	0.67	99	96	4.6:1
6^e	toluene	18	0.67	99	98	3.3:1
7^e	toluene	18	0.67	99	99	5:1

^aReaction conditions: indolizine **1a** (0.030 mmol), *N*-Boc aminal **2a** (0.09 mmol), MS 3Å (7.5 mg), solvent (0.3 mL). ^bEstimated by HPLC. ^cDetermined by HPLC. ^dN-Boc aminal **2a** (0.06 mmol). ^eToluene (1.0 mL).

Table S9. Screening of solvents for reaction between **1a** and **2a**^a using **S2** catalyst

Entry	Solvent	Conversion $(\%)^b$	4a e.e. (%) ^c	3a e.e. (%) ^c	Ratio 4a:3a
1	toluene	74	76	72	6:1

2	trifluorotoluene	55	81	-	>20:1
3	fluorobenzene	41	81	-	9:1
4	chlorobenzene	52	79	76	7:1
5	tert-butylbenzene	55	79	-	13:1
6	benzene	50	78	-	8:1
7	hexafluorobenzene	22	79	-	>20:1
8	o-xylene	55	80	-	12:1
9	<i>m</i> -xylene	50	81	-	13:1
10	<i>p</i> -xylene	76	81	-	>20:1
11	DCM	80	67	62	7:1
12	DCE	80	78	71	6.4:1
13	tetrachloromethane	67	74	-	7.5:1
14	$CHCl_3$	50	81	-	12:1
15	tetrachloroethylene	40	80	-	8:1
16^d	1,1,1-trichloroethane	10	84	-	>20:1
17	EtOAc	12	62	42	1:1
18	Et_2O	48	79	-	15:1
19	vinyl acetate	No reaction	-	-	-

^aReaction conditions: indolizine **1a** (0.030 mmol), *N*-Boc aminal **2a** (0.033 mmol), **S2** (10 mol%), Solvent (0.3 mL). ^bEstimated by HPLC. ^cDetermined by HPLC. ^dThe reaction was left for additional one week of stirring but the conversion remained $\approx 10\%$.

Table S10. Optimization of 2a equivalents for reaction between indolizine 1a and N-Boc aminal $2a^a$ using S2 catalyst

BocHN NHBoc S2 (10 mol%)

$$p$$
-xylene r.t., 24 h

1a 2a 3a 4a

Entry	2a (equiv.)	Conversion $(\%)^b$	4a e.e. (%) ^c	Ratio 4a:3a
1	1.1	76	81	>20:1
2^d	1.1	73	80	9:1
3	0.8	55	75	16:1
4	2.0	85	77	17:1

^aReaction conditions: indolizine **1a** (0.03 mmol), **S2** (10 mol%), Solvent (0.3 mL). ^bEstimated by HPLC. ^cDetermined by HPLC. ^dCPA (15 mol%).

Table S11. Screening of additives for reaction between indolizine 1a and N-Boc aminal $2a^a$ using S2 catalyst

Entry	Additive	Conversion (%) ^b	4a e.e. (%) ^c	Ratio 4a:3a
1	-	76	81	>20:1
2	MS 3Å	60	78	10:1
3	${ m MgSO_4}$	80	78	7.5:1
4	Na_2SO_4	60	82	15:1

^aReaction conditions: indolizine **1a** (0.030 mmol), *N*-Boc aminal **2a** (0.033 mmol), **S2** (10 mol%), additive (15 mg), Solvent (0.3 mL). ^bEstimated by HPLC. ^cDetermined by HPLC.

Table S12. Preliminary screening of catalysts for reaction between indolizine 1a and N-Cbz aminal $5a^a$

Entry	Catalyst	Conversion (%) ^b	7a e.e. (%) ^c	6a e.e. (%) ^c	Ratio 7a:6a
1	A1 , (<i>R</i>)-9-anthracenyl	82	22	78	1:1
2	A2, (R) -9-phenanthryl	70	4	12	1:1.5
3	A3 , (<i>R</i>)-2,4,6-Cy ₃ C ₆ H ₂	36	20	-	7.4:1
4	A4 , (<i>R</i>)- 3,5- t BuC ₆ H ₃	68	-28	-	5:1
5	A5 , (<i>R</i>)-3,5-(CF ₃) ₂ C ₆ H ₃	87	0	nd	1:1
6	A6, (R)-I	93	0	12	1:3.2
7	A8 , (R) -4-PhC ₆ H ₄	85	2	11	1:2

A19: R = 10-phenyl-9-anthracenyl

8	A9 , (<i>R</i>)-3,5-Ph ₂ C ₆ H ₃	85	-2	-6	1.3:1
9	A10 , (<i>R</i>)-1-naphthyl	87	1	6	1:1.8
10	A12 , (<i>R</i>)-2,4,6-Me ₃ C ₆ H ₂	80	10	24	1.7:1
11	A13 , (<i>R</i>)-2,4,6- i Pr ₃ C ₆ H ₂	63	24	-	4.9:1
12	A14 , (R) -3,5-Me ₂ C ₆ H ₃	76	-28	-24	1.9:1
13	A15 , (<i>R</i>)-3,5-Cl ₂ C ₆ H ₃	85	-1	-8	1:3.2
14	A16 , (<i>R</i>)-3,5-(NO ₂) ₂ C ₆ H ₃	94	-4	4	1:2
15	A17 , (<i>R</i>)-2-naphthyl	87	0	11	1:2.9
16	A18 , (R) -C ₆ F ₅	90	-4	-4	1:1.3
17	A19, 10-phenyl-9- anthracenyl	70	20	74	6.9:1
18	B1 , (<i>R</i>)-9-anthracenyl	90	82	92	1.8:1
19	B2 , (<i>R</i>)-1-naphthyl	78	6	36	1.8:1
20	B3 , (<i>R</i>)-2,4,6- i Pr ₃ C ₆ H ₂	30	18	-	5.7:1
21	B4 , (<i>R</i>)- 3.5 - t BuC ₆ H ₃	35	-33	-	7.1:1
22	B5 , (<i>R</i>)-I	93	2	12	1:3.8
23	B6 , (<i>R</i>)-Br	96	4	4	1:3.1
24	B7 , (<i>R</i>)-3,5-(CF ₃) ₂ C ₆ H ₃	72	-16	-2	3:1
25	S3 , (<i>R</i>)-1-naphthyl	50	-30	-	4.6:1
26	D1 , (<i>S</i>)-9-phenanthryl	65	2	54	4.6:1
27	D3 , (<i>S</i>)-3,5-(CF ₃) ₂ C ₆ H ₃	61	-54	-	5.3:1
	· · · · · · · · · · · · · · · · · · ·		·		

^aReaction conditions: indolizine **1a** (0.01 mmol), *N*-Cbz aminal **5a** (0.011 mmol), CPA (10 mol%), DCM (0.5 mL). ^bEstimated by HPLC. ^cDetermined by HPLC. ^d Not determined.

Table S13. Screening of solvents for reaction between indolizine 1a and N-Cbz aminal $5a^a$

Entry	Solvent	Conversion (%) ^b	7a e.e. (%) ^c	6a e.e. (%) ^c	Ratio 7a:6a
1	toluene	93	84	86	5:1
2	trifluorotoluene	94	68	86	2.8:1
3	fluorobenzene	85	54	83	1.9:1
4	chlorobenzene	87	86	91	2.9:1
5	bromobenzene	82	80	89	3.3:1
6	tert-butylbenzene	90	60	70	3.1:1
7	o-xylene	100	71	80	1.9:1
8	<i>m</i> -xylene	95	71	81	2.8:1
9	<i>p</i> -xylene	88	67	78	2.4:1
10	benzene	86	63	87	1.7:1
11	hexafluorobenzene	71	3	24	1.8:1
12	DCM	90	82	92	1.8:1
13	DCE	72	76	90	2.2:1
14	CHCl ₃	90	75	84	2.8:1
15	1,1,1-trichloroethane	<5	-	-	-
16	EtOAc	100	78	-	10:1
17	MeOH	95	4	10	1:1.2
18	Et_2O	<5	-	-	-
19	tert-butylmethyl ether	<5	-	-	-

^aReaction conditions: indolizine **1a** (0.010 mmol), *N*-Cbz aminal **5a** (0.011 mmol), **B1** (10 mol%), Solvent (0.5 mL). ^bEstimated by HPLC. ^cDetermined by HPLC.

Table S14. Optimization of catalyst concentration for reaction between indolizine 1a and N-Cbz aminal $5a^a$

Entry	B1 (%)	Conversion $(\%)^b$	7a e.e. (%) ^c	6a e.e. (%) ^c	Ratio 7a:6a
1	10	87	86	91	2.9:1
2	20	95	82	89	2.7:1
3	5	90	89	-	5.1:1
4	2.5	68	89	-	4.7:1

^aReaction conditions: indolizine **1a** (0.010 mmol), *N*-Cbz aminal **5a** (0.011 mmol), chlorobenzene (0.5 mL). ^bEstimated by HPLC. ^cDetermined by HPLC.

Table S15. Screening of additives for reaction between indolizine **1a** and *N*-Cbz aminal **5a**^a

Entry	5a (equiv.)	Concen. (mM)	additive	Conv. $(\%)^b$	7a e.e. (%) ^c	Ratio 7a:6a
1	1.1	0.02		90	89	5.1:1
2	1.1	0.02	MS 3Å	96	84	2.4:1
3	1.1	0.02	$MgSO_4$	90	86	4.4:1
4	1.1	0.02	Na ₂ SO ₄	95	89	5.7:1
5	1.1	0.01	Na ₂ SO ₄	83	92	9.2:1
6	1.1	0.005	Na ₂ SO ₄	83	92	8.6:1
7	1.5	0.01	Na ₂ SO ₄	98	92	9.2:1

8^d	1.5	0.01	Na_2SO_4	23	93	19:1
-------	-----	------	------------	----	----	------

^aReaction conditions: indolizine **1a** (0.01 mmol), **B1** (5 mol%), additive (12.5 mg). ^bEstimated by HPLC. ^cDetermined by HPLC. ^dTemperature = 10 °C.

Table S16. Relation between overall e.e. of catalyst **B5** and e.e. of product $3a^a$

Entry	Overall e.e. (%) of $\mathbf{B5}^b$	3a e.e. (%) ^c
1	100	94
2	90	86
3	70	70
4	50	53
5	40	43
6	20	22
7	0	3

^aReaction conditions: indolizine **1a** (0.030 mmol), *N*-Boc aminal **2a** (0.033 mmol), MS 3Å (7.5 mg), CPA (10 mol %), benzene (0.6 mL). ^b Enantiomeric excess of catalyst of catalyst **B5**. ^cDetermined by HPLC.

Table S17. Relation between overall e.e. of catalyst **B1** and e.e. of product $7a^a$

CbzHN NHCbz

B1 (5 mol%)

chlorobenzene
r.t., 24 h
Na
$$_2$$
SO $_4$

1.1 equiv.

CbzHN NHCbz

NHCbz

NHCbz

A Na $_2$ SO $_4$

6a

7a

Entry	Overall e.e. (%) of $\mathbf{B1}^{b}$	7a e.e. (%) ^c
1	100	90
2	90	80
3	80	71
4	70	63

5	60	54
6	40	36
7	20	20
8	0	1

^aReaction conditions: indolizine **1a** (0.01 mmol), *N*-Cbz aminal **5a** (0.015 mmol), **B1** (5 mol%), Na₂SO₄ (12.5 mg) chlorobenzene (1.0 mL). ^bEnantiomeric excess of catalyst **B1**. ^cDetermined by HPLC.

3. Asymmetric synthesis of chiral regioisomers

3.1. General procedure A

Indolizine **1** (0.457 mmol), catalyst **B5** (27.8 mg, 0.046 mmol) and Molecular sieves 3Å (114 mg) were dissolved in dry benzene (4.6 mL) at 10 °C under inert atmosphere. Then, a solution of *N*-Boc aminal **2** (0.503 mmol) in benzene (4.6 mL) was added to the reaction mixture and stirred at 10 °C until the starting material was finished (the reaction was followed by TLC).

3.3. Procedure B

Indolizine **1a** (40.0 mg, 0.228 mmol), catalyst **S2** (16.3 mg, 0.023 mmol) and Na_2SO_4 (114.3 mg) were dissolved in dry p-xylene (1.15 mL) at room temperature under inert atmosphere. Then, a solution of N-Boc aminal **2a** (81.0 mg, 0.251 mmol) in dry p-xylene (1.15 mL) is added to the reaction mixture and stirred at room temperature for 10 days (additional 16.3 mg of **S2** catalyst was added after 5 days of the reaction). Purification of the reaction mixture by Flash chromatography (85:15 hexane/dichloromethane to 70:30 hexane/dichloromethane + 0.25% Et₃N).

3.4. General procedure C

To a mixture of Indolizine 1 (0.342 mmol), N-Cbz aminal 5 (0.514 mmol), **B1** catalyst (12.1 mg, 0.071 mmol) and Na₂SO₄ (429 mg) was added dry chlorobenzene (34.3 mL) at room temperature under inert atmosphere. Then, the reaction mixture was stirred at room temperature until the starting material is finished (the reaction is followed by TLC).

3.5. Procedure D

Indolizine **1a** (210.0 mg, 1.20 mmol), *N*-Cbz aminal **5a** (515.0 mg, 1.32 mmol) and **B1** catalyst (85.1 mg, 0.12 mmol) were dissolved in dry DCM (60.0 mL) at room temperature under inert atmosphere. Then, the reaction mixture was stirred at room temperature for 48 h. Purification by Flash chromatography (80:20 hexane/dichloromethane to 70:30 hexane/dichloromethane + 0.25% Et₃N).

3.6. Procedure E

CbzHN NHCbz
$$CO_2Me$$
 + CO_2Me CO_2M

Indolizine 1c (84.0 mg, 0.40 mmol), N-Cbz aminal 5d (206.0 mg, 0.44 mmol) and B1 catalyst (28.4 mg, 0.04 mmol) were dissolved in dry DCM (20.0 mL) at room temperature under inert atmosphere. Then, the reaction mixture was stirred at room temperature for 72 h. Purification by Flash chromatography (90:10 hexane/ethyl acetate to 80:20 hexane/ethyl acetate + 0.25% Et₃N).

3.7. Products with Boc-protecting group 3a-s, 4a-s and 10

Methyl (R)-1-(((tert-butoxycarbonyl)amino)(phenyl)methyl)indolizine-2-carboxylate 3a

3a and **4a** were prepared according to the **General Procedure A**. Purification by Flash chromatography (85:15 hexane/dichloromethane to 70:30 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 56 mg, 32% yield, 96% e.e..

¹**H NMR** (600 MHz, CDCl₃) δ 7.80-7.75 (m, 1H), 7.77 (s, 1H), 7.61 (d, J = 9.3 Hz, 1H), 7.26-7.21 (m, 4H), 7.19-7.13 (m, 1H), 7.08 (d, J = 9.9 Hz, 1H), 6.71 (dd, J = 9.3, 6.4 Hz, 1H), 6.58-6.50 (m, 2H), 3.73 (s, 3H), 1.48 (s, 9H).

¹³C NMR (151 MHz, CDCl₃) δ 165.9(C), 156.0(C), 143.1(C), 131.3(C), 128.1(2CH), 126.5(CH), 126.1(2CH), 125.2(CH), 118.7(CH), 118.5(CH), 117.7(CH), 116.4(C), 114.8(C), 112.8(CH), 79.2(C), 51.6(CH₃), 48.9(CH), 28.63(3CH₃).

HRMS $[M+Na]^+$ calculated for $C_{22}H_{24}N_2O_4Na$ 403.1634 found 403.1636.

 $[\alpha]^{25}_{\mathbf{D}} = 65.8 \ (c = 0.21, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 10% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 8.5 min (minor), 18.7 min (major).

Methyl (R)-3-(((tert-butoxycarbonyl)amino)(phenyl)methyl)indolizine-2-carboxylate 4a

Colorless oil, 73 mg, 42% yield, 37% e.e. (**Procedure A**).

Colorless oil, 75 mg, 86% yield, 82% e.e. (**Procedure B**).

¹**H NMR** (600 MHz, CDCl₃) δ 8.06 (d, J = 7.3 Hz, 1H), 7.40 (d, J = 9.1 Hz, 1H), 7.31-7.18 (m, 4H), 7.16 (d, J = 7.6 Hz, 2H), 6.92 (s, 1H), 6.76 (d, J = 9.8 Hz, 1H), 6.72 (dd, J = 9.1, 6.4 Hz, 1H), 6.61-6.57 (m, 1H), 3.80 (s, 3H), 1.46 (s, 9H).

¹³C NMR (151 MHz, CDCl₃) δ 166.4(C), 156.1(C), 140.5(C), 131.7(C), 128.6(2CH), 128.2(C), 127.3(CH), 126.1(2CH), 122.4(CH), 120.7(CH), 118.2(CH), 116.8(C), 113.1(CH), 102.2(CH), 79.8(C), 51.9(CH₃), 48.7(CH), 28.6(3CH₃).

HRMS [M+Na]⁺ calculated for C₂₂H₂₄N₂O₄Na 403.1634 found 403.1639.

 $[\alpha]^{25}_{\mathbf{D}} = 11.9 \ (c = 0.25, \text{CH}_2\text{Cl}_2) \ (\text{for } 82\% \text{ e.e.}) \ (\textbf{Procedure B}).$

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 1% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 14.1 min (minor), 18.5 min (major) (**Procedure B**).

$Methyl\ (\textit{R}) - 1 - (((tert-butoxycarbonyl)amino)(p-tolyl)methyl)indolizine - 2 - carboxylate\ 3b$

The two regioisomers **3b** and **4b** were prepared according to the General **Procedure A** (reaction time = 4 h). Purification by Flash chromatography (90:10 hexane/dichloromethane to 80:20 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 55 mg, 31% yield, 94% e.e..

¹**H NMR** (400 MHz, CDCl₃) δ 7.85-7.76 (m, 2H), 7.60 (d, J = 9.3 Hz, 1H), 7.12 (d, J = 7.8 Hz, 2H), 7.09-6.98 (m, 3H), 6.71 (ddd, J = 9.3, 6.5, 1.1 Hz, 1H), 6.58-6.46 (m, 2H), 3.76 (s, 3H), 2.28 (s, 3H), 1.46 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 166.0, 156.0, 140.2, 136.0, 131.3, 128.9(2C), 126.1(2C), 125.2, 118.64, 118.63, 117.7, 116.5, 115.1, 112.8, 79.1, 51.7, 48.8, 28.7(3C), 21.1.

HRMS [M+Na]⁺ calculated for C₂₃H₂₆N₂O₄Na 417.1790 found 417.1776.

 $[\alpha]^{25}_{\mathbf{D}} = 39.8 \ (c = 0.28, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 10% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 10.6 min (minor), 21.6 min (major).

Methyl (R)-3-(((tert-butoxycarbonyl)amino)(p-tolyl)methyl)indolizine-2-carboxylate 4b

Colorless oil, 86 mg, 48% yield, 43% e.e..

¹**H NMR** (400 MHz, CDCl₃) δ 8.08-7.97 (m, 1H), 7.39 (d, J = 9.1 Hz, 1H), 7.27 (bs, 1H), 7.10-7.01 (m, 4H), 6.91 (s, 1H), 6.76-6.67 (m, 2H), 6.61-6.54 (m, 1H), 3.81 (s, 3H), 2.28 (s, 3H), 1.45 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 166.4, 156.1, 137.4, 136.9, 131.6, 129.3(2C), 128.3, 126.1(2C), 122.4, 120.6, 118.3, 116.8, 113.0, 102.2, 79.7, 51.8, 48.6, 28.6(3C), 21.1.

HRMS [M+Na]⁺ calculated for C₂₃H₂₆N₂O₄Na 417.1790 found 417.1783.

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 1% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 15.0 min (minor), 18.9 min (major).

$\begin{tabular}{ll} Methyl (R)-1-(((\textit{tert}-butoxycarbonyl)amino)(4-(trifluoromethyl)phenyl)methyl)indolizine-2-carboxylate 3c \\ \end{tabular}$

The two regionsomers 3c and 4c were prepared according to the **General Procedure A** (reaction time = 38 h). Purification by Flash chromatography (80:20 hexane/dichloromethane to 65:35 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 98 mg, 48% yield, 87% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 7.83 (d, J = 7.4 Hz, 1H), 7.81 (s, 1H), 7.61 (d, J = 9.3 Hz, 1H), 7.48 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.2 Hz, 2H), 7.04 (d, J = 9.8 Hz, 1H), 6.77 (dd, J = 9.3, 6.5 Hz, 1H), 6.61 – 6.53 (m, 2H), 3.76 (s, 3H), 1.47 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 166.0, 156.0, 147.3, 131.5, 128.8, 126.5(2C), 125.4, 125.1(2C), 124.4 (d, *J* = 271.9 Hz), 119.2, 118.3, 117.9, 116.3, 114.0, 113.1, 79.6, 51.8, 48.7, 28.6(3C).

¹⁹**F NMR** (470 MHz, CDCl₃) δ -62.35.

HRMS $[M+Na]^+$ calculated for $C_{23}H_{23}N_2O_4F_3Na$ 471.1508 found 471.1511.

 $[\alpha]^{25}_{\mathbf{D}} = 88.0 \ (c = 0.14, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 5% ⁱPrOH in hexanes; 1.0 mL/min; λ = 254 nm; retention times: 8.6 min (major), 12.5 min (minor).

$Methyl \ (\textit{R})-3-(((\textit{tert}-butoxycarbonyl)amino}) (4-(trifluoromethyl)phenyl)methyl)indolizine-2-carboxylate \ 4c$

Colorless oil, 86 mg, 42% yield, 63% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 8.08 (d, J = 7.3 Hz, 1H), 7.51 (d, J = 8.1 Hz, 2H), 7.42 (d, J = 9.1 Hz, 1H), 7.31 – 7.21 (m, 3H), 6.92 (s, 1H), 6.79 (d, J = 9.7 Hz, 1H), 6.75 (dd, J = 9.1, 6.5 Hz, 1H), 6.67 – 6.61 (m, 1H), 3.79 (s, 3H), 1.46 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 166.4, 156.2, 144.7, 131.9, 129.6, 127.4, 126.4(2C), 125.5(2C), 124.3, 122.1, 120.8, 118.4, 116.9, 113.5, 102.4, 80.2, 52.0, 48.3, 28.6(3C).

¹⁹**F NMR** (470 MHz, CDCl₃) δ -62.52.

HRMS $[M+Na]^+$ calculated for $C_{23}H_{23}N_2O_4F_3Na$ 471.1508 found 471.1512.

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 0.3% PrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 18.1 min (minor), 22.0 min (major).

Methyl (R)-1-(((tert-butoxycarbonyl)amino)(4-fluorophenyl)methyl)indolizine-2-carboxylate 3d

The two regioisomers 3d and 4d were prepared according to the General Procedure A (reaction time = 6 h). Purification by Flash chromatography (80:20 hexane/dichloromethane to 60:40 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 100 mg, 55% yield, 94% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 7.82 (d, J = 6.5 Hz, 1H), 7.80 (s, 1H), 7.60 (d, J = 9.3 Hz, 1H), 7.17 (dd, J = 8.4, 5.3 Hz, 2H), 6.99 (d, J = 9.8 Hz, 1H), 6.93 – 6.87(m, 2H), 6.74 (dd, J = 9.3, 6.4 Hz, 1H), 6.59 – 6.54 (m, 1H), 6.49 (d, J = 9.8 Hz, 1H), 3.76 (s, 3H), 1.46 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 166.0, 161.7, 156.0, 138.9, 131.3, 127.8(2C), 125.3, 119.0, 118.5, 117.8, 116.4, 114.9(2C), 114.7, 113.0, 79.4, 51.8, 48.4, 28.7(3C).

¹⁹**F NMR** (470 MHz, CDCl₃) δ -117.30.

HRMS [M+H]⁺ calculated for C₂₂H₂₃FN₂O₄Na 421.1540 found 421.1537.

 $[\alpha]^{25}_{\mathbf{D}} = 74.2 \ (c = 0.13, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 5% ⁱPrOH in hexanes; 1.0 mL/min; λ = 254 nm; retention times: 13.1 min (major), 22.1 min (minor).

Methyl (R)-3-(((tert-butoxycarbonyl)amino)(4-fluorophenyl)methyl)indolizine-2-carboxylate 4d

Colorless oil, 74 mg, 41% yield, 54% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 8.03 (d, J = 6.1 Hz, 1H), 7.40 (d, J = 9.1 Hz, 1H), 7.28 (bs, 1H), 7.11 (dd, J = 8.5, 5.3 Hz, 2H), 6.94 (d, J = 8.5 Hz, 2H), 6.92 (s, 1H), 6.76 – 6.68 (m, 2H), 6.64 – 6.58 (m, 1H), 3.81 (s, 3H), 1.45 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 166.5, 162.1, 156.1, 136.3, 131.7, 127.9, 127.8(2C), 122.2, 120.7, 118.3, 116.8, 115.4(2C), 113.3, 102.3, 79.9, 51.9, 48.1, 28.6(3C).

¹⁹**F NMR** (470 MHz, CDCl₃) δ -115.78.

HRMS [M+H]⁺ calculated for C₂₂H₂₃FN₂O₄Na 421.1540 found 421.1544.

HPLC analysis of the product: Daicel CHIRALPAK IC column; 1% PrOH in hexanes; 1.0 mL/min; λ = 254 nm; retention times: 10.3 min (major), 12.6 min (minor).

Methyl (R)-1-(((tert-butoxycarbonyl)amino)(4-chlorophenyl)methyl)indolizine-2-carboxylate 3e

The two regioisomers 3e and 4e were prepared according to the **General Procedure A** (reaction time = 6 h). Purification by Flash chromatography (80:20 hexane/dichloromethane to 60:40 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 102 mg, 54% yield, 90% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 7.82 (d, J = 7.0 Hz, 1H), 7.80 (s, 1H), 7.60 (d, J = 9.3 Hz, 1H), 7.18 (d, J = 8.2 Hz, 2H), 7.14 (d, J = 8.2 Hz, 2H), 6.98 (d, J = 9.8 Hz, 1H), 6.75 (dd, J = 9.3, 6.5 Hz, 1H), 6.60 – 6.54 (m, 1H), 6.48 (d, J = 9.8 Hz, 1H), 3.77 (s, 3H), 1.46 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 166.0, 156.0, 141.8, 132.3, 131.4, 128.2(2C), 127.6(2C), 125.3, 119.1, 118.4, 117.8, 116.4, 114.4, 113.0, 79.5, 51.8, 48.4, 28.7(3C).

HRMS [M+Na]⁺ calculated for C₂₂H₂₃N₂O₄ClNa 437.1244 found 437.1248.

 $[\alpha]^{25}_{\mathbf{D}} = 91.5 \ (c = 0.25, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 10% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 8.3 min (minor), 19.3 min (major).

Methyl (R)-3-(((tert-butoxycarbonyl)amino)(4-chlorophenyl)methyl)indolizine-2-carboxylate 4e

Colorless oil, 74 mg, 39% yield, 57% e.e..

¹**H NMR** (200 MHz, CDCl3) δ 8.04 (d, J = 7.3 Hz, 1H), 7.40 (d, J = 8.9 Hz, 1H), 7.28 – 7.17 (m, 3H), 7.07 (d, J = 8.4 Hz, 2H), 6.91 (s, 1H), 6.78 – 6.66 (m, 2H), 6.66 – 6.57 (m, 1H), 3.80 (s, 3H), 1.45 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 166.4, 156.1, 139.2, 133.1, 131.8, 128.7(2C), 127.7, 127.6(2C), 122.2, 120.8, 118.3, 116.8, 113.4, 102.3, 80.0, 52.0, 48.1, 28.6(3C).

HRMS [M+Na]⁺ calculated for C₂₂H₂₃N₂O₄ClNa 437.1244 found 437.1242.

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 0.3% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 22.5 min (minor), 26.0 min (major).

Methyl (R)-1-((4-bromophenyl)((tert-butoxycarbonyl)amino)methyl)indolizine-2-carboxylate 3f

The two regioisomers **3f** and **4f** were prepared according to the **General Procedure A** (reaction time = 6 h). Purification by Flash chromatography (90:10 hexane/dichloromethane to 80:20 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 113 mg, 54% yield, 93% e.e..

¹**H NMR** (500 MHz, CDCl3) δ 7.82 (d, J = 7.0 Hz, 1H), 7.80 (s, 1H), 7.59 (d, J = 9.3 Hz, 1H), 7.33 (d, J = 8.1 Hz, 2H), 7.09 (d, J = 8.1 Hz, 2H), 6.98 (d, J = 9.8 Hz, 1H), 6.75 (dd, J = 9.3, 6.9 Hz, 1H), 6.60-6.54 (m, 1H), 6.46 (d, J = 9.8 Hz, 1H), 3.76 (s, 3H), 1.46 (s, 9H).

¹³C NMR (126 MHz, CDCl3) δ 165.9, 156.0, 142.3, 131.4, 131.2(2C), 128.0(2C), 125.3, 120.4, 119.1, 118.4, 117.8, 116.4, 114.3, 113.0, 79.5, 51.8, 48.5, 28.6(3C).

HRMS $[M+Na]^+$ calculated for $C_{22}H_{23}N_2O_4BrNa$ 481.0739 found 481.0737.

 $[\alpha]^{25}_{\mathbf{D}} = 55.8 \ (c = 0.29, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 5% ⁱPrOH in hexanes; 1.0 mL/min; λ = 254 nm; retention times: 13.2 min (major), 20.4 min (minor).

Methyl (R)-3-((4-bromophenyl)((tert-butoxycarbonyl)amino)methyl)indolizine-2-carboxylate 4f

Colorless oil, 90 mg, 43% yield, 60% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 8.04 (d, J = 7.8 Hz, 1H), 7.40 (d, J = 9.1 Hz, 1H), 7.36 (d, J = 8.2 Hz, 2H), 7.24 (bs, 1H), 7.02 (d, J = 8.2 Hz, 2H), 6.91 (s, 1H), 6.73 (dd, J = 9.1, 6.7 Hz, 1H), 6.69 (d, J = 9.8 Hz, 1H), 6.65 – 6.58 (m, 1H), 3.81 (s, 3H), 1.45 (s, 9H).

¹³C NMR (126 MHz, cdcl₃) δ 166.4, 156.1, 139.7, 131.8, 131.6(2C), 127.9(2C), 127.6, 122.2, 121.3, 120.8, 118.3, 116.8, 113.4, 102.3, 80.0, 52.0, 48.2, 28.6(3C).

HRMS [M+Na]⁺ calculated for C₂₂H₂₃N₂O₄BrNa 481.0739 found 481.0735.

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 0.3% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 22.2 min (minor), 25.6 min (major).

Methyl (R)-1-(((tert-butoxycarbonyl)amino)(4-iodophenyl)methyl)indolizine-2-carboxylate 3g

The two regionsomers 3g and 4g were prepared according to the **General Procedure A** (reaction time = 48 h). Purification by Flash chromatography (80:20 hexane/dichloromethane to 60:40 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 97 mg, 42% yield, 90% e.e..

¹**H NMR** (600 MHz, CDCl₃) δ 7.81 (d, J = 7.0 Hz, 1H), 7.79 (s, 1H), 7.59 (d, J = 9.2 Hz, 1H), 7.53 (d, J = 8.4 Hz, 2H), 7.01 – 6.98 (m, 1H), 6.97 (d, J = 8.4 Hz, 2H), 6.75 (ddd, J = 9.2, 6.4, 1.0 Hz, 1H), 6.59 – 6.54 (m, 1H), 6.45 (d, J = 9.9 Hz, 1H), 3.77 (s, 3H), 1.45 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 166.0, 156.0, 143.1, 137.1(2C), 131.4, 128.3(2C), 125.3, 119.1, 118.4, 117.8, 116.4, 114.2, 113.0, 92.0, 79.5, 51.8, 48.6, 28.6(3C).

HRMS [M+Na]⁺ calculated for C₂₂H₂₃N₂O₄INa 529.0600 found 529.0595.

 $[\alpha]^{25}_{\mathbf{D}} = 48.0 \ (c = 0.26, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 5% ⁱPrOH in hexanes; 1.0 mL/min; λ = 254 nm; retention times: 14.0 min (major), 20.8 min (minor).

Methyl (R)-3-(((tert-butoxycarbonyl)amino)(4-iodophenyl)methyl)indolizine-2-carboxylate 4g

Colorless oil, 103 mg, 45% yield, 67% e.e..

¹**H NMR** (200 MHz, CDCl₃) δ 8.03 (d, J = 7.3 Hz, 1H), 7.56 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.9 Hz, 1H), 7.20 (bs, 1H), 6.95 – 6.84 (m, 3H), 6.80 – 6.57 (m, 3H), 3.81 (s, 3H), 1.45 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 166.4, 156.1, 140.5, 137.6(2C), 131.8, 128.2(2C), 127.5, 122.2, 120.8, 118.3, 116.8, 113.4, 102.3, 92.9, 80.0, 52.0, 48.3, 28.6(3C).

HRMS [M+Na]⁺ calculated for C₂₂H₂₃N₂O₄INa 529.0600 found 529.0599.

HPLC analysis of the product: Daicel CHIRALPAK IC column; 1% ⁱPrOH in hexanes; 1.0 mL/min; λ = 254 nm; retention times: 11.8 min (major), 14.3 min (minor).

The two regionsomers **3h** and **4h** were prepared according to the **General Procedure A** (reaction time = 24 h). Purification by Flash chromatography (75:25 hexane/dichloromethane to 70:30 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 83 mg, 40% yield, 96% e.e..

¹**H NMR** (600 MHz, CDCl₃) δ 7.85 – 7.80 (m, 2H), 7.65 (d, J = 9.3 Hz, 1H), 7.54 (d, J = 7.6 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.42 – 7.37 (m, 2H), 7.34 – 7.27 (m, 3H), 7.09 (d, J = 9.8 Hz, 1H), 6.75 (dd, J = 9.3, 6.5 Hz, 1H), 6.61 – 6.54 (m, 2H), 3.78 (s, 3H), 1.48 (s, 9H).

¹³C NMR (151 MHz, CDCl₃) δ 166.0, 156.1, 142.3, 141.2, 139.4, 131.4, 128.8(2C), 127.1, 127.1(2C), 126.9(2C), 126.6(2C), 125.3, 118.8, 118.6, 117.7, 116.5, 114.8, 113.0, 79.3, 51.8, 48.8, 28.7(3C).

HRMS [M+Na]⁺ calculated for C₂₈H₂₈N₂O₄Na 479.1947 found 479.1950.

 $[\alpha]^{25}_{\mathbf{D}} = 46.2 \ (c = 0.26, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 10% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 13.9 min (minor), 27.7min (major).

$Methyl \ (R) - 3 - ([1,1'-biphenyl] - 4 - yl((\textit{tert}-butoxycarbonyl)amino) methyl) indolizine - 2 - carboxylate \\ 4b - 3 - ([1,1'-biphenyl] - 4 - yl((\textit{tert}-butoxycarbonyl)amino) methyl) indolizine - 2 - carboxylate \\ 4b - ([1,1'-biphenyl] - 4 - yl((\textit{tert}-butoxycarbonyl)amino) methyl) indolizine - 2 - carboxylate \\ 4b - ([1,1'-biphenyl] - 4 - yl((\textit{tert}-butoxycarbonyl)amino) methyl) indolizine - 2 - carboxylate \\ 4b - ([1,1'-biphenyl] - 4 - yl((\textit{tert}-butoxycarbonyl)amino) methyl) indolizine - 2 - carboxylate \\ 4b - ([1,1'-biphenyl] - 4 - yl((\textit{tert}-butoxycarbonyl)amino) methyl) indolizine - 2 - carboxylate \\ 4b - ([1,1'-biphenyl] - 4 - yl((\textit{tert}-butoxycarbonyl)amino) methyl) indolizine - 2 - carboxylate \\ 4b - ([1,1'-biphenyl] - 4 - yl((\textit{tert}-butoxycarbonyl)amino) methyl) indolizine - 2 - carboxylate \\ ([1,1'-biphenyl] - 4 - yl((\textit{tert}-butoxycarbonyl)amino) methyl) indolizine - 2 - carboxylate \\ ([1,1'-biphenyl] - 4 - yl((\textit{tert}-butoxycarbonyl)amino) methyl) indolizine - 2 - carboxylate \\ ([1,1'-biphenyl] - 4 - yl((\textit{tert}-butoxycarbonyl)amino) methyl) indolizine - 2 - carboxylate \\ ([1,1'-biphenyl] - 4 - yl((\textit{tert}-butoxycarbonyl)amino) methyl) indolizine - 2 - carboxylate \\ ([1,1'-biphenyl] - 4 - yl((\textit{tert}-butoxycarbonyl)amino) methyl) indolizine - 2 - carboxylate \\ ([1,1'-biphenyl] - 4 - yl((\textit{tert}-butoxycarbonyl)amino) methyl indolizine - 2 - carboxylate \\ ([1,1'-biphenyl] - 4 - yl((\textit{tert}-butoxycarbonyl)amino) methyl indolizine - 2 - carboxylate \\ ([1,1'-biphenyl] - 4 - yl((\textit{tert}-butoxycarbonyl)amino) methyl indolizine - 2 - carboxylate \\ ([1,1'-biphenyl] - 4 - yl((\textit{tert}-butoxycarbonyl)amino) methyl indolizine - 2 - carboxylate \\ ([1,1'-biphenyl] - 4 - yl((\textit{tert}-butoxycarbonyl)amino) methyl indolizine - 2 - carboxylate \\ ([1,1'-biphenyl] - 4 - yl((\textit{tert}-butoxycarbonyl)amino) methyl indolizine - 2 - carboxylate \\ ([1,1'-biphenyl] - 4 - yl((\textit{tert}-butoxycarbonyl)amino) methyl indolizine - 2 - yl((\textit{tert}-butoxycarbonyl)amino) methyl indolizine - 2 - yl((\textit{tert}-butoxycarbonyl)a$

Colorless oil, 96 mg, 46% yield, 51% e.e..

¹**H NMR** (600 MHz, CDCl₃) δ 8.10 (d, J = 7.0 Hz, 1H), 7.54 (d, J = 7.7 Hz, 2H), 7.49 (d, J = 8.1 Hz, 2H), 7.44 – 7.38 (m, 3H), 7.37 – 7.29 (m, 2H), 7.24 (d, J = 8.1 Hz, 2H), 6.95 (s, 1H), 6.81 (d, J = 9.4 Hz, 1H), 6.74 (ddd, J = 9.1, 6.4, 0.9 Hz, 1H), 6.65 – 6.59 (m, 1H), 3.83 (s, 3H), 1.48 (s, 9H).

¹³C NMR (151 MHz, CDCl₃) δ 166.5, 156.2, 140.9, 140.2, 139.6, 131.7, 128.8(2C), 128.1, 127.3, 127.3(2C), 127.1(2C), 126.6(2C), 122.4, 120.7, 118.2, 116.8, 113.2, 102.3, 79.8, 51.9, 48.5, 28.6(3C).

HRMS [M+Na]⁺ calculated for C₂₈H₂₈N₂O₄Na 479.1947 found 479.1950.

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 0.3% PrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 45.9 min (minor), 55.3 min (major).

$Methyl \ (\textit{R}) - 1 - (((\textit{tert-butoxycarbonyl}) a mino) (\textit{4-methoxyphenyl}) methyl) indolizine - 2 - carboxylate \\ 3i$

The two regioisomers 3i and 4i were prepared according to the **General Procedure A** (reaction time = 4 h). Purification by Flash chromatography (50:50 hexane/dichloromethane to 30:70 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 48 mg, 26% yield, 68% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 7.80 (m, 2H), 7.60 (d, J = 9.2 Hz, 1H), 7.13 (d, J = 8.4 Hz, 2H), 7.00 (d, J = 9.7 Hz, 1H), 6.76 (d, J = 8.4 Hz, 2H), 6.71 (ddd, J = 9.2, 6.5, 1.1 Hz, 1H), 6.58 – 6.52 (m, 1H), 6.48 (d, J = 9.7 Hz, 1H), 3.77 (s, 3H), 3.75 (s, 3H), 1.46 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 166.0, 158.3, 156.0, 135.4, 131.2, 127.3(2C), 125.2, 118.7, 118.7, 117.7, 116.5, 115.1, 113.5(2C), 112.9, 79.2, 55.3, 51.7, 48.5, 28.7(3C).

HRMS [M+Na]⁺ calculated for C₂₃H₂₆N₂O₅Na 433.1739 found 433.1742.

 $[\alpha]^{25}_{\mathbf{D}} = 28.8 \ (c = 0.26, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 20% PrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 9.6 min (minor), 14.2 min (major).

$Methyl \ (\textit{R}) - 3 - (((\textit{tert-butoxycarbonyl}) a mino) (\textit{4-methoxyphenyl}) methyl) indolizine - 2 - carboxylate \\ \textit{4i}$

Colorless oil, 131 mg, 70% yield, 21% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 8.01 (d, J = 7.6 Hz, 1H), 7.39 (d, J = 9.0 Hz, 1H), 7.30 (bs, 1H), 7.08 (d, J = 8.5 Hz, 2H), 6.91 (s, 1H), 6.78 (d, J = 8.5 Hz, 2H), 6.74 – 6.65 (m, 2H), 6.61 – 6.55 (m, 1H), 3.82 (s, 3H), 3.75 (s, 3H), 1.45 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 166.6, 158.9, 156.1, 132.6, 131.6, 128.3, 127.4(2C), 122.4, 120.7, 118.1, 116.8, 114.0(2C), 113.1, 102.2, 79.7, 55.4, 51.9, 48.4, 28.6(3C).

HRMS [M+Na]⁺ calculated for C₂₃H₂₆N₂O₅Na 433.1739 found 433.1738.

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 1% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 27.5 min (minor), 31.2 min (major).

Methyl (R)-1-(((tert-butoxycarbonyl)amino)(m-tolyl)methyl)indolizine-2-carboxylate 3j

The two regioisomers 3j and 4j were prepared according to the **General Procedure A** (reaction time = 4 h). Purification by Flash chromatography (60:40 hexane/dichloromethane to 40:60 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 86 mg, 48% yield, 92% e.e..

¹**H NMR** (600 MHz, CDCl₃) δ 7.83 – 7.78 (m, 2H), 7.61 (d, J = 9.3 Hz, 1H), 7.14 – 7.09 (m, 1H), 7.05 – 6.99 (m, 3H), 6.97 (d, J = 9.9 Hz, 1H), 6.72 (dd, J = 9.3, 6.4 Hz, 1H), 6.58 – 6.54 (m, 1H), 6.49 (d, J = 9.9 Hz, 1H), 3.76 (s, 3H), 2.27 (s, 3H), 1.46 (s, 9H).

¹³C NMR (151 MHz, CDCl₃) δ 166.0, 156.1, 143.1, 137.6, 131.4, 128.0, 127.4, 127.0, 125.2, 123.2, 118.7(2C), 117.7, 116.5, 115.0, 112.9, 79.2, 51.7, 48.9, 28.7, 21.7(3C).

HRMS [M+Na]⁺ calculated for C₂₃H₂₆N₂O₄Na 417.1790 found 417.1788.

 $[\alpha]^{25}$ _D = 59.4 (c = 0.25, CH₂Cl₂).

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 10% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 8.3 min (minor), 16.4 min (major).

Methyl (R)-3-(((tert-butoxycarbonyl)amino)(m-tolyl)methyl)indolizine-2-carboxylate 4j

Colorless oil, 70 mg, 39% yield, 39% e.e..

¹**H NMR** (600 MHz, CDCl₃) δ 8.08 – 8.00 (m, 1H), 7.40 (d, J = 9.1 Hz, 1H), 8.25 (bs, 1H), 7.16 – 7.11 (m, 1H), 7.02 (d, J = 7.5 Hz, 1H), 6.98 (s, 1H), 6.94 – 6.90 (m, 2H), 6.74 – 6.68 (m, 2H), 6.62 – 6.57 (m, 1H), 3.81 (s, 3H), 2.27 (s, 3H), 1.45 (s, 9H).

¹³C NMR (151 MHz, CDCl₃) δ 166.5, 156.2, 140.4, 138.2, 131.6, 128.5, 128.3, 128.2, 126.9, 123.2, 122.4, 120.7, 118.1, 116.8, 113.1, 102.2, 79.7, 51.9, 48.7, 28.6, 21.7(3C).

HRMS [M+Na]⁺ calculated for C₂₃H₂₆N₂O₄Na 417.1790 found 417.1789.

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 1% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 12.0 min (minor), 14.7 min (major).

Methyl (R)-1-((3-bromophenyl)((tert-butoxycarbonyl)amino)methyl)indolizine-2-carboxylate 3k

The two regionsomers 3k and 4k were prepared according to the **General Procedure A** (reaction time = 22 h). Purification by Flash chromatography (50:50 hexane/dichloromethane to 40:60 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 111 mg, 53% yield, 85% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 7.83 (d, J = 7.0 Hz, 1H), 7.81 (s, 1H), 7.59 (d, J = 9.3 Hz, 1H), 7.32 (s, 1H), 7.28 (d, J = 7.9 Hz, 1H), 7.16 (d, J = 7.8 Hz, 1H), 7.12 – 7.06 (m, 1H), 6.95 (d, J = 9.8 Hz, 1H), 6.76 (dd, J = 9.3, 6.5 Hz, 1H), 6.61 – 6.54 (m, 1H), 6.49 (d, J = 9.8 Hz, 1H), 3.77 (s, 3H), 1.46 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 165.9, 156.0, 145.6, 131.5, 129.7(2C), 129.4, 125.3, 124.9, 122.4, 119.1, 118.4, 117.8, 116.4, 114.0, 113.1, 79.5, 51.8, 48.5, 28.6(3C).

HRMS $[M+Na]^+$ calculated for $C_{22}H_{23}N_2O_4BrNa$ 481.0739 found 481.0740.

 $[\alpha]^{25}_{\mathbf{D}} = 59.9 \ (c = 0.24, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 10% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 8.4 min (minor), 17.1 min (major).

Methyl (R)-3-((3-bromophenyl)((tert-butoxycarbonyl)amino)methyl)indolizine-2-carboxylate 4k

Colorless oil, 83 mg, 40% yield, 41% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 8.05 (d, J = 7.2 Hz, 1H), 7.41 (d, J = 9.1 Hz, 1H), 7.37 – 7.29 (m, 2H), 7.18 (bs, 1H), 7.14 – 7.08 (m, 1H), 7.04 (d, J = 7.9 Hz, 1H), 6.92 (s, 1H), 6.78 – 6.70 (m, 2H), 6.78 – 6.70 (m,1H), 3.81 (s, 3H), 1.46 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 166.4, 156.1, 143.0, 131.8, 130.5, 130.1, 129.2, 127.3, 124.8, 122.8, 122.2, 120.8, 118.4, 116.9, 113.4, 102.4, 80.1, 51.9, 48.2, 28.6(3C).

HRMS $[M+Na]^+$ calculated for $C_{22}H_{23}N_2O_4BrNa$ 481.0739 found 481.0743.

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 0.3% PrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 18.2 min (minor), 25.2 min (major).

Methyl (R)-1-(((tert-butoxycarbonyl)amino)(furan-2-yl)methyl)indolizine-2-carboxylate 3l

The two regionsomers 31 and 41 were prepared according to the **General Procedure A** (reaction time = 3 h). Purification by Flash chromatography (70:30 hexane/dichloromethane to 40:60 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 88 mg, 52% yield, 87% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 7.83 – 7.77 (m, 2H), 7.57 (d, J = 9.3 Hz, 1H), 7.28 – 7.24 (m, 1H), 6.96 (d, J = 9.8 Hz, 1H), 6.73 (dd, J = 9.3, 6.4 Hz, 1H), 6.58 – 6.49 (m, 2H), 6.26 – 6.21 (m, 1H), 6.06 – 5.99 (m, 1H), 3.83 (s, 3H), 1.45 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 166.0, 155.8, 155.5, 141.6, 131.3, 125.3, 118.9, 118.5, 117.5, 116.9, 112.9, 112.2, 110.3, 105.6, 79.4, 51.8, 44.5, 28.6(3C).

HRMS [M+Na]⁺ calculated for C₂₀H₂₂N₂O₅Na 393.1426 found 393.1424.

 $[\alpha]^{25}_{\mathbf{D}} = -14 \ (c = 0.25, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 10% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 10.6 min (minor), 19.8 min (major).

Methyl (R)-3-(((tert-butoxycarbonyl)amino)(furan-2-yl)methyl)indolizine-2-carboxylate 4l

Colorless oil, 75 mg, 44% yield, 6% e.e..

¹**H NMR** (600 MHz, CDCl₃) δ 8.12 (d, J = 7.3 Hz, 1H), 7.38 (d, J = 9.1 Hz, 1H), 7.29 – 7.27 (m, 1H), 7.26 (bs, 1H), 6.89 (s, 1H), 6.81 – 6.74 (m, 1H), 6.72 (ddd, J = 9.1, 6.4, 1.0 Hz, 1H), 6.64 – 6.59 (m, 1H), 6.25 (dd, J = 3.3, 1.8 Hz, 1H), 6.09 – 6.04 (m, 1H), 3.86 (s, 3H), 1.44 (s, 9H).

¹³C NMR (151 MHz, CDCl₃) δ 166.4, 155.8, 152.8, 142.2, 131.8, 125.5, 122.7, 120.6, 118.3, 117.1, 113.0, 110.5, 106.4, 102.2, 80.0, 51.9, 44.2, 28.5(3C).

HRMS $[M+Na]^+$ calculated for $C_{20}H_{22}N_2O_5Na393.1426$ found 393.1429.

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 10% 'PrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 15.6 min (minor), 19.9 min (major).

Methyl (R)-1-(((tert-butoxycarbonyl)amino)(thiophen-2-yl)methyl)indolizine-2-carboxylate 3m

The two regionsomers 3m and 4m were prepared according to the **General Procedure A** (reaction time = 6 h). Purification by Flash chromatography (80:20 hexane/dichloromethane to 70:30 hexane/dichloromethane + 0.25% Et_3N).

Colorless oil, 81 mg, 46% yield, 89% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 7.84 – 7.80 (m, 2H), 7.59 (d, J = 9.3 Hz, 1H), 7.17 (d, J = 9.8 Hz, 1H), 7.09 (d, J = 5.0 Hz, 1H), 6.87 – 6.82 (m, 1H), 6.74 (dd, J = 9.3, 6.5 Hz, 1H), 6.71 – 6.65 (m, 2H), 6.59 – 6.55 (m, 1H), 3.80 (s, 3H), 1.46 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 166.0, 155.8, 148.7, 131.1, 126.7, 125.3, 124.0, 123.7, 119.0, 118.4, 117.7, 116.7, 114.3, 113.0, 79.5, 51.8, 46.0, 28.6(3C).

HRMS $[M+Na]^+$ calculated for $C_{20}H_{22}N_2O_4SNa$ 409.1198 found 409.1199.

 $[\alpha]^{25}_{\mathbf{D}} = 22.0 \ (c = 0.28, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALPAK AD-H column; 10% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 13.2 min (minor), 21.5 min (major).

Methyl (R)-3-(((tert-butoxycarbonyl)amino)(thiophen-2-yl)methyl)indolizine-2-carboxylate 4m

Colorless oil, 86 mg, 49% yield, 15% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 8.04 (d, J = 5.4 Hz, 1H), 7.47 (bs, 1H), 7.40 (d, J = 9.1 Hz, 1H), 7.15 (d, J = 5.0 Hz, 1H), 6.92 (s, 1H), 6.92 – 6.87 (m, 1H), 6.85 (dd, J = 5.0, 3.6 Hz, 1H), 6.73 (ddd, J = 9.1, 6.5, 1.0 Hz, 1H), 6.66 (d, J = 3.6 Hz, 1H), 6.64 – 6.57 (m, 1H), 3.85 (s, 3H), 1.45 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 166.5, 155.8, 145.0, 131.7, 127.3, 126.9, 124.8, 124.4, 122.4, 120.7, 118.3, 116.9, 113.2, 102.3, 80.0, 52.0, 45.7, 28.6(3C).

HRMS $[M+Na]^+$ calculated for $C_{20}H_{22}N_2O_4SNa$ 409.1198 found 409.1200.

HPLC analysis of the product: Daicel CHIRALPAK AD-H column; 5% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 18.0 min (major), 20.0 min (minor).

$\label{lem:methyl} \begin{tabular}{ll} Methyl (R)-1-(((tert-butoxycarbonyl)amino)(4-fluorophenyl)methyl)-6-chloroindolizine-2-carboxylate 3n \end{tabular}$

The two regioisomers 3n and 4n were prepared according to the General Procedure A (reaction time = 18 h). Purification by Flash chromatography (65:35 hexane/dichloromethane + 0.25% Et₃N). Colorless oil, 52 mg, 26% yield, 91% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 7.87 (s, 1H), 7.77 (s, 1H), 7.56 (d, J = 9.7 Hz, 1H), 7.14 (dd, J = 8.4, 5.3 Hz, 2H), 6.95 – 6.87 (m, 3H), 6.71 (dd, J = 9.7, 1.7 Hz, 1H), 6.45 (d, J = 9.8 Hz, 1H), 3.76 (s, 3H), 1.45 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 165.5, 161.8, 156.0, 138.4, 129.7, 127.7(2C), 122.8, 121.55, 120.7, 119.1, 118.0, 117.1, 116.1, 115.0(2C), 79.6, 51.9, 48.4, 28.6(3C).

¹⁹**F NMR** (470 MHz, CDCl₃) δ -116.92.

HRMS [M+Na]⁺ calculated for C₂₂H₂₂N₂O₄FClNa 455.1150 found 455.1157.

 $[\alpha]^{25}_{\mathbf{D}} = 42.3 \ (c = 0.16, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 1% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 17.4 min (minor), 20.6 min (major).

$\label{eq:methyl} \begin{tabular}{ll} Methyl (R)-3-(((tert-butoxycarbonyl)amino)(4-fluorophenyl)methyl)-6-chloroindolizine-2-carboxylate 4n \end{tabular}$

Colorless oil, 143 mg, 72% yield, 81% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 8.07 (s, 1H), 7.35 (d, J = 9.5 Hz, 1H), 7.29 – 7.224 (m, 1H), 7.11 (dd, J = 8.4, 5.2 Hz, 2H), 6.98 – 6.92 (m, 3H), 6.70 (dd, J = 9.5, 1.6 Hz, 1H), 6.63 (d, J = 9.6 Hz, 1H), 3.81 (s, 3H), 1.46 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 166.1, 162.2, 156.0, 135.8, 129.9, 128.5, 127.9(2C), 122.1, 121.2, 120.1, 119.9, 117.5, 115.5(2C), 103.8, 80.1, 52.0, 48.3, 28.6(3C).

¹⁹**F NMR** (470 MHz, CDCl₃) δ -115.30.

HRMS $[M+Na]^+$ calculated for $C_{22}H_{22}N_2O_4FClNa$ 455.1150 found 455.1154.

HPLC analysis of the product: Daicel CHIRALPAK AD-H column; 1% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 13.2 min (minor), 17.4 min (major).

Methyl (*R*)-1-((4-bromophenyl)((*tert*-butoxycarbonyl)amino)methyl)-6-chloroindolizine-2-carboxylate 30

The two regioisomers **30** and **40** were prepared according to the **General Procedure A** (reaction time = 24 h). Purification by Flash chromatography (65:35 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 68 mg, 30% yield, 92% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 7.87 (s, 1H), 7.76 (s, 1H), 7.56 (d, J = 9.7 Hz, 1H), 7.34 (d, J = 8.3 Hz, 2H), 7.06 (d, J = 8.3 Hz, 2H), 6.91 (d, J = 9.8 Hz, 1H), 6.72 (dd, J = 9.7, 1.7 Hz, 1H), 6.42 (d, J = 9.8 Hz, 1H), 3.76 (s, 3H), 1.45 (s, 9H).

¹³C NMR (151 MHz, CDCl₃) δ 165.5, 156.0, 141.8, 131.2(2C), 129.8, 128.0(2C), 122.8, 121.6, 120.8, 120.6, 119.0, 118.0, 117.0, 115.8, 79.6, 51.9, 48.5, 28.6(3C).

HRMS [M+Na]⁺ calculated for C₂₂H₂₂N₂O₄ClBrNa 515.0349 found 515.0340.

 $[\alpha]^{25}_{\mathbf{D}} = 175.1 \ (c = 0.10, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 2% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 13.4 min (minor), 15.8 min (major).

$Methyl \ (R) - 3 - ((4-bromophenyl)((\textit{tert}-butoxycarbonyl)amino) methyl) - 6 - chloroindolizine - 2 - carboxylate \ 4o$

Colorless oil, 144 mg, 64% yield, 82% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 8.09 (s, 1H), 7.38 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 9.5 Hz, 1H), 7.24 (bs, 1H), 7.01 (d, J = 8.3 Hz, 2H), 6.96 (s, 1H), 6.70 (dd, J = 9.5, 1.6 Hz, 1H), 6.60 (d, J = 9.6 Hz, 1H), 3.81 (s, 3H), 1.46 (s, 9H).

¹³C NMR (50 MHz, CDCl₃) δ 166.0, 156.0, 139.1, 131.7(2C), 129.9, 128.2, 127.9(2C), 122.1, 121.5, 121.2, 120.1, 119.9, 117.5, 103.8, 80.2, 52.0, 48.3, 28.5(3C).

HRMS [M+Na]⁺ calculated for C₂₂H₂₂N₂O₄ClBrNa 515.0349 found 515.0346.

HPLC analysis of the product: Daicel CHIRALPAK AD-H column; 5% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 6.6 min (minor), 8.8 min (major).

Methyl (R)--(((tert-butoxycarbonyl)amino)(4-fluorophenyl)methyl)-7-chloroindolizine-2-carboxylate 3p

The two regionsomers 3p and 4p were prepared according to the **General Procedure A** (reaction time = 24 h). Purification by Flash chromatography (85:15 hexane/dichloromethane to 70:30 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 138 mg, 70% yield, 92% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 7.76 (s, 1H), 7.73 (d, J = 7.4 Hz, 1H), 7.58 (s, 1H), 7.15 (dd, J = 8.4, 5.3 Hz, 2H), 7.00 – 6.86 (m, 3H), 6.52 (dd, J = 7.4, 2.1 Hz, 1H), 6.40 (d, J = 9.8 Hz, 1H), 3.76 (s, 3H), 1.46 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 165.5, 161.8, 156.0, 138.4, 130.9, 127.8(2C), 126.0, 125.4, 118.3, 117.5, 116.8, 115.0(2C), 114.71, 114.69, 79.6, 51.9, 48.4, 28.6(3C).

¹⁹**F NMR** (470 MHz, CDCl₃) δ -121.62.

HRMS $[M+Na]^+$ calculated for $C_{22}H_{22}N_2O_4FClNa$ 455.1150 found 455.1154.

 $[\alpha]^{25}_{\mathbf{D}} = 43.8 \ (c = 0.21, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 5% [†]PrOH in hexanes; 1.0 mL/min; λ = 254 nm; retention times: 11.1 min (major), 23.3 min (minor).

$\label{lem:methyl} \begin{tabular}{ll} Methyl (R)-3-(((\textit{tert}-butoxycarbonyl)amino)(4-fluorophenyl)methyl)-7-chloroindolizine-2-carboxylate 4p \end{tabular}$

Colorless oil, 55 mg, 28% yield, 68% e.e..

¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 7.7 Hz, 1H), 7.39 (s, 1H), 7.16 (bs, 1H), 7.09 (dd, J = 8.4, 5.3 Hz, 2H), 6.97 – 6.90 (m, 2H), 6.86 (s, 1H), 6.65 (d, J = 9.6 Hz, 1H), 6.57 (dd, J = 7.7, 2.2 Hz, 1H), 3.80 (s, 3H), 1.45 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 165.9, 162.0, 155.9, 135.7, 131.2, 128.4, 127.6(2C), 124.5, 123.0, 118.8, 117.6, 115.3(2C), 114.7, 102.0, 80.0, 51.9, 48.1, 28.4(3C).

¹⁹**F NMR** (470 MHz, CDCl₃) δ -115.43.

HRMS [M+Na]⁺ calculated for C₂₂H₂₂N₂O₄FClNa 455.1150 found 455.1155.

HPLC analysis of the product: Daicel CHIRALPAK IC column; 2.5% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 6.7 min (major), 8.5 min (minor).

$\label{eq:methyl} \begin{tabular}{ll} Methyl (R)-1-(((\textit{tert}-butoxycarbonyl)amino)(4-chlorophenyl)methyl)-7-chloroindolizine-2-carboxylate $3q$ \\ \end{tabular}$

The two regioisomers 3q and 4q were prepared according to the General Procedure A (reaction time = 24 h). Purification by Flash chromatography (85:15 hexane/dichloromethane to 70:30 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 148 mg, 72% yield, 94% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 7.76 (s, 1H), 7.74 (d, J = 7.4 Hz, 1H), 7.59 (s, 1H), 7.19 (d, J = 8.3 Hz, 2H), 7.12 (d, J = 8.3 Hz, 2H), 6.93 (d, J = 9.8 Hz, 1H), 6.53 (dd, J = 7.4, 2.1 Hz, 1H), 6.39 (d, J = 9.8 Hz, 1H), 3.76 (s, 3H), 1.46 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 165.5, 156.0, 141.3, 132.5, 131.0, 128.3(2C), 127.6(2C), 126.1, 125.5, 118.3, 117.5, 116.8, 114.7, 114.4, 79.6, 51.9, 48.4, 28.6(3C).

HRMS [M+Na]⁺ calculated for C₂₂H₂₂N₂O₄Cl₂Na 471.0854 found 455.1156.

 $[\alpha]^{25}_{\mathbf{D}} = 97.2 \ (c = 0.25, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 5% [†]PrOH in hexanes; 1.0 mL/min; λ = 254 nm; retention times: 10.9 min (major), 19.6 min (minor).

$\label{eq:methyl} \begin{tabular}{ll} Methyl (R)-3-(((\textit{tert}-butoxycarbonyl)amino)(4-chlorophenyl)methyl)-7-chloroindolizine-2-carboxylate 4q \\ \end{tabular}$

Colorless oil, 54 mg, 26% yield, 70% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 7.99 (d, J = 7.7 Hz, 1H), 7.39 (d, J = 1.8 Hz, 1H), 7.22 (d, J = 8.5 Hz, 2H), 7.13 (bs, 1H), 7.05 (d, J = 8.5 Hz, 2H), 6.85 (s, 1H), 6.65 (d, J = 9.7 Hz, 1H), 6.58 (dd, J = 7.7, 1.8 Hz, 1H), 3.80 (s, 3H), 1.45 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 166.0, 156.1, 138.7, 133.3, 131.4, 128.8(2C), 128.3, 127.5(2C), 124.7, 123.1, 119.0, 117.8, 114.9, 102.2, 80.2, 52.1, 48.2, 28.5(3C).

HRMS $[M+Na]^+$ calculated for $C_{22}H_{22}N_2O_4Cl_2Na$ 471.0854 found 471.0858.

HPLC analysis of the product: Daicel CHIRALPAK IC column; 2.5% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 6.8 min (major), 8.3 min (minor).

$\label{eq:methyl} \begin{tabular}{ll} Methyl (R)-1-((4-bromophenyl)((tert-butoxycarbonyl)amino)methyl)-7-chloroindolizine-2-carboxylate 3r \end{tabular}$

The two regionsomers $3\mathbf{r}$ and $4\mathbf{r}$ were prepared according to the **General Procedure A** (reaction time = 24 h). Purification by Flash chromatography (85:15 hexane/dichloromethane to 70:30 hexane/dichloromethane + 0.25% Et_3N).

Colorless oil, 155 mg, 69% yield, 97% e.e..

¹**H NMR** (600 MHz, CDCl₃) δ 7.76 (s, 1H), 7.73 (d, J = 7.4 Hz, 1H), 7.58 (s, 1H), 7.34 (d, J = 8.2 Hz, 2H), 7.06 (d, J = 8.2 Hz, 2H), 6.94 (d, J = 9.8 Hz, 1H), 6.52 (dd, J = 7.4, 2.1 Hz, 1H), 6.37 (d, J = 9.8 Hz, 1H), 3.76 (s, 3H), 1.46 (s, 9H).

¹³C NMR (151 MHz, CDCl₃) δ 165.5, 155.9, 141.8, 131.2(2C), 131.0, 128.0(2C), 126.1, 125.6, 120.6, 118.3, 117.4, 116.8, 114.7, 114.3, 79.6, 51.9, 48.4, 28.6(3C).

HRMS [M+K]⁺ calculated for C₂₂H₂₂N₂O₄ClBrK 531.0089 found 531.0095.

$$[\alpha]^{25}_{\mathbf{D}} = 94.1 \ (c = 0.26, \text{CH}_2\text{Cl}_2).$$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 5% ⁱPrOH in hexanes; 1.0 mL/min; λ = 254 nm; retention times: 10.5 min (major), 19.0 min (minor).

$\label{eq:methyl} \begin{tabular}{ll} Methyl (R)-3-((4-bromophenyl)((tert-butoxycarbonyl)amino)methyl)-7-chloroindolizine-2-carboxylate 4r \end{tabular}$

Colorless oil, 53 mg, 23% yield, 73% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 7.99 (d, J = 6.8 Hz, 1H), 7.44 – 7.34 (m, 3H), 7.12 (bs, 1H), 6.99 (d, J = 8.2 Hz, 2H), 6.85 (s, 1H), 6.63 (d, J = 9.4 Hz, 1H), 6.58 (d, J = 6.8 Hz, 1H), 3.80 (s, 3H), 1.45 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 166.0, 156.1, 139.3, 131.7(2C), 131.4, 128.3, 127.8(2C), 124.7, 123.1, 121.5, 119.0, 117.8, 114.9, 102.2, 80.2, 52.1, 48.3, 28.5(3C).

HRMS [M+K]⁺ calculated for C₂₂H₂₂N₂O₄ClBrK 531.0089 found 531.0087.

HPLC analysis of the product: Daicel CHIRALPAK AD-H column; 5% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 19.9 min (minor), 25.4 min (major).

$\label{eq:methyl} \begin{tabular}{ll} Methyl (R)-1-(((\textit{tert}-butoxycarbonyl)amino)(4-iodophenyl)methyl)-7-chloroindolizine-2-carboxylate 3s \end{tabular}$

The two regionsomers 3s and 4s were prepared according to the **General Procedure A** (reaction time = 48 h). Purification by Flash chromatography (90:10 hexane/dichloromethane to 70:30 hexane/dichloromethane + 0.25% Et_3N).

Colorless oil, 173 mg, 70% yield, 90% e.e..

¹**H NMR** (500 MHz, CDCl₃) δ 7.77 (s, 1H), 7.74 (d, J = 7.4 Hz, 1H), 7.59 (s, 1H), 7.54 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.4 Hz, 2H), 6.91 (s, 1H), 6.54 (dd, J = 7.4, 2.0 Hz, 1H), 6.36 (d, J = 9.8 Hz, 1H), 3.76 (s, 3H), 1.46 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 165.5, 156.0, 142.6, 137.2(2C), 131.0, 128.3(2C), 126.1, 125.6, 118.3, 117.5, 116.8, 114.8, 114.3, 92.2, 79.6, 51.9, 48.5, 28.6(3C).

HRMS [M+Na]⁺ calculated for C₂₂H₂₂N₂O₄ClINa 563.0210 found 563.0215.

 $[\alpha]^{25}_{D} = 78.3 \ (c = 0.25, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 5% \dot{P} PrOH in hexanes; 1.0 mL/min; λ = 254 nm; retention times: 11.8 min (major), 19.9 min (minor).

$\label{eq:methyl} \begin{tabular}{ll} Methyl (R)-3-(((\textit{tert}-butoxycarbonyl)amino)(4-iodophenyl)methyl)-7-chloroindolizine-2-carboxylate 4s \end{tabular}$

Colorless oil, 70 mg, 28% yield, 67% e.e..

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, J = 7.7 Hz, 1H), 7.57 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 2.2 Hz, 1H), 7.09 (s, 1H), 6.92 – 6.83 (m, 3H), 6.63 (d, J = 9.6 Hz, 1H), 6.58 (dd, J = 7.7, 2.2 Hz, 1H), 3.80 (s, 3H), 1.44 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 166.0, 156.1, 140.0, 137.7(2C), 131.4, 128.2, 128.1(2C), 124.8, 123.1, 119.0, 117.9, 114.9, 102.2, 93.0, 80.2, 52.1, 48.4, 28.6(3C).

HRMS $[M+Na]^+$ calculated for $C_{22}H_{22}N_2O_4CIINa$ 563.0210 found 563.0209.

HPLC analysis of the product: Daicel CHIRALPAK IC column; 2.5% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 7.4 min (major), 9.0 min (minor).

 $\label{eq:methyl} Methyl \ (R) - 1 - ((4-bromophenyl)((tert-butoxycarbonyl)amino)methyl) - 3 - (2,2,2-trifluoroacetyl)indolizine - 2 - carboxylate \ 10$

Under argon atmosphere and room temperature, **3f** (45.9 mg, 0.10 mmol) was dissolved in dichloromethane (2.0 mL), which was added ${}^{i}\text{Pr}_{2}\text{NEt}$ (27.8 μL , 0.16 mmol). Then, TFAA (20.9 μL , 0.15 mmol) was added dropwise to the reaction mixture, which was further stirred at room temperature for 24 h. After the completion of the reaction indicated by TLC, the solvent was removed under reduced pressure, and the residue was purified by flash chromatography (90:10 hexane/dichloromethane to 80:20 hexane/dichloromethane + 0.25% Et₃N) to give the product **10**.

Yellowish oil, 50 mg, 90% yield, 91% e.e..

¹**H NMR** (400 MHz, CDCl₃) δ 9.79 (d, J = 7.2 Hz, 1H), 7.92 (d, J = 9.0 Hz, 1H), 7.48 – 7.42 (m, 1H), 7.40 (d, J = 8.2 Hz, 2H), 7.21 – 7.13 (m, 1H), 7.10 (d, J = 8.2 Hz, 2H), 6.48 (d, J = 9.6 Hz, 1H), 6.11 (d, J = 9.6 Hz, 1H), 3.58 (s, 3H), 1.45 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 170.5, 165.7, 155.6, 139.3, 138.0, 131.5(2C), 128.9, 128.3(2C), 128.0, 127.7, 121.3, 120.2, 118.0, 117.7, 116.7, 115.8, 80.3, 52.7, 48.4, 28.5(3C).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -71.90.

HRMS $[M+Na]^+$ calculated for $C_{24}H_{22}F_3BrN_2O_5Na$ 577.0562 found 577.0561.

 $[\alpha]^{25}_{\mathbf{D}} = -27.5 \ (c = 0.25, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 5.0% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 10.7 min (major), 23.1 min (minor).

3.8. Products with Cbz-protecting group 6a-m, 7a-m, 8 and 9

$Methyl\ (\textit{R})-1-((((benzyloxy)carbonyl)amino)(phenyl)methyl)indolizine-2-carboxylate\ 6a$

The product was prepared according to the **General Procedure D** (reaction time = 48 h). Purification by Flash chromatography (80:20 hexane/dichloromethane to 70:30 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 153 mg, 31% yield, 93% e.e..

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.79 (d, J = 6.2 Hz, 1H), 7.64 (d, J = 9.3 Hz, 1H), 7.48 – 7.16 (m, 11H), 6.75 (dd, J = 9.3, 6.5 Hz, 1H), 6.64 (d, J = 9.9 Hz, 1H), 6.58 – 6.52 (td, J = 6.8, 1.2 Hz, 1H), 5.26 – 5.09 (m, 2H), 3.74 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.0, 156.7, 142.6, 136.9, 131.4, 128.5(2C), 128.19(2C), 128.17(2C), 128.0, 126.7, 126.2(2C), 125.3, 118.9, 118.3, 117.8, 116.4, 114.4, 112.9, 66.8, 51.7, 49.6.

HRMS $[M+Na]^+$ calculated for $C_{25}H_{22}N_2O_4Na$ 437.1477 found 437.14779.

 $[\alpha]^{25}_{\mathbf{D}} = 21.1 \ (c = 0.28, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 20.0% PrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 15.3 min (major), 25.9 min (minor).

$\label{lem:methyl} \begin{tabular}{ll} Methyl (\it{R})-1-((((benzyloxy)carbonyl)amino)(4-bromophenyl)methyl)-7-chloroindolizine-2-carboxylate 6m \end{tabular}$

The product was prepared according to the **Procedure E** (reaction time = 72 h). Purification by Flash chromatography (90:10 hexane/ethyl acetate to 80:20 hexane/ethyl acetate + 0.25% Et₃N).

Colorless oil, 129 mg, 61% yield, 88% e.e..

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.74 (d, J = 7.4 Hz, 1H), 7.60 (s, 1H), 7.44 – 7.21 (m, 8H), 7.08 (d, J = 8.4 Hz, 2H), 6.54 (dd, J = 7.4, 2.1 Hz, 1H), 6.43 (d, J = 9.8 Hz, 1H), 5.24 – 5.04 (m, 2H), 3.74 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.5, 156.6, 141.2, 136.7, 131.3(2C), 131.1, 128.6(2C), 128.3, 128.2(2C), 128.0(2C), 126.1, 125.8, 120.8, 118.4, 117.4, 116.6, 114.8, 113.9, 67.0, 51.9, 49.1.

HRMS [M+Na]⁺ calculated for C₂₅H₂₀N₂O₄ClBrNa 549.0193 found 549.0190.

 $[\alpha]^{25}_{\mathbf{D}} = 54.3 \ (c = 0.25, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 20.0% [†]PrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 9.2 min (major), 12.9 min (minor).

Methyl (R)-3-((((benzyloxy)carbonyl)amino)(phenyl)methyl)indolizine-2-carboxylate 7a

The product was prepared according to the **General Procedure C** (reaction time = 72 h). Purification by Flash chromatography (80:20 hexane/dichloromethane to 70:30 hexane/dichloromethane + 0.25% Et₃N).

The product was prepared according to the **Procedure D** (reaction time = 48 h). Purification by Flash chromatography ($80:20 \text{ hexane/dichloromethane to } 70:30 \text{ hexane/dichloromethane } + 0.25\% \text{ Et}_3\text{N}$).

Colorless oil, 124 mg, 88% yield, 92% e.e. (General Procedure C).

Colorless oil, 335 mg, 67% yield, 84% e.e. (**Procedure D**).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 8.04 (d, J = 7.2 Hz, 1H), 7.61 (d, J = 9.1 Hz, 1H), 7.47 – 7.15 (m, 11H), 6.95 (s, 1H), 6.81 (d, J = 9.5 Hz, 1H), 6.75 (dd, J = 9.1, 6.4 Hz, 1H), 6.68 – 6.58 (m, 1H), 5.12 (q, J = 12.3 Hz, 2H), 3.80 (s, 3H).

¹³C NMR (101 MHz, CD₂Cl₂) δ 166.6, 156.6, 140.1, 136.9, 131.8, 128.6(2C), 128.5(2C), 128.1, 128.0(2C), 127.7, 127.5, 126.2(2C), 122.3, 120.6, 118.25, 116.9, 113.2, 102.3, 66.9, 51.8, 49.5.

HRMS [M+H]⁺ calculated for C₂₅H₂₃N₂O₄ 415.1658 found 415.1656

 $[\alpha]^{25}_{D} = -13.3 \ (c = 0.25, CH_2Cl_2) \ (General Procedure C).$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 6.0% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 16.3 min (major), 24.4 min (minor) (**General Procedure C**).

Methyl (R)-3-((((benzyloxy)carbonyl)amino)(4-fluorophenyl)methyl)indolizine-2-carboxylate 7b

The product was prepared according to the **General Procedure C** (reaction time = 48 h). Purification by Flash chromatography (85:15 hexane/dichloromethane to 75:25 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 132 mg, 90% yield, 90% e.e..

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, J = 7.3 Hz, 1H), 7.69 (d, J = 9.7 Hz, 1H), 7.45 – 7.27 (m, 6H), 7.14 (dd, J = 8.4, 5.3 Hz, 2H), 6.99 – 6.90 (m, 3H), 6.80 – 6.70 (m, 2H), 6.67 – 6.58 (m, 1H), 5.22 – 5.07 (m, 2H), 3.81 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.6, 162.2, 156.8, 136.6, 135.8, 131.8, 128.6(2C), 128.23(2C), 128.22, 128.0(2C), 127.4, 122.1, 120.8, 118.4, 116.9, 115.5(2C), 113.4, 102.5, 67.2, 52.0, 49.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -115.34.

HRMS $[M+Na]^+$ calculated for $C_{25}H_{21}FN_2O_4Na$ 455.1383 found 455.1380.

$$[\alpha]^{25}_{\mathbf{D}} = -22.2 \ (c = 0.25, \text{CH}_2\text{Cl}_2).$$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 2.5% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 17.4 min (major), 20.4 min (minor).

Methyl (R)-3-((((benzyloxy)carbonyl)amino)(4-chlorophenyl)methyl)indolizine-2-carboxylate 7c

The product was prepared according to the **General Procedure C** (reaction time = 72 h). Purification by Flash chromatography (90:10 hexane/dichloromethane to 80:20 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 130 mg, 85% yield, 88% e.e..

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, J = 7.3 Hz, 1H), 7.63 (d, J = 9.7 Hz, 1H), 7.45 – 7.28 (m, 6H), 7.22 (d, J = 8.6 Hz, 2H), 7.09 (d, J = 8.6 Hz, 2H), 6.93 (s, 1H), 6.80 – 6.70 (m, 2H), 6.67 – 6.59 (m, 1H), 5.23 – 5.05 (m, 2H), 3.80 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.5, 156.8, 138.6, 136.5, 133.4, 131.9, 128.7(2C), 128.6(2C), 128.24, 128.22(2C), 127.6(2C), 127.2, 122.1, 120.8, 118.4, 116.9, 113.4, 102.5, 67.2, 52.0, 48.9.

HRMS $[M+Na]^+$ calculated for $C_{25}H_{21}ClN_2O_4Na$ 471.1088 found 471.1084.

$$[\alpha]^{25}_{\mathbf{D}} = 5.1 \ (c = 0.25, \text{CH}_2\text{Cl}_2).$$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 2.5% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 17.4 min (major), 19.9 min (minor).

$Methyl\ (\textit{R}) - 3 - ((((benzyloxy)carbonyl)amino)(4-bromophenyl)methyl) indolizine - 2-carboxylate\ 7d$

The product was prepared according to the **General Procedure C** (reaction time = 72 h). Purification by Flash chromatography (85:15 hexane/dichloromethane to 75:25 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 153 mg, 91% yield, 88% e.e..

¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (d, J = 7.3 Hz, 1H), 7.64 (d, J = 9.6 Hz, 1H), 7.46 – 7.27 (m, 8H), 7.04 (d, J = 8.4 Hz, 2H), 6.93 (s, 1H), 6.79 – 6.70 (m, 2H), 6.68 – 6.58 (m, 1H), 5.22 – 5.06 (m, 2H), 3.80 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.5, 156.8, 139.2, 136.5, 131.9, 131.7(2C), 128.6(2C), 128.3, 128.2(2C), 128.0(2C), 127.1, 122.1, 121.5, 120.8, 118.4, 116.9, 113.5, 102.5, 67.2, 52.0, 49.0.

HRMS [M+Na]⁺ calculated for C₂₅H₂₁N₂O₄BrNa 515.0582 found 515.0576.

 $[\alpha]^{25}_{\mathbf{D}} = 13.7 \ (c = 0.26, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 2.5% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 21.5 min (major), 25.2 min (minor).

$\label{eq:methyl} \begin{tabular}{ll} Methyl (R)-3-((((benzyloxy)carbonyl)amino)(4-(trifluoromethyl)phenyl)methyl)indolizine-2-carboxylate 7e \end{tabular}$

The product was prepared according to the **General Procedure C** (reaction time = 216 h). Additional 5% of catalyst were added over 8 days. Purification by Flash chromatography (90:10 hexane/dichloromethane to 80:20 hexane/dichloromethane + 0.25% Et₃N). (13 mg, 22% of indolizine **1a** recovered).

Colorless oil, 100 mg, 61% yield, 93% e.e..

¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (d, J = 7.2 Hz, 1H), 7.64 (d, J = 9.1 Hz, 1H), 7.51 (d, J = 8.2 Hz, 2H), 7.45 – 7.27 (m, 8H), 6.94 (s, 1H), 6.84 (d, J = 9.6 Hz, 1H), 6.76 (dd, J = 9.1, 6.4 Hz, 1H), 6.70 – 6.61 (m, 1H), 5.24 – 5.07 (m, 2H), 3.79 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.5, 156.9, 144.2, 136.5, 132.0, 129.8, 128.7(2C), 128.32, 128.28(2C), 126.9, 126.5(2C), 125.6(2C), 124.2, 122.0, 120.9, 118.5, 117.0, 113.6, 102.6, 67.3, 52.0, 49.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.54.

HRMS $[M+Na]^+$ calculated for $C_{26}H_{21}N_2O_4F_3Na$ 505.1351 found 505.1355.

 $[\alpha]^{25}_{\mathbf{D}} = 11.5 \ (c = 0.25, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 5.0% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 17.9 min (minor), 20.2 min (major).

Methyl (R)-3-((((benzyloxy)carbonyl)amino)(4-cyanophenyl)methyl)indolizine-2-carboxylate 7f

The product was prepared according to the **General Procedure C** (reaction time = 144 h). Purification by Flash chromatography (85:15 hexane/dichloromethane to 70:30 hexane/dichloromethane + 0.25% Et₃N). (29 mg, 48% of indolizine **1a** recovered).

Colorless oil, 63 mg, 42% yield, 92% e.e..

¹**H NMR** (400 MHz, CDCl₃) δ 8.10 (d, J = 7.3 Hz, 1H), 7.60 – 7.49 (m, 3H), 7.43 (d, J = 9.1 Hz, 1H), 7.39 – 7.30 (m, 5H), 7.26 (d, J = 8.2 Hz, 2H), 6.93 (s, 1H), 6.83 (d, J = 9.6 Hz, 1H), 6.77 (dd, J = 9.1, 6.5 Hz, 1H), 6.72 – 6.62 (m, 1H), 5.23 – 5.06 (m, 2H), 3.77 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.4, 156.9, 145.6, 136.3, 132.4(2C), 132.1, 128.7(2C), 128.4, 128.3(2C), 126.9(2C), 126.5, 121.9, 120.9, 118.8, 118.7, 117.0, 113.7, 111.4, 102.6, 67.4, 52.0, 49.0.

HRMS $[M+H]^+$ calculated for $C_{26}H_{22}N_3O_4$ 440.1610 found 440.1613.

 $[\alpha]^{25}_{\mathbf{D}} = 36.1 \ (c = 0.29, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALPAK AD-H column; 30% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 29.7 min (minor), 34.7 min (major).

Methyl (R)-3-((((benzyloxy)carbonyl)amino)(4-nitrophenyl)methyl)indolizine-2-carboxylate 7g

The product was prepared according to the **General Procedure C** (reaction time = 192 h (96 h at r.t. and 96 h at 40 °C)). Additional 5% of catalyst were added over 8 days. Purification by Flash chromatography (90:10 hexane/dichloromethane to 80:20 hexane/dichloromethane + 0.25% Et₃N). (10 mg, 17% of indolizine **1a** recovered).

Colorless oil, 100 mg, 64% yield, 92% e.e..

¹**H NMR** (400 MHz, CDCl₃) δ 8.18 – 8.05 (m, 3H), 7.57 (d, J = 9.6 Hz, 1H), 7.44 (d, J = 9.1 Hz, 1H), 7.41 – 7.27 (m, 7H), 6.94 (s, 1H), 6.87 (d, J = 9.6 Hz, 1H), 6.78 (dd, J = 9.1, 6.4 Hz, 1H), 6.73 – 6.63 (m, 1H), 5.26 – 5.06 (m, 2H), 3.78 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.4, 156.9, 147.6, 147.3, 136.3, 132.1, 128.7(2C), 128.4, 128.3(2C), 127.0(2C), 126.5, 123.8(2C), 121.9, 120.9, 118.7, 117.0, 113.8, 102.6, 67.5, 52.0, 48.9.

HRMS [M+Na]⁺ calculated for C₂₅H₂₁N₃O₆Na 482.1328 found 482.1333.

 $[\alpha]^{25}_{\mathbf{D}} = 49.6 \ (c = 0.25, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALCEL OD-H column; 20.0% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 20.4 min (major), 25.4 min (minor).

Methyl (R)-3-((((benzyloxy)carbonyl)amino)(2-fluorophenyl)methyl)indolizine-2-carboxylate 7h

The product was prepared according to the **General Procedure C** (reaction time = 192 h). Purification by Flash chromatography (95:05 hexane/dichloromethane to 90:10 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 142 mg, 97% yield, 93% e.e..

¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (d, J = 7.2 Hz, 1H), 7.90 (d, J = 9.0 Hz, 1H), 7.59 – 7.52 (m, 1H), 7.42 – 7.27 (m, 6H), 7.23 – 7.16 (m, 1H), 7.12 – 7.04 (m, 1H), 7.00 – 6.92 (m, 2H), 6.87 (s, 1H), 6.73 (dd, J = 9.0, 6.4 Hz, 1H), 6.69 – 6.62 (m, 1H), 5.19 – 5.07 (m, 2H), 3.84 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.8, 160.5, 156.3, 136.6, 131.7, 129.2, 128.6(2C), 128.5, 128.22, 128.17(2C), 127.0, 126.8, 124.1, 122.8, 120.5, 118.3, 116.6, 115.4, 113.0, 102.4, 67.1, 52.0, 44.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -116.53.

HRMS [M+ Na]⁺ calculated for C₂₅H₂₁FN₂O₄Na 455.1383 found 455.1378.

 $[\alpha]^{25}_{\mathbf{D}} = 36.4 \ (c = 0.25, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 5.0% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 17.6 min (major), 21.8 min (minor).

Methyl (R)-3-(((benzyloxy)carbonyl)amino)(2-chlorophenyl)methyl)indolizine-2-carboxylate 7i

The product was prepared according to the **General Procedure C** (reaction time = 192 h). Purification by Flash chromatography (90:10 hexane/dichloromethane to 80:20 hexane/dichloromethane + 0.25% Et₃N).

Semisolid, 137 mg, 90% yield, 95% e.e..

¹**H NMR** (400 MHz, CDCl₃) δ 8.19 (d, J = 7.3 Hz, 1H), 7.53 (dd, J = 9.0, 2.1 Hz, 1H), 7.45 – 7.27 (m, 8H), 7.23 – 7.14 (m, 2H), 6.92 (d, J = 9.8 Hz, 1H), 6.88 (s, 1H), 6.74 (dd, J = 9.0, 6.4 Hz, 1H), 6.69 – 6.61 (m, 1H), 5.22 – 5.06 (m, 2H), 3.80 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.6, 156.2, 136.7, 136.6, 133.7, 131.7, 129.9, 129.3, 128.9, 128.6(2C), 128.13, 128.09(2C), 126.6, 126.4, 122.9, 120.5, 118.3, 117.3, 113.0, 102.3, 67.1, 51.9, 47.8.

HRMS [M+Na]⁺ calculated for C₂₅H₂₁ClN₂O₄Na 471.1088 found 471.1093.

$$[\alpha]^{25}_{\mathbf{D}} = -17.1 \ (c = 0.27, \text{CH}_2\text{Cl}_2).$$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 5.0% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 17.9 min (major), 21.9 min (minor).

Methyl (R)-3-((((benzyloxy)carbonyl)amino)(2-bromophenyl)methyl)indolizine-2-carboxylate 7j

The product was prepared according to the **General Procedure C** (reaction time = 144 h). Purification by Flash chromatography (90:10 hexane/dichloromethane to 80:20 hexane/dichloromethane + 0.25% Et₃N).

Semisolid, 156 mg, 93% yield, 94% e.e..

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, J = 7.2 Hz, 1H), 7.54 (dd, J = 9.0, 1.3 Hz, 1H), 7.49 (dd, J = 7.9, 1.7 Hz, 1H), 7.43 – 7.18 (m, 8H), 7.10 (ddd, J = 7.9, 7.6 Hz, 1.7 Hz, 1H), 6.89 (s, 1H), 6.85 (d, J = 9.8 Hz, 1H), 6.74 (dd, J = 9.0, 6.4 Hz, 1H), 6.69 – 6.61 (m, 1H), 5.23 – 5.06 (m, 2H), 3.80 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.5, 156.1, 138.1, 136.6, 133.3, 131.7, 129.7, 129.2, 128.5(2C), 128.1, 128.0(2C), 127.2, 126.3, 123.9, 123.0, 120.5, 118.4, 117.4, 113.0, 102.3, 67.0, 51.9, 50.2.

HRMS $[M+H]^+$ calculated for $C_{25}H_{22}N_2O_4Br$ 493.0763 found 493.0765.

$$[\alpha]^{25}_{\mathbf{D}} = -60.2 \ (c = 0.25, \text{CH}_2\text{Cl}_2).$$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 5.0% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 21.2 min (major), 25.9 min (minor).

Methyl (R)-3-((((benzyloxy)carbonyl)amino)(thiophen-2-yl)methyl)indolizine-2-carboxylate 7k

The product was prepared according to the **General Procedure C** (reaction time = 24 h). Purification by Flash chromatography (90:10 hexane/dichloromethane to 80:20 hexane/dichloromethane + 0.25% Et₃N).

Colorless oil, 136 mg, 95% yield, 88% e.e..

¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (d, J = 7.3 Hz, 1H), 7.91 (d, J = 9.6 Hz, 1H), 7.45 – 7.27 (m, 6H), 7.17 (d, J = 5.1 Hz, 1H), 7.00 (d, J = 9.5 Hz, 1H), 6.95 (s, 1H), 6.87 (dd, J = 5.1, 3.6 Hz, 1H), 6.78 – 6.68 (m, 2H), 6.66 – 6.56 (m, 1H), 5.25 – 5.08 (m, 2H), 3.85 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.5, 156.4, 144.2, 136.5, 131.8, 128.5(2C), 128.1(3C), 126.9, 126.8, 125.0, 124.6, 122.3, 120.6, 118.4, 116.9, 113.3, 102.4, 67.1, 52.0, 46.4.

HRMS $[M+Na]^+$ calculated for $C_{23}H_{20}N_2O_4SNa$ 443.1041 found 443.1040.

$$[\alpha]^{25}_{\mathbf{D}} = -55.2 \ (c = 0.25, \text{CH}_2\text{Cl}_2).$$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 10% PrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 11.4 min (major), 18.7 min (minor).

Methyl (R)-3-((((benzyloxy)carbonyl)amino)(phenyl)methyl)-8-fluoroindolizine-2-carboxylate 7l

The product was prepared according to the **General Procedure C** (reaction time = 192 h (96 h at r.t. and 96 h at 40 °C)). Additional 5% of **B1** catalyst were added over 8 days. Purification by Flash chromatography (90:10 hexane/dichloromethane + 0.25% Et_3N). (23 mg, 35% of indolizine **1d** recovered).

Colorless oil, 93 mg, 63% yield, 82% e.e..

¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (d, J = 7.2 Hz, 1H), 7.65 (d, J = 9.6 Hz, 1H), 7.44 – 7.22 (m, 8H), 7.19 (d, J = 7.2 Hz, 2H), 7.13 (s, 1H), 6.83 (d, J = 9.6 Hz, 1H), 6.60 – 6.49 (m, 1H), 6.43 (dd, J = 10.2, 7.2 Hz, 1H), 5.26 – 5.08 (m, 2H), 3.81 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.0, 156.8, 155.1, 139.5, 136.6, 129.7, 128.7(2C), 128.6(2C), 128.19, 128.18(2C), 127.7, 126.1(2C), 124.4, 118.7, 117.2, 112.3, 100.3, 100.2, 67.2, 52.0, 49.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -124.21.

HRMS [M+Na]⁺ calculated for C₂₅H₂₁FN₂O₄Na 455.1383 found 455.1385.

 $[\alpha]^{25}_{\mathbf{D}} = -17.8 \ (c = 0.29, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 10.0% ⁱPrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 8.5 min (major), 12.2 min (minor).

Methyl (R)-3-((((benzyloxy)carbonyl)amino)(4-bromophenyl)methyl)-7-chloroindolizine-2-carboxylate 7m

The product was prepared according to the **Procedure E** (reaction time = 72 h). Purification by Flash chromatography (90:10 hexane/ethyl acetate to 80:20 hexane/ethyl acetate + 0.25% Et₃N).

Colorless oil, 80 mg, 38% yield, 26% e.e..

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, J = 7.7 Hz, 1H), 7.55 (d, J = 9.8 Hz, 1H), 7.45 – 7.28 (m, 8H), 7.02 (d, J = 8.5 Hz, 2H), 6.87 (s, 1H), 6.70 (d, J = 9.8 Hz, 1H), 6.57 (d, J = 7.7 Hz, 1H), 5.23 – 5.05 (m, 2H), 3.79 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.0, 156.8, 138.7, 136.4, 131.7(2C), 131.4, 128.6(2C), 128.3, 128.2(2C), 127.9(2C), 127.7, 124.8, 122.9, 121.6, 118.9, 117.8, 114.9, 102.3, 67.3, 52.1, 49.0.

HRMS [M+Na]⁺ calculated for C₂₅H₂₀N₂O₄ClBrNa 549.0193 found 549.0196.

HPLC analysis of the product: Daicel CHIRALPAK IC column; 10.0% PrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 8.2 min (major), 10.9 min (minor).

Methyl (R)-3-((((benzyloxy)carbonyl)amino)(2-bromophenyl)methyl)-1-(2,2,2-trifluoroacetyl)indolizine-2-carboxylate 8

Under argon atmosphere at room temperature, **7j** (49.3 mg, 0.1 mmol) was dissolved in dichloromethane (2.0 mL), which was added $^i\text{Pr}_2\text{NEt}$ (34.8 μL , 0.2 mmol). Then, TFAA (26.5 μL , 0.19 mmol) was added dropwise to the reaction mixture, which was further stirred at room temperature for 24 h. Another portions of $^i\text{Pr}_2\text{NEt}$ (34.8 μL , 0.2 mmol) and TFAA (26.5 μL , 0.19 mmol) were added again to the reaction mixture, which was stirred for another 24 h. After the completion of the reaction indicated by TLC, the solvent was removed under reduced pressure, and the residue was purified by flash chromatography (80:20 hexane/dichloromethane + 0.25% Et₃N) to give the product **8**.

Colorless oil, 47 mg, 80% yield, 93% e.e..

¹**H NMR** (400 MHz, CDCl₃) δ 8.32 (d, J = 6.9 Hz, 1H), 8.29 (d, J = 9.3 Hz, 1H), 7.55 (d, J = 7.9 Hz, 1H), 7.51 (d, J = 7.9 Hz, 1H), 7.45 – 7.28 (m, 7H), 7.23 – 7.15 (m, 1H), 7.11 – 7.02 (m, 1H), 6.69 (d, J = 9.3 Hz, 1H), 6.02 (d, J = 9.3 Hz, 1H), 5.23 – 5.08 (d, J = 2.4 Hz, 2H), 3.50 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 174.6, 166.4, 155.7, 137.2, 136.2, 136.0, 133.4, 130.0, 129.2, 128.7(2C), 128.5, 128.3(2C), 127.6, 127.5, 127.1, 124.8, 124.1, 122.3, 120.4, 116.8, 115.9, 105.3, 67.7, 52.6, 50.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -73.58.

HRMS $[M+Na]^+$ calculated for $C_{27}H_{20}F_3BrN_2O_5Na$ 611.0405 found 611.0397.

 $[\alpha]^{25}_{\mathbf{D}} = 50.7 \ (c = 0.25, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 10.0% PrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 12.8 min (major), 16.5 min (minor).

(R)-3-((((benzyloxy)carbonyl)amino)(2-bromophenyl)methyl)indolizine-2-carboxylic acid 9

To a solution of 7j (49.3 mg, 0.1 mmol) in THF (4 mL) and MeOH (4 mL) was added LiOH (33.5 mg, 1.4 mmol) in water (1 mL). After 5h of stirring at 70 °C, the solvent was completely evaporated under reduced pressure and the resulting residue was neutralized with 1M HCl to pH = 2-3). The solution was extracted with EtOAc (10 mL × 3), dried over Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography (50:50 hexane/dichloromethane to 100% dichloromethane + 0.25% Et₃N) to give the product 9.

Colorless oil, 41 mg, 86% yield, 94% e.e..

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (d, J = 7.3 Hz, 1H), 7.51 (d, J = 7.9 Hz, 1H), 7.47 – 7.37 (m, 2H), 7.36 – 7.27 (m, 5H), 7.23 – 7.13 (m, 1H), 7.11 – 7.03 (m, 1H), 6.98 (d, J = 9.7 Hz, 1H), 6.94 (s, 1H), 6.83 (d, J = 9.7 Hz, 1H), 6.78 – 6.62 (m, 2H), 5.23 – 5.01 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 170.2, 156.1, 137.7, 136.5, 133.4, 131.9, 129.7, 129.3, 128.6(2C), 128.3, 128.2(2C), 127.2, 127.1, 123.9, 123.1, 120.7, 118.6, 116.4, 113.4, 103.2, 67.3, 50.1.

HRMS [M+Na]⁺ calculated for C₂₄H₁₉BrN₂O₄Na 501.0426 found 501.0425.

 $[\alpha]^{25}_{\mathbf{D}} = -74.8 \ (c = 0.26, \text{CH}_2\text{Cl}_2).$

HPLC analysis of the product: Daicel CHIRALPAK IC column; 5.0% PrOH in hexanes; 1.0 mL/min; $\lambda = 254$ nm; retention times: 20.4 min (major), 38.2 min (minor).

4. Synthesis of N-Boc aminals

4.1. General procedure F for synthesis of N-Boc aminals

CHO +
$$H_2N$$
 O TFA

Acetic anhydride

2

The *N*-Boc-protected aminals **2** were synthesized according to the procedure in the literature.⁴ Aldehyde (1 equiv.) and *tert*-butyl carbamate (1.67 equiv.) were added into acetic anhydride (0.2 mL/1 mmol of aldehyde). To this suspension was added trifluoroacetic acid (0.08 equiv.), and the mixture was stirred at room temperature until the product was solidified in acetic anhydride solvent as white solid. Then, it was filtered in vacuum, and washed several times with hexane. The *N*-Boc-protected aminals **2** were obtained as a white powder.

4.2. General procedure G for synthesis of N-Cbz aminals

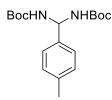
CHO
$$_{+}$$
 $_{+}$ $_{2}$ N $_{-}$ O $_{-}$ $_$

The *N*-Cbz-protected aminals **5** were synthesized according to the procedure in the literature.⁴ Aldehyde (1.0 equiv.) and benzyl carbamate (2.1 equiv.) were added into acetic anhydride (1 mL/3.33 mmol of aldehyde). To this suspension was added trifluoroacetic acid (0.1 equiv.), and the mixture was stirred at room temperature until the product was solidified in acetic anhydride solvent as white solid. Toluene was then added, and the product was collected by filtration. The white solid was washed two times with toluene and hexane, and recrystallized from toluene to give *N*-Cbz-protected aminals **5** was obtained as a white powder.

4.3. N-Boc aminals

di-tert-butyl (phenylmethylene)dicarbamate 2a

Following the **general procedure F** using benzaldehyde (5.77 mL, 56.54 mmol), *tert*-butyl carbamate (11.01 g, 93.98 mmol) and trifluoroacetic acid (357 μ L, 4.66 mmol) under stirring for 24 h in acetic anhydride (12.9 mL) solution, the *N*-Boc aminal was obtained as a white powder (6.82 g, 21.144 mmol, 45%).


¹**H NMR** (400 MHz, CDCl3) δ 7.42–7.27 (m, 5H), 6.10 (t, J = 8.0 Hz, 1H), 5.44 (bs, 2H), 1.44 (s, 18H).

¹³C NMR (101 MHz, CDCl3) δ 154.9(2C), 140.0, 128.7(2C), 128.1, 125.9(2C), 80.3(2C), 61.8, 28.4(6C).

HRMS [M+Na]⁺ calculated for C₁₇H₂₆N₂O₄Na 345.1790 found 345.1793.

m.p. 153-155 °C.

${\bf di-}tert{\bf -}{\bf butyl}\;(p{\bf -}{\bf tolylmethylene}){\bf dicarbamate}\;{\bf 2b}$

Following the **general procedure F** using 4-methylbenzaldehyde (2.0 g, 16.65 mmol), *tert*-butyl carbamate (3.25 g, 27.80 mmol) and trifluoroacetic acid (105 μ L, 1.38 mmol) under stirring for 46 h in acetic anhydride (3.8 mL) solution, the *N*-Boc aminal was obtained as a white powder (2.43 g, 7.23 mmol, 52%).

¹**H NMR** (400 MHz, CDCl3) δ 7.27 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 6.07 (t, J = 8.0 Hz, 1H), 5.38 (bs, 2H), 2.33 (s, 3H), 1.44 (s, 18H).

¹³C NMR (101 MHz, CDCl3) δ 154.9(2C), 137.7, 137.0, 129.3(2C), 125.8(2C), 80.1(2C), 61.6, 28.4(6C), 21.1.

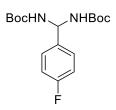
HRMS $[M+Na]^+$ calculated for $C_{18}H_{28}N_2O_4Na$ 359.1947 found 359.1951.

m.p. 135-136 °C.

di-tert-butyl ((4-(trifluoromethyl)phenyl)methylene)dicarbamate 2c

Following the **general procedure F** using 4-(Trifluoromethyl)benzaldehyde (5.00 g, 28.72 mmol), tert-butyl carbamate (5.62 g, 47.96 mmol) and trifluoroacetic acid (177 μ L, 2.31 mmol) under stirring for 18 h in acetic anhydride (6.5 mL) solution, the *N*-Boc aminal was obtained as a white powder (6.86 g, 17.57 mmol, 73 %).

¹**H NMR** (500 MHz, CDCl₃) δ 7.59 (d, J = 8.2 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 6.14 – 6.03 (m, 1H), 5.82 (bs, 2H), 1.43 (s, 18H).


¹³C NMR (126 MHz, CDCl₃) δ 155.0(2C), 143.9, 130.3, 126.4(2C), 125.6(2C), 124.2, 80.7(2C), 61.3, 28.4(6C).

¹⁹**F NMR** (470 MHz, CDCl₃) δ -62.60.

HRMS $[M+Na]^+$ calculated for $C_{18}H_{25}N_2O_4F_3Na$ 413.1664 found 413.1665.

m.p. 154-155 °C.

di-tert-butyl ((4-fluorophenyl)methylene)dicarbamate 2d

Following the **general procedure F** using 4-fluorobenzaldehyde (2.50 g, 20.14 mmol), *tert*-butyl carbamate (3.94 g, 33.64 mmol) and trifluoroacetic acid (128 μ L, 1.67 mmol) under stirring for 2 h in acetic anhydride (4.7 mL) solution, the *N*-Boc aminal was obtained as a white powder (3.25 g, 9.55 mmol, 57%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.36 (dd, J = 8.4, 5.2 Hz, 2H), 7.06 – 6.98 (m, 2H), 6.04 (t, J = 8.0 Hz, 1H), 5.59 (bs, 2H), 1.43 (s, 18H).

¹³C NMR (126 MHz, CDCl₃) δ 162.5, 154.9(2C), 135.8, 127.7, 115.5, 80.5(2C), 61.3, 28.4(6C).

¹⁹**F NMR** (470 MHz, CDCl₃) δ -114.89.

HRMS [M+Na]⁺ calculated for C₁₇H₂₅N₂O₄FNa 363.1696 found 363.1697.

m.p. 138-139 °C.

di-tert-butyl ((4-chlorophenyl)methylene)dicarbamate 2e

Following the **general procedure F** using 4-chlorobenzaldehyde (5.00 g, 35.57 mmol), *tert*-butyl carbamate (6.96 g, 59.40 mmol) and trifluoroacetic acid (227 μ L, 2.97 mmol) under stirring for 5 h in acetic anhydride (8.2 mL) solution, the *N*-Boc aminal was obtained as a white powder (6.66 g, 18.66 mmol, 63%).

¹**H NMR** (200 MHz, CDCl₃) δ 7.46 – 7.15 (m, 4H), 6.02 (t, J = 8.0 Hz, 1H), 5.68 (bs, 2H), 1.43 (s, 18H).

¹³C NMR (50 MHz, CDCl₃) δ 154.9(2C), 138.5, 133.8, 128.7(2C), 127.4(2C), 80.5(2C), 61.2, 28.4(6C).

HRMS $[M+Na]^+$ calculated for $C_{17}H_{25}N_2O_4ClNa$ 379.1401 found 379.1402.

m.p. 158-159 °C.

di-tert-butyl ((4-bromophenyl)methylene)dicarbamate 2f

Following the **general procedure F** using 4-bromobenzaldehyde (2.5 g, 13.51 mmol), *tert*-butyl dicarbamate (2.65 g, 22.57 mmol) and trifluoroacetic acid (85 μ L, 1.12 mmol) under stirring for 28 h in acetic anhydride (3.1 mL) solution, the *N*-Boc aminal was obtained as a white powder (3.14 g, 7.83 mmol, 69%).

¹**H NMR** (400 MHz, CDCl3) δ 7.47 (d, J = 8.5 Hz, 2H), 7.28 (d, J = 8.5 Hz, 2H), 6.02 (t, J = 8.0 Hz, 1H), 5.63 (bs, 2H), 1.44 (s, 18H).

¹³C NMR (101 MHz, CDCl3) δ 154.9, 139.1, 131.7, 127.8, 122.0, 80.5, 61.3, 28.4.

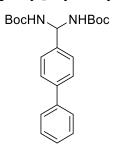
HRMS $[M+Na]^+$ calculated for $C_{17}H_{25}N_2O_4BrNa$ 423.0895 found 423.0899.

m.p. 156-157 °C.

di-tert-butyl ((4-iodophenyl)methylene)dicarbamate 2g

Following the **general procedure F** using 4-Iodobenzaldehyde (3.50 g, 15.09 mmol), *tert*-butyl carbamate (2.95 g, 25.19 mmol) and trifluoroacetic acid (95 μ L, 1.25 mmol) under stirring for 3 h in acetic anhydride (3.5 mL) solution, the *N*-Boc aminal was obtained as a white powder (3.93 g, 8.76 mmol, 70%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.66 (d, J = 8.2 Hz, 2H), 7.13 (d, J = 8.2 Hz, 2H), 6.07 – 5.91 (m, 1H), 5.66 (bs, 2H), 1.43 (s, 18H).


¹³C NMR (126 MHz, CDCl₃) δ 155.0(2C), 139.7, 137.7(2C), 128.0(2C), 93.7, 80.6(2C), 61.3, 28.4(6C).

¹⁹**F NMR** (470 MHz, CDCl₃) δ -62.60.

HRMS [M+Na]⁺ calculated for C₁₇H₂₅N₂O₄INa 471.0757 found 471.0763.

m.p. 154-155 °C.

di-tert-butyl ([1,1'-biphenyl]-4-ylmethylene)dicarbamate 2h

Following the **general procedure F** using biphenyl-4-carboxaldehyde (4.00 g, 21.95 mmol), *tert*-butyl carbamate (4.29 g, 36.66 mmol) and trifluoroacetic acid (136 μ L, 1.78 mmol) under stirring for 2 h in acetic anhydride (5.0 mL) solution, the *N*-Boc aminal was obtained as a white powder (5.67 g, 14.24 mmol, 78%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.61 – 7.55 (m, 4H), 7.49 – 7.41 (m, 4H), 7.35 (t, J = 7.4 Hz, 1H), 6.15 (t, J = 8.1 Hz, 1H), 5.63 (bs, 2H), 1.46 (s, 18H).

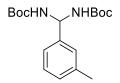
¹³C NMR (126 MHz, CDCl₃) δ 155.0(2C), 141.0, 140.7, 138.9, 128.9(2C), 127.5, 127.4(2C), 127.2(2C), 126.4(2C), 80.3(2C), 61.6, 28.5(6C).

HRMS $[M+Na]^+$ calculated for $C_{23}H_{30}N_2O_4Na$ 421.2103 found 421.2108.

m.p. 170-171 °C.

di-tert-butyl ((4-methoxyphenyl)methylene)dicarbamate 2i

Following the **general procedure F** using 4-methoxybenzaldehyde (3.0 g, 22.03 mmol), *tert*-butyl carbamate (4.31 g, 36.79 mmol) and trifluoroacetic acid (139 μ L, 1.82 mmol) under stirring for 24 h in acetic anhydride (5.0 mL) solution, the *N*-Boc aminal was obtained as a white powder (2.92 g, 8.29 mmol, 45%).


¹**H NMR** (400 MHz, CDCl3) δ 7.30 (d, J = 8.3 Hz, 2H), 6.87 (d, J = 8.3 Hz, 2H), 6.05 (t, J = 7.9 Hz, 1H), 5.38 (bs, 2H), 3.79 (s, 3H), 1.44 (s, 18H).

¹³C NMR (50 MHz, CDCl3) δ 159.3, 154.9(2C), 132.1, 127.1(2C), 114.0(2C), 80.2(2C), 61.5, 55.4, 28.4(6C).

HRMS $[M+Na]^+$ calculated for $C_{18}H_{28}N_2O_5Na$ 375.1896 found 375.1899.

m.p. 134-135 °C.

di-tert-butyl (m-tolylmethylene)dicarbamate 2j

Following the **general procedure F** using 3-methylbenzaldehyde (4.0 g, 33.29 mmol), *tert*-butyl carbamate (6.51 g, 55.60 mmol) and trifluoroacetic acid (210 μ L, 2.76 mmol) under stirring for 24 h in acetic anhydride (7.6 mL) solution, the *N*-Boc aminal was obtained as a white powder (7.75 g, 23.05 mmol, 83%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.14 (m, 3H), 7.09 (d, J = 7.3 Hz, 1H), 6.07 (t, J = 8.0 Hz, 1H), 5.48 (bs, 2H), 2.34 (s, 3H), 1.44 (s, 18H).

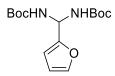
¹³C NMR (101 MHz, CDCl₃) δ 154.9(2C), 139.9, 138.3, 128.8, 128.6, 126.7, 122.9, 80.2(2C), 61.8, 28.4(6C), 21.6.

HRMS $[M+Na]^+$ calculated for $C_{18}H_{28}N_2O_4Na$ 359.1947 found 359.1949.

m.p. 161-162 °C.

di-tert-butyl ((3-bromophenyl)methylene)dicarbamate 2k

Following the **general procedure F** using 3-bromobenzaldehyde (3.80 g, 20.53 mmol), *tert*-butyl carbamate (4.02 g, 34.29 mmol) and trifluoroacetic acid (131 µL, 1.71 mmol) under stirring for 2 h in acetic anhydride (4.7 mL) solution, the *N*-Boc aminal was obtained as a white powder (5.71 g, 14.23 mmol, 83%).


¹**H NMR** (200 MHz, CDCl₃) δ 7.62 – 7.11 (m, 4H), 6.03 (t, J = 8.0 Hz, 1H), 5.60 (bs, 1H), 1.44 (s, 18H).

¹³C NMR (50 MHz, CDCl₃) δ 154.9(2C), 142.3, 131.1, 130.2, 129.2, 124.7, 122.8, 80.6(2C), 61.1, 28.4(6C).

HRMS [M+Na]⁺ calculated for C₁₇H₂₅N₂O₄BrNa 423.0895 found 423.0895.

m.p. 148-149 °C.

di-tert-butyl (furan-2-ylmethylene)dicarbamate 2l

Following the **general procedure F** using 2-furaldehyde (2.0 g, 20.81 mmol), *tert*-butyl carbamate (4.07 g, 34.76 mmol) and trifluoroacetic acid (134 μ L, 1.75 mmol) under stirring for 2 h in acetic anhydride (4.8 mL) solution, the *N*-Boc aminal was obtained as a white powder (4.06 g, 13.01 mmol, 75%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.34 (bs, 1H), 6.32 (dd, J = 3.3, 1.8 Hz, 1H), 6.28 (d, J = 3.3 Hz, 1H), 6.11 (t, J = 8.5 Hz, 1H), 5.57 (bs, 2H), 1.44 (s, 18H).

¹³C NMR (126 MHz, CDCl₃) δ 154.6(2C), 151.9, 142.3, 110.6, 106.8, 80.5(2C), 56.9, 28.4(6C).

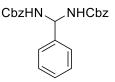
HRMS [M+Na]⁺ calculated for C₁₅H₂₄N₂O₅Na 335.1583 found 335.1586.

m.p. 146-147 °C.

di-tert-butyl (thiophen-2-ylmethylene)dicarbamate 2m

Following the **general procedure F** using 2-thiophenecarboxaldehyde (2.00 g, 17.83 mmol), *tert*-butyl carbamate (3.49 g, 29.78 mmol) and trifluoroacetic acid (114 μ L, 1.49 mmol) under stirring for 8 h in acetic anhydride (4.1 mL) solution, the *N*-Boc aminal was obtained as a white powder (2.01 g, 6.12 mmol, 41%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.21 (d, J = 4.7 Hz, 1H), 7.01 – 6.90 (m, 2H), 6.31 – 6.21 (m, 1H), 5.72 (bs, 2H), 1.45 (s, 18H).


¹³C NMR (126 MHz, CDCl₃) δ 154.7(2C), 144.6, 127.1, 125.2, 124.5, 80.5(2C), 58.9, 28.4(6C).

HRMS $[M+Na]^+$ calculated for $C_{15}H_{24}N_2O_4SNa$ 351.1354 found 351.1355.

m.p. 133-134 °C.

4.4. N-Cbz aminals

dibenzyl (phenylmethylene)dicarbamate 5a

Following the **general procedure G** using benzaldehyde (4.08 mL, 40.00 mmol), benzyl carbamate (12.70 g, 84.00 mmol) and trifluoroacetic acid (306 μ L, 4.00 mmol) under stirring for 20 h in acetic anhydride (12.0 mL) solution, the *N*-Cbz aminal was obtained as a white powder (14.02 g, 35.91 mmol, 90% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.21 (m, 15H), 6.29 (t, J = 8.0 Hz, 1H), 5.80 (bs, 2H), 5.12 (d, J = 2.6 Hz, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 155.5(2C), 138.9, 136.2(2C), 128.9(2C), 128.7(4C), 128.4, 128.3(4C), 128.3(2C), 125.9(2C), 67.2(2C), 62.2.

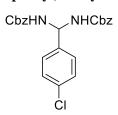
HRMS [M+Na]⁺ calculated for C₂₃H₂₂N₂O₄Na 413.1477 found 413.1470.

m.p. 174-175 °C.

dibenzyl ((4-fluorophenyl)methylene)dicarbamate 5b

Following the **general procedure G** using 4-fluorobenzaldehyde (1.24 mL, 10.00 mmol), benzyl carbamate (3.17 g, 21.00 mmol) and trifluoroacetic acid (77 μ L, 1.00 mmol) under stirring for 1 h in acetic anhydride (3.0 mL) solution, the *N*-Cbz aminal was obtained as a white powder (1.63 g, 3.99 mmol, 40% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 (s, 12H), 7.05 – 6.95 (m, 2H), 6.24 (t, J = 8.0 Hz, 1H), 5.97 (bs, 2H), 5.17 – 5.03 (m, 4H).


¹³C NMR (101 MHz, CDCl₃) δ 162.7, 155.5(2C), 136.1(2C), 134.8, 128.7(4C), 128.4(2C), 128.3(4C), 127.8(2C), 115.7(2C), 67.3(2C), 61.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.02.

HRMS [M+Na]⁺ calculated for C₂₃H₂₁N₂O₄FNa 431.1383 found 431.1376.

m.p. 189-190 °C.

dibenzyl ((4-chlorophenyl)methylene)dicarbamate 5c

Following the **general procedure G** using 4-chlorobenzaldehyde (2.11 g, 15.00 mmol), benzyl carbamate (4.76 g, 31.50 mmol) and trifluoroacetic acid (115 μ L, 1.50 mmol) under stirring for 1 h in acetic anhydride (4.5 mL) solution, the *N*-Cbz aminal was obtained as a white powder (1.63 g, 8.71 mmol, 58% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.27 (m, 14H), 6.21 (t, J = 8.0 Hz, 1H), 5.92 (bs, 2H), 5.16 – 5.06 (m, 4H).

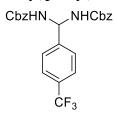
¹³C NMR (101 MHz, CDCl₃) δ 155.5(2C), 137.5, 136.0(2C), 134.4, 129.0(2C), 128.7(4C), 128.5(2C), 128.3(4C), 127.4(2C), 67.4(2C), 61.7.

HRMS [M+Na]⁺ calculated for C₂₃H₂₁N₂O₄ClNa 447.1088 found 447.1089.

m.p. 190-191 °C.

dibenzyl ((4-bromophenyl)methylene)dicarbamate 5d

Following the **general procedure G** using 4-bromobenzaldehyde (2.78 g, 15.03 mmol), benzyl carbamate (4.76 g, 31.50 mmol) and trifluoroacetic acid (115 μ L, 1.50 mmol) under stirring for 24 h in acetic anhydride (4.5 mL) solution, the *N*-Cbz aminal was obtained as a white powder (4.16 g, 8.86 mmol, 59% yield).


¹**H NMR** (400 MHz, CDCl₃) δ 7.46 (d, J = 8.1 Hz, 2H), 7.42 – 7.19 (m, 12H), 6.18 (t, J = 8.0 Hz, 1H), 5.88 (bs, 2H), 5.18 – 5.05 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 155.5(2C), 138.0, 136.0(2C), 132.0(2C), 128.7(4C), 128.5(2C), 128.3(4C), 127.8(2C), 122.5, 67.4(2C), 61.8.

HRMS $[M+Na]^+$ calculated for $C_{23}H_{21}N_2O_4BrNa$ 491.0582 found 491.0583.

m.p. 191-192 °C.

dibenzyl ((4-(trifluoromethyl)phenyl)methylene)dicarbamate 5e

Following the **general procedure G** using 4-(trifluoromethyl)benzaldehyde (1.74 g, 10.00 mmol), benzyl carbamate (3.17 g, 21.00 mmol) and trifluoroacetic acid (77 μ L, 1.00 mmol) under stirring for 24 h in acetic anhydride (3.0 mL) solution, the *N*-Cbz aminal was obtained as a white powder (4.48 g, 9.77 mmol, 98% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.59 (d, J = 8.2 Hz, 2H), 7.50 (d, J = 8.2 Hz, 2H), 7.42 – 7.19 (m, 10H), 6.25 (t, J = 7.9 Hz, 1H), 6.04 (bs, 2H), 5.19 – 5.03 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 155.6(2C), 142.8, 136.0(2C), 130.7, 128.7(4C), 128.5(2C), 128.3(4C), 126.5(2C), 125.8(2C), 124.1, 67.5(2C), 61.8.

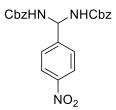
¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.65.

HRMS $[M+Na]^+$ calculated for $C_{24}H_{21}N_2O_4F_3Na$ 481.1351 found 481.1357.

m.p. 204-205 °C.

dibenzyl ((4-cyanophenyl)methylene)dicarbamate 5f

Following the **general procedure G** using 4-cyanobenzaldehyde (1.31 g, 10.00 mmol), benzyl carbamate (3.17 g, 21.00 mmol) and trifluoroacetic acid (77 μ L, 1.00 mmol) under stirring for 24 h in acetic anhydride (3.0 mL) solution, the *N*-Cbz aminal was obtained as a white powder (3.80 g, 9.15 mmol, 92% yield).


¹**H NMR** (400 MHz, CDCl₃) δ 7.63 (d, J = 8.1 Hz, 2H), 7.50 (d, J = 8.1 Hz, 2H), 7.44 – 7.27 (m, 10H), 6.21 (t, J = 8.1 Hz, 1H), 6.03 (bs, 2H), 5.17 – 5.03 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 155.6(2C), 144.1, 135.8(2C), 132.6(2C), 128.7(4C), 128.6(2C), 128.3(4C), 126.9(2C), 118.5, 112.3, 67.6(2C), 61.7.

HRMS $[M+Na]^+$ calculated for $C_{24}H_{21}N_3O_4Na$ 438.1430 found 438.1434.

m.p. 187-188 °C.

dibenzyl ((4-nitrophenyl)methylene)dicarbamate 5g

Following the **general procedure G** using 4-nitrobenzaldehyde (0.76 g, 5.00 mmol), benzyl carbamate (1.59 g, 10.50 mmol) and trifluoroacetic acid (38 μ L, 0.50 mmol) under stirring for 24 h in acetic anhydride (1.5 mL) solution, the *N*-Cbz aminal was obtained as a white powder (1.90 g, 4.36 mmol, 87% yield).

¹**H NMR** (400 MHz, DMSO- d_6) δ 8.30 (bs, 2H), 8.21 (d, J = 8.8 Hz, 2H), 7.66 (d, J = 8.8 Hz, 2H), 7.46 – 7.24 (m, 10H), 6.33 (t, J = 8.1 Hz, 1H), 5.07 (s, 4H).

¹³C NMR (101 MHz, DMSO- d_6) δ 155.3(2C), 147.22, 147.16, 136.8(2C), 128.4(4C), 128.0(2C), 127.94(4C), 127.88(2C), 123.5(2C), 65.8(2C), 61.4.

HRMS [M+Na]⁺ calculated for C₂₃H₂₁N₃O₆Na 458.1328 found 458.1331.

m.p. 197-198 °C.

dibenzyl ((2-fluorophenyl)methylene)dicarbamate 5h

Following the **general procedure G** using 2-fluorobenzaldehyde (3.10 g, 25.00 mmol), benzyl carbamate (7.94 g, 52.50 mmol) and trifluoroacetic acid (191 μ L, 2.50 mmol) under stirring for 24 h in acetic anhydride (7.5 mL) solution, the *N*-Cbz aminal was obtained as a white powder (7.34 g, 17.98 mmol, 72% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.28 (m, 12H), 7.17 – 7.03 (m, 2H), 6.51 (t, J = 8.3 Hz, 1H), 5.87 (bs, 2H), 5.16 – 5.04 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 160.4, 155.1(2C), 136.1(2C), 130.4, 128.65(4C), 128.58, 128.4(2C), 128.3(4C), 126.3, 124.6, 116.1, 67.3(2C), 59.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -117.92.

HRMS $[M+Na]^+$ calculated for $C_{23}H_{21}N_2O_4FNa$ 431.1383 found 431.1382.

m.p. 174-175 °C.

dibenzyl ((2-chlorophenyl)methylene)dicarbamate 5i

Following the **general procedure G** using 2-chlorobenzaldehyde (1.41 g, 10.03 mmol), benzyl dicarbamate (3.17 g, 21.00 mmol) and trifluoroacetic acid (77 μ L, 1.00 mmol) under stirring for 24 h in acetic anhydride (3.0 mL) solution, the *N*-Cbz aminal was obtained as a white powder (2.15 g, 5.06 mmol, 51% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 – 7.45 (m, 1H), 7.43 – 7.23 (m, 13H), 6.55 (t, J = 8.1 Hz, 1H), 5.99 (bs, 2H), 5.16 – 5.04 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 155.1(2C), 136.2, 136.1(2C), 132.5, 130.4, 129.9, 128.7(4C), 128.5, 128.4(2C), 128.3(4C), 127.2, 67.3(2C), 61.0.

HRMS [M+Na]⁺ calculated for C₂₃H₂₁N₂O₄ClNa 447.1088 found 447.1086.

m.p. 164-165 °C.

dibenzyl ((2-bromophenyl)methylene)dicarbamate 5j

Following the **general procedure G** using 2-bromobenzaldehyde (0.56 g, 3.03 mmol), benzyl carbamate (0.95 g, 6.30 mmol) and trifluoroacetic acid (23 μ L, 0.30 mmol) under stirring for 24 h in acetic anhydride (0.9 mL) solution, the *N*-Cbz aminal was obtained as a white powder (0.93 g, 1.98 mmol, 65% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.57 (d, J = 7.9, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.40 – 7.27 (m, 11H), 7.19 (ddd, J = 7.7, 7.6 Hz, 1.7 Hz, 1H), 6.50 (t, J = 7.9 Hz, 1H), 6.00 (bs, 2H), 5.17 – 5.04 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 155.1(2C), 137.8, 136.1(2C), 133.6, 130.2, 128.6(4C), 128.5, 128.35(2C), 128.27(4C), 127.8, 122.5, 67.3(2C), 62.6.

HRMS $[M+Na]^+$ calculated for $C_{23}H_{21}N_2O_4BrNa$ 491.0582 found 491.0583.

m.p. 168-169 °C.

dibenzyl (thiophen-2-ylmethylene)dicarbamate 5k

Following the **general procedure G** using 2-thiophenecarboxaldehyde (1.12 g, 10.00 mmol), benzyl carbamate (3.17 g, 21.00 mmol) and trifluoroacetic acid (77 μ L, 1.00 mmol) under stirring for 24 h in acetic anhydride (3.0 mL) solution, the *N*-Cbz aminal was obtained as a white powder (3.24 g, 8.17 mmol, 82% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.27 (s, 10H), 7.24 (dd, J = 5.1, 1.3 Hz, 1H), 7.01 (d, J = 3.6 Hz, 1H), 6.96 (dd, J = 5.1, 3.6 Hz, 1H), 6.47 (t, J = 8.3 Hz, 1H), 5.92 (bs, 2H), 5.20 – 5.07 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 155.2(2C), 143.3, 136.1(2C), 128.7(4C), 128.4(2C), 128.3(4C), 127.3, 125.7, 125.0, 67.4(2C), 59.5.

HRMS $[M+Na]^+$ calculated for $C_{21}H_{20}N_2O_4SNa$ 419.1041 found 419.1044.

m.p. 184-185 °C.

5. Synthesis of indolizines

methyl indolizine-2-carboxylate 1a

Under inert atmosphere, a round bottom flask was charged with 2-formyl pyridine (11.0 g, 102.70 mmol) and methyl acrylate (19.42 mL, 215.67 mmol). To this solution was added diazo[2.2.2]bicyclooctane (1.70 g, 15.15 mmol). The reaction mixture was stirred at room temperature for 21 h, after which the reaction mixture was filtered through silica using hexane and ethyl acetate as eluent. The solvent was removed and the residue was dissolved in 50 mL acetic anhydride. The solution was heated to 130 °C for 3 h. The acetic anhydride and acetic acid were removed on vacuo. The remaining solid was purified by flash chromatography (95:05 hexane/dichloromethane to 85:15 hexane/dichloromethane). Then recrystallization in hexane/dichloromethane to give the product as white powder (8.21 g, 46%). 14

¹**H NMR** (500 MHz, CDCl₃) δ 7.83 (d, J = 7.1 Hz, 1H), 7.78 (s, 1H), 7.34 (d, J = 9.1 Hz, 1H), 6.81 (s, 1H), 6.66 (ddd, J = 9.1, 6.5, 1.0 Hz, 1H), 6.54 – 6.48 (m, 1H), 3.88 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 165.7, 132.9, 125.4, 120.4, 119.7, 118.2, 116.0, 112.4, 100.5, 51.5.

HRMS [M+H]⁺ calculated for $C_{10}H_{10}NO_2$ 176.0712 found 176.0715.

m.p. 101-102 °C.

methyl 6-chloroindolizine-2-carboxylate 1b

$$CI$$
 N CO_2Me

Under inert atmosphere, a round bottom flask was charged with 5-chloro-2-formyl pyridine (3.50 g, 24.72 mmol) and methyl acrylate (5.36 mL, 59.52 mmol). To this solution was added diazo[2.2.2]bicyclooctane (0.33 g, 2.97 mmol). The reaction mixture was stirred at room temperature for 18 h, after which it was purified by flash chromatography (70:30 hexane/ethyl acetate). The solvent was removed and the residue was dissolved in 25 mL of acetic anhydride. The solution was heated to 135 °C for 3 h. The acetic anhydride and acetic acid were removed on vacuo. The remaining solid was purified by flash chromatography (95:05 hexane/dichloromethane to 80:20 hexane/dichloromethane) to give the product as white powder (3.63 g, 70%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.91 (s, 1H), 7.75 (s, 1H), 7.31 (d, J = 9.5 Hz, 1H), 6.86 (s, 1H), 6.65 (d, J = 9.5 Hz, 1H), 3.88 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 165.2, 131.2, 123.0, 120.9(2C), 120.6, 120.0, 116.4, 101.9, 51.7.

HRMS [M+H]⁺ calculated for C₁₀H₉NO₂Cl 210.0322 found 210.0325.

m.p. 109-110 °C.

methyl 7-chloroindolizine-2-carboxylate 1c

Under inert atmosphere, a round bottom flask was charged with 4-chloro-2-formyl pyridine (6.50 g, 45.92 mmol) and methyl acrylate (9.92 mL, 110.20 mmol). To this solution was added diazo[2.2.2]bicyclooctane (0.62 g, 5.51 mmol). The reaction mixture was stirred at room temperature for 16 h, after which it was purified by flash chromatography (75:25 hexane/ethyl acetate). The solvent was removed and the residue was dissolved in 46 mL acetic anhydride. The solution was heated to 140°C for 6 h. The acetic anhydride and acetic acid were removed on vacuo. The remaining solid was purified by flash chromatography (90:10 hexane/dichloromethane to 80:20 hexane/dichloromethane) to give the product as white powder (6.03 g, 63%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.79 – 7.72 (m, 2H), 7.32 (s, 1H), 6.75 (s, 1H), 6.48 (dd, J = 7.4, 2.1 Hz, 1H), 3.87 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 165.2, 132.5, 126.1, 124.5, 120.9, 118.7, 116.4, 114.0, 100.7, 51.7.

HRMS [M+H]⁺ calculated for C₁₀H₉NO₂Cl 210.0322 found 210.0331.

m.p. 129-130 °C.

methyl 8-fluoroindolizine-2-carboxylate 1d

$$F$$
 CO_2Me

Under inert atmosphere, a round bottom flask was charged with 3-Fluoropicolinaldehyde (2.00 g, 16.00 mmol) and methyl acrylate (3.04 mL, 33.60 mmol). To this solution was added diazo[2.2.2]bicyclooctane (0.22 g, 1.90 mmol). The reaction mixture was stirred at room temperature for 16 h, after which it was purified by flash chromatography (70:30 hexane/dichloromethane). The

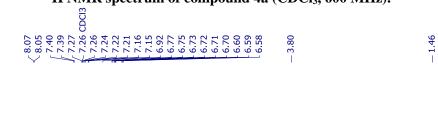
product was dissolved in 16 mL acetic anhydride. The solution was heated to 120 °C for 7 h. The acetic anhydride and acetic acid were removed on vacuo. The remaining solid was purified by flash chromatography (90:10 hexane/dichloromethan) to give the product as white powder (2.28 g, 74%).

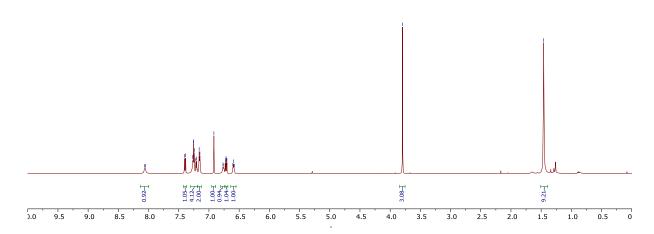
¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (dd, J = 2.9, 1.5 Hz, 1H), 7.67 (d, J = 6.9 Hz, 1H), 6.98 (s, 1H), 6.49 – 6.42 (m, 1H), 6.36 (dd, J = 10.5, 6.9 Hz, 1H), 3.88 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.1, 155.1, 125.7, 121.8, 120.1, 117.7, 111.5, 100.3, 98.5 (d, J = 3.2 Hz), 51.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -124.50.

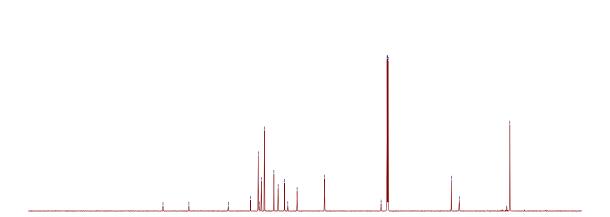
HRMS [M+H]⁺ calculated for C₁₀H₉NO₂F 194.0617 found 194.0626.

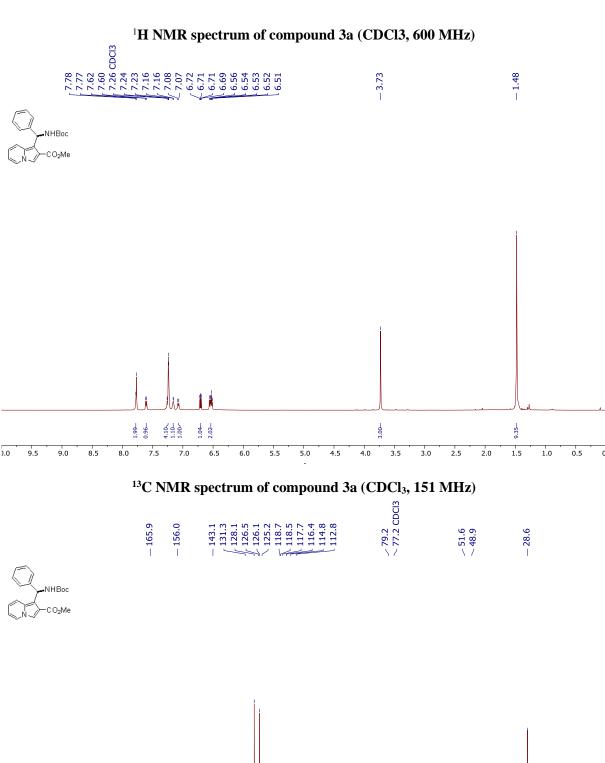

m.p. 79-80 °C.

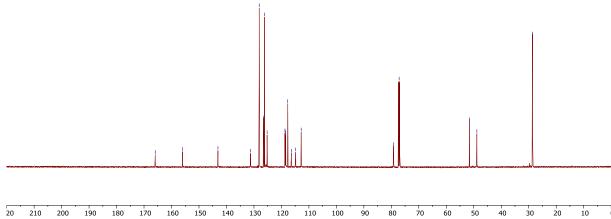

6. ¹H, ¹³C and ¹⁹F NMR Spectra

¹∕NHBoc

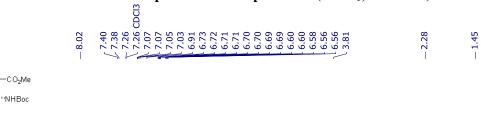
6.1. Products with Boc-protecting group 3a-s, 4a-s and 10

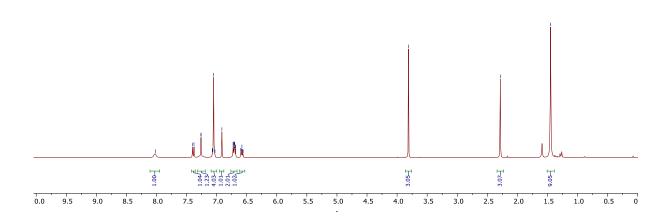

¹H NMR spectrum of compound 4a (CDCl₃, 600 MHz).

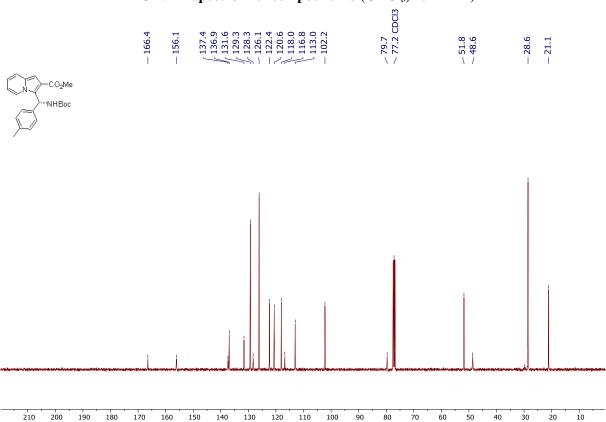

^{13}C NMR spectrum of compound 4a (CDCl3, 151 MHz)

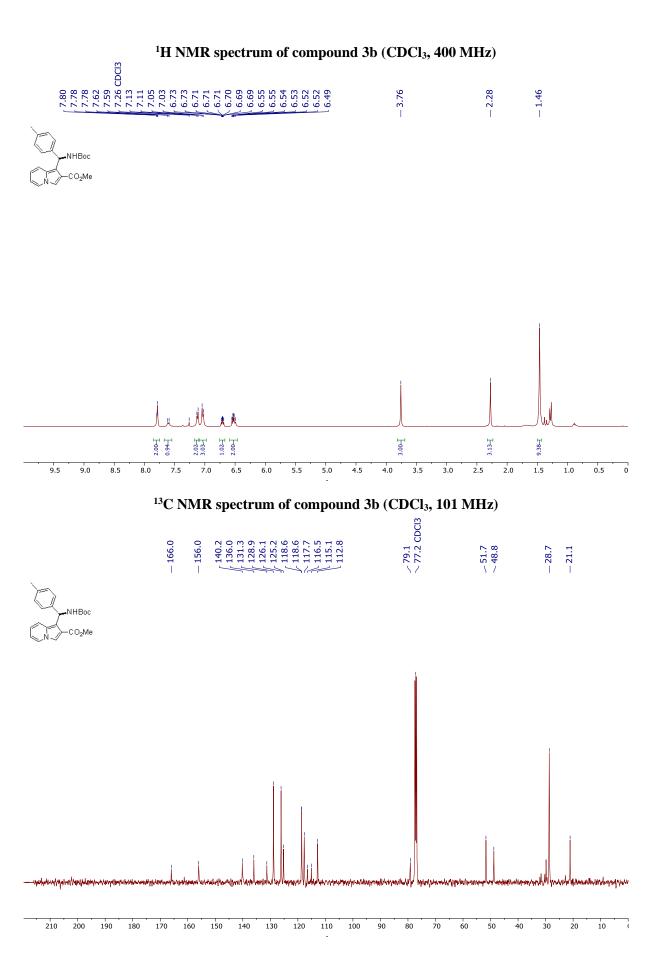


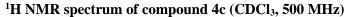


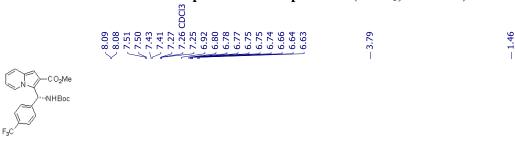

110

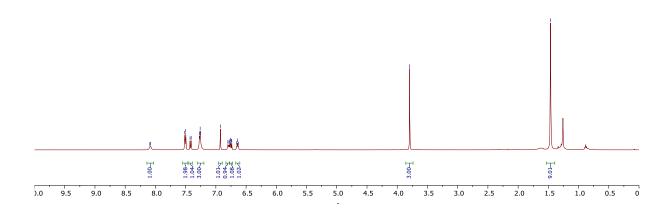

130

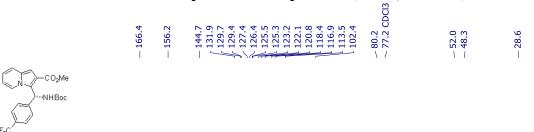


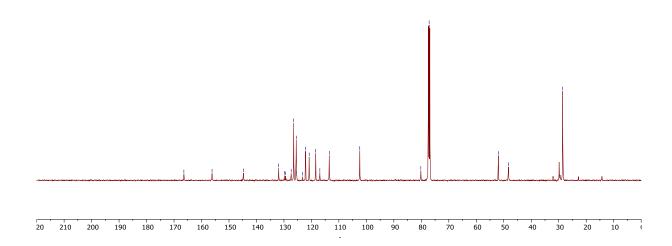




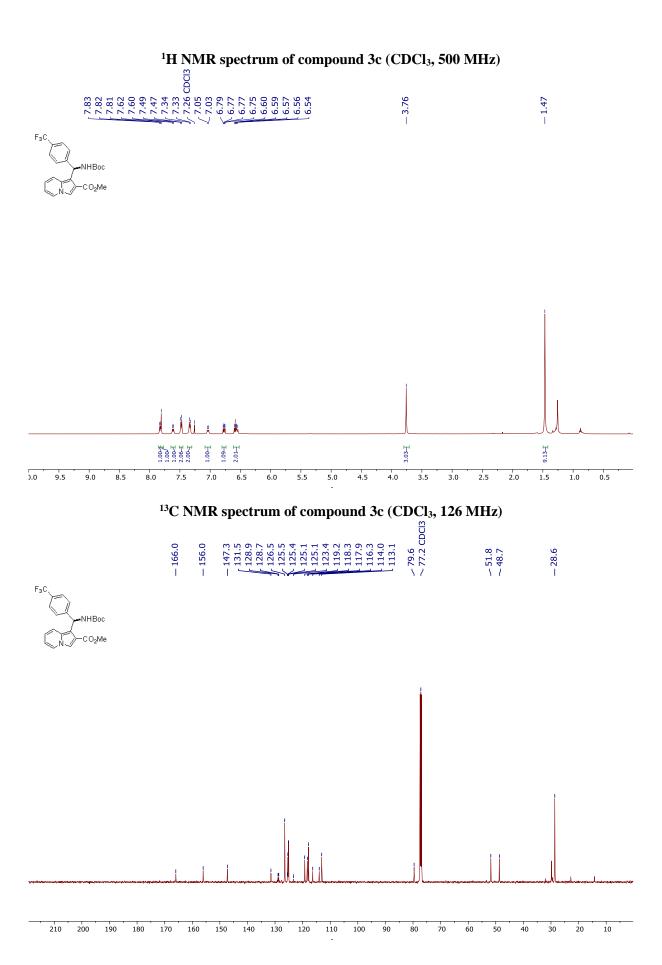



¹³C NMR spectrum of compound 4b (CDCl₃, 101 MHz)

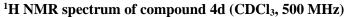


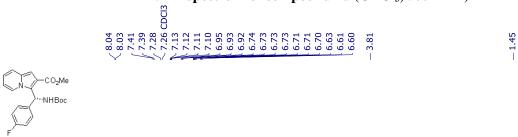


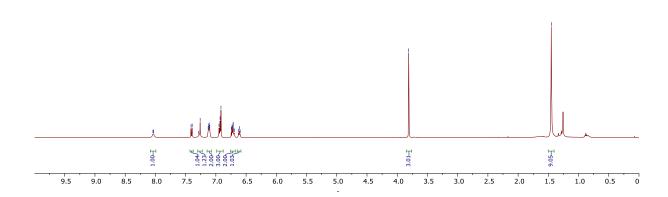
¹³C NMR spectrum of compound 4c (CDCl₃, 126 MHz)

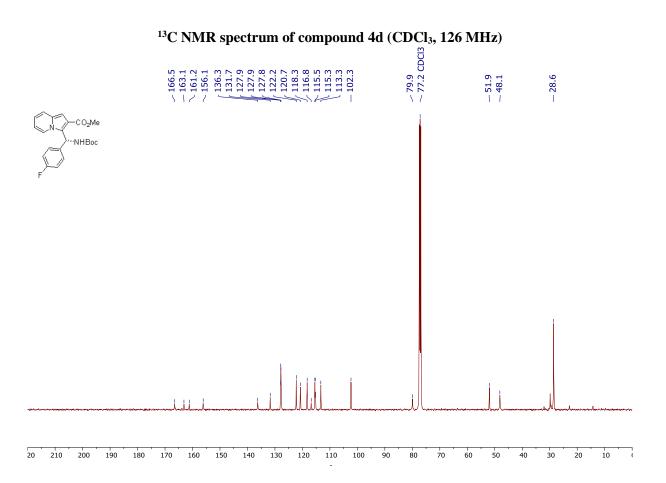


^{19}F NMR spectrum of compound 4c (CDCl3, 470 MHz) $^{\mbox{CS}}_{\mbox{\tiny 70}}$

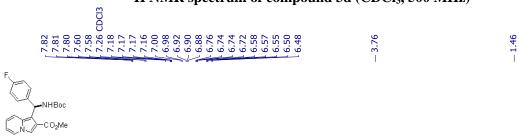

-48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 -79 -80 -81

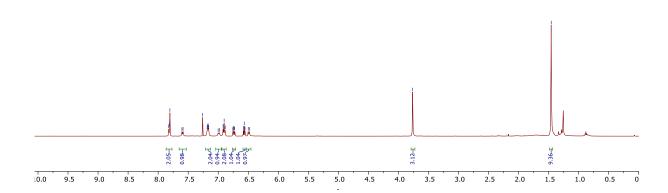


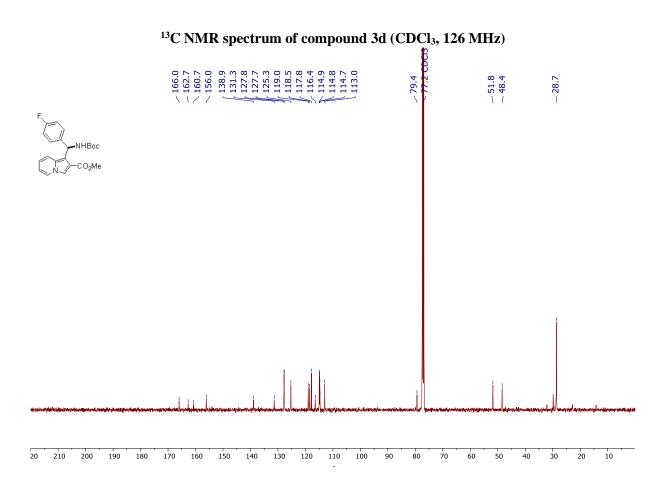



--62.35

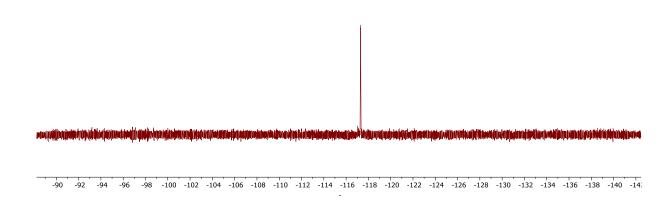
-47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78

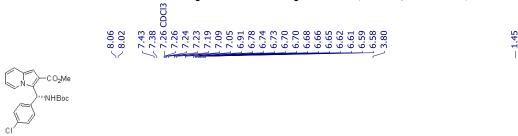


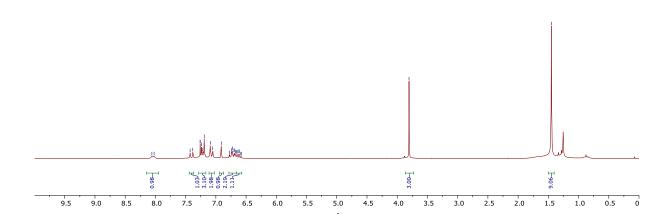


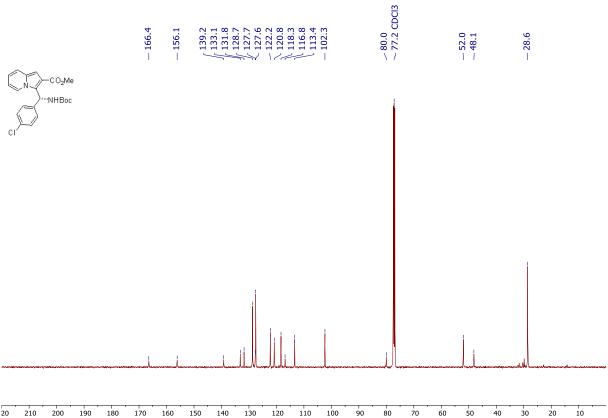


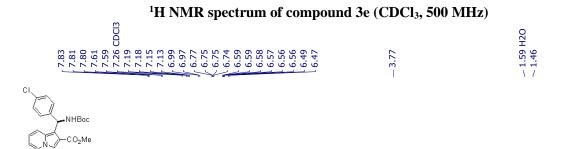
-100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136

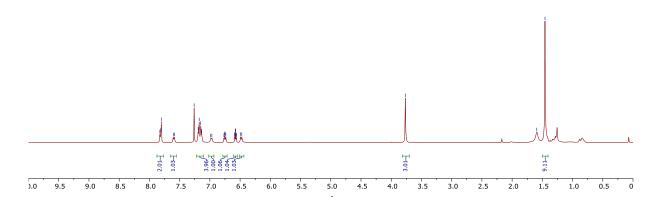


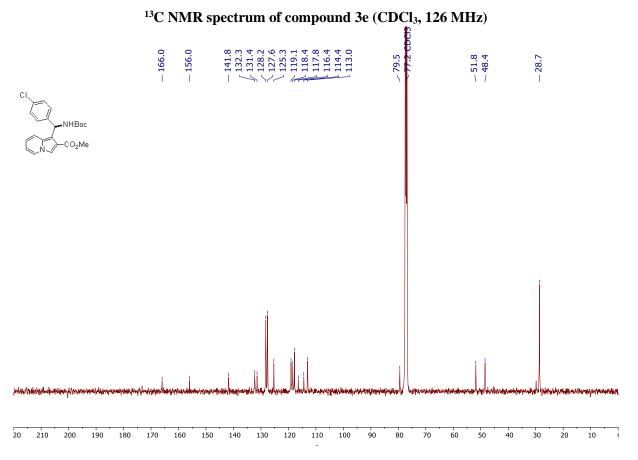

 ^{19}F NMR spectrum of compound $\boldsymbol{3d}$ (CDCl3, 470 MHz)

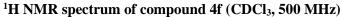


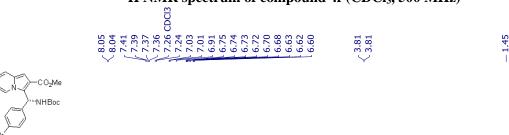


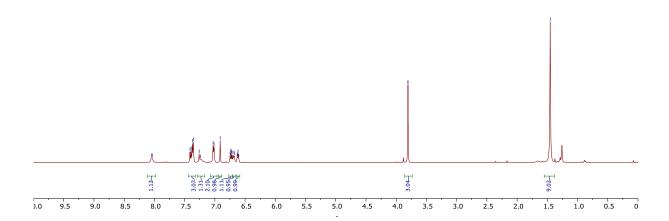


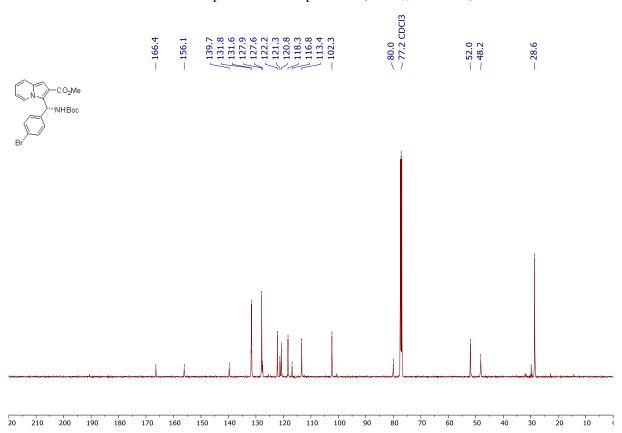


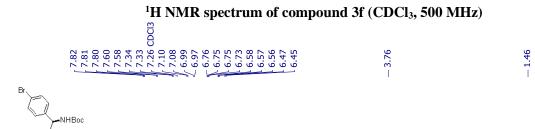


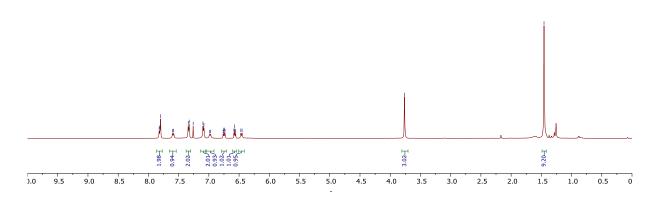

¹³C NMR spectrum of compound 4e (CDCl₃, 126 MHz)

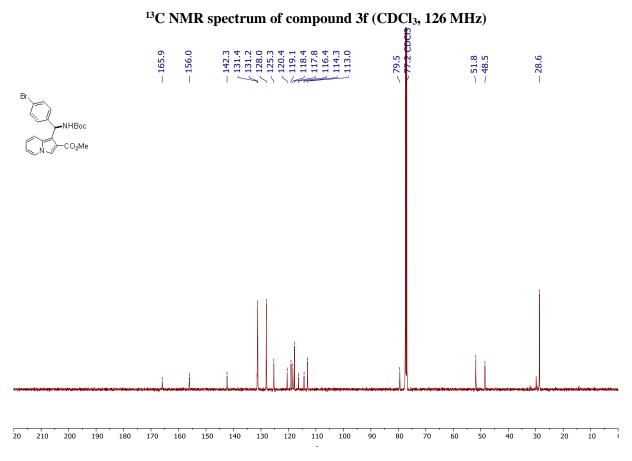


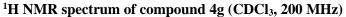


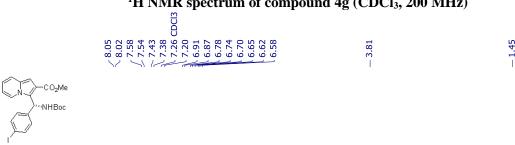


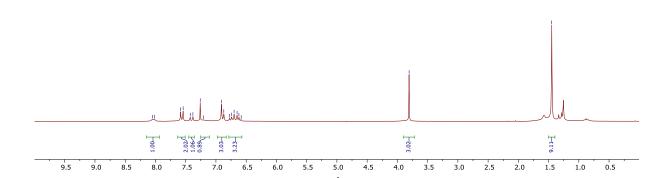


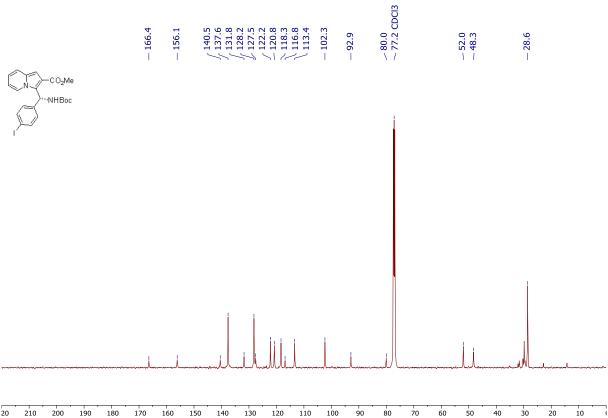


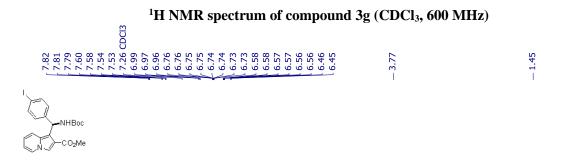


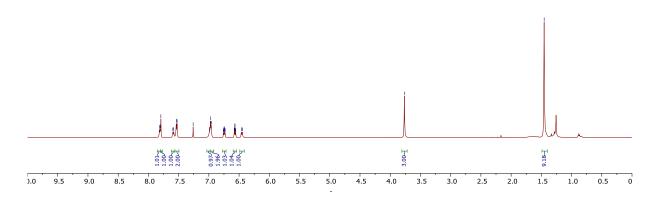

¹³C NMR spectrum of compound **4f** (CDCl₃, 126 MHz)

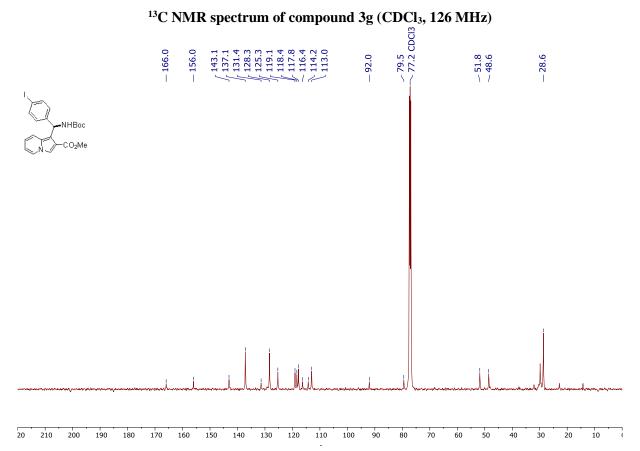






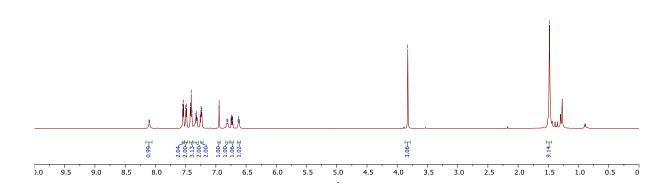


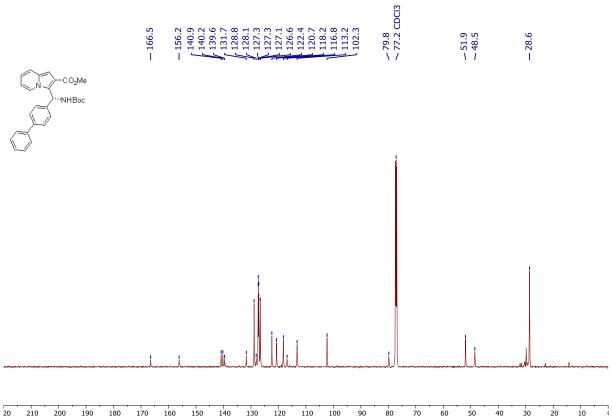


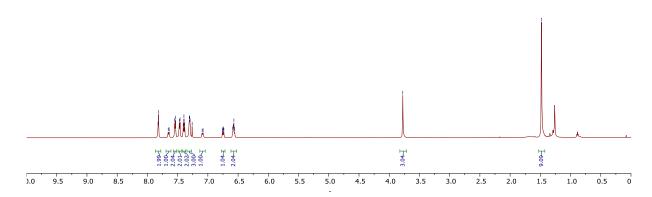


¹³C NMR spectrum of compound 4g (CDCl₃, 126 MHz)

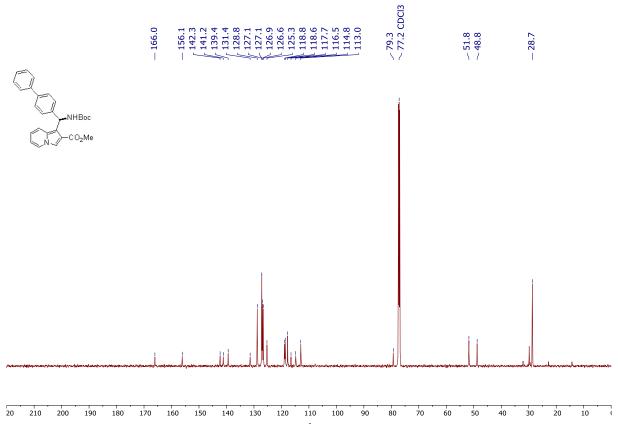


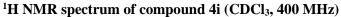


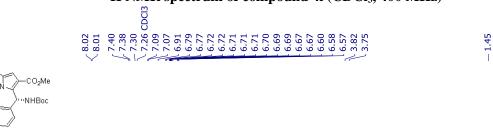


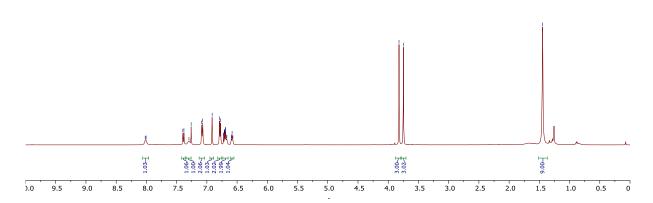


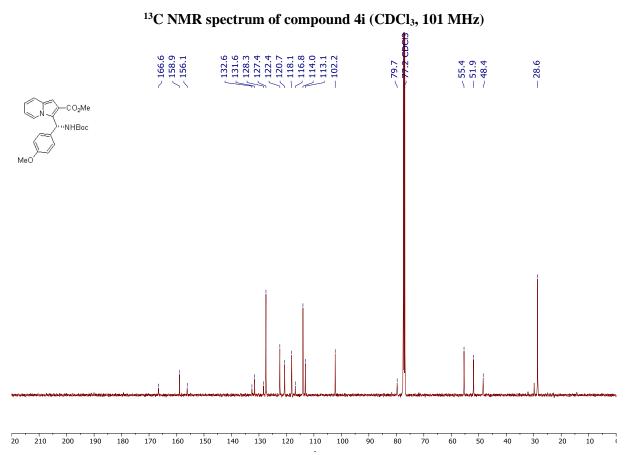
¹³C NMR spectrum of compound 4h (CDCl₃, 151 MHz)

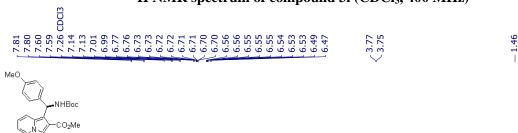


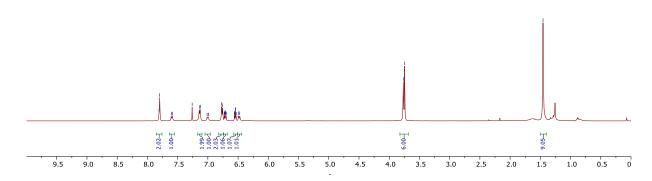


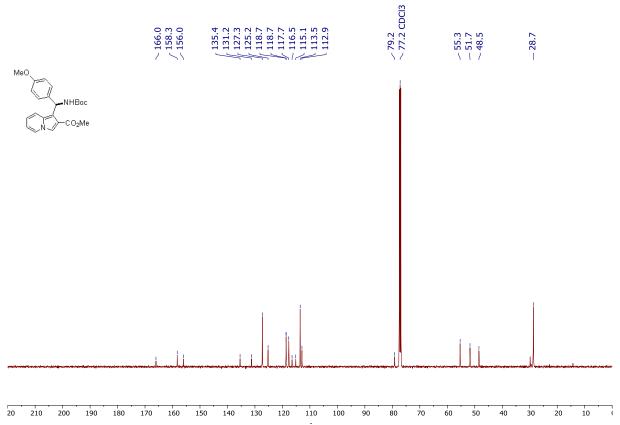


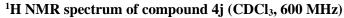


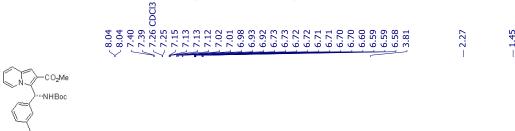

¹³C NMR spectrum of compound 3h (CDCl₃, 151 MHz)

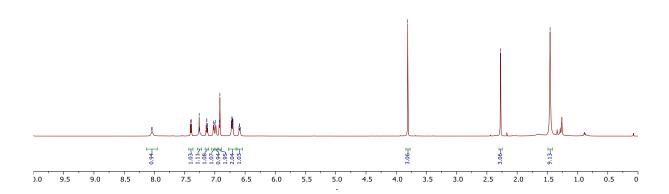


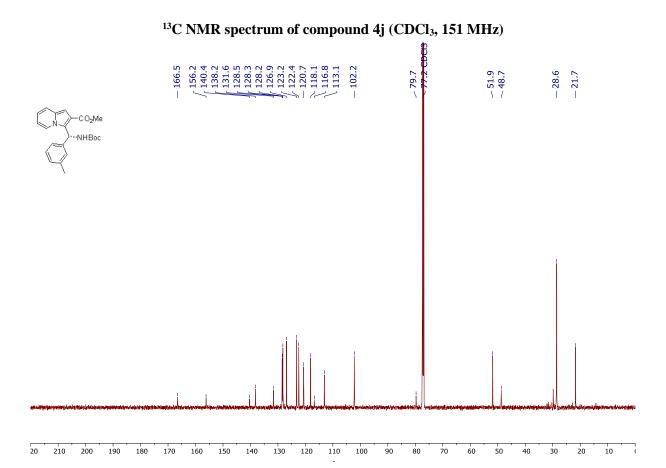


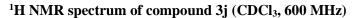


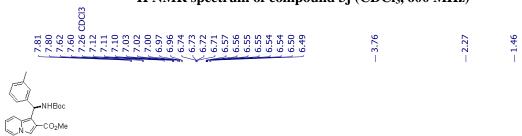


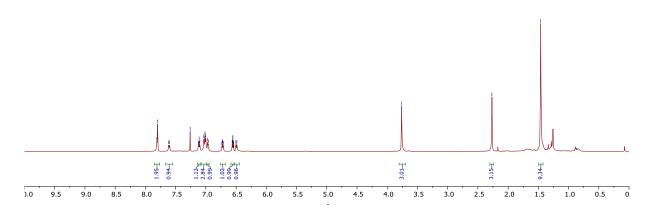


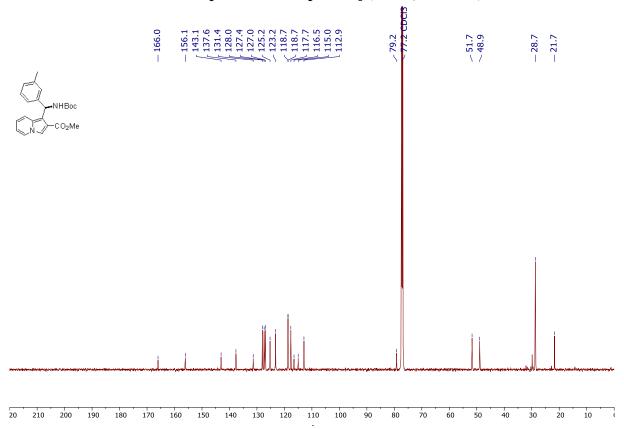


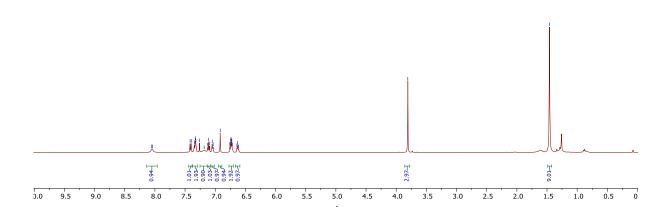

^{13}C NMR spectrum of compound 3i (CDCl₃, 101 MHz)

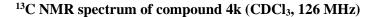


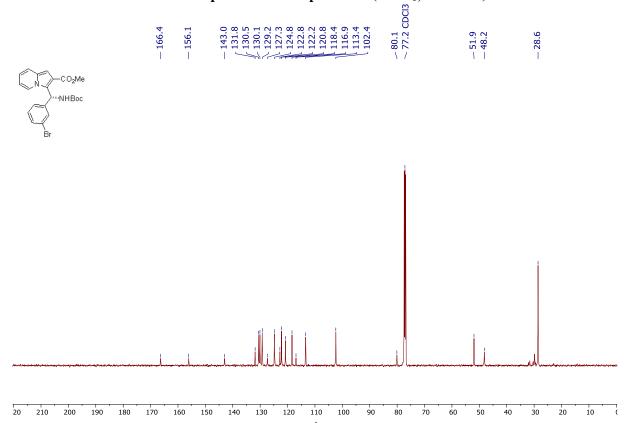


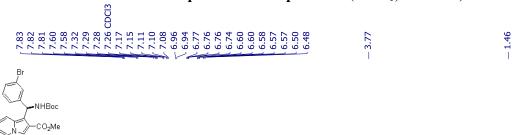


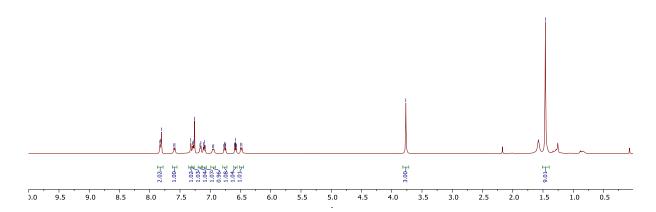


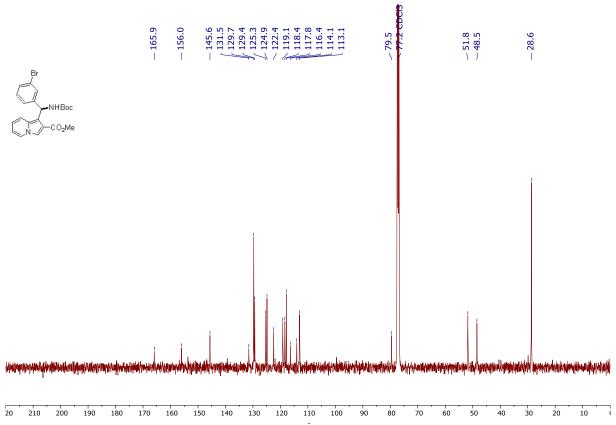


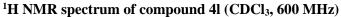

¹³C NMR spectrum of compound 3j (CDCl₃, 151 MHz)

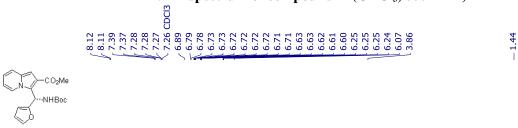


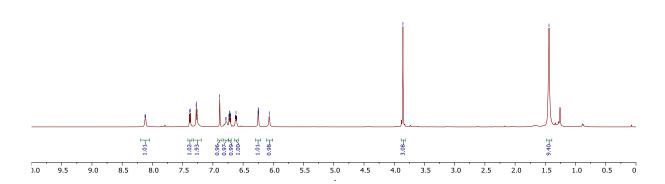




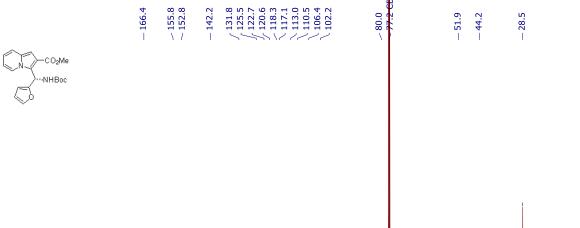


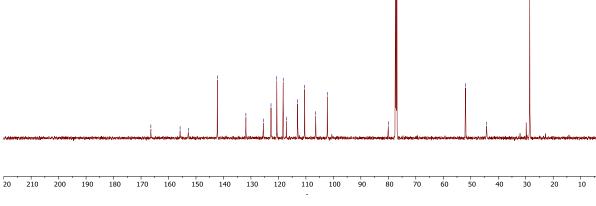


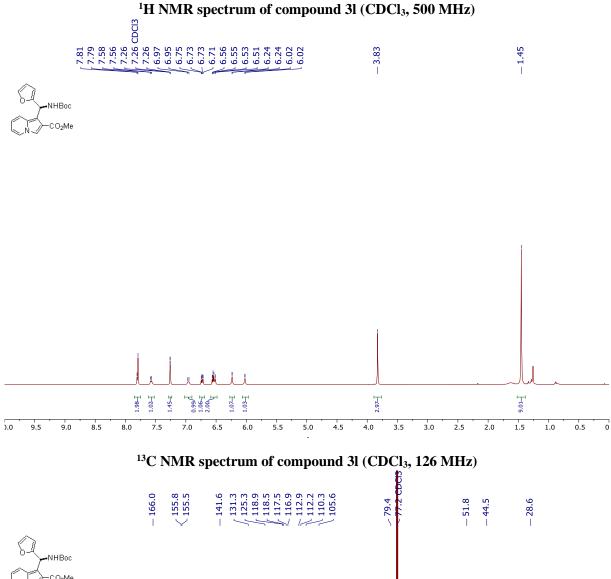


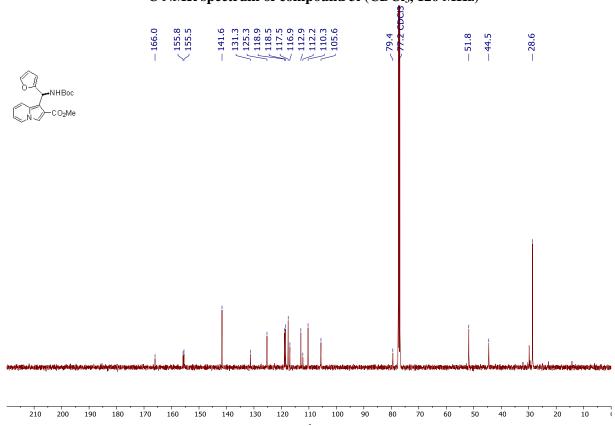


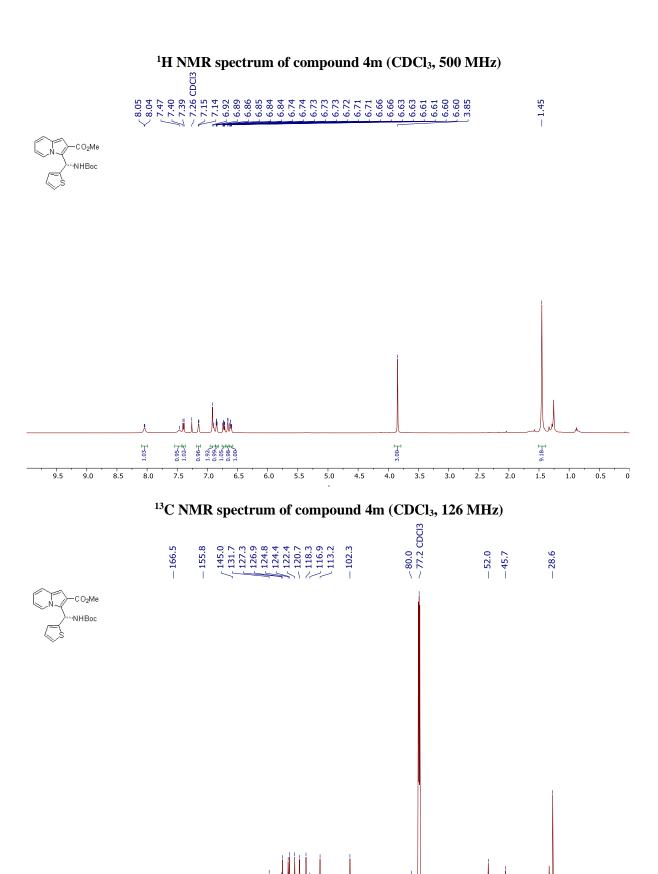
¹³C NMR spectrum of compound 3k (CDCl₃, 126 MHz)

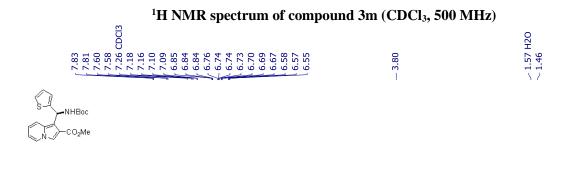


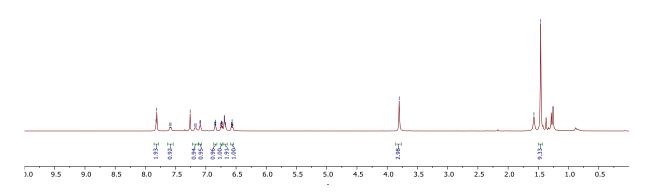


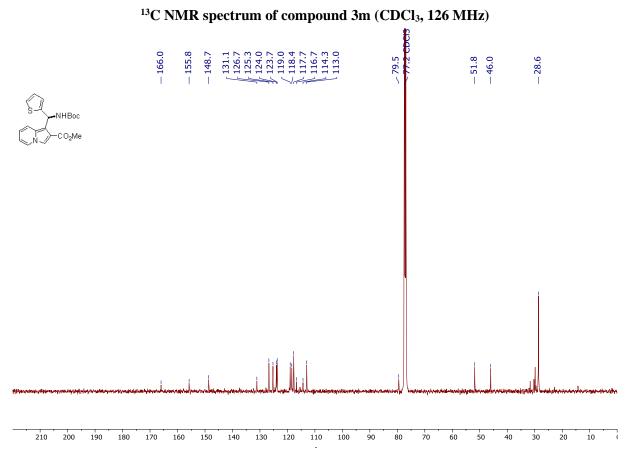


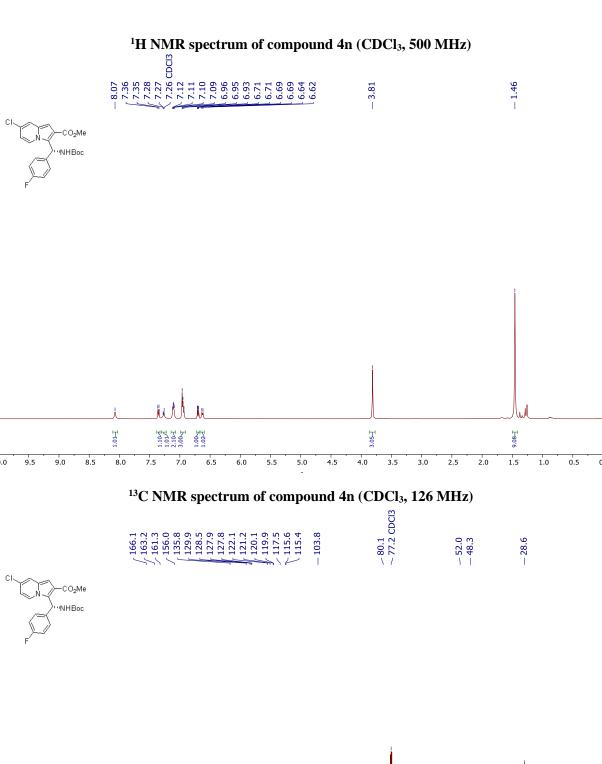


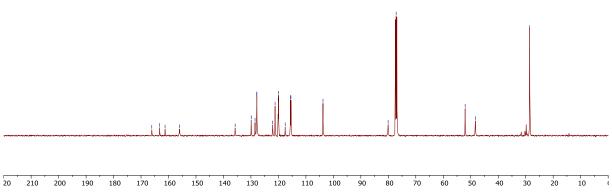

¹³C NMR spectrum of compound 4l (CDCl₃, 151 MHz)

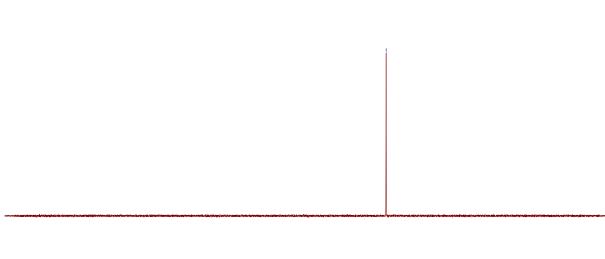


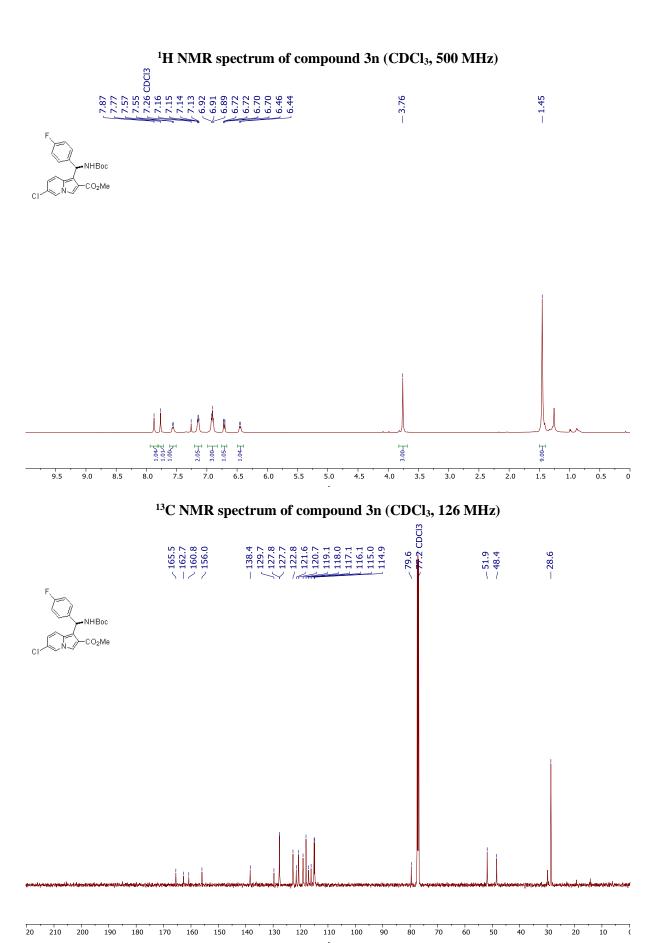




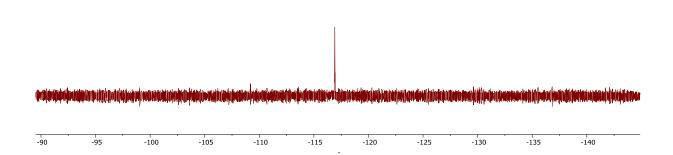


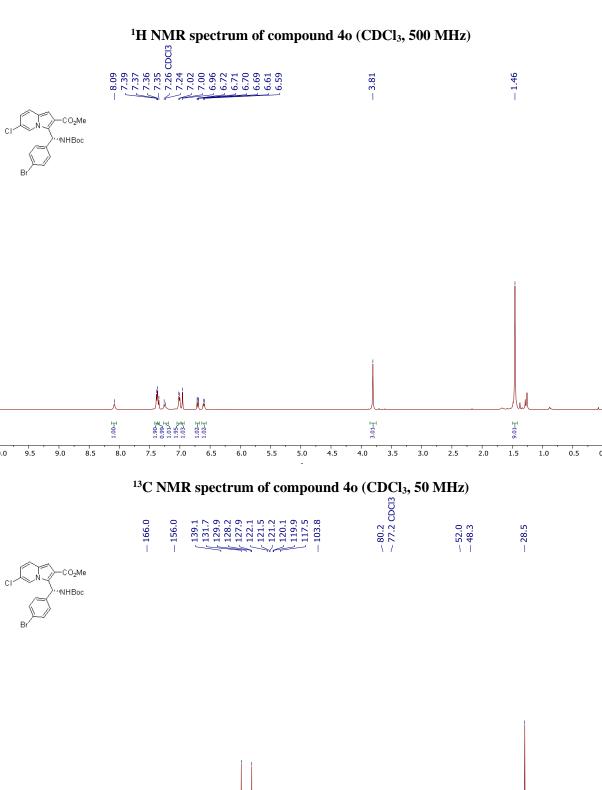


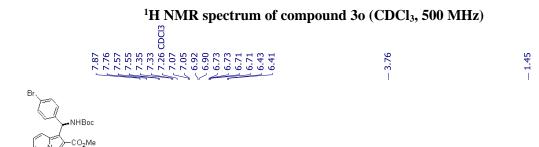


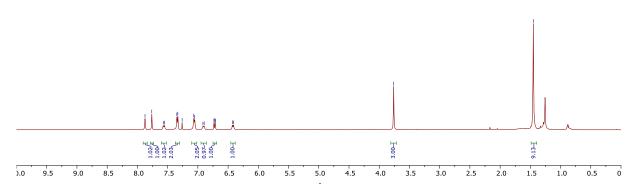


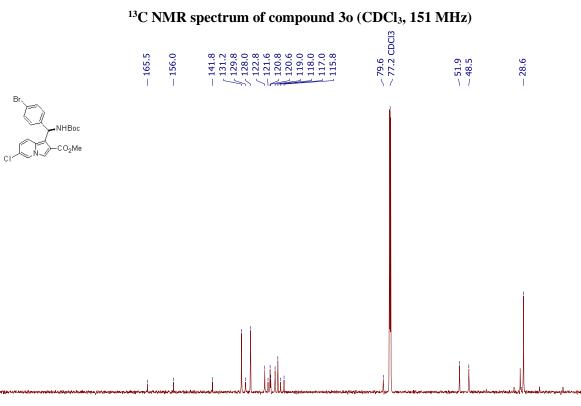
-100 -110 -120 -130 -140

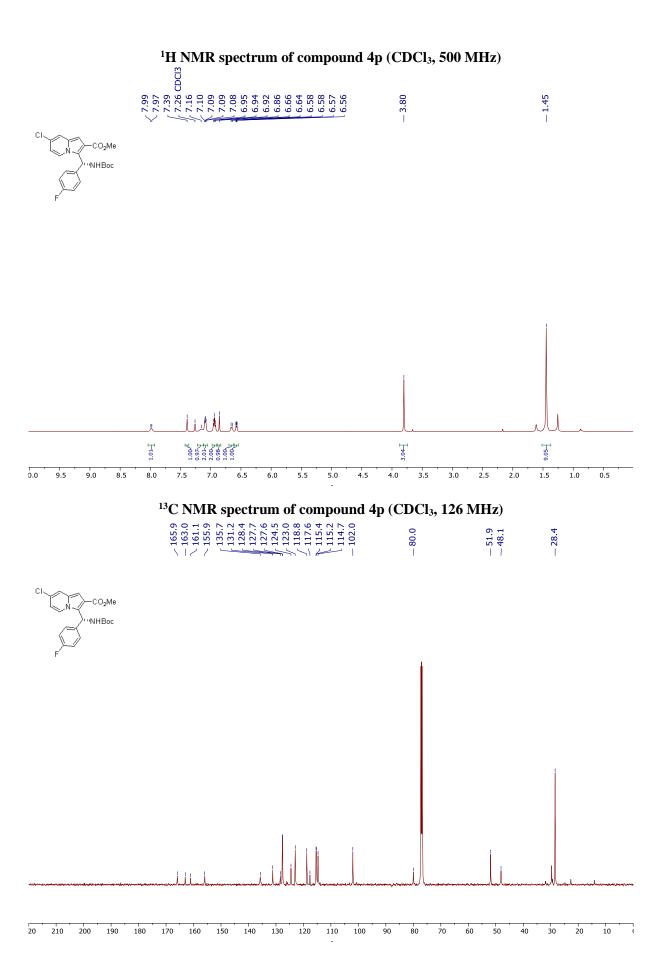


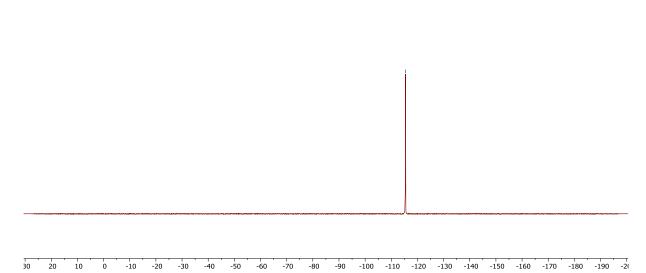


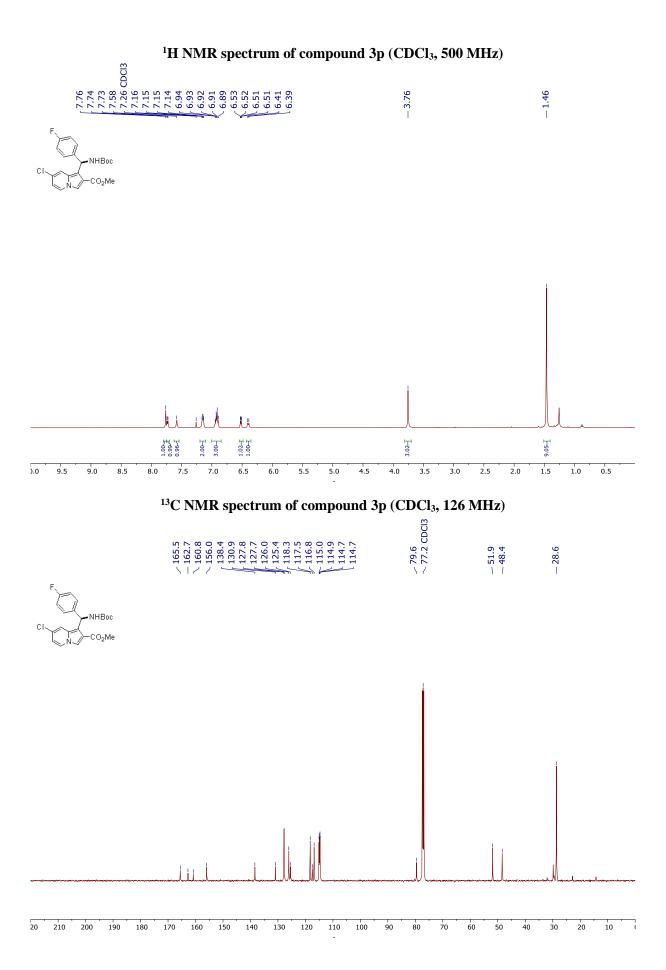


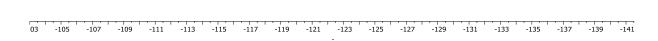

 ^{19}F NMR spectrum of compound 3n (CDCl3, 470 MHz) $^{\circ}_{-1}^{9}$

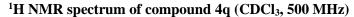


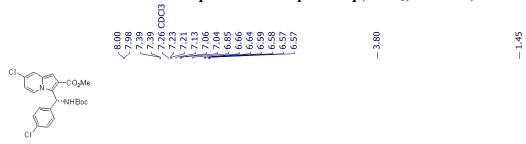


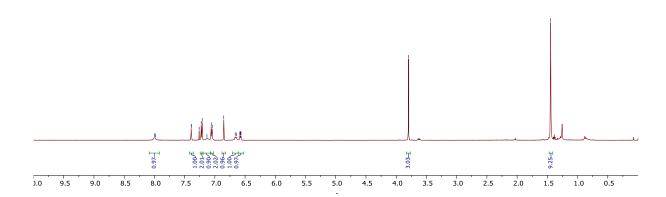


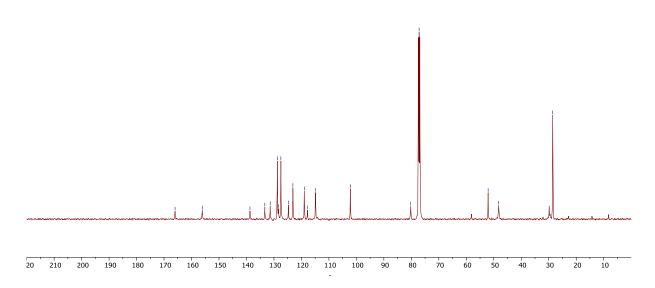


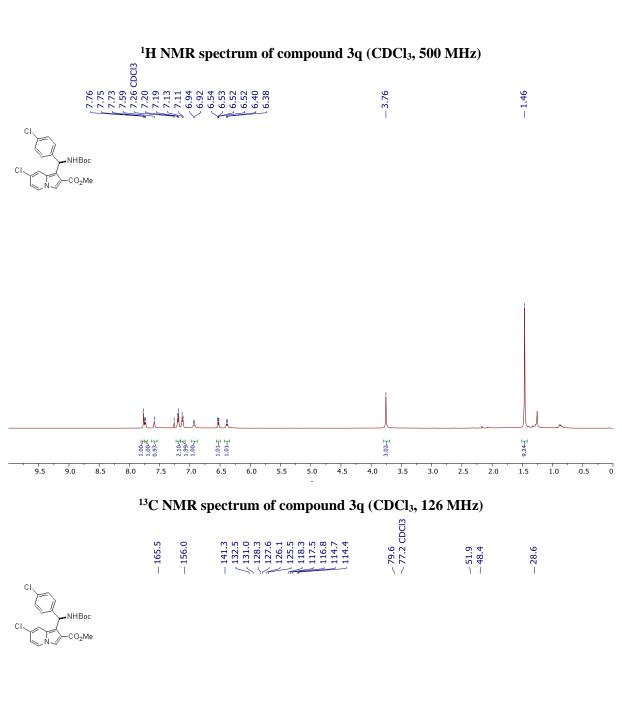


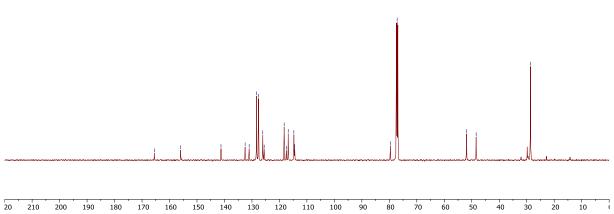




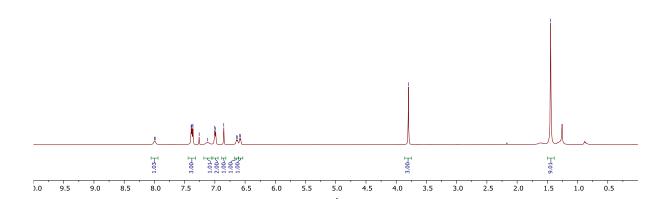


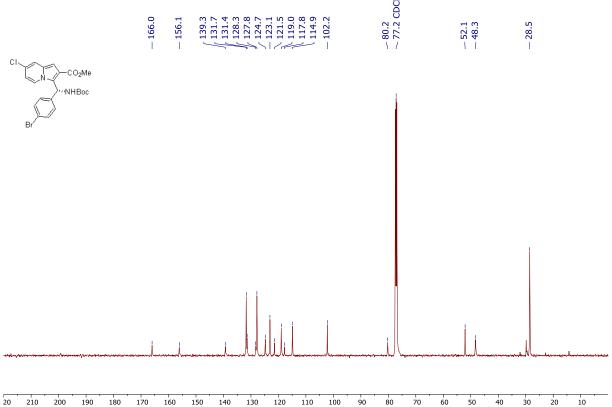


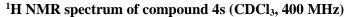


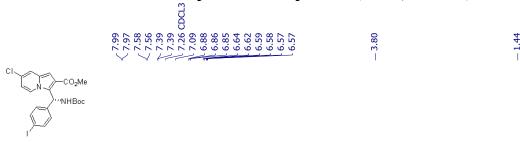


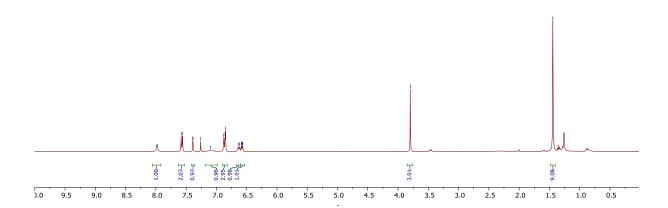
^{13}C NMR spectrum of compound 4q (CDCl3, 126 MHz)

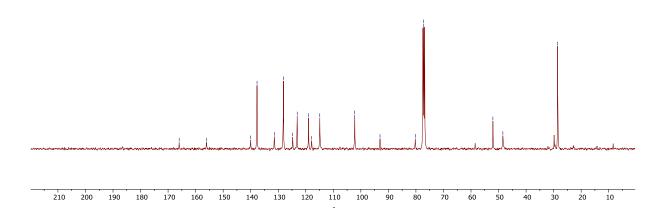


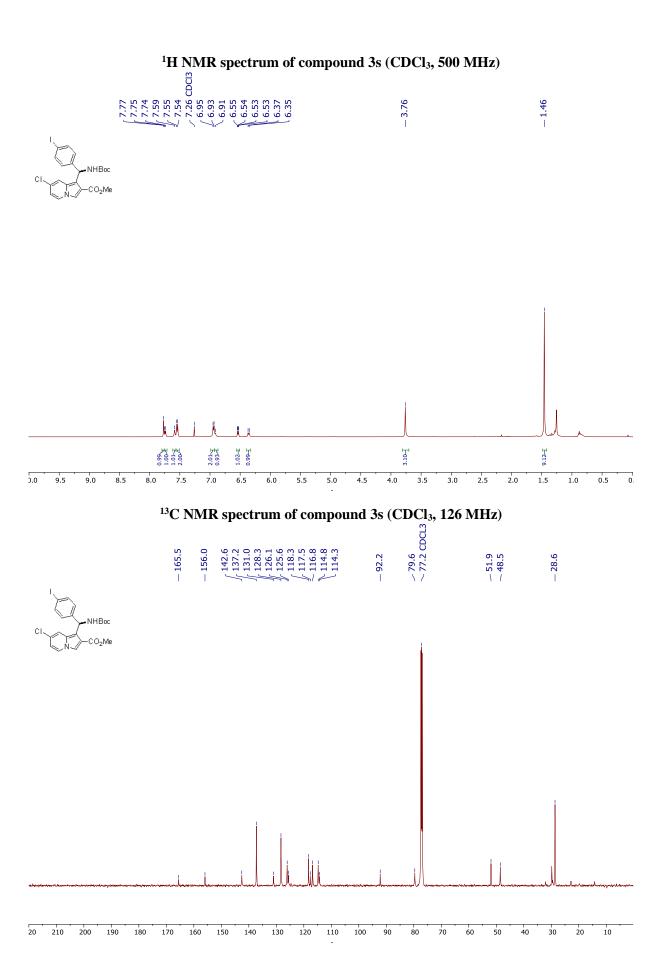


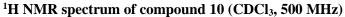


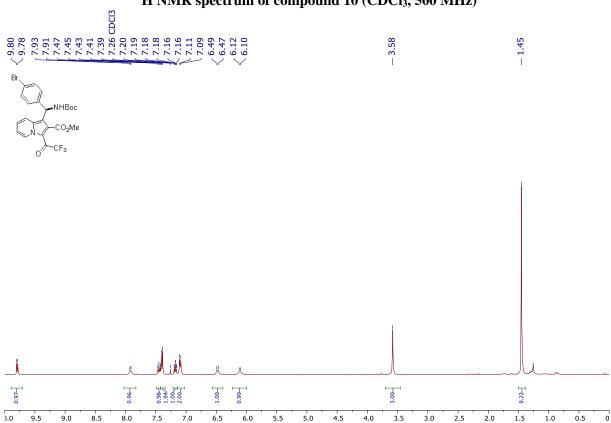


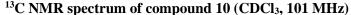


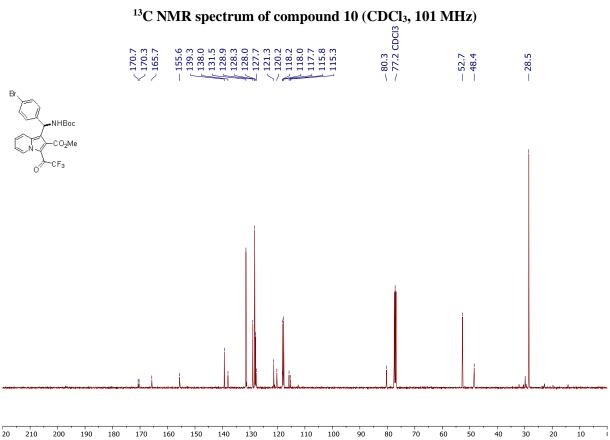


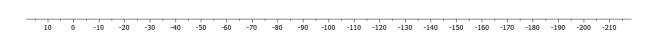


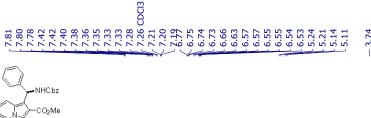


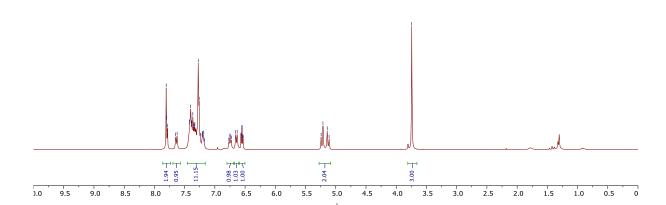

^{13}C NMR spectrum of compound 4s (CDCl3, 101 MHz)



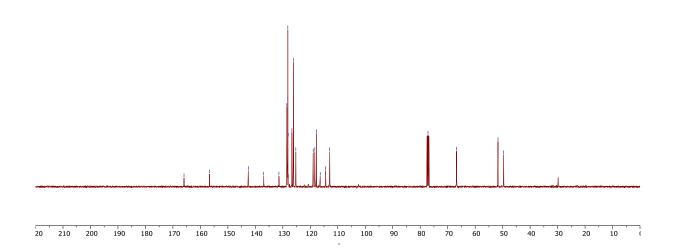


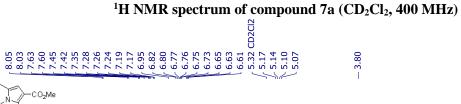




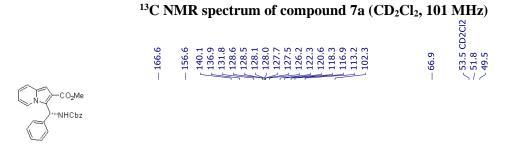


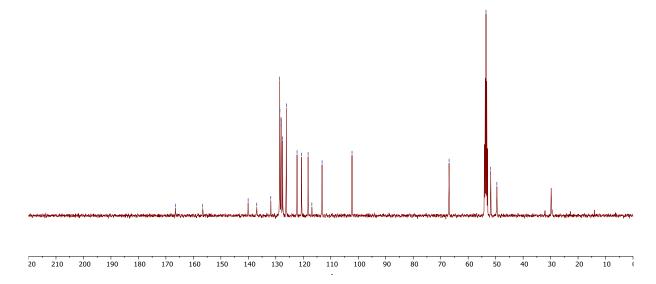
6.2. Products with Cbz-protecting group 6a-m, 7a-m, 8 and 9

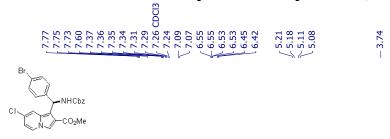


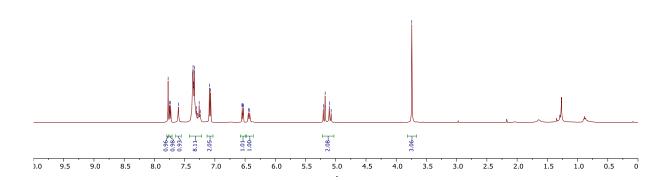


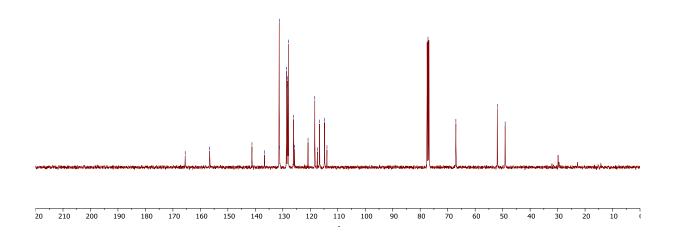
¹³C NMR spectrum of compound 6a (CDCl₃, 101 MHz)

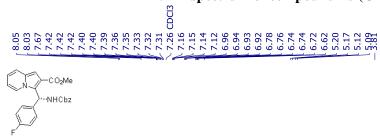


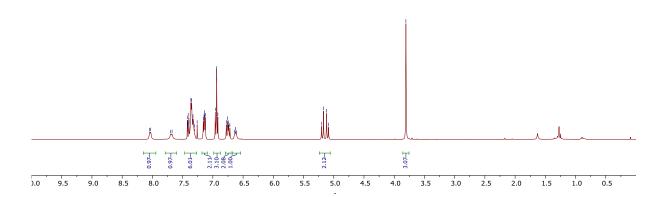


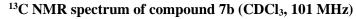

−CO₂Me "NHCbz

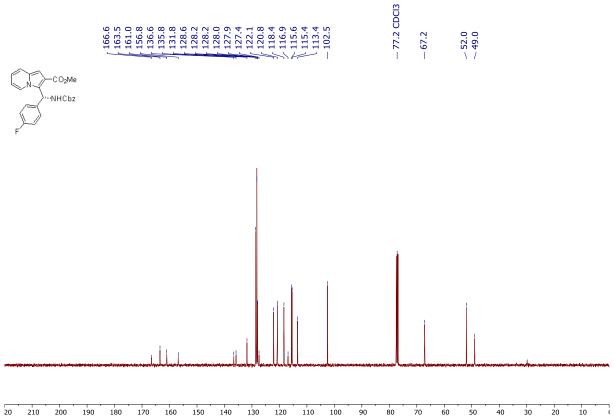


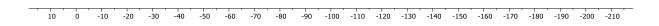


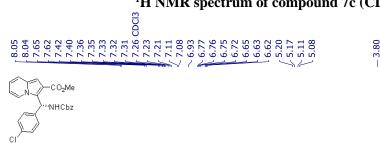


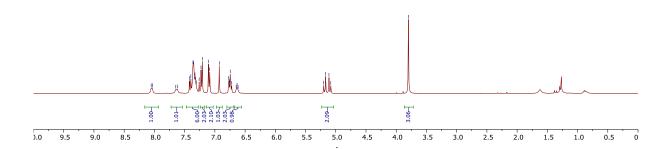

¹³C NMR spectrum of compound 6m (CDCl₃, 101 MHz)



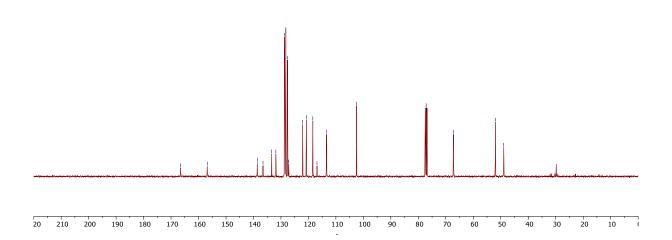


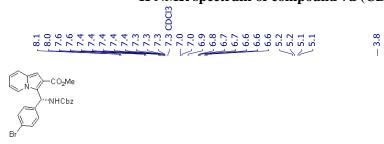


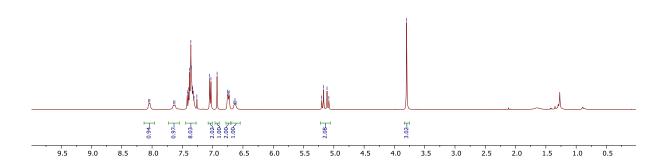




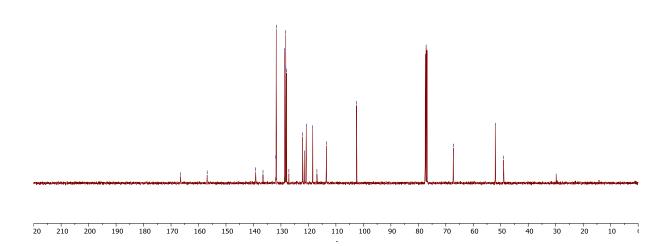
¹H NMR spectrum of compound 7c (CDCl₃, 400 MHz)

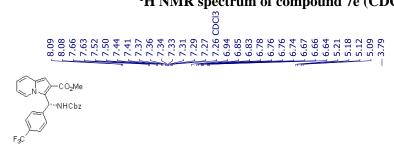


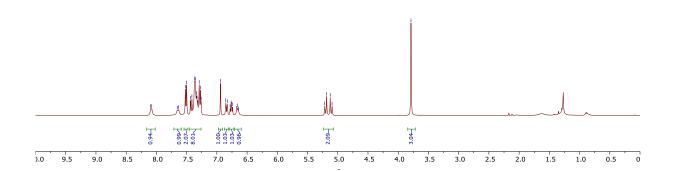

^{13}C NMR spectrum of compound 7c (CDCl₃, 101 MHz)

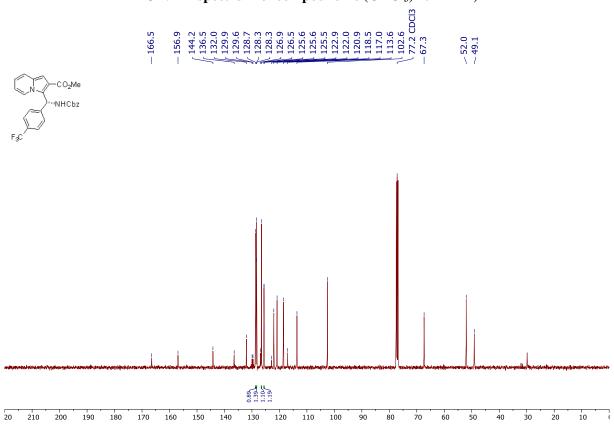


¹H NMR spectrum of compound 7d (CDCl₃, 400 MHz)

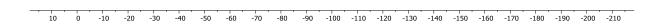


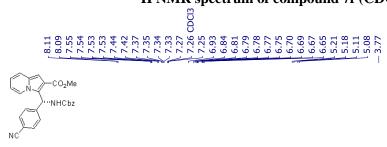

¹³C NMR spectrum of compound 7d (CDCl₃, 101 MHz)

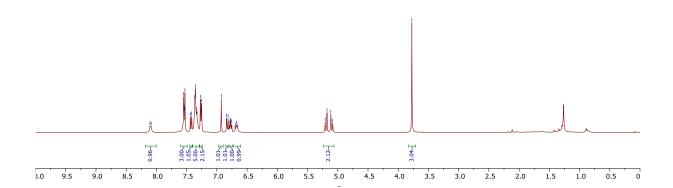


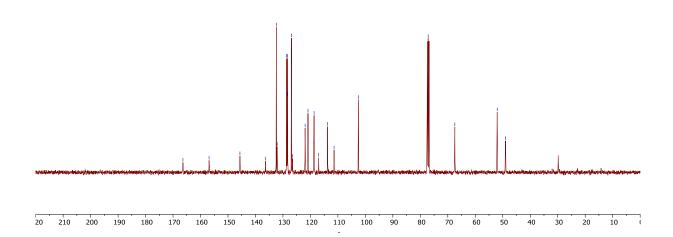


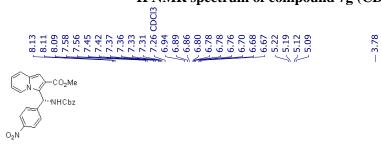
¹H NMR spectrum of compound 7e (CDCl₃, 400 MHz)

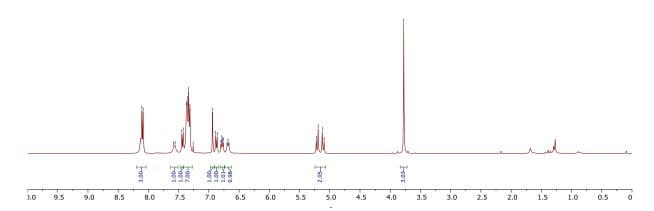

¹³C NMR spectrum of compound 7e (CDCl₃, 101 MHz)

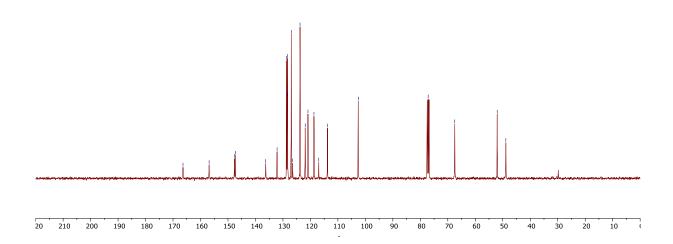


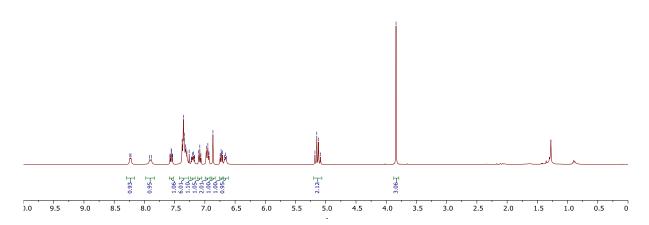


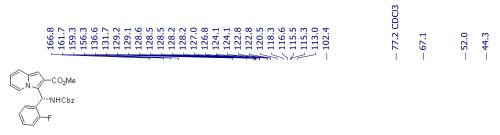

¹H NMR spectrum of compound 7f (CDCl₃, 400 MHz)

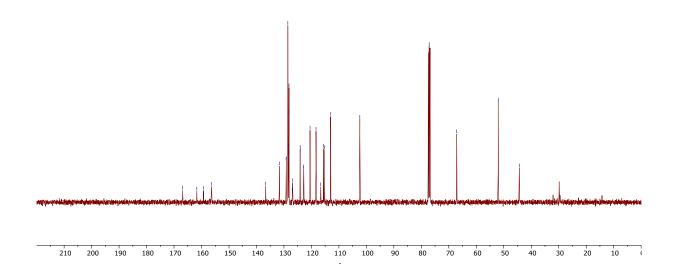



¹³C NMR spectrum of compound 7f (CDCl₃, 101 MHz)

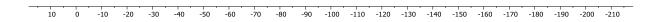


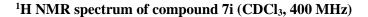

^{13}C NMR spectrum of compound 7g (CDCl3, 101 MHz)

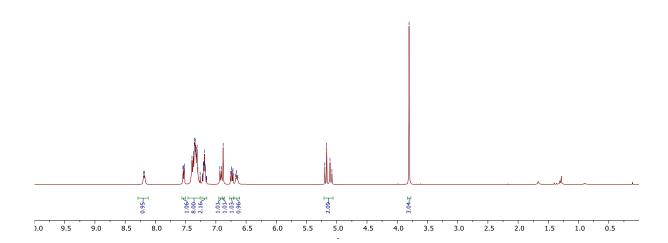


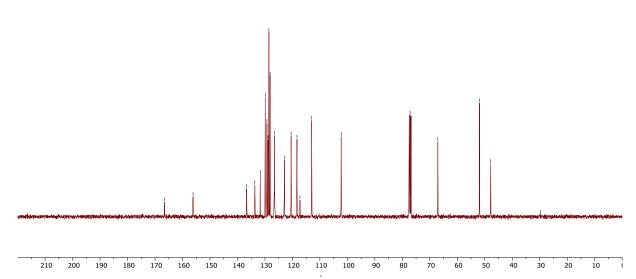


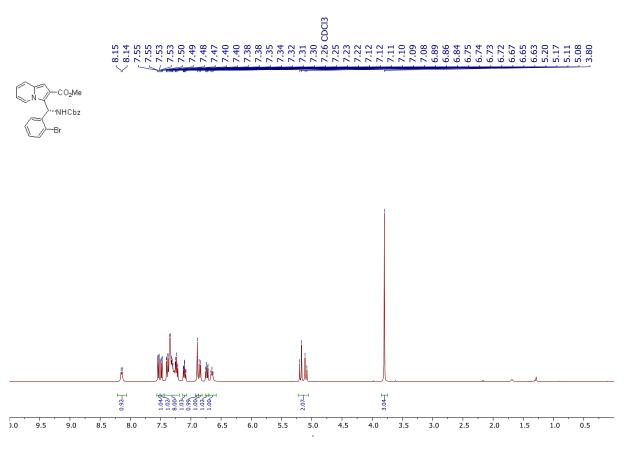
¹³C NMR spectrum of compound 7h (CDCl₃, 101 MHz)

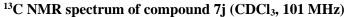


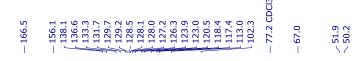


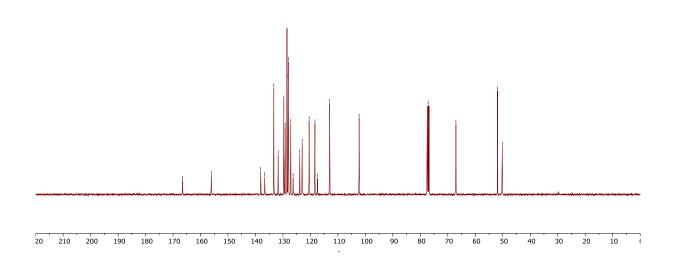


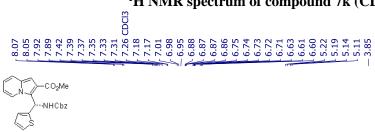


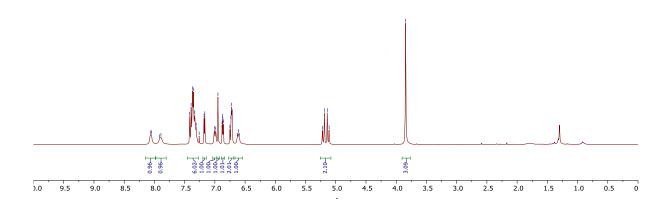

¹³C NMR spectrum of compound 7i (CDCl₃, 101 MHz)

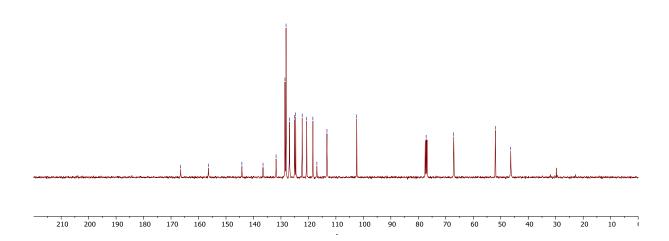


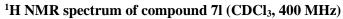


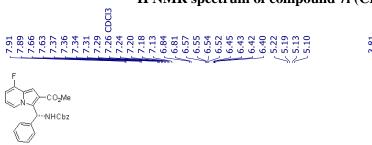

¹H NMR spectrum of compound 7j (CDCl₃, 400 MHz)

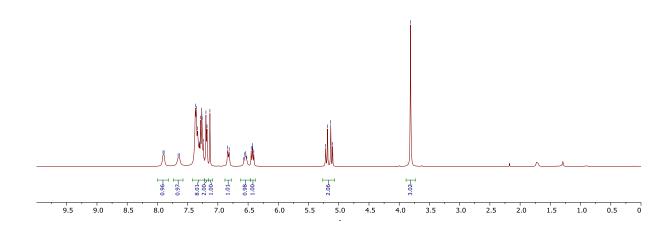


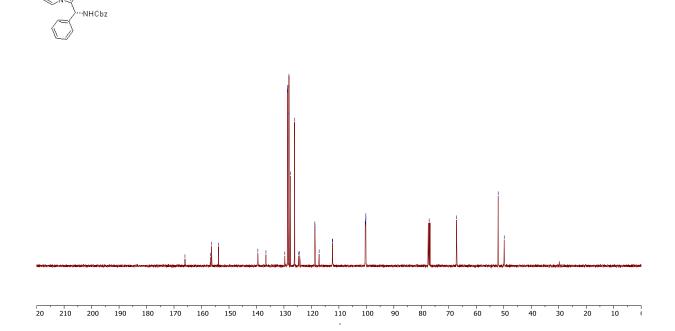


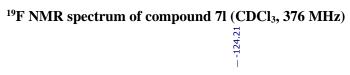

¹H NMR spectrum of compound 7k (CDCl₃, 400 MHz)



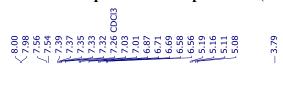


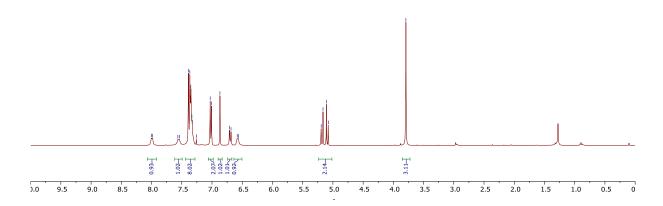

¹³C NMR spectrum of compound 7k (CDCl₃, 101 MHz)



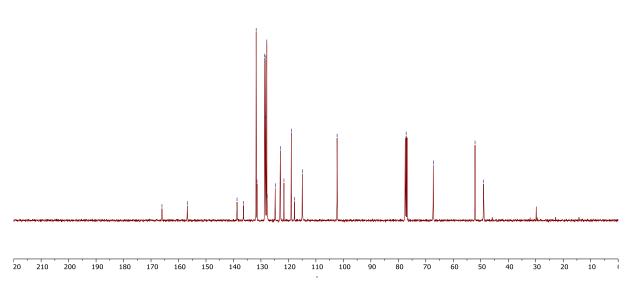


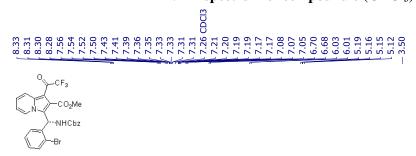
¹³C NMR spectrum of compound 7l (CDCl₃, 101 MHz)

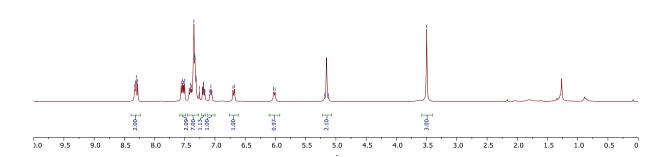


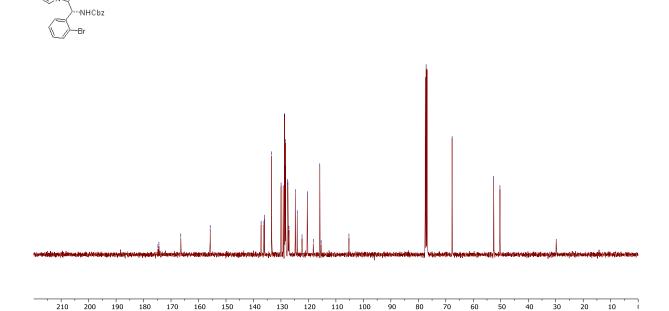




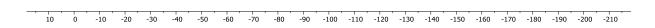


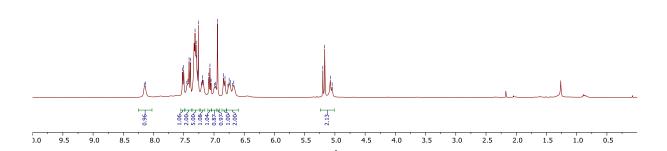

¹³C NMR spectrum of compound 7m (CDCl₃, 101 MHz)

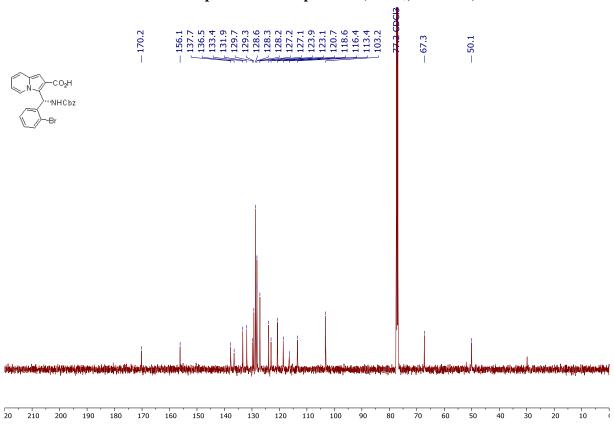


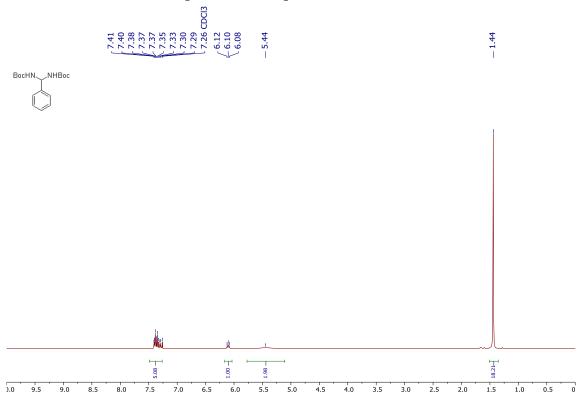


^{13}C NMR spectrum of compound 8 (CDCl₃, 101 MHz)

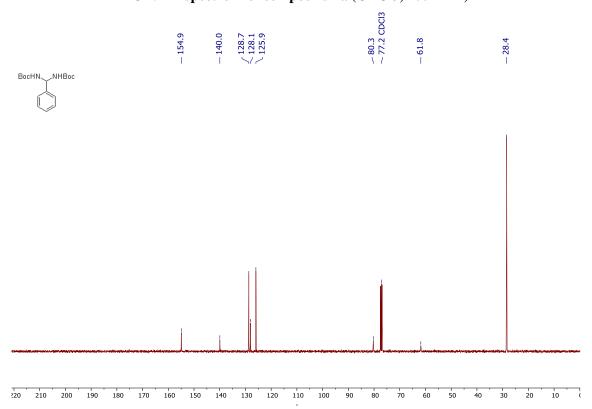


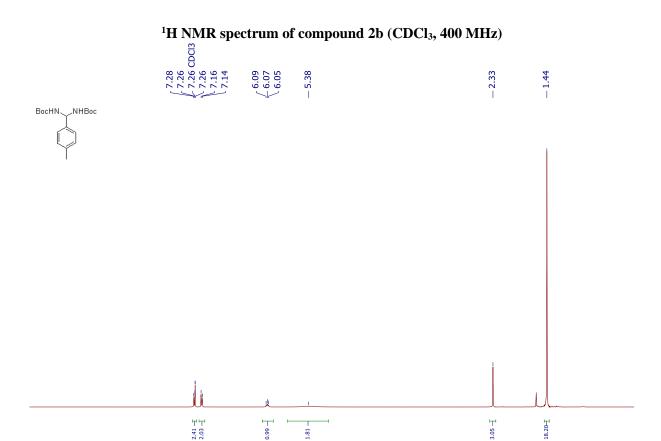






¹³C NMR spectrum of compound X (CDCl₃, 126 MHz)




6.3. N-Boc aminals 2a-m

^{1}H NMR spectrum of compound 2a (CDCl $_{3}$, 400 MHz)

¹³C NMR spectrum of compound 2a (CDCl3, 100 MHz)

1.81

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

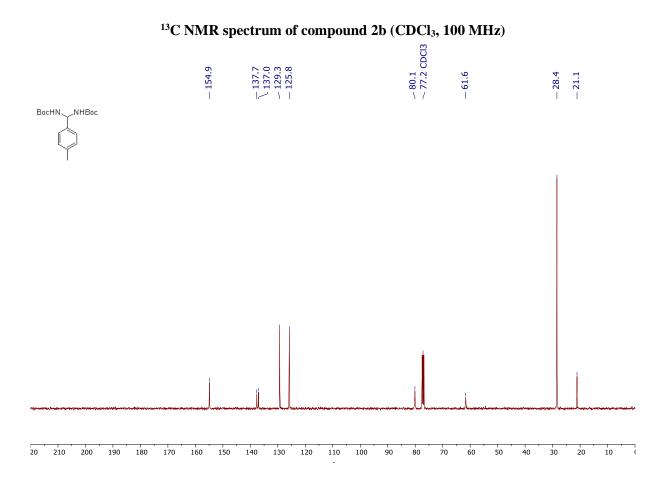
0.5

5.5

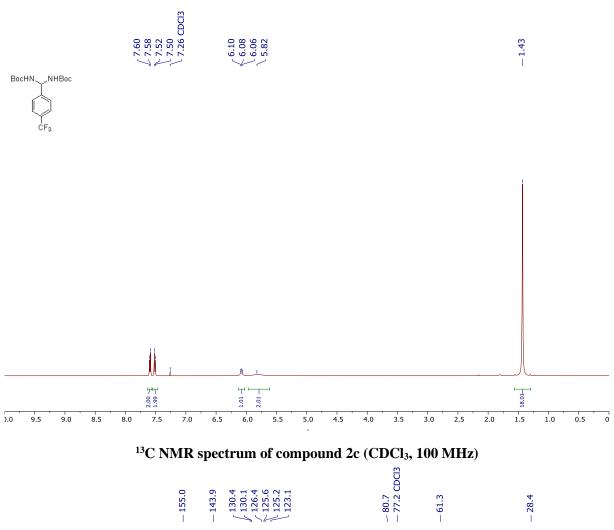
9.5

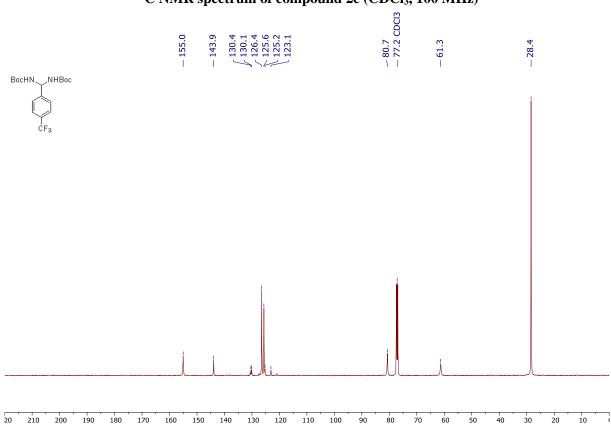
9.0

8.5

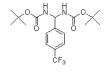

8.0

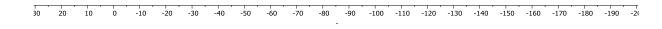
7.5

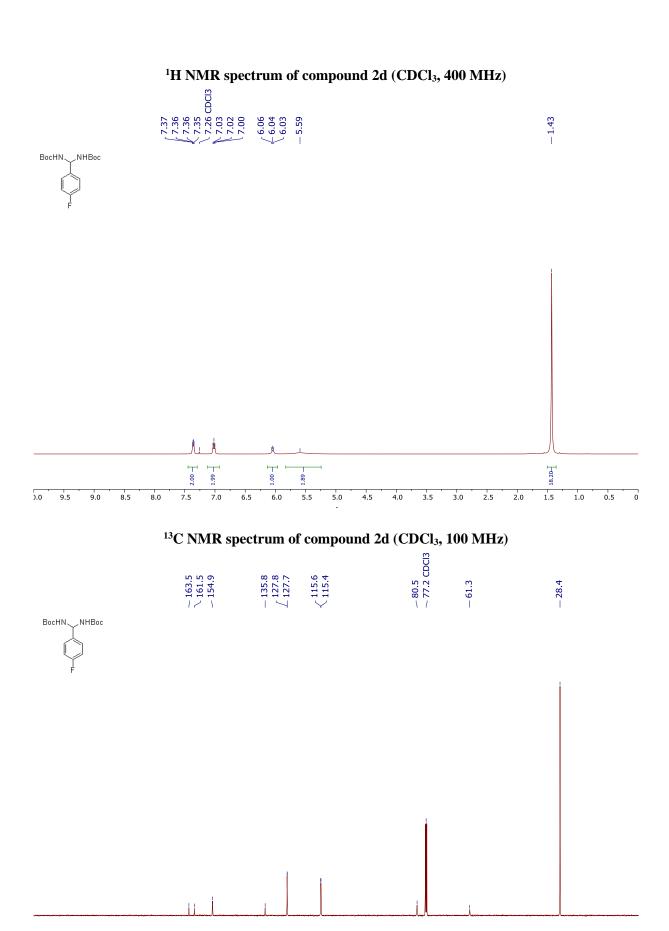

7.0

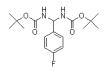

6.5

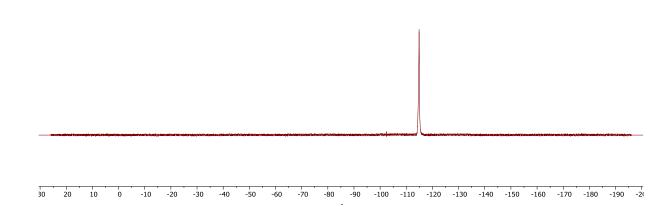
6.0

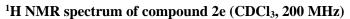

¹H NMR spectrum of compound 2c (CDCl₃, 400 MHz)

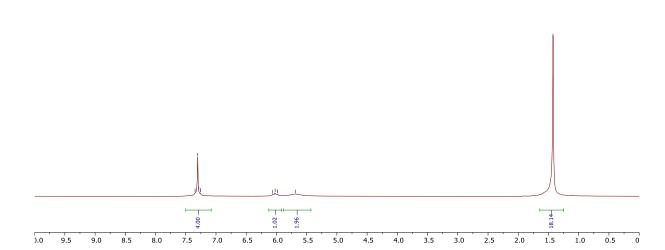


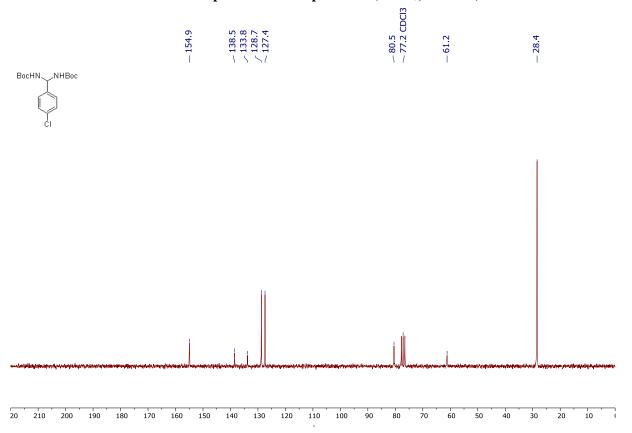


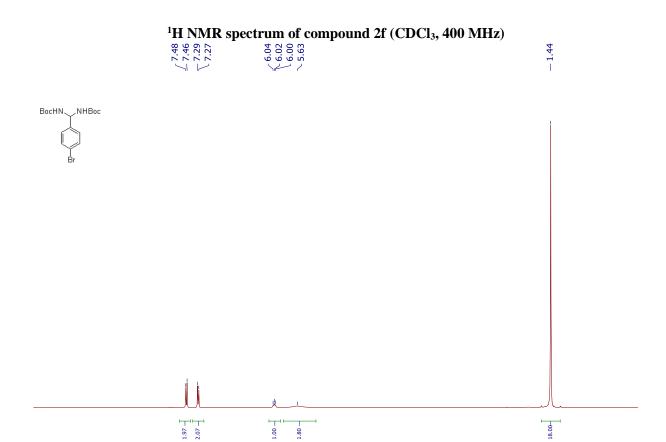












BocHN, NHBoc

¹³C NMR spectrum of compound 2e (CDCl₃, 50 MHz)

9.5

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

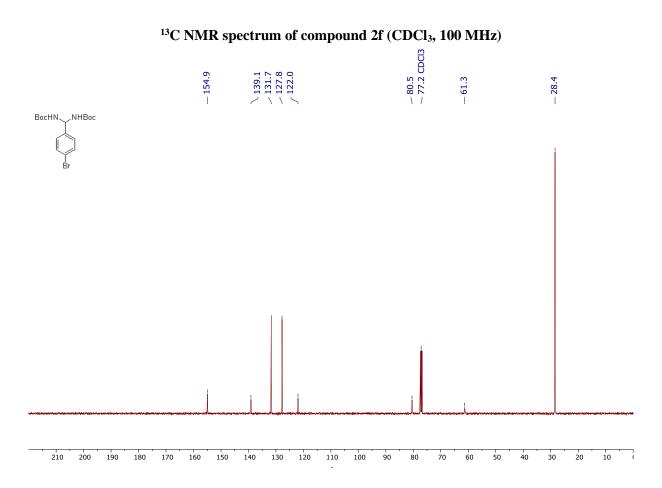
5.0

4.5

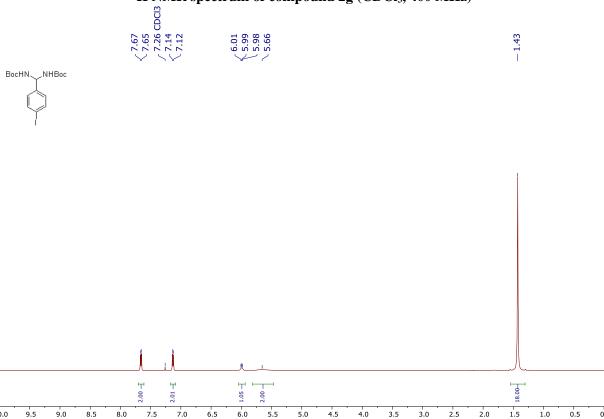
4.0

3.5

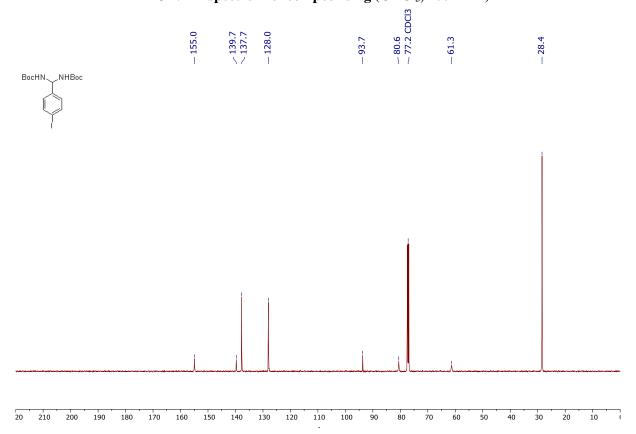
3.0

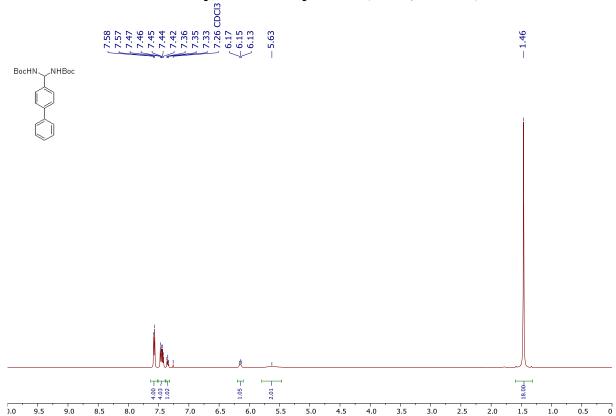

2.5

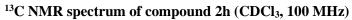
2.0

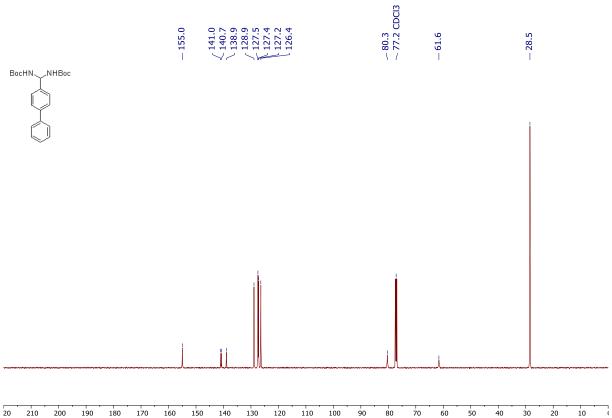

1.5

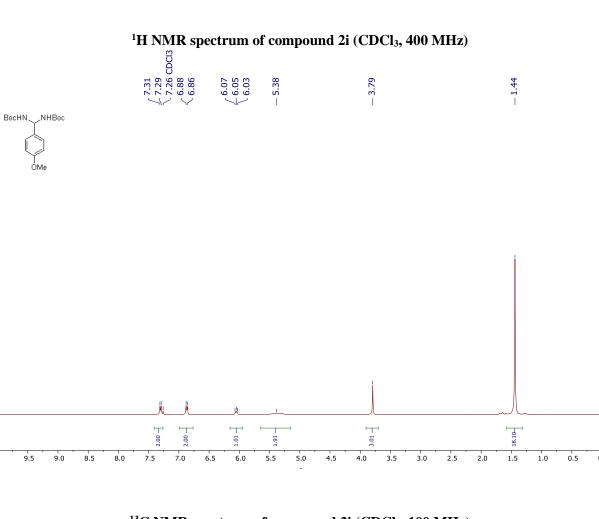
1.0

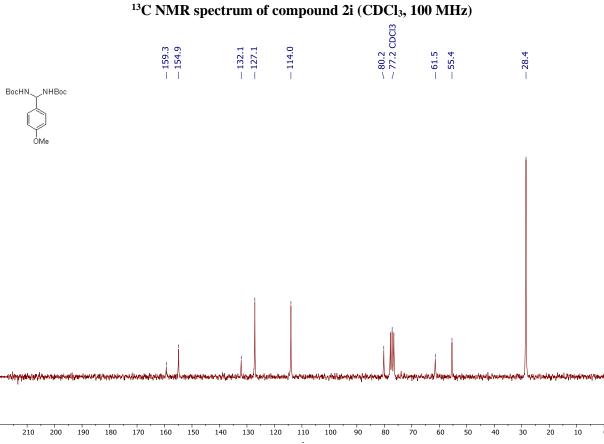

0.5

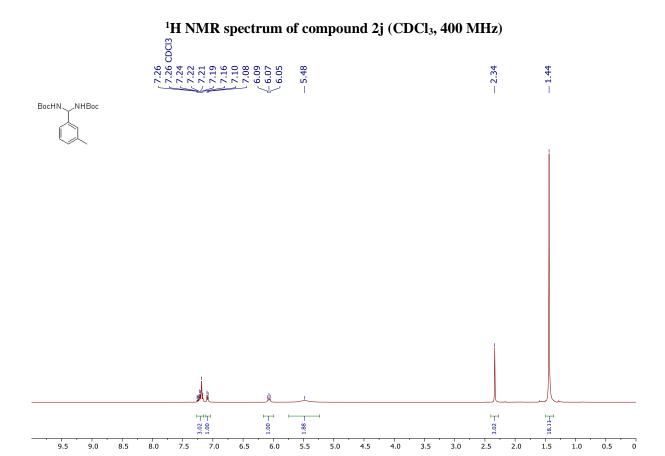


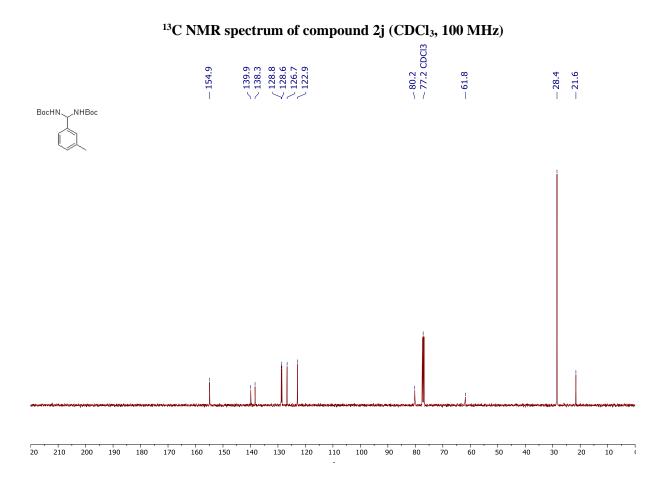


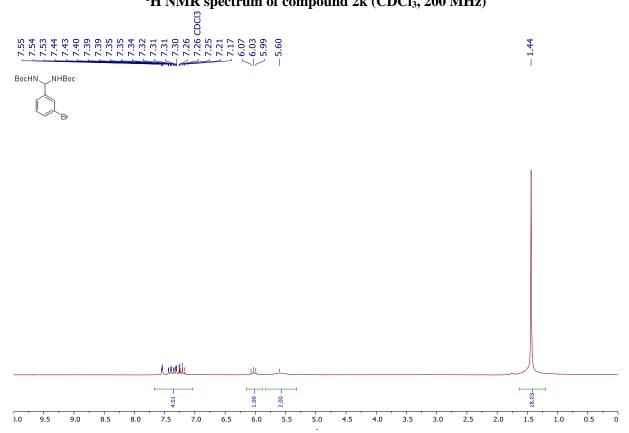

¹³C NMR spectrum of compound 2g (CDCl₃, 100 MHz)

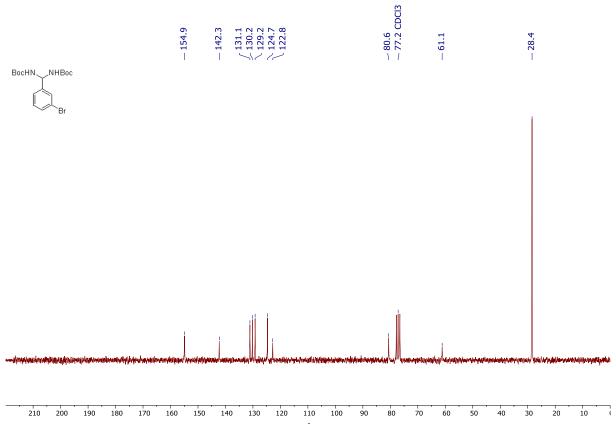


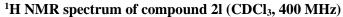


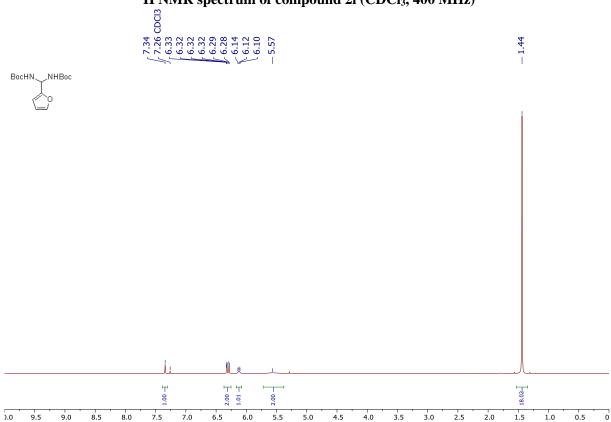


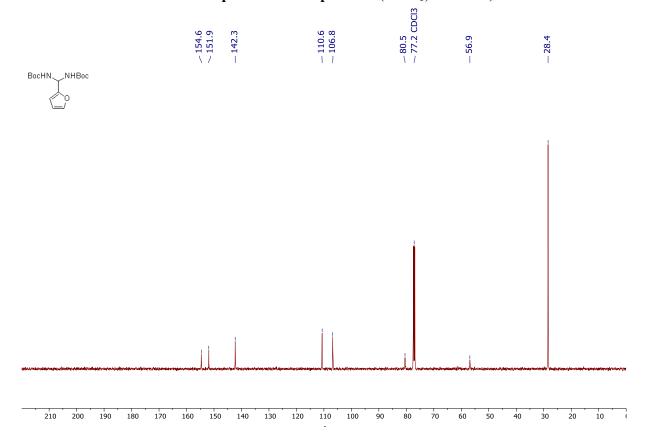


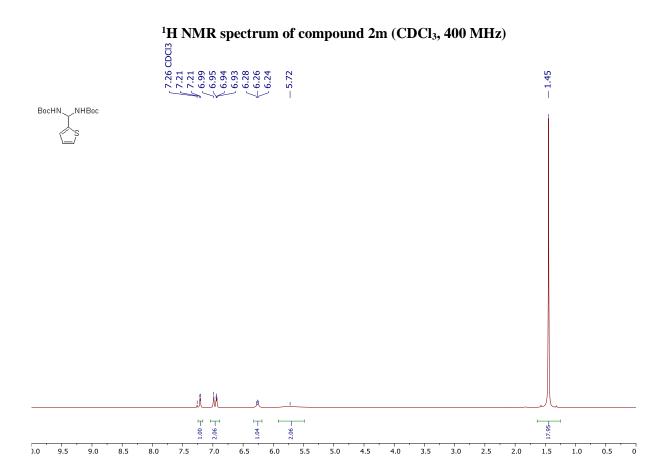


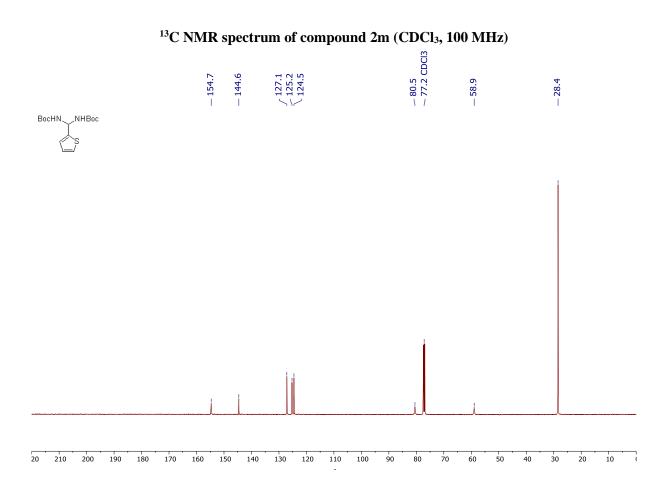




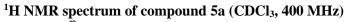


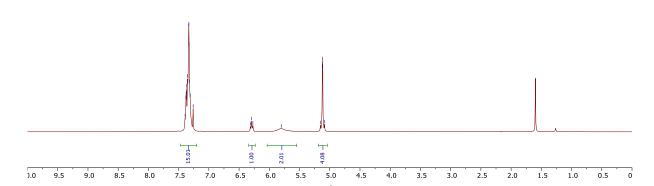

^{13}C NMR spectrum of compound 2k (CDCl₃, 100 MHz)



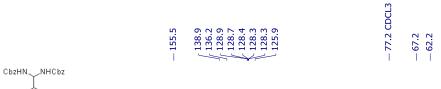


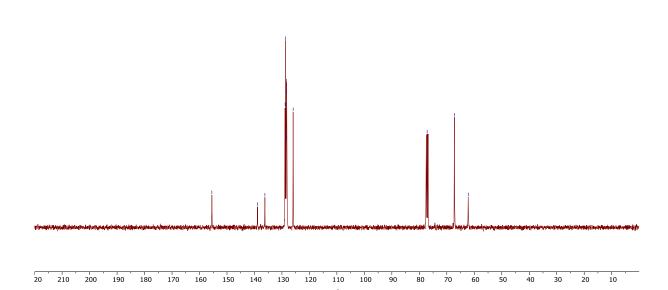
¹³C NMR spectrum of compound 2l (CDCl₃, 100 MHz)

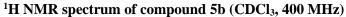


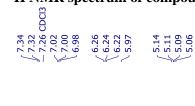

6.4. N-Cbz aminals 5a-k

NHCbz

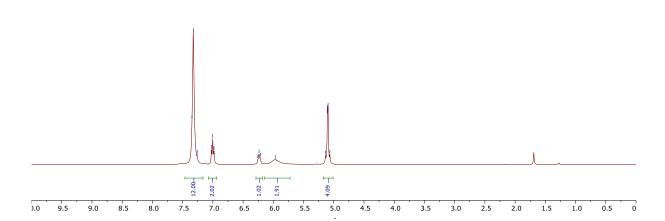

CbzHN.

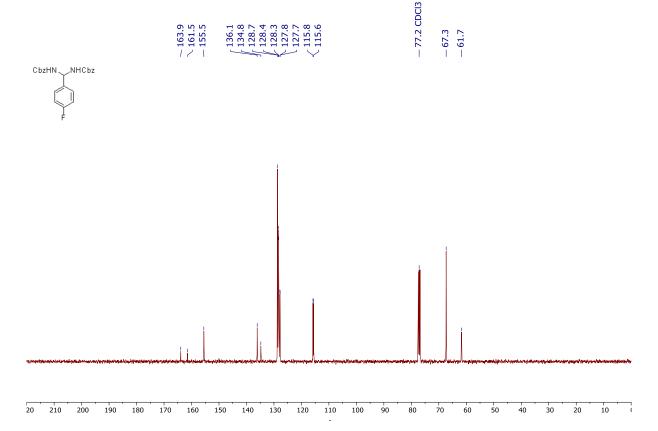






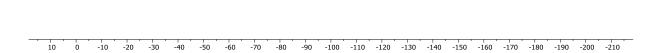
¹³C NMR spectrum of compound 5a (CDCl₃, 100 MHz)

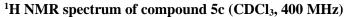


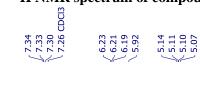


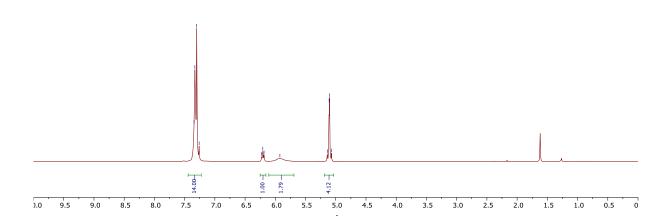
CbzHN_

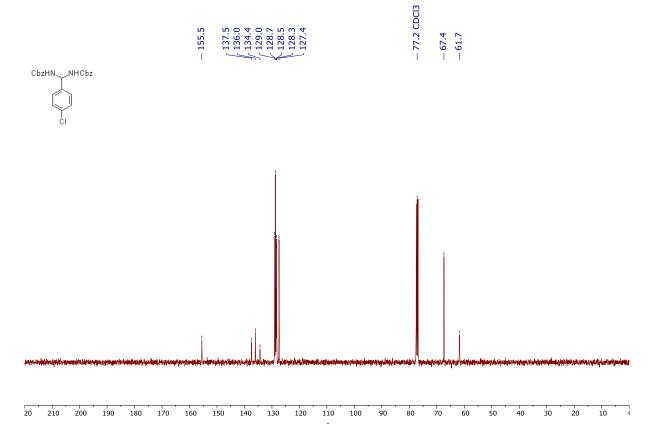
NHCbz


$^{13}\mbox{C NMR}$ spectrum of compound 5b (CDCl3, 100 MHz)



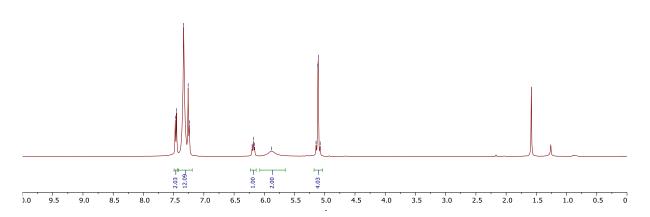


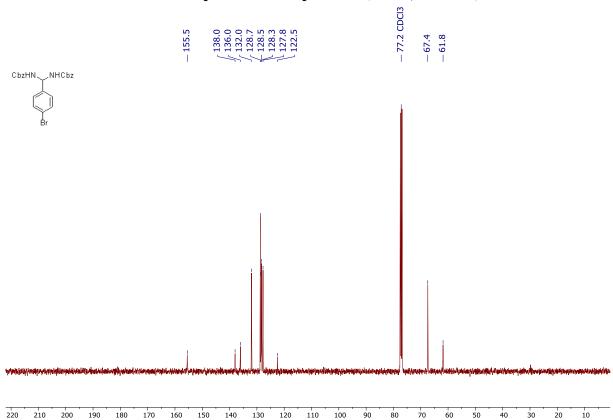


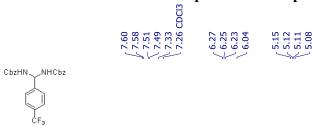


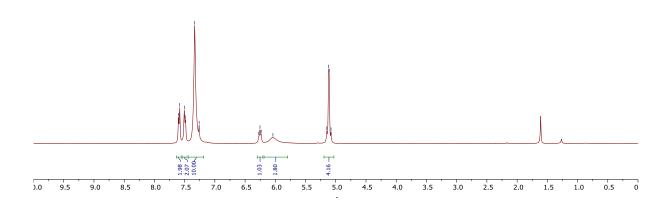
CbzHN_

NHCbz

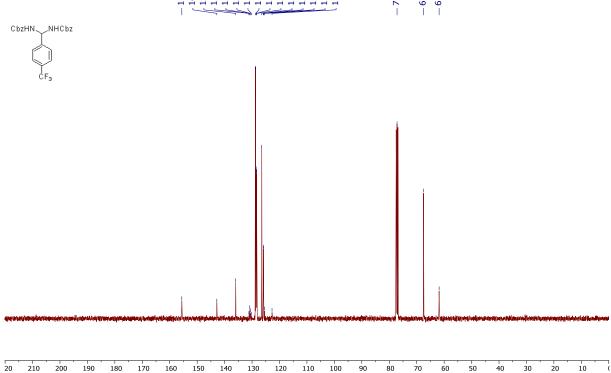

^{13}C NMR spectrum of compound 5c (CDCl₃, 100 MHz)

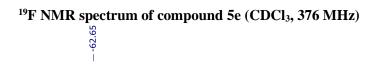


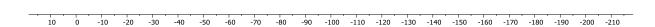




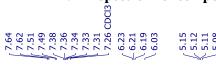
^{13}C NMR spectrum of compound 5d (CDCl3, 100 MHz)

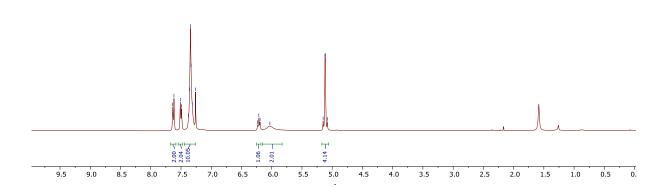


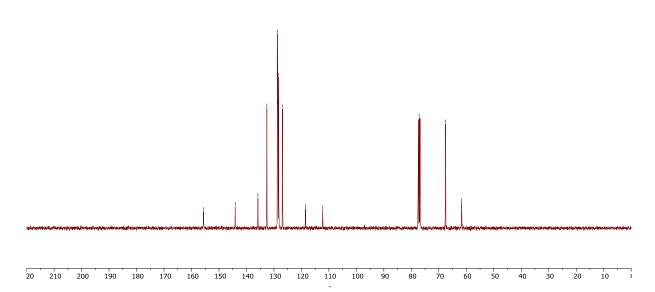


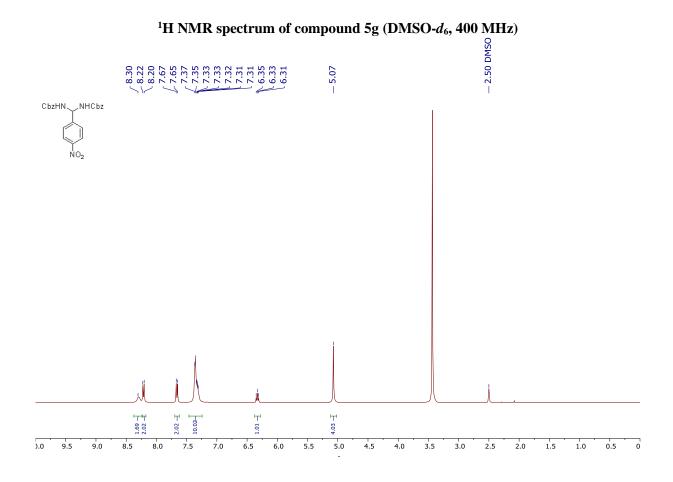


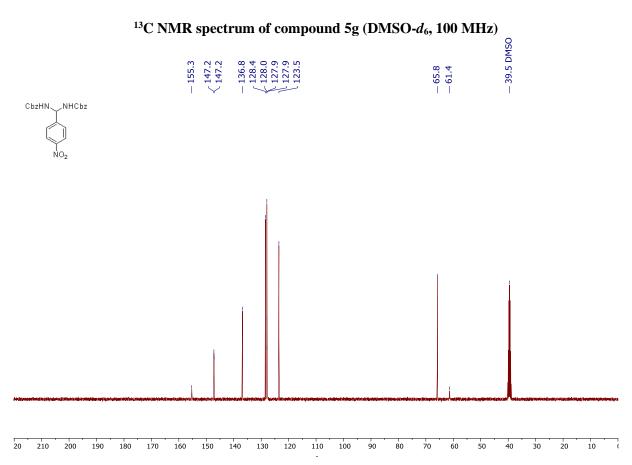
13C NMR spectrum of compound 5e (CDCl₃, 100 MHz) 130.5 1142.8 1142.8 1142.8 1130.5

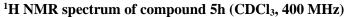


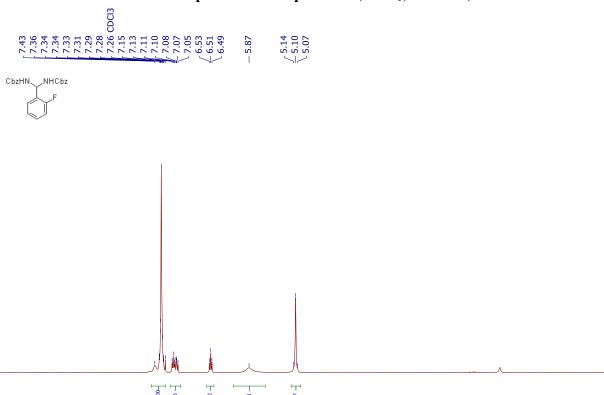






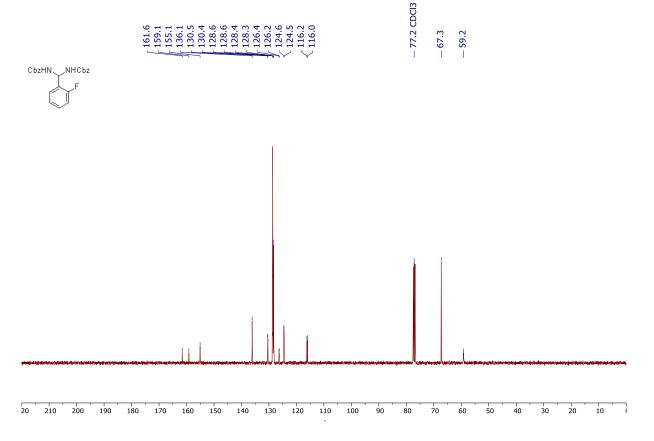


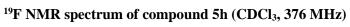

¹³C NMR spectrum of compound 5f (CDCl₃, 100 MHz)



¹³C NMR spectrum of compound 5h (CDCl₃, 100 MHz)

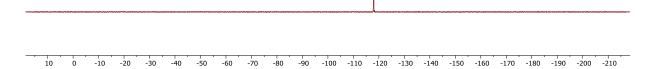
5.0

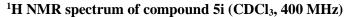

4.5

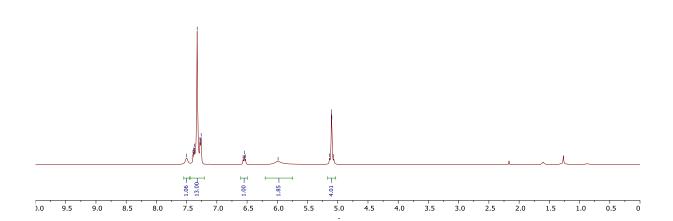

6.0

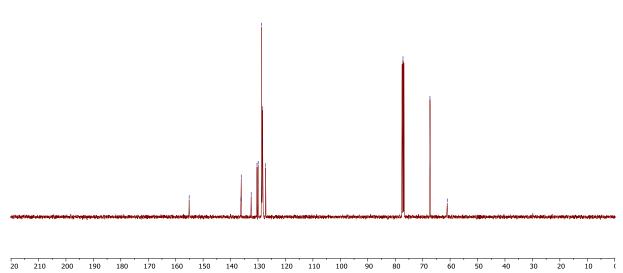
9.0

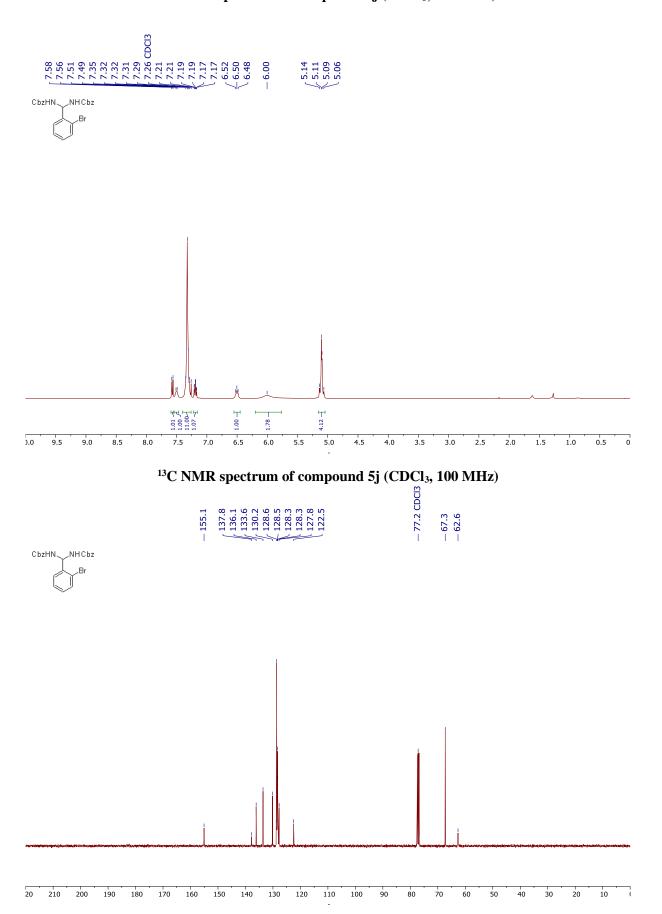
8.5

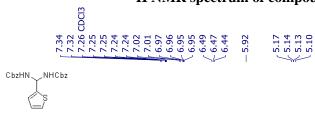

8.0

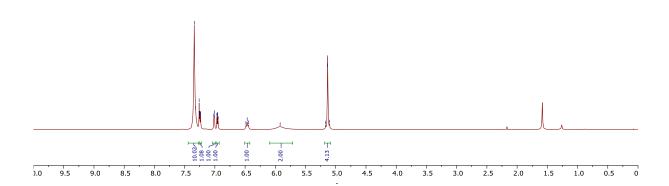




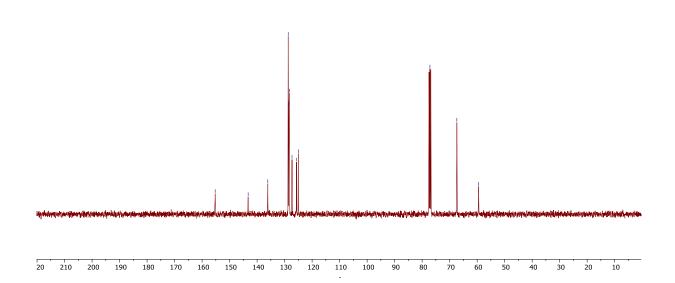


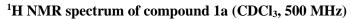

^{13}C NMR spectrum of compound 5i (CDCl₃, 100 MHz)

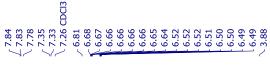


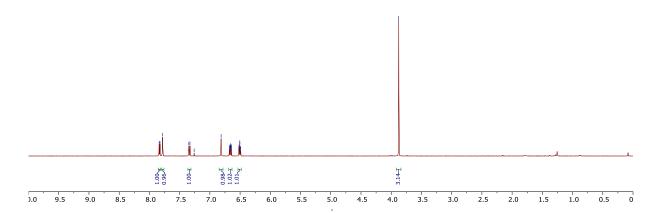


¹H NMR spectrum of compound 5j (CDCl₃, 400 MHz)

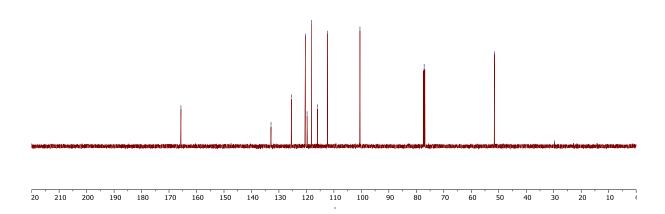





^{13}C NMR spectrum of compound 5k (CDCl₃, 100 MHz)

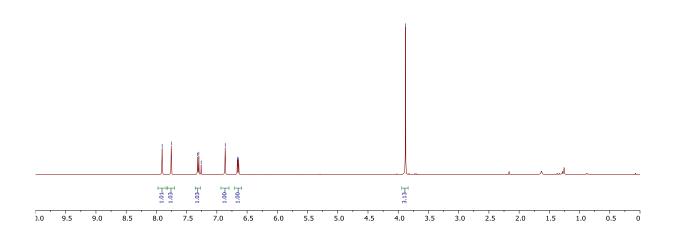


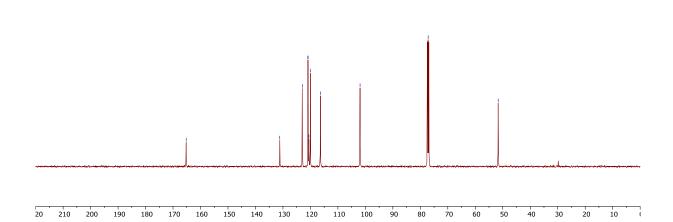
6.5. Indolizines 1a-d

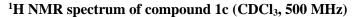


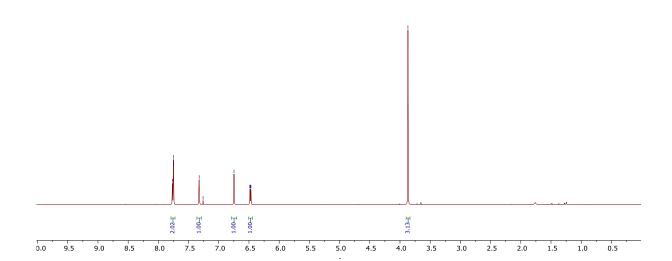
¹³C NMR spectrum of compound 1a (CDCl₃, 126 MHz)

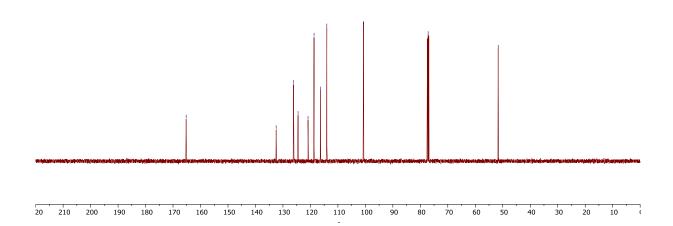
132.9 125.4 125.4 119.7 118.2 118.2 118.2 118.2 110.5 - 100.5

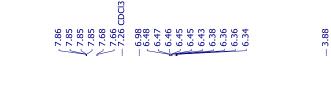


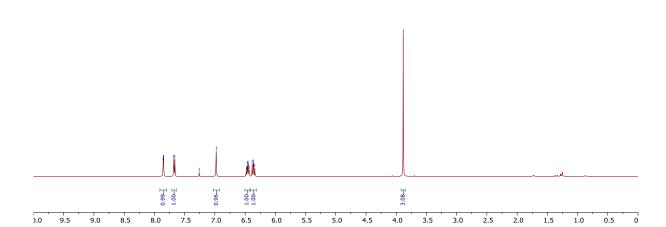


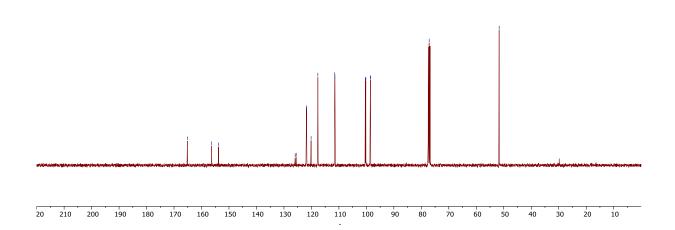



^{13}C NMR spectrum of compound 1b (CDCl₃, 126 MHz)

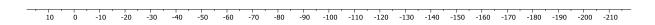


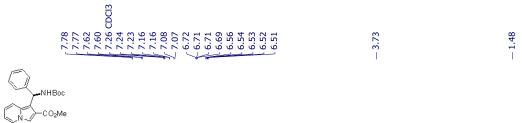


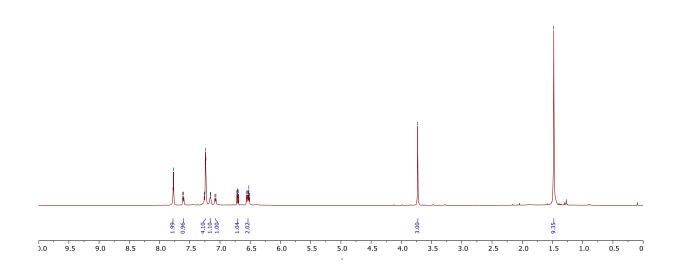

^{13}C NMR spectrum of compound 1c (CDCl₃, 126 MHz)



^{13}C NMR spectrum of compound 1d (CDCl_3, 101 MHz)



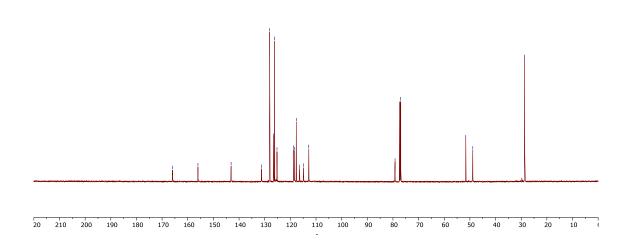



6.6. All NMR spectra of compounds 3a and 4a

6.6.1. Compound 3a

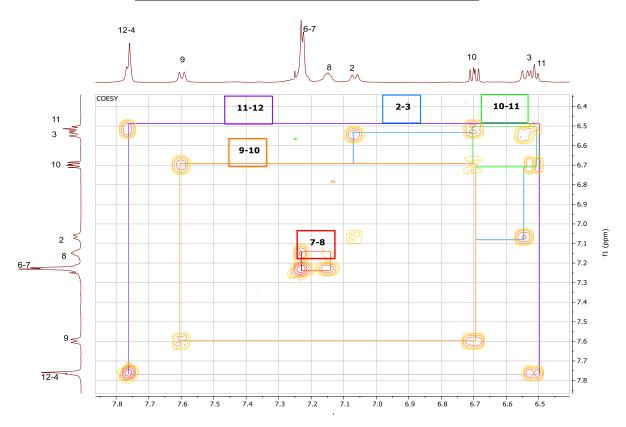
¹H NMR spectrum of compound 3a (CDCl₃, 600 MHz)

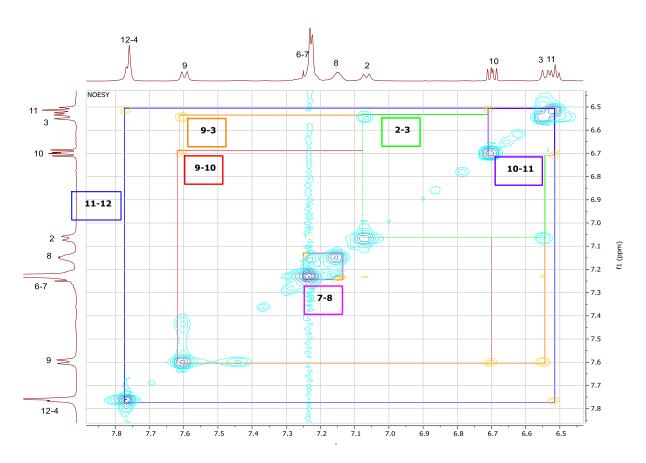
Н	δН
1	1.48
2	7.08
3	6.58-6.50
4	7.77
5	3.73
6	7.26-7.21
7	7.26-7.21
8	7.19-7.13
9	7.61
10	6.71
11	6.58-6.50
12	7.80-7.75


$^{13}\text{C NMR}$ spectrum of compound 3a (CDCl3, 151 MHz)

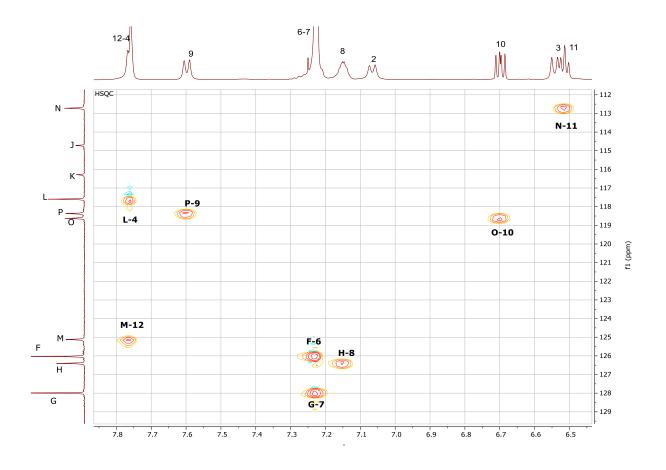
С	δC
A	28.6
В	79.2
С	156.0
D	48.9
E	143.1
F	126.1
G	128.1
Н	126.5
I	51.6
J	114.8
K	116.4
L	117.7
M	125.2
N	112.8
O	118.7
P	118.5
Q	131.3
R	165.9

- 156.0 - 156.0 - 143.1 113.1 126.1 126.1 126.1 118.7 118.7 111.8

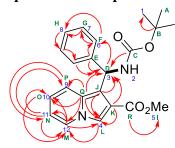

~ 51.6 ~ 48.9


COSY spectrum of compound 3a (CDCl₃)

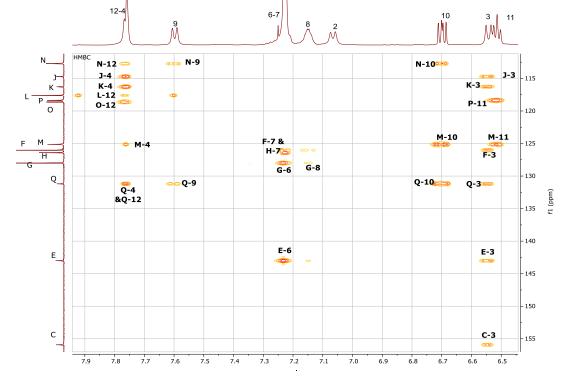
Н	δН	³ <i>J</i> Н-Н
2	7.08	H2-H3
3	6.58-6.50	H2-H3
6	7.26-7.21	H6-H7
7	7.26-7.21	H6-H7, H8-H7
8	7.19-7.13	H8-H7
9	7.61	H9-H10
10	6.71	H9-H10, H10-H11
11	6.58-6.50	H10-H11, H11-H12
12	7.80-7.75	H11-H12

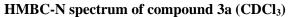

NOESY spectrum of compound 3a (CDCl₃)

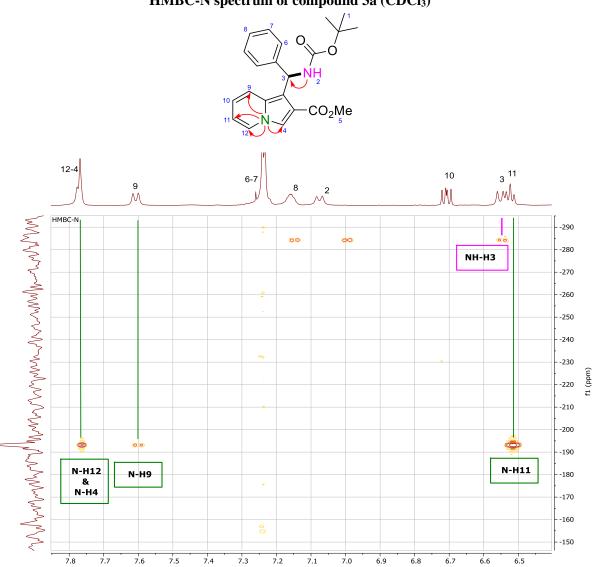
Н	δН	Н-Н
2	7.08	H2-H3
3	6.58-6.50	H2-H3; H3-H9
7	7.26-7.21	H8-H7
8	7.19-7.13	H8-H7
9	7.61	Н9-Н10; Н3-Н9
10	6.71	H9-H10; H10-H11
11	6.58-6.50	H11-H12; H10-H11
12	7.80-7.75	H11-H12

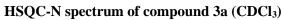


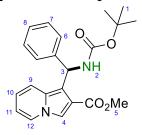
HSQC spectrum of compound 3a (CDCl₃)

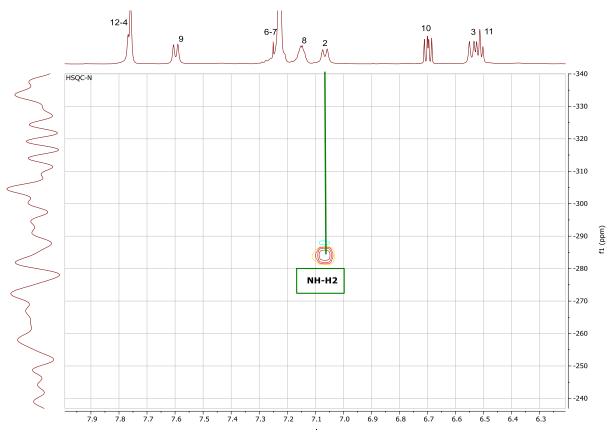

C	Н	δC	δН
A	1	28.6	1.48
D	3	48.9	6.58-6.50
F	6	126.1	7.26-7.21
G	7	128.1	7.26-7.21
Н	8	126.5	7.19-7.13
I	5	51.6	3.73
P	9	118.5	7.61
О	10	118.7	6.71
N	11	112.8	6.58-6.50
M	12	125.2	7.80-7.75

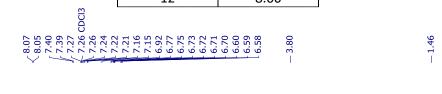


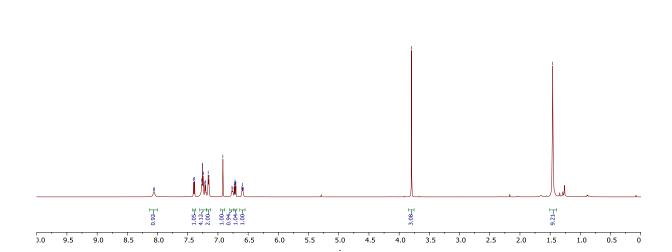

HMBC spectrum of compound 3a (CDCl₃)




СН	δC	δН	² Ј СН	³ <i>J</i> CH
D	48.9	6.58-6.50		Н6
N	112.8	6.58-6.50	H10;H12	Н9
L	117.7	7.77		H12
О	118.7	6.71		H12
P	118.5	7.61		H11
M	125.2	7.80-7.75	H10	H4;H11
F	126.1	7.26-7.21	Н7	H3;F8
Н	126.5	7.19-7.13	Н7	
G	128.1	7.26-7.21	H6;H8	
C	δC	δН	² J CH	<i>³J</i> CH
В	79.2		H1	
J	114.8		НЗ	H4
K	116.4		H4	Н3
Q	131.3		Н9	H3;H4;H10;H12
Е	143.1		H3;H6	
С	156.0			НЗ
R	165.9			H5



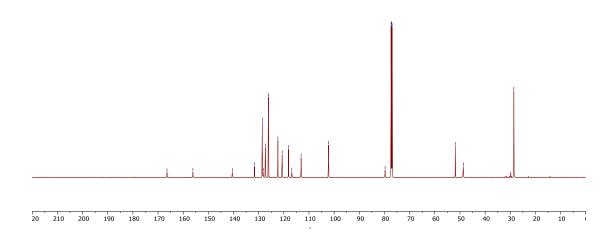



6.6.2. Compound 4a ¹H NMR spectrum of compound 4a (CDCl₃, 600 MHz)

$$\begin{array}{c|c}
10 & & & & & & & & \\
11 & & & & & & & & \\
\hline
11 & & & & & & & \\
\hline
12 & & & & & & & \\
\hline
12 & & & & & & & \\
\hline
13 & & & & & & \\
\hline
14 & & & & & & \\
\hline
15 & & & & & & \\
\hline
16 & & & & & & \\
\hline
17 & & & & & & \\
\hline
18 & & & & & & \\
\hline
19 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
11 & & & & & & \\
\hline
12 & & & & & & \\
\hline
13 & & & & & & \\
\hline
14 & & & & & & \\
\hline
15 & & & & & & \\
\hline
16 & & & & & & \\
\hline
17 & & & & & & \\
\hline
18 & & & & & & \\
\hline
19 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
11 & & & & & & \\
\hline
11 & & & & & & \\
\hline
12 & & & & & & \\
\hline
12 & & & & & & \\
\hline
13 & & & & & & \\
\hline
14 & & & & & & \\
\hline
15 & & & & & & \\
\hline
16 & & & & & & \\
\hline
17 & & & & & & \\
\hline
18 & & & & & & \\
\hline
19 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
11 & & & & & & \\
\hline
10 & & & & & & \\
\hline
11 & & & & & & \\
\hline
11 & & & & & & \\
\hline
12 & & & & & & \\
\hline
11 & & & & & & \\
\hline
12 & & & & & & \\
\hline
11 & & & & & & \\
\hline
12 & & & & & & \\
\hline
13 & & & & & & \\
\hline
14 & & & & & & \\
\hline
15 & & & & & & \\
\hline
15 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 & & & & & & \\
\hline
10 &$$

Н	δн		
1	1.46		
2	7.31-7.18		
3	6.76		
4	6.92		
5	3.80		
6	7.16		
7	7.31-7.18		
8	7.31-7.18		
9	7.40		
10	6.72		
11	6.61-6.57		
12	8.06		

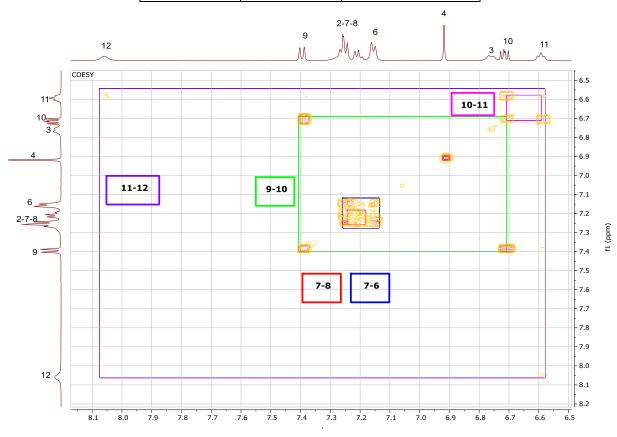
∙NHBoc


¹³C NMR spectrum of compound 4a (CDCl₃, 151 MHz)

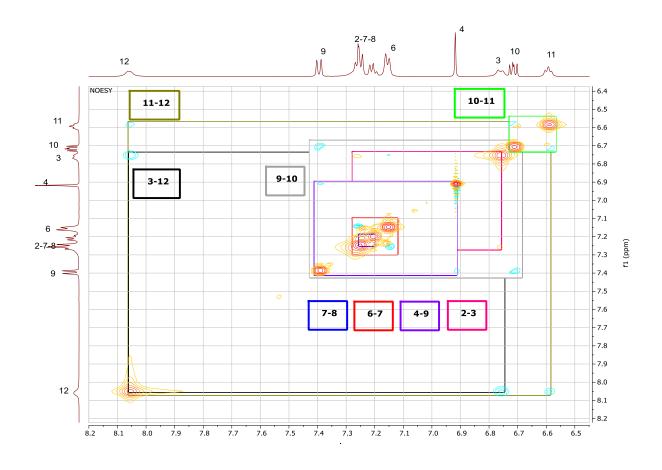
$$\begin{array}{c|c} & & & \\ & & &$$

С	δC
A	28.6
В	79.8
С	156.1
D	48.7
E	140.5
F	126.1
G	128.6
Н	127.3
I	51.9
J	102.2
K	128.2
L	116.8
M	122.4
N	113.1
О	118.2
P	120.7
Q	131.7
R	166.4

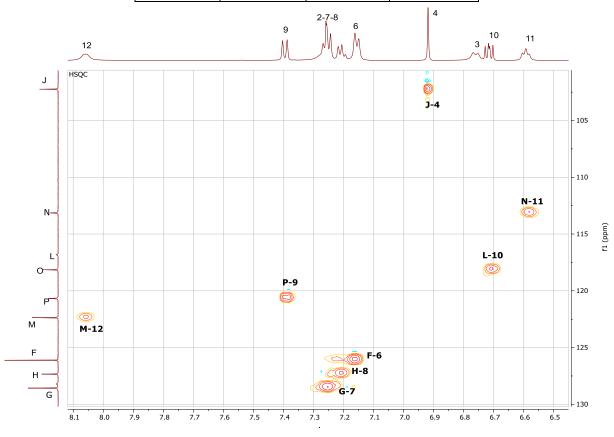
166.4 140.5 140.5 131.7 128.6 128.6 128.7 122.4 122.4 118.1 11

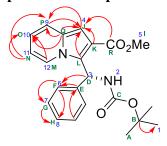


COSY spectrum of compound 4a (CDCl₃)

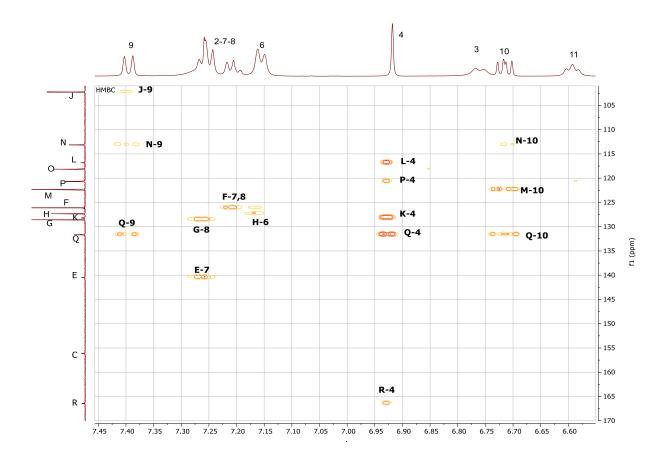

Н	δН	<i>³J</i> H−H
6	7.16	Н6-Н7
7	7.31-7.18	Н6-Н7;Н7-Н8
8	7.31-7.18	H7-H8
9	7.40	H9-H10
10	6.72	H9-H10;H10-H11
11	6.61-6.57	H10-H11;H11-H12
12	8.06	H11-H12

NOESY spectrum of compound 4a (CDCl₃)

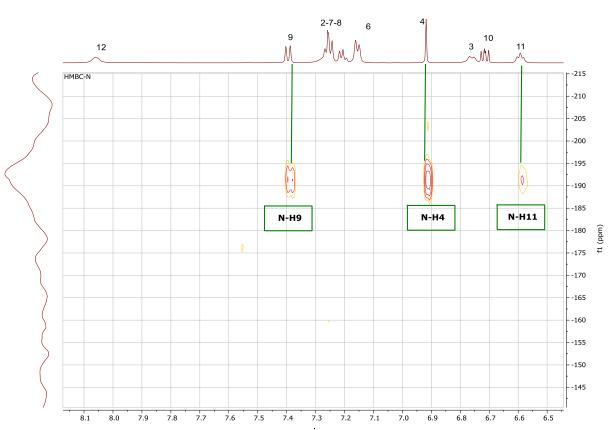

Н	δН	Н-Н
2	7.31-7.18	H2-H3
3	6.76	H2-H3; H3-H12
4	6.92	H4-H9
6	7.16	Н6-Н7
7	7.31-7.18	Н6-Н7;Н7-Н8
8	7.31-7.18	H7-H8
9	7.40	H4-H9;H9-H10
10	6.72	Н9-Н10;Н10-Н11
11	6.61-6.57	H10-H11;H11-H12
12	8.06	H3-H12;H11-H12


HSQC spectrum of compound 4a (CDCl₃)

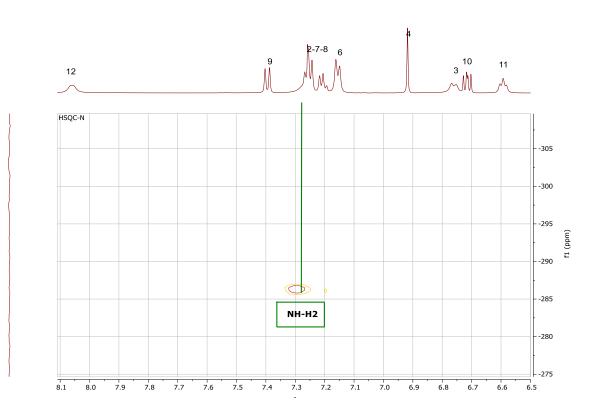
$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array}\end{array} \end{array} \end{array} \hspace{-0.5cm} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \hspace{-0.5cm} \begin{array}{c} \\ \\ \end{array} \end{array} \hspace{-0.5cm} \begin{array}{c} \\ \\ \end{array} \hspace{-0.5cm} \begin{array}{c} \\ \\ \end{array} \hspace{-0.5cm} \begin{array}{c} \\ \\ \end{array} \end{array} \hspace{-0.5cm} \begin{array}{c} \\ \\ \end{array} \hspace{-0.5cm} \begin{array}{c} \\$$


C	Н	δC	δН
A	1	28.6	1.46
D	3	48.7	6.76
I	5	51.9	3.80
J	4	102.2	6.92
N	11	113.1	6.61-6.57
O	10	118.1	6.72
P	9	120.7	7.40
M	12	122.4	8.06
F	6	126.1	7.16
Н	8	127.3	7.31-7.18
G	7	128.6	7.31-7.18

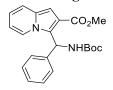
HMBC spectrum of compound 4a (CDCl₃)

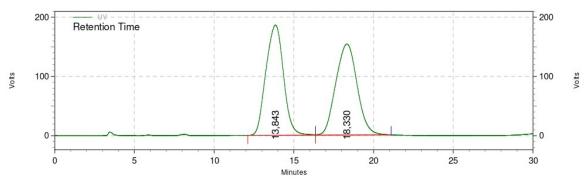


СН	δC	δн	² JCH	³ <i>J</i> CH
J	102.2	6.92		H9
N	113.1	6.61-6.57	H10	H9
Р	120.7	7.40		H4
M	122.4	8.06		H10
F	126.1	7.16	H7	H8
Н	127.3	7.31-7.18		H6
G	128.6	7.31-7.18	Н8	
С	δC	δн	² JCH	³ <i>J</i> CH
В	79.8		H1	
L	116.8			H4
K	128.2		H4	
Q	131.7		H4;H9	H10
E	140.5		Н6	
R	166.4			H4;H5



HMBC-N spectrum of compound 4a (CDCl₃)

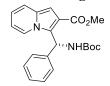

HSQC-N spectrum of compound 4a (CDCl₃)

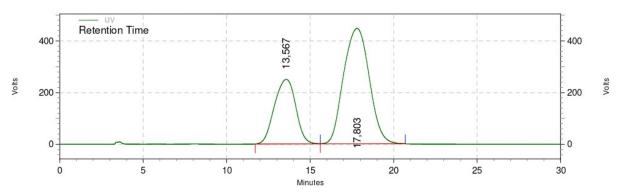


8. HPLC Chiral spectra

8.1. Products with Boc-protecting group 3a-s, 4a-s and 10

Chiral HPLC chromatogram of racemic 4a

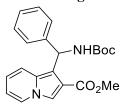


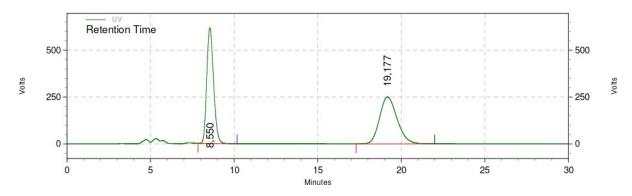

UV Results

Retention Time	Area	Area %	Height	Height %
13,843	57015316	50,00	744080	54,75
18,330	57017925	50,00	614933	45,25

Totals				
	114033241	100,00	1359013	100,00

Chiral HPLC chromatogram of chiral 4a

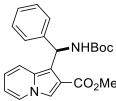


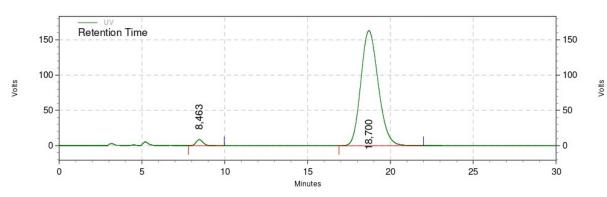


Retention Time	Area	Area %	Height	Height %
13,567	88631047	31,66	999718	35,87
17,803	191344584	68,34	1787454	64,13

Na Araba				
Totals				
Totals				
	279975631	100,00	2787172	100.00
	217713031	100,00	2/0/1/2	100,00

Chiral HPLC chromatogram of racemic 3a

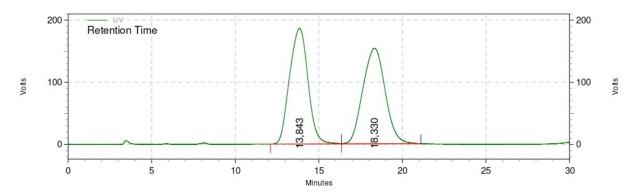



UV Results

Retention Time	Area	Area %	Height	Height %
8,550	69984599	48,97	2470174	71,15
19,177	72928830	51,03	1001623	28,85

Totals				
-	142913429	100,00	3471797	100,00

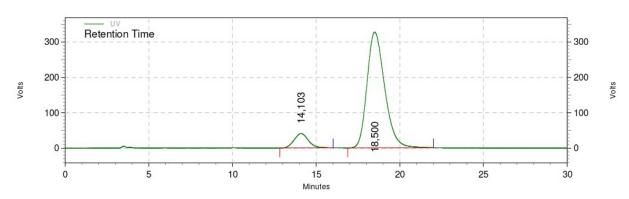
Chiral HPLC chromatogram of chiral 3a



UV Results

Retention Time	Area	Area %	Height	Height %
8,463	1001400	2,06	34069	4,96
18,700	47674180	97,94	653034	95,04
Totals				
	48675580	100,00	687103	100,00

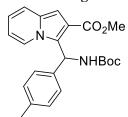
Chiral HPLC chromatogram of racemic 4a

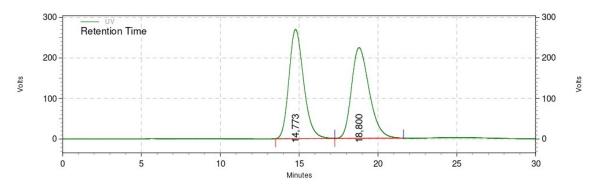


UV Results

Retention Time	Area	Area %	Height	Height %
13,843	57015316	50,00	744080	54,75
18,330	57017925	50,00	614933	45,25

Totals				
	114033241	100,00	1359013	100,00

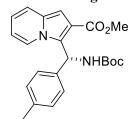

Chiral HPLC chromatogram of chiral 4a (procedure B)

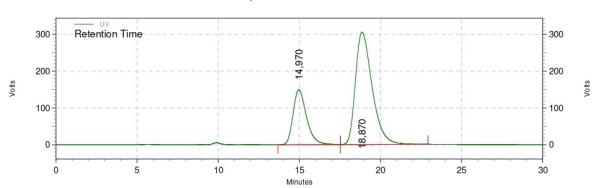


	Retention Time	Area	Area %	Height	Height %
355	14,103	9587778	9,10	162251	11,04
	18,500	95796648	90,90	1307472	88,96

Totals				
	105384426	100,00	1469723	100,00

Chiral HPLC chromatogram of racemic 4b

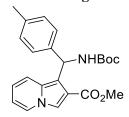



UV Results

Area	Area %	Height	Height %
69818719	50,00	1077547	54,62
69817369	50,00	895194	45,38
	69818719	69818719 50,00	69818719 50,00 1077547

Totals				
	139636088	100,00	1972741	100,00

Chiral HPLC chromatogram of chiral 4b

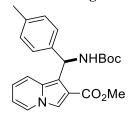


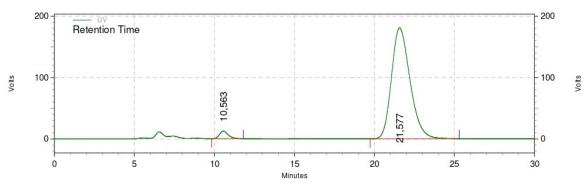


Retention Time	Area	Area %	Height	Height %
14,970	34421300	28,31	598360	32,91
18,870	87168179	71,69	1219979	67,09

Totals				
	121589479	100,00	1818339	100,00

Chiral HPLC chromatogram of racemic 3b

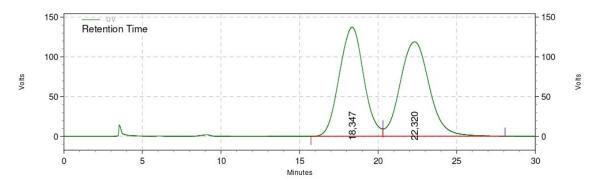




UV Results

Retention Time	Area	Area %	Height	Height %
10,683	326551193	49,01	6190814	62,14
21,317	339798926	50,99	3771438	37,86
Totals				
	666350119	100,00	9962252	100,00

Chiral HPLC chromatogram of chiral 3b

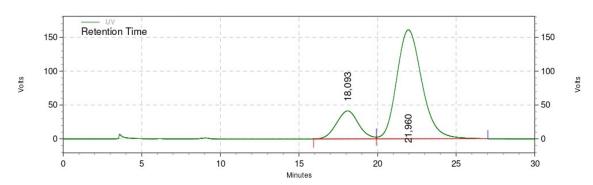


Retention Time	Area	Area %	Height	Height %
10,563	1917542	3,19	49113	6,37
21,577	58159709	96,81	722343	93,63
	-			

Totals				
100000000000000000000000000000000000000	60077251	100,00	771456	100,00

Chiral HPLC chromatogram of racemic 4c

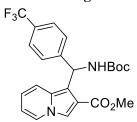
$$CO_2Me$$
NHBoc
 F_3C

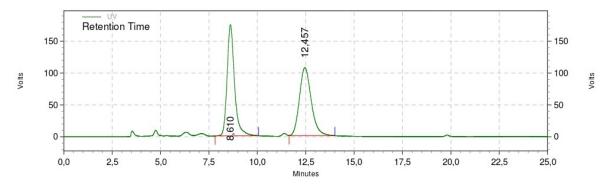


UV Results

Retention Time	Area	Area %	Height	Height %
18,347	59155829	49,19	547905	53,59
22,320	61096077	50,81	474464	46,41

Totals			3	
	120251906	100,00	1022369	100,00

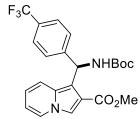

Chiral HPLC chromatogram of chiral 4c

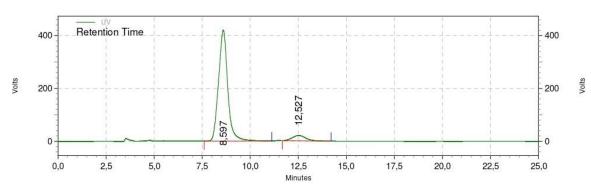


Retention Time	Area	Area %	Height	Height %
18,093	16183126	18,42	165826	20,47
21,960	71680645	81,58	644239	79,53

			N	
Totals				
	87863771	100,00	810065	100,00

Chiral HPLC chromatogram of racemic 3c

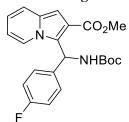


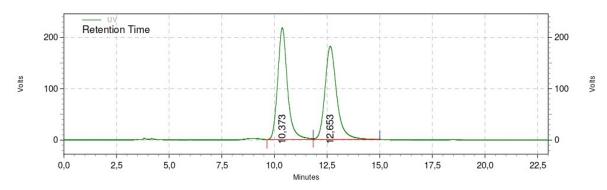

UV Results

Retention Time	Area	Area %	Height	Height %
8,610	18564812	50,65	697950	62,01
12,457	18087139	49,35	427681	37,99

	Totals				
1		36651951	100,00	1125631	100,00

$\label{lem:chiral HPLC} Chiral\ HPLC\ chromatogram\ of\ chiral\ 3c$

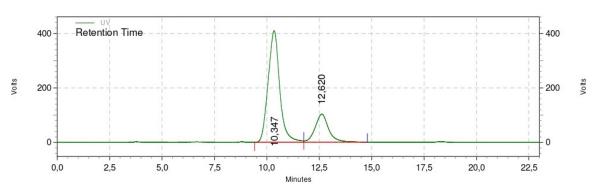




Retention Time	Area	Area %	Height	Height %
8,597	56085747	93,45	1682161	95,41
12,527	3933280	6,55	80920	4,59

02					
	Totals				
		60019027	100,00	1763081	100,00

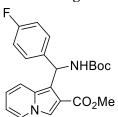
Chiral HPLC chromatogram of racemic 4d

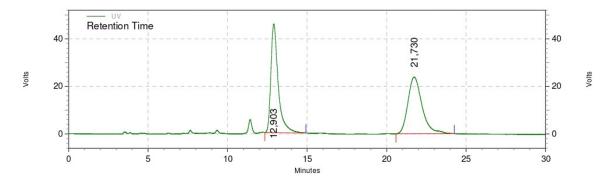


UV Results

Retention Time	Area	Area %	Height	Height %
10,373	28194791	49,87	871453	54,50
12,653	28347419	50,13	727495	45,50

Totals				
	56542210	100,00	1598948	100,00

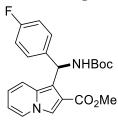

Chiral HPLC chromatogram of chiral 4d

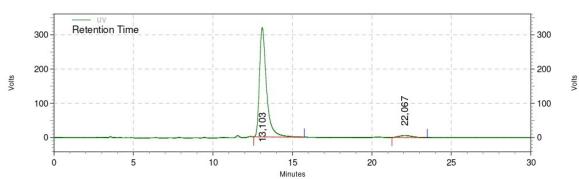


Retention Time	Area	Area %	Height	Height %
10,347	62807919	77,19	1636167	79,84
12,620	18555046	22,81	413153	20,16

Totals				
	81362965	100.00	2049320	100.00

Chiral HPLC chromatogram of racemic 3d

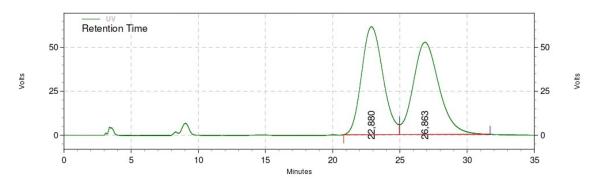



UV Results

Retention Time	Area	Area %	Height	Height %
12,903	5836341	49,72	182886	65,69
21,730	5901016	50,28	95517	34,31

Totals				
	11737357	100,00	278403	100,00

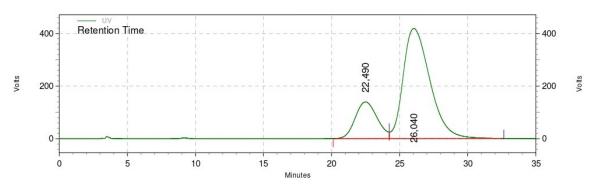
$Chiral\ HPLC\ chromatogram\ of\ chiral\ 3d$



Retention Time	Area	Area %	Height	Height %
13,103	39048408	96,84	1276314	98,25
22,067	1272773	3,16	22692	1,75

Totals			1	
	40321181	100,00	1299006	100,00

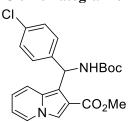
Chiral HPLC chromatogram of racemic 4e

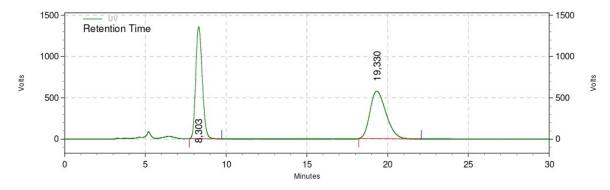


UV Results

Retention Time	Area	Area %	Height	Height %
22,880	27251563	49,25	246034	53,92
26,863	28082220	50,75	210273	46,08

Totals				
1 0 0 0 0	55222792	100.00	45.62.07	100.00
	55333783	100,00	456307	100,00

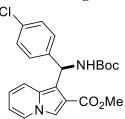

Chiral HPLC chromatogram of chiral 4e

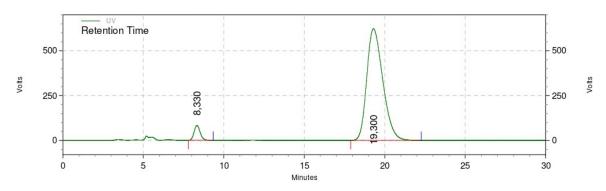


Retention Time	Area	Area %	Height	Height %
22,490	62179727	21,40	556255	24,97
26,040	228418982	78,60	1671880	75,03

 22 274	24			<u> </u>
Totals				
	290598709	100,00	2228135	100,00

Chiral HPLC chromatogram of racemic 3e

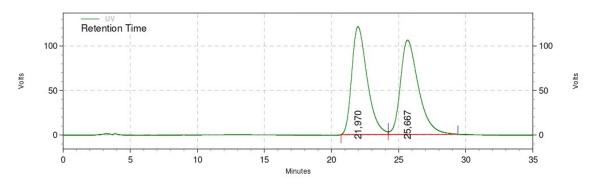



UV Results

Retention Time	Area	Area %	Height	Height %
8,303	152989548	49,09	5418360	70,14
19,330	158644455	50,91	2306879	29,86

Totals				
	311634003	100,00	7725239	100,00

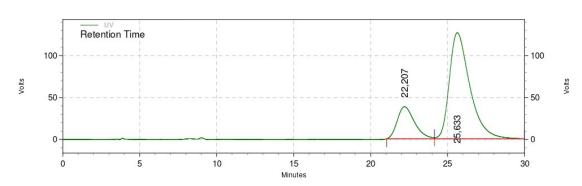
Chiral HPLC chromatogram of chiral 3e



Retention Time	Area	Area %	Height	Height %
8,330	8662946	4,78	330986	11,74
19,300	172415471	95,22	2487606	88,26

Totals				
	181078417	100,00	2818592	100,00

Chiral HPLC chromatogram of racemic 4f

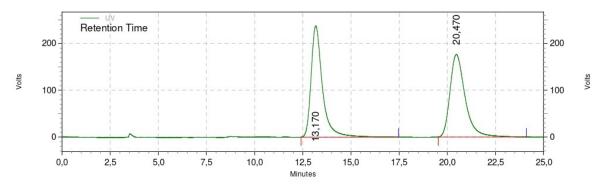


UV Results

Retention Time	Area	Area %	Height	Height %
21,970	38775658	49,59	485056	53,37
25,667	39412010	50,41	423766	46,63

Totals			,	
	78187668	100,00	908822	100,00

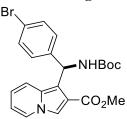

Chiral HPLC chromatogram of chiral 4f

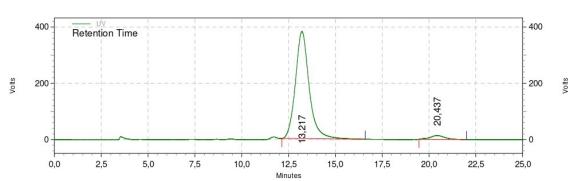


Retention Time	Area	Area %	Height	Height %
22,207	11829174	20,24	152605	23,17
25,633	46614556	79,76	505893	76,83

50		25		2
Totals				
Totals				i I
	58443730	100,00	658498	100.00
	30443730	100,00	030490	100,00

Chiral HPLC chromatogram of racemic 3f

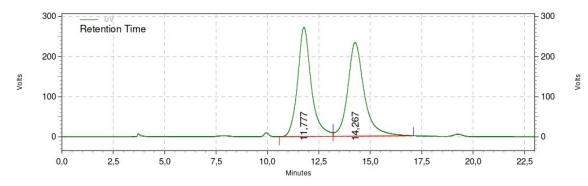



UV Results

Retention Time	Area	Area %	Height	Height %
13,170	38948744	50,37	951174	57,42
20,470	38382878	49,63	705464	42,58

Totals			0	
	77331622	100,00	1656638	100,00

Chiral HPLC chromatogram of chiral 3f

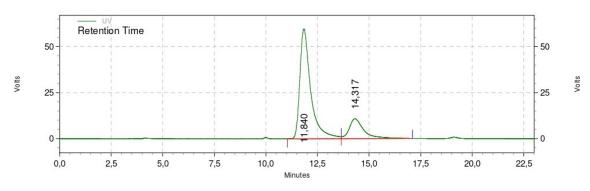


UV Results Retention

	Retention Time	Area	Area %	Height	Height %
8.5	13,217	77671067	96,31	1523542	96,55
	20,437	2979225	3,69	54370	3,45

Totals				
	80650292	100,00	1577912	100,00

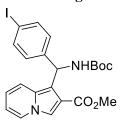
Chiral HPLC chromatogram of racemic 4g

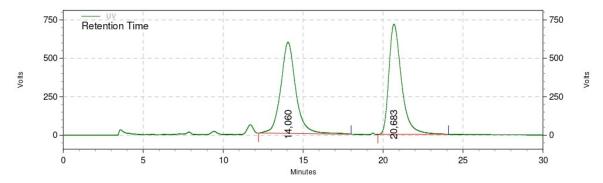


UV Results

Retention Time	Area	Area %	Height	Height %
11,777	50337746	49,18	1089135	53,83
14,267	52025693	50,82	934177	46,17

Totals				
	102363439	100,00	2023312	100,00

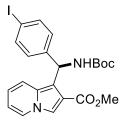

Chiral HPLC chromatogram of chiral 4g

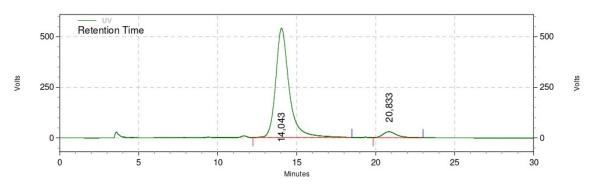


Retention Time	Area	Area %	Height	Height %
11,840	8750995	80,53	238750	84,65
14,317	2115123	19,47	43291	15,35

Totals				
	10866118	100,00	282041	100,00

Chiral HPLC chromatogram of racemic 3g

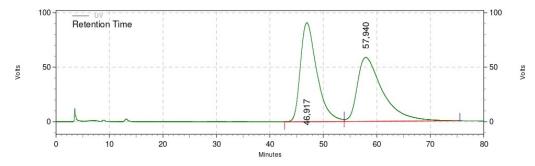



UV Results

Retention Time	Area	Area %	Height	Height %
14,060	155133263	49,66	2372929	45,28
20,683	157285204	50,34	2867954	54,72

Ī	Totals			f -	
1	Totals	312418467	100,00	5240883	100,00
- 1		312416407	100,00	3240883	100,00

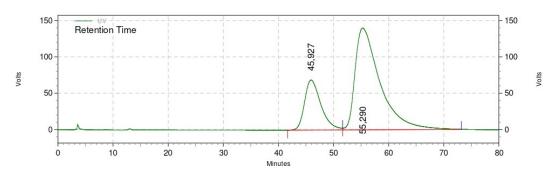
Chiral HPLC chromatogram of chiral 3g



Area	Area %	Height	Height %
127151776	94,92	2158714	94,91
6805488	5,08	115758	5,09
		127151776 94,92	127151776 94,92 2158714

Totals				
	133957264	100,00	2274472	100,00

Chiral HPLC chromatogram of racemic 4h



UV Results

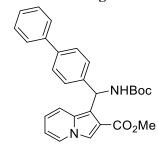
Retention Time	Area	Area %	Height	Height %
46,917	77672077	50,15	362630	60,72
57,940	77218864	49,85	234540	39,28

Totale				1
Totals				
	154000041	100.00	507170	100.00
	154890941	100,00	59/1/0	100,00
	Totals	154890941	154890941 100.00	

Chiral HPLC chromatogram of chiral 4h

UV Results

	Retention Time	Area	Area %	Height	Height %
S	45,927	56670974	24,42	275296	32,97
	55,290	175401003	75,58	559723	67,03
	Totals				

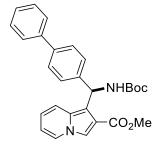

232071977

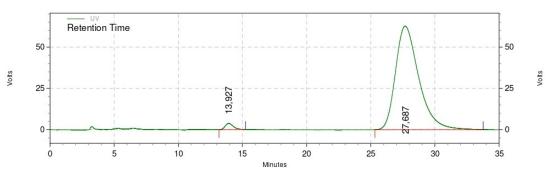

100,00

835019

100,00

Chiral HPLC chromatogram of racemic 3h

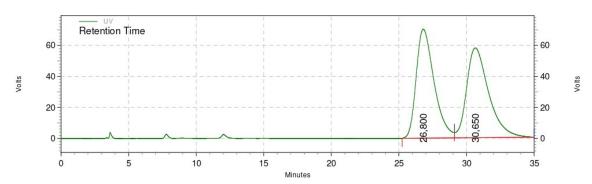



UV Results

Retention Time	Area	Area %	Height	Height %
14,103	35979376	50,00	804698	73,89
28,267	35973592	50,00	284390	26,11

Totals					
	71952968	100,00	1089088	100,00	

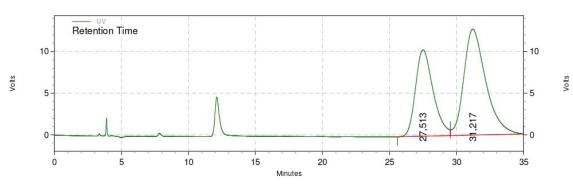
Chiral HPLC chromatogram of chiral 3h



Retention Time	Area	Area %	Height	Height %
13,927	650696	2,02	15073	5,67
27,687	31638076	97,98	250826	94,33

Totals				
	32288772	100,00	265899	100,00

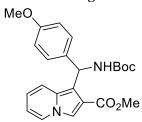
Chiral HPLC chromatogram of racemic 4i

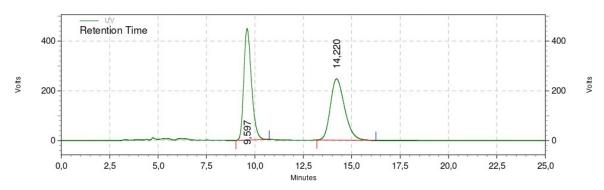


UV Results

Retention Time	Area	Area %	Height	Height %
26,800	25787071	49,55	281163	54,82
30,650	26256268	50,45	231760	45,18

Totals				
	52043339	100,00	512923	100,00

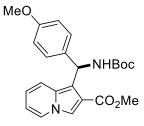

Chiral HPLC chromatogram of chiral 4i

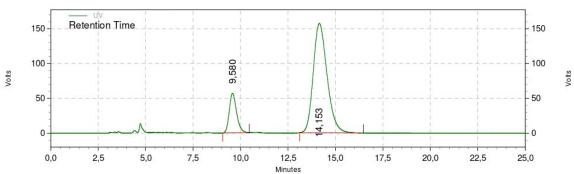


Retention Time	Area	Area %	Height	Height %
27,513	3805754	39,63	41566	44,91
31,217	5797016	60,37	50991	55,09

Totals				
	9602770	100,00	92557	100,00

Chiral HPLC chromatogram of racemic 3i

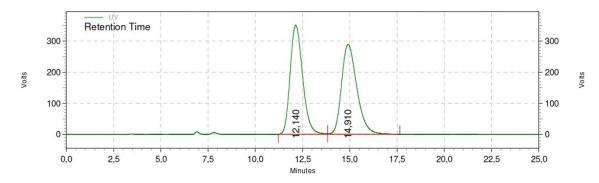



UV Results

Retention Time	Area	Area %	Height	Height %
9,597	49344175	49,50	1791299	64,53
14,220	50345015	50,50	984751	35,47

Totals			6	
	99689190	100,00	2776050	100,00

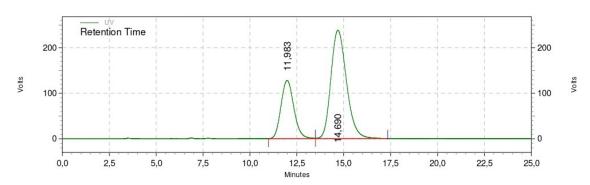
Chiral HPLC chromatogram of chiral 3i



Retention Time	Area	Area %	Height	Height %
9,580	6057180	15,99	226492	26,53
14,153	31814308	84,01	627316	73,47

2.2	Totals				
		37871488	100,00	853808	100,00

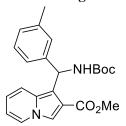
Chiral HPLC chromatogram of racemic 4j



UV Results

Retention Time	Area	Area %	Height	Height %
12,140	64379837	49,81	1400738	54,85
14,910	64881108	50,19	1153095	45,15

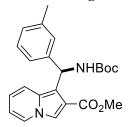
Totals			1	
	129260945	100,00	2553833	100,00

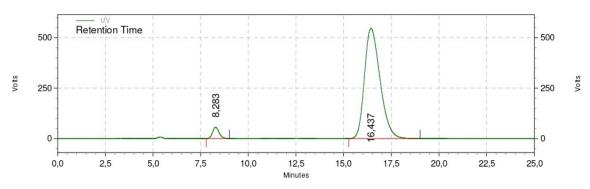

Chiral HPLC chromatogram of chiral 4j

Retention Time	Area	Area %	Height	Height %
11,983	24378989	30,74	512721	35,00
14,690	54918891	69,26	952325	65,00

Totals				
	79297880	100,00	1465046	100,00

Chiral HPLC chromatogram of racemic 3j

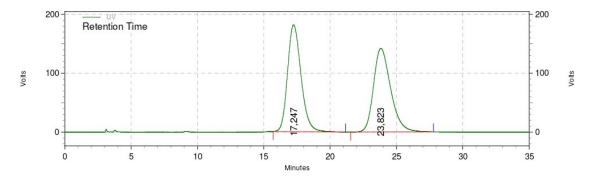



UV Results

Retention Time	Area	Area %	Height	Height %
8,323	31167327	49,70	1368776	70,67
16,740	31549426	50,30	568026	29,33

Totals				
	62716753	100,00	1936802	100,00

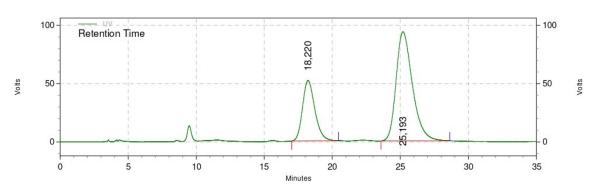
Chiral HPLC chromatogram of chiral 3j



Retention Time	Area	Area %	Height	Height %
8,283	5356214	4,13	227205	9,42
16,437	124246528	95,87	2184483	90,58

Totals				
	129602742	100,00	2411688	100,00

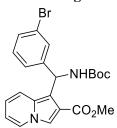
Chiral HPLC chromatogram of racemic 4k

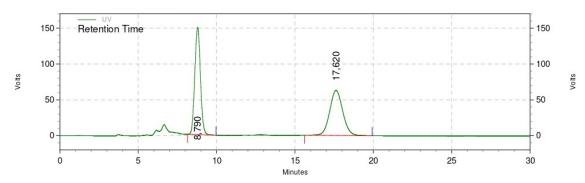


UV Results

Retention Time	Area	Area %	Height	Height %
17,247	51205008	50,05	725274	56,04
23,823	51099737	49,95	568924	43,96

Totals			88	
	102304745	100,00	1294198	100,00

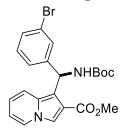

Chiral HPLC chromatogram of chiral 4k

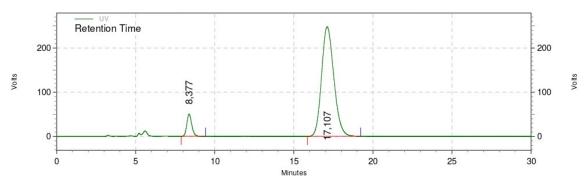


Retention Time	Area	Area %	Height	Height %
18,220	13034520	29,46	207559	35,65
25,193	31213349	70,54	374622	64,35

Totals				
	44247869	100,00	582181	100,00

Chiral HPLC chromatogram of racemic 3k

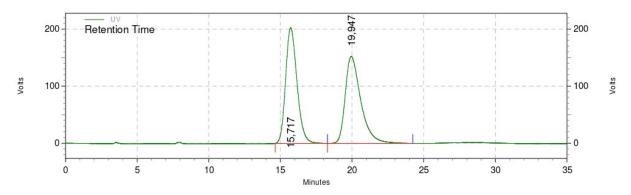



UV Results

Retention Time	Area	Area %	Height	Height %
8,790	15038327	50,92	599545	70,44
17,620	14494176	49,08	251572	29,56

Totals				
	29532503	100,00	851117	100,00

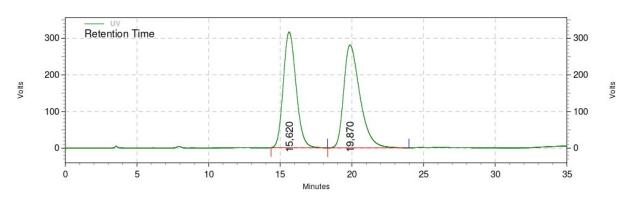
Chiral HPLC chromatogram of chiral 3k



Retention Time	Area	Area %	Height	Height %
8,377	4381626	7,57	200835	16,85
17,107	53493565	92,43	990925	83,15

Totals	57875191	100.00	1101760	100.00
	3/8/3191	100,00	1191760	100,00

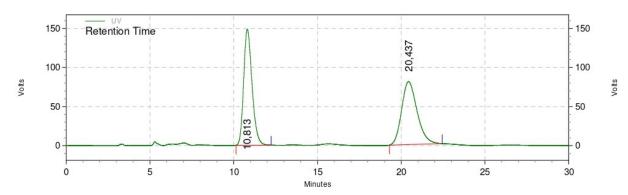
Chiral HPLC chromatogram of racemic 4l



UV Results

Retention Time	Area	Area %	Height	Height %
15,717	44674800	49,31	810544	57,08
19,947	45932149	50,69	609449	42,92

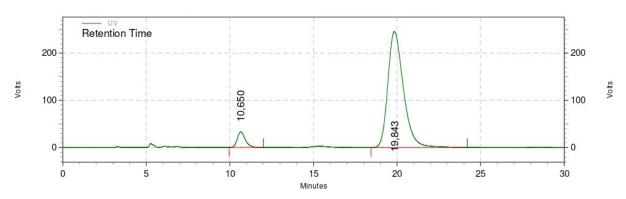
Totals				
	90606949	100,00	1419993	100,00


Chiral HPLC chromatogram of chiral 4l

Retention Time	Area	Area %	Height	Height %
15,620	78217572	47,00	1264228	52,94
19,870	88185589	53,00	1123858	47,06
Totals				

Totals				
	166403161	100,00	2388086	100,00

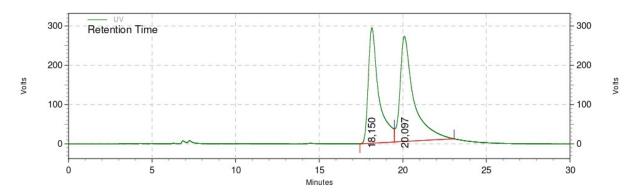
Chiral HPLC chromatogram of racemic 31



UV Results

Retention Time	Area	Area %	Height	Height %
10,813	20635314	49,98	592887	64,80
20,437	20648416	50,02	322027	35,20
Totals			1	

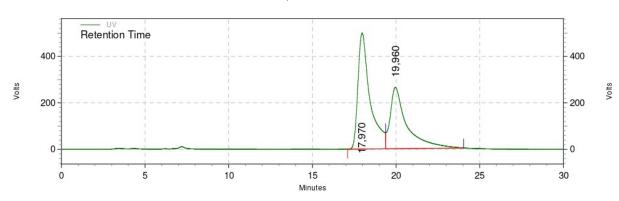
Totals			8	
	41283730	100,00	914914	100,00


Chiral HPLC chromatogram of chiral 31

Retention Time	Area	Area %	Height	Height %
10,650	4433978	6,51	132711	11,90
19,843	63643391	93.49	982265	88,10

Totals				
	68077369	100,00	1114976	100,00

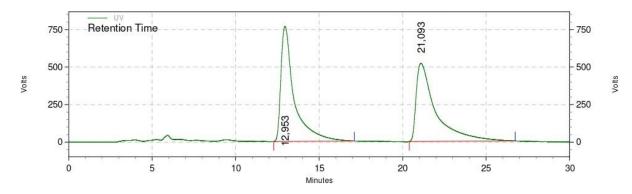
Chiral HPLC chromatogram of racemic 4m



UV Results

Retention Time	Area	Area %	Height	Height %
18,150	51417152	45,60	1174076	52,35
20,097	61331138	54,40	1068865	47,65

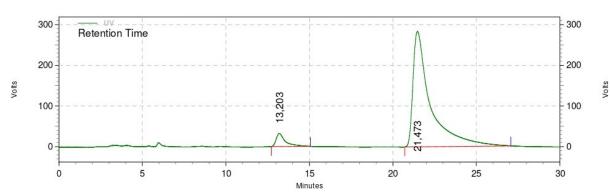
Totals				
	112748290	100,00	2242941	100,00


Chiral HPLC chromatogram of chiral 4m

Retention Time	Area	Area %	Height	Height %
17,970	99854384	57,71	1997846	65,40
19,960	73180870	42,29	1056916	34,60

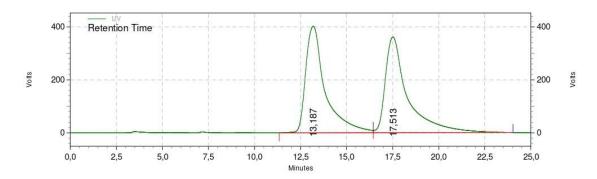
	Totals				
1		173035254	100,00	3054762	100,00

Chiral HPLC chromatogram of racemic 3m



UV Results

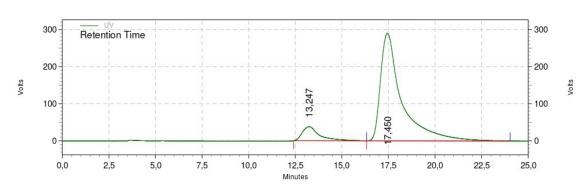
Retention Time	Area	Area %	Height	Height %
12,953	169043090	50,00	3071260	59,57
21,093	169032737	50,00	2084610	40,43


Totals	229075927	100.00	5155070	100.00
	3380/582/	100,00	5155870	100,00

Chiral HPLC chromatogram of chiral 3m

Retention Time	Area	Area %	Height	Height %
13,203	4923712	5,67	128563	10,17
21,473	81950492	94,33	1135042	89,83
Totals				
	86874204	100,00	1263605	100,00

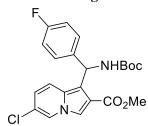
Chiral HPLC chromatogram of racemic 4n

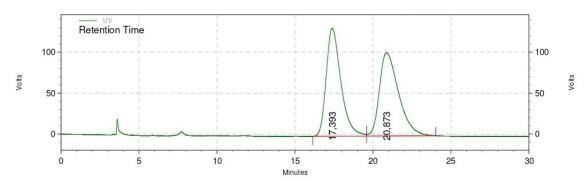


UV Results

Retention Time	Area	Area %	Height	Height %
13,187	118528905	49,49	1607833	52,68
17,513	120983617	50,51	1444327	47,32

Totals				i
	239512522	100,00	3052160	100,00

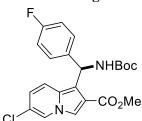

Chiral HPLC chromatogram of chiral 4n

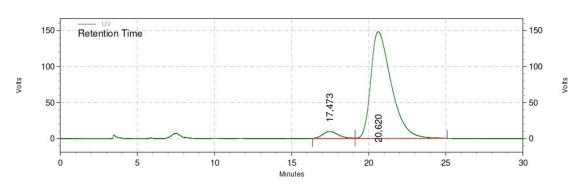


Retention Time	Area	Area %	Height	Height %
13,247	9850667	9,70	151069	11,52
17,450	91659546	90,30	1160618	88,48

Totals				
	101510213	100,00	1311687	100,00

Chiral HPLC chromatogram of racemic 3n

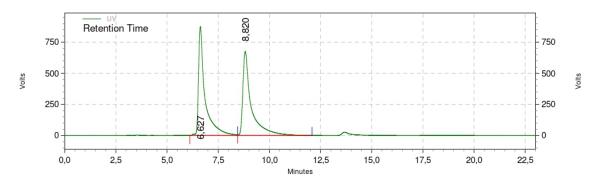



UV Results

Retention Time	Area	Area %	Height	Height %
17,393	34623027	49,86	528243	56,45
20,873	34815377	50,14	407582	43,55

Totals				
1 Otals	1.0			
	69438404	100.00	025025	100.00
	69438404	100,00	933823	100,00
	69438404	100,00	935825	100,

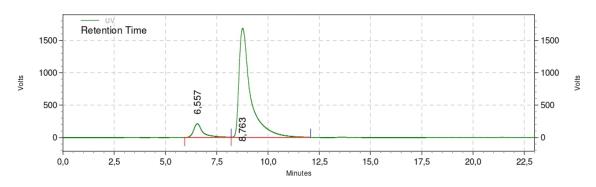
Chiral HPLC chromatogram of chiral 3n



Retention Time	Area	Area %	Height	Height %
17,473	2645841	4,62	38205	6,06
20,620	54562601	95,38	591872	93,94

Totals				
	57208442	100,00	630077	100,00

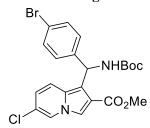
Chiral HPLC chromatogram of racemic 40

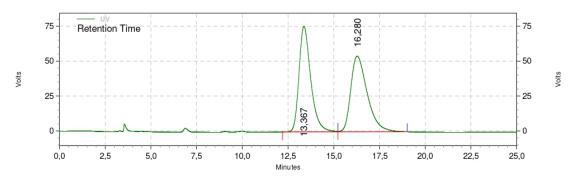


UV Results

Retention Time	Area	Area %	Height	Height %
6,627	77790690	50,33	3501343	56,42
8,820	76758625	49,67	2704899	43,58

Totals				
	154549315	100,00	6206242	100,00

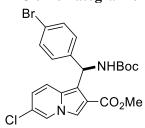

Chiral HPLC chromatogram of chiral 40

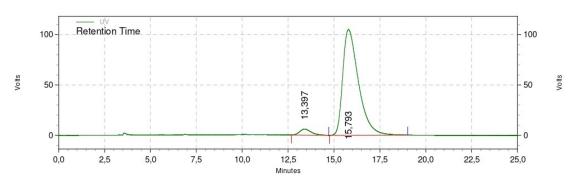


Retention Time	Area	Area %	Height	Height %
6,557	26577923	9,12	840443	11,08
8,763	264758608	90,88	6744832	88,92

Totals				
	291336531	100,00	7585275	100,00

Chiral HPLC chromatogram of racemic 30

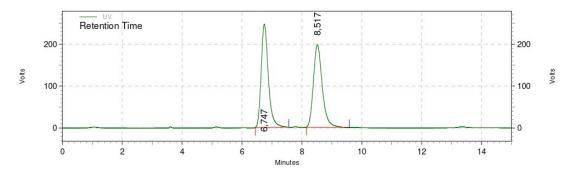



UV Results

Retention Time	Area	Area %	Height	Height %
13,367	13521189	49,88	302187	58,20
16,280	13587891	50,12	217014	41,80

Totals				
	27109080	100,00	519201	100,00

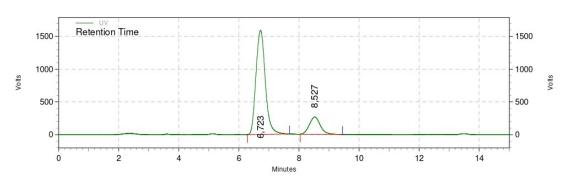
Chiral HPLC chromatogram of chiral 30



Retention Time	Area	Area %	Height	Height %
13,397	1024337	3,93	23782	5,35
15,793	25065047	96,07	420686	94,65

Totals				
	26089384	100,00	444468	100,00

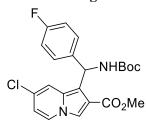
Chiral HPLC chromatogram of racemic 4p

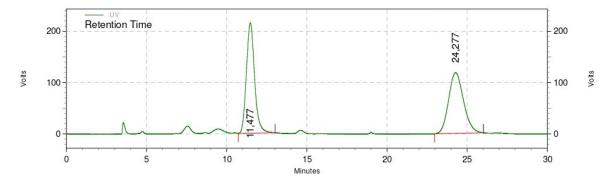


UV Results

Retention Time	Area	Area %	Height	Height %
6,747	16285939	50,23	985252	55,61
8,517	16133609	49,77	786339	44,39

Totals				
	32419548	100,00	1771591	100,00

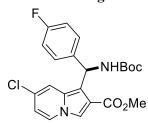

Chiral HPLC chromatogram of chiral 4p

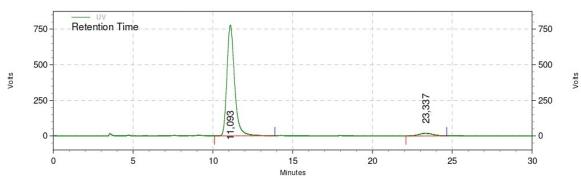


Retention Time	Area	Area %	Height	Height %
6,723	137449272	83,77	6355920	85,74
8,527	26623279	16,23	1057190	14,26

Totals		400.00	=	
	164072551	100,00	7413110	100,00

Chiral HPLC chromatogram of racemic 3p

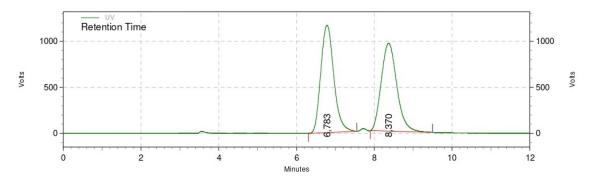



UV Results

Retention Time	Area	Area %	Height	Height %
11,477	30459204	49,95	859213	64,46
24,277	30521565	50,05	473826	35,54

Totals				
	60980769	100,00	1333039	100,00

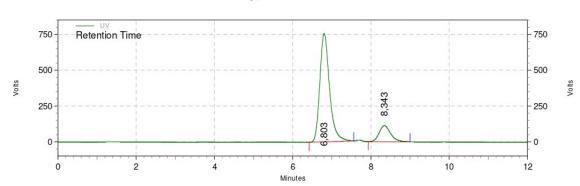
Chiral HPLC chromatogram of chiral 3p



Retention Time	Area	Area %	Height	Height %
11,093	103740857	95,94	3113573	97,70
23,337	4389948	4,06	73326	2,30

Totals				
	108130805	100,00	3186899	100,00

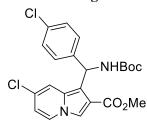
Chiral HPLC chromatogram of racemic 4q

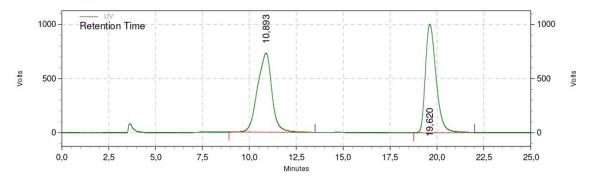


UV Results

Retention Time	Area	Area %	Height	Height %
6,783	108477417	50,59	4657823	54,96
8,370	105938569	49,41	3817204	45,04

Totals				
	214415986	100,00	8475027	100,00

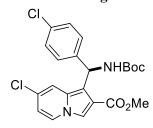

Chiral HPLC chromatogram of chiral 4q

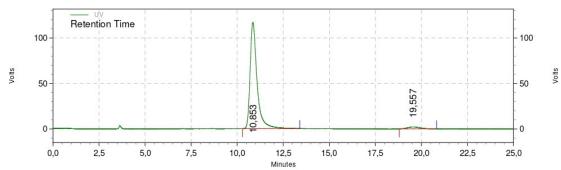


Retention Time	Area	Area %	Height	Height %
6,803	52285006	85,15	3023314	87,06
8,343	9118776	14,85	449425	12,94

Totals				
	61403782	100,00	3472739	100,00

Chiral HPLC chromatogram of racemic 3q

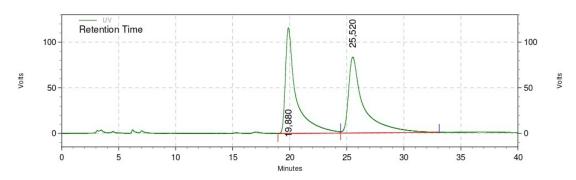



UV Results

Retention Time	Area	Area %	Height	Height %
10,893	154799078	49,50	2918242	42,12
19,620	157953520	50,50	4009883	57,88

Totals				
	312752598	100,00	6928125	100,00

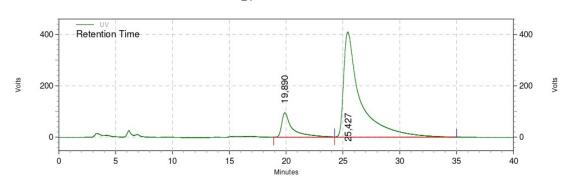
Chiral HPLC chromatogram of chiral 3q



0	Retention Time	Area	Area %	Height	Height %
	10,853	12249702	96,79	467443	98,21
	19,557	406769	3,21	8505	1,79

Totals				
	12656471	100,00	475948	100,00

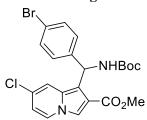
Chiral HPLC chromatogram of racemic 4r

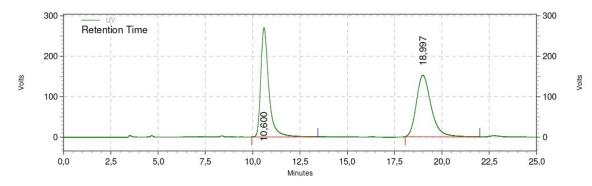


UV Results

Retention Time	Area	Area %	Height	Height %
19,880	30234417	49,83	462768	58,18
25,520	30442331	50,17	332634	41,82

Totals				
	60676748	100,00	795402	100,00

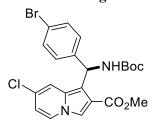

Chiral HPLC chromatogram of chiral 4r

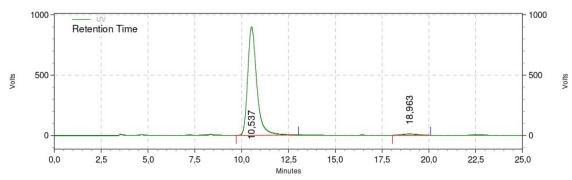


Retention Time	Area	Area %	Height	Height %
19,890	25544819	13,27	381653	18,90
25,427	166965521	86,73	1637737	81,10

Totals				
	192510340	100,00	2019390	100,00

Chiral HPLC chromatogram of racemic 3r

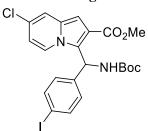


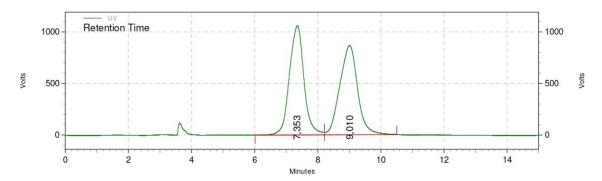

UV Results

Retention Time	Area	Area %	Height	Height %
10,600	31735217	49,16	1078983	63,98
18,997	32823291	50,84	607484	36,02

Totals				
	64558508	100,00	1686467	100,00

Chiral HPLC chromatogram of chiral 3r

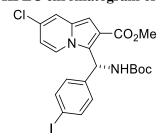


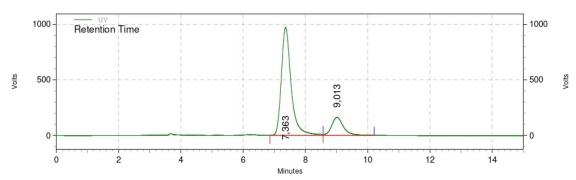


82	Retention Time	Area	Area %	Height	Height %
	10,537	120885567	98,26	3591485	98,85
	18,963	2146028	1,74	41828	1,15

Totals				
	123031595	100,00	3633313	100,00

Chiral HPLC chromatogram of racemic 4s

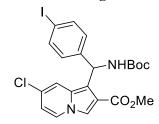


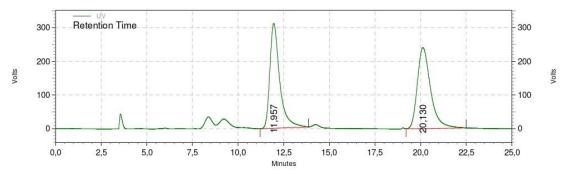

UV Results

Retention Time	Area	Area %	Height	Height %
7,353	135463638	50,00	4231862	54,99
9,010	135443752	50,00	3463222	45,01

Totals				
	270907390	100,00	7695084	100,00

Chiral HPLC chromatogram of chiral 4s

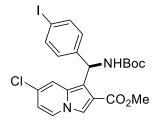


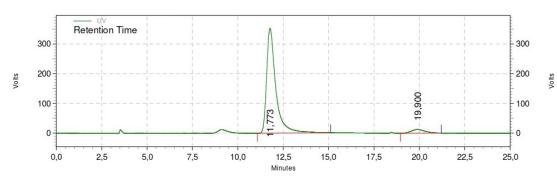


Retention Time	Area	Area %	Height	Height %
7,363	85013464	83,33	3888435	85,76
9,013	17004335	16,67	645863	14,24

Totals				
	102017799	100,00	4534298	100,00

Chiral HPLC chromatogram of racemic 3s

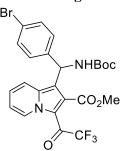


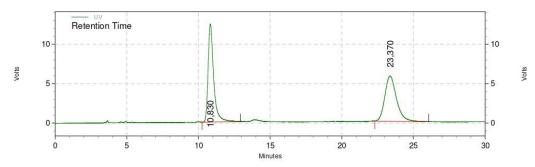

UV Results

Retention Time	Area	Area %	Height	Height %
11,957	46519908	49,06	1243455	56,42
20,130	48299321	50,94	960497	43,58

Totals				
	94819229	100,00	2203952	100,00

Chiral HPLC chromatogram of chiral 3s

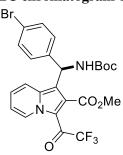


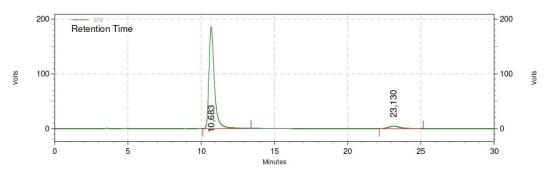


Retention Time	Area	Area %	Height	Height %
11,773	49567689	95,09	1410597	96,67
19,900	2556816	4,91	48527	3,33

Totals				
	52124505	100,00	1459124	100,00

Chiral HPLC chromatogram of racemic 10

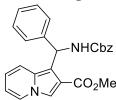


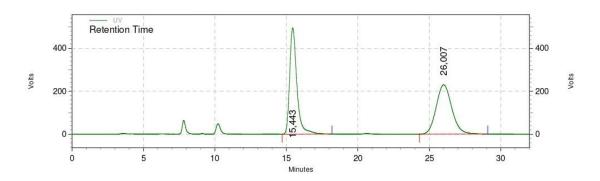


UV Results

Retention Time	Area	Area %	Height	Height %
10,830	1340137	50,76	49733	68,37
23,370	1299840	49,24	23005	31,63
Totals		100		
	2639977	100,00	72738	100,00

Chiral HPLC chromatogram of chiral 10




Retention Time	Area	Area %	Height	Height %
10,683	19107318	95,31	742401	97,71
23,130	940529	4,69	17415	2,29

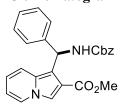
Totals				
	20047847	100,00	759816	100,00

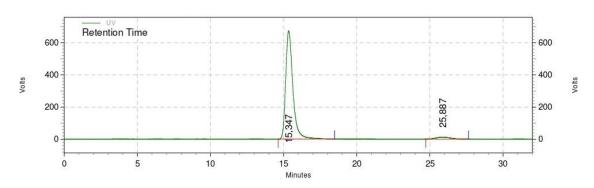
8.2. Cbz-protected products 6a-m, 7a-m, 8 and 9

Chiral HPLC chromatogram of racemic 6a

UV Results

Retention Time	Area	Area %	Height	Height %
15,443	69365685	49,83	1978993	68,28
26,007	69840348	50,17	919150	31,72
Totals		T		1

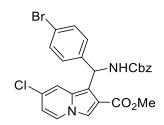

139206033

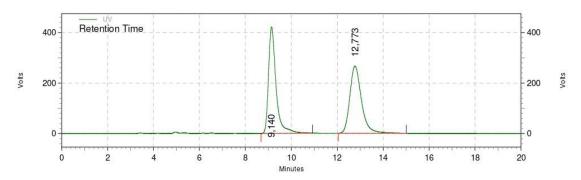

Chiral HPLC chromatogram of chiral 6a

100,00

2898143

100,00



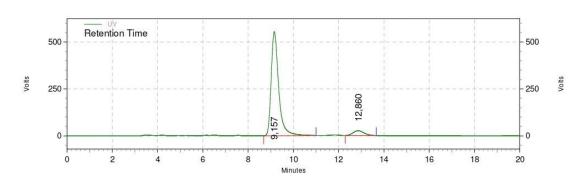


Retention Time	Area	Area %	Height	Height %
15,347	91942914	96,29	2694190	98,21
25,887	3545400	3,71	49093	1,79

Totals				
	95488314	100,00	2743283	100,00

Chiral HPLC chromatogram of racemic 6m

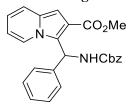


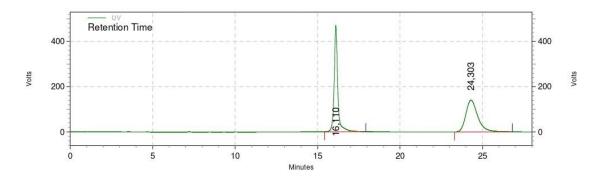

UV Results

Retention Time	Area	Area %	Height	Height %
9,140	38140437	50,48	1685982	61,27
12,773	37411700	49,52	1065617	38,73

T	TD . 1				
- 1	Totals				
-		75552137	100,00	2751599	100,00

Chiral HPLC chromatogram of chiral 6m

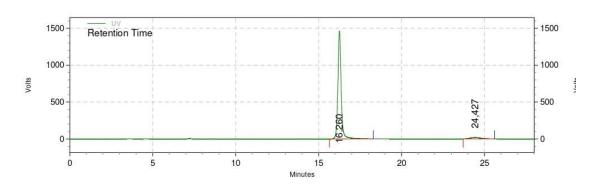




Retention Time	Area	Area %	Height	Height %
9,157	50895054	93,76	2217860	95,61
12,860	3385925	6,24	101862	4,39

Totals				
	54280979	100,00	2319722	100,00

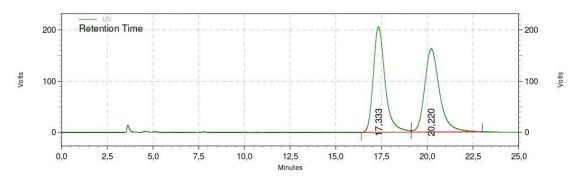
Chiral HPLC chromatogram of racemic 7a



UV Results

Retention Time	Area	Area %	Height	Height %
16,110	28594506	50,22	1883409	76,98
24,303	28347647	49,78	563283	23,02
T-4-1-	1			

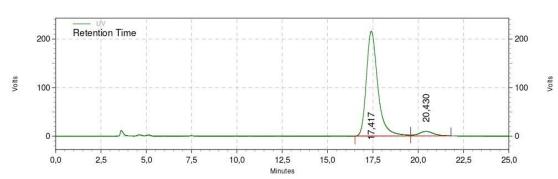
Totals				
	56942153	100,00	2446692	100,00


Chiral HPLC chromatogram of chiral 7a

Retention Time	Area	Area %	Height	Height %
16,260	80241847	95,78	5851310	98,74
24,427	3537931	4,22	74863	1,26

			No.	
Totals				
	83779778	100,00	5926173	100,00

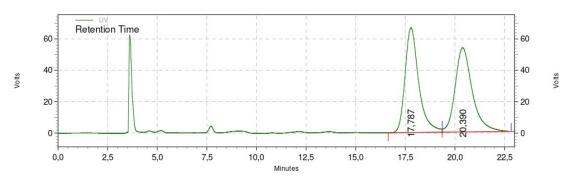
Chiral HPLC chromatogram of racemic 7b



UV Results

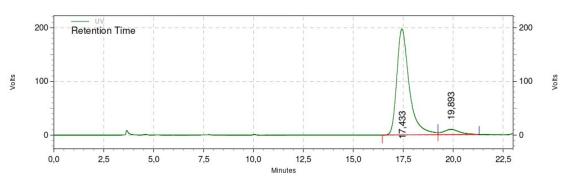
Retention Time	Area	Area %	Height	Height %
17,333	36789410	49,98	823145	55,86
20,220	36816227	50,02	650431	44,14

	Totals				
1		73605637	100,00	1473576	100,00


Chiral HPLC chromatogram of chiral 7b

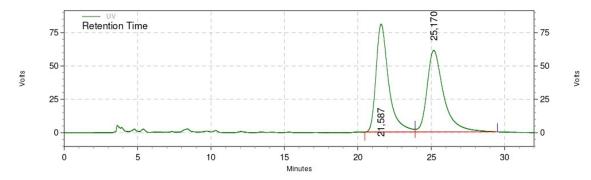
Retention Time	Area	Area %	Height	Height %
17,417	38047717	94,85	863073	95,86
20,430	2065399	5,15	37258	4,14

Totals				-1
	40113116	100,00	900331	100,00


Chiral HPLC chromatogram of racemic 7c

UV Results

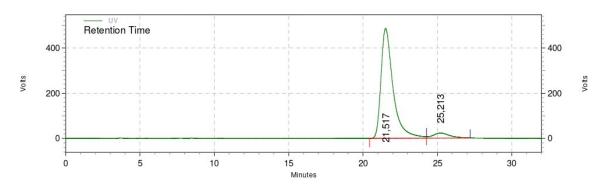
Retention Time	Area	Area %	Height	Height %
17,787	12813197	49,81	267084	55,43
20,390	12912551	50,19	214722	44,57
Totals				
	25725748	100,00	481806	100,00


$Chiral\ HPLC\ chromatogram\ of\ chiral\ 7c$

Retention Time	Area	Area %	Height	Height %
17,433	34130624	93,99	788667	95,29
19,893	2182029	6,01	39023	4,71

-	Totals				
1		36312653	100.00	827690	100,00

Chiral HPLC chromatogram of racemic 7d



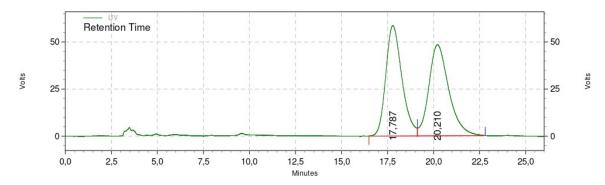
UV Results

Retention Time	Area	Area %	Height	Height %
21,587	19347005	50,14	323315	56,95
25,170	19241111	49,86	244381	43,05

Totals				
	38588116	100,00	567696	100,00

Chiral HPLC chromatogram of chiral 7d

Retention Time	Area	Area %	Height	Height %
21,517	110020102	94,03	1944345	95,57
25,213	6981304	5,97	90097	4,43

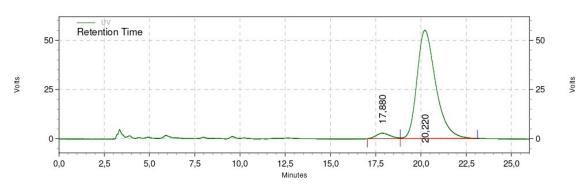

Totals				
	117001406	100,00	2034442	100,00

Chiral HPLC chromatogram of racemic 7e

$$CO_2Me$$

NHCbz

 F_3C



UV Results

Retention Time	Area	Area %	Height	Height %
17,787	14328865	49,61	234570	54,81
20,210	14556071	50,39	193383	45,19

					V-
	Totals				
	Totals				
- 1		2000.4027	100.00	107052	100.00
		28884936	100,00		100,00
		20004930	100,00	421933	100,0


Chiral HPLC chromatogram of chiral 7e

Retention Time	Area	Area %	Height	Height %
17,880	598905	3,65	10904	4,73
20,220	15802317	96,35	219819	95,27

Totals				
Totals	16401222	100,00	230723	100,00

Chiral HPLC chromatogram of racemic 7f

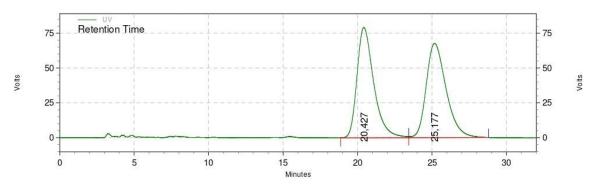
UV Results

Retention Time	Area	Area %	Height	Height %
29,620	7664783	49,06	96033	53,90
34,590	7957432	50,94	82150	46,10

8.	Totals				
		15622215	100,00	178183	100,00

Chiral HPLC chromatogram of chiral 7f

Retention Time	Area	Area %	Height	Height %
29,737	872864	3,95	12060	5,51
34,710	21231728	96,05	206721	94,49

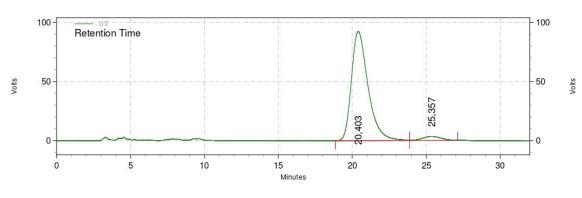

Totals				
	22104592	100,00	218781	100,00

Chiral HPLC chromatogram of racemic 7g

$$CO_2Me$$

$$NHCbz$$

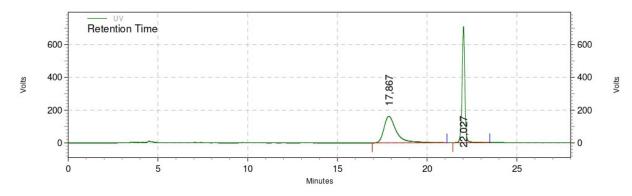
$$O_2N$$



UV Results

Retention Time	Area	Area %	Height	Height %
20,427	24814643	49,75	317107	53,91
25,177	25065541	50,25	271064	46,09

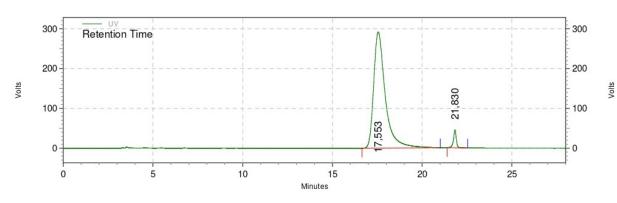
Totals				
	49880184	100,00	588171	100,00


Chiral HPLC chromatogram of chiral 7g

Retention Time	Area	Area %	Height	Height %
20,403	28897309	96,12	369681	96,48
25,357	1167012	3,88	13495	3,52

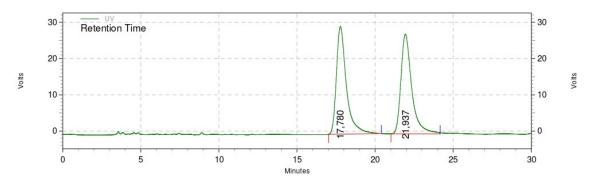
Totals				
	30064321	100,00	383176	100,00

Chiral HPLC chromatogram of racemic 7h



UV Results

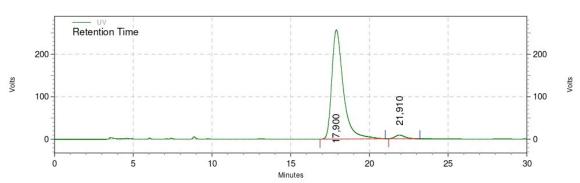
Retention Time	Area	Area %	Height	Height %
17,867	30850719	50,25	649380	18,65
22,027	30541502	49,75	2832603	81,35


-	Totals				
		61392221	100,00	3481983	100,00

Chiral HPLC chromatogram of chiral 7h

Retention Time	Area	Area %	Height	Height %
17,553	52242219	96,42	1166984	86,68
21,830	1941787	3,58	179386	13,32
Totals				
	54184006	100,00	1346370	100,00

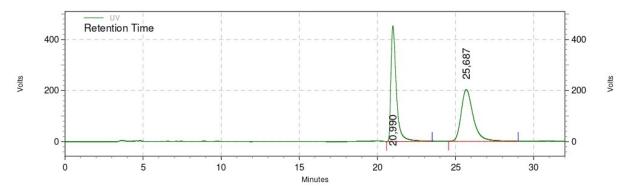
Chiral HPLC chromatogram of racemic 7i



UV Results

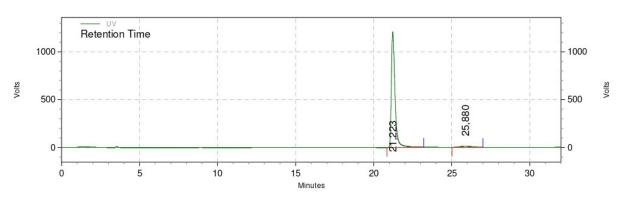
Retention Time	Area	Area %	Height	Height %
17,780	5288274	50,01	118878	51,95
21,937	5287074	49,99	109953	48,05

Totals				
	10575348	100,00	228831	100,00

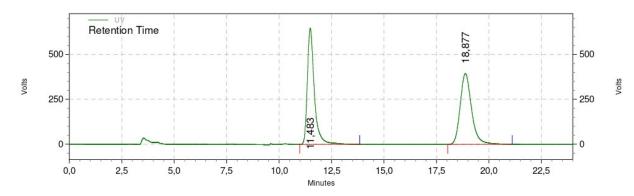

Chiral HPLC chromatogram of chiral 7i

Retention Time	Area	Area %	Height	Height %
17,900	52070667	97,29	1026479	96,78
21,910	1451321	2,71	34177	3,22

Totals				
	53521988	100,00	1060656	100,00


Chiral HPLC chromatogram of racemic 7j

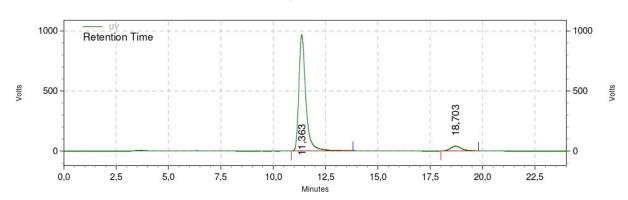
UV Results


Retention Time	Area	Area %	Height	Height %
20,990	43321883	49,93	1810862	69,06
25,687	43448102	50,07	811370	30,94
Totals				
	86769985	100,00	2622232	100,00

Chiral HPLC chromatogram of chiral 7j

1575	Retention Time	Area	Area %	Height	Height %
	21,223	78409346	96,93	4831179	99,00
	25,880	2485160	3,07	48843	1,00
_					
	Totals				
		80894506	100,00	4880022	100,00

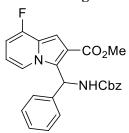
Chiral HPLC chromatogram of racemic 7k



UV Results

Retention Time	Area	Area %	Height	Height %
11,483	60177896	50,23	2593052	62,13
18,877	59628645	49,77	1580638	37,87

Totals				
300000000000000000000000000000000000000	119806541	100,00	4173690	100,00

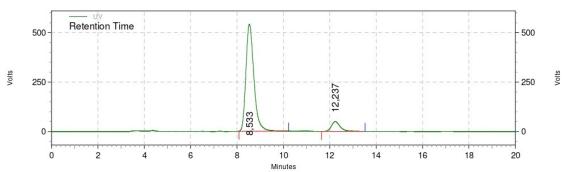

Chiral HPLC chromatogram of chiral 7k



Retention Time	Area	Area %	Height	Height %
11,363	88960921	93,95	3867149	96,09
18,703	5725310	6,05	157233	3,91

Totals				
	94686231	100,00	4024382	100,00

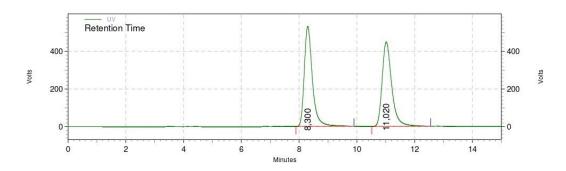
Chiral HPLC chromatogram of racemic 71


UV Results

Retention Time	Area	Area %	Height	Height %
8,463	52188780	50,39	2469300	55,12
12,203	51383098	49,61	2010967	44,88

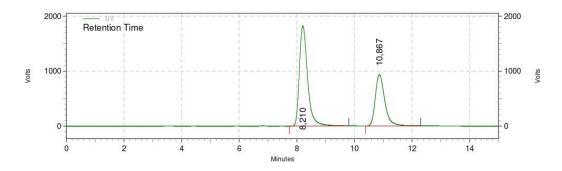
Totals			1	
	103571878	100,00	4480267	100,00

Chiral HPLC chromatogram of chiral 71

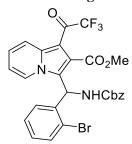


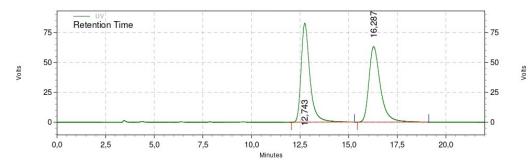
Retention Time	Area	Area %	Height	Height %
8,533	51734767	90,85	2164605	91,61
12,237	5207490	9,15	198210	8,39

Totals				
	56942257	100,00	2362815	100,00


Chiral HPLC chromatogram of racemic 7m

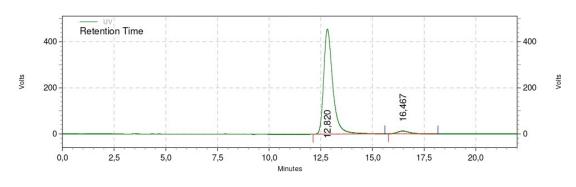
UV Results


Retention Time	Area	Area %	Height	Height %
8,300	41488099	50,15	2125774	54,22
11,020	41236167	49,85	1794511	45,78
Totals			ĺ	
	82724266	100,00	3920285	100,00


Chiral HPLC chromatogram of chiral 7m

Retention Time	Area	Area %	Height	Height %
8,210	144359751	62,95	7291592	66,17
10,867	84962970	37,05	3728600	33,83
Totals				
	229322721	100,00	11020192	100,00

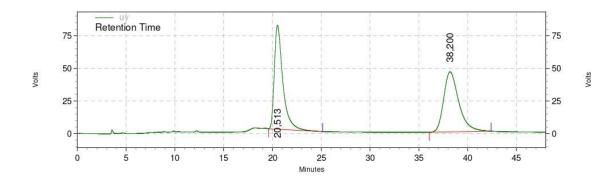
Chiral HPLC chromatogram of racemic 8


UV Results

Retention Time	Area	Area %	Height	Height %
12,743	10371314	50,23	330848	56,73
16,287	10276489	49,77	252325	43,27

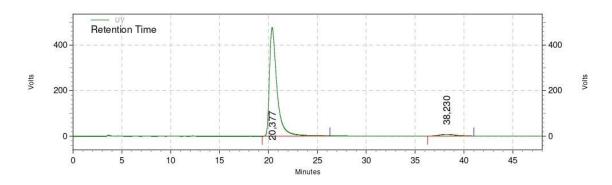
Totals				
	20647803	100,00	583173	100,00

Chiral HPLC chromatogram of chiral 8


$$\mathsf{CF}_3$$
 $\mathsf{CO}_2\mathsf{Me}$
 MHCbz

Retention Time	Area	Area %	Height	Height %
12,820	55418881	96,61	1821714	97,43
16,467	1942638	3,39	47972	2,57

Totals				
	57361519	100,00	1869686	100,00


Chiral HPLC chromatogram of racemic 9

UV Results

Retention Time	Area	Area %	Height	Height %
20,513	19278788	49,35	318383	63,35
38,200	19788952	50,65	184203	36,65
Totals				
	39067740	100,00	502586	100,00

Chiral HPLC chromatogram of chiral 9

Retention Time Area		Area %	Height	ght Height %	
20,377	101138266	96,76	1907348	98,40	
38,230	3385743	3,24	30985	1,60	
Totals					
	104524009	100,00	1938333	100,00	

9. Absolute configuration assignment for compounds 3a, 4a, 6a, 7a using circular dichroism

The conformational search was performed using CREST conformational searching tool within energy threshold of 6 kcal/mol. The obtained conformers were then initially preselected using isostat conformer selection tool from molclus package with energy threshold of 0.25 kcal/mol and cutoff of 0.5A. The geometry of selected conformers was optimized using Gaussian 16^{17} using density functional theory (DFT) using B3LYP functional with D3 (Becke–Johnson) dispersion correction "empirical dispersion=gd3bj" along with def2SVP basis set with inclusion of CPCM solvation model via the keyword "scrf=(cpcm, solvent = acetonitrile)". The local minima were confirmed by frequency calculations. The TD-DFT calculations were performed for the first twenty lowest excitation energies on previously obtained geometries using ω B97XD functional with def2TZVP basis set and included solvent effects in acetonitrile via CPCM solvation model. The computed CD spectra were obtained employing Boltzmann averaging using SpecDis software and compared with experimental results. In all cases the *R* configuration was assigned.

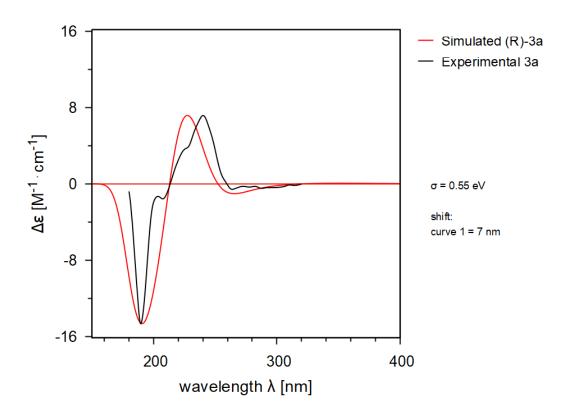


Figure S1. Comparison of experimental and simulated electronic dichroism spectra for compound 3a.

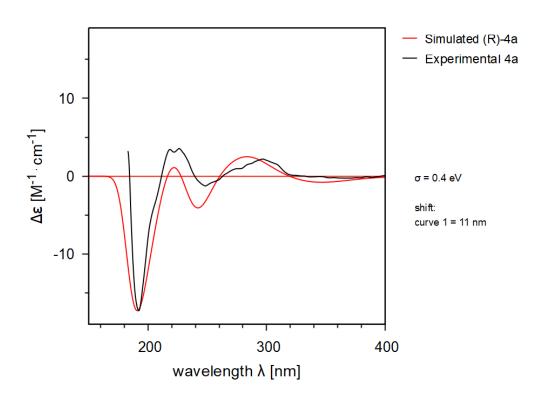


Figure S2. Comparison of experimental electronic dichroism spectra and simulated for compound 4a.

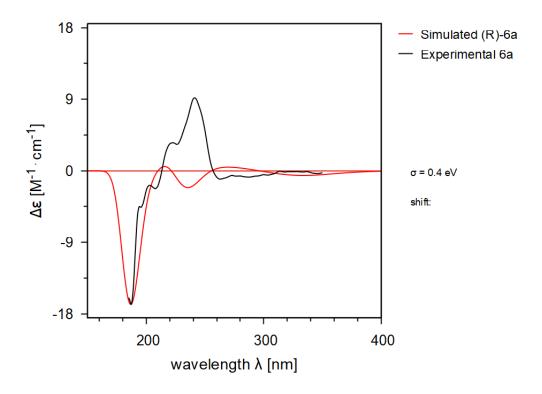
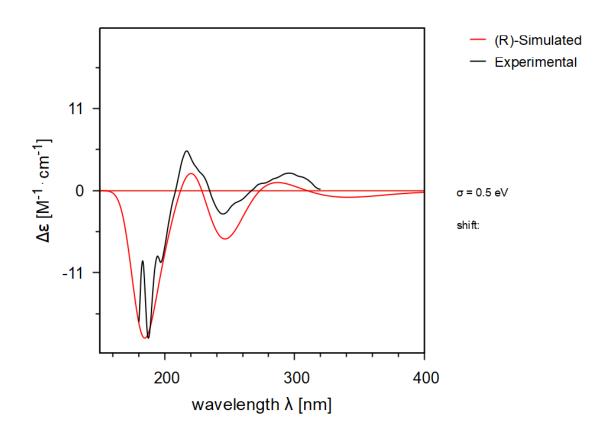



Figure S3. Comparison of experimental electronic dichroism spectra and simulated for compound 6a.

Figure S4. Comparison of experimental electronic dichroism spectra and simulated for compound **7a**. **Table S18.** Energies and Gibbs free energies (in Hartrees) calculated for conformers of (R)-**3a** calculated at B3LYP-D3(BJ)/def2svp/CPCM (acetonitrile) and their Boltzmann distribution factors.

Structure (<i>R</i>)- 3a Conformer	E (solv-B3LYP-D3(BJ))	$G_{(solv\text{-}B3LYP\text{-}D3(BJ))}$	Boltzmann distribution (%)
1	-1262.454627	-1262.089741	78.01
2	-1262.453795	-1262.087623	8.26
3	-1262.45478	-1262.087325	6.03
4	-1262.451997	-1262.087128	4.89
5	-1262.451535	-1262.085613	0.98

Table S19. Energies and Gibbs free energies (in Hartrees) calculated for conformers of (R)-4a calculated at B3LYP-D3(BJ)/def2svp/CPCM (acetonitrile) and their Boltzmann distribution factors.

Structure (<i>R</i>)- 4a Conformer	E (solv-B3LYP-D3(BJ))	$G_{(solv\text{-}B3LYP\text{-}D3(BJ))}$	Boltzmann distribution (%)
1	-1262,453670	-1262,087924	51.17
2	-1262,452843	-1262,086832	16.09
3	-1262,452905	-1262,086761	14.93
4	-1262,450919	-1262,085839	5.62
5	-1262,452702	-1262,085812	5.46
6	-1262,450758	-1262,085419	3.60
7	-1262,450385	-1262,084329	1.13

Table S20. Energies and Gibbs free energies (in Hartrees) calculated for conformers of (R)-6a calculated at B3LYP-D3(BJ)/def2svp/CPCM (acetonitrile) and their Boltzmann distribution factors.

Structure (<i>R</i>)- 6a Conformer	E (solv-B3LYP-D3(BJ))	$G_{(solv\text{-}B3LYP\text{-}D3(BJ))}$	Boltzmann distribution (%)
1	-1375.492701	-1375.128097	16.94
2	-1375.493002	-1375.127939	14.33
3	-1375.493139	-1375.127769	11.97
4	-1375.493877	-1375.127594	9.94
5	-1375.49195	-1375.126603	3.48
6	-1375.491949	-1375.126594	3.44
7	-1375.489697	-1375.126508	3.14
8	-1375.491433	-1375.126499	3.11
9	-1375.490292	-1375.12646	2.99
10	-1375.491435	-1375.126401	2.81
11	-1375.491723	-1375.126298	2.52
12	-1375.492248	-1375.126192	2.25
13	-1375.489406	-1375.126186	2.23
14	-1375.492247	-1375.126185	2.23
15	-1375.489947	-1375.126	1.83
16	-1375.487644	-1375.125928	1.70
17	-1375.491418	-1375.125575	1.17
18	-1375.489975	-1375.125514	1.09
19	-1375.49201	-1375.125484	1.06
20	-1375.489954	-1375.125433	1.00

Table S21. Energies and Gibbs free energies (in Hartrees) calculated for conformers of (*R*)-7a calculated at B3LYP-D3(BJ)/def2svp/CPCM (acetonitrile) and their Boltzmann distribution factors.

Structure (<i>R</i>)- 7a Conformer	E (solv-B3LYP-D3(BJ))	$G_{(solv\text{-}B3LYP\text{-}D3(BJ))}$	Boltzmann distribution (%)
1	-1375.491575	-1375.127142	12.88
2	-1375.492108	-1375.126995	11.02
3	-1375.492587	-1375.126994	11.01
4	-1375.491204	-1375.126935	10.34
5	-1375.490972	-1375.126885	9.81
6	-1375.487185	-1375.125822	3.18
7	-1375.488481	-1375.125761	2.98
8	-1375.490649	-137512576	2.98
9	-1375.490601	-1375.125751	2.95
10	-1375.490855	-1375.125599	2.51
11	-1375.490706	-1375.125554	2.39
12	-1375.490111	-1375.125524	2.32
13	-1375.488619	-1375.125519	2.30
14	-1375.490766	-1375.12539	2.01
15	-1375.488803	-1375.125373	1.97
16	-137.,48739	-1375.125328	1.88
17	-1375.487163	-1375.125059	1.41
18	-1375.489332	-1375.124995	1.32
19	-1375.488003	-1375.124855	1.14
20	-1375.490948	-1375.124817	1.10
21	-1375.486469	-1375.124733	1.00

10. Computational investigation of indolizing alkylation selectivity

Conformational search was performed using CREST to find the structure of the lowest energy conformer of each catalyst.¹⁵ All descriptors mentioned below were computed with MORFEUS Python package. ¹⁹ The data collected during catalyst screening from Table S1 and Table S12 were combined, giving data for 30 catalyst for *N*-Boc aminals and similarly data for 27 catalyst for *N*-Cbz aminals. The CPA catalyst **A11** with pyramidal (sp3-hybridized) triphenylsilyl substituent at the 3,3' positions was removed from the dataset as well as CPA catalyst **E** with completely different VAPOL backbone.

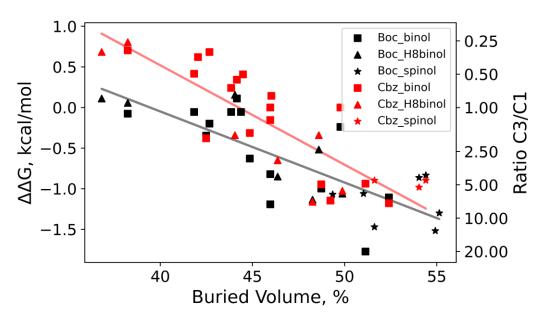

We found the optimal parameters for % buried volume descriptor (% V_{bur}) by varying the center of sphere and its radius. All buried volumes were computed without hydrogens. As a criteria for parameters optimization we used Pearson correlation coefficient (PCC) between difference of free energies of two regionsomers and catalyst % buried volume. The results are given in the Table S22.

Table S22. Pearson correlation coefficient for different location of % buried volume descriptor.

Center	Best radius, A	PCC
P	4.5	-0.77
O1	5.5	-0.76
O2	4.5	-0.79

To elucidate to effect of aminal substituents on the regioselectivity, the dataset was splited into two groups: reaction with *N*-Boc aminals (28 reactions) and with *N*-Cbz aminal (27 reactions). Figure S5 and Table S23 is showing similar relationship between observed C3/C1 selectivity for both *N*-Boc aminals and *N*-Cbz aminals and %V_{bur} although the reactions for these two groups were performed in two different solvents, toluene and dichloromethane, respectively. Combining the substituents effect of catalyst and aminals we can conclude, that bigger free volume in catalyst pocket facilitate formation of C1-product. However, when active center is crowded the preferable is C3-product.

The effect of other catalyst properties on the regioselectivity were also tested. Computed SASA (solvent accessibility surface area) descriptor placed at the oxygen of CPA and similarly dispersion descriptor placed at oxygen of catalyst also showed also good correlation with regioselectivity (PCC was 0.78). While, the Sterimol and Octants descriptors gave a low correlation with observed selectivity.

Figure S5. Plot showing correlations of C3/C1 selectivity ($\Delta\Delta G$) for *N*-Boc aminals (black) and *N*-cbz aminals (red) and %V_{bur} of the catalyst for model reactions with distinction of different CPA catalyst subgroups.

Table S23. Comparison of Pearson correlation coefficients for *N*-Boc and *N*-Cbz aminals.

Aminal Protecting Group	PCC(Pearson coefficient)	slope	intercept
Boc	-0.79	-0.0875	3.451
Cbz	-0.85	-0.1224	5.4155

11. References

- 1. X. L. Liu, Z. B. Yu, B. W. Pan, L. Chen, T. T. Feng and Y. Zhou, Synthesis of Novel Chiral Phosphoric Acid-Bearing Two Acidic Phenolic Hydroxyl Groups and its Catalytic Evaluation for Enantioselective Friedel-Crafts Alkylation of Indoles and Enones, *J. Heterocycl. Chem.*, 2015, **52**, 628-634.
- 2. M. Hatano, T. Ikeno, T. Matsumura, S. Torii and K. Ishihara, Chiral lithium salts of phosphoric acids as lewis acid-base conjugate catalysts for the enantioselective cyanosilylation of ketones, *Adv. Synth. Catal.*, 2008, **350**, 1776-1780.
- 3. Y. Konda, A. R. Ankireddy, V. M. Velavalapalli, K. Paidikondala, A. Pasula and R. Gundla, Synthesis, Alpha-Glucosidase Inhibition and Antibacterial Activities of the New Chiral (R)-3,3'-Disubstituted BINOL-Phosphates, *Russ. J. Gen. Chem.*, 2022, **92**, 898-907.
- 4. T. Kano, T. Yurino, D. Asakawa and K. Maruoka, Acid-Catalyzed In Situ Generation of Less Accessible or Unprecedented N-Boc Imines from *N*-Boc Aminals, *Angew. Chem. Int. Ed.*, 2013, **52**, 5532-5534.
- 5. S. Brenet, C. Minozzi, B. Clarens, L. Amiri and F. Berthiol, 3,3'-Diiodobinaphthol and 3,3'-Diiodobiphenol Derivatives as Hypervalent Iodine Organocatalysts for the α-Oxytosylation of Ketones, *Synthesis*, 2015, **47**, 3859-3873.
- 6. M. Bartoszek, M. Beller, J. Deutsch, M. Klawonn, A. Köckritz, N. Nemati and A. Pews-Davtyan, A convenient protocol for the synthesis of axially chiral Bronsted acids, *Tetrahedron*, 2008, **64**, 1316-1322.
- 7. W. Kashikura, J. Itoh, K. Mori and T. Akiyama, Enantioselective Friedel-Crafts Alkylation of Indoles, Pyrroles, and Furans with Trifluoropyruvate Catalyzed by Chiral Phosphoric Acid, *Chem. Asian J.*, 2010, **5**, 470-472.
- 8. J. H. Tay, A. J. Arguelles and P. Nagorny, Direct Interconversion of BINOL and H8-BINOL-Based Chiral Bronsted Acids Using Single-Step Red/Ox Manipulations, *Org. Lett.*, 2015, **17**, 3774-3777.
- 9. R. Hrdina, L. Guénée, D. Moraleda and J. Lacour, Synthesis, Structural Analysis, and Catalytic Properties of Tetrakis(binaphthyl or octahydrobinaphthyl phosphate) Dirhodium (II,II) Complexes, *Organometallics*, 2013, **32**, 473-479.
- 10. S. Müller, M. J. Webber and B. List, The Catalytic Asymmetric Fischer Indolization, *J. Am. Chem. Soc.*, 2011, **133**, 18534-18537.
- 11. L. Kötzner, M. J. Webber, A. Martínez, C. De Fusco and B. List, Asymmetric Catalysis on the Nanoscale: The Organocatalytic Approach to Helicenes, *Angew. Chem. Int. Ed.*, 2014, **53**, 5202-5205.
- 12. C. H. Xing, Y. X. Liao, J. Ng and Q. S. Hu, Optically Active 1,1'-Spirobiindane-7,7'-diol (SPINOL)-Based Phosphoric Acids as Highly Enantioselective Catalysts for Asymmetric Organocatalysis, *J. Org. Chem.*, 2011, **76**, 4125-4131.
- 13. C. H. Xing, Y. X. Liao, Y. M. Zhang, D. Sabarova, M. Bassous and Q. S. Hu, Asymmetric Allylboration of Aldehydes with Pinacol Allylboronates Catalyzed by 1,1'-Spirobiindane-7,7'-diol (SPINOL) Based Phosphoric Acids, *E. J. Org. Chem.*, 2012, **2012**, 1115-1118.
- 14. D. B. Granger, Y. Mei, K. J. Thorley, S. R. Parkin, O. D. Jurchescu and J. E. Anthony, Synthesis and Electrical Properties of Derivatives of 1,4-bis(trialkylsilylethynyl)benzo[2,3-b:5,6-b']diindolizines, *Org. Lett.*, 2016, **18**, 6050-6053.
- 15. P. Pracht, S. Grimme, C. Bannwarth, F. Bohle, S. Ehlert, G. Feldmann, J. Gorges, M. Müller, T. Neudecker, C. Plett, S. Spicher, P. Steinbach, P. A. Wesolowski and F. Zeller, CREST-A program for the exploration of low-energy molecular chemical space, *J. Chem. Phys.*, 2024, **160**, 28.
- 16. v. T. Lu Molclus Program, http://www.keinsci.com/research/molclus.html (accessed on 16 January, 2024).

- 17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016.
- 18. T. Bruhn, A. Schaumlöffel, Y. Hemberger and G. Bringmann, SpecDis: Quantifying the Comparison of Calculated and Experimental Electronic Circular Dichroism Spectra, *Chirality*, 2013, **25**, 243-249.
- 19. Morfeus: Molecular features for machine learning. https://digital-chemistry-laboratory.github.io/morfeus/, accessed on 01 June 2024.