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1. General methods

The instruments for electrolysis used were ElectraSyn 2.0 Pro Package (IKA) and MAISHENG
DC Power. Unless otherwise noted, all reagents were purchased from commercial suppliers and
used without further purification. Reactions were monitored by thin-layer chromatography
(TLC) with Haiyang GF 254 silica gel plates (Qingdao Haiyang chemical industry Co Ltd,
Qingdao, China) using UV light and vanillic aldehyde or phosphomolybdic acid as visualizing
agents. Flash column chromatography was performed using 200-300 mesh silica gel at
increased pressure. 'H NMR spectra, °F NMR spectra and 3C NMR spectra were respectively
recorded on 600 MHz, 565 MHz, and 151 MHz NMR spectrometers. Chemical shifts (6) were
expressed in ppm with TMS as the internal standard, and coupling constants (/) were reported
in Hz. High-resolution mass spectra were obtained by using ESI ionization sources (quadrupole
time-of-flight mass spectrometer, Bruker Impact II, Bremen, Germany). Cyclic

voltammograms were obtained on a CHI 700E potentiostat (CH Instruments, Inc.).

Abbreviations: HFIP = 1,1,1,3,3,3-hexafluoropropan-2-ol, MeOH = methanol, DMA = N,N-
dimethylaniline, DMF = N,N-dimethylformamide, DMSO = dimethyl sulfoxide, EA = ethyl
acetate, DCE = dichloroethane, DCM = dichloromethane, MeCN = acetonitrile, TEMPO =

2,2,6,6-tetramethylpiperidinooxy, mCPBA = 3-chloroperoxybenzoic acid

2. Electrochemical reaction setup

0.5 mmol scale reaction:
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Figure S1. Electrochemical setup used for 0.5 mmol scale reaction.
(A): IKA ElectraSyn Electrode Starter Kit, platinum plates (52 mm x 8 mm x 0.2 mm), nickel
foam (52 mm x § mm x 2 mm), 10 mL reaction vessel. (B): Standard IKA ElectraSyn 2.0.
Parameter settings: Experiment Type (Constant Current), Value (10 mA), Reference Electrode

(No), Experiment Duration (08:00:00 h:min:sec), Alternate Polarity (No).

Gram-scale reaction:

Figure S2. Electrochemical setup used for gram-scale reaction.
(A): A cylindrical bottle with a diameter of 5 cm and a height of 10 cm as reaction vessel, anode:
Pt sheet (30 mm x 30 mm x 0.2 mm), cathode: Ni foam (30 mm x 30 mm x 2 mm). (B): The

stirring rate: 600 rpm, and the current: 90 mA.

Divided cell experiment:

Figure S3. Electrochemical setup used for divided cell experiment.
(A): Pt sheet (10 mm x 10 mm x 0.1 mm) as anode, Ni foam (10 mm x 10 mm x 20 mm) as
cathode. The reaction vessel: an H-type divided electrolytic cell (10 mL + 10 mL) separated by
a hydrogen ion-permeable membrane (Dupont N-117). (B): The stirring rate: 600 rpm, and the

current: 10 mA.
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3. Reaction optimization

Table S1. Electrode screening ?

N @ (X% () @
©/\ + ©/S\S "BugNI (1.0 equiv.) _ ©/\s

DMF (5 mL), 10 mA

1a 2a RT, open to air 3a
Entry Electrode material Yield (%) ®
1 C plate(+) | Pt sheet(-) 25
2 C plate(+) | C plate(-) N.D.
3 Pt sheet(+) | Pt sheet(-) 34
4 Pt sheet(+) | C plate(-) N.D.
5 Pt sheet(+) | Ni foam(-) 57
6 C plate(+) | Ni foam(-) 49
7 Pt sheet(+) | Cu foam(-) 50
8 C plate(+) | Cu foam(-) 40

2 Reaction conditions: 1a (0.5 mmol, 1 equiv.), 2a (0.5 mmol, 1 equiv.), "Buyl (0.5 mmol, 1
equiv.), DMF (5 mL), constant current = 10 mA, 12 h, room temperature (RT), open air,
undivided cell, reactions performed using Standard ElectraSyn 2.0 vessel (10 mL). ® Isolated

yield.
Table S2. Solvent screening ?

Br < /@ (+) Pt sheet | Ni fogm ) /@
: + ©/ g "Bu,NI (1.0 equiv.) ©/\s

Solvent (5 mL), 10 mA

1a 2a RT, open to air 3a
Entry Solvent Yield (%) ®
1 DMA 78
2 DCM N.D.
3 DCE N.D.
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9

EA

MeCN

DMF

DMSO

HFIP

acetone

N.D.

29

57

33

N.D.

N.D.

2 Reaction conditions: 1a (0.5 mmol, 1 equiv.), 2a (0.5 mmol, 1 equiv.), "Buyl (0.5 mmol, 1

equiv.), Solvent (5 mL), constant current = 10 mA, 10 h, room temperature (RT), open air,

undivided cell, reactions performed using Standard ElectraSyn 2.0 vessel (10 mL). ® Isolated

yield.

O QS\SQ

Table S3. Electrolyte screening ?

(+) Pt sheet | Ni foam (-)
Electrolyte (1.0 equiv.)

Q)

DMA (5 mL), 10mA

©/\s

1a 2a RT, open to air 3a
Entry Electrolyte Yield (%) ®
1 -- Voltage oveload
2 KI 18
3 NH,4I 25
4 "EtyNI 61
5 "BuyNI 85
6 "BuyNBr N.D.
7 "BusNOACc 10
8 "BusNPFq Trace
10 "BuyNBF4 Trace
11 NaBF, Trace
12 "BuyNCF5SO3 Trace
13 LiCIO4 N.D.
14 LiOAc N.D.
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aReaction conditions: 1a (0.5 mmol, 1 equiv.), 2a (0.5 mmol, 1 equiv.), electrolyte (0.5 mmol,
1 equiv.), DMA (5 mL), constant current = 10 mA, 8 h, room temperature (RT), open air,
undivided cell, reactions performed using Standard ElectraSyn 2.0 vessel (10 mL). ® Isolated

yield.
Table S4. Substrate ratio screening ?

Br /@ (+) Pt sheet | Ni foam (-) /@
©/\ + ©/S\S nBu4NI(1.Oequiv.)’ ©/\S

DMA (5 mL), 10 mA

1a, x4 mmol 2a, x, mmol RT, open to air 3a
Entry x| (mmol) X, (mmol) Yield (%) b
1 0.3 0.3 26
2 0.5 0.25 39
3 0.5 0.5 85
4 0.5 0.75 95
5 0.5 1.0 95
6 0.5 1.25 92

2 Reaction conditions: 1a (x; mmol), 2a (x, mmol), "Buyl (0.5 mmol), DMA (5 mL), constant
current = 10 mA, 8 h, room temperature (RT), open air, undivided cell, reactions performed

using Standard ElectraSyn 2.0 vessel (10 mL). ® Isolated yield.
Table S5. Current screening ?

Br /@ (+) Pt sheet | Ni foam (-) /@
©/\ + ©/S\s "BuyNI (1.0 equiv.) ©/\S

DMA (5 mL), 10 mA

1a 2a RT, open to air 3a
Entry Current (mA) Time (h) Yield (%) b
1 5 16 69
2 8 10 88
3 10 8 95
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4 12 6.5 91

5 15 5 78

2Reaction conditions: 1a (0.5 mmol, 1 equiv.), 2a (0.75 mmol, 1.5 equiv.), "Buyl (0.5 mmol, 1
equiv.), DMA (5 mL), constant current, room temperature (RT), open air, undivided cell,

reactions performed using Standard ElectraSyn 2.0 vessel (10 mL). ® Isolated yield.

4. Experimental procedures for the synthesis of substrates

4.1. Synthesis of bromides.

OH Br
PBr; (1.0 equiv.)

CH,Clp, 0°C, 1h

1w

(1-Bromopropyl)benzene (1w). To a 25 mL vial equipped with a stirring bar were added
alcohol (680 mg, 5.0 mmol) and CH,Cl, (12 mL), and the solution was cooled to 0 °C. PBr3
(185 uL, 5.0 mmol, 1.0 equiv.) was added to the solution dropwise, and reaction mixture was
further stirred for 1 h at 0 °C. The reaction was quenched with water (10mL) and extracted with
30 mL CH,Cl, three times. The combined organic layers were washed with 30 mL brine and
dried over anhydrous Na,SO,. Then, the solvent was removed under reduced pressure. The
resulting mixture was purified by column chromatography on silica gel (eluted with petroleum
ether) to afford the desired product 1w as a colorless oil (870.1 mg, 88% yield). "H NMR (600
MHz, CDCly). 6 = 7.41-7.37 (m, 2H), 7.36-7.31(m, 2H), 7.30-7.27 (m, 1H), 4.88 (t, /= 7.3
Hz, 1H), 2.36-2.32 (m, 1H), 2.22-2.10 (m, 1H), 1.00 (t, J = 7.3 Hz, 3H). The spectral data is

identical to those reported previously.!

(o] OH Br

H CeH11MgClI (1.5 equiv.) PBr; (1.0 equiv.)
THF,0°C, 12h CH,Cl,, 0°C, 1h

1x
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(Bromo(cyclohexyl)methyl)benzene (1x). To a 50 mL round-bottomed flask equipped with a
stirring bar were added benzaldehyde (532.0 mg, 5.0 mmol, 1.0 equiv.) and THF (12 mL). The
mixture was cooled to 0 °C under a positive pressure of N, and C¢H;;MgCl (1.0 M in THF,
7.51 mL, 7.51 mmol, 1.5 equiv.) was then added dropwise over 30 min. The mixture was then
warmed to room temperature and stirred for an additional 12 h. Upon completion, the reaction
mixture was poured into 30 mL H,O and extracted with 30 mL EtOAc three times. The
combined organic layers were washed with 30 mL brine and dried over anhydrous Na,SOj.
Then, the solvent was removed under reduced pressure. The resulting mixture was purified by
column chromatography on silica gel (eluted with ethyl acetate/petroleum ether) to afford the
desired product cyclohexyl(phenyl)methanol as a yellow oil and used directly in the next step.
In a 25 mL vial equipped with a stirring bar, CH,Cl, (12.0 mL) and the resultant alcohol 4 were
charged, and the solution was cooled to 0 °C. PBr; (185 uL, 5.0 mmol, 1.0 equiv.) was added
to the solution dropwise, and reaction mixture was further stirred for 1 h at 0 °C. The reaction
was quenched with water (10 mL) and extracted with 30 mL CH,Cl, three times. The combined
organic layers were washed with 30 mL brine and dried over anhydrous Na,SO,4. Then, the
solvent was removed under reduced pressure. The resulting mixture was purified by column
chromatography on silica gel (eluted with ethyl acetate/petroleum ether) to afford the desired
product 1x as a colorless oil (382.6 mg, 30% yield, 2 steps). 'H NMR (600 MHz, CDCl3). 6 =
7.44-7.27 (m, 5H), 4.71 (d, J = 9.2 Hz, 1H), 2.35-2.25 (m, 1H), 2.02-1.90 (m, 1H), 1.84-1.76
(m, 1H), 1.70-1.57 (m, 2H), 1.51-1.43 (m, 1H), 1.32-0.97 (m, 4H), 0.93—0.78 (m, 1H). The

spectral data is identical to those reported previously.!

4.2. Synthesis of disulfides.

F
SH _
/©/ K,CO3 (1.0 equiv.) S /©/
. CH4CN, RT, 12 h /©/ s
F

2y

1,2-bis(4-fluorophenyl)disulfane (2y). To a 25 mL vial equipped with a stirring bar were
added 4-fluorobenzenethiol (256.0 mg, 2.0 mmol, 1.0 equiv.) and MeCN (10 mL). K,CO;
(276.4 mg, 2 mmol, 2 equiv.) was then added in one portion and the mixture was stirred at room
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temperature, open to air for 12 h. Upon completion, the reaction mixture was poured into 30
mL H,O and extracted with 30 mL EtOAc three times. The combined organic layers were
washed with 30 mL brine and dried over anhydrous Na,SO,. Then, the solvent was removed
under reduced pressure. The resulting mixture was purified by column chromatography on
silica gel (eluted with petroleum ether) to afford the desired product 2y as a colorless oil (228.6
mg, 90% yield). "H NMR (600 MHz, CDCl;): 6 7.54-7.36 (m, 4H), 7.00 (dd, J = 8.5, 8.5 Hz,

4H). The spectral data is identical to those reported previously.?

Cl
/©/ SH Eon R .. /©/

ol RT, 16 h /©/ S

Cl 2z
1,2-bis(4-chlorophenyl)disulfane (2z). To a 25 mL vial equipped with a stirring bar was added
4-chlorobenzenethiol (431.9 mg, 3.0 mmol, 1.0 equiv.) and EtOH (10 mL). The mixture was
stirred at room temperature, open to air, for 16 h. Upon completion, the reaction mixture
was poured into 30 mL H,O and extracted with 30 mL EtOAc three times. The combined
organic layers were washed with 30 mL brine and dried over anhydrous Na,SO,4. Then, the
solvent was removed under reduced pressure. The resulting mixture was purified by column
chromatography on silica gel (eluted with petroleum ether) to afford the desired product 2z as
a white solid (386.0 mg, 90% yield). 'H NMR (600 MHz, CDCl;). 6 = 7.42—7.36 (m, 4H), 7.30—

7.23 (m, 4H). The spectral data is identical to those reported previously.?

Br
SH I, (0.5 equiv.)
S.
Br CH3CN:H,0 5:1, RT, 1 h /@/ S
Br

2aa

1,2-bis(4-bromophenyl)disulfane (2aa). To a 25 mL vial equipped with a stir bar were added
4-bromobenzenethiol (567.2 mg, 3.0 mmol, 1.0 equiv.), MeCN (10 mL), and deionized water
(2 mL). I; (380.7 mg, 1.5 mmol, 0.5 equiv.) was added in one portion and the mixture was
stirred at room temperature for 1 h. Upon completion, the reaction mixture was poured into 30

mL H,O and extracted with 30 mL EtOAc three times. The combined organic layers were
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washed with 30 mL brine and dried over anhydrous Na,SO,. Then, the solvent was removed
under reduced pressure. The resulting mixture was purified by column chromatography on
silica gel (eluted with petroleum ether) to afford the desired product 2aa as a white solid (510.2
mg, 91% yield). '"H NMR (600 MHz, CDCl;). 6 = 7.43 (dd, J= 8.4, 1.8 Hz, 4H), 7.33 (dd, J =

8.6, 1.7 Hz, 4H). The spectral data is identical to those reported previously.?

SH CFs
/©/ EtOH s /©/
F.C RT, 16 h /©/ S
F5;C 2ad
1,2-bis(4-(trifluoromethyl)phenyl)disulfane (2ad). To a 25 mL vial equipped with a stirring
bar were added 4-(trifluoromethyl)benzenethiol (534.0 mg, 3.0 mmol, 1.0 equiv.) and EtOH
(10 mL). The mixture was stirred at room temperature, open to air, for 16 h. Upon
completion, the reaction mixture was poured into 30 mL H,0 and extracted with 30 mL EtOAc
three times. The combined organic layers were washed with 30 mL brine and dried over
anhydrous Na,SO,. Then, the solvent was removed under reduced pressure. The resulting
mixture was purified by column chromatography on silica gel (eluted with ethyl
acetate/petroleum ether) to afford the desired product 2ad as a colorless oil (398.3 mg, 75%
yield). '"H NMR (600 MHz, CDCls). & = 7.61-7.55 (m, 8H). The spectral data is identical to

those reported previously.*

5. General procedure for the electrochemical synthesis of product 3

Br R?
(+) Pt sheet | Ni foam (-) R3
R1_| AN R2 .\ R3SSR3 nBU4N| (10 eqUiV.) R1L N S~
L , DMA (5 mL), 10 mA =
R® = alkyl or aryl RT, open to air
1 2 3

To a 10 mL standard IKA vessel were added bromide (1) (0.5 mmol, 1.0 equiv.), disulfide (2)
(0.75 mmol, 1.5 equiv.), electrolyte "BuyNI (0.5 mmol, 1.0 equiv.), DMA (5 mL) and a
magnetic stirring bar. A platinum plate (52 mm x 8 mm x 0.2 mm) was used as the anode, and

a nickel foam (52 mm x 8 mm x 2 mm) was used as the cathode (the electrodes were immersed
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1 cm in the reaction solution). The constant current (10 mA) electrolysis was then performed
at room temperature under air atmosphere with vigorous stirring (600 rpm). Upon completion,
the reaction mixture was poured into 30 mL H,O and extracted with 30 mL EtOAc for three
times. The combined organic layers were washed with 30 mL brine and dried over anhydrous
Na,S0O,. Then, the solvent was removed under reduced pressure. The resulting mixture was
purified by column chromatography on silica gel (eluted with ethyl acetate/petroleum ether) to

afford the desired product 3.

6. Mechanistic investigation

6.1. Cyclic voltammetry experiments

The cyclic voltammetry experiments were carried out with a computer-controlled
electrochemical analyzer for electrochemical measurements. The solution of interest was
sparged with argon for 5 minutes before data collection with the CHI 700E potentiostat (CH
Instruments, Inc.). The experiment was performed in a three-electrode cell with DMA (10 mL)
as the solvent, "BuyNBF, (0.05 M) as the supporting electrolyte, and the concentration of the
tested compounds (1a, 2a, "BuyNI) was 2.0 mM. The scan speed was 100 mV/s. The oxidation
potential ranges investigated were 0 V to +2.0 V vs. Ag/AgCl (saturated aqueous KCI) and
reduction potential ranges investigated were -3.0 V to 0 V vs. Ag/AgCl (saturated aqueous
KCl). CV plotting convention is IUPAC.

Working electrode: The working electrode is a 3 mm diameter glassy carbon working
electrode. Polished with 0.05 pm aluminum oxide and then sonicated in distilled water and
ethanol before measurements.

Reference electrode: The reference electrode is Ag/AgCl (saturated aqueous KCI) that was
washed with water and ethanol before measurements.

Counter electrode: The counter electrode is a platinum wire that was polished with 0.05 pm
aluminum oxide and then sonicated in distilled water and ethanol before measurements.

The onset potential for the oxidation of "BuyNI is around +0.75 V and the E, is approximately
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+1.17 V. No oxidation peak of 1a was detected. The onset potential for the oxidation of 2a is
around +1.10 V and the E,, is approximately +1.23 V (Figure S4). The onset potential for the
oxidation of 3a is around +1.76 V and the E,, is approximately +2.09 V (Figure S5). The onset
potential for the reduction of 1a is around -1.01 V and the E. is approximately -2.09 V, the
onset potential for the reduction of 2a is around -1.50 V and the E,q is approximately -2.08 V,
the onset potential for the reduction of Benzyl iodide (7) is around -1.11 V and the E.4 is
approximately -1.68 V. No reduction peak of "BuyNI was detected. "BuyNI was added to 1a,
and the reduction potential of 1a remained basically unchanged after stirring for 10 min, 20 min

and 30 min respectively.

0. 00016 =

0. 00014

0. 00012

1 Br
0. 00010 ©/\

0. 00008

0. 00006 S

0.000044 2 J
0. 00002
0. 00000 ,j

~0. 00002

Currnet/ A

0.0 0.5 1.0 .5 2.0
Potential / V (vs. Ag/AgCl)

Figure S4. Cyclic voltammogram of 1a, 2a and "BuyNI in an electrolyte of "BusNBF, (0.05

M) in DMA from 0 to +2.0 V.

S12



— Blank

Currnet / A
w
-1

-0. 0002 T T T T T T 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Potential / V (vs. Ag/AgCl)

Figure S5. Cyclic voltammogram of 3a in an electrolyte of "Buy;NBF, (0.05 M) in DMA from

0to+3.0 V.

0. 0001 4
0. 0000

-0. 0001

=0. 0002

. 0003

Current/ A
|

-0. 0004

-0. 0005

~0. 0006 1

-0. 0007

T T T T T T T

-3.0 -25 -20 -L5 -1L0  -0.5 0.0
Potential / V (vs. Ag/AgCl)

Figure S6. Cyclic voltammogram of "BuyNI, 1a and 2a in an electrolyte of "Bu,;NBF, (0.05

M) in DMA from 0 to -3.0 V.
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0. 0001 7

0. 0000 +

~0. 0001

-0. 0002 4 —— "Bu,NI + 1a (10 min)

—— "Bu,NI + 1a (20 min)

Current / A

. 0003 "Bu,NI + 1a (30 min)
] —7
-0. 0004 Br
T 1a
-0. 0005 -
i @/\‘
-0. 0006 7
-0. 0007
T

T T T T T
-3.0 -2.5 2.0 -1.5 -1.0 -0.5 0.0

Potential / V (vs. Ag/AgCl)

Figure S7. Cyclic voltammogram of "BuyNI, 1a, benzyl iodide and 1a + "BuyNI in an

electrolyte of "BuyNBF, (0.05 M) in DMA from 0 to -3.0 V.

6.2. Radical trapping experiments

Under standard conditions, TEMPO (4.0 equiv. to 1a) or 1,1-diphenylethylene (4.0 equiv. to
1a) was added to the model reaction system at the beginning of the reaction. After 4 h, a small

amount of reaction mixture was taken out for high-resolution mass spectrometry (HRMS)

measurement.

Standard Conditions

a. 1a + 2a 3a + O/N
TEMPO (4.0 equiv.)
trace

detected by HRMS
[M+H]*, cal. 248.2009

Found: 248.2008
Standard Conditions

3a + SIZ
1,1-diphenylethylene (4.0 equiv.) ©/ O

30%

b. 1a + 2a

detected by HRMS
[M+H]*, cal. 289.1045
Found: 289.1045

Figure S8. Radical trapping experiments.
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Compound Spectra - FMQH-60-2.d B

Intens, LD +M5, 0.0-0.3min £2-15
miliy 248,0008
N
61 ‘ o

“ detected by HRMS
[M+H]", cal. 248.2009 e

| Found: 248.2008 '1

L I\

247.0 247.5 248.0 248.5 243.0 243.5 mjz

2

Figure S9. HRMS data of the radical trapping experiment (with TEMPO).

Compound Spectra - FMQH-60-3.d H
Intens. +M5, 0.05-0, 12min #3-7
x1043
289.11045

2.07 S

RS

1.0 - |

detected by HRMS
0.5 [M+H]", cal. 289.1045 J | \
0.0 A Found: 289.1045 | L
288.0 288.5 289.0 289.5 290.0 mfz

Figure S10. HRMS data of the radical trapping experiment (with 1,1-diphenylethylene).
6.3. Radical validation experiments
Pt sheet (+) | Ni foam(-) ‘
Br "BuyNI (1.0 equiv.)
DMA

10 mA .
1a, 0.5 mmol 12, 11%

To a 10 mL standard IKA vessel were added bromide (1a) (0.5 mmol, 1.0 equiv.), electrolyte
"BuyNI (0.5 mmol, 1.0 equiv.), DMA (5 mL) and a magnetic stirring bar. A platinum plate (52
mm x 8§ mm x 0.2 mm) was used as the anode, and a nickel foam (52 mm x 8§ mm x 2 mm) was
used as the cathode (the electrodes were immersed 1 cm in the reaction solution). The constant
current (10 mA) electrolysis was then performed at room temperature under air atmosphere
with vigorous stirring (600 rpm). Upon completion, the reaction mixture was poured into 30
mL H,0 and extracted with 30 mL EtOAc for three times. The combined organic layers were
washed with 30 mL brine and dried over anhydrous Na,SO,. Then, the solvent was removed
under reduced pressure. The resulting mixture was purified by column chromatography on
silica gel (eluted with petroleum ether) to afford product 12. 'H NMR (600 MHz,

Chloroform-d) 6 7.27 (m, J = 7.5 Hz, 4H), 7.18 (m, J = 7.7 Hz, 6H), 2.92 (s, 4H). 3C NMR
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(151 MHz, Chloroform-d) 6 141.8, 128.5, 128.4, 126.0, 38.0. The spectral data is identical to

those reported previously!'®.

6.4. Divided cell experiments

Anode ! Cathode Anode: 3a, 0% vyield
1a+2a | 1a+2
* | * e Cathode: 3a, 0% yield
"BusNI 1 "BugNI
DMA | DMA
platinum sheet E nickel foam

Figure S11. Divided cell experiments
To the left and right parts of the H-type divided electrolytic cell were added bromide (1a) (0.5
mmol, 1.0 equiv.), disulfide (2a) (0.75 mmol, 1.5 equiv.), electrolyte "BuyNI (0.5 mmol, 1.0
equiv.), 5 mL DMA and a magnetic stirrer bar. A platinum plate (10 mm x 8 mm x 0.2 mm)
was used as the anode and a nickel foam (10 mm x 8 mm x 2 mm) was used as the cathode.
The constant current (10 mA) electrolysis was then performed at room temperature under air
atmosphere with vigorous stirring (600 rpm) for 6 h. Through TLC detection, no target product

3a was detected at either the anode or the cathode.

Anode \ Cathode Anode: 3a, 0% yield  Cathode: 3a, 0% yield

1a + 2a E 1a + 2a Ph
"Bu,NI : nBu,NI S\cfi\ph oN
DMA | DMA ©/ 11 ©/:0
TEMPO orDE | TEMPO or DE
platinum

. detected by HRMS detected by HRMS
nickel foam

Figure S12. Radical trapping experiments in a divided cell
Under the conditions of the aforementioned divided cell experiment (Figure S11), DE (4.0
equiv.) or TEMPO (4.0 equiv.) was added to the anode pool and cathode pool, respectively.

Adduct 11 was detected at the anode, and adduct 10 was detected at the cathode.
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7. Synthetic application procedures

7.1. Gram-scale preparation of product 3a

Pt sheet (+) | Ni foam(-) @
Br "BuyNI (1.0 equiv.
g + PhSSPh a1 (1.0 equiv. s
DMA (40 mL)

90 mA, 30 h
1a, 10 mmol  2a (1.5 equiv.) 3a, 87%

1719 1.74g

To a cylindrical bottle (with a diameter of 5 cm and a height of 10 cm) were added bromide
(1a) (10 mmol, 1.0 equiv.), disulfide (2a) (15 mmol, 1.5 equiv.), electrolyte "BuyNI (10 mmol,
1.0 equiv.), DMA (40 mL) and a magnetic stirring bar. A platinum plate (30 mm x 30 mm x
0.2 mm) was used as the anode and a nickel foam (30 mm x 30 mm x 2 mm) was used as the
cathode. The constant current (90 mA) electrolysis was then performed at room temperature
under air atmosphere with vigorous stirring (600 rpm). Upon completion, the reaction mixture
was poured into 100 mL H,O and extracted with 30 mL EtOAc three times. The combined
organic layers were washed with 30 mL brine and dried over anhydrous Na,SO,. Then, the
solvent was removed under reduced pressure. The resulting mixture was purified by column
chromatography on silica gel (petroleum ether) to afford the desired product 3a as a yellow oil

(1.74 g, 87% yield).

7.2. (Pseudo)halide evaluation

s 6, X =Cl, 90%
©/\X + PhSSPh Standard Conditions s/© 7 X =1 92%
©/\ 8, X =0H, 0%
6-9 2a 3a 9, X = OP(O)(OPh),, 60%

To a 10 mL standard IKA vessel were added benzyl halide or pseudohalide (6-9) (0.5 mmol,
1.0 equiv.), disulfide (2a) (0.75 mmol, 1.5 equiv.), "BuyNI (0.5 mmol, 1.0 equiv.), DMA (5 mL)
and a magnetic stirring bar. A platinum plate (52 mm x 8 mm x 0.2 mm) was used as the anode
and a nickel foam (52 mm x 8 mm x 2 mm) was used as cathode (the electrodes were immersed
1 cm in the reaction solution). The constant current (10 mA) electrolysis was then performed

at room temperature under air atmosphere with vigorous stirring (600 rpm). Upon completion,
s17



the reaction mixture was poured into 30 mL H,O and extracted with 30 mL EtOAc three times.
The combined organic layers were washed with 30 mL brine and dried over anhydrous Na,SO,.
Then, the solvent was removed under reduced pressure. The resulting mixture was purified by
column chromatography on silica gel (eluted with petroleum ether) to afford the desired product

3a.

7.3. The procedure for the conversion of product 3a into sulfoxide 4 and sulfone 5

/© mCPBA (1.0 equiv.) /@
S S
DCM, RT,2h ('5

3a 4

(benzylsulfinyl)benzene (4). To a 20 mL vial equipped with a stirring bar were added
benzyl(phenyl)sulfane (3a) (100.0 mg, 0.5 mmol, 1.0 equiv.), mCPBA (86.3 mg, 1.0 equiv.)
and DCM (5.0 mL). The mixture was stirred at room temperature, open to air, for 4 h. Upon
completion, the reaction mixture was poured into 30 mL H,O and extracted with 30 mL DCM
three times. The combined organic layers were washed with 30 mL brine and dried over
anhydrous Na,SO,. Then, the solvent was removed under reduced pressure. The resulting
mixture was purified by column chromatography on silica gel (eluted with ethyl
acetate/petroleum ether) to afford the desired product 4 as a white solid (86.5 mg, 80% yield).
"H NMR (600 MHz, Chloroform-d) 6 7.47 — 7.35 (m, SH), 7.30 — 7.21 (m, 3H), 6.98 (d, ] = 7.1
Hz, 2H),4.10 (d, J = 12.6 Hz, 1H), 4.00 (d, ] = 12.6 Hz, 1H). 3C NMR (151 MHz, Chloroform-
d)5131.2,130.4,129.2, 128.9, 128.5, 128.3, 124.5, 63.7. The spectral data is identical to those

reported previously!'®.

2
mCPBA (2.5 equiv.) ©A,/S
S > o)
(jA Ether, RT, 0.5 h \©

3a 5
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(benzylsulfonyl)benzene (5). To a 20 mL vial equipped with a stirring bar were added
benzyl(phenyl)sulfane (3a) (100.0 mg, 0.5 mmol, 1.0 equiv.), mCPBA (215.8 mg, 2.5 equiv.)
and diethyl ether (5.0 mL). The mixture was stirred at room temperature, open to air,
for 0.5 h. Upon completion, the reaction mixture was poured into 30 mL H,O and extracted
with 30 mL EtOAc three times. The combined organic layers were washed with 30 mL brine
and dried over anhydrous Na,SO,. Then, the solvent was removed under reduced pressure. The
resulting mixture was purified by column chromatography on silica gel (eluted with ethyl
acetate/petroleum ether) to afford the desired product 5 as a white solid (103.4 mg, 89% yield).
'"H NMR (600 MHz, Chloroform-d) 6 7.65 — 7.57 (m, 3H), 7.46 — 7.42 (m, 2H), 7.33 — 7.28 (m,
1H), 7.25 (dd, J = 8.2, 6.7 Hz, 2H), 7.10 — 7.04 (m, 2H), 4.31 (s, 2H). 1*C NMR (101 MHz,
Chloroform-d) 6 137.9, 133.7, 130.8, 128.9, 128.8, 128.6, 128.6, 128.1, 62.9. The spectral data

is identical to those reported previously!”.

8. Characterization data of products

@ASJQ

Benzyl(phenyl)sulfane (3a): Ry = 0.25 (100% Petroleum ether). 95.1 mg, 95% yield. Yellow
oil. "H NMR (600 MHz, Chloroform-d) 6 7.30 (d, J= 7.7 Hz, 2H), 7.29 — 7.25 (m, 4H), 7.25 —
7.21 (m, 3H), 7.18 (d, J = 7.4 Hz, 1H), 4.11 (s, 2H). 13C NMR (151 MHz, Chloroform-d) &

137.5,136.4, 129.9, 128.9, 128.9, 128.5, 127.2, 126.4, 39.2.

A

(2-Methylbenzyl)(phenyl)sulfane (3b)%: R; = 0.25 (100% Petroleum ether). 91.3 mg, 80%
yield. Yellow oil. "H NMR (600 MHz, Chloroform-d) 6 7.32 (d, J= 7.7 Hz, 2H), 7.26 (t, J =
7.6 Hz, 2H), 7.19 (t,J= 7.4 Hz, 1H), 7.15 (t,J= 6.0 Hz, 3H), 7.11 — 7.06 (m, 1H), 4.10 (s, 2H),

2.39 (s, 3H). 3C NMR (151 MHz, Chloroform-d) 6 136.8, 136.7, 135.1, 130.5, 130.3, 129.8,
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128.9, 127.5, 126.5, 126.0, 37.5, 19.2.

\©/\S/©

(3-Methylbenzyl)(phenyl)sulfane (3¢)%: Ry = 0.25 (100% Petroleum ether). 94.4 mg, 88%
yield. Yellow oil. "H NMR (600 MHz, Chloroform-d) 6 7.33 — 7.28 (m, 2H), 7.26 — 7.21 (m,
2H), 7.17 (dp, J=7.7, 2.9, 2.4 Hz, 2H), 7.12 — 7.06 (m, 2H), 7.04 (d, J = 7.6 Hz, 1H), 4.08 (s,

2H), 2.30 (s, 3H). 3C NMR (151 MHz, Chloroform-d) & 138.2, 137.3, 136.6, 129.8, 129.6,

128.9, 128.4, 128.0, 126.3, 125.9, 39.1, 21 .4.

o

(4-Methylbenzyl)(phenyl)sulfane (3d)%: Ry = 0.25 (100% Petroleum ether). 98.5 mg, 92%
yield. Yellow oil. 'H NMR (600 MHz, Chloroform-d) 6 7.30 (d, /= 6.8 Hz, 2H), 7.26 — 7.23
(m, 2H), 7.20 — 7.14 (m, 3H), 7.08 (d, J = 7.6 Hz, 2H), 4.09 (s, 2H), 2.31 (s, 3H). 3C NMR

(151 MHz, Chloroform-d) & 136.9, 136.6, 134.3, 129.7, 129.2, 128.8, 128.7, 126.2, 38.8, 21.1.

A

(4-(Tert-butyl)benzyl)(phenyl)sulfane (3e)’: Ry = 0.25 (100% Petroleum ether). 108.8 mg,
85% yield. Yellow oil. 'H NMR (600 MHz, Chloroform-d) 6 7.31 (dd, J = 8.0, 5.0 Hz, 4H),
7.27 —7.22 (m, 4H), 7.17 (t, J= 7.5 Hz, 1H), 4.11 (s, 2H), 1.30 (s, 9H). 13C NMR (151 MHz,

Chloroform-d) 6 150.2, 136.9, 134.3, 129.4, 128.8, 128.5, 126.1, 125.5, 38.5, 34.5, 31.4.

A
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(3,5-Dimethylbenzyl)(phenyl)sulfane (3f)%: R:= 0.25 (100% Petroleum ether). 92.1 mg, 80%
yield. Yellow oil. "H NMR (600 MHz, Chloroform-d) é 7.33 — 7.29 (m, 2H), 7.25 (d, J = 8.0
Hz, 2H), 7.17 (td, J=17.0, 3.3 Hz, 1H), 6.91 (s, 2H), 6.87 (s, 1H), 4.05 (s, 2H), 2.27 (s, 6H). *C
NMR (151 MHz, Chloroform-d) & 138.1, 137.1, 136.8, 129.6, 128.9, 128.8, 126.7, 126.2, 39.0,

21.2.

F\©/\S/©

(3-Fluorobenzyl)(phenyl)sulfane (3g)°: R; = 0.25 (100% Petroleum ether). 94.9 mg, 87%
yield. Yellow oil. '"H NMR (600 MHz, Chloroform-d) 6 7.32 — 7.27 (m, 2H), 7.24 (dtd, J =
14.3,7.7,2.5 Hz, 3H), 7.20 - 7.17 (m, 1H), 7.03 (d, /= 7.5 Hz, 1H), 7.02 — 6.97 (m, 1H), 6.91
(td, J=8.4,2.9 Hz, 1H), 4.07 (s, 2H). 3C NMR (151 MHz, Chloroform-d) 6 162.8 (d, J = 246.1
Hz), 140.2 (d, J= 7.3 Hz), 135.7, 130.2, 129.9 (d, J = 8.3 Hz), 128.9, 126.7, 124.5 (d, J = 2.7

Hz), 115.7 (d, J=21.9 Hz), 114.1 (d, J=21.1 Hz), 38.8 (d, J = 1.4 Hz). “F NMR (565 MHz,

Chloroform-d) § -113.14.

o

(4-Fluorobenzyl)(phenyl)sulfane (3h)5: R: = 0.25 (100% Petroleum ether). 99.1 mg, 91%
yield. Yellow solid. '"H NMR (600 MHz, Chloroform-d) 6 7.28 (d, J= 7.2 Hz, 2H), 7.23 (ddd,
J=143,8.7,6.3 Hz, 4H), 7.19 (d, J=7.2 Hz, 1H), 6.95 (tt, /= 9.1, 3.1 Hz, 2H), 4.07 (s, 2H).
3C NMR (151 MHz, Chloroform-d) & 162.0 (d, J = 245.6 Hz), 135.9, 133.3, 130.4 (d, /= 8.1
Hz), 130.3, 128.9, 126.6, 115.3 (d, J = 21.5 Hz), 38.5. ’F NMR (565 MHz, Chloroform-d) 3 -

115.39.
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(4-Chlorobenzyl)(phenylsulfane (3i)5: Ry = 0.25 (100% Petroleum ether). 105.3 mg, 90%
yield. White solid. "H NMR (600 MHz, Chloroform-d) 6 7.28 (d, J= 7.1 Hz, 2H), 7.26 — 7.21
(m, 4H), 7.21 — 7.16 (m, 3H), 4.05 (d, J= 2.9 Hz, 2H). 3C NMR (151 MHz, Chloroform-d) &

136.2, 135.7, 133.0, 130.3, 130.1, 128.9, 128.6, 126.7, 38.6.

&SQ

(2-Bromobenzyl)(phenyl)sulfane (3j)%: Ry = 0.25 (100% Petroleum ether). 112.7 mg, 81%
yield. Yellow oil. 'TH NMR (600 MHz, Chloroform-d) & 7.56 (dd, J = 8.3, 4.6 Hz, 1H), 7.33 (d,
J=17.3Hz, 2H), 7.27 - 7.22 (m, 3H), 7.19 (dt, J = 14.1, 7.8 Hz, 2H), 7.09 (t, /= 7.6 Hz, 1H),
4.21 (d, J = 3.8 Hz, 2H). *C NMR (151 MHz, Chloroform-d) & 136.9, 135.7, 133.0, 130.8,

130.7, 128.9, 128.8, 127.4, 126.8, 124.5, 39.8.

B@Ag@

(3-Bromobenzyl)(phenyl)sulfane (3k)®: Ry = 0.25 (100% Petroleum ether). 120.1 mg, 86%
yield. Yellow oil. 'H NMR (600 MHz, Chloroform-d) & 7.45 —7.39 (m, 1H), 7.37 — 7.32 (m,
1H), 7.31 — 7.27 (m, 2H), 7.27 — 7.23 (m, 2H), 7.22 — 7.16 (m, 2H), 7.13 (dq, J = 7.7, 3.7 Hz,
1H), 4.04 (s, 2H). 3C NMR (151 MHz, Chloroform-d) & 130.0, 135.6, 131.9, 130.4, 130.3,

130.0, 129.0, 127.4, 126.8, 122.5, 38.8.

o

(4-Bromobenzyl)(phenyl)sulfane (31)5: R; = 0.25 (100% Petroleum ether). 127.7 mg, 92%
yield. Yellow solid. '"H NMR (600 MHz, Chloroform-d) & 7.38 (dt, J = 8.9, 2.8 Hz, 2H), 7.29
—7.23 (m, 4H), 7.19 (td, J= 5.8, 2.5 Hz, 1H), 7.13 (dt, J = 8.8, 2.8 Hz, 2H), 4.03 (s, 2H). 13C

NMR (151 MHz, Chloroform-d) 6 136.7, 135.7, 131.6, 130.5, 130.3, 129.0, 126.7, 121.1, 38.7.
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o
o

(4-Methoxybenzyl)(phenyl)sulfane (3m)’: Ry = 0.25 (Petroleum ether/EtOAc, 10:1). 113.8
mg, 99% yield. Yellow solid. 'H NMR (600 MHz, Chloroform-d) & 7.32 — 7.27 (m, 2H), 7.24
(d, J= 8.4 Hz, 2H), 7.22 — 7.19 (m, 2H), 7.19 — 7.15 (m, 1H), 6.81 (dt, J = 9.0, 2.8 Hz, 2H),
4.07 (s, 2H), 3.78 (s, 3H). 3C NMR (151 MHz, Chloroform-d) & 158.8, 136.6, 129.9, 129.8,

129.4,128.8, 126.3, 113.9, 55.3, 38.5.

(3,5-Dimethoxybenzyl)(phenyl)sulfane (3n)*%: R; = 0.25 (Petroleum ether/EtOAc, 10:1).
104.3 mg, 80% yield. Yellow oil. '"H NMR (600 MHz, Chloroform-d) & 7.35 — 7.29 (m, 2H),
7.27 —7.24 (m, 2H), 7.21 — 7.15 (m, 1H), 6.45 (d, J = 2.5 Hz, 2H), 6.34 (s, 1H), 4.05 (s, 2H),
3.74 (s, 6H). 3C NMR (151 MHz, Chloroform-d)  160.8, 139.8, 136.4, 129.9, 128.9, 126 .4,
106.7, 99.5, 55.3, 39.4. HRMS (ESI): m/z: calcd for CisH;0,S (M+H") 261.0944; found

261.0943.

o

([1,1'-Biphenyl]-4-ylmethyl)(phenyl)sulfane (30)8: R;= 0.25 (100% Petroleum ether). 127.1
mg, 92% yield. Yellow solid. "H NMR (600 MHz, Chloroform-d) & 7.59 — 7.54 (m, 2H), 7.53
—17.49 (m, 2H), 7.42 (t,J="7.6 Hz, 2H), 7.34 (dd, J=11.6, 7.8 Hz, 5H), 7.25 (dd, J= 14.6, 6.1
Hz, 3H), 7.18 (t, J= 7.4 Hz, 1H), 4.15 (s, 2H). 3C NMR (151 MHz, Chloroform-d) & 140.8,

140.1, 136.6, 136.4, 129.9, 129.3, 128.9, 128.8, 127.3, 127.2, 127.0, 126.4, 38.9.
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FiC-
0

Phenyl(4-(trifluoromethoxy)benzyl)sulfane (3p)°: Ry = 0.25 (100% Petroleum ether). 122.3
mg, 86% yield. Yellow solid. 'H NMR (600 MHz, Chloroform-d) & 7.31 —7.23 (m, 6H), 7.19
(t,J=17.2 Hz, 1H), 7.11 (d, /= 8.1 Hz, 2H), 4.08 (s, 2H). 13C NMR (151 MHz, Chloroform-d)
0 148.3,136.4,135.6,130.4,130.1, 128.9, 126.8, 121.0, 120.5 (q, /=257.1 Hz), 38.5. ’F NMR

(565 MHz, Chloroform-d) 6 -57.88.

o

Phenyl(4-(trifluoromethyl)benzyl)sulfane (3q)%: R; = 0.25 (100% Petroleum ether). 127.1
mg, 95% yield. Yellow oil. "H NMR (600 MHz, Chloroform-d) & 7.52 (d, J=7.9 Hz, 2H), 7.36
(d, J=7.9 Hz, 2H), 7.29 (d, J = 7.6 Hz, 2H), 7.25 (t, /= 7.6 Hz, 2H), 7.20 (t,J = 7.2 Hz, 1H),
4.12 (s, 2H). BC NMR (151 MHz, Chloroform-d) 6 141.9, 135.4, 130.5, 129.4 (q, /= 32.4 Hz),
129.1, 129.0, 126.9, 125.4 (q, J = 3.8 Hz), 124.1 (q, J=273.0 Hz), 38.9. °F NMR (565 MHz,

Chloroform-d) & -62.49.

o
NC

4-((Phenylthio)methyl)benzonitrile (3r)®: R; = 0.25 (Petroleum ether/EtOAc, 10:1). 103.0
mg, 91% yield. Yellow solid. "H NMR (600 MHz, Chloroform-d) & 7.55 — 7.51 (m, 2H), 7.33
(d, J=7.9 Hz, 2H), 7.28 — 7.23 (m, 4H), 7.21 (dd, J= 8.4, 4.4 Hz, 1H), 4.09 (s, 2H). 3C NMR

(151 MHz, Chloroform-d) 6 143.4,134.7, 132.3, 130.9, 129.5, 129.1, 127.2, 118.8, 111.0, 39.2.

o

(4-Nitrobenzyl)(phenyl)sulfane (3s)®: Ry = 0.25 (Petroleum ether/EtOAc, 10:1). 110.8 mg,
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90% yield. Yellow solid. "H NMR (600 MHz, Chloroform-d) 8 8.11 (d, /= 8.4 Hz, 2H), 7.38
(d, J= 8.3 Hz, 2H), 7.29 — 7.24 (m, 4H), 7.24 — 7.20 (m, 1H), 4.13 (s, 2H). 13C NMR (151

MHz, Chloroform-d) & 147.1, 145.6, 134.5, 131.1, 129.6, 129.1, 127.3, 123.7, 39.0.

SO h

(Naphthalen-2-ylmethyl)(phenyl)sulfane (3t)®: R;=0.25 (100% Petroleum ether). 102.6 mg,
82% yield. Yellow solid. 'H NMR (600 MHz, Chloroform-d) 6 7.79 (dd, J=12.0, 7.2 Hz, 2H),
7.76 —7.72 (m, 1H), 7.67 (s, 1H), 7.48 — 7.42 (m, 3H), 7.32 (d, J= 7.4 Hz, 2H), 7.25 - 7.21 (m,
2H), 7.17 (t, J="7.4 Hz, 1H), 4.27 (s, 2H). 3C NMR (151 MHz, Chloroform-d) 3 136.3, 135.0,

133.3, 132.6, 130.1, 128.9, 128.3, 127.7, 127.7, 127.4, 127.0, 126.5, 126.1, 125.8, 39.5.

nds

Penzhydryl(phenyl)sulfane (3u)'’: R; = 0.25 (100% Petroleum ether). 98.0 mg, 71% yield.
Yellow oil. '"H NMR (600 MHz, Chloroform-d) 8 7.41 (d, J= 7.5 Hz, 4H), 7.28 (t, /= 7.6 Hz,
4H), 7.22 (t, J= 7.8 Hz, 4H), 7.16 (t, J = 7.4 Hz, 2H), 7.14 — 7.10 (m, 1H), 5.53 (s, 1H). 13C

NMR (151 MHz, Chloroform-d) & 141.1, 136.2, 130.6, 128.7, 128.6, 128.5, 127.3, 126.6, 57.5.

A

Phenyl(1-phenylethyl)sulfane (3v)*: Ry = 0.25 (100% Petroleum ether). 99.5 mg, 93% yield.
Yellow oil. '"H NMR (600 MHz, Chloroform-d) 6 7.32 —7.24 (m, 6H), 7.20 (d, J = 7.6 Hz, 4H),
4.33(q,J=6.9 Hz, 1H), 1.62 (d, J= 7.0 Hz, 3H). *C NMR (151 MHz, Chloroform-d) é 143.2,

135.2,132.5, 128.7, 128.4, 127.3, 127.1, 48.1, 22 4.
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A

Phenyl(1-phenylpropyl)sulfane (3w)!'’: R; = 0.25 (100% Petroleum ether). 97.1 mg, 85%
yield. Yellow oil. "H NMR (600 MHz, Chloroform-d) 6 7.24 (td, /J=9.1, 7.8, 4.4 Hz, 6H), 7.18
(dd, J=10.8, 5.6 Hz, 4H), 4.04 (dd, J = 8.8, 5.8 Hz, 1H), 2.05 — 1.89 (m, 2H), 0.91 (t, J=7.3
Hz, 3H). *C NMR (151 MHz, Chloroform-d) 6 142.0, 135.2, 132.4, 128.6, 128.3, 127.9, 127.1,

127.0,55.4,29.4, 12.3.

Nds

(Cyclohexyl(phenyl)methyl)(phenyl)sulfane (3x)!!: Ry = 0.25 (100% Petroleum ether). 81.8
mg, 58% yield. Yellow oil. "H NMR (600 MHz, Chloroform-d) & 7.21 (d, J=5.0 Hz, 4H), 7.18
—7.16 (m, 2H), 7.16 — 7.06 (m, 4H), 3.96 (d, /= 7.9 Hz, 1H), 2.22 - 2.15 (m, 1H), 1.86 — 1.73
(m, 2H), 1.68 — 1.55 (m, 3H), 1.29 — 1.21 (m, 1H), 1.13 (dddd, J=32.4,20.5, 9.5, 6.0 Hz, 3H),
0.97 (qd, J = 12.3, 3.4 Hz, 1H). 3C NMR (151 MHz, Chloroform-d) é 141.7, 135.9, 131.8,

128.6, 128.5, 128.0, 126.7, 126.5, 60.8, 43.5, 31.7, 31.1, 26.3, 26.3.

o
Ok
Benzyl(4-fluorophenyl)sulfane (3y)3: Ry = 0.25 (100% Petroleum ether). 98.2 mg, 90% yield.
Yellow oil. '"H NMR (600 MHz, Chloroform-d) 8 7.26 (td, J = 6.9, 5.4, 2.2 Hz, 4H), 7.21 (t,J
=9.9 Hz, 3H), 6.93 (t, J = 8.4 Hz, 2H), 4.02 (s, 2H). '3C NMR (151 MHz, Chloroform-d) &

162.1 (d, J = 246.8 Hz), 137.5, 133.5 (d,J = 8.1 Hz), 130.8 (d, /= 3.3 Hz), 128.9, 128.5, 127.2,

115.9 (d, J=21.7 Hz), 40.5. '’F NMR (565 MHz, Chloroform-d) 6 -114.84.
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o
o
Benzyl(4-chlorophenyl)sulfane (3z)°: R; = 0.25 (100% Petroleum ether). 112.2 mg, 96%
yield. Yellow solid. "H NMR (600 MHz, Chloroform-d) 6 7.30 — 7.28 (m, 1H), 7.28 — 7.23 (m,

4H), 7.20 (d, J= 1.2 Hz, 4H), 4.07 (s, 2H). 3C NMR (151 MHz, Chloroform-d) § 137.1, 134.7,

132.5, 131.5, 129.0, 128.8, 128.6, 127.3, 39.4.

o8
o
Benzyl(4-bromophenyl)sulfane (3aa)%: Ry = 0.25 (100% Petroleum ether). 131.0 mg, 94%
yield. Yellow solid. "H NMR (600 MHz, Chloroform-d) 6 7.35 (d, /= 8.1 Hz, 2H), 7.30 — 7.22

(m, SH), 7.14 (d, J = 8.1 Hz, 2H), 4.08 (s, 2H). 3C NMR (151 MHz, Chloroform-d) § 137.1,

135.4,131.9, 131.5, 128.8, 128.6, 127.4, 120.4, 39.1.

@AS@

Benzyl(p-tolyl)sulfane (3ab)5: R; = 0.25 (100% Petroleum ether). 101.7 mg, 95% yield.
Yellow oil. '"H NMR (600 MHz, Chloroform-d) & 7.26 (d, J= 5.9 Hz, 4H), 7.21 (d, J= 7.9 Hz,
3H), 7.06 (d, J= 7.8 Hz, 2H), 4.06 (s, 2H), 2.30 (s, 3H). '*C NMR (151 MHz, Chloroform-d) &

137.8, 136.6, 132.5, 130.8, 129.6, 128.9, 128.5, 127.1, 39.9, 21.1.

O
o
Benzyl(4-methoxyphenyl)sulfane (3ac)’: R;=0.25 (Petroleum ether/EtOAc, 10:1). 108.1 mg,
94% yield. Yellow solid. "H NMR (600 MHz, Chloroform-d) 6 7.25 (dd, J = 8.8, 6.6 Hz, 4H),

7.21 (d, J=7.0 Hz, 1H), 7.19 — 7.17 (m, 2H), 6.78 (d, J = 8.6 Hz, 2H), 3.98 (s, 2H), 3.77 (s,

3H). 3C NMR (151 MHz, Chloroform-d) & 159.2, 138.2, 134.2, 128.9, 128.4, 127.0,126.1,
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114.4,55.3,41.2.

o~

Benzyl(4-(trifluoromethyl)phenyl)sulfane (3ad)'?: R;= 0.25 (100% Petroleum ether). 120.8
mg, 90% yield. Yellow solid. '"H NMR (600 MHz, Chloroform-d) & 7.48 (d, /= 8.1 Hz, 2H),
7.36 —7.33 (m, 4H), 7.31 (t, J = 7.4 Hz, 2H), 7.27 — 7.24 (m, 1H), 4.18 (s, 2H). *C NMR (151
MHz, Chloroform-d) 6 142.1, 136.4, 128.8 (q, J=32.5 Hz), 128.5, 128.0, 127.5, 125.66, 125.6

(q,J=3.6 Hz), 124.2 (q, J = 272.1 Hz), 37.8. '9F NMR (565 MHz, Chloroform-d) & -62.45.

e
S
Benzyl(2-nitrophenyl)sulfane (3ae)!3: Ry = 0.25 (Petroleum ether/EtOAc, 10:1). 74.5 mg, 61%
yield. Yellow oil. "H NMR (600 MHz, Chloroform-d) 6 8.23 (dd, J=8.3, 1.5 Hz, 1H), 7.54 (1d,
J=17.6,72,1.5Hz, 1H), 7.49 (dd, /= 8.2, 1.3 Hz, 1H), 7.45 (d, J= 7.1 Hz, 2H), 7.37 (t, J =
7.5 Hz, 2H), 7.34 — 7.30 (m, 1H), 7.28 (dt, J = 6.0, 1.3 Hz, 1H), 4.23 (s, 2H). *C NMR (151
MHz, Chloroform-d) & 146.2, 137.6, 135.1, 133.4, 129.1, 128.8, 127.8, 127.2, 126.0, 124.8,

37.7.

NO,

o

Benzyl(3-nitrophenyl)sulfane (3af)'4: Ry = 0.25 (Petroleum ether/EtOAc, 10:1). 110.4 mg,
90% yield. Yellow oil. "H NMR (600 MHz, Chloroform-d) 6 8.15 (t, J= 2.1 Hz, 1H), 8.05 —
7.99 (m, 1H), 7.60 — 7.54 (m, 1H), 7.42 (t, J= 8.0 Hz, 1H), 7.38 — 7.31 (m, 4H), 7.29 (d, J =
7.6 Hz, 1H), 4.23 (s, 2H). 3C NMR (151 MHz, Chloroform-d) 6 148.5, 139.4, 136.1, 134.7,

129.4, 128.8, 128.7, 127.7, 123.3, 120.8, 38.4.
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Benzyl(4-nitrophenyl)sulfane (3ag)'4: Ry = 0.25 (Petroleum ether/EtOAc, 10:1). 114.1 mg,
93% yield. Yellow oil. '"H NMR (600 MHz, Chloroform-d) & 8.12 (d, /= 8.9 Hz, 2H), 7.41 (d,
J=17.1 Hz, 2H), 7.37 (dd, J = 8.2, 5.8 Hz, 4H), 7.33 — 7.31 (m, 1H), 4.28 (s, 2H). *C NMR

(151 MHz, Chloroform-d) & 147.2, 145.4, 135.5, 128.8, 128.7, 127.8, 126.8, 123.9, 37.2.

~ "N
\

©/\S NS
4-(Benzylthio)pyridine (3ah)'S: Ry = 0.25 (Petroleum ether/EtOAc, 8:1). 74.6 mg, 74% yield.
Yellow oil. '"H NMR (600 MHz, Chloroform-d) 6 8.39 — 8.36 (m, 2H), 7.39 (d, J= 7.1 Hz, 2H),

7.35 - 7.31 (m, 2H), 7.30 — 7.26 (m, 1H), 7.14 — 7.11 (m, 2H), 4.21 (s, 2H). 3C NMR (151

MHz, Chloroform-d) 8 149.2, 135.6, 135.6, 128.8, 128.7, 127.7, 120.7, 35.8.

=
S
2-(Benzylthio)thiophene (3ai)!?: R; = 0.25 (100% Petroleum ether). 92.7 mg, 90% yield.
Yellow oil. "H NMR (600 MHz, Chloroform-d) 6 7.30 (dd, J = 5.2, 1.5 Hz, 1H), 7.28 — 7.21

(m, 3H), 7.18 — 7.13 (m, 2H), 6.94 — 6.88 (m, 2H), 3.95 (s, 2H). 3C NMR (151 MHz,

Chloroform-d) & 137.7, 134.4, 133.6, 129.7, 129.0, 128.4, 127.4, 127.2,43.9.

o

Benzyl(methyl)sulfane (3aj)%: R;=0.25 (100% Petroleum ether). 56.5 mg, 82% yield. Yellow
oil. 'H NMR (600 MHz, Chloroform-d) 6 7.34 — 7.28 (m, 4H), 7.26 — 7.22 (m, 1H), 3.68 (s,

2H), 2.00 (s, 3H). 3*C NMR (151 MHz, Chloroform-d) 6 138.2, 128.9, 128.5, 127.0, 38.4, 15.0.
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Benzyl(ethyl)sulfane (3ak)®: Ry = 0.25 (100% Petroleum ether). 67.2 mg, 88% yield. Yellow
oil. '"H NMR (600 MHz, Chloroform-d) 6 7.31 (dt, /= 3.1, 1.6 Hz, 4H), 7.25 — 7.21 (m, 1H),
3.72(s,2H),2.44 (q,J=7.3 Hz,2H), 1.23 (t,J=7.4 Hz, 3H). B3C NMR (151 MHz, Chloroform-

d) 8 138.56, 128.8, 128.5, 126.9, 36.0, 25.3, 14.4.

9. NMR Spectra of Products
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BC-NMR Spectrum (101MHz, CDCl;) of 3p
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BC-NMR Spectrum (151MHz, DMSO) of 3q
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I3C-NMR Spectrum (151 MHz, CDCl;) of 3r
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I3C-NMR Spectrum (101MHz, CDCI;) of 3u
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I3C-NMR Spectrum (151 MHz, CDCl;) of 3w
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I3C-NMR Spectrum (151 MHz, CDCl;) of 3x

62°92

€EO
Zrie~
991

6v'er —

9209 —

70

80

90

1 (ppm)

110

120

140

150

1160

TH-NMR Spectrum (600 MHz, CDCl;) of 3y

20—

269
€6'9
v6'9
oz'L
2L
L
€T°L
YL
ScL
jeTAVA
STl
9L
2L
2L

=002

661
Lo'e
(%4

1 (ppm)

S54



BC-NMR Spectrum (151 MHz, CDCL;) of 3y
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I3C-NMR Spectrum (151 MHz, CDCl;) of 3aa
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