Supplementary Information (SI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information

Cobalt-catalyzed regio- and diastereoselective carbocyclization/arylation of 1,5-bisallenes

Tao Wang, Hua Huang, Ji-Xun Guan, Xiao-Die An, Yun-Xuan Tan,* and Ping Tian*

The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.

*E-mail: tanyx1993@shutcm.edu.cn and tianping@shutcm.edu.cn.

Table of Contents

1. General Information	S2
2. Substrate Preparation	S3
3. Substrate Scope of 1,5-Bisallenes	S7
4. X-ray Crystal Structure of 3ga	S21
5. Scale-up Reaction and Product Transformations	S24
6. Mechanistic Experiments and Possible Catalytic Cycle	S27
7. References	S30
8. NMR Spectra	S31

1. General Information

All reagents were purchased and used without further purification unless otherwise specified. Flash column chromatography was performed over silica gel (300-400 mesh) purchased from Shanghai Titan Scientific Co., Ltd. Anhydrous tetrahydrofuran (THF), tert-Butyl methyl ether (MTBE), acetone, dimethyl sulfoxide (DMSO), 1,4-dioxane, toluene, acetonitrile (CH₃CN) and 2-Methyltetrahydrofuran (2-Me-THF) were purchased from Shanghai Titan Scientific Co., Ltd. and used as received. CoCl₂ and CoBr₂ were purchased from Alfa Aesar. Co(OAc)₂ was purchased from Sigma-Aldrich. Co(acac)₂ was purchased from TCI Chemicals. CoCl₂(PPh₃)₂ and CoCl(PPh₃)₃ were purchased from Shanghai Bide Pharmatech Co., Ltd. Co₂(CO)₈ was purchased from Shanghai Titan Scientific Co., Ltd.

¹H, ¹³C, ¹⁹F NMR spectra were collected on a Bruker AV 400 MHz and 600 MHz NMR spectrometer using residue solvent peaks as an internal standard (¹H NMR: CDCl₃ at 7.26 ppm, ¹³C NMR: CDCl₃ at 77.0 ppm). The data are reported as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant *J* (Hz), and integration. High resolution mass spectra were acquired by Agilent 6545 Accurate-Mass Q-TOF LC/MS System. X-ray structure was determined on a Bruker D8 Venture X-ray Diffraction meter.

2. Substrate Preparation

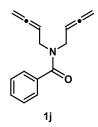
Bisallenes **1a-1c**,^[1] **1d**,^[2] **1e-1h**,^[1] **1l**,^[3] **1m**, **1n**, **1o**, **1o**, and **1p**, are known compounds. They were prepared according to the literatures. Other substrates were prepared according to the following procedures, which were unoptimized.

General procedure A: Synthesis bisallenes 1i-1k

R-CI +
$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & &$$

Step 1: In an oven-dried 100 mL round-bottom flask equipped with a magnetic stirrer, a mixture of dipropargylamine (1.2 equiv, 12 mmol), triethylamine (1.4 equiv, 14 mmol) and DCM (20 mL) was stirred at room temperature for 10 minutes. R-Cl (1.0 equiv, 10 mmol) was then added dropwise at 0 °C and the reaction mixture was stirred overnight and allowed to warm to room temperature. The solids were filtered off and the filtrate was concentrated under reduced pressure. The crude was mixed with water and extracted with DCM. The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The crude diyne product 10 was directly used in the next step without further purification.

Step 2: In an oven-dried 100 mL round-bottom charged with diyne **10** (1.0 equiv, 10 mmol), paraformaldehyde (5.0 equiv, 50 mmol) and CuI (1.0 equiv, 10 mmol) was evacuated and backfilled with N₂ for three times. Then, diisopropylamine (4.0 equiv, 40 mmol) and 1,4-dioxane (50 mL) were added and the resulting mixture was stirred at reflux for 16 h until completion (TLC monitoring). The reaction mixture was allowed to cool to room temperature, concentrated under reduced pressure. The resulting crude was purified by column chromatography (SiO₂) to afford the corresponding bisallenes **1i-1k**.


N,N-di(buta-2,3-dien-1-yl)methanesulfonamide (1i)

General procedure A, $R_f = 0.5$ (PE/EA = 5/1), yellow oil (425.1 mg, 21% yield). ¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 5.19 - 5.10 (m, 2H), 4.87 - 4.82 (m, 4H), 3.94 - 3.91 (m, 4H), 2.89 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 209.7, 85.8, 76.6, 45.3, 40.3.

HRMS (**ESI-TOF**): [M+Na][⊕] calcd for C₉H₁₃NNaO₂S[⊕] 222.0559, found 222.0564.

N,N-di(buta-2,3-dien-1-yl)benzamide (1j)

General procedure A, $R_f = 0.5$ (PE/EA = 5/1), yellow oil (351.8 mg, 16% yield).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.45 – 7.34 (m, 5H), 5.38 – 4.99 (m, 2H), 4.90 – 4.73 (m, 4H), 4.24 – 3.73 (m, 4H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 209.1, 171.6, 136.2, 129.6, 128.4, 126.7, 86.6, 76.9, 45.2.

HRMS (ESI-TOF): $[M+Na]^{\oplus}$ calcd for $C_{15}H_{15}NNaO^{\oplus}$ 248.1046, found 248.1052.

Benzyl di(buta-2,3-dien-1-yl)carbamate (1k)

General procedure A, $R_f = 0.8$ (PE/EA = 5/1), colorless oil (1.1 g, 80% yield).

¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.39 – 7.29 (m, 5H), 5.18 – 5.04 (m, 4H), 4.80 – 4.68 (m, 4H), 4.00 – 3.86 (m, 4H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 209.0, 155.8, 136.7, 128.4, 127.9, 127.8, 86.8, 76.3, 67.1, 45.3.

HRMS (**ESI-TOF**): [M+Na][⊕] calcd for C₁₆H₁₇NNaO₂[⊕] 278.1151, found 278.1156.

Synthesis bisallene **1q**:

NH₂

$$O=S=O$$
 $O=S=O$
 $O=S$
 $O=$

Step1: An oven-dried 50 mL round-bottom flask charged with Celecoxib (1.0 equiv, 5 mmol), 3-Bromopropyne (3.0 equiv, 15 mmol), K₂CO₃ (3.0 equiv, 15 mmol), and MeCN (10 mL) was refluxed at 80 °C in oil bath for 12 h. The reaction mixture was allowed to cool to room temperature, concentrated under reduced pressure. The resulting crude was purified by column chromatography (SiO₂) to afford the corresponding product **10q**.

Step2: In an oven-dried 100 mL round-bottom charged with diyne 10q (1.0 equiv, 4.7 mmol), paraformaldehyde (5.0 equiv, 23.5 mmol) and CuI (1.0 equiv, 4.7 mmol) was evacuated and backfilled with N₂ for three times. Then, diisopropylamine (4.0 equiv, 18.8 mmol) and 1,4-dioxane (24 mL) were added and the resulting mixture was stirred at reflux for 16 h until completion (TLC monitoring). The reaction mixture was allowed to cool to room temperature, concentrated under reduced pressure. The resulting crude was purified by column chromatography (SiO₂) to afford the corresponding bisallene 1q.

N,N-di(buta-2,3-dien-1-yl)-4-(5-(p-tolyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide (1q)

 $R_f = 0.5$ (PE/EA = 10/1), yellow oil (1.6 g, 70% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.81 (d, *J* = 8.5 Hz, 2H), 7.46 (d, *J* = 8.5 Hz, 2H), 7.17 (d, *J* = 7.9 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 6.74 (s, 1H), 4.96–4.87 (m, 1H), 4.77 – 4.70 (m, 4H), 3.93 – 3.87 (m, 4H), 2.38 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 209.7, 145.2, 144.1 (q, *J* = 38.3 Hz), 142.4, 140.1, 139.8, 129.7, 128.7, 128.1, 125.7, 125.6, 121.5 (q, *J* = 267.7 Hz), 106.2, 85.3, 76.5, 45.7, 21.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) -62.4.

HRMS (ESI-TOF): $[M+Na]^{\oplus}$ calcd for $C_{25}H_{22}F_3N_3NaO_2S^{\oplus}$ 508.1277, found 508.1288.

3. Substrate Scope of 1,5-Bisallenes

Condition A: In a glove box, an oven-dried 4-mL vial was charged with bisallene 1 (0.2 mmol, 1.0 equiv), arylboronic acid 2 (0.6 mmol, 3.0 equiv), K₂CO₃ (0.6 mmol, 3.0 equiv), Co(acac)₂ (0.02 mmol, 0.1 equiv), dppp (0.024 mmol, 0.12 equiv) and toluene (2.0 mL). The vial was capped and removed from the glove box. The reaction mixture was stirred at 70 °C for 10 h. Then the reaction mixture was cooled to room temperature and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography to give the desired product 3.

Condition B: In a glove box, an oven-dried 4-mL vial was charged with bisallene 1 (0.2 mmol, 1.0 equiv), arylboronic acid 2 (0.6 mmol, 3.0 equiv), K₂CO₃ (0.6 mmol, 3.0 equiv), Co(acac)₂ (0.02 mmol, 0.1 equiv), dppp (0.024 mmol, 0.12 equiv) and toluene (2.0 mL). The vial was capped and removed from the glove box. The reaction mixture was stirred at 80 °C for 10 h. Then the reaction mixture was cooled to room temperature and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography to give the desired product 3.

3-(1-Phenylvinyl)-1-tosyl-4-vinylpyrrolidine (3aa)

Condition A, $R_f = 0.4$ (PE/EA = 10/1), yellow oil (59 mg, 84% yield).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.77 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.30 – 7.25 (m, 3H), 7.24 – 7.20 (m, 2H), 5.30 – 5.21 (m, 2H), 4.88 (d, *J* = 1.4 Hz, 1H), 4.80 (d, *J* = 10.4 Hz, 1H), 4.63 – 4.55 (m, 1H), 3.67 (dd, *J* = 9.5, 6.9 Hz, 1H), 3.49 (dd, *J* = 10.2, 6.3 Hz, 1H), 3.41 (t, *J* = 9.6 Hz, 1H), 3.37 – 3.30 (m, 2H), 2.79 -2.73 (m, 1H), 2.46 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 145.6, 143.5, 141.4, 134.5, 134.3, 129.7, 128.3, 127.6, 127.5, 126.4, 116.7, 114.0, 52.3, 49.7, 45.8, 44.3, 21.5.

HRMS (**ESI-TOF**): [M+Na][⊕] calcd for C₂₁H₂₃NNaO₂S[⊕] 376.1342, found 376.1353.

3-(1-(*p*-Tolyl)vinyl)-1-tosyl-4-vinylpyrrolidine (3ab)

Condition B, $R_f = 0.3$ (PE/EA = 10/1), colorless oil (48.1 mg, 66% yield).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.77 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.15 – 7.05 (m, 4H), 5.29 – 5.19 (m, 2H), 4.84 – 4.77 (m, 2H), 4.59 (d, *J* = 17.2 Hz, 1H), 3.66 (dd, *J* = 9.6, 6.9 Hz, 1H), 3.49 (dd, *J* = 10.2, 6.3 Hz, 1H), 3.40 (t, *J* = 9.6 Hz, 1H), 3.36 – 3.27 (m, 2H), 2.80 –2.72 (m, 1H), 2.45 (s, 3H), 2.32 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 145.3, 143.4, 138.5, 137.4, 134.5, 134.2, 129.7, 129.0, 127.5, 126.2, 116.6, 113.2, 52.2, 49.7, 45.8, 44.3, 21.5, 21.1.

HRMS (**ESI-TOF**): [M+Na][⊕] calcd for C₂₂H₂₅NNaO₂S[⊕] 390.1498, found 390.1509.

3-(1-(4-(tert-Butyl)phenyl)vinyl)-1-tosyl-4-vinylpyrrolidine (3ac)

Condition B, $R_f = 0.4$ (PE/EA = 10/1), white solid (50.1 mg, 61% yield).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.77 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 5.32 – 5.23 (m, 2H), 4.85 –

4.80 (m, 2H), 4.65 – 4.58 (m, 1H), 3.66 (dd, *J* = 9.5, 6.9 Hz, 1H), 3.49 (dd, *J* = 10.2, 6.3 Hz, 1H), 3.42 – 3.28 (m, 3H), 2.83 – 2.75 (m, 1H), 2.46 (s, 3H), 1.30 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 150.7, 145.2, 143.4, 138.4, 134.6, 134.3, 129.7, 127.5, 125.9, 125.2, 116.6, 113.3, 52.2, 49.8, 45.8, 44.2, 34.5, 31.3, 21.6.

HRMS (**ESI-TOF**): [M+Na][⊕] calcd for C₂₅H₃₁NNaO₂S[⊕] 432.1968, found 432.1984.

3-(1-([1,1'-Biphenyl]-4-yl)vinyl)-1-tosyl-4-vinylpyrrolidine (3ad)

Condition A, $R_f = 0.3$ (PE/EA = 10/1), white solid (50.2 mg, 59% yield).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.78 (d, J = 8.2 Hz, 2H), 7.58 (dd, J = 8.4, 2H), 7.52 (dd, J = 8.3, 2H), 7.43 (t, J = 7.5 Hz, 2H), 7.38 – 7.27 (m, 5H), 5.40 – 5.18 (m, 2H), 4.91 (s, 1H), 4.83 (d, J = 10.4 Hz, 1H), 4.63 (d, J = 17.2 Hz, 1H), 3.69 (dd, J = 9.1, 6.5 Hz, 1H), 3.52 (dd, J = 10.2, 6.3 Hz, 1H), 3.44 (t, J = 9.3 Hz, 1H), 3.40 – 3.31 (m, 2H), 2.91 -2.75 (m, 1H), 2.46 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 145.1, 143.5, 140.4, 140.3, 134.5, 134.2, 129.8, 128.8, 127.5, 127.4, 127.0, 126.9, 126.7, 116.8, 113.9, 52.3, 49.8, 45.8, 44.4, 21.6.

HRMS (**ESI-TOF**): [M+Na][⊕] calcd for C₂₇H₂₇NNaO₂S[⊕] 452.1655, found 452.1663.

1-Tosyl-3-(1-(4-(trifluoromethyl)phenyl)vinyl)-4-vinylpyrrolidine (3ae)

Condition B, $R_f = 0.3$ (PE/EA = 10/1), white solid (44.7 mg, 53% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.77 (d, *J* = 7.7 Hz, 2H), 7.54 (d, *J* = 7.7 Hz, 2H), 7.41 – 7.29 (m, 4H), 5.32 (s, 1H), 5.27 – 5.16 (m, 1H), 4.99 (s, 1H), 4.80 (d, *J* =

10.2 Hz, 1H), 4.58 (d, J = 17.0 Hz, 1H), 3.73 – 3.64 (m, 1H), 3.55 – 3.47 (m, 1H), 3.43 (t, J = 9.3 Hz, 1H), 3.38 – 3.29 (m, 2H), 2.77 – 2.69 (m, 1H), 2.46 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 145.0, 144.6, 143.6, 134.2, 134.0, 129.8, 129.6 (q, *J* = 32.3 Hz), 127.4, 126.7, 125.2 (q, *J* = 3.6 Hz), 124.0 (q, *J* = 270.3 Hz), 117.1, 115.8, 52.3, 49.7, 45.6, 44.4, 21.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) -62.5.

HRMS (**ESI-TOF**): [M+Na][⊕] calcd for C₂₂H₂₂F₃NNaO₂S[⊕] 444.1216, found 444.1225.

3-(1-(4-(Methylthio)phenyl)vinyl)-1-tosyl-4-vinylpyrrolidine (3af)

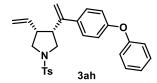
Condition B, $R_f = 0.4$ (PE/EA = 10/1), white solid (29.3 mg, 37% yield).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.80 – 7.74 (m, 2H), 7.36 (d, J = 7.9 Hz, 2H), 7.18 – 7.13 (m, 4H), 5.26 – 5.18 (m, 2H), 4.85 (d, J = 1.5 Hz, 1H), 4.79 (d, J = 10.4 Hz, 1H), 4.59 (dt, J = 17.1, 1.2 Hz, 1H), 3.66 (dd, J = 9.6, 6.9 Hz, 1H), 3.49 (dd, J = 10.2, 6.3 Hz, 1H), 3.40 (t, J = 9.5 Hz, 1H), 3.36 – 3.27 (m, 2H), 2.79 – 2.72 (m, 1H), 2.47 (s, 3H), 2.46 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 144.8, 143.5, 138.0, 137.9, 134.4, 134.1, 129.7, 127.4, 126.7, 126.2, 116.7, 113.5, 52.2, 49.7, 45.6, 44.3, 21.6, 15.6.

HRMS (**ESI-TOF**): [M+Na][⊕] calcd for C₂₂H₂₅NNaO₂S₂[⊕] 422.1219, found 422.1227.

1-Tosyl-3-(1-(4-(trimethylsilyl)phenyl)vinyl)-4-vinylpyrrolidine (3ag)


Condition B, $R_f = 0.4$ (PE/EA = 10/1), white solid (52.3 mg, 62% yield).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.77 (d, *J* = 8.2 Hz, 2H), 7.44 (d, *J* = 8.1 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 8.1 Hz, 2H), 5.33 – 5.26 (m, 2H), 4.89 (d, *J* = 1.1 Hz, 1H), 4.83 (d, *J* = 10.4 Hz, 1H), 4.64 (d, *J* = 17.2 Hz, 1H), 3.67 (dd, *J* = 9.5, 6.9 Hz, 1H), 3.50 (dd, *J* = 10.2, 6.3 Hz, 1H), 3.43 – 3.31 (m, 3H), 2.83 – 2.76 (m, 1H), 2.46 (s, 3H), 0.26 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 145.5, 143.5, 141.7, 139.9, 134.5, 134.3, 133.3, 129.7, 127.5, 125.6, 116.7, 114.0, 52.2, 49.8, 45.8, 44.3, 21.5, -1.2.

HRMS (**ESI-TOF**): [M+Na][⊕] calcd for C₂₄H₃₁NNaO₂SSi[⊕] 448.1752, found 448.1752.

3-(1-(4-Phenoxyphenyl)vinyl)-1-tosyl-4-vinylpyrrolidine (3ah)

Condition B, $R_f = 0.5$ (PE/EA = 10/1), colorless oil (50.9 mg, 57% yield).

¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.77 (d, J = 8.2 Hz, 2H), 7.37 – 7.32 (m, 4H), 7.22 – 7.07 (m, 3H), 7.04 – 6.97 (m, 2H), 6.93 – 6.90 (m, 2H), 5.29 – 5.21 (m, 2H), 4.85 (d, J = 1.3 Hz, 1H), 4.81 (d, J = 10.4 Hz, 1H), 4.61 (d, J = 17.1 Hz, 1H), 3.67 (dd, J = 9.6, 6.9 Hz, 1H), 3.50 (dd, J = 10.2, 6.3 Hz, 1H), 3.40 (t, J = 9.5 Hz, 1H), 3.35 (dd, J = 10.2, 2.9 Hz, 1H), 3.33 – 3.26 (m, 1H), 2.80 – 2.74 (m, 1H), 2.46 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 156.9, 156.8, 144.7, 143.5, 136.3, 134.4, 134.1, 129.8, 129.7, 127.7, 127.4, 123.5, 119.0, 118.4, 116.7, 113.4, 52.2, 49.7, 45.8, 44.3, 21.6.

HRMS (**ESI-TOF**): [M+Na][⊕] calcd for C₂₇H₂₇NNaO₃S[⊕] 468.1604, found 468.1623.

Methyl 4'-(1-(1-tosyl-4-vinylpyrrolidin-3-yl)vinyl)-[1,1'-biphenyl]-4-carboxylate (3ai)

Condition B, $R_f = 0.5$ (PE/EA = 10/1), white solid (40.2 mg, 41% yield).

¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.12 – 8.07 (m, 2H), 7.78 (d, J = 8.2 Hz, 2H), 7.66 – 7.63 (m, 2H), 7.58 – 7.55 (m, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.34 – 7.32 (m, 2H), 5.34 (s, 1H), 5.30 – 5.22 (m, 1H), 4.94 (d, J = 1.3 Hz, 1H), 4.82 (d, J = 10.5 Hz, 1H), 4.64 – 4.59 (m, 1H), 3.94 (s, 3H), 3.70 (dd, J = 9.4, 6.7 Hz, 1H), 3.52 (dd, J = 10.2, 6.3 Hz, 1H), 3.44 (t, J = 9.4 Hz, 1H), 3.40 – 3.35 (m, 2H), 2.84 – 2.77 (m, 1H), 2.47 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.9, 145.0, 144.8, 143.5, 141.2, 139.2, 134.4, 134.2, 130.1, 129.8, 129.0, 127.5, 127.1, 126.9, 126.8, 116.8, 114.4, 52.3, 52.1, 49.8, 45.7, 44.4, 21.6.

HRMS (ESI-TOF): $[M+Na]^{\oplus}$ calcd for C₂₉H₂₉NNaO₄S^{\oplus} 510.1710, found 510.1719.

3-(1-(*m*-Tolyl)vinyl)-1-tosyl-4-vinylpyrrolidine (3aj)

Condition B, $R_f = 0.4$ (PE/EA = 10/1), colorless oil (42.7 mg, 58% yield).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.77 (d, *J* = 8.2 Hz, 2H), 7.36 (d, *J* = 7.9 Hz, 2H), 7.19 – 6.99 (m, 4H), 5.31 – 5.20 (m, 2H), 4.88 – 4.78 (m, 2H), 4.61 (d, *J* = 17.2 Hz, 1H), 3.66 (dd, *J* = 9.5, 6.9 Hz, 1H), 3.49 (dd, *J* = 10.2, 6.3 Hz, 1H), 3.43 – 3.27 (m, 3H), 2.80 - 2.7 (m, 1H), 2.46 (s, 3H), 2.32 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 145.6, 143.5, 141.4, 137.8, 134.5, 134.2, 129.7, 128.4, 128.2, 127.4, 127.0, 123.5, 116.6, 113.8, 52.2, 49.7, 45.8, 44.2, 21.6, 21.4.

HRMS (ESI-TOF): $[M+Na]^{\oplus}$ calcd for $C_{22}H_{25}NNaO_2S^{\oplus}$ 390.1498, found 390.1509.

3-(1-(Naphthalen-2-yl)vinyl)-1-tosyl-4-vinylpyrrolidine (3ak)

Condition A, $R_f = 0.4$ (PE/EA = 10/1), white solid (59.3 mg, 74% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.84 – 7.62 (m, 6H), 7.49 – 7.43 (m, 2H), 7.41 – 7.33 (m, 3H), 5.40 (s, 1H), 5.34 – 5.21 (m, 1H), 4.98 (s, 1H), 4.79 (d, *J* = 10.4 Hz, 1H), 4.56 (d, *J* = 17.1 Hz, 1H), 3.76 – 3.68 (m, 1H), 3.58 – 3.44 (m, 3H), 3.41 - 3.32 (m, 1H), 2.86 – 2.77 (m, 1H), 2.47 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 145.5, 143.5, 138.7, 134.5, 134.3, 133.2, 132.8, 129.8, 128.04, 127.95, 127.54, 127.48, 126.3, 126.0, 125.0, 124.8, 116.8, 114.5, 52.3, 49.8, 45.8, 44.4, 21.6.

HRMS (**ESI-TOF**): [M+Na][⊕] calcd for C₂₅H₂₅NNaO₂S[⊕] 426.1498, found 426.1508.

3-(1-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)vinyl)-1-tosyl-4-vinylpyrrolidine (3al)

Condition B, $R_f = 0.5$ (PE/EA = 10/1), white solid (32.3 mg, 39% yield).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.79 – 7.74 (m, 2H), 7.35 (d, J = 7.9 Hz, 2H), 6.81 – 6.70 (m, 3H), 5.29 – 5.22 (m, 1H), 5.19 (s, 1H), 4.82 (d, J = 10.5 Hz, 1H), 4.78 (d, J = 1.3 Hz, 1H), 4.63 (dt, J = 17.2, 1.2 Hz, 1H), 4.25 (s, 4H), 3.64 (dd, J = 9.7, 7.0 Hz, 1H), 3.47 (dd, J = 10.2, 6.3 Hz, 1H), 3.40 – 3.34 (m, 2H), 3.25 – 3.18 (m, 1H), 2.81 - 2.74 (m, 1H), 2.46 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 144.5, 143.5, 143.2, 143.1, 134.9, 134.5, 134.1, 129.7, 127.4, 119.5, 117.0, 116.6, 115.1, 112.9, 64.4, 64.3, 52.2, 49.6, 45.7, 44.2, 21.6. HRMS (ESI-TOF): [M+Na][⊕] calcd for C₂₃H₂₅NNaO₄S[⊕] 434.1397, found 434.1405.

1-((4-Methoxyphenyl)sulfonyl)-3-(1-phenylvinyl)-4-vinylpyrrolidine (3ba)

Condition B, R_f = 0.2 (PE/EA = 10/1), colorless oil (60.7 mg, 82% yield).

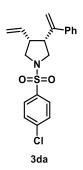
¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.87 – 7.77 (m, 2H), 7.31 – 7.26 (m, 3H), 7.24 – 7.21 (m, 2H), 7.05 – 7.00 (m, 2H), 5.31 – 5.22 (m, 2H), 4.88 (d, J = 1.3 Hz, 1H), 4.81 (d, J = 10.4 Hz, 1H), 4.59 (d, J = 17.1 Hz, 1H), 3.89 (s, 3H), 3.66 (dd, J = 9.4, 6.8 Hz, 1H), 3.49 (dd, J = 10.2, 6.3 Hz, 1H), 3.40 (t, J = 9.5 Hz, 1H), 3.38 – 3.30 (m, 2H), 2.80 - 2.74 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 163.0, 145.7, 141.5, 134.6, 129.6, 129.3, 128.3, 127.6, 126.4, 116.7, 114.3, 114.0, 55.6, 52.4, 49.8, 46.0, 44.4.

HRMS (ESI-TOF): $[M+Na]^{\oplus}$ calcd for $C_{21}H_{23}NNaO_3S^{\oplus}$ 392.1291, found 392.1301.

1-((4-Fluorophenyl)sulfonyl)-3-(1-phenylvinyl)-4-vinylpyrrolidine (3ca)

Condition A, $R_f = 0.4$ (PE/EA = 10/1), white solid (53.9 mg, 76% yield).


¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.99 – 7.86 (m, 2H), 7.31 - 7.21 (m, 7H), 5.31 – 5.21 (m, 2H), 4.88 (s, 1H), 4.83 (d, *J* = 10.4 Hz, 1H), 4.60 (d, *J* = 17.1 Hz, 1H), 3.68 (dd, *J* = 8.8, 6.3 Hz, 1H), 3.50 (dd, *J* = 10.2, 6.3 Hz, 1H), 3.43 – 3.32 (m, 3H), 2.83 – 2.72 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.2 (d, *J* = 253.2 Hz), 145.4, 141.3, 134.2, 133.5 (d, *J* = 3.4 Hz), 130.0 (d, *J* = 9.1 Hz), 128.3, 127.7, 126.4, 116.9, 116.4 (d, *J* = 22.3 Hz), 114.0, 52.3, 49.7, 45.9, 44.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) -105.2.

HRMS (**ESI-TOF**): [M+Na][⊕] calcd for C₂₀H₂₀FNNaO₂S[⊕] 380.1091, found 380.1098.

1-((4-Chlorophenyl)sulfonyl)-3-(1-phenylvinyl)-4-vinylpyrrolidine (3da)

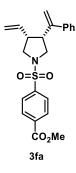
Condition B, $R_f = 0.4$ (PE/EA = 10/1), white solid (59.8 mg, 80% yield).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.85 – 7.80 (m, 2H), 7.57 – 7.50 (m, 2H), 7.32 – 7.26 (m, 3H), 7.24 – 7.21 (m, 2H), 5.32 – 5.22 (m, 2H), 4.88 (d, J = 1.4 Hz, 1H), 4.84 (d, J = 10.4 Hz, 1H), 4.61 (d, J = 17.1 Hz, 1H), 3.67 (dd, J = 9.3, 6.7 Hz, 1H), 3.49 (dd, J = 10.2, 6.3 Hz, 1H), 3.42 (t, J = 9.4 Hz, 1H), 3.39 – 3.34 (m, 2H), 2.81 – 2.76 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 145.4, 141.3, 139.2, 135.9, 134.2, 129.4, 128.8, 128.3, 127.7, 126.4, 116.9, 114.1, 52.3, 49.7, 45.9, 44.2.

HRMS (**ESI-TOF**): [M+Na][⊕] calcd for C₂₀H₂₀ClNNaO₂S[⊕] 396.0795, found 396.0805.

1-((4-Bromophenyl)sulfonyl)-3-(1-phenylvinyl)-4-vinylpyrrolidine (3ea)


Condition B, $R_f = 0.4$ (PE/EA = 10/1), white solid (67.3 mg, 81% yield).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.78 – 7.72 (m, 2H), 7.72 – 7.68 (m, 2H), 7.32 – 7.21 (m, 5H), 5.32 – 5.22 (m, 2H), 4.88 (d, *J* = 1.5 Hz, 1H), 4.84 (d, *J* = 10.4 Hz, 1H), 4.61 (dt, *J* = 17.1, 1.1 Hz, 1H), 3.67 (dd, *J* = 9.3, 6.7 Hz, 1H), 3.49 (dd, *J* = 10.2, 6.2 Hz, 1H), 3.42 (t, *J* = 9.4 Hz, 1H), 3.39 – 3.32 (m, 2H), 2.83 - 2.72 (m, 1H).

¹³C NMR (100MHz, CDCl₃) δ (ppm) 145.4, 141.3, 136.4, 134.2, 132.4, 128.8, 128.3, 127.7, 126.4, 116.9, 114.1, 52.3, 49.7, 45.9, 44.2.

HRMS (**ESI-TOF**): [M+Na][⊕] calcd for C₂₀H₂₀⁷⁹BrNNaO₂S[⊕] 440.0290, found 440.0297.

Methyl 4-((3-(1-phenylvinyl)-4-vinylpyrrolidin-1-yl)sulfonyl)benzoate (3fa)

Condition B, $R_f = 0.2$ (PE/EA = 10/1), white solid (60.6 mg, 76 % yield).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 8.24 – 8.18 (m, 2H), 7.98 – 7.91 (m, 2H), 7.30 – 7.25 (m, 3H), 7.23 – 7.20 (m, 2H), 5.31 – 5.21 (m, 2H), 4.87 (d, *J* = 1.4 Hz, 1H), 4.82 (d, *J* = 10.4 Hz, 1H), 4.61 (d, *J* = 17.1 Hz, 1H), 3.97 (s, 3H), 3.70 (dd, *J* = 9.5, 6.9 Hz, 1H), 3.52 (dd, *J* = 10.2, 6.3 Hz, 1H), 3.43 (t, *J* = 9.5 Hz, 1H), 3.40 – 3.32 (m, 2H), 2.84 - 2.78 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 165.7, 145.3, 141.23, 141.21, 134.1, 133.9, 130.4, 128.3, 127.7, 127.3, 126.4, 117.0, 114.1, 52.7, 52.3, 49.7, 45.9, 44.2.

HRMS (ESI-TOF): $[M+Na]^{\oplus}$ calcd for $C_{22}H_{23}NNaO_4S^{\oplus}$ 420.1240, found 420.1252.

1-((4-Nitrophenyl)sulfonyl)-3-(1-phenylvinyl)-4-vinylpyrrolidine (3ga)

Condition A, $R_f = 0.3$ (PE/EA = 10/1), white solid (59.7 mg, 78% yield).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 8.47 – 8.37 (m, 2H), 8.11 – 8.03 (m, 2H), 7.32 – 7.26 (m, 3H), 7.25 – 7.21 (m, 2H), 5.32 – 5.22 (m, 2H), 4.88 (d, *J* = 1.4 Hz, 1H), 4.85 (d, *J* = 10.5 Hz, 1H), 4.63 (d, *J* = 17.2 Hz, 1H), 3.72 (dd, *J* = 9.3, 6.8 Hz, 1H), 3.53 (dd, *J* = 10.2, 6.2 Hz, 1H), 3.48 – 3.38 (m, 3H), 2.85 – 2.79 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 150.1, 145.2, 143.4, 141.1, 133.8, 128.42, 128.38, 127.8, 126.4, 124.4, 117.2, 114.2, 52.4, 49.7, 45.9, 44.1.

HRMS (**ESI-TOF**): [M+H][⊕] calcd for C₂₀H₂₁N₂O₄S[⊕] 385.1217, found 385.1224.

3-(1-Phenylvinyl)-1-(thiophen-2-ylsulfonyl)-4-vinylpyrrolidine (3ha)

Condition A, $R_f = 0.3$ (PE/EA = 10/1), colorless oil (51.7 mg, 75% yield).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.67 – 7.60 (m, 2H), 7.31 – 7.17 (m, 6H), 5.31 – 5.20 (m, 2H), 4.91 (d, *J* = 1.5 Hz, 1H), 4.83 (d, *J* = 10.4 Hz, 1H), 4.60 (dt, *J* = 17.2, 1.1 Hz, 1H), 3.72 (dd, *J* = 9.8, 7.0 Hz, 1H), 3.54 (dd, *J* = 10.4, 6.3 Hz, 1H), 3.48 (t, *J*

= 9.8 Hz, 1H), 3.40 (dd, *J* = 10.4, 2.7 Hz, 1H), 3.38 – 3.33 (m, 1H), 2.81 - 2.75 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 145.4, 141.3, 137.1, 134.2, 132.1, 131.7, 128.3, 127.7, 127.6, 126.4, 116.8, 114.1, 52.5, 49.9, 45.9, 44.3.

HRMS (**ESI-TOF**): $[M+Na]^{\oplus}$ calcd for $C_{18}H_{19}NNaO_{2}S_{2}^{\oplus}$ 368.0749, found 368.0757.

1-(Methylsulfonyl)-3-(1-phenylvinyl)-4-vinylpyrrolidine (3ia)

Condition B, $R_f = 0.3$ (PE/EA = 10/1), white solid (50.1 mg, 90% yield).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.36 – 7.27 (m, 5H), 5.65 - 5.54 (m, 1H), 5.34 (s, 1H), 5.03 – 4.99 (m, 2H), 4.84 (dt, *J* = 17.1, 1.1 Hz, 1H), 3.72 (dd, *J* = 8.8, 6.2 Hz, 1H), 3.61 – 3.54 (m, 2H), 3.54 – 3.50 (m, 1H), 3.44 (dd, *J* = 10.1, 2.6 Hz, 1H), 2.96 – 2.91 (m, 1H), 2.90 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 145.4, 141.4, 134.4, 128.4, 127.7, 126.5, 117.1, 114.2, 52.3, 49.5, 46.3, 44.4, 35.6.

HRMS (**ESI-TOF**): [M+Na][⊕] calcd for C₁₅H₁₉NNaO₂S[⊕] 300.1029, found 300.1036.

Phenyl(3-(1-phenylvinyl)-4-vinylpyrrolidin-1-yl)methanone (3ja)

Condition B, $R_f = 0.3$ (PE/EA = 10/1), white solid (32.3 mg, 53% yield).

¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.59 – 7.26 (m, 10H), 5.68 – 5.50 (m, 1H), 5.39 – 5.27 (m, 1H), 5.14 – 4.68 (m, 3H), 4.08 – 3.75 (m, 2H), 3.74 – 3.58 (m, 2H), 3.53 – 3.42 (m, 1H), 3.03 – 2.81 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 170.0, 146.1, 141.8, 136.8, 134.9, 130.0, 128.4, 128.3, 127.6, 127.1, 126.5, 116.6, 113.9, 52.8, 49.5, 45.8, 43.9.

HRMS (ESI-TOF): $[M+Na]^{\oplus}$ calcd for $C_{21}H_{21}NNaO^{\oplus}$ 326.1515, found 326.1522.

Benzyl 3-(1-phenylvinyl)-4-vinylpyrrolidine-1-carboxylate (3ka)

Condition A, $R_f = 0.4$ (PE/EA = 10/1), colorless oil (29.2 mg, 44% yield).

¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.42 – 7.33 (m, 4H), 7.33 – 7.26 (m, 6H), 5.62 – 5.53 (m, 1H), 5.34 – 5.29 (m, 1H), 5.24 – 5.13 (m, 2H), 5.03 - 4.90 (m, 2H), 4.83 – 4.72 (m, 1H), 3.85 - 3.74 (m, 1H), 3.65 – 3.42 (m, 4H), 2.90 - 2.81 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 154.9, 146.1, 141.8, 136.9, 135.1, 128.5, 127.9, 127.8, 127.6, 126.5, 116.3, 113.8, 66.8, 50.8, 50.7, 48.1, 45.6, 43.9.

HRMS (**ESI-TOF**): [M+Na][⊕] calcd for C₂₂H₂₃NNaO₂[⊕] 356.1621, found 356.1628.

1-(4-((3-(1-Phenylvinyl)-4-vinylpyrrolidin-1-yl)sulfonyl)phenyl)-5-(p-tolyl)-3-(trifluoromethyl)-1H-pyrazole (3qa)

Condition B, R_f = 0.4 (PE/EA = 10/1), colorless oil (56.9 mg, 51% yield).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.90 – 7.84 (m, 2H), 7.54 – 7.50 (m, 2H), 7.32 – 7.26 (m, 3H), 7.25 – 7.22 (m, 2H), 7.17 (d, J = 7.9 Hz, 2H), 7.10 (d, J = 8.1 Hz, 2H), 6.76 (s, 1H), 5.31 – 5.23 (m, 2H), 4.89 – 4.82 (m, 2H), 4.63 (d, J = 17.1 Hz, 1H), 3.66 (dd, J = 9.2, 6.6 Hz, 1H), 3.48 (dd, J = 10.2, 6.3 Hz, 1H), 3.43 – 3.32 (m, 3H), 2.82 – 2.73 (m, 1H), 2.37 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 145.4, 145.3, 144.1 (q, *J* = 38.2 Hz), 142.6, 141.2, 139.8, 136.8, 134.1, 129.7, 128.7, 128.4, 128.3, 127.7, 126.4, 125.7, 125.6, 121.0 (q, *J* = 267.9 Hz), 117.0, 114.0, 106.3, 52.4, 49.7, 45.9, 44.2, 21.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) -62.4.

HRMS (ESI-TOF): $[M+Na]^{\oplus}$ calcd for $C_{31}H_{28}F_3N_3NaO_2S^{\oplus}$ 586.1747, found 586.1754.

4. X-ray Crystal Structure of 3ga

The structure of product **3ga** was determined by X-ray diffraction. The X-ray crystallography data have been deposited in Cambridge Crystallography Data Center (CCDC 2355016). The structure of other products was assumed by analogy.

The single crystal sample for X-ray analysis was obtained by recrystallization from a mixed solvent of ethyl acetate and petroleum ether by slow evaporation. A suitable crystal was selected and the data were collected on a d8 venture system (Cu k α , λ = 1.54178 Å). The crystal was kept at 298(2) K during data collection.

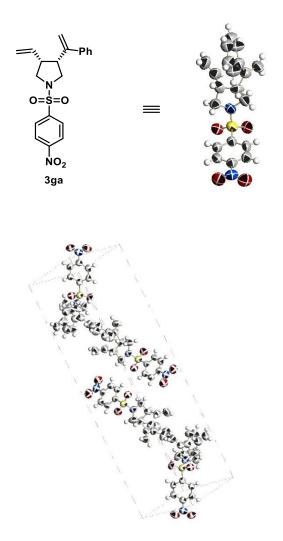


Figure S1. Thermal ellipsoids are shown at 50% probability for **3ga**

Table S1. Crystal data and structure refinement for 3ga.

Identification code 3ga

Chemical formula C20H20N2O4S

Formula weight 384.44 g/mol

Temperature 298(2) K

Wavelength 1.54178 Å

Crystal system monoclinic

Space group P 1 21/c 1

Unit cell dimensions a = 8.2866(2) Å $\alpha = 90^{\circ}$

b = 34.0670(8) Å $\beta = 110.1470(10)^{\circ}$

c = 7.2733(2) Å $\gamma = 90^{\circ}$

Volume 1927.62(8) Å³

Z 4

Density (calculated) 1.325 g/cm³

Absorption coefficient 1.731 mm⁻¹

F(000) 808

Diffractometer d8 venture

Theta range for data collection 2.59 to 65.19°

Index ranges -9<=h<=9, -40<=k<=40, -8<=l<=8

Reflections collected 36354

Independent reflections 3299 [R(int) = 0.0881]

Coverage of independent

99.8%

reflections

Absorption correction Multi-Scan

Structure solution technique direct methods

Structure solution program SHELXT 2018/2 (Sheldrick, 2018)

Refinement method Full-matrix least-squares on F2

Refinement program SHELXL-2018/3 (Sheldrick, 2018)

Function minimized Σ w(Fo2 - Fc2)2

Data / restraints / parameters 3299 / 0 / 244

Goodness-of-fit on F2 1.061

 Δ/σ max 0.004

Final R indices 2039 data; $I > 2\sigma(I)$ R1 = 0.1037, wR2 = 0.2767

all data R1 = 0.1513, wR2 = 0.3121

 $w=1/[\sigma^2(F_{\circ}^2)+(0.1411P)^2+3.1967P]$

Weighting scheme

where $P=(F_0^2+2F_c^2)/3$

Largest diff. peak and hole 0.755 and -0.299 eÅ-3

R.M.S. deviation from mean 0.070 eÅ-3

5. Scale-up Reaction and Product Transformations

2.0-mmol Scale Reaction

In a glove box, a 100-mL oven-dried Schlenk flask was charged with bisallene 1a (550 mg, 2.0 mmol, 1.0 equiv), phenylboronic acid 2a (732 mg, 6.0 mmol, 3.0 equiv), and K_2CO_3 (828 mg, 6.0 mmol, 3.0 equiv), $Co(acac)_2$ (52 mg, 0.2 mmol, 0.1 equiv), dppp (100 mg, 0.24 mmol, 0.12 equiv) and toluene (20 mL). The flask was capped and removed from the glove box. The reaction mixture was placed in a pre-heated oil bath and stirred at 70 °C for 10 h. Then the reaction mixture was cooled to room temperature and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography to afford the product 3aa as a yellow oil (eluent: PE/EA = 10:1, 537.5 mg, 76% yield).

Product Transformation

3-Ethyl-4-1-phenylethyl-1-tosylpyrrolidine (6) An oven-dried 10-mL flask charged with **3aa** (70.6 mg, 0.2 mmol) and 10% Pd/C (7 mg) was evacuated and backfilled with H₂ for three times. Then ethyl acetate (5 mL) was added and the mixture was stirred at room temperature under a hydrogen atmosphere for 5 h. When the reaction was completed as monitored by TLC, ethyl acetate was added, and then the mixture was passed through a membrane filter. After filtration and concentrated *in vacuo*, the residue was purified by silica gel flash

column chromatography to afford the product $\mathbf{6}$ as a colorless oil (eluent: PE/EA = 10:1, 51.9 mg, 73% yield, dr = 15:1).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.64 – 7.59 (m, 2H), 7.31 – 7.19 (m, 5H), 7.09 – 7.05 (m, 2H), 3.43 (d, J = 10.3 Hz, 1H), 3.24 – 3.19 (m, 1H), 2.91 – 2.86 (m, 1H), 2.72 – 2.66 (m, 1H), 2.57 – 2.50 (m, 1H), 2.43 (s, 3H), 2.19 – 2.10 (m, 1H), 2.04 – 1.97 (m, 1H), 1.46 – 1.35 (m, 1H), 1.17 (d, J = 6.8 Hz, 3H), 0.84 (t, J = 7.3 Hz, 3H), 0.74 – 0.64 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 145.3, 143.1, 134.2, 129.5, 128.6, 127.2, 126.7, 126.6, 51.8, 50.3, 49.5, 41.4, 38.8, 21.5, 20.6, 18.1, 12.2.

HRMS (ESI-TOF): $[M+Na]^{\oplus}$ calcd for $C_{21}H_{27}NNaO_2S^{\oplus}380.1655$, found 380.1664.

2-(4-(1-Phenylvinyl)-1-tosylpyrrolidin-3-yl) ethan-1-ol (7) In a glove box, [Ir(cod)Cl]² (6.7 mg, 0.01 mmol), bis(diphenylphosphino)methane (dppm) (7.7 mg, 0.02 mmol), and dichloromethane (1.0 mL) were added to a 4 mL vial containing a magnetic stir bar, and the mixture was stirred at room temperature for 30 min. A solution of 3aa (70.6 mg, 0.2 mmol) and HBpin (127.9 mg, 1.0 mmol) in dichloromethane (1.0 mL) was added, and the vial sealed with a plastic cap. The mixture was stirred at room temperature overnight. The reaction mixture was concentrated when the reaction was completed as monitored by TLC. Then the NaBO₃.4H₂O (153 mg, 1.5 mmol) and THF/H₂O (1 mL/1 mL) were added to the mixture. After the mixture was stirred for 4 h, followed by the addition of H₂O. The reaction mixture was extracted with ethyl acetate (3×10 mL), dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography to afford the product 7 as a colorless oil (eluent: PE/EA = 10:1 to 5:1, 37.8 mg, 51% yield).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.77 (d, *J* = 7.9 Hz, 2H), 7.35 (d, *J* = 7.9 Hz, 2H), 7.34 – 7.26 (m, 5H), 5.32 (s, 1H), 4.92 (s, 1H), 3.62 (t, *J* = 8.3 Hz, 1H), 3.46 – 3.38 (m, 2H), 3.37 – 3.28 (m, 3H), 3.27 – 3.20 (m, 1H), 2.45 (s, 3H), 2.26 – 2.16 (m, 1H), 1.29 – 1.22 (m, 1H), 0.99 – 0.78 (m, 2H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 146.0, 143.5, 141.5, 134.1, 129.7, 128.5, 127.8, 127.4, 126.2, 114.5, 60.9, 51.9, 50.0, 45.4, 37.3, 30.2, 21.5.

HRMS (**ESI-TOF**): [M+H][⊕] calcd for C₂₁H₂₆NO₃S[⊕] 372.1628, found 372.1634.

Methyl (*E*)-3-(4-(1-phenylvinyl)-1-tosylpyrrolidin-3-yl)acrylate (8) An ovendried 10-mL flask charged with 3aa (35.3 mg, 0.1 mmol) and Grubbs catalyst II (25.5 mg, 0.03 mmol) was evacuated and backfilled with N₂ for three times. Then methyl acrylate (300.2 μL, 3.33 mmol) and CH₂Cl₂ (0.5 mL) were added and the reaction mixture was stirred at 40 °C for 24 h. Next, the mixture was concentrated *in vacuo* and the residue was purified by silica gel flash column chromatography to afford the product 8 as a brown oil (eluent: PE/EA = 10:1, 16.6 mg, 40% yield).

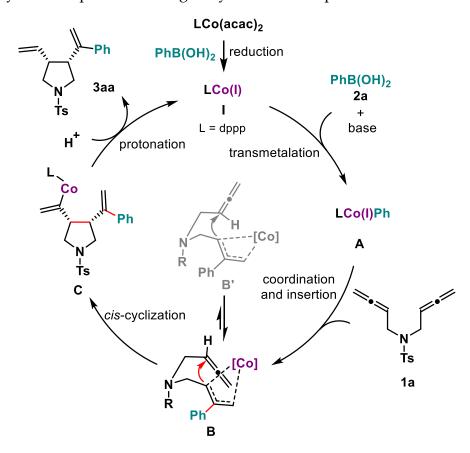
¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.77 (d, J = 8.1 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.31 – 7.27 (m, 3H), 7.19 (d, J = 6.7 Hz, 2H), 6.38 – 6.31 (m, 1H), 5.31 – 5.25 (m, 2H), 4.90 (s, 1H), 3.75 – 3.71 (m, 1H), 3.65 (s, 3H), 3.56 – 3.51 (m, 1H), 3.47 – 3.41 (m, 2H), 3.34 (dd, J = 10.5, 2.4 Hz, 1H), 2.93 – 2.88 (m, 1H), 2.47 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 166.0, 144.6, 144.5, 143.9, 140.9, 133.7, 129.9, 128.5, 127.9, 127.4, 126.3, 122.6, 114.6, 51.9, 51.5, 49.5, 46.0, 42.9, 21.6.

HRMS (**ESI-TOF**): [M+H][⊕] calcd for C₂₃H₂₆NO₄S[⊕] 412.1577, found 412.1582.

6. Mechanistic Experiments and Possible Catalytic Cycle

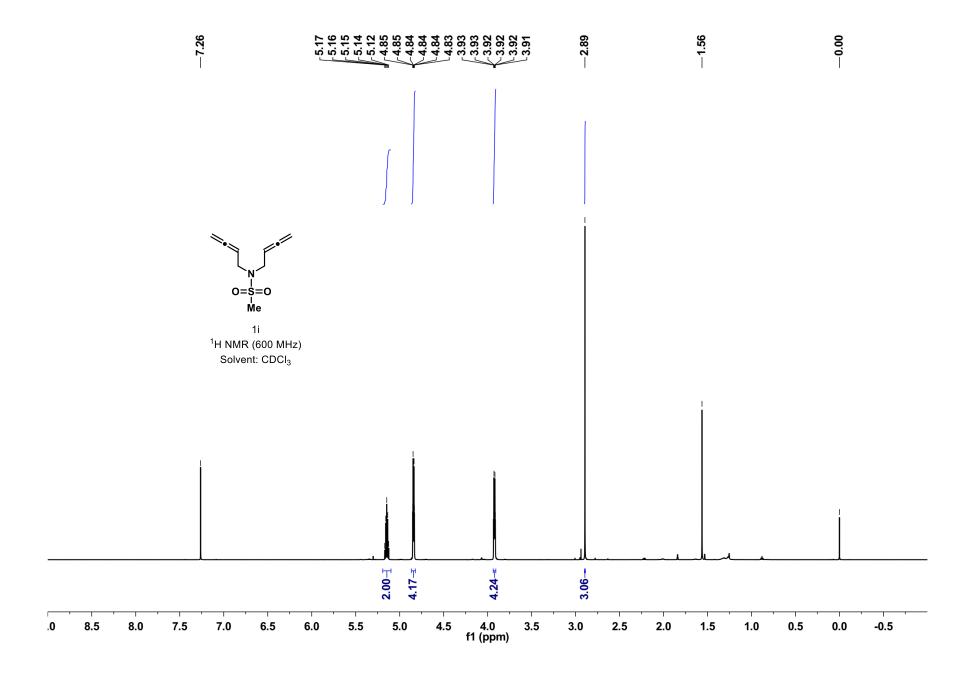
Mechanistic Experiments:

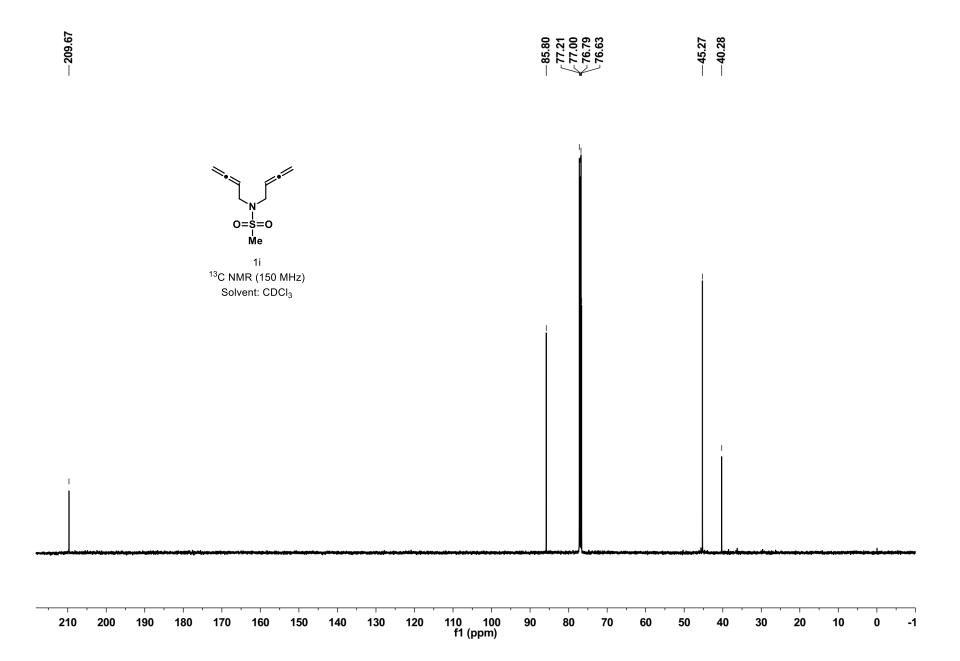

In a glove box, an oven-dried 4-mL vial was charged with bisallene **1a** (0.05 mmol, 1.0 equiv), phenyl boronic acid **2a** (0.15 mmol, 3.0 equiv), K₂CO₃ (0.15 mmol, 3.0 equiv), catalyst (10 mol% base on metal), dppp, additive, and toluene (0.5 mL). The vial was capped and removed from the glove box. The reaction mixture was stirred at 70 °C for 10 h. Then the reaction mixture was cooled to room temperature, diluted with H₂O (5 mL), and extracted with EtOAc (5 mL × 3). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, and concentrated *in vacuo*. Finally, the residue was determined by ¹H NMR analysis with CH₂Br₂ as an internal standard.

Possible Catalytic Cycle:

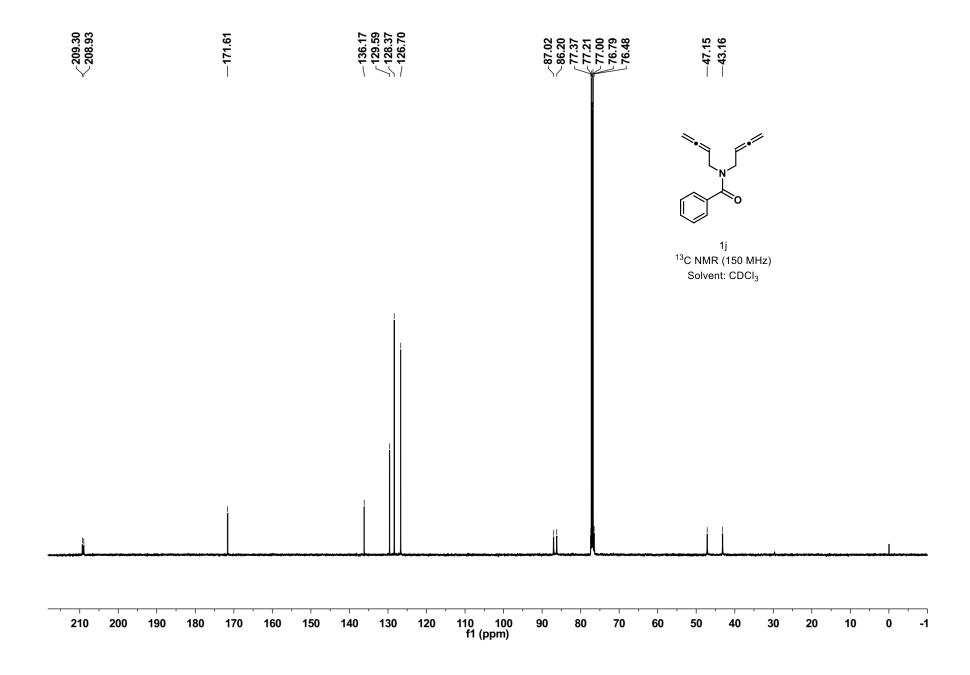
In light of the excellent regio- and diastereoselectivities observed in this reaction, along with the mechanistic studies, a potential catalytic cycle involving Co(I)/Co(III) is proposed. At first, with the assistance of boronic acid, Co(II) is reduced to Co(I), which is regarded as the catalytically active species of this reaction. Next, this Co(I) complex undergoes oxidative cyclometalation with bisallene 1a to afford the Co(III) complex II, which subsequently proceeds transmetalation with phenyl boronic acid to yield the cobalt complex III. Then, the cobalt complex III undergoes reductive elimination to form the Co(I) complex IV. Finally, the protonation of Co(I) complex IV results in the formation of *cis* five-membered ring product 3aa and the regeneration of Co(I) complex I.

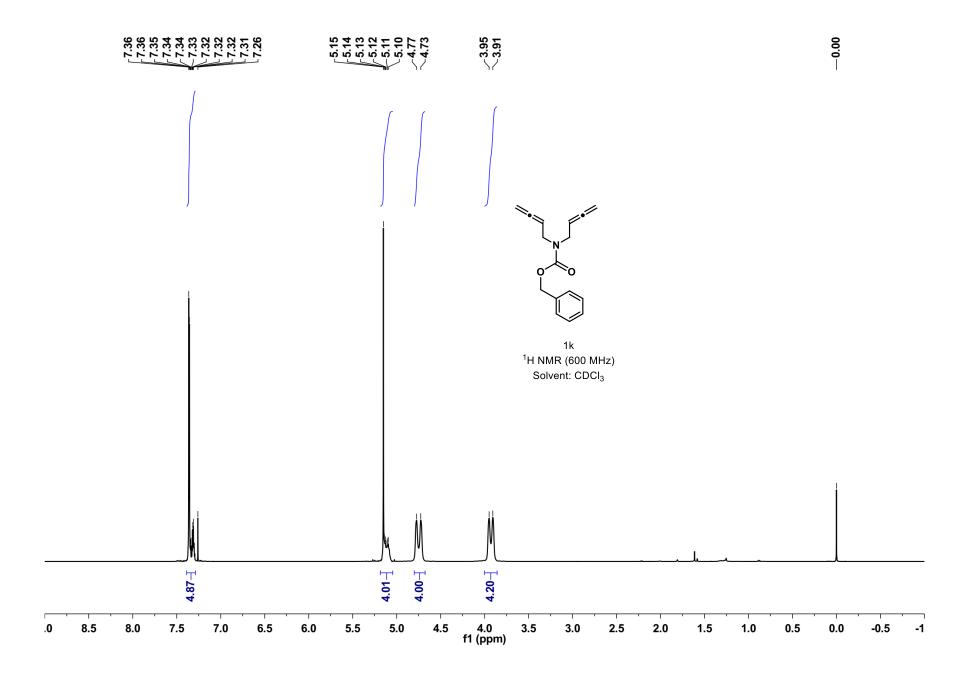
Apart from the Co(I)/Co(III) catalytic cycle, the stepwise arylative cyclization process involving Co(I) cannot be excluded, which is illustrated below. Firstly,


Co(II) was reduced to Co(I) complex, which then underwent transmetalation with phenyl boronic acid to yield Co(I) complex **A**. Next, the coordination and regioselective insertion of bisallene **1a** into aryl cobalt complex **A** led to allylic cobalt complex **B** or **B'**. Complex **B** proceeded intramolecular *cis*-cyclization to afford the *cis*-cyclic alkenyl cobalt complex **C**, which underwent protonation to form the *cis*-product **3aa** and regenerate the Co(I) complex. In contrast, the *trans*-cyclization product through allylic cobalt complex **B'** was not detected.




7. References


- [1] A. Artigas, C. Castanyer, N. Roig, A. Lledó, M. Solà, A. Pla-Quintana and A. Roglans, *Adv. Synth. Catal.*, 2021, **363**, 3835–3844.
- [2] M. T. Quirós, C. Hurtado-Rodrigo and M. P. Muñoz, *Org. Biomol. Chem.*, 2017, **15**, 6731–6737.
- [3] A. Artigas, J. Vila, A. Lledó, M. Solà, A. Pla-Quintana and A. Roglans, *Org. Lett.*, 2019, **21**, 6608–6613.
- [4] J. H. Park, E. Kim, H.-M. Kim, S. Y. Choi and Y. K. Chung, *Chem. Commun.*, 2008, 2388–2390.
- [5] S. Arai, Y. Kawata, Y. Amako and A. Nishida, *Tetrahedron Lett.*, 2019, 60, 151168.
- [6] J. Cheng, X. Jiang and S. Ma, Org. Lett., 2011, 13, 5200–5203.


8. NMR Spectra

