Supporting Information

Iridium-Catalyzed Highly Enantioselective and Chemodivergent

Coupling Reaction of Vinyl Azides and Vinyl Benzoxazinones

Deli Gan, Sumei Zhao, Min Yang, Minghui Xu,* Bin Chen, Hai-Liang Ni, Wenhao Yu, Bi-Qin Wang, Ping Hu,* Peng Cao*

College of Chemistry and Materials Science, Sichuan Normal University

CONTENTS

1.General Information
2. Preparation of Alkenyl Benzoxazinanones
3. Preparation of Vinyl Azide 4
4. Reaction Conditions Optimization to Synthesis of 3
5. Reaction Conditions Optimization to Synthesis of 4aa
6. General Procedure for the Synthesis of 3
7. General Procedure for Synthesis of 4
8. A 1mmol scale reaction of 1a
9. Synthetic Transformations of Product
10. References
11. 2D spectrogram of 6
12. NMR Spectral Data
13.Copies of HPLC Analysis

1. General Information

All reactions were generally performed in dried glassware filled with dry argon. TLC plates were stained using potassium permanganate or I₂. Chromatographic purification of products (column chromatography) was performed on the glass column filled in (300–400 Mesh) silica gel. Concentration of reaction product solutions and chromatography fractions under reduced pressure was performed by rotary evaporation at 30-40 °C at the appropriate pressure and then at rt, ca. 0.1 mmHg (vacuum pump) unless otherwise indicated. For reactions that require heating, oil bath is used as the heat source. NMR spectra were obtained on a Bruker 600 spectrometer, operating at 600 MHz for ¹H NMR, 151 MHz for ¹³C NMR, 565 MHz for ¹⁹F NMR. ¹H and ¹³C positive chemical shifts (δ) are downfield from tetramethylsilane and are given in parts per million (ppm). Chemical shifts were reported in ppm relative to the central line of CHCl₃ (δ 7.26) for ¹H NMR, for ¹³C NMR, the residual CDCl₃ (δ 77.16) were used as the internal standards. Coupling constants (J) are given in Hertz (Hz). The following abbreviations are used for spin multiplicity: s = singlet, d = doublet, dd = doublet of doublet, dt = doublet of triplet, ddd = doublet of doublet of doublet, t = triplet, m =multiplet and brs = broad singlet. X-Ray structure analyses were performed with Rigaku Xtalab synergy. High resolution mass spectrometry (HRMS) were obtained on Xevo G2-Q TOF with ESI-HRMS (Electrospray ionization high-resolution mass spectra) and APCI-HRMS (atmospheric pressure chemical ionization high-resolution mass spectra) resource. Melting points range were determined in a X-4 micro melting point instrument (made in Shanghai, China). Optical rotation was recorded on PE polarmeter 341. Enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD, AD-H IA, IB column.

All commercial reagents were purchased from TCI, Leyan, Energy Chemical and used as received. Solvents used in catalytic reactions were dried and distilled in appropriate method. Solvent employed for column chromatography were purchased in technical grade quality without distillation before use.

2. Preparation of Alkenyl Benzoxazinanones

Vinyl oxazinone was synthesised based on relevant literature.^{1,2} To a solution of **a** (10 mmol, 1.0 eq.) in THF (0.5 M, 20 mL) was added LiAlH₄ (20 mmol, 2.0 eq.) slowly at 0 °C. Then the reaction mixture was stirred to raise to r.t. slowly until the end monitored by TLC. For working up, the mixture was quenched by the dropwise addition of H₂O (1 mL) and 5% NaOH (aq.) (2 mL) slowly. After a few minutes, the suspension was filtered. The residue was washed with EtOAc, and the filtrate was washed by EtOAc, water and brine in turns, then dried over Na₂SO₄ and filtered. If needed, the crude product **b** should be purified by FCC.

To a stirring solution of o-amino benzyl alcohol **b** (10 mmol, 1.0 eq.) in a mixture of dioxane, sat. NaHCO₃ and water (1:1:1, 0.5 M, 20 mL) dimethyl dicarbonate (12 mmol, 1.2 eq.) was added dropwise at 0 °C. The reaction mixture was stirred for 2 h and slowly allowing it to reach r.t. Upon full conversion, the reaction mixture was diluted with brine, extracted with CH₂Cl₂, and dried over MgSO₄. The crude product **c** was employed in the next step without further purification.

The crude mixture from **c** (10 mmol, 1.0 eq.) was dissolved in CH_2Cl_2 (0.3 M, 30 mL) and MnO_2 (100 mmol, 10.0 eq.) was added. The reaction was stirred at ambient temperature for 4 h. Upon full conversion, the reaction mixture was filtered through a plug of Celite to yield the desired product **d**.

Vinylmagnesium bromide (20 mmol, 2.0 eq., 1 M in THF) was added dropwise to a stirring solution of aldehyde **d** in dry THF (0.1 M, 50 mL) at -78 °C. The ice bath was removed and the reaction mixture was stirred for 2 h. Upon full conversion, additional Grignard reagent was quenched by addition of NaHCO₃ and the resulting suspension was extracted with Et₂O and dried over MgSO₄. The isolated crude was a mixture of intermediate and vinyl benzoxazinone.

The crude product **e** was dissolved in MeOH (0.2 M, 50 mL) and K_2CO_3 (10%, 10 mL) was added. The reaction was stirred at r.t. for 2 h. Upon full conv., the reaction mixture was neutralized by dropwise addition of HCl (3 M) and extracted with MgSO₄. The crude was purified by FC in silica (pentane/EtOAc 2:1) to yield the product **f**.

The product **f** (20 mmol) and Et₃N (30 mmol, 1.5 eq.) were stirred in THF (80 mL) at 0 °C. Then NaH (30 mmol, 1.5 eq.) was added slowly to the mixture and stirred at r.t. for 1 h. The reaction mixture was added 4-toluenesulfonyl chloride (30 mmol, 1.5 eq.). After 12 h, the reaction was diluted with 100 mL of H₂O and extracted three times with dichloromethane. The combined organic phases were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude solid was purified by flash column to afford the compound **1**.

3. Preparation of Vinyl Azide

Sodium azide is toxic and can be absorbed through skin. Appropriate gloves are necessary when using it. It decomposes explosively upon heating to above 275 °C. Sodium azide is relatively safe in aqueous solution, unless acidified to form HN₃, which is volatile and highly toxic. Organic azides are potentially explosive substances that can decompose with the slight input of energy from external sources (heat, light, pressure, etc.). When designing the organic azides used for the project, we keep in mind the following equation. It is noted that this equation takes into account all nitrogen atoms in the organic azide, not just those in the azido group.

All organic azides prepared in this work are satisfied with the equation above. They are enough stable to be stored under -20 °C at least for 6 months. We have never experienced a safety problem with these materials.

This procedure was slightly modified from Bi's method.³ To a solution of Phenylacetylene (0.5 mL, 5 mmol), TMS-N₃ (1.4 mL, 10 mmol) and H₂O (0.18 mL, 10 mmol) in DMSO (15 mL) at 80 °C, Ag₂CO₃ (138 mg, 0.05 mmol) was added. The mixture was then stirred for 1.5 h until substrate consumed as indicated by TLC. The resulting mixture was concentrated and taken up by dichloromethane (3×15 mL). The organic layer was washed with brine (3×40 mL), dried over Na₂SO₄ and concentrated. Purification of the crude product with flash column chromatography (silica gel; petroleum ether) and concentrated in vacuo to afford **2**.

4. Reaction Conditions Optimization to Synthesis of 3

PG N O +	[Ir(cod)CI] ₂ (2.5 n (R)-L (10 mol ⁴ Sc(OTf) ₃ (10 mol N ₃ Ph Toluene (0.1 N 35 °C ,12 h	$ \stackrel{\text{nol}\%)}{\underset{1}{\overset{()}{\underset{1}}}} \qquad $	N.Ph + NHPG CONHPh	
1	2a	3	4	(<i>R</i>)- L
entry	PG	3/4 ^b	yield of 3 (%) ^c	ee (%) ^d
1	н	-	N.D.	-
2	Ts	1:0.25	40	>99
3	Ms	-	trace	-
4	<i>p</i> -OMe-benzenesulfonyl	-	N.D.	-
5	p-F-benzenesulfonyl	-	N.D.	-
6	CO ^t Bu	-	N.D.	-
7	СОМе	-	N.D.	-
8	COAd	-	N.D.	-
9	p-Cl-benzoyl	-	N.D.	-
10	OH N ^{-Ts}	-	N.D.	-

Table S1. Effect of leaving groups^{*a*}

^{*a*} Conditions and experimental procedures: Unless otherwise noted, $[Ir(cod)Cl]_2$ (2.5 mol%, 3.4 mg), (*R*)-L (10 mol%, 10.1 mg) in toluene 2 mL was stirred for 15 minutes. Sc(OTf)₃ (10 mol%, 9.8 mg), **1** (0.2 mmol, 1.0 eq.), **2a** (0.3 mmol, 1.5 eq.) was added to the solution and then stirred at 35 °C for 12 h. ^{*b*} ¹H NMR yield ratio. ^{*c*} Isolated yield. ^{*d*} the *ee* was determined by chiral HPLC analysis.

Table S2. Effect of Lewis acid^a

	Ts N O 1a	+N_3 2a	[Ir(c (Lew	od)Cl] ₂ (2.5 mol%) R)-L (10 mol%) vis acid (10 mol%) bluene (0.1 M) 35 °C ,12 h	-	Ts N Ph	+	`NHTs ∠CONHPh Iaa	(R)-L	₽ ₽
-	entry	Lewis acid	3aa/4 ^b	yield of 3aa (%) ^c	ee (%) ^d	entry	Lewis acid	3aa/4aa ^b	yield of 3aa (%) ^c	ee (%) ^d
_	1	Ho(OTf) ₃	1:1.02	35	91	16	ZnBr ₂	-	N.R.	-
	2	Ce(OTf) ₃	1:0.51	37	93	17	ZnCl ₂	_	N.R.	-
	3	Gd(OTf) ₃	-	N.D.	-	18	Znl ₂	_	N.R.	-
	4	Tb(OTf) ₃	1:0.40	24	97	19	InBr ₃	-	N.R.	-
	5	Nb(OTf) ₃	-	N.D.	-	20	InCl ₃	-	N.R.	-
	6	La(OTf) ₃	-	N.D.	-	21	BiCl ₃	-	N.R.	-
	7	Sm(OTf) ₃	-	N.D.	-	22	BF _{3.} Et ₂ O	1:0.32	22	>99
	8	Eu(OTf) ₃	-	N.D.	-	23	Ag(NTf ₂) ₂	-	trace	-
	9	Yb(OTf) ₃	1:0.49	40	97	24	сн₃соон	-	N.D.	-
	10	In(OTf) ₃	1:0.43	8	94	25	PhOH	-	N.D.	-
	11	Pr(OTf) ₃	-	N.D.	-	26	CF ₃ SO ₃ H	-	N.D.	-
	12	Y(OTf) ₃	1:0.31	18	95	27	PhCOOH	-	N.D.	-
	13	Zn(OTf) ₂	-	N.R.	-					
	14	Ag(OTf)	-	N.R.	-					
_	15	Sc(OTf) ₃	1:0.28	40	>99					

^{*a*} Conditions and experimental procedures: Unless otherwise noted, $[Ir(cod)Cl]_2$ (2.5 mol%, 3.4 mg), (*R*)-L (10 mol%, 10.1 mg) in toluene 2 mL was stirred for 15 minutes. Lewis acid (10 mol%), **1** (0.2 mmol, 1.0 eq.), **2a** (0.3 mmol, 1.5 eq.) was added to the solution and then stirred at 35 °C for 12 h.^{*b*} ¹H NMR yield ratio. ^{*c*} Isolated yield. ^{*d*} the *ee* was determined by chiral HPLC analysis.

Table S3. Effect of solvents^{*a*}

$ \begin{bmatrix} T_{N} \\ N \\ 0 \end{bmatrix} + P_{N} \end{bmatrix} $	[Ir(cod)CI] ₂ (2.5 mol%) (<i>R</i>)-L (10 mol%) Sc(OTf) ₃ (10 mol%) ► solvent, 35 °C,12 h	Ts N.Ph +	NHTs ∼ ^{CONHPh}	
1a 2a		3aa	4aa	(R)-L
entry	solvent (2 mL)	3aa/4aa ^b	yield of 3aa (%) ^c	ee(%) ^d
1	toluene	1:0.25	40	>99
2	Benzene	1:0.29	35	>99
3	Fluorobenzene	1:0.30	30	>99
4	Chlorobenzene	1:0.26	40	>99
5	Dlmethyl benzene	-	N.D.	-
6	1,3,5-trimethyl benzene	-	N.D.	-
7	THF	-	trace	-
8	Et ₂ O	-	trace	-
9	DCM	-	trace	-
10	MECN	-	trace	-
11	MEOH	-	N.D.	-

^{*a*} Conditions and experimental procedures: Unless otherwise noted, $[Ir(cod)Cl]_2$ (2.5 mol%, 3.4 mg), (*R*)-L (10 mol%, 10.1 mg) in solvent 2 mL was stirred for 15 minutes. Sc(OTf)₃ (10 mol%, 9.8 mg), **1** (0.2 mmol, 1.0 eq.), **2a** (0.3 mmol, 1.5 eq.) was added to the solution and then stirred at 35 °C for 12 h.^{*b*} ¹H NMR yield ratio. ^{*c*} Isolated yield. ^{*d*} the *ee* was determined by chiral HPLC analysis.

	Ts N O +	Ph N ₃	[lr(cod (<i>R</i>) Sc(O Tolu)CI] ₂ (2.5 mol%) -L (10 mol%) Tf) ₃ (10 mol%) ene (0.1 M) 35 °C, t h	Ts N-Ph -	NHTs CONHPh		
	1a	2a			3aa	4aa	(<i>R</i>)-L	
	entry		t h	equivalent of 2a	3aa/4aa ^b	yield (%) ^c	ee (%) ^d	
	1		5	1.5	1:0.29	12	>99	
	2		9	1.5	1:0.30	25	>99	
	3		12	1.5	1:0.25	40	>99	
	4		18	1.5	1:0.27	32	>99	
	5		24	1.5	1:0.30	24	>99	
	6		12	1.2	1:0.28	33	>99	
_	7		12	1.8	1:0.25	38	>99	

Table S4. Effect of reaction time and equivalent of $2a^a$

^{*a*} Conditions and experimental procedures: Unless otherwise noted, $[Ir(cod)Cl]_2$ (2.5 mol%, 3.4 mg), (*R*)-L (10 mol%, 10.1 mg) in toluene 2 mL was stirred for 15 minutes. Sc(OTf)₃ (10 mol%, 9.8 mg), **1** (0.2 mmol, 1.0 eq.), **2a** was added to the solution and then stirred at 35 °C for 12 h. ^{*b*} ¹H NMR yield ratio. ^{*c*} Isolated yield. ^{*d*} the *ee* was determined by chiral HPLC analysis.

Table S5. Effect of reaction temperature
--

Ts N O to 1a	[Ir(cod)Cl] ₂ (2.5 (<i>R</i>)-L (10 mo Sc(OTf) ₃ (10 m 4Å (200 mg toluene, T, 12 h	$ \xrightarrow{\text{mol}\%)}_{\substack{1\%)\\ no1\%)\\ a)} \xrightarrow{\text{Ts}} N_{p}$	h + NHTs CONHPh 4aa	(R)-L
entry	T (°C)	3aa/4aa ^b	yield (%) ^c	ee (%) ^d
1	25	1:0.08	57	>99
2	35	1:0.11	60	>99
3	50	1:0.05	72	>99
4	80	1:0.06	48	60
5	100	1:0.09	26	40

^{*a*} Conditions and experimental procedures: Unless otherwise noted, $[Ir(cod)Cl]_2$ (2.5 mol%, 3.4 mg), (*R*)-L (10 mol%, 10.1 mg) in toluene 0.5 mL were stirred for 15 minutes, while substrates **1a** (0.2 mmol, 1.0 eq.) and 4Å (200 mg) molecular sieves were complexed in 0.5 mL of toluene for 15 min. Two solutions are mixed, followed by the addition of **2a** (0.30 mmol, 1.5 eq.) and scandium trifluoromethanesulfonate. The reaction was stirred at certain temperature for 12 h afterward. ^{*b*} ¹H NMR yield ratio. ^{*c*} Isolated yield. ^{*d*} the *ee* was determined by chiral HPLC analysis.

Table S6. Effect of additives^a

^{*a*} Conditions and experimental procedures: Unless otherwise noted, $[Ir(cod)Cl]_2$ (2.5 mol%, 3.4 mg), (*R*)-L (10 mol%, 10.1 mg), toluene 0.5 mL, stir for 15 minutes. while substrates **1a** (0.2 mmol, 1.0 eq.) and additive molecular sieves were complexed in 0.5 mL of toluene for 15 min, and then the two solutions are mixed, followed by the addition of **2a** (0.30 mmol, 1.5 eq.) and scandium trifluoromethanesulfonate, and then the reaction was transferred to 50 °C for 12 h afterward. ^{*b*} ¹H NMR yield ratio. ^{*c*} Isolated yield. ^{*d*} the *ee* was determined by chiral HPLC analysis.

Table S7. Effect of	solvents ^a
---------------------	-----------------------

Ĺ	Ts N + O Ph	[Ir(cod)Cl] ₂ (2.5 mol%) (<i>R</i>)-L (10 mol%) Sc(OTf) ₃ (10 mol%) <u>4Å (200 mg)</u> solvent, 50 °C,12 h	Ts N-Ph -	NHTs CONHPh	
_	1a 2	a	3aa	4aa	(R)-L
_	entry	solvent (2 mL)	3aa/4aa ^b	yield(%) ^c	ee(%) ^d
	1	toluene	1:0.05	67	>99
	2	Benzene	1:0.09	47	>99
	3	Ethyl benzene	1:0.29	56	>99
	4	Chlorobenzene	1:0.06	80	>99
	5	Bromobenzene	1:0.14	43	>99
	6	lodobenzene	1:0.15	38	>99
	7	(trifluoromethyl)benzene	1:0.11	65	>99
	8	1,2-dichlorobenzene	1:0.12	73	>99
	9	THF	1:1.5	23	>99
	10	Et ₂ O	1:1.32	22	>99
	11	DCM	1:0.91	17	>99
	12	MeCN	1:0.86	21	>99
	13	MEOH	-	N.D.	-

^{*a*} Conditions and experimental procedures: Unless otherwise noted, $[Ir(cod)Cl]_2$ (2.5 mol%, 3.4 mg), (*R*)-L (10 mol%, 10.1 mg), solvent 0.5 mL, stir for 15 minutes. while substrates **1a** (0.2 mmol, 1.0 eq.) and 4Å (200 mg) molecular sieves were complexed in 0.5 mL of solvent for 15 min, and then the two solutions are mixed, followed by the addition of **2a** (0.30 mmol, 1.5 eq.) and scandium trifluoromethanesulfonate, and then the reaction was transferred to 50 °C for 12 h afterward. ^{*b*} ¹H NMR yield ratio. ^{*c*} Isolated yield. ^{*d*} the *ee* was determined by chiral HPLC analysis.

Table S8. Effect of Sc(OTf)₃ loading^a

^{*a*} Conditions and experimental procedures: Unless otherwise noted, $[Ir(cod)Cl]_2$ (2.5 mol%, 3.4 mg), (*R*)-L (10 mol%, 10.1 mg), chlorobenzene 0.5 mL, stir for 15 minutes. while substrates **1a** (0.2 mmol, 1.0 eq.) and 4Å (200 mg) molecular sieves were complexed in 0.5 mL of chlorobenzene for 15 min, and then the two solutions are mixed, followed by the addition of **2a** (0.30 mmol, 1.5 eq.) and Sc(OTf)₃, and then the reaction was transferred to 50 °C for 12 h afterward. ^{*b*} ¹H NMR yield ratio. ^{*c*} Isolated yield. ^{*d*} the *ee* was determined by chiral HPLC analysis.

5. Reaction Conditions Optimization to Synthesis of 4aa

Table S9. Effect of additive^{*a*}

	$ \begin{array}{c} Ts \\ In \\ Ia \\ 2a Ts \\ In \\ In \\ $	2.5 mol%) mol%) e (0.1 M), 2 h 1 eq) 2.5 mol%) 	Ph (R)-L
entry	addtive	yield $(\%)^b$	ee (%) ^c
1	H_2O	23	>99
2	CF ₃ COOH	48	>99
3	CH ₃ COOH	56	>99
4	CF ₃ SO ₃ H	NR	-
5	НСООН	trace	-
6	Phenol	36	>99
7	PhCOOH	43	>99
8	NHTf ₂	NR	-
9	HBF_4	12	>99
10	L-Proline	NR	-
11	-	NR	-

^{*a*} Conditions and experimental procedures: Unless otherwise noted, $[Ir(cod)Cl]_2$ (2.5 mol%, 1.7 mg), (*R*)-L (10 mol%, 5 mg), chlorobenzene 0.5 mL, stir for 15 minutes., then addition of substrates **1a** (0.1 mmol, 1.0 eq.), **2a** (0.15 mmol,1.5 eq.), Sc(OTf)₃, and additive and then the reaction was transferred to 50 °C for 12 h afterward. ^{*b*} Isolated yield. ^{*c*} the *ee* was determined by chiral HPLC analysis.

Table S10. Effect of Lewis acid^a

	$\begin{array}{c} Ts \\ N_{1} \\ Ta \end{array} + \begin{array}{c} N_{3} \\ N_{3} \\ N_{3} \\ Ph \end{array} + \begin{array}{c} [Ir(cod)Cl]_{2} \\ (R)-L \\ (10) \\ Lewis acid \\ Chlorobenzen \\ 50 \\ CH_{3}COOH \end{array}$	2.5 mol%) mol%) 10 mol%) e (0.1 M), i2 h I (1 eq) 2.5 mol%) 	Ph (R)-L
entry	Lewis acid	yield $(\%)^b$	<i>ee</i> (%) ^{<i>c</i>}
1	Ho(OTf) ₃	trace	-
2	Ce(OTf) ₃	trace	-
3	Yb(OTf) ₃	NR	-
4	In(OTf) ₃	NR	-
5	Sm(OTf) ₃	NR	-
6	La(OTf) ₃	NR	-
7	Cu(OTf) ₂	NR	-
8	Fe(OTf) ₃	13	>99
9	Sc(OTf) ₃	56	>99
10	ZnBr ₂	trace	-
11	BF ₃ .Et ₂ O	NR	-
12	InCl ₃	NR	-
13	ZnI_2	ND	-

^{*a*} Conditions and experimental procedures: Unless otherwise noted, $[Ir(cod)Cl]_2$ (2.5 mol%, 1.7 mg), (*R*)-L (10 mol%, 5 mg), chlorobenzene 0.5 mL, stir for 15 minutes., then addition of substrates **1a** (0.1 mmol, 1.0 eq.), **2a** (0.15 mmol,1.5 eq.), Lewis acid, and CH₃COOH and then the reaction was transferred to 50 °C for 12 h afterward. ^{*b*} Isolated yield. ^{*c*} the *ee* was determined by chiral HPLC analysis.

Table S11. Effect of reaction time^a

	$ \begin{array}{c} $	[Ir(cod)Cl] ₂ (2.5 mol%) (R)-L (10 mol%) Sc(OTf) ₃ (10 mol%) Chlorobenzene (0.1 M), 50 °C ,t h CH ₃ COOH (1 eq)	Ph (R)-L
entry	t (h)	yield (%) ^b	ee (%) ^c
1	0.5	37	>99
2	1	58	>99
3	3	56	>99
4	5	55	>99
5	9	57	>99
6	12	56	>99

^{*a*} Conditions and experimental procedures: Unless otherwise noted, $[Ir(cod)Cl]_2$ (2.5 mol%, 1.7 mg), (*R*)-**L** (10 mol%, 5 mg), chlorobenzene 0.5 mL, stir for 15 minutes., then addition of substrates **1a** (0.1 mmol, 1.0 eq.), **2a** (0.15 mmol,1.5 eq.), Sc(OTf)₃, and CH₃COOH and then the reaction was transferred to 50 °C for t h afterward. ^{*b*} Isolated yield. ^{*c*} the *ee* was determined by chiral HPLC analysis.

Table S12. Effect of equivalent of CH₃COOH^a

	$ \begin{array}{c} $	[Ir(cod)Cl] ₂ (2.5 mol%) (<i>R</i>)-L (10 mol%) Sc(OTf) ₃ (10 mol%) Chlorobenzene (0.1 M), 50 °C ,1 h CH ₃ COOH (x eq)	Ph (R)-L
entry	x (eq)	yield $(\%)^b$	<i>ee</i> (%) ^{<i>c</i>}
1	1	58	>99
2	2	85	>99
3	2.5	90	>99
4	3	76	>99

^{*a*} Conditions and experimental procedures: Unless otherwise noted, $[Ir(cod)Cl]_2$ (2.5 mol%, 1.7 mg), (*R*)-L (10 mol%, 5 mg), chlorobenzene 0.5 mL, stir for 15 minutes., then addition of substrates **1a** (0.1 mmol, 1.0 eq.), **2a** (0.15 mmol,1.5 eq.), Sc(OTf)₃, and CH₃COOH and then the reaction was transferred to 50 °C for 1 h afterward. ^{*b*} Isolated yield. ^{*c*} the *ee* was determined by chiral HPLC analysis.

Table S13. Effect of reaction temperature^{*a*}

	$ \begin{array}{c} $	[Ir(cod)Cl] ₂ (2.5 mol%) (R)-L (10 mol%) Sc(OTf) ₃ (10 mol%) Chlorobenzene (0.1 M), T °C ,1 h CH ₃ COOH (2.5 eq)	(R)-L	
entry	T (°C)	yield (%) ^b	<i>ee</i> (%) ^c	
1	10	74	>99	
2	25	91	>99	
3	40	81	>99	
4	50	88	>99	
5	65	70	>99	

^{*a*} Conditions and experimental procedures: Unless otherwise noted, $[Ir(cod)Cl]_2$ (2.5 mol%, 1.7 mg), (*R*)-L (10 mol%, 5 mg), chlorobenzene 0.5 mL, stir for 15 minutes.,

then addition of substrates **1a** (0.1 mmol, 1.0 eq.), **2a** (0.15 mmol, 1.5 eq.), $Sc(OTf)_3$, and CH₃COOH and then the reaction was stirred under certain temperature for 1 h afterward. ^{*b*} Isolated yield. ^{*c*} the *ee* was determined by chiral HPLC analysis.

	$ \begin{array}{c} \begin{array}{c} T_{s} \\ (R)-L \\ ($	%) 6) NHTs CONHPh 4aa (R)	
entry	solvent	yield $(\%)^b$	<i>ee</i> (%) ^c
1	THF	16	>99
2	DCM	trace	
3	DMF	NR	
4	MeCN	14	79
5	MeOH	NR	
6	chlorobenzene	93	>99
7	Tol	31	>99
8	1,2-dichlorobenzene	90	>99

Table S14. Effect of solvent^a

^{*a*} Conditions and experimental procedures: Unless otherwise noted, $[Ir(cod)Cl]_2$ (2.5 mol%, 1.7 mg), (*R*)-L (10 mol%, 5 mg), solvent 0.5 mL, stir for 15 minutes, then addition of substrates **1a** (0.1 mmol, 1.0 eq.), **2a** (0.15 mmol,1.5 eq.), Sc(OTf)₃, and CH₃COOH and then the reaction was stirred under 25 °C for 1 h afterward. ^{*b*} Isolated yield. ^{*c*} the *ee* was determined by chiral HPLC analysis.

6. General Procedure for the Synthesis of 3

In the glove box, $[Ir(cod)Cl]_2$ (2.5 mol%, 3.4 mg) and (*R*)-L (10 mol%, 10.1 mg) were added to a screw-capped glass vial fitted with a magnetic stirring bar, 0.5 mL of chlorobenzene was added and stirred for 15 min. The substrate **1** (0.2 mmol ,1.0 eq.), 4Å (200 mg) molecular sieves and 0.5 mL of chlorobenzene were stirred for 15 min in a test tube and then transferred to the screw-capped vial and washed with 1 mL of chlorobenzene. Sc(OTf)₃ (10 mol%, 9.8 mg), and substrate **2** (0.30 mmol, 1.5 eq.) were added sequentially and the reaction was transferred to 50 °C for 12 h with the stopper tightly closed. Then, the resulting mixture was filtered through celite, and concentrated in vacuo. The crude residue was purified via silica gel flash column chromatography to afford the product **3**.

Characterization of Amide (R,E)-N-phenyl-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3aa** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (80% yield, 63.7 mg, 99% *ee*) . m.p. 188 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, J = 8.3 Hz, 2H), 7.61 (d, J = 8.1 Hz, 1H), 7.31 – 7.23 (m, 3H), 7.20 – 7.12 (m, 4H), 7.10 (d, J = 7.3 Hz, 1H), 6.93 – 6.96 (m, 1H), 6.34 (d, J = 7.5 Hz, 2H), 5.64 (ddd, J = 17.2, 10.2, 7.0 Hz, 1H), 5.07 (d, J = 10.2 Hz, 1H), 4.95 (d, J = 17.1 Hz, 1H), 3.29 (dd, J = 12.2, 7.2 Hz, 1H), 2.47 (dd, J = 16.8, 4.7 Hz, 1H), 2.40 (s, 3H), 2.36 (dd, J = 16.8, 8.2 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 153.5, 148.2, 144.2, 137.6, 136.5, 135.7, 133.4, 129.7, 129.0, 127.2, 126.3, 125.2, 123.4, 120.1, 118.0, 39.8, 34.3, 21.7.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for $C_{24}H_{23}N_2O_2S^+$ 403.1475, found: 403.1497. $[\alpha]_D^{20} = -29.9$ (c = 0.2, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 14.9 min and t_{R2}: 28.9 min).

A colorless stick-shaped crystal of **3aa** for X-ray diffraction was obtained by slowly volatilizing a saturated solution of **3aa** in hexane/ 2-propanol (5:1).

Figure S1. Crystal data and structure refinement for **3aa** (CCDC) is available from the Cambridge Crystallographic Data Centre (CCDC). Displacement ellipsoids are drawn at the 50% probability level.

Identification code	exp_4639_auto
Empirical formula	$C_{24}H_{22}N_2O_2S$
Formula weight	402.50
Temperature/K	299.14(10)
Crystal system	orthorhombic
Space group	P212121
a/Å	8.1617(3)
b/Å	14.1664(6)
c/Å	18.0449(8)
$\alpha/^{\circ}$	90
$eta /^{\circ}$	90
$\gamma/^{\circ}$	90

Volume/Å ³	2086.39(15)
Z	4
$\rho_{calc}g/cm^3$	1.281
μ/mm^{-1}	1.552
F(000)	848.0
Crystal size/mm ³	$0.18 \times 0.14 \times 0.12$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	7.934 to 153.446
Index ranges	$-6 \le h \le 10, -17 \le k \le 17, -22 \le 1 \le 20$
Reflections collected	11559
Independent reflections	4132 [$R_{int} = 0.0366, R_{sigma} = 0.0383$]
Data/restraints/parameters	4132/18/274
Goodness-of-fit on F ²	1.089
Final R indexes [I>= 2σ (I)]	$_{R1} = 0.0395, wR_2 = 0.1034$
Final R indexes [all data]	$_{R1} = 0.0138, wR_2 = 0.1091$
Largest diff. peak/hole/e Å ⁻³	0.16/-0.31
Flack parameter	0.001(11)

(*R*,*E*)-6-methoxy-N-phenyl-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3ab** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a viscous liquid. (84% yield, 72.2mg, 99% *ee*) . m.p. 150 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, *J* = 8.2 Hz, 2H), 7.52 (d, *J* = 8.9 Hz, 1H), 7.32 (d, *J* = 8.2 Hz, 2H), 7.21 – 7.26 (m, 2H), 7.00 – 7.02 (m, 1H), 6.42 (d, *J* = 8.0

Hz, 2H), 5.75 - 5.64 (ddd, J = 17.3, 10.2, 7.2 Hz, 1H), 5.12 (d, J = 10.2 Hz, 1H), 5.00 (d, J = 17.1 Hz, 1H), 2.51 (dd, J = 9.3, 7.6 Hz, 1H), 2.47 (s, 3H), 2.41 (s, 3H), 2.39 (dd, J = 16.7, 4.5 Hz, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 153.7, 148.2, 144.2, 137.5, 137.1, 136.8, 135.5, 130.3, 129.7, 129.0, 126.6, 126.1, 125.8, 123.3, 120.1, 117.8, 39.4, 34.4, 21.7, 21.4.

HRMS (APCI) (m/z): $[M+Na]^+$ Calcd. for C₂₅H₂₄N₂NaO₂S⁺ 455.1400; found: 455.1411. $[\alpha]_D{}^{20} = -24.3$ (c =0.1, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 32.2 min and t_{R2}: 68.0 min).

(*R*,*E*)-6-methyl-N-phenyl-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3ac** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (73% yield, 60.8 mg, 99% *ee*) . m.p. 136 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, J = 8.2 Hz, 2H), 7.60 – 7.54 (m, 1H), 7.31 (d, J = 8.0, 2H), 7.26 – 7.19 (m, 2H), 7.13 – 7.15 (m, 1H), 6.99 (d, J = 21.4 Hz, 2H), 6.45 – 6.37 (m, 2H), 5.69 (ddd, J = 17.3, 10.2, 7.2 Hz, 1H), 5.13 (d, J = 10.2 Hz, 1H), 5.01 (d, J = 17.1 Hz, 1H), 3.30 (dd, J = 9.3, 7.6 Hz, 1H), 2.50 (dd, J = 9.3, 7.6 Hz, 1H), 2.46 (s, 3H), 2.40 (dd, J = 16.7, 4.5 Hz,1H), 2.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 153.7, 148.3, 144.2, 137.6, 136.7, 135.8, 133.2, 133.1, 129.7, 129.0, 127.7, 126.9, 125.1, 123.3, 120. 1, 117.9, 39.9, 34.4, 21.7, 21.0.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for C₂₅H₂₅N₂O₂S⁺ 417.1631; found: 417.1638. [α]_D²⁰ = -24.1 (c =0.4, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 17.5 min and t_{R2}: 55.9 min).

(R,E)-N,6-diphenyl-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3ad** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (82% yield, 78 mg, 99% *ee*) \cdot m.p. 163 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, *J* = 7.9 Hz, 2H), 7.63 (d, *J* = 8.4 Hz, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.31 (d, *J* = 8.4 Hz, 1H), 7.27 – 7.20 (m, 4H), 7.14 – 7.18 (m, 2H), 7.03 – 6.99 (m, 1H), 6.93-6.96 (m, 1H), 6.34 (d, *J* = 7.8 Hz, 2H), 5.65 (ddd, *J* = 17.2, 10.2, 7.0 Hz, 1H), 5.09 (d, *J* = 10.2 Hz, 1H), 4.98 (d, *J* = 17.1 Hz, 1H), 3.31 (dd, *J* = 11.9, 8.0 Hz, 1H), 2.46 (dd, *J* = 16.7, 4.4 Hz, 1H), 2.40 (s, 3H), 2.37 (dd, *J* = 16.7, 8.9 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 153.2, 148.1, 144.4, 143.4, 137.4, 136.3, 134.9, 133.8, 132.1, 129.8, 129.0, 129.0, 128.2, 125.6, 125.1, 124.7, 123.9, 123.5, 120.1, 118.3, 39.9, 34.1, 21.7.

HRMS (**APCI**) (m/z): $[M+H]^+$ Calcd. for C₃₀H₂₇N₂O₂S⁺ 479.1788, found: 479.1771. [α] $D^{20} = -3.4$ (c = 0.1, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IA, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 14.7 min and t_{R2}: 24.7 min).

(*R*,*E*)-6-fluoro-N-phenyl-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3ae** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (72% yield, 60.5 mg, 99% *ee*) . m.p. 132 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, *J* = 8.3 Hz, 2H), 7.62 – 7.65 (m, , 1H), 7.33 (d, *J* = 8.1 Hz, 2H), 7.27 – 7.21 (m, 2H), 7.07 – 7.01 (m, 2H), 6.89 – 6.91 (m, 1H), 6.42 – 6.43 (m, 2H), 5.66 (ddd, *J* = 17.3, 10.2, 7.2 Hz, 1H), 5.18 (d, *J* = 10.2 Hz, 1H),

5.09 – 5.01 (d, J = 10.2 Hz, 1H), 3.32 (dd, J = 12.3, 8.0 Hz, 1H), 2.55 (dd, J = 16.8, 4.5 Hz, 1H), 2.48 (s, 3H), 2.38 (dd, J = 12.3, 8.0 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 161.2 (d, J = 244.5 Hz), 153.2, 148.0, 144.4, 137.3, 135.9 (d, J = 7.5 Hz), 135.7, 131.6 (d, J = 3.0 Hz), 129.6, 129.1,129.0, 127.0 (d, J = 7.5 Hz), 123.5, 120.0, 118.8, 114.0 (d, J = 22.5 Hz), 113.3 (d, J = 22.5 Hz), 39.8, 34.2, 21.7. ¹⁹F NMR (565 MHz, CDCl₃) δ - 115.66.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for $C_{24}H_{22}FN_2O_2S^+$ 421.1381; found: 421.1381. $[\alpha]_D{}^{20}=$ -29.6 (c = 0.5, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 15.8 min and t_{R2}: 36.2 min).

(*R*,*E*)-6-chloro-N-phenyl-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3af** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (76% yield, 66.3 mg, 99% *ee*) .m.p. 163 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 8.3 Hz, 2H), 7.62 (d, *J* = 8.7 Hz, 1H), 7.36 – 7.31 (m, 3H), 7.25 – 7.21 (m, 2H), 7.17 – 7.13 (m, 1H), 7.06 – 6.95 (m, 1H), 6.40 – 6.42 (m, 2H), 5.66 (ddd, *J* = 17.2, 10.2, 7.1 Hz, 1H), 5.18 (d, *J* = 10.2 Hz, 1H), 5.00(d, *J* = 17.1 Hz, 1H), 3.32 (dd, *J* = 12.2, 7.7 Hz, 1H), 2.53 (dd, *J* = 16.8, 4.6 Hz, 1H), 2.48 (s, 3H), 2.40 (dd, *J* = 16.8, 8.5 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 153.0, 147.9, 144.5, 137.2, 135.7, 135.2, 135.1, 134.3, 134.1, 131.4, 129.7, 129.1, 129.0, 127.21, 126.5, 126.4, 123.7, 123.5, 122.9, 120.0, 118.7, 118.4, 39.7, 34.0, 21.7. HRMS (APCI) (m/z): [M+H]⁺ Calcd. for C₂₄H₂₂ClN₂O₂S⁺ 437.1085; found: 437.1082. [α]_D²⁰ = -20.0 (c = 0.5, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 15.9 min and t_{R2}: 44.3 min).

(R,E)-6-bromo-N-phenyl-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3ag** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (81% yield, 78 mg, 99% *ee*) . m.p. 175 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 8.3 Hz, 2H), 7.62 (d, *J* = 8.7 Hz, 1H), 7.36 – 7.31 (m, 3H), 7.25 – 7.21 (m, 2H), 7.17 – 7.13 (m, 1H), 7.06 – 6.95 (m, 1H), 6.40 – 6.42 (m, 2H), 5.66 (ddd, *J* = 17.2, 10.2, 7.1 Hz, 1H), 5.18 (d, *J* = 10.2 Hz, 1H), 5.00(d, *J* = 17.1 Hz, 1H), 3.32 (dd, *J* = 12.2, 7.7 Hz, 1H), 2.53 (dd, *J* = 16.8, 4.6 Hz, 1H), 2.48 (s, 3H), 2.40 (dd, *J* = 16.8, 8.5 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 153.0, 147.9, 144.5, 137.2, 135.7, 135.2, 135.1, 134.3, 134.1, 131.4, 129.7, 129.1, 129.0, 127.2, 126.5, 126.4, 123.7, 123.5, 122.9, 120.0, 118.7, 118.4, 39.7, 34.0, 21.7. HRMS (APCI) (m/z): [M+H]⁺ Calcd. for C₂₄H₂₂BrN₂O₂S⁺ 481.0586; found: 481.0596. [α]_D²⁰= -12.3 (c = 0.4, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 17.7 min and t_{R2}: 55.6 min).

(*R*,*E*)-N-phenyl-6-(thiophen-2-yl)-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3ah** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (55% yield, 53.6 mg, 99% *ee*) . m.p. 157 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, J = 8.2 Hz, 2H), 7.69 (d, J = 8.4 Hz, 1H), 7.49 – 7.52 (m, 3H), 7.36 – 7.38 (m, 2H), 7.32 – 7.25 (m, 4H), 7.14 – 7.18 (m, 2H), 6.94-6.96 (m, 1H), 6.35 (d, J = 7.8 Hz, 2H), 5.67 (ddd, J = 17.2, 10.2, 7.0 Hz, 1H),

5.09 (d, J = 10.3 Hz, 1H), 4.99 (d, J = 17.1 Hz, 1H), 3.35 (dd, J = 12.1, 7.1 Hz, 1H), 2.50 (dd, J = 16.7, 4.6 Hz, 1H), 2.41 (s, 3H), 2.39 (dd, J = 16.7, 8.9 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 153.4, 148.1, 144.3, 140.2, 138.8, 137.4, 136.5, 135.0, 133.6, 129.8, 129.0, 128.9, 127.5, 127.1, 125.8, 125.5, 125.0, 123.4, 120.1, 118.2, 40.0, 34.2, 21.7.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for $C_{28}H_{25}N_2O_2S_2^+$ 485.1352, found: 485.1330. $[\alpha]_D^{20} = -5.2$ (c = 0.1, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 23.7 min and t_{R2}: 57.7 min).

(*R*,*E*)-7-methyl-N-phenyl-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3ai** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid. (73% yield, 60.5 mg, 99% *ee*) . m.p. 146 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, J = 8.2 Hz, 2H), 7.52 (d, J = 8.9 Hz, 1H), 7.32 (d, J = 8.2 Hz, 2H), 7.21 – 7.26 (m, 2H), 7.00 – 7.02 (m, 1H), 6.42 (d, J = 8.0 Hz, 2H), 5.75 – 5.64 (ddd, J = 17.3, 10.2, 7.2 Hz, 1H), 5.12 (d, J = 10.2 Hz, 1H), 5.00 (d, J = 17.1 Hz, 1H), 2.51 (dd, J = 9.3, 7.6 Hz, 1H), 2.47 (s, 3H), 2.41 (s, 3H), 2.39 (dd, J = 16.7, 4.5 Hz,1H). ¹³C NMR (151 MHz, CDCl₃) δ 153.7, 148.2, 144.2, 137.5, 137.1, 136.880, 135.5, 130.3, 129.7, 129.0, 126.6, 126.1, 125.8, 123.3, 120.1, 117.8, 39.4, 34.4, 21.7, 21.4.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for C₂₅H₂₅N₂O₂S⁺ 417.1631; found: 417.1638. [α] ²⁰_D = -24.3 (c =0.1, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}:16.2 min and t_{R2}: 28.8 min).

(*R*,*E*)-7-chloro-N-phenyl-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3aj** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (43% yield, 37.3 mg, 99% *ee*) .m.p. 121 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, *J* = 8.3 Hz, 2H), 7.70 (d, *J* = 1.7 Hz, 1H), 7.33 (d, *J* = 8.2 Hz, 2H), 7.22–7.24 (m, 2H), 7.18 – 7.20 (m, 1H), 7.10 (d, J = 8.2 Hz, 1H), 7.03 (d, *J* = 7.4 Hz, 1H), 6.41 (d, *J* = 7.4 Hz, 2H), 5.67 (ddd, *J* = 17.2, 10.2, 7.0 Hz, 1H), 5.15 (d, *J* = 10.3 Hz, 1H), 5.02 (d, *J* = 17.1 Hz, 1H), 3.34 (dd, *J* = 12.2, 7.2 Hz, 1H), 2.53 (dd, *J* = 16.8, 4.7 Hz, 1H), 2.48 (s, 3H), 2.42 (dd, *J* = 16.8, 8.1 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 153.0, 147.9, 144.5, 137.2, 136.6, 136.1, 132.70, 131.8, 129.7, 129.1, 129.0, 127.3, 125.9, 125.2, 123.5, 120.0, 118.4, 39.4, 34.1, 21.7. HRMS (APCI) (m/z): [M+H]⁺ Calcd. for C₂₄H₂₂ClN₂O₂S⁺ 437.1085; found: 437.1082. [α]_D²⁰ = -29.8 (c = 0.1, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H,

 $[\alpha]_D^{20} = -29.8$ (c = 0.1, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 13.7min and t_{R2}: 21.4 min).

(*R*,*E*)-7-fluoro-N-phenyl-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3ak** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (40% yield, 33.6 mg, 99% *ee*) . m.p. 151 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, J = 8.3 Hz, 2H), 7.44 – 7.46 (m, 1H), 7.33 (d, J = 8.1 Hz, 2H), 7.22 – 7.26 (m, 2H), 7.10 – 7.13 (m, 1H), 7.02 – 7.04 (m, 1H), 6.90 – 6.94 (m, 1H), 6.41 – 6.43 (m, 2H), 5.68 (ddd, J = 17.1, 10.2, 6.9 Hz, 1H), 5.15 (d, J = 10.2 Hz, 1H), 5.02 (d, J = 17.1,1H), 3.34 (dd, J = 12.4, 7.0 Hz, 1H), 2.53 (dd, J = 16.8, 4.7 Hz, 1H), 2.48 (s, 3H), 2.43 (dd, J = 12.3, 8.0 Hz, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ 162.1 (d, J = 244.5 Hz), 153.0, 147.9, 144.5, 137.3, 136.8 (d, J = 10.6 Hz), 136.4, 129.7, 129.1, 129.0, 128.9 (d, J = 3.0 Hz), 127.3 (d, J = 9.0 Hz). 123.5, 120.0, 118.1, 112.9 (d, J = 25.7 Hz), 112.6 (d, J = 21.1 Hz), 39.3, 34.2, 21.7. ¹⁹**F NMR** (565 MHz, CDCl₃) δ -113.76.

HRMS (ESI) (m/z): $[M+Na]^+$ Calcd. for C₂₄H₂₁FN₂NaO₂S⁺ 443.1200; found: 443.1202. $[\alpha]_D^{20} = -15.3$ (c = 0.3, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 16.7 min and t_{R2}: 36.4 min).

(*R*,*E*)-N-phenyl-1-tosyl-7-(trifluoromethyl)-4-vinyl-3,4-dihydroquinolin-2(1H)-imin

Prepared following general procedure the product **3al** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (53% yield, 50.0 mg, 99% *ee*) . m.p. 134 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.00 – 7.93 (m, 3H), 7.47 (d, J = 7.9 Hz, 1H), 7.34 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 7.9 Hz, 1H), 7.23 – 7.26 (m, 2H), 7.03 – 7.05 (m, 1H), 6.43 (d, *J* = 7.3 Hz, 2H), 5.70 (ddd, *J* = 17.2, 10.3, 6.9 Hz, 1H), 5.19 (d, *J* = 10.3 Hz, 1H), 5.05 (d, *J* = 17.1 Hz, 1H), 3.42 (dd, *J* = 12.3, 7.0 Hz, 1H), 2.56 (dd, *J* = 16.8, 4.7 Hz, 1H), 2.48 (s, 3H), 2.42 (dd, *J* = 16.8, 8.1 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 152.7, 147.8, 147.5, 144.6, 137.1, 137.0, 136.3, 136.2, 135.6, 129.8, 129.1, 126.9, 123.6, 122.5 (q, *J* = 4.5 Hz), 122.2, 120.0, 118.7, 39.8, 33.8, 21.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.40.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for $C_{25}H_{22}F_3N_2O_2S^+$ 471.1349; found: 471.1378. $[\alpha]_D{}^{20} = -28.5$ (c = 0.3, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 7.9 min and t_{R2}: 12.1 min).

(R,E)-5-methyl-N-phenyl-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3am** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (45% yield, 37.8 mg, 72% *ee*) . m.p. 117 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, J = 8.2 Hz, 2H), 7.50 (d, J = 8.1 Hz, 1H), 7.27 – 7.13 (m, 5H), 6.96 – 7.02 (m, 2H), 6.35 (d, J = 7.6 Hz, 2H), 5.64 (ddd, J = 16.8, 10.2, 5.2 Hz, 1H), 4.97 (d, J = 10.2 Hz, 1H), 4.84 (d, J = 17.1 Hz, 1H), 3.52 (dd, J = 9.3, 7.6 Hz, 1H), 2.70 (dd, J = 16.8, 1.8 Hz, 1H), 2.40 (s, 3H), 2.30 (dd, J = 16.8, 5.5 Hz, 1H), 2.23 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 153.3, 148.3, 144.1, 137.3, 136.2, 135.6, 135.3, 130.9, 130.3, 129.0, 128.7, 127.5, 126.6, 123.2, 123.0, 120.2, 117.0, 36.2, 33.2, 21.7, 18.9.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for $C_{25}H_{25}N_2O_2S^+$ 417.1631; found: 417.1638. $[\alpha]_D^{20} = -7.8$ (c = 0.3, CH₂Cl₂). **HPLC** analysis: 72% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 17.1 min and t_{R2}: 20.9 min).

(R,E)-5-chloro-N-phenyl-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3an** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (29% yield, 25 mg, 99% *ee*) . m.p. 60 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, *J* = 8.3 Hz, 2H), 7.57 (d, *J* = 1.7 Hz, 1H), 7.22 – 7.20 (m, 3H), 7.18 – 7.20 (m, 2H), 6.94 – 6.97 (m, 1H), 6.32 (d, *J* = 7.5 Hz, 2H), 5.58 (dd, *J* = 17.1, 10.3, 5.0 Hz, 1H), 4.96 (d, *J* = 10.4 Hz, 1H), 4.83 (d, *J* = 17.2 Hz, 1H), 3.85 (dd, *J* = 12.2, 7.2 Hz, 1H), 2.71 (dd, *J* = 16.9, 2.0 Hz, 1H), 2.40 (s, 3H), 2.30 (dd, *J*

= 16.9, 5.5 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 152.7, 148.0, 144.5, 136.9, 136.8, 135.2, 132.5, 130.5, 130.4, 129.0, 128.7, 127.6, 126.5, 123.8, 123.4, 120.1, 117.3, 36.6, 32.5, 21.7.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for C₂₄H₂₂ClN₂O₂S⁺ 437.1085; found: 437.1082. [α]_D²⁰ = -38.8 (c = 0.3, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 48.8 min and t_{R2}: 52.9 min).

(*R*,*E*)-5-fluoro-N-phenyl-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3ao** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (49% yield, 40.9 mg, 99% *ee*) . m.p. 162 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 8.2 Hz, 1H), 7.35 – 7.28 (m, 3H), 7.27 – 7.21 (m, 2H), 7.02 – 7.04 (m, 1H), 6.95 – 6.98 (m, 1H), 6.39 (d, J = 7.8 Hz, 2H), 5.66 (ddd, J = 17.3, 10.2, 7.2 Hz, 1H), 5.03 (d, J = 10.3 Hz, 1H), 4.90 (d, J = 17.2 Hz, 1H), 3.80 (dd, J = 12.3, 8.0 Hz, 1H), 2.77 (dd, J = 16.8, 4.5 Hz, 1H), 2.47 (s, 3H), 2.38 (dd, J = 12.3, 8.0 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 159.8 (d, J = 243.0 Hz), 158.2, 152.6, 147.9, 144.4, 137.0 (d, J = 9.0 Hz), 135.9, 130.3, 129.0, 128.7, 127.8 (d, J = 7.5 Hz), 123.4, 120.8 (d, J = 4.0 Hz), 120.1 (d, J = 19.5 Hz), 120.0, 117.2, 112.5 (d, J = 21.0 Hz), 32.5, 32.3, 32.3, 21.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -120.29.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for C₂₄H₂₂FN₂O₂S⁺ 421.1381; found: 421.1381. [α]_D²⁰ = -36.9 (c = 0.1, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 17.9 min and t_{R2}: 18.9 min).

(*R*,*E*)-N-phenyl-1-tosyl-4-vinyl-3,4-dihydrobenzo[g]quinolin-2(1H)-imine

Prepared following general procedure the product **3ap** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (41% yield, 37.5 mg, 99% *ee*) . m.p. 141 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.05 (s, 1H), 7.91 (d, *J* = 8.3 Hz, 2H), 7.84 (d, *J* = 7.8 Hz, 1H), 7.72 (d, *J* = 7.7 Hz, 1H), 7.53 (s, 1H), 7.39 – 7.44(m, 2H), 7.27 (d, *J* = 8.2 Hz, 2H), 7.14 – 7.19 (m, 3H), 6.94 – 6.96 (m, 1H), 6.34 (d, *J* = 7.5 Hz, 2H), 5.72 (ddd, *J* = 17.2, 10.2, 7.0 Hz, 1H), 5.14 (d, *J* = 10.3 Hz, 1H), 5.02 (d, *J* = 17.2 Hz, 1H), 3.42 (dd, *J* = 11.9, 8.0 Hz, 1H), 2.52 (dd, *J* = 16.7, 4.4 Hz, 1H), 2.42 (s, 3H), 2.36 (dd, *J* = 16.7, 8.9 Hz, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 152.4, 147.0, 143.3, 136.3, 135.7, 135.5, 131.9, 131.5, 131.3, 130.2, 128.7, 128.0, 127.1, 126.2, 125.3, 125.3, 124.0, 122.4, 122.3, 119.1, 117.3, 39.0, 33.2, 20.7.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for C₂₈H₂₅N₂O₂S⁺ 453.1631; found: 453.1620. [α]_D²⁰= -9.4 (c = 0.1, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 36.8 min and t_{R2}: 47.4 min).

(R,E)-N-(p-tolyl)-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3ba** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (54% yield, 45.1 mg, 99% *ee*) . m.p. 173 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 7.9 Hz, 1H), 7.23 – 7.28 (m, 3H), 7.18 – 7.08 (m, 2H), 6.95 (d, J = 8.1 Hz, 2H), 6.24 (d, J = 8.2 Hz, 2H), 5.64 (ddd, J = 17.2, 10.2, 7.0 Hz, 1H), 5.06 (d, J = 10.3 Hz, 1H), 4.95 (d, J =

17.1 Hz, 1H), 3.28 (dd, J = 12.2, 7.4 Hz, 1H), 2.47 (dd, J = 16.8, 4.7 Hz, 1H), 2.39 (s, 3H), 2.36 (dd, J = 16.8, 8.2 Hz, 1H), 2.21 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 153.6, 145.60, 144.2, 137.6, 136.6, 135.8, 133.5, 132.8, 129.7, 129.5, 129.0, 127.1, 126.3, 125.8, 125.2, 120.0, 117.9, 39.8, 34.3, 21.7, 20.8.

HRMS (ESI) (m/z): $[M+Na]^+$ Calcd. for C₂₅H₂₄N₂NaO₂S⁺ 439.1451; found: 439.1462. [α]_D²⁰ = -45.0 (c = 0.1, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 14.4 min and t_{R2}: 26.2 min).

(*R*,*E*)-N-(4-ethylphenyl)-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3ca** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (71% yield, 60.8 mg, 99% *ee*) . m.p. 107 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, *J* = 8.3 Hz, 2H), 7.67 – 7.71 (m, 1H), 7.36 – 7.29 (m, 3H), 7.22 – 7.15 (m, 2H), 7.05 – 7.07 (m, 2H), 6.34 (d, *J* = 8.0 Hz, 2H), 5.72 (ddd, *J* = 17.2, 10.2, 7.1 Hz, 1H), 5.15 (d, *J* = 10.2 Hz, 1H), 5.03 (d, *J* = 17.1 Hz, 1H), 3.36 (dd, *J* = 12.2, 7.3 Hz, 1H), 2.61 – 2.56 (m, 2H), 2.54 (dd, *J* = 16.8, 4.7 Hz, 1H), 2.46 (s, 3H), 2.44(dd, *J* = 16.8, 8.2 Hz, 1H), 1.20 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 153.5, 145.8, 144.2, 139.2, 137.6, 136.6, 135.8, 133.5, 129.7, 129.0, 128.3, 127.1, 126.3, 125.8, 125.2, 120.0, 118.0, 39.9, 34.3, 28.2, 21.7, 15.7. HRMS (APCI) (m/z): [M+H]⁺ Calcd. for C₂₆H₂₇N₂O₂S⁺ 431.1788, found: 431.1796. [α]_D²⁰ = -26.9 (c = 0.7, CH₂Cl₂). HPLC analysis: 99% *ee* (Daicel ChiralPak AD-H,

 $[\alpha]_D^{20} = -26.9$ (c = 0.7, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 19.2 min and t_{R2}: 32.4 min).

(*R*,*E*)-N-([1,1'-biphenyl]-4-yl)-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3da** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a viscous liquid (73% yield, 69.8 mg, 99% *ee*) . ¹**H NMR** (600 MHz, CDCl₃) δ 7.99 (d, *J* = 8.3 Hz, 2H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.55 (d, *J* = 7.7 Hz, 2H), 7.47 (d, *J* = 8.3 Hz, 2H), 7.40 – 7.42 (m, 2H), 7.30 – 7.37 (m, 4H), 7.24 – 7.17 (m, 2H), 6.49 (d, *J* = 8.3 Hz, 2H), 5.74 (ddd, *J* = 17.2, 10.2, 7.0 Hz, 1H), 5.16 (d, *J* = 10.2 Hz, 1H), 5.05 (d, *J* = 17.1 Hz, 1H), 3.39 (dd, *J* = 12.2, 7.2 Hz, 1H), 2.60 (dd, *J* = 16.8, 4.7 Hz, 1H), 2.51(dd, *J* = 16.8, 8.1 Hz, 1H), 2.48 (s, 3H).¹³**C NMR** (151 MHz, CDCl₃) δ 153.6, 147.4, 144.3, 140.7, 137.5, 136.5, 136.3, 135.7, 133.3, 129.7, 129.0, 128.8, 127.7, 127.2, 127.0, 126.8, 126.4, 125.9, 125.2, 120.5, 118.1, 39.8, 34.4, 21.7. **HRMS (APCI)** (m/z): [M+H]⁺ Calcd. for C₃₀H₂₇N₂O₂S⁺ 479.1788; found: 479.1771. [α]_D²⁰ = -90.0 (c = 0.1, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IA, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 14.4 min and t_{R2}: 24.8 min).

(R,E)-N-(4-fluorophenyl)-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3ea** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (66% yield, 55.1 mg, 99% *ee*) . m.p. 149 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.87 (d, *J* = 8.3 Hz, 2H), 7.62 – 7.57 (m, 1H), 7.30 – 7.23 (m, 3H), 7.12 (m, *J* = 19.4, 13.0, 3.8 Hz, 2H), 6.87 – 6.80 (m, 2H), 6.33 – 6.22 (m, 2H), 5.64 (ddd, *J* = 17.2, 10.2, 7.0 Hz, 1H), 5.07 (d, *J* = 10.2 Hz, 1H), 4.94 (d, *J* = 17.1 Hz, 1H), 3.29 (dd, *J* = 12.1, 7.3 Hz, 1H), 2.44 (dd, *J* = 16.8, 4.7 Hz, 1H), 2.39

(s, 3H), 2.34 (dd, J = 16.8, 8.2 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 159.1 (d, J = 241.6 Hz), 153.2, 143.3 (d, J = 27.2 Hz), 136.5, 135.4, 134.5, 132.2, 128.6, 128.0(d, J = 9.1 Hz), 126.1, 125.3, 124.9, 124.1, 120.3 (d, J = 7.6 Hz), 117.0, 114.7 (d, J = 22.7 Hz)., 38.7, 33.3, 20.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -120.67.

HRMS (ESI) (m/z): $[M+Na]^+$ Calcd. for C₂₄H₂₁FN₂NaO₂S⁺ 443.1200; found: 443.1202. $[\alpha]_D{}^{20} = -33.0$ (c = 0.1, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 21.4 min and t_{R2}: 37.5 min).

(*R*,*E*)-N-(4-chlorophenyl)-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3fa** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (57% yield, 49.6 mg, 99% *ee*) . m.p. 115 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, J = 8.3 Hz, 2H), 7.68 (d, J = 8.1 Hz, 1H), 7.31 – 7.37 (m, 3H), 7.21 – 7.23 (m, 1H), 7.19 – 7.16 (m, 3H), 6.39 – 6.26 (m, 2H), 5.71 (ddd, J = 17.2, 10.2, 7.0 Hz, 1H), 5.16 (d, J = 10.3 Hz, 1H), 5.03 (d, J = 17.1 Hz, 1H), 3.37 (dd, J = 12.2, 7.3 Hz, 1H), 2.51 (dd, J = 16.8, 4.7 Hz, 1H), 2.47 (s, 3H), 2.42 (dd, J = 16.8, 8.1 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 154.1, 146.7, 144.3, 137.4, 136.4, 135.5, 133.2, 132.7, 129.6, 129.1, 129.0, 128.7, 127.2, 126.4, 126.0, 125.1, 121.4, 118.1, 39.7, 34.3, 21.7.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for $C_{24}H_{22}IN_2O_2S^+$ 437.1085; found: 437.1082. $[\alpha]_D{}^{20} = -6.4$ (c = 0.1, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 19.2 min and t_{R2}: 32.2 min).

(R,E)-N-(4-bromophenyl)-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3ga** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (37% yield, 35.9 mg, 99% *ee*) . m.p. 179 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 8.3 Hz, 2H), 7.70 – 7.66 (m, 1H), 7.38 – 7.31 (m, 5H), 7.21 – 7.24 (m, 1H), 7.18 (d, *J* = 7.0 Hz, 1H), 6.31 – 6.23 (m, 2H), 5.71 (ddd, *J* = 17.2, 10.2, 7.0 Hz, 1H), 5.16 (d, *J* = 10.3 Hz, 1H), 5.03 (d, *J* = 17.1, 1H), 3.37 (dd, *J* = 12.2, 7.3 Hz, 1H), 2.51 (dd, *J* = 16.8, 4.7 Hz, 1H), 2.47 (s, 3H), 2.41 (dd, *J* = 16.8, 8.1 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 154.0, 147.1, 144.4, 137.4, 136.3, 135.5, 133.1, 132.0, 129.6, 129.0, 127.2, 126.4, 126.0, 125.1, 121.8, 118.1, 116.3, 77.2, 77.0, 76.8, 39.7, 34.3, 21.7.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for C₂₄H₂₂BrN₂O₂S⁺ 481.0586; found: 481.0596. [α]_D²⁰ = -4.7 (c = 0.2, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 21.3 min and t_{R2}: 33.9 min).

Methyl(*R*,*E*)-4-((1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-ylidene)amino)benzoate

Prepared following general procedure the product **3ha** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (53% yield, 48.8 mg, 88% *ee*) . m.p. 162 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.85 (dd, *J* = 12.6, 8.3 Hz, 4H), 7.62 (d, *J* = 8.1 Hz, 1H), 7.31 – 7.22 (m, 3H), 7.21 – 7.07 (m, 2H), 6.35 (d, *J* = 8.3 Hz, 2H), 5.63 (ddd, *J* = 17.1, 10.2, 6.9 Hz, 1H), 5.08 (d, *J* = 10.2 Hz, 1H), 4.95 (d, *J* = 17.1 Hz, 1H), 3.80 (s, 3H), 3.30 (dd, *J* = 12.2, 7.0 Hz, 1H), 2.43 (dd, *J* = 16.8, 4.7 Hz, 1H), 2.40 (s, 3H), 2.33

(dd, J = 16.8, 8.0 Hz, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 166.9, 153.5, 152.4, 144.5, 137.2, 136.3, 135.4, 133.0, 130.9, 129.7, 129.1, 127.3, 126.5, 126.1, 125.2, 125.1, 119.9, 118.2, 52.0, 39.7, 34.5, 21.7.

HRMS (ESI) (m/z): $[M+Na]^+$ Calcd. for C₂₆H₂₄FN₂NaO₂S⁺ 483.1349; found: 483.1346. $[\alpha]_D^{20} = -21.5$ (c = 0.1, CH₂Cl₂). **HPLC** analysis: 88% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 32.7 min and t_{R2}: 64.8 min).

(R,E)-N-(2-chlorophenyl)-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3ia** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (38% yield, 33.4 mg, 99% *ee*) . m.p. 189 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, J = 8.2 Hz, 2H), 7.61 (d, J = 8.2 Hz, 1H), 7.31 – 7.26 (m, 1H), 7.24 – 7.20 (m, 3H), 7.19 – 7.12 (m, 2H), 7.04 – 7.07 (m, 1H), 6.87 – 6.89 (m, 1H), 6.38 (d, J = 7.4 Hz, 1H), 5.70 (ddd, J = 17.2, 10.2, 7.1 Hz, 1H), 5.12 (d, J = 10.2 Hz, 1H), 5.02 (d, J = 17.1 Hz, 1H), 3.36 (dd, J = 11.8, 7.4 Hz, 1H), 2.43 (dd, J = 16.7, 4.4 Hz, 1H), 2.38 (s, 3H), 2.30 ((dd, J = 16.8, 8.1 Hz, 1H)). ¹³C NMR (151 MHz, CDCl₃) δ 153.9, 144.3, 143.2, 136.6, 135.4, 134.7, 132.3, 128.8, 128.4, 128.1, 126.4, 126.1, 125.3, 124.8, 123.8, 123.4, 123.2, 120.4, 117.1, 38.6, 34.0, 20.6.

HRMS (ESI) (m/z): $[M+Na]^+$ Calcd. for $C_{24}H_{21}CIN_2NaO_2S^+$ 459.0904, found: 459.0902. $[\alpha]_D^{20} = -5.6$ (c = 0.1, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 20.5 min and t_{R2}: 34.8 min).

(R,E)-N-(2-fluorophenyl)-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3ja** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (56% yield, 50.3 mg, 99% *ee*) . m.p. 105 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.87 (d, *J* = 8.3 Hz, 2H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.25 – 7.28 (m, *J* = 8.0, 1.5 Hz, 1H), 7.23 (d, *J* = 8.1 Hz, 2H), 7.18 – 7.12 (m, 1H), 7.10 (d, *J* = 6.7 Hz, 1H), 6.95 – 6.88 (m, 3H), 6.41 – 6.43(m, *J* = 12.1, 4.6 Hz, 1H), 5.65 (ddd, *J* = 17.2, 10.2, 7.1 Hz, 1H), 5.07 (d, *J* = 10.2 Hz, 1H), 4.96 (d, *J* = 17.1 Hz, 1H), 3.29 (dd, *J* = 12.1, 7.5 Hz, 1H), 2.45 (dd, *J* = 16.8, 4.5 Hz, 1H), 2.38 (s, 3H), 2.35 (dd, *J* = 16.8, 8.0 Hz, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ 154.6, 152.4 (d, J = 244.6 Hz), 143.3, 136.4, 135.4, 134.6 (d, J = 30.2 Hz), 134.5 (d, J = 13.6 Hz), 132.3, 128.5, 128.0, 126.1, 125.3, 124.9, 124.1, 123.5 (d, J = 7.5 Hz), 123.3 (d, J = 4.5 Hz), 121.9, 117.0, 115.0 (d, J = 19.6 Hz), 38.5, 33.7, 20.7. ¹⁹**F NMR** (565 MHz, CDCl₃) δ -125.93.

HRMS (ESI) (m/z): $[M+Na]^+$ Calcd. for C₂₄H₂₁FN₂NaO₂S⁺ 443.1200; found: 443.1202. $[\alpha]_D^{20} = -126.0$ (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 12.8 min and t_{R2}: 19.6 min).

(R,E)-N-(3-fluorophenyl)-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3ka** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (52% yield, 46.5 mg, 99% *ee*) . m.p. 117 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, *J* = 8.3 Hz, 2H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.29 - 7.22 (m, 3H), 7.19 - 7.12 (m, 1H), 7.12 - 7.06 (m, 2H), 6.62 - 6.65 (m,
1H), 6.12 – 6.13 (m, 1H), 5.98 – 6.00 (m, 1H), 5.64 (ddd, J = 17.2, 10.2, 7.0 Hz, 1H), 5.08 (d, J = 10.3 Hz, 1H), 4.96 (d, J = 17.1 Hz, 1H), 3.30 (dd, J = 12.2, 7.2 Hz, 1H), 2.44 (dd, J = 16.8, 4.7 Hz, 1H), 2.40 (s, 3H), 2.35 (dd, J = 16.8, 8.0 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 162.9 (d, J = 247.6 Hz), 153.0, 148.8 (d, J = 9.1 Hz) 143.4, 136.3, 135.4, 134.5, 132.1, 129.2 (d, J = 9.1 Hz), 128.6, 128.0, 126.2, 125.4, 124.9, 124.1, 117.1, 114.8 (d, J = 1.5 Hz), 109.1 (d, J = 21.2 Hz), 106.4 (d, J = 22.9 Hz), 38.6, 33.3, 20.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.81. HRMS (APCI) (m/z): [M+H]⁺ Calcd. for C₂₄H₂₂FN₂NaO₂S⁺ 421.1381; found: 421.1381. [α]_D²⁰ = -19.4 (c = 0.1, CH₂Cl₂). HPLC analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 12.0 min and t_{R2}: 22.0 min).

(*R*,*E*)-N-(o-tolyl)-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3la** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (40% yield, 33.3 mg, 99% *ee*) . m.p. 61 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.04 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 8.1 Hz, 1H), 7.30 – 7.35 (m, 3H), 7.23 – 7.12 (m, 3H), 7.04 – 7.07 (m, 1H), 6.96 (d, J = 10.2, 1H), 6.28 (d, J = 7.5 Hz, 1H), 5.81 (ddd, J = 17.2, 10.2, 7.0 Hz, 1H), 5.21 (d, J = 10.2, 1H), 5.11 (d, J = 17.1, 1H), 3.45 (dd, J = 12.2, 7.3 Hz, 1H)), 2.50 (dd, J = 16.8, 4.7 Hz, 1H), 2.44 (s, 3H), 2.38 (dd, J = 16.8, 8.1 Hz, 1H), 1.97 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 153.2, 147.1, 144.0, 138.3, 136.5, 136.1, 133.7, 130.5, 129.2, 129.0, 128.2, 127.2, 126.5, 126.4, 125.8, 124.6, 123.4, 119.2, 118.1, 40.1, 35.0, 21.7, 17.7.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for C₂₅H₂₅N₂O₂S⁺ 417.1631; found: 417.1638. [α]_D²⁰ = -18.5 (c = 0.1, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 15.1 min and t_{R2}: 21.2 min). (R,E)-1-tosyl-N-(3-(trifluoromethyl)phenyl)-4-vinyl-3,4-dihydroquinolin-2(1H)-imi

Prepared following general procedure the product **3ma** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (79% yield, 65.2 mg, 99% *ee*) . m.p. 117 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 8.3 Hz, 2H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.39 – 7.32 (m, 4H), 7.22 – 7.27 (m, 2H), 7.19 (d, *J* = 7.1 Hz, 1H), 6.64 (d, *J* = 7.9 Hz, 1H), 6.42 (s, 1H), 5.72 (ddd, *J* = 17.2, 10.2, 6.9 Hz, 1H), 5.19 (d, *J* = 10.3 Hz, 1H), 5.04 (d, *J* = 17.1 Hz, 1H), 3.40 (dd, *J* = 12.3, 7.1 Hz, 1H), 2.52 – 2.49 (dd, *J* = 16.8, 4.7 Hz, 1H), 2.48 (s, 3H), 2.41 (dd, *J* = 16.8, 8.1 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 154.2, 148.4, 144.7, 137.2, 136.4, 135.4, 132.9, 129.7, 129.6, 129.1, 127.3, 126.5, 126.1, 125.1, 123.5, 120.1, 118.3, 117.0, 39.6, 34.3, 21.6. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.81.

HRMS (ESI) (m/z): $[M+Na]^+$ Calcd. for $C_{25}H_{21}F_3N_2NaO_2S^+$ 493.1168; found: 493.1176. $[\alpha]_D{}^{20} = -24.6$ (c = 0.1, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 9.2 min and t_{R2}: 15.5 min).

(*R*,*E*)-N-(naphthalen-2-yl)-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **3na** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (70% yield, 64.0 mg, 99% *ee*) . m.p. 174 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, *J* = 8.2 Hz, 2H), 7.75 (d, *J* = 8.1 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 2H), 7.63 (d, *J* = 8.2 Hz, 1H), 7.40 – 7.43 (m, 1H), 7.33 – 7.37 (m, 4H), 7.20 – 7.24 (m, 1H), 7.17 (d, *J* = 7.3 Hz, 1H), 6.77 (s, 1H), 6.60 – 6.62 (m,

1H), 5.71 (ddd, J = 17.2, 10.2, 7.0 Hz, 1H), 5.14 (d, J = 10.2 Hz, 1H), 5.02 (d, J = 17.1 Hz, 1H), 3.38 (d, J = 4.9 Hz, 1H), 2.57 (dd, J = 16.9, 4.7 Hz, 1H), 2.49 (s, 3H), 2.42 (dd, J = 16.8, 8.1 Hz, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 153.9, 145.8, 144.3, 137.6, 136.5, 135.7, 134.0, 133.4, 130.4, 129.7, 129.1, 128.9, 127.8, 127.2, 127.2, 126.4, 126.4, 126.0, 125.1, 124.6, 121.1, 118.1, 116.0, 39.8, 34.6, 21.8.

HRMS (ESI) (m/z): $[M+Na]^+$ Calcd. for C₂₈H₂₄N₂NaO₂S⁺ 475.1451; found: 475.1468. [α]_D²⁰ = -18.6 (c = 0.5, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 20.0 min and t_{R2}: 33.3 min).

(R,E)-N-(naphthalen-1-yl)-1-tosyl-4-vinyl-3,4-dihydroquinolin-2(1H)-imine

Prepared following general procedure the product **30a** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 20:1) on silica gel to provide the title compound as a white solid (51% yield, 46.4 mg, 99% *ee*) . m.p. 159 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.10 (d, J = 8.3 Hz, 2H), 7.79 (d, J = 8.2 Hz, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.53 – 7.55 (m, 2H), 7.43 – 7.46(m, 1H), 7.38 – 7.30 (m, 3H), 7.28 (d, J = 8.3 Hz, 2H), 7.19 – 7.22 (m, 1H), 7.16 (d, J = 6.9 Hz, 1H), 6.48 (d, J = 7.2 Hz, 1H), 5.74 (ddd, J = 17.1, 10.2, 6.9 Hz, 1H), 5.16 (d, J = 16.9, 4.7 Hz, 1H), 2.46 (dd, J = 16.8, 8.1 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 154.3, 144.8, 144.2, 138.2, 136.4, 136.0, 134.2, 133.7, 129.3, 129.3, 127.7, 127.2, 126.6, 126.5, 126.3, 125.9, 125.8, 125.5, 124.6, 124.1, 123.5, 118.2, 114.6, 40.0, 35.0, 21.7.

HRMS (ESI) (m/z): $[M+Na]^+$ Calcd. for C₂₈H₂₄N₂NaO₂S⁺ 475.1451; found: 475.1468. [α]_D²⁰ = -47.0 (c = 0.1, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 10.2 min and t_{R2}: 13.2 min).

7. General Procedure for Synthesis of 4

In the glove box, $[Ir(cod)Cl]_2$ (2.5 mol%, 1.7 mg) and (*R*)-L (10 mol%, 5 mg) were added to a screw-capped glass vial fitted with a magnetic stirring bar, 0.5 mL of chlorobenzene was added and stirred for 15 min. To the mixture was added 1 (0.1 mmol, 1.0 eq.), Sc(OTf)₃ (10 mol%, 5 mg), 2 (0.15 mmol, 1.5 eq.) and CH₃COOH (15 uL, 0.25 mmol). The reaction was stirred at 25 °C for 1 h with the stopper tightly closed. The resulting mixture was filtered through celite, concentrated in vacuo and then purified via silica gel flash column chromatography to afford the product 4.

(R)-3-(2-((4-methylphenyl)sulfonamido)phenyl)-N-phenylpent-4-enamide

Prepared following general procedure the product **4aa** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a white solid (93% yield, 39.1 mg, 99% *ee*) . m.p. 170 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.33 (s, 1H), 7.64 (d, *J* = 8.2 Hz, 2H), 7.55 (s, 1H), 7.39 (d, *J* = 7.9 Hz, 2H), 7.33 – 7.16 (m, 6H), 7.15 – 6.99 (m, 4H), 5.56 – 5.34 (m, 1H), 4.96 (d, *J* = 10.5 Hz, 1H), 4.85 (d, *J* = 17.3 Hz, 1H), 4.01 – 3.79 (m, 1H), 2.91 (dd, *J* = 15.2, 4.3 Hz, 1H), 2.57 (dd, *J* = 15.2, 10.4 Hz, 1H), 2.36 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 167.62, 140.96, 136.80, 134.86, 134.79, 134.75, 131.68, 127.13, 126.40, 126.07, 125.10, 124.69, 124.44, 121.99, 117.47, 111.87, 39.98, 36.02, 18.97.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for $C_{25}H_{24}N_2O_3S^+$ 421.1580, found: 421.1591. $[\alpha]_D^{20} = + 113.3$ (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 19.1 min and t_{R2}: 21.7 min).

(R) - 3 - (5 - methoxy - 2 - ((4 - methylphenyl) sulfonamido) phenyl) - N - phenylpent - 4 - enamide

Prepared following general procedure the product **4ab** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a viscous liquid (81% yield, 36.3 mg, 99% *ee*) . ¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.81 (s, 1H), 7.60 (d, *J* = 8.2 Hz, 2H), 7.41 (d, *J* = 7.7 Hz, 2H), 7.27 – 7.16 (m, 4H), 7.12 (d, *J* = 8.7, 1H), 7.05 (t, *J* = 7.4 Hz, 1H), 6.69 – 6.57 (m, 2H), 5.38 – 5.30 (m, 1H), 4.92 (d, *J* = 10.5 Hz, 1H), 4.82 (d, *J* = 17.3 Hz, 1H), 3.88 – 3.79 (m, 1H), 3.70 (s, 3H), 2.85 (dd, *J* = 15.2, 4.8 Hz, 1H), 2.55 (dd, *J* = 15.1, 10.0 Hz, 1H), 2.37 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 170.2, 158.6, 143.4, 140.3, 139.1, 137.6, 137.0, 129.7, 129.5, 128.9, 127.3, 126.6, 124.4, 120.0, 114.4, 114.0, 112.4, 55.35, 42.6, 38.7, 21.5.

HRMS (APCI) (m/z): $[M+Na]^+$ Calcd. for C₂₆H₂₅N₂NaO₄S⁺ 473.1505, found: 473.1513. $[\alpha]_D^{20} = +$ 186.1 (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 22.0 min and t_{R2}: 23.9 min).

Prepared following general procedure the product **4ac** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a viscous liquid (85% yield, 37.1 mg, 99% *ee*) . ¹**H NMR** (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.64 (d, *J* = 8.2 Hz, 2H), 7.60 (s, 1H), 7.40 (d, *J* = 7.7 Hz, 2H), 7.26 - 7.19 (m, 4H), 7.10 - 7.06 (m, 2H), 6.96 - 6.86 (m, 2H), 5.49 -

5.40 (m, 1H), 4.96 (d, J = 10.5 Hz, 1H), 4.85 (d, J = 17.4 Hz, 1H), 3.93 – 3.82 (m, 1H), 2.88 (dd, J = 15.1, 4.7 Hz, 1H), 2.57 (dd, J = 15.1, 10.1 Hz, 1H), 2.37 (s, 3H), 2.23 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 170.3, 143.4, 139.5, 137.6, 137.5, 137.2, 137.0, 131.4, 129.7, 129.0, 128.9, 128.4, 127.3, 124.4, 120.0, 114.3, 42.5, 38.6, 21.5, 21.1.

HRMS (**APCI**) (m/z): $[M+Na]^+$ Calcd. for C₂₆H₂₅N₂NaO₃S⁺ 457.1556, found: 457.1551. $[\alpha]_D^{20} = +$ 142.8 (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 16.6 min and t_{R2}: 18.6 min).

(*R*)-3-(4-((4-methylphenyl)sulfonamido)-[1,1'-biphenyl]-3-yl)-N-phenylpent-4-enamide

Prepared following general procedure the product **4ad** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a white solid (74% yield, 37.5 mg, 99% *ee*) . m.p. 138 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 7.69 (d, *J* = 8.0 Hz, 2H), 7.53 (s, 1H), 7.48 (d, *J* = 7.8 Hz, 2H), 7.44 – 7.28 (m, 8H), 7.28 – 7.18 (m, 4H), 7.06 (t, *J* = 7.4 Hz, 1H), 5.55 – 5.43 (m, 1H), 4.99 (d, *J* = 10.5 Hz, 1H), 4.89 (d, *J* = 17.4 Hz, 1H), 4.00 – 3.87 (m, 1H), 2.96 (dd, *J* = 15.3, 4.2 Hz, 1H), 2.62 (dd, *J* = 15.3, 10.4 Hz, 1H), 2.37 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 170.3, 143.5, 140.1, 139.6, 139.3, 137.7, 137.4, 137.3, 133.5, 129.7, 129.0, 128.8, 127.5, 127.2, 127.0, 126.3, 124.6, 120.0, 114.5, 42.5, 38.4, 21.5.

HRMS (APCI) (m/z): $[M+Na]^+$ Calcd. for $C_{30}H_{28}N_2NaO_3S^+$ 519.1713, found: 519.1719. $[\alpha]_D^{20} = +$ 114.8 (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 21.1 min and t_{R2}: 26.4 min).

A colorless stick-shaped crystal of **4ad** for X-ray diffraction was obtained by slowly volatilizing a saturated solution of **4ad** in hexane/ dichloromethane (3:1).

Figure S2. Crystal data and structure refinement for 4ad (CCDC) is available from

the Cambridge Crystallographic Data Centre (CCDC). Displacement ellipsoids are drawn at the 50% probability level.

Identification code	exp_7419_auto
Empirical formula	$C_{30}H_{28}N_2O_3S$
Formula weight	496.60
Temperature/K	301.1(2)
Crystal system	orthorhombic
Space group	P212121
a/Å	8.59150(10)
b/Å	15.2029(3)
c/Å	23.0299(3)
a/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	3008.07(8)
Z	4

$ ho_{calc}g/cm^3$	1.097
μ/mm^{-1}	1.189
F(000)	1048.0
Crystal size/mm ³	$0.25\times0.14\times0.12$
Radiation	Cu Ka (λ = 1.54184)
2Θ range for data collection/° 7.678 to 151.412	
Index ranges	$\text{-10} \le h \le 10, \text{-18} \le k \le 19, \text{-20} \le l \le 28$
Reflections collected	17693
Independent reflections	5982 [$R_{int} = 0.0294$, $R_{sigma} = 0.0333$]
Data/restraints/parameters	5982/3/330
Goodness-of-fit on F ²	1.043
Final R indexes [I>= 2σ (I)]	$R_1=0.0470,wR_2=0.1386$
Final R indexes [all data]	$R_1 = 0.0509, wR_2 = 0.1423$
Largest diff. peak/hole / e Å ⁻³ 0.18/-0.17	
Flack parameter	0.024(10)

(R)-3-(5-chloro-2-((4-methylphenyl)sulfonamido)phenyl)-N-phenylpent-4-enamide

Prepared following general procedure the product **4ae** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a viscous liquid (88% yield, 40.0 mg, 99% *ee*) . ¹**H NMR** (400 MHz, CDCl₃) δ 8.71 (s, 1H), 7.68 – 7.54 (m, 3H), 7.41 (d, *J* = 7.8 Hz, 2H), 7.32 – 7.22 (m, 3H), 7.19 (d, *J* = 8.2 Hz, 2H), 7.11 – 7.05 (m, 2H), 7.01 (d, *J* = 2.4 Hz, 1H), 5.35 – 5.20 (m, 1H), 4.94 (d, *J* = 10.5 Hz, 1H), 4.79 (d, *J* = 17.4 Hz, 1H), 3.86 – 3.66 (m, 1H), 2.92 (dd, *J* = 15.7, 3.8 Hz, 1H), 2.51 (dd, *J* = 15.7, 10.6 Hz, 1H), 2.36 (s,

3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.1, 143.7, 139.5, 138.6, 137.3, 137.0, 132.9, 132.3, 129.8, 129.0, 128.5, 127.8, 127.1, 124.7, 120.1, 114.7, 42.3, 37.7, 21.5.

HRMS (APCI) (m/z): $[M+Na]^+$ Calcd. for C₂₅H₂₃ClN₂NaO₃S⁺ 477.1010, found: 477.1017. $[\alpha]_D^{20} = +$ 174.5 (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 15.6 min and t_{R2}: 17.9 min).

$$(R) - 3 - (5 - bromo - 2 - ((4 - methyl phenyl) sulfon a mido) phenyl) - N - phenyl pent - 4 - en a mide (R) - 3 - ((4 - methyl phenyl) sulfon a mido) phenyl) - N - phenyl pent - 4 - en a mide (R) - 3 - ((4 - methyl phenyl) sulfon a mido) phenyl) - N - phenyl pent - 4 - en a mide (R) - 3 - ((4 - methyl phenyl) sulfon a mido) phenyl) - N - phenyl pent - 4 - en a mide (R) - 3 - ((4 - methyl phenyl) sulfon a mido) phenyl) - N - phenyl pent - 4 - en a mide (R) - 3 - ((4 - methyl phenyl) sulfon a mido) phenyl) - N - phenyl pent - 4 - en a mide (R) - 3 - ((4 - methyl phenyl) sulfon a mido) phenyl) - N - phenyl pent - 4 - en a mide (R) - 3 - ((4 - methyl phenyl) sulfon a mido) phenyl) - N - phenyl pent - 4 - en a mide (R) - 3 - ((4 - methyl phenyl) sulfon a mido) phenyl) - N - phenyl pent - 4 - en a mide (R) - 3 - ((4 - methyl phenyl) sulfon a mido) phenyl) - N - phenyl pent - 4 - en a mide (R) - 3 - ((4 - methyl phenyl) sulfon a mido) phenyl) - N - phenyl pent - 4 - en a mide (R) - 3 - ((4 - methyl phenyl) sulfon a mido) phenyl) - N - phenyl pent - 4 - en a mide (R) - 3 - ((4 - methyl phenyl) sulfon a mido) phenyl) - N - phenyl pent - 4 - en a mide (R) - 3 - ((4 - methyl phenyl) sulfon a mido) phenyl) - N - phenyl pent - 4 - en a mide (R) - 3 - ((4 - methyl phenyl) sulfon a mido) phenyl) - N - phenyl pent - 4 - en a mide (R) - 3 - ((4 - methyl phenyl) sulfon a mido) phenyl) - N - phenyl pent - 4 - en a mide (R) - ((4 - methyl phenyl) sulfon a mido) phenyl) - N - phenyl pent - 4 - en a mide (R) - ((4 - methyl phenyl) sulfon a mido) phenyl pent - 4 - en a mide (R) - ((4 - methyl phenyl) sulfon a mido) phenyl pent - 4 - en a mide (R) - ((4 - methyl phenyl pent - 4 - en a mide (R) - ((4 - methyl phenyl pent - 4 - en a mide (R) - ((4 - methyl phenyl pent - 4 - en a mide (R) - ((4 - methyl pent - 4 - en a mide (R) - ((4 - methyl pent - 4 - en a mide (R) - ((4 - methyl pent - 4 - en a mide (R) - ((4 - methyl pent - 4 - en a mide (R) - ((4 - methyl pent - 4 - en a mide (R) - ((4 - methyl pent - 4 - en a mide (R) - ((4 - me$$

Prepared following general procedure the product **4af** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a viscous liquid (80% yield, 39.9 mg, 99% *ee*) . ¹**H NMR** (400 MHz, CDCl₃) δ 8.68 (s, 1H), 7.63 (d, *J* = 8.2 Hz, 2H), 7.55 (s, 1H), 7.40 (d, *J* = 7.9 Hz, 2H), 7.30 – 7.22 (m, 4H), 7.23 – 7.15 (m, 3H), 7.10 – 7.06 (m, 1H), 5.35 – 5.23 (m, 1H), 4.95 (d, *J* = 10.5 Hz, 1H), 4.80 (d, *J* = 17.3 Hz, 1H), 3.82 – 3.71 (m, 1H), 2.93 (dd, *J* = 15.7, 3.8 Hz, 1H), 2.51 (dd, *J* = 15.7, 10.6 Hz, 1H), 2.37 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 170.0, 143.7, 139.7, 138.6, 137.2, 137.0, 133.5, 131.4, 130.7, 129.8, 129.0, 128.7, 127.1, 124.7, 120.3, 120.1, 114.8, 42.3, 37.6, 21.5.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for C₂₅H₂₄BrN₂O₃S⁺ 499.0686, found: 499.0678. [α]_D²⁰ = + 145.8 (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 16.1 min and t_{R2}: 18.6 min).

(R)-3-(4-methyl-2-((4-methylphenyl)sulfonamido)phenyl)-N-phenylpent-4-enamide

Prepared following general procedure the product **4ag** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a white solid (65% yield, 28.4 mg, 94% *ee*) . m.p. 189 °C ¹**H** NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.64 (d, *J* = 8.2 Hz, 2H), 7.49 (s, 1H), 7.40 (d, *J* = 7.8 Hz, 2H), 7.29 – 7.16 (m, 5H), 7.09 – 7.04 (m, 2H), 6.98 – 6.90 (m, 2H), 5.48 – 5.31 (m, 1H), 4.94 (d, *J* = 10.5 Hz, 1H), 4.81 (d, *J* = 17.4 Hz, 1H), 3.89 – 3.75 (m, 1H), 2.89 (dd, *J* = 15.3, 4.3 Hz, 1H), 2.53 (dd, *J* = 15.2, 10.5 Hz, 1H), 2.37 (s, 3H), 2.22 (s, 3H). ¹³**C** NMR (151 MHz, CDCl₃) δ 170.3, 143.4, 139.5, 137.5, 137.3, 134.2, 133.9, 129.6, 128.9, 128.3, 127.9, 127.6, 127.2, 124.5, 120.0, 114.1, 42.5, 38.1, 21.5, 21.0.

HRMS (APCI) (m/z): $[M+Na]^+$ Calcd. for $C_{26}H_{25}N_2NaO_3S^+$ 457.1556, found: 457.1551. $[\alpha]_D{}^{20} = +$ 143.8 (c = 1.0, CH₂Cl₂). **HPLC** analysis: 94% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 16.9 min and t_{R2}: 19.6 min).

(R)-3-(4-chloro-2-((4-methylphenyl)sulfonamido)phenyl)-N-phenylpent-4-enamide

Prepared following general procedure the product **4ah** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a white solid (55% yield, 25.5 mg, 99% *ee*) . m.p. 145 °C ¹H NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H), 7.65 (d, *J* = 8.2 Hz, 2H), 7.51 (s, 1H), 7.40 – 7.35 (m, 3H), 7.27 – 7.24 (m, 2H), 7.19 (d, *J* = 8.2 Hz, 2H), 7.13 – 7.03 (m,

2H), 6.98 (d, J = 8.4 Hz, 1H), 5.40 – 5.27 (m, 1H), 4.95 (d, J = 10.5 Hz, 1H), 4.80 (d, J = 17.4 Hz, 1H), 3.87 – 3.71 (m, 1H), 2.93 (dd, J = 15.6, 3.7 Hz, 1H), 2.51 (dd, J = 15.6, 10.8 Hz, 1H), 2.37 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 170.1, 143.7, 138.9, 137.2, 137.0, 135.5, 135.5, 132.9, 130.0, 129.7, 129.0, 127.2, 126.8, 126.4, 124.7, 120.0, 114.6, 42.3, 37.5, 21.5.

HRMS (APCI) (m/z): $[M+Na]^+$ Calcd. for C₂₅H₂₃ClN₂NaO₃S⁺ 477.1010, found: 477.1017. $[\alpha]D^{20} = +$ 125.9 (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 18.0 min and t_{R2}: 20.4 min).

(R)-3-(4-fluoro-2-((4-methylphenyl)sulfonamido)phenyl)-N-phenylpent-4-enamide

Prepared following general procedure the product **4ai** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a white solid (61% yield, 25.8 mg, 99% *ee*) . m.p. 172 °C ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 7.67 (d, *J* = 8.1 Hz, 2H), 7.52 (s, 1H), 7.39 (d, *J* = 8.3 Hz, 2H), 7.27 – 7.23 (m, 2H), 7.19 (d, *J* = 8.2 Hz, 2H), 7.11 – 7.05 (m, 2H), 7.03 – 6.99 (m, 2H), 6.82 – 6.77 (m, 2H), 5.44 – 5.32 (m, 1H), 4.96 (d, *J* = 10.5 Hz, 1H), 4.82 (d, *J* = 17.4 Hz, 1H), 3.87 – 3.75 (m, 1H), 2.94 (dd, *J* = 15.5, 3.7 Hz, 1H), 2.52 (dd, *J* = 15.5, 10.8 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.3, 161.4 (d, *J* = 246.3 Hz), 143.7, 139.2, 137.2, 137.0, 135.8 (d, *J* = 10.7 Hz), 132.3, 129.8, 129.0, 127.1, 124.7, 120.1, 114.4, 113.6 (d, *J* = 21.2 Hz), 113.0 (d, *J* = 24.1 Hz), 42.3, 37.4, 21.5. ¹⁹F NMR (565 MHz, CDCl₃) δ -113.6.

HRMS (APCI) (m/z): $[M+Na]^+$ Calcd. for $C_{25}H_{23}FN_2NaO_3S^+$ 461.1306, found: 461.1305. $[\alpha]_D^{20} = +$ 134.2 (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 18.0 min and t_{R2}: 20.4 min).

(R)-3-(3-((4-methylphenyl)sulfonamido)naphthalen-2-yl)-N-phenylpent-4-enamide

Prepared following general procedure the product **4aj** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a viscous liquid (73% yield, 34.2 mg, 99% *ee*) . ¹**H NMR** (400 MHz, CDCl₃) δ 8.64 (d, *J* = 11.4 Hz, 1H), 7.77 (s, 1H), 7.72 – 7.59 (m, 5H), 7.55 (s, 1H), 7.41 – 7.36 (m, 4H), 7.23 – 7.12 (m, 4H), 7.04 – 7.01 (m, 1H), 5.60 – 5.44 (m, 1H), 5.00 (d, *J* = 10.5 Hz, 1H), 4.91 (d, *J* = 17.3 Hz, 1H), 4.03 – 3.96 (m, 1H), 3.01 (dd, *J* = 15.4, 4.3 Hz, 1H), 2.69 (dd, *J* = 15.4, 10.3 Hz, 1H), 2.34 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 170.4, 143.5, 139.6, 137.4, 137.3, 136.2, 1325, 132.4, 131.8, 129.7, 128.9, 128.1, 127.6, 127.2, 126.3, 126.0, 124.6, 124.5, 120.1, 114.3, 42.9, 38.3, 21.5.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for C₂₈H₂₇N₂O₃S⁺ 471.1737, found: 471.1733. [α]_D²⁰ = + 157.3 (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 21.8 min and t_{R2}: 25.4 min).

(R)-3-(2-((4-methylphenyl)sulfonamido)phenyl)-N-(p-tolyl)pent-4-enamide

Prepared following general procedure the product **4ba** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a white solid (99% yield, 43.1 mg, 99% *ee*) . m.p.

182 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.64 (d, J = 8.1 Hz, 2H), 7.46 (s, 1H), 7.29 – 7.25 (m, 3H), 7.19 (d, J = 8.0 Hz, 2H), 7.13 – 7.03 (m, 5H), 5.50 – 5.37 (m, 1H), 4.96 (d, J = 10.4 Hz, 1H), 4.84 (d, J = 17.4 Hz, 1H), 3.92 – 3.83 (m, 1H), 2.90 (dd, J = 15.2, 4.2 Hz, 1H), 2.54 (dd, J = 15.1, 10.4 Hz, 1H), 2.37 (s, 3H), 2.27 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.1, 143.4, 139.4, 137.4, 134.8, 134.3, 134.2, 129.7, 129.4, 128.6, 127.6, 127.2, 127.0, 126.9, 120.2, 114.3, 425, 38.4, 21.5, 20.9.

HRMS (APCI) (m/z): $[M+Na]^+$ Calcd. for C₂₆H₂₅N₂NaO₃S⁺ 457.1556, found: 457.1551. $[\alpha]_D^{20} = +$ 89.7 (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 17.4 min and t_{R2}: 20.9 min).

(R)-N-(4-ethylphenyl)-3-(2-((4-methylphenyl)sulfonamido)phenyl)pent-4-enamide

Prepared following general procedure the product **4ca** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a viscous liquid (83% yield, 37.6 mg, 99% *ee*) . ¹**H NMR** (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.70 – 7.56 (m, 3H), 7.32 – 7.25 (m, 3H), 7.18 (d, *J* = 6.9 Hz, 2H), 7.15 – 7.01 (m, 5H), 5.50 – 5.34 (m, 1H), 4.95 (d, *J* = 10.4 Hz, 1H), 4.83 (d, *J* = 17.3 Hz, 1H), 3.87 (s, 1H), 2.90 (d, *J* = 15.0 Hz, 1H), 2.64 – 2.49 (m, 3H), 2.36 (s, 3H), 1.18 (t, *J* = 8.7 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 170.3, 143.4, 140.6, 139.4, 137.4, 137.3, 135.1, 134.2, 129.7, 128.6, 128.2, 127.5, 127.2, 126.9, 120.3, 114.3, 42.4, 38.3, 28.3, 21.5, 15.7.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for $C_{26}H_{29}N_2O_3S^+$ 449.1893, found: 449.1908. $[\alpha]_D^{20} = + 147.6$ (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 15.3 min and t_{R2}: 19.1 min). (*R*)-*N*-([1,1'-biphenyl]-4-yl)-3-(2-((4-methylphenyl)sulfonamido)phenyl)pent-4-enamide

Prepared following general procedure the product **4da** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a yellow liquid (42% yield, 21.6 mg, 95% *ee*) .¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.68 (d, *J* = 8.1 Hz, 2H), 7.54 – 7.40 (m, 11H), 7.35 – 7.29 (m, 1H), 7.29 – 7.19 (m, 5H), 7.18 – 7.10 (m, 3H), 5.58 – 5.49 (m, 1H), 5.02 (d, *J* = 10.4 Hz, 1H), 4.90 (d, *J* = 17.4 Hz, 1H), 4.04 – 3.92 (m, 1H), 2.95 (dd, *J* = 14.9, 4.5 Hz, 1H), 2.62 (dd, *J* = 15.2, 10.4 Hz, 1H), 2.38 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 170.1, 143.5, 140.4, 139.3, 137.4, 137.3, 136.7, 134.2, 129.7, 128.8, 128.7, 127.7, 127.6, 127.3, 127.2, 127.1, 127.0, 126.9, 120.3, 114.6, 42.6, 38.9, 21.5.

HRMS (APCI) (m/z): $[M+Na]^+$ Calcd. for $C_{30}H_{28}N_2NaO_3S^+$ 519.1713, found: 519.1719. $[\alpha]_D{}^{20} = +$ 145.2 (c = 1.0, CH₂Cl₂). **HPLC** analysis: 95% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 27.2 min and t_{R2}: 31.3 min).

(R)-N-(4-fluorophenyl)-3-(2-((4-methylphenyl)sulfonamido)phenyl)pent-4-enamide

Prepared following general procedure the product **4ea** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel

to provide the title compound as a yellow liquid (91% yield, 40.2 mg, 99% ee) . ¹H

NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.72 (s, 1H), 7.63 (d, J = 8.3 Hz, 2H), 7.38 – 7.29 (m, 2H), 7.25 – 7.17 (m, 3H), 7.15 – 7.04 (m, 3H), 6.93 – 6.89 (m, 2H), 5.50 – 5.42 (m, 1H), 4.97 (d, J = 10.5 Hz, 1H), 4.85 (d, J = 17.9 Hz, 1H), 3.93 – 3.88 (m, 1H), 2.89 (dd, J = 15.2, 4.6 Hz, 1H), 2.60 (dd, J = 15.2, 10.3 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.3, 159.4 (d, J = 243.9 Hz), 143.6, 139.3, 137.3 (d, J = 51.1 Hz), 134.1, 133.5, 129.7, 128.7, 127.6, 127.2, 127.0 (d, J = 20.4 Hz), 121.9 (d, J = 7.7 Hz), 115.6, 115.4, 114.5, 42.3, 38.6, 21.5. ¹⁹F NMR (565 MHz, CDCl₃) δ -117.8.

HRMS (APCI) (m/z): $[M+Na]^+$ Calcd. for $C_{25}H_{23}FN_2NaO_3S^+$ 461.1306, found: 461.1305. $[\alpha]_D^{20} = +$ 164.1 (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 17.6 min and t_{R2}: 19.2 min).

(R)-N-(4-chlorophenyl)-3-(2-((4-methylphenyl)sulfonamido)phenyl)pent-4-enamide

Prepared following general procedure the product **4fa** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a yellow liquid (73% yield, 32.8 mg, 99% *ee*) . ¹**H NMR** (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.82 (s, 1H), 7.63 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.8 Hz, 2H), 7.24 – 7.14 (m, 5H), 7.13 – 7.07 (m, 3H), 5.57 – 5.41 (m, 1H), 4.97 (d, *J* = 10.5 Hz, 1H), 4.86 (d, *J* = 17.4 Hz, 1H), 3.98 – 3.84 (m, 1H), 2.89 (dd, *J* = 15.2, 4.7 Hz, 1H), 2.62 (dd, *J* = 15.2, 10.1 Hz, 1H), 2.38 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 170.4, 143.7, 139.2, 137.5, 137.1, 136.1, 134.1, 129.7, 129.4, 128.9, 128.7, 127.7, 127.2, 127.0, 121.2, 114.6, 42.4, 38.8, 21.5.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for C₂₅H₂₄ClN₂O₃S⁺ 455.1191, found: 455.1193. $[\alpha]_D^{20} = + 87.8$ (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 16.0 min and t_{R2}: 17.6 min).

(*R*)-*N*-(4-bromophenyl)-3-(2-((4-methylphenyl)sulfonamido)phenyl)pent-4enamide

Prepared following general procedure the product **4ga** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a white solid (58% yield, 29.3 mg, 99% *ee*) .m.p.178 $^{\circ}$ C ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.65 (d, *J* = 7.8 Hz, 3H), 7.38 – 7.19 (m, 6H), 7.16 – 7.09 (m, 4H), 5.61 – 5.44 (m, 1H), 5.01 (d, *J* = 10.4 Hz, 1H), 4.89 (d, *J* = 17.3 Hz, 1H), 3.97 – 3.94 (m, 1H), 2.90 (dd, *J* = 15.1, 4.7 Hz, 1H), 2.63 (dd, *J* = 15.0, 10.1 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.2, 143.7, 139.2, 137.5, 137.1, 136.6, 134.1, 131.9, 129.7, 128.8, 127.7, 127.2, 127.0, 121.5, 117.0, 114.7, 42.5, 39.1, 21.5.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for C₂₅H₂₄BrN₂O₃S⁺ 499.0686, found: 499.0678. [α]_D²⁰ = + 83.9 (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 18.5 min and t_{R2}: 20.3 min).

(*R*)-3-(2-((4-methylphenyl)sulfonamido)phenyl)-N-(4-(trifluoromethyl)phenyl)pent -4-enamide

Prepared following general procedure the product **4ha** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a viscous liquid (55% yield, 27.5 mg, 99% *ee*) . ¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.89 (s, 1H), 7.65 (d, *J* = 7.2 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.26 – 7.23 (m, 2H), 7.19 – 7.07 (m, 4H), 5.62 – 5.50 (m, 1H), 5.02 (d, *J* = 10.4 Hz, 1H), 4.92 (d, *J* = 17.4 Hz, 1H), 4.06 – 3.93 (m, 1H), 2.93 (dd, *J* = 14.9, 4.8 Hz, 1H), 2.71 (dd, *J* = 14.7, 10.1 Hz, 1H), 2.40 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 170.6, 143.9, 140.7, 139.1, 137.6, 137.0, 134.0, 13.0, 128.9, 127.7, 127.4, 127.3, 127.0, 126.1 (d, *J* = 3.5 Hz), 119.5, 114.9, 42.5, 39.3, 21.5. ¹⁹**F NMR** (565 MHz, CDCl₃) δ -62.1.

HRMS (**APCI**) (m/z): $[M+H]^+$ Calcd. for $C_{25}H_{24}F_3N_2O_3S^+$ 489.1454, found: 489.1466. $[\alpha]_D^{20} = +97.2$ (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 13.6 min and t_{R2}: 14.4 min).

(R)-3-(2-((4-methylphenyl)sulfonamido)phenyl)-N-(m-tolyl)pent-4-enamide

Prepared following general procedure the product **4ia** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a yellow liquid (96% yield, 42.2 mg, 99% *ee*) . ¹**H NMR** (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.64 (d, *J* = 8.1 Hz, 2H), 7.54 (s, 1H), 7.32 – 7.01 (m, 9H), 6.88 (d, *J* = 7.2 Hz, 1H), 5.49 – 5.38 (m, 1H), 4.95 (d, *J* = 10.5 Hz, 1H), 4.84 (d, *J* = 17.3 Hz, 1H), 3.96 – 3.77 (m, 1H), 2.90 (dd, *J* = 15.3, 4.2 Hz, 1H), 2.56 (dd, *J* = 15.2, 10.4 Hz, 1H), 2.37 (s, 3H), 2.27 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 170.2, 143.5, 139.4, 138.8, 137.5, 137.4, 137.3, 134.2, 129.7, 128.7, 128.6, 127.6, 127.2, 127.0, 125.3, 120.66, 117.2, 114.3, 42.5, 38.3, 21.5, 21.5.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for $C_{26}H_{26}N_2O_3S^+$ 435.1737, found: 435.1730. $[\alpha]_D^{20} = + 133.4$ (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 18.1 min and t_{R2}: 21.9 min).

(R)-N-(3-chlorophenyl)-3-(2-((4-methylphenyl)sulfonamido)phenyl)pent-4-enamide

Prepared following general procedure the product **4ja** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a yellow liquid (73% yield, 33.1 mg, 99% *ee*) . ¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (d, J = 16.9 Hz, 1H), 7.85 (d, J = 14.9 Hz, 1H), 7.65 (d, J = 8.2 Hz, 2H), 7.50 (s, 1H), 7.28 – 7.20 (m, 3H), 7.16 – 7.09 (m, 5H), 7.02 (d, J = 7.9 Hz, 1H), 5.60 – 5.41 (m, 1H), 4.99 (d, J = 10.5 Hz, 1H), 4.88 (d, J = 17.4 Hz, 1H), 3.95 – 3.94 (m, 1H), 2.90 (dd, J = 15.2, 4.9 Hz, 1H), 2.64 (dd, J = 15.2, 10.0 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.5, 143.7, 139.2, 138.7, 137.5, 137.1, 134.5, 134.1, 129.9, 129.8, 128.8, 127.7, 127.2, 127.0, 124.4, 120.0, 118.0, 114.7, 42.4, 39.0, 21.5.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for C₂₅H₂₄ClN₂O₃S⁺ 455.1191, found: 455.1193. [α]_D²⁰ = + 73.9 (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 15.4 min and t_{R2}: 16.9 min).

(R)-N-(3-fluorophenyl)-3-(2-((4-methylphenyl)sulfonamido)phenyl)pent-4-enamide

Prepared following general procedure the product **4ka** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a yellow liquid (60% yield, 26.7 mg, 99% *ee*) . ¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.75 (s, 1H), 7.67 (d, *J* = 6.4 Hz, 2H), 7.35 (d, *J* = 10.8 Hz, 1H), 7.29 – 7.03 (m, 9H), 6.76 (t, *J* = 8.2 Hz, 1H), 5.62 – 5.47 (m, 1H), 5.01 (d, *J* = 10.5 Hz, 1H), 4.90 (d, *J* = 17.5 Hz, 1H), 3.98 – 3.96 (m, 1H), 2.98 – 2.85 (m, 1H), 2.73 – 2.58 (m, 1H), 2.39 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 170.3, 162.9 (d, *J* = 245.1 Hz), 143.7, 139.2, 139.1 (d, *J* = 10.9 Hz), 137.5, 137.1, 134.1, 130.0 (d, *J* = 9.1 Hz), 129.7, 128.8, 127.7, 127.2, 126.9, 115.1, 114.7, 111.1 (d, *J* = 21.0 Hz), 107.4 (d, *J* = 26.2 Hz), 42.5, 39.0, 21.5. ¹⁹**F NMR** (565 MHz, CDCl₃) δ -111.5.

HRMS (APCI) (m/z): $[M+Na]^+$ Calcd. for $C_{25}H_{23}FN_2NaO_3S^+$ 461.1306, found: 461.1305. $[\alpha]_D{}^{20} = + 82.4$ (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 15.5 min and t_{R2}: 16.8 min).

Prepared following general procedure the product **4la** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a viscous liquid (78% yield, 34.1 mg, 99% *ee*) . ¹**H NMR** (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.61 (d, *J* = 6.4 Hz, 2H), 7.42 (d, *J* = 7.5 Hz, 1H), 7.29 – 7.01 (m, 12H), 5.50 – 5.44 (m, 1H), 4.98 (d, *J* = 10.4 Hz, 1H), 4.88 (d, *J* = 17.3 Hz, 1H), 3.91 – 3.90 (m, 1H), 2.92 (d, *J* = 14.5 Hz, 1H), 2.68 – 2.55 (m, 1H), 2.36

(s, 3H), 1.94 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.3, 143.4, 139.3, 137.4, 137.2, 135.0, 134.4, 130.5, 129.6, 128.6, 127.7, 127.3, 127.1, 127.0, 126.6, 125.8, 124.1, 42.30, 39.0, 21.5, 17.5.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for C₂₆H₂₆N₂O₃S⁺ 435.1737, found: 435.1730. [α]_D²⁰ = + 175.3 (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 23.3 min and t_{R2}: 26.4 min).

(R)-N-(2-chlorophenyl)-3-(2-((4-methylphenyl)sulfonamido)phenyl)pent-4-enamide

Prepared following general procedure the product **4ma** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a white solid (70% yield, 32.6 mg, 99% *ee*) .m.p.: 128 °C ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 8.22 (d, *J* = 8.2 Hz, 1H), 7.64 (d, *J* = 8.2 Hz, 2H), 7.55 (s, 1H), 7.43 – 7.36 (m, 1H), 7.33 – 7.13 (m, 6H), 7.11 – 7.08 (m, 1H), 7.05 – 7.01 (m, 1H), 5.44 – 5.31 (m, 1H), 4.96 (d, *J* = 10.5 Hz, 1H), 4.83 (d, *J* = 17.4 Hz, 1H), 3.90 – 3.79 (m, 1H), 2.98 (dd, *J* = 15.6, 4.1 Hz, 1H), 2.58 (dd, *J* = 15.6, 10.3 Hz, 1H), 2.36 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 170.2, 143.4, 139.2, 137.3, 137.1, 134.3, 133.9, 129.6, 129.0, 128.3, 127.8, 127.7, 127.2, 126.9, 125.2, 122.9, 122.2, 114.3, 42.8, 37.7, 21.5.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for C₂₅H₂₄ClN₂O₃S⁺ 455.1191, found: 455.1193. [α]_D²⁰ = + 84.7 (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 16.2 min and t_{R2}: 17.0 min).

(*R*)-3-(2-((4-methylphenyl)sulfonamido)phenyl)-N-(naphthalen-2-yl)pent-4-enamide

Prepared following general procedure the product **4na** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a yellow liquid (92% yield, 43.2 mg, 99% *ee*) . ¹**H NMR** (400 MHz, CDCl₃) δ 8.45 (s, 1H), 8.06 (s, 1H), 7.95 (s, 1H), 7.76 – 7.58 (m, 5H), 7.45 – 7.30 (m, 3H), 7.26 – 7.25 (m, 1H), 7.19 – 7.03 (m, 5H), 5.57 – 5.32 (m, 1H), 4.96 (d, *J* = 10.4 Hz, 1H), 4.86 (d, *J* = 17.4 Hz, 1H), 3.95 – 3.93 (m, 1H), 2.95 (dd, *J* = 15.3, 4.3 Hz, 1H), 2.65 (dd, *J* = 15.3, 10.2 Hz, 1H), 2.33 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 170.6, 143.6, 139.3, 137.6, 137.2, 135.0, 134.2, 133.7, 130.7, 129.7, 128.6, 127.7, 127.6, 127.5, 127.2, 127.0, 126.9, 126.4, 125.1, 120.0, 116.9, 114.5, 42.6, 38.5, 21.5.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for $C_{28}H_{27}N_2O_3S^+$ 471.1737, found: 471.1733. $[\alpha]_D^{20} = + 113.8$ (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 24.2 min and t_{R2}: 32.3 min).

(*R*)-3-(2-((4-methylphenyl)sulfonamido)phenyl)-N-(naphthalen-1-yl)pent-4-enamide

Prepared following general procedure the product **40a** was obtained. The crude material was purified by column chromatography (petroleum ether/EtOAc = 2:1) on silica gel to provide the title compound as a viscous liquid (85% yield, 40.0 mg, 99% *ee*) . ¹H

NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.72 – 7.54 (m, 5H), 7.44 – 7.38 (m, 2H), 7.33 – 7.11 (m, 9H), 5.67 – 5.53 (m, 1H), 5.07 (d, J = 10.5 Hz, 1H), 4.97 (d, J = 17.4 Hz, 1H), 4.08 – 3.96 (m, 1H), 3.04 (dd, J = 14.4, 4.2 Hz, 1H), 2.78 (dd, J = 13.9, 11.3 Hz, 1H), 2.34 (s, 3H).¹³**C NMR** (151 MHz, CDCl₃) δ 171.0, 143.5, 139.3, 137.4, 137.2, 134.5, 1340, 129.6, 129.0, 128.5, 127.8, 127.2, 127.2, 127.0, 126.6, 126.3, 126.0, 125.6, 122.2, 121.1, 114.7, 42.3, 39.5, 21.5.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for C₂₈H₂₇N₂O₃S⁺ 471.1737, found: 471.1733. [α]_D²⁰ = + 167.9 (c = 1.0, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 35 °C, 254 nm, t_{R1}: 43.6 min and t_{R2}: 59.9 min).

8. A 1mmol scale reaction of 1a

The procedure for preparing 3aa is referred to the synthesis method of compound 3

The procedure for preparing 4aa is referred to the synthesis method of compound 4

9. Synthetic Transformations of 3aa

According to the literature's procedure,⁵ to a suspension of LiAlH₄ (30.4 mg, 0.8mmol) in anhydrous THF (2 mL) under argon was added solution of amidine (0.2 mmol, 80 mg) in CH₂Cl₂ (0.2 mL) at 0 °C. The mixture was stirred at room temperature

for 2 h. Then, water was dropwised, the mixture was extracted with EtOAc, organic layer was dried with anhydrous Na_2SO_4 and filtered with celite, concentrated in vacuo. Purification of the crude residue via silica gel flash column chromatography (eluent DCM to EtOAc) afforded the desired amine **5** (69.3 mg, 79%, 99% *ee*).

¹**H NMR** (600 MHz, CDCl₃) δ 8.00 (s, 1H), 7.38 (d, J = 7.7 Hz, 2H), 7.16 – 7.10 (m, 3H), 7.09 – 7.02 (m, 5H), 6.73 – 6.75 (m, 1H), 6.60 (d, J = 8.3 Hz, 2H), 5.62 (ddd, J = 17.0, 10.3, 6.3 Hz, 1H), 4.96 (d, J = 10.4 Hz, 1H), 4.86 (d, J = 17.3 Hz, 1H), 3.49 (dd, J = 14.4, 6.4 Hz, 1H), 2.90 – 2.83 (m, 1H), 2.72 – 2.65 (m, 1H), 2.25 (s, 3H), 2.00 – 1.93 (m, 1H), 1.66 – 1.72 (m, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 147.5, 143.4, 140.4, 137.5, 136.8, 135.1, 129.6, 129.6, 128.0, 127.3, 127.1, 126.6, 125.2, 119.2, 114.9, 114.5, 41.8, 39.60, 33.9, 21.5.

HRMS (ESI) (m/z): $[M+Na]^+$ Calcd. for $C_{24}H_{26}N_2NaO_2S^+$ 429.1607, found: 429.1602. $[\alpha]_D^{20} = 59.3$ (c = 0.2, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IA, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 25.4 min and t_{R2}: 38.1 min).

According to the literature's procedure,⁶ **5** (56.6 mg, 0.1 mmol, 1.0 eq.) was dissolved in 1.9 mL DMF in a pressure tube equipped with a magnetic stir bar. Copper(II) acetate (60 mg, 0.3 mmol, 3.0 eq.) and cesium carbonate (33 mg, 0.1 mmol, 1.0 eq.) were added. The tube was sealed and heated to 120 °C for 24 h. After cooling, the mixture was diluted in ether and filtered through silica. The filtrate was concentrated to give the crude oil. This oil was purified by flash chromatography on silica gel (10% Et₂O in hexanes) to provide carboamination product **6** (30.0 mg, 53% yield, 99% *ee*). m.p. 61 °C.

¹**H** NMR (600 MHz, CDCl₃) δ 7.77 (d, *J* = 8.2 Hz, 1H), 7.70 (d, *J* = 8.3 Hz, 2H), 7.28 – 7.31 (m, 2H), 7.19 – 7.23 (m, 1H), 7.17 (d, *J* = 8.2 Hz, 2H), 7.04 – 7.07 (m, 3H), 6.98 – 7.01 (m, 1H), 6.87 – 6.89 (m, 1H), 4.79 (dd, *J* = 12.0, 3.1 Hz, 1H), 3.92 – 3.84 (m, 1H),

3.34 – 3.28 (m, 1H), 3.12 – 3.06 (m, 1H), 2.90 – 2.94 (m, 2H), 2.31 (s, 3H), 2.31 – 2.27 (m, 1H), 1.68 – 1.72 (m, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 150.9, 144.5, 143.2, 132.8, 132.1, 129.8, 129.3, 128.0, 123.8, 122.1, 119.8, 117.0, 114.8, 67.7, 54.8, 49.4, 47.0, 26.3, 21.6.

HRMS (ESI) (m/z): $[M+Na]^+$ Calcd. for C₂₄H₂₄N₂NaO₂S⁺ 427.1451, found: 427.1454. [α]_D²⁰ = -25.8 (c = 0.3, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IA, eluent, hexane 95%, *i*-propanol 5%, flow rate 0.5 mL/min, 25 °C, 254 nm, t_{R1}: 17.3 min and t_{R2}: 35.7 min).

According to the literature's procedure,⁷ to a reaction tube was added 1 mL THF, **3aa** (40 mg, 0.1 mmol, 1.0 eq.), samarium diiodide (10 mL, 10.0 eq.), tetrahydropyridine (71 mg, 0.5 mmol, 5.0 eq.) and water (27 mg, 1.5 mmol, 15.0 eq.) at room temperature. The reaction was stirred for 12 hours and then quenched with sodium bicarbonate, extracted with EtOAc, dried over anhydrous sodium sulfate and concentrated. The residue was purified by flash chromatography on silica gel to get the product **7** (20.1 mg, 81% yield, 99% *ee*).

¹**H NMR** (600 MHz, CDCl₃) δ 7.34 – 7.37 (m, 2H), 7.09 – 7.13 (m, 3H), 7.04 (d, J = 6.7 Hz, 2H), 6.92 – 6.94 (m, 1H), 6.66 (d, J = 4.8 Hz, 1H), 5.88 (dd, J = 17.0, 7.6 Hz, 1H), 5.18 (d, J = 10.2 Hz, 1H), 5.08 (d, J = 17.1 Hz, 1H), 3.60 (d, J = 5.1 Hz, 1H), 2.73 (d, J = 44.3 Hz, 2H). ¹³**C NMR** (151 MHz, CDCl₃) δ 138.2, 129.4, 127.9, 127.6, 125.5, 123.4, 122.1, 116.7, 40.0.

HRMS (ESI) (m/z): $[M+Na]^+$ Calcd. for $C_{17}H_{16}N_2Na^+$ 271.1206, found: 271.1212. $[\alpha]_D{}^{20} = -15.0$ (c = 0.1, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak AD-H, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 9.8 min and t_{R2}: 12.8 min).

Substrate **3aa** (40 mg, 0.1 mmol) and Grubbs-II (19.7 mg) were added to the test tube, followed by styrene and the reaction was carried out overnight at room temperature. After the reaction, it was filtered with celite and purified by flash chromatography on silica gel to obtain the product **8** (29.1 mg, 61% yield, 99% *ee*). m.p. 159 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 7.85 (d, J = 8.3 Hz, 2H), 7.76 (d, J = 8.1 Hz, 1H), 7.40 – 7.37 (m, 1H), 7.32 (dd, J = 10.1, 4.5 Hz, 2H), 7.29 – 7.21 (m, 8H), 7.07 – 7.00 (m, 3H), 6.37 (dd, J = 8.3, 1.0 Hz, 2H), 6.26 (dd, J = 16.0, 1.0 Hz, 1H), 6.05 (dd, J = 15.9, 6.5 Hz, 1H), 3.55 (q, J = 5.3 Hz, 1H), 2.59 (dd, J = 5.8, 4.4 Hz, 2H), 2.36 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 153.2, 148.1, 144.0, 137.2, 136.4, 135.7, 133.2, 132.5, 129.8, 129.0, 128.9, 128.6, 128.3, 127.8, 127.3, 126.8, 126.4, 125.9, 125.4, 123.4, 120.2, 39.1, 34.1, 21.7.

HRMS (ESI) (m/z): $[M+Na]^+$ Calcd. for $C_{30}H_{26}N_2NaO_2S^+$ 501.1607, found: 501.1630. $[\alpha]_D{}^{20} = 26.5$ (c = 0.3, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IA, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 39.2 min and t_{R2}: 49.5 min).

To a vial was added **3aa** (80.5 mg, 0.2 mmol), Pd/C(10.5 mg, 10 wt.%), EA. The reaction was filled with hydrogen balloon and carried out at room temperature for 72 h. After the reaction was completed, it was filtered through silica gel and purified by flash

chromatography on silica gel to give the desired compound **9** (65 mg, 80% yield, 99% *ee*). m.p. 155 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 7.88 (d, *J* = 8.1 Hz, 2H), 7.59 (d, *J* = 8.1 Hz, 1H), 7.21– 7.24 (m, 3H), 7.13 – 7.16 (m,2H), 7.08 – 7.11 (m, 1H), 7.05 (d, *J* = 7.3 Hz, 1H), 6.92 – 6.94 (m, 1H), 6.36 (d, *J* = 7.8 Hz, 2H), 2.49 – 2.42 (m, 1H), 2.37 (s, 3H), 2.36 – 2.27 (m, 2H), 1.51 – 1.40 (m, 1H), 1.26 (dt, *J* = 14.3, 7.2 Hz, 2H), 0.73 (t, *J* = 7.4 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 153.0, 147.3, 143.2, 136.4, 134.5, 133.7, 128.6, 127.9, 127.9, 125.9, 125.7, 124.6, 124.2, 122.2, 119.0, 37.0, 32.6, 24.3, 20.7, 10.9. **HRMS** (APCI) (m/z): [M+Na]⁺ Calcd. for C₂₄H₂₄N₂NaO₂S⁺ 427.1451, found: 427.1454.

 $[\alpha]_D^{20} = -15.3$ (c = 0.1, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IA, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 30 °C, 254 nm, t_{R1}: 8.7 min and t_{R2}: 11.5 min)

Under argon atmosphere, to a bottle was added NaHMDS (2.0 mol/L in THF) and 1 mL of toluene. The bottle was cooled at -78 °C and a solution of **3aa** (40 mg, 0.1 mmol) in THF was slowly added. The reaction was carried out at -78 °C for 20 hours. The reaction was quenched with water, and the product was extracted by EA, dried over Na₂SO₄ and purified by a flash chromatography on silica gel to obtain **4aa** (22 mg, 52% yield, 99% *ee*). m.p. 175 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 8.28 (s, 1H), 7.65 (d, J = 8.2 Hz, 2H), 7.49 (s, 1H), 7.39 (d, J = 7.7 Hz, 2H), 7.24 – 7.27 (m, 3H), 7.21 (d, J = 8.1 Hz, 2H), 7.12 – 7.14 (m, 2H), 7.11 – 7.06 (m, 2H), 5.46 (ddd, J = 17.2, 10.5, 5.3 Hz, 1H), 4.98 (d, J = 10.4 Hz, 1H), 4.86 (d, J = 17.4 Hz, 1H), 3.89 – 3.93 (m, 1H), 2.92 (dd, J = 15.2, 4.4 Hz, 1H), 2.58 (dd, J = 15.2, 10.4 Hz, 1H), 2.38 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 170.2, 143.5, 139.3, 137.4, 134.2, 129.7, 128.9, 128.6, 127.6, 127.2, 126.9, 124.5, 120.0, 114.4, 42.5, 38.5, 21.5.

HRMS (APCI) (m/z): $[M+H]^+$ Calcd. for $C_{24}H_{25}N_2O_3S^+$ 421.1580, found: 421.1591. $[\alpha]_D{}^{20} = +92.6$ (c = 0.2, CH₂Cl₂). **HPLC** analysis: 99% *ee* (Daicel ChiralPak IB, eluent, hexane 90%, *i*-propanol 10%, flow rate 1.0 mL/min, 25 °C, 254 nm, t_{R1}: 23.8 min and t_{R2}: 27.4 min)

9. References

1. Guo, C.; Fleige, M.; Janssen-Muller, D.; Daniliuc, C. G.; Glorius, F. Cooperative N-Heterocyclic Carbene/Palladium-Catalyzed Enantioselective Umpolung Annulations. *J. Am. Chem. Soc.* **2016**, *138*, 7840.

2. Leth, L. A.; Glaus, F.; Meazza, M.; Fu, L.; Thogersen, M. K.; Bitsch, E. A.; Jorgensen, K. A. Decarboxylative [4+2] Cycloaddition by Synergistic Palladium and Organocatalysis. *Angew. Chem. Int. Ed.* **2016**, *55*, 15272.

3. Liu, Z.; Liao, P.; Bi, X. General silver-catalyzed hydroazidation of terminal alkynes by combining TMS- N3 and H2O: synthesis of vinyl azides. *Org. Lett.* **2014**, *16*, 3668-3671.

4. Gu, P.; Su, Y.; Wu, X. P.; Sun, J.; Liu, W.; Xue, P.; Li, R. Enantioselective preparation of *cis*-beta- azidocyclopropane esters by cyclopropanation of azido alkenes using a chiral dirhodium catalyst. *Org. Lett.* **2012**, *14*, 2246-2249.

5. Li, T.; Li, Ren.; Hu, W,; Xie, J,; Cao, P. Modular Synthesis of Enantioenriched *α*-Chiral Homoallylic Amidines Enabled by Relay Ir/Cu Catalysis. *Org. Lett.* **2022**, 24, 37, 6783–6788.

6. Eric S. Sherman, Sherry R. Chemler. Copper(II)-Catalyzed Aminooxygenation and Carboamination of N-Aryl-2-allylanilines. *Adv. Synth. Catal.* **2009**, 351, 467 – 471.

7. Wu, X.; Ding, D.; Zhang, Y.; Zhao, L. Enantioselective synthesis of 1-aminoindene derivatives via asymmetric Brønsted acid catalysis. *Chem. Commun.*, **2021**, 57, 9680–9683.

10. 2D spectrogram of 6

11. NMR Spectral Data

$\begin{array}{c} 7.33\\$

3ac

153.67 148.21 144.20 137.54 137.54 135.48 135.48 135.48 135.48 135.48 135.48 135.48 135.48 135.48 135.48 125.79 126.63 117.77 117.77 117.77

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

565 MHz for $^{\mbox{\tiny 19}}F$ NMR in CDCl3

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppa)

---120.29

110 100 f1 (ppm) 130 120 -10

7.7.7 <td

3ea

565 MHz for $^{\mbox{\tiny 19}}{\rm F}$ NMR in CDCl3

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

---120.67

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

5.63 55.66 4.96 4.96 --3.80

3ja 565 MHz for ¹⁹F NMR in CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

3ka

565 MHz for ¹⁹F NMR in CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

---112.44

7.93 7.93 7.77 7.77 7.77 7.77 7.77 7.73 7.74 7.75 7.73 7.73 7.74 7.75 7.75 7.75 7.75 7.75 7.75

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

$\begin{array}{c} 7.33\\ 7.1$

$\begin{array}{c} 7.80\\ -7.72\\ -7.$

--36.97 --32.57 --20.65 --10.85

9

151 MHz for ¹³C NMR in CDCl₃₊

$\begin{array}{c} -8.28\\ -8.28\\ -7.726\\ -7.726\\ -7.726\\ -7.739\\ -7.739\\ -7.739\\ -7.739\\ -7.299\\ -7.299\\ -2.299\\ -$

12.Copies of HPLC Analysis

Total

139

7341888

mV

1	14.447	20.28	7088.85	7569576	143728	48.893
2	24.819	12.13	7088.85	7912342	86011	51.107
Total				15481918	229739	100.000

mV

Total

 Peak Table

 Detector A 254nm

 Peak#
 Ret. Time
 S/N
 Noise
 Area
 Height
 Area%

 1
 23.799
 0.16
 2501.87
 17308
 400
 0.074

 2
 57.628
 105.55
 2501.87
 23322166
 264084
 99.926

 Total
 23339474
 264483
 100.000
 100.000

Peak#	Ret. Time	S/N	Noise	Area	Height	Area%
1	16.228	298.77	1533.76	13942144	458240	50.045
2	28.824	168.38	1533.76	13917200	258256	49.955
Total				27859344	716495	100.000

Peak#	Ret. Time	S/N	Noise	Area	Height	Area%
1	13.683	92.11	3987.23	9279374	367260	49.893
2	21.424	60.41	3987.23	9319265	240866	50.107
Total				18598639	608126	100.000

Peak#	Ret. Time	S/N	Noise	Area	Height	Area%
1	14.695	0.03	8723.14	106	278	0.004
2	22.870	7.78	8723.14	2602124	67838	99.996
Total				2602230	68116	100.000

mV

Betweeter if 20 min									
Peak#	Ret. Time	S/N	Noise	Area	Height	Area%			
1	8.813	0.01	400.98	904	5	0.335			
2	12.622	27.24	400.98	269207	10923	99.665			
Total				270111	10928	100.000			

1 17.101 100.60 811.77 2260772 81661 49.82 2 20.898 94.25 811.77 2276929 76511 50.17	Реак#	Ret. Time	S/N	Noise	Area	Height	Area%
2 20.898 94.25 811.77 2276929 76511 50.17	1	17.101	100.60	811.77	2260772	81661	49.822
	2	20.898	94.25	811.77	2276929	76511	50.178
Total 4537701 158171 100.00	Total				4537701	158171	100.000

Detector A	1254nm					
Peak#	Ret. Time	S/N	Noise	Area	Height	Area%
1	21.366	34.53	27024.67	31426278	933257	49.449
2	37.477	20.95	27024.67	32127118	566275	50.551
Total				63553397	1499532	100.000

Peak#	Ret. Time	S/N	Noise	Area	Height	Area%
1	21.479	0.12	4449.01	7300	536	0.148
2	37.737	20.95	4449.01	4920555	93190	99.852
Total				4927855	93726	100.000

Detector A	Detector A 254nm										
Peak#	Ret. Time	S/N	Noise	Area	Height	Area%					
1	19.079	75.91	9250.24	22156155	702219	48.559					
2	32.211	50.94	9250.24	23471241	471241	51.441					
Total				45627396	1173460	100.000					

Peak#	Ret. Time	S/N	Noise	Area	Height	Area%
1	19.271	0.58	815.99	518	472	0.018
2	32.448	74.41	815.99	2834415	60719	99.982
Total				2834933	61190	100.000

mV

1 Cutti	reet. Thine	0/11	110150	mou	incigine	11000/0
1	32.487	127.97	347.73	2690200	44498	50.403
2	65.527	58.16	347.73	2647138	20223	49.597
Total				5337338	64721	100.000

mV

	I Cak Table										
Detector A 254nm											
Peak#	Ret. Time	S/N	Noise	Area	Height	Area%					
1	12.875	5.47	60791.94	7977575	332522	53.069					
2	19.624	3.60	60791.94	7054886	218771	46.931					
Total				15032462	551293	100.000					

Peak#	Ret. Time	S/N	Noise	Area	Height	Area%
1	12.066	0.03	426.21	39	11	0.008
2	19.642	36.64	426.21	499100	15617	99.992
Total				499139	15628	100.000

 \mathbf{mV}

Peak#	Ret. Time	S/N	Noise	Area	Height	Area%
1	16.321	50.83	3863.73	4823195	196395	99.926
2	22.476	0.07	3863.73	3595	254	0.074
Total				4826790	196648	100.000

Реак#	Ret. Time	5/IN	Noise	Area	Height	Area%
1	9.203	296.85	780.03	4116897	231552	53.270
2	15.504	184.02	780.03	3611453	143540	46.730
Total				7728350	375093	100.000

Peak#	Ret. Time	S/N	Noise	Area	Height	Area%
1	20.053	451.47	1103.31	16760512	498116	49.648
2	33.324	303.06	1103.31	16998455	334373	50.352
Total				33758967	832488	100.000

Peak#	Ret. Time	S/N	Noise	Area	Height	Area%		
1	20.052	0.45	982.83	964	442	0.016		
2	33.352	125.59	982.83	6108462	123432	99.984		
Total				6109426	123874	100.000		

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	19.130	84086965	49.329		
2	21.737	86373079	50.671		
Total		170460043	100.000		

<Chromatogram>

mAU

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	19.974	294	0.001		
2	21.888	22071342	99.999		
Total		22071635	100.000		

Peak#	Ret. Time	Area	Area%
1	22.050	24270217	50.214
2	23.959	24062911	49.786
Total		48333128	100.000

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	22.858	9570168	100.009
2	24.688	-868	-0.009
Total		9569300	100.000

<Chromatogram> mAU

<Peak Table>

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	16.621	13507315	49.556
2	18.644	13749227	50.444
Total		27256542	100.000

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	16.494	22806780	99.989
2	19.003	2410	0.011
Total		22809190	100.000

<Chromatogram>

10

<Peak Table>

Ó

5

PDA C	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%			
1	21.164	15329374	49.345			
2	26.417	15736090	50.655			
Total		31065464	100.000			

15

25

30

min

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	21.133	12113763	99.863		
2	26.761	16626	0.137		
Total		12130388	100.000		

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.688	13655198	50.181
2	17.955	13556428	49.819
Total		27211627	100.000

mAU

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.830	9896046	99.979
2	18.085	2119	0.021
Total		9898165	100.000

<Peak Table>

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	16.178	12154970	49.729
2	18.569	12287570	50.271
Total		24442540	100.000

mAU

<Peak Table>

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.971	21920783	100.004
2	18.395	-984	-0.004
Total		21919799	100.000

<Chromatogram>

<Peak Table>

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	16.914	7040196	49.344
2	19.642	7227386	50.656
Total		14267582	100.000

<Chromatogram> mAU

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	16.801	12355363	97.138
2	19.903	364002	2.862
Total		12719366	100.000

<Chromatogram>

PDA C	h1 202nm		
Peak#	Ret. Time	Area	Area%
1	18.059	46615042	49.225
2	20.465	48083413	50.775
Total		94698455	100.000

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	18.413	3791195	100.001
2	20.592	-33	-0.001
Total		3791162	100.000

<Chromatogram> mAU

<Peak Table>

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	18.057	32204374	49.515
2	20.471	32835705	50.485
Total		65040079	100.000

<Chromatogram> mAU

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	18.940	3656504	100.004	
2	21.221	-143	-0.004	
Total		3656361	100.000	

PDA (Ch1 254nm		
Peak	Ret. Time	Area	Area%
1	21.856	13279488	50.000
2	25.461	13279529	50.000
Tota	I	26559017	100.000

<Chromatogram> mAU

PDA Ch1 254nm					
Peak#	Ret. Time	Area	Area%		
1	21.402	29967807	99.967		
2	25.352	9812	0.033		
Total		29977619	100.000		

<Chromatogram> mAU

<Peak Table>

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	17.008	3642413	50.171	
2	20.605	3617571	49.829	
Total		7259984	100.000	

<Chromatogram> mAU

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	17.424	15813583	100.000
2	20.997	34	0.000
Total		15813616	100.000

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	15.361	5760230	49.849	
2	19.186	5795242	50.151	
Total		11555473	100.000	

<Chromatogram>

mAU

<Peak Table>

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	15.356	7503743	99.805	
2	19.247	14629	0.195	
Total		7518372	100.000	
<Chromatogram>

<Peak Table>

PDA Ch1 254nm			
Peak#	Ret. Time	Area	Area%
1	27.220	6445349	50.884
2	31.383	6221493	49.116
Total		12666842	100.000

<Chromatogram> mAU

<Peak Table>

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	26.256	41882954	97.619
2	30.694	1021655	2.381
Total		42904609	100.000

PDA Ch1 254nm				
	Peak#	Ret. Time	Area	Area%
	1	17.647	4135593	49.507
	2	19.211	4217979	50.493
	Total		8353571	100.000

<Chromatogram> mAU

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	17.519	11977883	100.007
2	19.653	-867	-0.007
Total		11977016	100.000

<Chromatogram> mAU

<Peak Table>

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	16.082	5176570	49.812
2	17.630	5215582	50.188
Total		10392152	100.000

<Chromatogram> mAU

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	16.161	1314227	99.997
2	17.936	41	0.003
Total		1314268	100.000

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	18.515	1010538	49.464
2	20.397	1032445	50.536
Total		2042983	100.000

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	18.248	5287375	100.000
2	20.752	-23	-0.000
Total		5287352	100.000

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	13.603	7588891	49.924
2	14.427	7612058	50.076
Total		15200949	100.000

<Chromatogram> mAU

PDA Ch1 254nm				
	Peak#	Ret. Time	Area	Area%
	1	13.576	8462538	100.010
	2	14.928	-833	-0.010
	Total		8461705	100.000

PDA Multi 1 254nm,4nm

<Peak Table>

PDA Ch1 254nm				
	Peak#	Ret. Time	Area	Area%
	1	18.097	3062687	50.009
	2	21.940	3061526	49.991
	Total		6124213	100.000

mAU

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	17.809	13365673	99.993
2	21.237	888	0.007
Total		13366560	100.000

<Chromatogram>

<Peak Table>

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.400	1404915	50.766
2	16.932	1362517	49.234
Total		2767432	100.000

<Chromatogram> mAU

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	15.364	2235649	99.978	
2	17.050	502	0.022	
Total		2236151	100.000	

<Chromatogram>

<Peak Table>

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	15.532	3945179	50.218
2	16.804	3910967	49.782
Total		7856146	100.000

<Chromatogram>

mAU

PDA C	PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%		
1	15.476	6453265	100.001		
2	16.919	<mark>-8</mark> 5	-0.001		
Total		6453180	100.000		

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	23.320	8985537	50.588
2	26.431	8776671	49.412
Total		17762208	100.000

<Chromatogram>

<Peak Table>

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	23.029	21637041	100.000
2	27.099	16	0.000
Total		21637057	100.000

PDA C	h1 254nm		
Peak#	Ret. Time	Height	Area%
1	16.220	116827	49.391
2	17.011	100922	50.609
Total		217749	100.000

<Chromatogram> mAU

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	16.073	5641310	100.001	
2	17.861	-39	-0.001	
Total		5641271	100.000	

PDA Ch1 254nm			
Peak#	Ret. Time	Area	Area%
1	24.162	15695890	49.570
2	32.312	15968125	50.430
Total		31664015	100.000

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	24.347	6650511	99.991
2	32.653	617	0.009
Total		6651128	100.000

<Peak Table>

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	43.352	2400581	50.135	
2	59.009	2387648	49.865	
Total		4788229	100.000	

<Peak Table>

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	43.635	1524573	99.868	
2	59.937	2010	0.132	
Total		1526582	100.000	

Detector i i 20 min								
Peak#	Ret. Time	S/N	Noise	Area	Height	Area%		
1	25.384	587.12	522.12	11624402	306544	49.809		
2	38.122	358.59	522.12	11713346	187224	50.191		
Total				23337748	493768	100.000		

Total

1	Q	3
T	/	9

Jelector A 234hin								
Peak#	Ret. Time	S/N	Noise	Area	Height	Area%		
1	17.291	161.06	864.30	3574365	139204	51.843		
2	35.564	74.36	864.30	3320281	64272	48.157		
Total				6894646	203476	100.000		

Peak#	Ret. Time	S/N	Noise	Area	Height	Area%
1	17.071	2.83	628.52	39196	1779	0.130
2	34.594	828.30	628.52	30065243	520602	99.870
Total				30104439	522382	100.000

mV

mV

Total

Peak#	Ret. Time	S/N	Noise	Area	Height	Area%
1	38.617	0.59	519.64	17863	305	0.149
2	49.324	247.16	519.64	11953325	128437	99.851
Total				11971189	128742	100.000

<Peak Table>

PDA C	h1 254nm					
Peak#	Ret. Time	S/N	Noise	Area	Height	Area%
1	8.754	91.40	469.03	1121636	42870	51.803
2	11.625	67.94	469.03	1043555	31866	48.197
Total				2165190	74735	100.000

<Peak Table>

PDA Ch1 254nm								
Peak#	Ret. Time	S/N	Noise	Area	Height	Area%		
1	8.703	0.22	699.63	2560	155	0.387		
2	11.575	24.57	699.63	659460	17188	99.613		
Total				662020	17343	100.000		

mV