Supporting Information

Pd(II) Auxiliaries Assembling and Diverse Transformations *via* Inert C(*sp*³)–H Bond Activation

Jiangbin Luo^a, Jie Chen^a, Xiaoyan Yang^a, Yaxin Fan^a, Fukuan Zhang^a, Gefei Hao^a & Yaojia Jiang^a*

^aState Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China. E-mail: <u>yijiang@gzu.edu.cn</u>

Table of Contents

General methods	S2
General procedure for amide compounds and their spectral data	S 3
General procedure for cyclopropenes and their spectral data	S 7
General procedure for Pd-complexs and their spectral data	S10
Late-stage modification and their spectral data	S37
Mechanism studies and their NMR spectra	S56
X-ray crystallography of compound 3aa and 4aa	S92
NMR spectra for amide compounds	S96
NMR spectra for cyclopropenes	S101
NMR spectra for complex-Pd	S102
NMR spectra for late-stage modification products	S146
NMR spectra for mechanism studies	S174
References and Notes	S176

General methods:

All reactions were carried out in flame or oven-dried glassware under nitrogen atmosphere with freshly distilled dry solvents under anhydrous conditions unless otherwise indicated. Flash column chromatography was performed with silica gel 60 (230 - 400 mesh). Chromatograms were visualized by fluorescence quenching with UV light at 254 nm or by staining with base solution of potassium permanganate and molybdate. NMR spectra were recorded at RT on 400 or 500 MHz Bruker spectrometers. The residual solvent signals were taken as the reference (7.26 ppm for ¹H NMR spectra and 77.0 ppm for ¹³C NMR spectra in CDCl₃). Chemical shift (δ) is reported in ppm, coupling constants (*J*) are given in Hz. The following abbreviations classify the multiplicity: s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet of doublet, q = quartet and br = broad signal. HRMS (ESI) spectra were recorded on a Waters Q-Tof premier TM mass spectrometer.

	+ Ph Ph Pd(II) salts Ph Solvent, rt		
1a	2a	3aa	CDCC: 2304190
Entry	Pd salt	Solvent	Yield(%) ^b
1	PdI_2	DCM	0
2	PdCl ₂	DCM	20
3	$Pd(acac)_2$	DCM	0
4	PdCl ₂ (PPh ₃) ₂	DCM	0
5	$Pd(TFA)_2$	DCM	45
6	$Pd(OAc)_2$	DCM	81
7	$Pd(OAc)_2$	DCE	75
8	$Pd(OAc)_2$	TCE	40
9	$Pd(OAc)_2$	CHCl ₃	52
10	$Pd(OAc)_2$	THF	12
11	$Pd(OAc)_2$	ACN	10
12	$Pd(OAc)_2$	Tol.	65
13	$Pd(OAc)_2$	PhCl	35
14^c	$Pd(OAc)_2$	DCM	90
15^{d}	$Pd(OAc)_2$	DCM	91

Table S1. Optimization of reaction conditions^{*a,b*}

^{*a*}Unless otherwise noted, reactions were carried out using **1a** (0.20 mmol), **2a** (0.60 mmol), Pd(OAc)₂ (0.20 mmol) in DCM (0.05 M, 4 mL) at room temperature. ^{*b*}Isolated yields. ^{*c*}Pd(OAc)₂-loading: 130 mol %. ^{*d*}Pd(OAc)₂-loading: 150 mol %. DCM = dichloromethane, DCE = 1,2-Dichloroethane, TCE = 1,1,2,2-Tetrachloroethane, ACN = Acetonitrile, Tol. = toluene, THF = tetrahydrofuran.

General procedure for amide compounds and their spectral data:

General procedure A for the synthesis of amide compounds:

A mixture of acyl chloride (7.5 mmol, 1.5 equiv.), 8-aminoquinoline (5 mmol, 1.0 equiv.), and triethylamine (10 mmol, 2.0 equiv.) in anhydrous CH₂Cl₂ (10 mL) was

stirred at room temperature overnight. The reaction mixture was then washed with water and brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography to give desired amide compounds **1**.

General procedure B for the synthesis of amide compounds:

A mixture of carboxylic acid (6.0 mmol, 1.2 equiv.), 8-aminoquinoline (5 mmol, 1.0 equiv.), 2-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (6.0 mmol, 1.2 equiv.) and pyridine (10 mmol, 2.0 equiv.) in anhydrous CH₂Cl₂ (10 mL) was stirred at room temperature overnight. The reaction mixture was then washed with water and brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography to give desired amide compounds **1**.

Amide compounds 1a-1d, 1f, 1h-1m, 1o-1s were prepared to the known literatures^[1-6]

3-Methyl-N-(quinolin-8-yl)oxetane-3-carboxamide (1e):

The title compound was prepared according to the general procedure B. Purification by column chromatography (TLC $R_f = 0.5$) on silica gel using EtOAc/PE (2:3) as the eluent

the desired product **1e** as white solid in 82% yield (992.0 mg), Mp. 86 - 87 °C; **¹H NMR** (**400 MHz, CDCl**₃) δ 10.2 (s, 1H), 8.85 – 8.75 (m, 2H), 8.22 – 8.15 (m, 1H), 7.62 – 7.51 (m, 2H), 7.51 – 7.48 (m, 1H), 5.16 (d, *J* = 6.0 Hz, 2H), 4.60 (d, *J* = 6.0 Hz, 2H), 1.85 (s, 3H); ¹³C NMR (**100 MHz, CDCl**₃) δ 173.8, 148.4, 138.5, 136.2, 134.0, 127.9, 127.4, 121.8, 121.7, 116.5, 80.0, 46.6, 22.4; **HRMS (ESI) m/z [M+H]+:** Calcd for C₁₄H₁₅N₂O₂: 243.1134. Found: 243.1136.

2,2-Difluoro-N-(quinolin-8-yl)propenamide (1g):

The title compound was prepared according to the general procedure B. Purification by column chromatography (TLC $R_f = 0.7$) on silica gel using EtOAc/PE (1:4) as the eluent the desired product **1g** as white solid in 75% yield (883.8mg), Mp. 57 - 58 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.73 (s, 1H), 8.88 – 8.82 (m, 1H), 8.79 – 8.71 (m, 1H), 8.82 – 8.14 (m, 1H), 7.63 – 7.52 (m, 2H), 7.52 – 7.45 (m, 1H), 1.98 (t, *J* = 19.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.6 (t, *J* = 29.0 Hz), 148.7, 138.6, 136.3, 132.8, 127.9, 127.1, 123.0, 121.9, 117.3 (t, *J* = 250.9 Hz), 117.1, 21.1 (t, *J* = 25.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -66.19; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₂H₁₀F₂N₂O: 237.0839. Found: 237.0838.

2-Phenyl-*N*-(quinolin-8-yl)cyclopropane-1-carboxamide (1n):

The title compound was prepared according to the general procedure B. Purification by column chromatography (TLC $R_f = 0.6$) on silica gel using EtOAc/PE (1:4) as the eluent the desired product **1n** as white solid in 70% yield (1006.3 mg), Mp. 80 - 81 °C; **¹H NMR (400 MHz, CDCl₃)** δ 10.06 (s, 1H), 8.82 - 8.71 (m, 2H), 8.20 - 8.10 (m, 1H), 7.57 - 7.47 (m, 2H), 7.47 - 7.41 (m, 1H), 7.34 - 7.27 (m, 2H), 7.25 - 7.14 (m, 3H), 2.72 - 2.63 (m, 1H), 2.10 - 2.02 (m, 1H), 1.84 - 1.76 (m, 1H), 1.48 - 1.39 (m, 1H); **¹³C NMR (100 MHz, CDCl₃)** δ 170.5, 148.0, 140.6, 138.1, 136.4, 134.5, 128.5, 127.9, 127.4, 126.4, 126.1, 121.6, 121.4, 116.4, 28.2, 26.1, 16.6; **HRMS (ESI) m/z [M+H]**⁺: Calcd for C₁₉H₁₇N₂O: 289.1341. Found: 289.1340.

2-(6-Methoxynaphthalen-2-yl)-*N*-(quinolin-8-yl)propenamide (1t):

The title compound was prepared according to the general procedure B. Purification by column chromatography (TLC $R_f = 0.3$) on silica gel using EtOAc/PE (1:4) as the eluent the desired product **1t** as white solid in 60% yield (1067.4 mg), Mp. 77 - 78 °C; ¹H **NMR (400 MHz, CDCl3)** δ 9.95 (s, 1H), 8.83 – 8.74 (m, 1H), 8.52 – 8.45 (m, 1H), 7.92 – 7.80 (m, 2H), 7.72 – 7.66 (m, 2H), 7.57 – 7.51 (m, 1H), 7.44 – 7.36 (m, 1H), 7.32 – 7.24 (m, 1H), 7.18 – 7.08 (m, 2H), 7.06 – 7.01 (m, 1H), 4.01 (q, *J* = 7.2 Hz, 1H), 3.78 (s, 3H), 1.73 (t, *J* = 7.1 Hz, 1H); ¹³C **NMR (100 MHz, CDCl3)** δ 172.6, 157.4,

147.8, 138.0, 136.1, 135.9, 134.2, 133.6, 129.1, 128.9, 127.5, 127.4, 127.0, 126.0, 126.0, 121.2, 121.2, 118.8, 115.9, 105.3, 55.0, 48.3, 18.5; **HRMS (ESI) m/z [M+H]**⁺: Calcd for C₂₃H₂₁N₂O₂: 357.1603. Found: 357.1602.

2-(4-Isobutylphenyl)-N-(quinolin-8-yl)propenamide (1u):

The title compound was prepared according to the general procedure B. Purification by column chromatography (TLC $R_f = 0.6$) on silica gel using EtOAc/PE (1:4) as the eluent the desired product **1u** as white solid in 65% yield (1076.5 mg), Mp. 50 - 51 °C; **¹H NMR (400 MHz, CDCl₃)** δ 9.87 (s, 1H), 8.81 - 8.73 (m, 1H), 8.69 - 8.61 (m, 1H), 8.12 - 8.04 (m, 1H), 7.53 - 7.41 (m, 2H), 7.41 - 7.33 (m, 3H), 7.19 - 7.13 (m, 2H), 3.90 (q, *J* = 7.2 Hz, 1H), 2.47 (d, *J* = 7.2 Hz, 2H), 1.93 - 1.78 (m, 1H), 1.68 (d, *J* = 7.2 Hz, 3H), 0.91 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 147.7, 140.4, 138.0, 137.6, 135.8, 134.2, 129.4, 129.1, 127.4, 127.2, 126.9, 121.1, 115.9, 47.9, 44.7, 29.9, 22.1, 18.3; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₂H₂₅N₂O: 333.1967. Found: 333.1968.

General procedure for cyclopropenes and their spectral data:

To a stirred solution of Ph₃PCH₃Br (100 mmol) in THF (150 mL) at 0 °C was added 1.6 M *n*-butyllitium (90 mmol) dropwise over 60 minutes. The reaction mixture was stirred for 2 hours at room temperature. Ketone **2A** (50 mmol) in THF (15 mL) was added dropwise to the cooled reaction mixture at 0 °C via cannular. The reaction was then stirred at room temperature for 48 hours, quenched with saturated NH₄Cl (40 mL), diluted with water (30 mL) and extracted with EtOAc (3 x 30 mL). The combined organic extracts were washed with brine (2 x 30 mL), dried over MgSO₄ and concentrated under reduced pressure. The crude product was dissolved in hexane and triphenylphosphine oxide was filtered off. The filtrate solution was then concentrated under reduced pressure. The product **2B** was isolated by flash column chromatography (eluent: EA/PE = 5%).

A solution of 10 M aqueous sodium hydroxide (200 mmol) was added to alkyltrimethylammonium bromide (2.0 g). To the stirring reaction mixture was added a solution of alkene **2B** (50 mmol) in DCM (2 mL). Bromoform (100 mmol) in DCM (10 mL) was added dropwise over 1 hour. The reaction was allowed to stir vigorously at 25 °C for 24 hours, after which the mixture was extracted with DCM (3 x 100 mL). The combined organic layers were washed with brine (2 x 100 mL), dried over MgSO₄

and concentrated under reduced pressure. The product 2**C** was purified by flash column chromatography (eluent: EA/PE = 5%)

A solution of ethylmagnesium bromide (75 mmol) was added dropwise over an hour to a stirring solution of 2, 2-dibromocyclopropane **2C** (50 mmol), $Ti(O^{i}Pr)_{4}$ (5.0 mmol) and Et₂O (50 mL) and the resulting mixture was stirred for 3 hours at 25 °C. The reaction was quenched by slow addition of water (20 mL) and 1 M HCl (30 mL), stirred for a further few minutes followed by the addition of Et₂O (30 mL). The aqueous layer was washed with Et₂O (3 x 20 mL), combined organic layers washed with saturated sodium bicarbonate (10 mL), brine (10 mL), dried over MgSO₄ and concentrated under reduced pressure. The crude oil was purified by flash column chromatography to afford

2D (eluent: EA/PE = 5%).

Potassium *tert*-butoxide (10 mmol) and dimethyl sulfoxide (10 mL) were heated to 55 °C and allowed to stir for 30 minutes at this temperature until the mixture was homogenous. The solution was then cooled to 25 °C. 2-Bromocyclopropane **2D** (5 mmol) in DMSO (5 mL) was added to the reaction mixture over 3 hours and allowed to stir at 25 °C for 20 hours. The reaction was quenched with brine (50 mL) and PE (50 mL) and layers partitioned. The aqueous layer was washed with PE (3 x 50 mL) and combined organic layers washed with brine (2 x 50 mL), dried over MgSO₄ and concentrated under reduced pressure. The product was purified by flash column chromatography (eluent: EA/PE = 5%) to afford cyclopropenes **2**.

Cyclopropenes 2a-2g^[7], 2h-2m^[8] were prepared according to the known literature.

6-Tosyl-6-azaspiro[2.5]oct-1-ene (2b):

The title compound was prepared according to the general procedure. The product was purified by flash column chromatography (PE:EtOAc = 19:1) to give **2b** as a withe solid (790 mg, 60% yield). ¹H NMR (**400 MHz, CDCl**₃) δ 7.73 – 7.60 (m, 2H), 7.42 (s, 2H), 7.37 – 7.29 (m, 2H), 3.17 – 2.96 (m, 4H), 2.45 (s, 3H), 1.65 – 1.52 (m, 4H); ¹³C NMR (**101 MHz, CDCl**₃) δ 143.3, 132.9, 129.6, 127.7, 122.1, 46.7, 37.9, 21.5, 20.8; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₄H₁₈NSO₃: 264.1058. Found: 264.1056.

General procedure for Pd-complexs and their spectral data:

A mixture of amide **1** (0.2 mmol, 1.0 equiv.) and $Pd(OAc)_2$ (0.26 mmol, 1.3 equiv.) was dissolved in CH₂Cl₂ (2.0 mL) in a Schlenk tube. To the stirring reaction mixture was added a solution of cyclopropene **2** (0.6 mmol, 3.0 equiv.) in CH₂Cl₂ (2 mL). The mixture was allowed to stir at room temperature until the **1** was consumed (determined by TLC). Then the reaction mixture was concentrated under reduced pressure and purified by column chromatography to give the desired product **3**.

Pd-complex 3aa:

The Pd-complex **3aa** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.6$) on silica gel using EtOAc/PE (4:1) as the eluent to give the desired product **3aa** as yellow solid in 90% yield (89.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.27 (d, J = 8.0 Hz, 1H), 8.18 – 8.13 (m, 1H), 7.74 – 7.70 (m, 1H), 7.52 – 7.46 (m, 1H), 7.39 – 7.35 (m, 2H), 7.26 – 7.15 (m, 10H), 5.90 (d, J = 11.2 Hz, 1H), 3.92 – 3.84 (m, 1H), 2.89 – 2.83 (m, 2H), 2.27 – 2.10 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 176.5, 148.5, 147.5, 143.8, 143.5, 139.2, 138.8, 130.7, 129.7, 128.8, 128.7, 128.0, 127.3, 127.2, 122.6, 120.7, 118.6, 109.4, 90.2, 79.4, 45.4, 30.6; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₇H₂₃N₂OPd: 497.0845. Found: 497.0828.

Pd-complex 3ba:

The Pd-complex **3ba** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.7$) on silica gel using EtOAc/PE (3:2) as the eluent to give the desired product **3ba** as yellow solid in 85% yield (111.5 mg, *d.r.* > 20:1). ¹H **NMR (400 MHz, CDCl3)** δ 9.24 (d, *J* = 8.4 Hz, 1H), 8.16 (d, *J* = 8.4 Hz, 1H), 7.83 – 7.77 (m, 2H), 7.70 (d, *J* = 4.4 Hz, 1H), 7.65 – 7.60 (m, 2H), 7.42 – 7.34 (m, 3H), 7.29

- 7.16 (m, 10H), 5.91 (d, J = 10.8 Hz, 1H), 5.15 – 5.06 (m, 1H), 3.81 – 3.71 (m, 1H),
3.43 – 3.30 (m, 1H), 2.54 (d, J = 13.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3,
148.2, 147.5, 143.8, 143.0, 139.0, 138.8, 133.7, 132.4, 130.6, 129.6, 129.5, 128.9, 128.9,
128.0, 127.5, 127.5, 123.4, 123.1, 120.7, 119.3, 109.2, 92.9, 70.4, 58.5, 35.8; HRMS
(ESI) m/z [M+H]⁺: Calcd for C₃₅H₂₆N₃O₃Pd: 642.1009. Found: 642.1016.

Pd-complex 3ca:

The Pd-complex **3ca** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.6$) on silica gel using EtOAc/PE (1:1) as the eluent to give the desired product **3ca** as yellow solid in 80% yield (83.9 mg, *d.r.*> 20:1). ¹**H NMR (400 MHz, CDCl₃)** δ 9.33 (d, *J* = 8.0 Hz, 1H), 8.26 – 8.21 (m, 1H), 7.83 – 7.78 (m, 1H), 7.60 – 7.54 (m, 1H), 7.48 – 7.42 (m, 2H), 7.34 – 7.23 (m, 10H), 6.00 (d, *J* = 11.2 Hz, 1H), 4.09 – 3.99 (m, 1H), 3.20 – 3.14 (m, 1H), 2.49 – 2.39 (m, 1H), 2.23 – 2.14 (m, 1H), 1.39 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 179.7, 149.0, 147.5, 143.9, 143.6, 139.3, 138.8, 130.7, 129.7, 128.8, 128.7, 128.0, 127.2, 127.2, 122.8, 120.7, 118.5, 110.3, 90.1, 75.8, 50.4, 36.5, 18.7; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₈H₂₅N₂OPd: 511.1002. Found: 511.1001.

Pd-complex 3da:

The Pd-complex **3da** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.5$) on silica gel using EtOAc/PE (1:1) as the eluent to give the desired product **3da** as yellow solid in 84% yield (90.3 mg, *d.r.* = 1.17:1). ¹**H NMR (400 MHz, CDCl3)** δ 9.29 & 9.03 (d, *J* = 8.0 Hz & 8.0 Hz, 1H), 8.27 – 8.16 (m, 1H), 7.84 – 7.76 (m, 1H), 7.59 – 7.38 (m, 3H), 7.37 – 7.15 (m, 11H), 5.96 & 5.88 (d, *J* = 10.8 Hz & 10.8 Hz, 1H), 3.96 – 3.83 (m, 1H), 2.61 – 2.40 (m, 1H), 2.37 – 2.19 (m, 1H), 2.18 – 2.02 (m, 1H), 1.64 – 1.40 (m, 2H), 1.36 & 1.34 (s, 3H), 0.98 & 0.91 (t, *J* = 7.2 Hz & 7.2 Hz, 3H); ¹³**C NMR (100 MHz, CDCl3**) δ 184.2, 181.4, 149.4, 149.0, 147.4, 144.3, 144.0, 143.7, 139.4, 139.3, 138.8, 138.8, 130.7, 129.8, 129.6, 129.5, 128.8, 128.7, 128.0, 127.2, 127.1, 123.2, 122.8, 120.6, 120.6, 118.5, 118.0, 109.9, 109.4, 91.6, 90.8, 73.4, 73.0, 52.8, 52.7, 42.4, 39.8, 36.3, 33.1, 26.9, 24.4, 9.8, 9.2; **HRMS** (**ESI) m/z [M+H]**⁺: Calcd for C₃₀H₂₉N₂OPd: 539.1315. Found: 539.1317.

Pd-complex 3ea:

The Pd-complex **3ea** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.4$) on silica gel using EtOAc/PE (3:2) as the eluent to give the desired product **3ea** as yellow solid in 77% yield (85.3 mg). ¹H NMR (400

MHz, CDCl₃) δ 9.17 (d, J = 8.0 Hz, 1H), 8.20 – 8.13 (m, 1H), 7.76 – 7.70 (m, 1H), 7.55 – 7.47 (m, 1H), 7.38 – 7.32 (m, 2H), 7.30 – 7.17 (m, 10H), 5.87 (d, J = 11.2 Hz, 1H), 5.51 (d, J = 5.2 Hz, 1H), 4.80 (d, J = 5.6 Hz, 1H), 4.49 (d, J = 6.0 Hz, 1H), 4.31 (d, J = 5.2 Hz, 1H), 3.89 – 3.78 (m, 1H), 3.13 – 3.04 (m, 1H), 2.62 – 2.52 (m, 1H); ¹³C **NMR (100 MHz, CDCl**₃) δ 176.6, 148.5, 147.6, 144.1, 143.3, 139.0, 138.9, 130.5, 129.7, 129.5, 128.9, 128.8, 128.1, 127.5, 127.4, 123.1, 120.8, 119.0, 109.6, 92.0, 81.3, 78.8, 70.8, 55.3, 39.8; **HRMS (ESI) m/z [M+H]+:** Calcd for C₂₉H₂₅N₂O₂Pd: 539.0951. Found: 539.0945.

Pd-complex 3fa:

The Pd-complex **3fa** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.5$) on silica gel using EtOAc/PE (1:1) as the eluent to give the desired product **3fa** as yellow solid in 84% yield (90.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.24 (d, J = 8.0 Hz, 1H), 8.25 – 8.19 (m, 1H), 7.82 – 7.79 (m, 1H), 7.58 – 7.53 (m, 1H), 7.46 – 7.42 (m, 2H), 7.32 – 7.23 (m, 10H), 5.92 (d, J = 10.8 Hz, 1H), 3.94 – 3.83 (m, 1H), 2.51 – 2.40 (m, 1H), 2.25 – 2.18 (m, 1H), 1.44 (s, 3H), 1.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 181.9, 149.4, 147.4, 144.1, 143.7, 139.3, 138.8, 130.7, 129.8, 129.6, 128.8, 128.7, 128.0, 127.2, 127.1, 123.0, 120.6, 118.3, 109.6, 91.3,

73.4, 49.5, 44.1, 30.2, 27.1; **HRMS (ESI) m/z [M+H]**⁺: Calcd for C₂₉H₂₇N₂OPd: 525.1158. Found: 525.1156.

Pd-complex 3ga:

The Pd-complex **3ga** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.5$) on silica gel using EtOAc/PE (1:1) as the eluent to give the desired product **3ga** as yellow solid in 74% yield (81.1 mg). ¹**H NMR (400 MHz, CDCl3**) δ 9.32 (d, J = 8.0 Hz, 1H), 8.29 (d, J = 8.4 Hz, 1H), 7.82 – 7.79 (m, 1H), 7.60 (t, J = 8.0 Hz, 1H), 7.47 – 7.40 (m, 3H), 7.38 – 7.25 (m, 10H), 5.91 (d, J = 11.2 Hz, 1H), 3.79 – 3.68 (m, 1H), 3.14 – 3.01 (m, 1H), 2.82 – 2.62 (m, 1H); ¹³**C NMR (100 MHz, CDCl3**) δ 165.4 (dd, $J_I = 31.0$ Hz, $J_2 = 27.0$ Hz), 147.9, 147.2, 147.2, 144.0, 142.8, 139.2, 138.3, 130.5, 129.6, 129.0, 128.9, 128.1, 127.9, 127.7, 123.9, 121.0, 120.3, 118.7 (dd, $J_I = 245.0$ Hz, $J_2 = 248.0$ Hz), 110.1, 94.3, 64.2 (dd, $J_I = 13.0$ Hz, $J_2 = 5.0$ Hz), 39.8 (dd , $J_I = 31.0$ Hz, $J_2 = 24.0$ Hz); ¹⁹**F NMR (376 MHz, CDCl3**) δ -86.37 (dd, $J_I = 267.0$ Hz, $J_2 = 11.3$ Hz), -98.2 (ddd, $J_I = 263.2$ Hz, $J_2 = 30.1$ Hz, $J_3 = 7.5$ Hz); **HRMS (ESI) m/z [M+H]⁺: Calcd for C**₂₇H₂₁F₂N₂OPd: 533.0657. Found: 533.0656.

Pd-complex 3ha:

The Pd-complex **3ha-1** and **3ha-2** were prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.4$) on silica gel using EtOAc/PE (1:1) as the eluent to give the desired product **3ha-1** (TLC $R_f = 0.5$) as yellow solid in 50% yield (53.8 mg) and **3ha-2** (TLC $R_f = 0.3$) as yellow solid in 37% yield (39.7 mg, *d.r.* > 20:1).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 9.28 – 9.23 (m, 1H), 8.25 – 8.21 (m, 1H), 7.84 – 7.80 (m, 1H), 7.58 – 7.51 (m, 1H), 7.49 – 7.44 (m, 2H), 7.33 – 7.24 (m, 10H), 5.96 (d, *J* = 11.2 Hz, 1H), 4.04 – 3.94 (m, 1H), 2.90 – 2.77 (m, 1H), 1.73 – 1.66 (m, 1H), 1.61 – 1.55 (m, 1H), 1.11 – 1.04 (m, 1H), 0.75 – 0.69 (m, 1H), 0.67 – 0.60 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.0, 148.9, 147.5, 144.4, 143.7, 139.3, 138.9, 130.8, 129.9, 129.68, 128.9, 128.8, 128.1, 127.3, 127.2, 123.0, 120.7, 118.5, 109.1, 92.0, 76.0, 39.7, 30.0, 16.6, 16.1; **HRMS (ESI) m/z [M+H]+:** Calcd for C₂₉H₂₅N₂OPd: 523.1002. Found: 523.1000.

¹**H NMR (400 MHz, CDCl₃)** δ 9.33 – 9.30 & 9.29 – 9.23 (m, 1H), 7.88 – 7.83 & 7.77 – 7.74 (m, 1H), 7.64 – 7.58 (m, 2H), 7.58 – 7.52 (m, 1H), 7.35 – 7.26 (m, 5H), 7.18 – 7.06 (m, 5H), 6.18 & 5.96 (d, *J* = 11.6 & 10.8 Hz, 1H), 4.50 – 4.45 & 4.28 – 4.20 (m, 1H), 1.54 – 1.48 (m, 1H), 1.47 & 1.44 (s, 3H); 1.34 – 1.25 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.2, 149.2, 148.1, 147.5, 146.8, 145.0, 144.2, 143.7, 139.4, 139.2, 138.9, 130.6, 130.4, 129.7, 128.8, 128.7, 128.3, 128.1, 127.3, 127.0, 122.5, 122.1, 120.8, 120.6, 118.5, 117.6, 111.4, 110.8, 80.2, 41.9, 31.7, 29.7, 28.6, 26.5, 24.9, 24.0, 22.5;
HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₉H₂₅N₂OPd: 523.1002. Found: 523.0994.

Pd-complex 3ia:

The Pd-complex **3ia** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.4$) on silica gel using EtOAc/PE (3:2) as the eluent to give the desired product **3ia** as yellow solid in 79% yield (83.1 mg, *d.r.*> 20:1). ¹**H NMR (400 MHz, CDCl₃)** δ 9.31 (d, *J* = 8.0 Hz, 1H), 8.26 – 8.22 (m, 1H), 7.83 – 7.79 (m, 1H), 7.57 (t, *J* = 8.0 Hz, 1H), 7.47 – 7.40 (m, 2H), 7.34 – 7.23 (m, 10H), 5.94 (d, *J* = 10.8 Hz, 1H), 3.80 (t, *J* = 10.8 Hz, 1H), 2.95 – 2.86 (m, 1H), 2.76 – 2.69 (m, 1H), 2.64 – 2.51 (m, 1H), 1.29 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.4, 148.3, 147.5, 144.3, 143.6, 139.2, 138.8, 132.4, 130.7, 129.7, 128.9, 128.8, 128.1, 127.3, 127.2, 122.7, 120.7, 118.6, 108.6, 90.7, 84.2, 54.3, 37.4, 22.4; **HRMS (ESI) m/z** [**M+H**]⁺: Calcd for C₂₈H₂₅N₂OPd: 511.1002. Found: 511.1005.

Pd-complex 3ja:

The Pd-complex **3ia** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.3$) on silica gel using EtOAc/PE (3:2) as the eluent to give the desired product **3ia** as yellow solid in 60% yield (70.3 mg, *d.r.*> 20:1). ¹**H NMR (400 MHz, CDCl3)** δ 9.31 – 9.26 (m, 1H), 8.24 – 8.20 (m, 1H), 7.69 – 7.65 (m, 1H), 7.57 (t, *J* = 8.4 Hz, 1H), 7.38 – 7.18 (m, 17H), 5.38 (d, *J* = 10.8 Hz, 1H), 3.66 – 3.58 (m, 1H), 3.08 – 2.84 (m, 3H), 2.71 – 2.61 (m, 2H); ¹³C NMR (100 MHz, CDCl3) δ 177.1, 148.1, 147.5, 144.3, 143.3, 139.2, 138.8, 130.8, 129.7, 129.5, 128.8, 128.7, 128.4, 128.0, 127.3, 127.2, 126.5, 122.7, 120.7, 118.7, 109.5, 90.4, 81.3, 52.8, 44.6, 42.4; HRMS (ESI) m/z [M+H]⁺: Calcd for C₃₄H₂₉N₂OPd: 587.1315. Found: 587.1316.

Pd-complex 3ka:

The Pd-complex **3ka** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.4$) on silica gel using EtOAc/PE (3:2) as the eluent to give the desired product **3ka** as yellow solid in 88% yield (91.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.36 (d, J = 8.0 Hz, 1H), 8.24 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 4.8 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.44 (d, J = 7.6 Hz, 2H), 7.34 – 7.24 (m, 10H), 5.72 (d, J = 4.8 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.44 (d, J = 7.6 Hz, 2H), 7.34 – 7.24 (m, 10H), 5.72 (d, J = 4.8 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.44 (d, J = 7.6 Hz, 2H), 7.34 – 7.24 (m, 10H), 5.72 (d, J = 4.8 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.44 (d, J = 7.6 Hz, 2H), 7.34 – 7.24 (m, 10H), 5.72 (d, J = 4.8 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.44 (d, J = 7.6 Hz, 2H), 7.34 – 7.24 (m, 10H), 5.72 (d, J = 4.8 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.44 (d, J = 7.6 Hz, 2H), 7.34 – 7.24 (m, 10H), 5.72 (d, J = 4.8 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.44 (d, J = 7.6 Hz, 2H), 7.34 – 7.24 (m, 10H), 5.72 (d, J = 4.8 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.44 (d, J = 7.6 Hz, 2H), 7.34 – 7.24 (m, 10H), 5.72 (d, J = 4.8 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.44 (d, J = 7.6 Hz, 2H), 7.34 – 7.24 (m, 10H), 5.72 (d, J = 4.8 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.44 (d, J = 7.6 Hz, 2H), 7.34 – 7.24 (m, 10H), 5.72 (d, J = 4.8 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.44 (d, J = 7.6 Hz, 2H), 7.34 – 7.24 (m, 10H), 5.72 (d, J = 4.8 Hz, 1H), 7.82 (d, J = 4.8 Hz, 1H), 7.82 (d, J = 4.8 Hz, 1H), 7.82 (d, J = 4.8 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.44 (d, J = 7.6 Hz, 2H), 7.34 – 7.24 (m, 10H), 7.44 (d, J = 7.6 Hz, 2H), 7.34 – 7.24 (m, 10H), 7.44 (d, J = 7.6 Hz, 2H), 7.44 (d, J = 7.6 Hz, 2H), 7.44 (d, J = 7.6 Hz, 2H), 7.44 (m, 10H), 7.44 (d, J = 7.6 Hz, 2H), 7.44 (m, 10H), 7.44

10.8 Hz, 1H), 4.33 (d, *J* = 11.2 Hz, 1H), 3.51 (d, *J* = 15.6 Hz, 1H), 2.14 (d, *J* = 16.0 Hz, 1H), 1.09 – 1.03 (m, 1H), 0.92 – 0.76 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.7, 148.5, 147.5, 144.2, 143.7, 139.3, 138.8, 130.6, 129.7, 128.8, 128.8, 128.1, 127.4, 127.2, 122.5, 120.7, 118.6, 106.4, 90.7, 80.9, 55.7, 21.7, 16.9, 8.9; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₉H₂₅N₂OPd: 523.1002. Found: 523.1003.

Pd-complex 3la:

The Pd-complex **3la** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.4$) on silica gel using EtOAc/PE (3:2) as the eluent to give the desired product **3la** as yellow solid in 86% yield (92.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.36 – 9.31 (m, 1H), 8.24 – 8.18 (m, 1H), 7.82 – 7.79 (m, 1H), 7.58 – 7.52 (m, 1H), 7.47 – 7.43 (m, 2H), 7.34 – 7.22 (m, 10H), 6.04 (d, *J* = 11.2 Hz, 1H), 4.00 (d, *J* = 11.6 Hz, 1H), 3.15 – 3.01 (m, 2H), 2.41 – 2.32 (m, 1H), 2.20 – 2.05 (m, 4H), 2.01 – 1.92 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.5, 148.3, 147.4, 144.3, 143.9, 139.4, 138.8, 130.7, 129.7, 129.7, 128.9, 128.8, 128.2, 127.3, 127.2, 122.5, 120.7, 118.5, 106.0, 90.9, 84.9, 58.6, 44.1, 34.5, 26.5, 14.6; HRMS (ESI) m/z [M+H]⁺: Calcd for C₃₀H₂₇N₂OPd: 537.1158. Found: 537.1157.

Pd-complex 3ma:

The Pd-complex **3ma** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.6$) on silica gel using EtOAc/PE (2:3) as the eluent to give the desired product **3ma** as yellow solid in 82% yield (83.3 mg, *d.r.*= 19:1). ¹**H NMR (400 MHz, CDCl₃)** δ 9.11 & 9.01 (d, *J* = 8.0 Hz & 8.0 Hz, 1H), 8.25 (d, *J* = 8.0 Hz, 1H), 7.92 – 7.79 (m, 1H), 7.66 – 7.50 (m, 3H), 7.40 – 7.12 & 6.98 – 6.76 (m, 10H), 6.39 & 6.27 (d, *J* = 15.2 Hz & 11.6 Hz, 1H), 5.53 – 5.42 & 4.49 – 4.32 (m, 1H), 4.25 – 4.18 & 3.99 – 3.90 (m, 1H), 2.47 – 2.18 (m, 1H), 1.71 - 1.50 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 147.9, 147.7, 144.6, 144.1, 139.4, 138.9, 130.5, 129.6, 128.8, 128.8, 128.2, 127.3, 127.1, 123.1, 120.8, 118.7, 111.5, 87.7, 81.5, 37.2, 20.7, 16.5; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₈H₂₃N₂OPd: 509.0845. Found: 509.0850.

Pd-complex 3na:

The Pd-complex **3na** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.5$) on silica gel using EtOAc/PE (3:2) as the eluent to give the desired product **3na** as yellow solid in 78% yield (91.1 mg, *d.r.* = 19:1). ¹H NMR (400 MHz, CDCl₃) δ 9.39 – 9.34 & 9.14 – 9.09 (m, 1H), 8.29 – 8.22 (m, 1H),

7.88 – 7.78 (m, 1H), 7.63 – 7.48 (m, 3H), 7.37 – 7.11 (m, 15H), 6.32 & 6.14 (d, J = 11.6 Hz & 11.2 Hz, 1H), 4.61 & 4.52 (dd, $J_I = 11.2$ Hz & 11.6 Hz, $J_2 = 2.8$ Hz & 4.4 Hz, 1H), 3.10 – 3.05 & 2.77 – 2.72 (m, 1H), 2.72 – 2.65 & 2.44 – 2.39 (m, 1H), 2.07 – 1.96 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 148.0, 147.7, 144.6, 143.9, 141.3, 139.3, 138.9, 130.5, 129.6, 129.6, 128.8, 128.8, 128.3, 128.2, 127.3, 127.1, 126.1, 123.3, 120.9, 118.8, 111.3, 88.0, 80.4, 47.3, 33.9, 30.4; HRMS (ESI) m/z [M+H]+: Calcd for C₃₄H₂₇N₂OPd: 585.1158. Found: 585.1155.

Pd-complex 3oa:

The Pd-complex **30a** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.3$) on silica gel using EtOAc/PE (3:2) as the eluent to give the desired product **30a** as yellow solid in 79% yield (82.4 mg, *d.r.* = 20:1). ¹**H NMR (400 MHz, CDCl3)** δ 9.29 – 9.22 & 9.19 – 9.13 (m, 1H), 8.27 – 8.20 (m, 1H), 7.83 – 7.77 (m, 1H), 7.57 – 7.49 (m, 3H), 7.37 – 7.14 (m, 10H), 5.92 & 5.80 (d, *J* = 10.8 Hz & 11.6 Hz, 1H), 4.75 – 4.65 (m, 1H), 3.95 – 3.85 (m, 1H), 3.16 – 3.06 (m, 1H), 2.68 – 2.45 (m, 2H), 2.31 – 2.18 (m, 1H), 1.77 – 1.69 (m, 1H); ¹³C NMR (100 MHz, CDCl3) δ 178.1, 148.0, 147.2, 144.6, 143.7, 139.2, 138.8, 130.4, 129.8, 129.7, 128.8, 128.2, 127.3, 127.2, 122.1, 120.7, 118.4, 110.0, 89.3, 81.9, 53.2, 43.5, 26.1, 22.6; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₉H₂₅N₂OPd: 523.1002. Found: 523.1003.

Pd-complex 3pa:

The Pd-complex **3pa** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.4$) on silica gel using EtOAc/PE (3:2) as the eluent to give the desired product **3pa** as yellow solid in 74% yield (79.3 mg, *d.r.* > 20:1). ¹**H NMR (400 MHz, CDCl**₃) δ 9.39 – 9.36 & 9.18 – 9.16 (m, 1H), 8.27 – 8.20 (m, 1H), 7.88 – 7.79 (m, 1H), 7.61 – 7.52 (m, 1H), 7.52 – 7.43 (m, 2H), 7.36 – 7.20 & 7.13 – 7.07 (m, 10H), 6.59 & 5.93 (d, *J* = 7.6 Hz & 11.2 Hz, 1H), 4.59 – 4.55 & 4.20 – 4.08 (m, 1H), 3.30 – 3.13 (m, 1H), 2.93 – 2.79 (m, 1H), 2.42 – 2.28 (m, 1H), 2.10 – 1.70 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 178.8, 148.4, 147.4, 144.7, 143.8, 139.3, 138.8, 130.5, 129.7, 129.7, 128.8, 128.7, 128.1, 127.3, 127.1, 123.0, 120.7, 118.6, 109.1, 90.2, 80.0, 61.8, 45.8, 33.2, 29.7, 21.2; HRMS (ESI) m/z [M+H]⁺: Calcd for C₃₀H₂₇N₂OPd: 537.1158. Found: 537.1159.

Pd-complex 3qa:

The Pd-complex **3qa** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.4$) on silica gel using EtOAc/PE (3:2) as the eluent to give the desired product **3qa** as yellow solid in 70% yield (77.0 mg, *d.r.* = 11.5:1). ¹**H NMR (400 MHz, CDCI3)** δ 9.33 & 9.17 (d, *J* = 8.0 Hz & 3.2 Hz, 1H), 8.29 – 8.20 (m, 1H), 7.92 – 7.84 & 7.78 – 7.74 (m, 1H), 7.62 – 7.52 (m, 1H), 7.52 – 7.34 (m, 2H), 7.36 – 7.20 & 7.18 – 7.05 (m, 10H), 6.48 & 5.92 (d, *J* = 7.6 Hz & 10.8 Hz, 1H), 4.68 – 4.59 & 4.50 – 4.34 (m, 1H), 3.38 – 3.30 & 3.00 – 2.89 (m, 1H), 2.88 – 2.67 (m, 1H), 2.42 – 2.28 (m, 1H), 2.16 – 1.98 (m, 1H), 1.95 – 1.67 & 1.57 – 1.48 (m, 6H); ¹³C NMR (100 MHz, CDCI3) δ 180.5, 148.8, 147.5, 144.5, 143.8, 139.5, 138.8, 130.5, 129.7, 129.7, 128.8, 128.7, 128.2, 127.3, 127.1, 126.4, 123.2, 120.7, 118.6, 109.7, 90.9, 78.2, 59.8, 40.9, 33.1, 27.1, 20.7; HRMS (ESI) m/z [M+H]+: Calcd for C₃₁H₂₉N₂OPd: 551.1315. Found: 551.1313.

Pd-complex 3ra:

The Pd-complex **3ra** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.3$) on silica gel using EtOAc/PE (3:2) as the eluent to give the desired product **3ra** as yellow solid in 60% yield (66.2 mg, *d.r.* > 20:1). ¹H **NMR (400 MHz, CDCl**₃) δ 9.35 – 9.31 (m, 1H), 8.28 – 8.22 (m, 1H), 7.89 – 7.85 (m, 1H), 7.61 – 7.54 (m, 1H), 7.49 – 7.46 (m, 2H), 7.37 – 7.26 (m, 10H), 5.95 (d, *J* = 11.2

Hz, 1H), 4.52 (t, *J* = 10.8 Hz, 1H), 4.15 – 4.09 (m, 1H), 4.06 – 4.01 (m, 1H), 3.72 – 3.66 (m, 1H), 3.64 – 3.56 (m, 1H), 3.18 – 3.09 (m, 1H), 2.59 – 2.51 (m, 1H), 2.17 – 1.98 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 178.6, 148.4, 147.6, 144.5, 143.7, 139.0, 138.9, 130.5, 129.7, 129.6, 129.0, 128.8, 128.2, 127.4, 127.2, 123.3, 120.8, 119.1, 109.6, 91.5, 76.5, 72.6, 69.6, 57.0, 42.6, 27.8; HRMS (ESI) m/z [M+H]⁺: Calcd for C₃₀H₂₇N₂O₂Pd: 553.1107. Found: 553.1105.

Pd-complex 3sa:

The Pd-complex **3sa** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.5$) on silica gel using EtOAc/PE (3:2) as the eluent to give the desired product **3sa** as yellow solid in 60% yield (66.2 mg, *d.r.* > 20:1). ¹**H NMR (400 MHz, CDCl₃)** δ 9.25 (d, *J* = 8.0 Hz, 1H), 8.25 – 8.20 (m, 1H), 7.86 – 7.82 (m, 1H), 7.59 – 7.52 (m, 1H), 7.48 – 7.43 (m, 2H), 7.34 – 7.23 (m, 10H), 5.93 (d, *J* = 11.2 Hz, 1H), 4.13 (t, *J* = 11.8 Hz, 1H), 3.02 – 2.95 (m, 1H), 2.90 – 2.81 (m, 1H), 2.22 – 2.11 (m, 0H), 2.01 – 1.70 (m, 6H), 1.59 – 1.44 (m, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ 181.9, 148.8, 147.5, 144.3, 143.6, 139.5, 138.8, 130.4, 129.8, 129.7, 128.8, 128.7, 128.1, 127.3, 127.2, 122.8, 120.7, 118.5, 109.9, 91.0, 78.8, 61.8, 44.6, 44.2, 34.9, 30.7, 30.4, 28.3, 27.2, 27.2, 26.3, 25.1; **HRMS (ESI) m/z [M+H]+:** Calcd for C₃₂H₃₁N₂OPd: 565.1471. Found: 565.1476.

Pd-complex 3ta:

The Pd-complex **3ta** was prepared according to the general procedure. Purification by column chromatography (TLC major: $R_f = 0.4$, minor: $R_f = 0.7$) on silica gel using EtOAc/PE (1:1) as the eluent to give the desired product **3ta** as yellow solid in 90% yield (117.3 mg, *d.r.*= 2:1).

Major: ¹**H NMR** (**400 MHz, CDCl**₃) δ 9.53 – 9.46 (m, 1H), 8.30 – 8.23 (m, 1H), 7.84 – 7.82 (m, 1H), 7.80 (s, 1H), 7.61 – 7.52 (m, 2H), 7.50 – 7.35 (m, 5H), 7.32 – 7.26 (m, 4H), 7.20 – 7.16 (m, 2H), 7.13 – 7.08 (m, 3H), 7.01 – 6.97 (m, 2H), 6.06 (d, J = 10.8 Hz, 1H), 4.59 (t, J = 3.6 Hz, 1H), 3.86 (s, 3H), 3.79 – 3.72 (m, 1H), 2.77 – 2.67 (m, 1H), 2.53 – 2.45 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 157.1, 148.7, 147.6, 144.3, 143.3, 138.9, 138.9, 136.5, 133.3, 130.4, 129.8, 129.8, 129.3, 128.9, 128.8, 128.6, 128.0, 127.4, 127.3, 127.1, 126.7, 126.6, 123.1, 120.8, 119.0, 118.2, 109.6, 105.3, 91.0, 76.4, 62.0, 55.2, 37.5; HRMS (ESI) m/z [M+H]⁺: Calcd for C₃₈H₃₁N₂O₂Pd: 653.1420. Found: 653.1422.

Minor: ¹H NMR (400 MHz, CDCl₃) δ 9.23 – 9.17 (m, 1H), 8.26 – 8.21 (m, 1H), 7.86 – 7.82 (m, 1H), 7.75 – 7.65 (m, 2H), 7.63 (s, 1H), 7.53 – 7.43 (m, 4H), 7.35 – 7.24 (m, 10H), 7.13 – 7.05 (m, 2H), 5.96 (d, *J* = 10.8 Hz, 1H), 4.24 (dd, *J*₁ = 12.0, *J*₂ = 2.8 Hz, 1H), 4.07 – 3.99 (m, 1H), 3.91 (s, 3H), 2.91 – 2.78 (m, 1H), 2.64 – 2.58 (m, 1H).; ¹³C

NMR (100 MHz, CDCl₃) δ 177.8, 157.2, 148.7, 147.5, 144.1, 143.5, 139.7, 139.2, 138.9, 133.3, 130.8, 129.8, 129.7, 129.3, 129.1, 128.9, 128.8, 128.1, 127.7, 127.4, 127.3, 126.7, 126.3, 123.1, 120.6, 118.6, 118.2, 109.0, 105.7, 91.6, 75.0, 59.6, 55.3, 39.5;
HRMS (ESI) m/z [M+H]⁺: Calcd for C₃₈H₃₁N₂O₂Pd: 653.1420. Found: 653.1418.

Pd-complex 3ua:

The Pd-complex **3ua** was prepared according to the general procedure. Purification by column chromatography (TLC major: $R_f = 0.6$, minor: $R_f = 0.8$) on silica gel using EtOAc/PE (1:1) as the eluent to give the desired product **3ua** as yellow solid in 84% yield (105.5 mg, *d.r.*= 1.8:1).

Major: ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 9.54 – 9.48 (m, 1H), 8.29 – 8.23 (m, 1H), 7.83 – 7.79 (m, 1H), 7.62 – 7.56 (m, 1H), 7.48 – 7.44 (m, 2H), 7.39 – 7.25 (m, 7H), 7.20 – 7.10 (m, 5H), 6.84 (d, *J* = 8.0 Hz, 2H), 6.04 (d, *J* = 11.2 Hz, 1H), 4.44 (t, *J* = 3.6 Hz, 1H), 3.68 – 3.58 (m, 1H), 2.68 – 2.59 (m, 1H), 2.47 – 2.39 (m, 1H), 2.37 – 2.25 (m, 2H), 1.75 – 1.65 (m, 1H), 0.81 (d, *J* = 6.8 Hz, 3H), 0.78 (d, *J* = 6.4 Hz, 3H); ¹³**C NMR** (**100 MHz**, **CDCl**₃) δ 176.5, 148.6, 147.5, 144.2, 143.4, 139.4, 138.9, 138.9, 138.3, 130.4, 129.8, 129.8, 128.8, 128.8, 128.5, 127.9, 127.8, 127.2, 127.0, 123.0, 120.7, 118.9, 109.6, 90.7, 76.6, 61.4, 44.9, 37.4, 30.1, 22.4, 22.2; **HRMS** (**ESI**) **m/z** [**M**+**H**]+: Calcd for C₃₇H₃₅N₂OPd: 629.1784. Found: 629.1788. **Minor:** ¹**H NMR** (400 MHz, CDCl₃) δ 9.20 (d, J = 8.0 Hz, 1H), 8.28 – 8.21 (m, 1H), 7.85 – 7.80 (m, 1H), 7.53 – 7.42 (m, 3H), 7.34 – 7.25 (m, 10H), 7.21 – 7.18 (m, 2H), 7.13 – 7.08 (m, 2H), 5.94 (d, J = 11.2 Hz, 1H), 4.07 (dd, $J_I = 12.4$, $J_2 = 3.2$ Hz, 1H), 4.02 – 3.94 (m, 1H), 2.82 – 2.69 (m, 1H), 2.60 – 2.53 (m, 1H), 2.48 – 2.43 (m, 2H), 1.93 – 1.81 (m, 1H), 0.92 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 177.9, 148.8, 147.5, 144.1, 143.5, 141.7, 139.3, 139.2, 138.9, 130.7, 129.8, 129.6, 129.0, 128.8, 128.8, 128.0, 128.0, 127.3, 127.3, 123.1, 120.6, 118.5, 108.9, 91.5, 75.1, 59.2, 45.2, 39.5, 30.1, 22.5, 22.5; **HRMS (ESI) m/z [M+H]⁺:** Calcd for C₃₇H₃₅N₂OPd: 629.1784. Found: 629.1783.

Pd-complex 3eb:

The Pd-complex **3eb** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.6$) on silica gel using EtOAc/PE (3:2) as the eluent to give the desired product **3eb** as yellow solid in 74% yield (87.9 mg,). ¹H NMR (400 MHz, CDCl₃) δ 9.27 (d, J = 8.0 Hz, 1H), 8.49 – 8.46 (m, 1H), 8.31 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.59 – 7.53 (m, 1H), 7.50 – 7.45 (m, 1H), 7.39 – 7.30 (m, 3H), 5.06 (d, J = 11.2 Hz, 1H), 4.12 – 4.08 (m, 1H), 3.93 – 3.82 (m, 2H), 2.51 – 2.41 (m, 5H), 2.31 – 2.20 (m, 2H), 2.15 – 2.03 (m, 3H), 1.75 (d, J = 13.2 Hz, 1H), 1.52 (s, 3H), 1.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 181.7, 149.4, 147.1, 143.8, 139.3, 133.1,

129.9, 129.8, 127.6, 122.8, 120.5, 118.3, 107.8, 81.8, 71.9, 49.9, 49.6, 49.3, 43.5, 36.6, 32.2, 30.2, 27.3, 21.6; **HRMS (ESI) m/z [M+H]**⁺: Calcd for C₂₈H₃₂N₃O₃PdS: 596.1199. Found: 596.1198.

Pd-complex 3ec:

The Pd-complex **3ec** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.6$) on silica gel using EtOAc/PE (2:3) as the eluent to give the desired product **3ec** as yellow solid in 74% yield (77.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.21 – 9.16 (m, 1H), 8.42 – 8.37 (m, 1H), 8.27 – 8.21 (m, 1H), 7.87 – 7.82 (m, 2H), 7.79 – 7.74 (m, 2H), 7.52 – 7.47 (m, 1H), 7.44 – 7.38 (m, 1H), 7.27 – 7.21 (m, 1H), 5.01 (d, *J* = 11.2 Hz, 1H), 4.07 (d, *J* = 7.2 Hz, 1H), 3.87 – 3.79 (m, 2H), 2.49 – 2.35 (m, 2H), 2.25 – 2.15 (m, 2H), 2.15 – 2.05 (m, 2H), 2.04 – 1.96 (m, 1H), 1.75 – 1.68 (m, 1H), 1.45 (s, 3H), 1.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 181.6, 149.5, 147.1, 144.1, 140.0, 139.3, 134.8, 130.0, 128.0, 126.4(q, *J* = 4.0 Hz), 122.9, 120.5, 118.4, 107.8, 81.0, 72.2, 49.8, 49.6, 49.2, 43.5, 36.6, 32.3, 30.2, 27.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -63.1; HRMS (ESI) m/z [M+H]+: Calcd for C₂₈H₂₉F₃N₃O₃PdS: 650.0911. Found: .650.0909.

Pd-complex 3ed:

The Pd-complex **3ed** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.6$) on silica gel using EtOAc/PE (2:3) as the eluent to give the desired product **3ed** as yellow solid in 75% yield (81.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.20 (d, J = 8.0 Hz, 1H), 8.43 – 8.37 (m, 1H), 8.22 – 8.19 (m, 1H), 7.48 (t, J = 8.0 Hz, 1H), 7.39 – 7.34 (m, 1H), 7.25 – 7.20 (m, 1H), 5.14 (d, J = 11.2 Hz, 1H), 4.34 (s, 1H), 4.06 (s, 1H), 3.92 – 3.83 (m, 1H), 2.91 – 2.80 (m, 2H), 2.58 – 2.47 (m, 2H), 2.30 – 2.14 (m, 2H), 2.11 – 2.04 (m, 1H), 2.00 – 1.93 (m, 2H), 1.67 – 1.60 (m, 1H), 1.49 (s, 3H), 1.44 (s, 9H), 1.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 181.9, 154.5, 149.5, 147.0, 144.1, 139.1, 129.9, 129.7, 122.8, 120.4, 118.2, 107.7, 84.7, 78.0, 77.3, 71.6, 49.6, 43.7, 37.4, 33.3, 30.3, 28.4, 27.3; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₆H₃₄N₃O₃Pd: 542.1629. Found:542.1631.

Pd-complex 3ee:

The Pd-complex **3ee** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.6$) on silica gel using EtOAc/PE (1:3) as the eluent

to give the desired product **3ee** as yellow solid in 67% yield (59.3 mg). ¹**H NMR (400 MHz, CDCl**₃) δ 9.21 (dd, $J_1 = 8.4$, $J_2 = 1.2$ Hz, 1H), 8.48 (dd, $J_1 = 4.4$, $J_2 = 1.6$ Hz, 1H), 8.22 (dd, $J_1 = 8.4$, $J_2 = 1.6$ Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.38 (dd, $J_1 = 8.0$, $J_2 = 4.4$ Hz, 1H), 7.25 – 7.21 (m, 1H), 5.16 (d, J = 11.2 Hz, 1H), 4.21 – 4.13 (m, 1H), 3.93 – 3.83 (m, 2H), 3.62 – 3.53 (m, 1H), 3.27 – 3.19 (m, 1H), 2.46 – 2.37 (m, 1H), 2.30 – 2.16 (m, 2H), 2.11 – 2.03 (m, 1H), 1.96 – 1.88 (m, 1H), 1.61 – 1.54 (m, 1H), 1.49 (s, 3H), 1.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 181.9, 149.5, 146.8, 144.1, 139.1, 129.9, 129.7, 122.8, 120.4, 118.2, 107.6, 84.0, 71.6, 71.4, 71.0, 49.6, 43.7, 38.6, 34.9, 30.3, 27.3; HRMS (ESI) m/z [M+H]+: Calcd for C₂₁H₂₅N₂O₂Pd: 443.0945. Found:443.0947.

Pd-complex 3ef:

The Pd-complex **3ef** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.5$) on silica gel using EtOAc/PE (1:2) as the eluent to give the desired product **3ee** as yellow solid in 79% yield (78.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.23 – 9.19 (m, 1H), 8.49 – 8.44 (m, 1H), 8.23 – 8.18 (m, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.40 – 7.36 (m, 1H), 7.25 – 7.21 (m, 1H), 5.10 (d, J = 11.2 Hz, 1H), 4.00 – 3.93 (m, 3H), 3.91 – 3.83 (m, 2H), 2.34 – 2.22 (m, 2H), 2.10 – 1.95 (m, 4H), 1.83 – 1.70 (m, 4H), 1.50 (s, 3H), 1.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 182.0,

149.6, 147.2, 144.2, 139.0, 129.9, 129.6, 122.8, 120.4, 118. 2, 108.5, 108.1, 86.6, 71.0, 64.5, 64.4, 49.6, 43.7, 38.6, 38.0, 34.6, 30.3, 29.5, 27.3; **HRMS (ESI) m/z [M+H]**⁺: Calcd for C₂₄H₂₉N₂O₃Pd: 499.1208. Found: 499.1205.

Pd-complex 3eg:

The Pd-complex **3eg** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.7$) on silica gel using EtOAc/PE (1:2) as the eluent to give the desired product **3eg** as yellow solid in 65% yield (68.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.30 – 9.24 (m, 1H), 8.53 – 8.50 (m, 1H), 8.30 – 8.26 (m, 1H), 7.59 – 7.53 (m, 1H), 7.49 – 7.44 (m, 1H), 5.26 (d, *J* = 11.2 Hz, 1H), 3.85 – 3.75 (m, 1H), 2.37 – 2.29 (m, 2H), 2.11 – 2.05 (m, 1H), 1.83 – 1.62 (m, 6H), 1.57 (s, 3H), 1.54 – 1.47 (m, 4H), 1.44 (s, 3H), 1.42 – 1.24 (m, 11H); ¹³C NMR (100 MHz, CDCl₃) δ 182.3, 149.7, 148.1, 138.7, 129.9, 129.5, 122.9, 120.4, 118.2, 110.0, 91.3, 69.4, 49.4, 43.9, 32.6, 30.3, 28.4, 27.3, 26.0, 25.8, 25.7, 24.7, 24.3, 22.7, 22.6, 22.5, 22.1; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₈H₃₉N₂OPd: 525.2092. Found: 525.2093.

Pd-complex 3eh:

The Pd-complex **3eh** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.4$) on silica gel using EtOAc/PE (2:3) as the eluent to give the desired product **3eh** as yellow solid in 91% yield (92.0 mg, E/Z = 67:33).

3eh-E: ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 9.11 – 9.04 (m, 1H), 8.09 – 8.01 (m, 2H), 7.42 – 7.32 (m, 3H), 7.16 – 7.04 (m, 5H), 5.31 (d, *J* = 11.6 Hz, 1H), 4.75 – 4.64 (m, 1H), 3.55 (s, 3H), 2.15 – 2.11 (m, 2H), 1.41 (s, 3H), 1.27 (s, 3H); ¹³**C NMR** (**100 MHz**, **CDCl**₃) δ 181.5, 168.6, 149.4, 148.6, 143.8, 139.5, 139.1, 129.7, 129.6, 129.2, 128.5, 127.7, 122.8, 120.8, 118.5, 112.0, 79.5, 78.1, 52.1, 49.6, 44.2, 30.1, 27.3; **HRMS** (**ESI**) **m/z** [**M**+**H**]⁺: Calcd for C₂₅H₂₅N₂O₃Pd: 507.0900. Found: 507.0901.

3eh-Z: ¹**H NMR** (**400 MHz, CDCl**₃) δ 9.20 – 9.15 (m, 1H), 8.80 – 8.75 (m, 1H), 8.32 – 8.26 (m, 1H), 7.51 – 7.46 (m, 2H), 7.32 – 7.24 (m, 3H), 7.20 – 7.14 (m, 4H), 6.37 (d, *J* = 11.6 Hz, 1H), 4.08 – 3.98 (m, 1H), 3.69 (s, 3H), 2.38 – 2.29 (m, 1H), 2.24 – 2.17 (m, 1H), 1.35 (s, 3H), 1.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 181.4, 171.1, 149.5, 147.6, 144.1, 139.5, 135.1, 130.7, 130.0, 129.7, 128.3, 127.4, 123.2, 120.9, 118.7, 109.7, 78.6, 77.10, 52.4, 49.2, 43.4, 30.1, 27.1; **HRMS (ESI) m/z [M+H]**⁺**:** Calcd for C₂₅H₂₅N₂O₃Pd: 507.0900. Found: 507.0899.

Pd-complex 3ei:

The Pd-complex **3ei** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.4$) on silica gel using EtOAc/PE (2:3) as the eluent to give the desired product **3ei** as yellow solid in 89% yield (93.1 mg, *E/Z* = 67:33). ¹**H NMR (400 MHz, CDCI3)** δ 9.31 – 9.22 (m, 1H), 8.84 – 8.77 & 8.29 – 8.23 (m, 1H), 8.41 – 8.34 & 8.29 – 8.23 (m, 1H), 7.61 – 7.51 & 7.39 – 7.28 (m, 5H), 7.02 – 6.89 (m, 2H), 6.44 & 5.49 (d, *J* = 11.6 Hz & 11.6 Hz, 1H), 4.96 – 4.86 & 4.14 – 4.04 (m, 1H), 3.77 & 3.75 (s, 3H), 2.48 – 2.23 (m, 2H), 1.61 & 1.43 (s, 3H), 1.47 & 1.41 (s, 3H); ¹³**C NMR (100 MHz, CDCI3**) δ 181.5, 181.3, 171.3, 171.0, 171.0, 168.5, 167.7, 161.9 (d, *J* = 261.0 Hz), 161.8 (d, *J* = 253.0 Hz), 149.5, 149.4, 148.4, 147.4, 144.2, 143.8, 139.6, 139.3, 132.4, 132.3, 131.1 (d, *J* = 4.0 Hz), 131.0 (d, *J* = 8.0 Hz), 130.1, 129.8, 129.7, 129.6, 123.3, 122.9, 120.9, 118.7, 118.6, 115.5 (d, *J* = 22.0 Hz), 115.3 (d, *J* = 22.0 Hz), 111.9, 109.8, 78.7, 78.4, 78.3, 76.0, 52.5, 52.1, 49.7, 49.1, 44.2, 43.4, 30.1, 29.7, 27.3, 27.1; ¹⁹**F NMR (376 MHz, CDCI3**) δ -113.66, -114.02; **HRMS (ESI) m/z [M+H]+**: Calcd for C₂₅H₂₄FN₂O₃Pd: 525.0806. Found: 525.0808.

Pd-complex 3ej:

The Pd-complex **3ej** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.7$) on silica gel using EtOAc/PE (1:1) as the eluent to give the desired product **3ej** as yellow solid in 88% yield (95.0 mg, *E/Z* = 69:31). ¹**H NMR (400 MHz, CDCl**₃) δ 9.31 – 9.21 (m, 1H), 8.84 – 8.77 & 8.29 – 8.23 (m, 1H), 8.40 – 8.34 & 8.29 – 8.23 (m, 1H), 7.61 – 7.50 & 7.39 – 7.27 (m, 5H), 7.02 – 6.88 (m, 2H), 6.44 & 5.49 (d, *J* = 11.6 Hz & 11.6 Hz, 1H), 4.97 – 4.86 & 4.15 – 4.04 (m, 1H), 3.77 & 3.75 (s, 3H), 2.47 – 2.23 (m, 2H), 1.61 & 1.43 (s, 3H), 1.47 & 1.41 (s, 3H); ¹³**C NMR (100 MHz, CDCl**₃) δ 181.5, 181.3, 171.0, 168.5, 163.2, 163.1, 149.4, 149.4, 148.4, 147.4, 144.1, 143.8, 139.6, 139.2, 132.4, 132.3, 131.1, 131.0, 131.0, 130.9, 130.0, 129.8, 123.2, 122.8, 120.9, 120.9, 118.7, 118.6, 115.6, 115.4, 115.4, 115.2, 111.9, 109.8, 78.7, 78.4, 78.3, 76.0, 52.5, 52.1, 49.6, 49.1, 44.2, 43.4, 30.1, 27.3, 27.1; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₅H₂₄ClN₂O₃Pd: 541.0510.

Pd-complex 3ek:

₽d COOMe

The Pd-complex **3ek** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.7$) on silica gel using EtOAc/PE (1:1) as the eluent to give the desired product **3ek** as yellow solid in 90% yield (105.0 mg, *E/Z* = 62:38). ¹H NMR (**400 MHz, CDCl**₃) δ 9.31 – 9.19 (m, 1H), 8.83 – 8.77 & 8.26 – 8.23 (m, 1H), 8.40 – 8.34 & 8.30 – 8.23 (m, 1H), 7.62 – 7.54 & 7.48 – 7.39 (m, 3H), 7.39 – 7.30 & 7.26 – 7.20 (m, 4H), 6.42 & 5.49 (d, *J* = 12.0 Hz & 11.6 Hz, 1H), 4.98 – 4.88 & 4.15 – 4.05 (m, 1H), 3.77 & 3.75 (s, 3H), 2.47 – 2.24 (m, 2H), 1.61 & 1.43 (s, 3H), 1.47 & 1.42 (s, 3H); ¹³C NMR (**100 MHz, CDCl**₃) δ 181.4, 181.2, 170.7, 168.2, 149.6, 148.5, 147.4, 144.1, 143.8, 139.6, 139.3, 138.7, 134.3, 132.3, 131.6, 131.5, 130.9, 130.1, 129.8, 129.7, 123.3, 122.9, 121.5, 120.9, 118.7, 118.6, 111.8, 109.5, 78.8, 78.7, 78.1, 75.9, 52.5, 52.1, 49.6, 49.1, 44.2, 43.4, 30.1, 27.3, 27.1; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₅H₂₄BrN₂O₃Pd: 585.0005. Found: 585.0006.

Pd-complex 3ej:

The Pd-complex **3ej** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.3$) on silica gel using EtOAc/PE (2:3) as the eluent to give the desired product **3ej** as yellow solid in 95% yield (98.6 mg, E/Z > 99:1). ¹H NMR (400 MHz, CDCl₃) δ 9.28 – 9.17 (m, 1H), 8.96 – 8.88 (m, 1H), 8.39 – 8.31 (m, 1H), 7.60 – 7.51 (m, 2H), 7.37–7.28 (m, 3H), 7.25 – 7.20 (m, 3H), 5.59 (d, J = 11.2

Hz, 1H), 4.86 (d, J = 12.4 Hz, 1H), 4.70 (d, J = 12.4 Hz, 1H), 4.05 – 3.95 (m, 1H), 2.39 – 2.29 (m, 1H), 2.21 – 2.13 (m, 1H), 1.99 (s, 3H), 1.42 (s, 3H), 1.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 181.9, 170.9, 149.7, 149.0, 144.1, 139.3, 138.4, 130.0, 129.7, 129.0, 128.8, 127.2, 123.1, 120.7, 118.5, 108.4, 83.2, 75.9, 69.1, 49.1, 43.5, 30.2, 27.0, 20.8; HRMS (ESI) m/z [M+H]+: Calcd for C₂₆H₂₇N₂O₃Pd: 521.1057. Found: 521.1058.

Pd-complex 3ek:

The Pd-complex **3ek** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.5$) on silica gel using EtOAc/PE (2:3) as the eluent to give the desired product **3ek** as yellow solid in 93% yield (111.1 mg, E/Z > 99:1). ¹**H NMR (400 MHz, CDCl3)** δ 9.27 – 9.20 (m, 1H), 8.91 – 8.85 (m, 1H), 8.40 – 8.33 (m, 1H), 7.61 – 7.52 (m, 2H), 7.39 – 7.31 (m, 3H), 7.22 – 7.13 (m, 2H), 5.57 (d, J = 11.6 Hz, 1H), 4.86 (d, J = 12.4 Hz, 1H), 4.70 (d, J = 12.4 Hz, 1H), 4.04 – 3.92 (m, 1H), 2.40 – 2.27 (m, 1H), 2.23 – 2.12 (m, 1H), 2.00 (s, 3H), 1.41 (d, J = 4.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl3) δ 181.7, 170.8, 149.7, 148.9, 144.0, 139.5, 137.5, 132.0, 130.6, 130.1, 129.8, 123.2, 121.1, 120.7, 118.5, 108.6, 81.7, 76.2, 68.9, 49.1, 43.5, 30.1, 27.1,
20.8; **HRMS (ESI) m/z [M+H]**⁺: Calcd for C₂₆H₂₆BrN₂O₃Pd: 599.0162. Found: 599.0160.

Late-stage modification and their spectral data:

Large-scale reaction of 3aa:

A mixture of amide **1a** (5.0 mmol, 1.0 equiv.) and $Pd(OAc)_2$ (0.26 mmol, 1.3 equiv.) was dissolved in CH₂Cl₂ (50.0 mL) in a Schlenk tube. To the stirring reaction mixture was added a solution of cyclopropene **2a** (15 mmol, 3.0 equiv.) in CH₂Cl₂ (50.0 mL). The mixture was allowed to stir at room temperature until the **1** was consumed (determined by TLC). Then the reaction mixture was concentrated under reduced pressure and purified by column chromatography to give the desired product **3aa** (2.236g, 90% yield).

General procedure for lactam and their spectral data^[9]:

A flame-dried test tube was charged with **3** (0.20 mmol, 1.0 equiv.) and *N*-Iodosuccinimide (0.30 mmol, 1.5 equiv.) followed by CH_3CN (2.0 mL). After being

stirred at room temperature for 1 hour, it concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography to afford **4**.

5-(2,2-Diphenylvinyl)-1-(quinolin-8-yl)pyrrolidin-2-one (4aa):

The **4aa** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.3$) on silica gel using EtOAc/PE (2:1) as the eluent to give the desired product **4aa** as white solid in 98% yield (76.5 mg). M.p. 209 - 210 °C. ¹H **NMR (400 MHz, CDCl3)** δ 8.55 – 8.48 (m, 1H), 8.09 – 8.02 (m, 1H), 7.74 – 7.67 (m, 1H), 7.58 – 7.44 (m, 2H), 7.30 – 7.22 (m, 1H), 7.11 – 7.02 (m, 4H), 6.96 – 6.88 (m, 2H), 6.86 – 6.79 (m, 2H), 6.35 – 6.27 (m, 2H), 5.94 (d, *J* = 9.6 Hz, 1H), 5.16 – 5.06 (m, 1H), 2.72 – 2.64 (m, 2H), 2.52 – 2.39 (m, 1H), 2.16 – 2.01 (m, 1H); ¹³C NMR (100 MHz, CDCl3) δ 175.7, 149.8, 145.0, 144.2, 141.0, 138.4, 136.1, 135.1, 130.2, 129.2, 129.0, 128.5, 128.0, 127.9, 127.7, 127.6, 127.1, 127.0, 126.2, 121.2, 60.3, 31.1, 26.8; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₇H₂₃N₂O: 391.1805. Found: 391.1801.

2-(5-(2,2-Diphenylvinyl)-2-oxo-1-(quinolin-8-yl)pyrrolidin-3-yl)isoindoline-1,3dione (4ba):

The **4ba** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.2$) on silica gel using EtOAc/PE (1:1) as the eluent to give the desired product **4ba** as white solid in 97% yield (103.9 mg, *d.r.* > 20:1). M.p. 220 - 221 °C. ¹H NMR (**400 MHz, CDCl**₃) δ 8.49 – 8.43 (m, 1H), 8.15 – 8.08 (m, 1H), 7.95 – 7.84 (m, 3H), 7.84 – 7.77 (m, 1H), 7.78 – 7.69 (m, 2H), 7.66 – 7.58 (m, 1H), 7.35 – 7.27 (m, 1H), 7.25 – 7.09 (m, 4H), 7.10 – 7.02 (m, 2H), 6.93 – 6.84 (m, 2H), 6.43 – 6.35 (m, 2H), 6.10 (d, *J* = 10.0 Hz, 1H), 5.47 – 5.36 (m, 1H), 5.35 (t, *J* = 10.0 Hz, 1H), 2.93 – 2.81 (m, 1H), 2.61 – 2.48 (m, 1H); ¹³C NMR (**100 MHz, CDCl**₃) δ 169.8, 167.6, 149.9, 145.8, 144.1, 140.9, 138.3, 135.9, 134.6, 134.1, 132.1, 130.9, 129.1, 129.0, 128.1, 128.0, 127.8, 127.7, 127.2, 127.2, 126.2, 123.5, 121.2, 56.4, 50.2, 31.9; HRMS (ESI) m/z [M+H]⁺: Calcd for C₃₅H₂₆N₃O₃: 536.1969. Found: 536.1963.

7-(2,2-Diphenylvinyl)-6-(quinolin-8-yl)-2-oxa-6-azaspiro[3.4]octan-5-one (4ea):

The **4ea** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.2$) on silica gel using EtOAc/PE (1:2) as the eluent to give the desired product **4ea** as colorless oil in 87% yield (75.3 mg). ¹H NMR (**400 MHz**, **CDCl**₃) δ 8.59 – 8.50 (m, 1H), 8.19 – 8.07 (m, 1H), 7.84 – 7.77 (m, 1H), 7.63 – 7.50 S39

(m, 2H), 7.37 - 7.30 (m, 1H), 7.20 - 7.08 (m, 4H), 7.01 - 6.87 (m, 4H)., 6.38 - 6.28 (m, 2H), 5.85 (d, J = 10.0 Hz, 1H), 5.27 (d, J = 5.6 Hz, 1H), 5.11 (d, J = 5.8 Hz, 1H), 5.07 - 4.99 (m, 1H), 4.68 (dd, $J_1 = 5.6$ Hz, $J_2 = 3.6$ Hz, 2H), 3.01 - 2.92 (m, 1H), 2.52 - 2.43 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.3, 150.0, 145.8, 144.1, 140.9, 138.2, 136.0, 135.0, 130.0, 129.2, 128.9, 128.1, 127.9, 127.8, 127.8, 127.1, 127.1, 126.1, 121.4, 79.9, 78.6, 57.5, 46.8, 38.7; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₉H₂₅N₂O₂: 433.1911. Found: 433.1906.

5-(2,2-Diphenylvinyl)-3,3-dimethyl-1-(quinolin-8-yl)pyrrolidin-2-one (4fa):

The **4fa** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.4$) on silica gel using EtOAc/PE (1:1) as the eluent to give the desired product **4fa** as colorless oil in 91% yield (76.1 mg). ¹**H** NMR (**400 MHz**, **CDCl**₃) δ 8.57 (s, 1H), 8.18 – 8.11 (m, 1H), 7.83 – 7.76 (m, 1H), 7.67 – 7.60 (m, 1H), 7.61 – 7.53 (m, 1H), 7.38 – 7.30 (m, 1H), 7.22 – 7.13 (m, 4H), 7.08 – 7.00 (m, 2H), 6.95 – 6.88 (m, 2H), 6.44 – 6.38 (m, 2H), 5.97 (d, *J* = 10.0 Hz, 1H), 5.24 – 5.13 (m, 1H), 2.37 – 2.30 (m, 1H), 2.10 – 2.01 (m, 1H), 1.43 (s, 3H), 1.39 (s, 3H); ¹³C NMR (**100 MHz, CDCl**₃) δ 180.6, 145.1, 141.2, 138.5, 131.3, 130.4, 129.6, 129.1, 128.0, 127.8, 127.7, 127.5, 127.1, 127.0, 126.3, 121.2, 56.9, 42.9, 41.3, 25.7, 25.3; **HRMS** (**ESI) m/z [M+H]**⁺: Calcd for C₂₉H₂₇N₂O: 419.2118. Found: 419.2118.

5-(2,2-Diphenylvinyl)-3,3-difluoro-1-(quinolin-8-yl)pyrrolidin-2-one (4ga):

The **4ga** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.7$) on silica gel using EtOAc/PE (1:1) as the eluent to give the desired product **4ga** as white oil in 94% yield (80.2 mg). ¹H NMR (**400 MHz**, **CDCl**₃) δ 8.59 – 8.52 (m, 1H), 8.18 – 8.11 (m, 1H), 7.88 – 7.81 (m, 1H), 7.71 – 7.64 (m, 1H), 7.62 – 7.54 (m, 1H), 7.39 – 7.32 (m, 1H), 7.21 – 7.09 (m, 4H), 7.02 – 6.93 (m, 2H), 6.94 – 6.86 (m, 2H), 6.36 – 6.29 (m, 2H), 5.97 (d, *J* = 10.0 Hz, 1H), 5.43 – 5.35 (m, 1H), 3.12 – 2.97 (m, 1H), 2.69 – 2.54 (m, 1H); ¹³C NMR (**100 MHz, CDCl**₃) δ 163.6 (t, *J* = 31.3 Hz), 150.3, 147.3, 143.7, 140.3, 137.6, 136.0, 132.8, 129.4, 129.1, 128.1, 128.1 (t, *J* = 93.8 Hz), 127.9 (t, *J* = 100.0 Hz), 126.0, 125.6, 121.6, 117.9 (t, *J* = 248.8 Hz), 54.7, 54.7, 54.7, 36.7 (t, *J* = 21.3 Hz); ¹⁹F NMR (**376 MHz, CDCl**₃) δ - 101.1 (d, *J* = 269.2 Hz), -105.4 (d, *J* = 269.2 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₇H₂₁N₂F₂O: 427.1617. Found: 427.1616.

5-(2,2-Diphenylvinyl)-4-methyl-1-(quinolin-8-yl)pyrrolidin-2-one (4ia):

The **4ia** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.2$) on silica gel using EtOAc/PE (1:1) as the eluent to give

the desired product **4ia** as colorless oil in 87% yield (70.4 mg, d.r. > 20:1). ¹H NMR (**400 MHz, CDCl**₃) δ 8.61 (s, 1H), 8.18 – 8.01 (m, 1H), 7.77 – 7.69 (m, 1H), 7.52 – 7.43 (m, 2H), 7.34 – 7.28 (m, 1H), 7.13 – 7.02 (m, 4H), 6.94 – 6.83 (m, 4H), 6.30 – 6.21 (m, 2H), 5.95 (d, J = 10.0 Hz, 1H), 4.57 (dd, $J_1 = 10.0$, $J_2 = 7.2$ Hz, 1H), 2.84 – 2.74 (m, 1H), 2.41 – 2.30 (m, 1H), 1.18 (d, J = 6.8 Hz, 3H); ¹³C NMR (**100 MHz**, CDCl₃) δ 175.7, 146.4, 141.0, 138.4, 130.4, 129.3, 129.1, 128.1, 127.7, 127.7, 127.6, 127.1, 126.9, 126.3, 121.3, 67.30, 39.3, 35.8, 17.6; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₈H₂₅N₂O: 405.1961. Found: 405.1958.

The **4ja** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.2$) on silica gel using EtOAc/PE (1:1) as the eluent to give the desired product **4ja** as colorless oil in 93% yield (89.3 mg, *d.r.* > 20:1). ¹**H NMR** (**400 MHz, CDCl**₃) δ 8.70 – 8.63 (m, 1H), 8.16 – 8.08 (m, 1H), 7.82 – 7.75 (m, 1H), 7.61 – 7.49 (m, 2H), 7.39 – 7.27 (m, 3H), 7.27 – 7.21 (m, 2H), 7.22 – 7.13 (m, 3H), 7.03 – 6.92 (m, 3H), 6.81 – 6.73 (m, 2H), 6.11 – 6.03 (m, 1H), 6.06 – 6.01 (m, 1H), 4.91 (dd, $J_I = 10.4$, $J_2 = 4.8$ Hz, 1H), 3.19 – 3.10 (m, 1H), 2.91 – 2.78 (m, 1H), 2.81 – 2.72 (m, 1H), 2.56 – 2.46 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 145.0, 145.9, 144.6, 141.1, 139.7, 138.1, 135.9, 135.0, 130.2, 129.2, 129.1, 128.8, 128.5, 128.1, 128.0,

127.7, 127.6, 127.1, 126.6, 126.3, 126.1, 121.3, 64.9, 41.9, 39.4, 37.2; **HRMS (ESI) m/z [M+H]**⁺: Calcd for C₃₄H₂₉N₂O: 481.2274. Found: 481.2271.

4-(2,2-Diphenylvinyl)-5-(quinolin-8-yl)-5-azaspiro[2.4]heptan-6-one (4ka):

The **4ka** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.4$) on silica gel using EtOAc/PE (1:1) as the eluent to give the desired product **4ka** as colorless oil in 95% yield (71.2 mg). ¹H NMR (**400 MHz**, **CDCl**₃) δ 8.67 – 8.62 (m, 1H), 8.18 – 8.11 (m, 1H), 7.83 – 7.76 (m, 1H), 7.68 – 7.62 (m, 1H), 7.59 – 7.51 (m, 1H), 7.39 – 7.32 (m, 1H), 7.20 – 7.12 (m, 3H), 7.12 – 7.04 (m, 1H), 6.97 – 6.86 (m, 4H), 6.17 – 6.10 (m, 2H), 6.03 (d, *J* = 10.8 Hz, 1H), 4.94 (d, *J* = 10.4 Hz, 1H), 2.89 – 2.72 (m, 2H), 0.96 – 0.90 (m, 1H), 0.84 – 0.78 (m, 1H), 0.77 – 0.67 (m, 2H); ¹³C NMR (**100 MHz, CDCl**₃) δ 174.5, 150.1, 140.9, 138.1, 136.0, 130.2, 129.2, 128.9, 128.1, 128.0, 127.7, 127.6, 127.0, 126.8, 126.2, 125.9, 121.3, 65.6, 40.5, 19.8, 11.8, 10.0; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₉H₂₅N₂O: 417.1691. Found: 417.1689.

5-(2,2-Diphenylvinyl)-6-(quinolin-8-yl)-6-azaspiro[3.4]octan-7-one (4la):

The **4la** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.4$) on silica gel using EtOAc/PE (1:1) as the eluent to give the desired product **4la** as colorless oil in 94% yield (80.9 mg). ¹H NMR (**400 MHz**, **CDCl**₃) δ 8.67 – 8.62 (m, 1H), 8.15 – 8.10 (m, 1H), 7.80 – 7.75 (m, 1H), 7.62 – 7.58 (m, 1H), 7.56 – 7.50 (m, 1H), 7.37 – 7.30 (m, 1H), 7.21 – 7.16 (m, 3H), 7.11 – 6.98 (m, 3H), 6.92 – 6.86 (m, 2H), 6.30 – 6.25 (m, 2H), 6.07 (d, *J* = 10.8 Hz, 1H), 4.99 (d, *J* = 10.8 Hz, 1H), 2.99 – 2.75 (m, 2H), 2.39 – 2.28 (m, 2H), 2.20 – 2.03 (m, 2H), 2.01 – 1.82 (m, 2H); ¹³C NMR (**100 MHz, CDCl**₃) δ 174.4, 149.9, 146.5, 144.5, 141.1, 138.4, 135.8, 135.0, 129.8, 129.2, 129.0 128.1, 127.7, 127.7, 127.6, 127.1, 126.8, 126.2, 125.0, 121.3, 69.4, 44.7, 44.0, 34.8, 28.9, 16.4; HRMS (ESI) m/z [M+H]⁺: Calcd for C₃₀H₂₇N₂O: 431.2118. Found: 431.2116.

4-(2,2-Diphenylvinyl)-3-(quinolin-8-yl)-3-azabicyclo[3.1.0]hexan-2-one (4ma):

The **4ma** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.5$) on silica gel using EtOAc/PE (1:1) as the eluent to give the desired product **4ma** as colorless oil in 91% yield (75.8 mg, *d.r.* > 20:1). ¹H NMR (**400 MHz, CDCl**₃) δ 8.60 – 8.54 (m, 1H), 8.12 – 8.05 (m, 1H), 7.78 – 7.71 (m, 1H), 7.69 – 7.62 (m, 1H), 7.56 – 7.48 (m, 1H), 7.33 – 7.25 (m, 1H), 7.25 – 7.17 (m, 3H), 7.13 – 7.05 (m, 2H), 7.06 – 6.97 (m, 1H), 6.89 – 6.80 (m, 2H), 6.35 – 6.28 (m, 2H), 6.19 (d, *J* = 10.4 Hz, 1H), 5.04 – 4.96 (m, 1H), 2.27 – 2.17 (m, 1H), 2.02 – 1.93 (m, 2H), 6.19 (d, *J* = 10.4 Hz, 1H), 5.04 – 4.96 (m, 1H), 2.27 – 2.17 (m, 1H), 2.02 – 1.93 (m, 2H), 6.19 (m, 2H), 7.06 – 6.97 (m, 2H), 6.35 – 6.28 (m, 2H), 6.19 (d, *J* = 10.4 Hz, 1H), 5.04 – 4.96 (m, 1H), 2.27 – 2.17 (m, 1H), 2.02 – 1.93 (m, 2H), 6.19 (m, 2H), 7.06 – 6.97 (m, 2H), 7.06 – 7.05 (m, 2H), 7.06

1H), 1.45 (q, J = 4.2 Hz, 1H), 1.28 – 1.17 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ
175.1, 149. 8, 145.1, 144.4, 141.0, 138.2, 135.7, 134.0, 131.0, 129.1, 128.9, 128.1, 128.1, 127.7, 127.7, 127.6, 127.2, 126.8, 126.1, 121.1, 61.5, 20.2, 18.4, 12.0; HRMS
(ESI) m/z [M+H]⁺: Calcd for C₂₈H₂₃N₂O: 403.1805. Found: 403.1805.

4-(2,2-Diphenylvinyl)-3-(quinolin-8-yl)-3-azabicyclo[3.2.0]heptan-2-one (4oa):

The **4oa** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.4$) on silica gel using EtOAc/PE (1:1) as the eluent to give the desired product **4oa** as colorless oil in 96% yield (80.0 mg, *d.r.* > 20:1). ¹**H NMR** (**400 MHz, CDCl**₃) δ 8.68 – 8.61 (m, 1H), 8.16 – 8.09 (m, 1H), 7.82 – 7.75 (m, 1H), 7.68 – 7.61 (m, 1H), 7.59 – 7.51 (m, 1H), 7.37 – 7.29 (m, 1H), 7.24 – 7.14 (m, 3H), 7.05 – 6.97 (m, 3H), 6.89 – 6.80 (m, 2H), 6.30 – 6.23 (m, 2H), 6.04 (d, *J* = 10.4 Hz, 1H), 4.95 (d, *J* = 10.4 Hz, 1H), 3.45 – 3.35 (m, 1H), 3.06 – 2.96 (m, 1H), 2.72 – 2.50 (m, 2H), 2.49 – 2.28 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 177.9, 149.9, 144.6, 143.8, 141. 1, 138.3, 135.8, 135.0, 130.0, 129.2, 128.9, 128.1, 127.9, 127.8, 127.54, 127.1, 126.7, 126.2, 121.2, 66.3, 41.4, 38.0, 25.2, 24.6; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₉H₂₅N₂O: 417.1961. Found: 417.1961.

3-(2,2-Diphenylvinyl)-2-(quinolin-8-yl)octahydro-1H-isoindol-1-one (4qa):

The **4qa** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.6$) on silica gel using EtOAc/PE (1:1) as the eluent to give the desired product **4qa** as colorless oil in 82% yield (72.9 mg, *d.r.* > 20:1). ¹**H NMR** (**400 MHz, CDCl**₃) δ 8.66 - 8.60 (m, 1H), 8.15 - 8.08 (m, 1H), 7.79 - 7.72 (m, 1H), 7.61 - 7.49 (m, 2H), 7.37 - 7.31 (m, 1H), 7.20 - 7.08 (m, 4H), 7.01 - 6.92 (m, 4H), 6.37 - 6.31 (m, 2H), 6.09 (d, *J* = 10.0 Hz, 1H), 4.97 - 4.85 (m, 1H), 2.89 - 2.80 (m, 1H), 2.54 - 2.45 (m, 1H), 2.13 - 2.03 (m, 1H), 1.90 - 1.80 (m, 2H), 1.75 - 1.64 (m, 1H), 1.59 - 1.53 (m, 1H), 1.48 - 1.29 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.7, 149.9, 145.8, 144.9, 141.1, 138.6, 135.8, 135.5, 130.0, 129.2, 129.1, 128.1, 127.7, 127.7, 127.5, 127.5, 127.0, 126.8, 126.1, 121.2, 62.8, 42.0, 40.4, 25.2, 24.5, 23.6, 22.8; HRMS (ESI) m/z [M+H]⁺: Calcd for C₃₁H₂₉N₂O: 455.2274. Found: 455.2271.

3-(2,2-Diphenylvinyl)-2-(quinolin-8-yl)octahydrocyclohepta[c]pyrrol-1(2H)-one (4sa):

The **4sa** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.5$) on silica gel using EtOAc/PE (1:1) as the eluent to give the desired product **4sa** as colorless oil in 94% yield (86.2 mg, *d.r.* > 20:1). ¹H NMR

(400 MHz, CDCl₃) δ 8.67 – 8.58 (m, 1H), 8.16 – 8.07 (m, 1H), 7.81 – 7.73 (m, 1H), 7.58 – 7.49 (m, 2H), 7.33 (dd, J = 8.3, 4.2 Hz, 1H), 7.20 – 7.12 (m, 3H), 7.11 – 7.05 (m, 1H), 6.99 – 6.85 (m, 4H), 6.25 – 6.18 (m, 2H), 6.03 (d, J = 10.0 Hz, 1H), 4.66 – 4.56 (m, 1H), 2.99 – 2.87 (m, 1H), 2.73 – 2.61 (m, 1H), 2.14 – 1.77 (m, 6H), 1.55 – 1.25 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 178.5, 150.1, 145.6, 144.6, 141.1, 138.5, 135.8, 135.7, 130.2, 129.2, 129.0, 128.8, 128.0, 127.9, 127.6, 127.5, 127.0, 126.7, 126.1, 121.3, 65.5, 48.1, 45.0, 31.5, 30.4, 30.0, 27.9, 27.5; HRMS (ESI) m/z [M+H]⁺: Calcd for $C_{32}H_{31}N_2O$: 459.2431. Found: 459.2430.

3,3-Dimethyl-1-(quinolin-8-yl)-5-((1-tosylpiperidin-4-ylidene)methyl)pyrrolidin-2-one (4eb):

The **4eb** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.3$) on silica gel using EtOAc/PE (1:2) as the eluent to give the desired product **4eb** as colorless oil in 82% yield (80.3 mg). ¹H NMR (**400 MHz**, **CDCl3**) δ 8.78 – 8.72 (m, 1H), 7.96 – 7.89 (m, 1H), 7.42 – 7.31 (m, 4H), 7.32 – 7.24 (m, 3H), 7.25 – 7.18 (m, 1H), 5.35 – 5.24 (m, 1H), 4.93 (d, *J* = 9.6 Hz, 1H), 3.14 – 3.07 (m, 1H), 2.68 – 2.61 (m, 1H), 2.46 (s, 3H), 2.21 – 2.13 (m, 1H), 2.06 – 1.90 (m, 2H), 1.88 – 1.63 (m, 5H), 1.36 (s, 3H), 1.26 (s, 3H); ¹³C NMR (100 MHz, CDCl3) δ 180.5, 150.0, 143.3, 139.2, 136.0, 135.2, 133.3, 131.1, 129.5, 128.9, 127.5, 127.3, 125.8, 125.5

121.3, 54.6, 47.7, 46.3, 43.0, 41.3, 35.1, 27.7, 25.5, 25.1, 21.6; **HRMS (ESI) m/z** [**M**+**H**]⁺: Calcd for C₂₈H₃₂N₃O₃S: 490.2159. Found: 490.2160.

3,3-Dimethyl-1-(quinolin-8-yl)-5-((1-((4-

(trifluoromethyl) phenyl) sulfonyl) piperidin-4-ylidene) methyl) pyrrolidin-2-one (trifluoromethyl) phenyl) sulfonyl) piperidin-4-ylidene) methyl) pyrrolidin-2-one (trifluoromethyl) phenyl) sulfonyl) piperidin-4-ylidene) methyl) pyrrolidin-2-one (trifluoromethyl) pyrrolidin-4-ylidene) methyl) pyrrolidin-2-one (trifluoromethyl) pyrrolidin-4-ylidene) methyl) pyrrolidin-2-one (trifluoromethyl) pyrrolidin-4-ylidene) methyl) pyrrolidin-4-ylidene) methyl pyrrolidin-4-yli

(4ec):

The **4ec** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.4$) on silica gel using EtOAc/PE (1:2) as the eluent to give the desired product **4ec** as colorless oil in 82% yield (80.3 mg). ¹H NMR (**400 MHz**, **CDCl**₃) δ 8.79 – 8.73 (m, 1H), 7.98 – 7.90 (m, 1H), 7.77 – 7.71 (m, 2H), 7.62 – 7.57 (m, 2H), 7.43 – 7.34 (m, 2H), 7.33 – 7.27 (m, 1H), 7.26 – 7.20 (m, 1H), 5.38 – 5.30 (m, 1H), 4.97 (d, *J* = 9.6 Hz, 1H), 3.20 – 3.14 (m, 1H), 2.79 – 2.70 (m, 1H), 2.21 – 2.14 (m, 1H), 2.08 – 1.67 (m, 7H), 1.35 (s, 3H), 1.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 181.1, 150.4, 145.1, 143.5, 143.0, 139.0, 135.7, 135.2, 133.2, 131.1, 129.72 (d, *J* = 9.0 Hz), 128.1, 127.4, 125.3, 122.3, 120.9, 53.8, 47.6, 46.2, 42.6, 40.7, 34.0, 27.8, 25.4, 24.5, 21.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₈H₂₉N₃O₃F₃S: 544.1876. Found: 544.1879.

Methyl-3-(4,4-dimethyl-5-oxo-1-(quinolin-8-yl)pyrrolidin-2-yl)-2-phenylacrylate

(4eh):

The **4eh** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.4$) on silica gel using EtOAc/PE (1:2) as the eluent to give the desired product **4eh** as colorless oil in 62% yield (49.7 mg, E/Z = 77:23). ¹H NMR (**400 MHz, CDCl**₃) δ 8.80– 8.74 & 8.43 – 8.39 (m, 1H), 8.30 – 8.25 (m, 1H), 8.10 – 8.04 (m, 1H), 7.43 – 7.38 & 7.35 – 7.31 (m, 1H), 7.34 – 7.32 & 7.31 – 7.28 (m, 2H), 7.17 – 7.14 & 6.94 – 6.89 (m, 1H), 7.14 – 7.09 & 7.02 – 6.96 (m, 2H), 6.77 & 6.03 (d, J = 10.0 Hz, 1H), 6.94 – 6.92 & 6.42 – 6.37 (m, 2H), 5.60 – 5.70 & 5.21 – 5.10 (m, 1H), 3.54 & 3.44 (s, 3H), 2.44 – 2.51 & 2.19 – 2.12 (m, 1H), 1.94 – 1.87 (m, 1H), 1.39 & 1.30 (s, 3H), 1.32 & 1.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 180.7, 180.4, 167.4, 166.7, 150.4, 144.6, 143.2, 140.5, 139.0, 137.3, 136.4, 135.9, 133.7, 131.4, 131.1, 130.9, 128.8, 128.3, 128.2, 127.7, 127.6, 127.1, 123.0, 122.9, 98.1, 57.3, 56.1, 52.2, 51.7, 42.3, 41.9, 41.1, 41.0, 25.6, 25.6, 25.2, 25.1; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₅H₂₅N₂O₃: 401.1860. Found: 401.1861.

(*E*)-3-(4,4-Dimethyl-5-oxo-1-(quinolin-8-yl)pyrrolidin-2-yl)-2-phenylallyl acetate (4el):

The **4el** was prepared according to the general procedure. Purification by column chromatography (TLC $R_f = 0.2$) on silica gel using EtOAc/PE (1:2) as the eluent to give the desired product **4el** as colorless oil in 67% yield (55.5 mg, E/Z > 99:1). ¹H NMR (**400 MHz, CDCl**₃) δ 8.87 – 8.82 (m, 1H), 8.12 – 8.06 (m, 1H), 7.73 – 7.66 (m, 1H), 7.61 – 7.54 (m, 1H), 7.52 – 7.44 (m, 1H), 7.38 – 7.31 (m, 1H), 7.16 – 7.09 (m, 3H), 7.01 – 6.94 (m, 2H), 5.82 – 5.68 (m, 2H), 4.72 (d, J = 12.4 Hz, 1H), 4.45 (d, J = 12.4 Hz, 1H), 2.33 (dd, $J_I = 12.8$ Hz, $J_2 = 6.4$ Hz, 1H), 1.73 (s, 3H), 1.42 (s, 3H), 1.34 (s, 3H); ¹³C NMR (**100 MHz, CDCl**₃) δ 180.5, 170.6, 139.4, 137.6, 134.9, 134.4, 130.5, 130.1, 129.2, 128.3, 127.7, 127.7, 126.3, 126.1, 121.4, 60.6, 55.9, 42.9, 41.2, 25.5, 25.1, 20.7; **HRMS (ESI) m/z [M+H]⁺:** Calcd for C₂₆H₂₇N₂O₃: 415.2016. Found: 415.2018.

6,6-Diphenylhex-5-enoic acid(5aa)^[10]

To a 10 mL round-bottom flask was added compound **3aa** (0.20 mmol, 64.8 mg), followed by HCl (6 M, 2 mL). After being stirred at 120 °C for 24 h, the reaction mixture was cooled to room temperature, washed with HCl (1 M, 20 mL) and extracted with ethyl acetate (30 mL \times 3). The organic layer was dried with MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash

column chromatography to afford **5aa** as yellow oil in 74% yield (39.4 mg). ¹H NMR (**400 MHz, CDCl**₃) δ 7.32 – 7.07 (m, 10H), 5.98 (d, J = 7.2 Hz, 1H), 2.27 (d, J = 7.6 Hz, 2H), 2.10 (q, J_1 = 14.8, J_2 = 7.6 Hz, 2H), 1.76 – 1.66 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 179.2, 142.5, 140.0, 129.8, 128.1, 127.2, 127.0, 33.3, 29.0, 24.8; HRMS (ESI) m/z [M+Na]⁺: Calcd for C₁₈H₁₈NaO₂: 289.1199. Found: 289.1194.

6,6-Diphenylhexanoic acid (6aa)^[11]

Under air atmosphere, **3aa** (0.20 mmol, 1.0 equiv.), NaOH (3.0 mmol, 15.0 equiv.) was dissolved in 2.0 mL of EtOH at room temperature. The reaction system stirred at 100 ^oC for 12 h. After completion of the reaction (monitored by TLC), the reaction mixture was concentrated under reduced pressure and purified by column chromatography to give the desired product **6aa** as yellow oil in 81% yield (43.5 mg). ¹H NMR (**400 MHz**, **CDCl3**) δ 7.23 – 7.07 (m, 10H), 3.82 (t, *J* = 7.6 Hz, 1H), 2.24 (t, *J* = 7.6 Hz, 2H), 1.99 (q, *J* = 8.0 Hz, 2H), 1.64 – 1.55 (m, 2H), 1.29 – 1.19 (m, 2H); ¹³C NMR (**100 MHz**, **CDCl3**) δ 179.0, 144.9, 128.4, 127.8, 126.1, 51.1, 35.3, 33.7, 27.4, 24.6; **HRMS (ESI) m/z** [**M+Na**]⁺: Calcd for C₁₈H₂₁O₂Na: 291.1356. Found: 291.1347.

6,6-Diphenyl-N-(quinolin-8-yl)hexanamide (7aa)^[12]

To a 10 mL round-bottom flask was added compound **3aa** (0.20 mmol, 1.0 equiv.), LiAlH₄ (0.8 mmol, 4.0 equiv.) were dissolved in 2.0 mL of THF. After being stirred at 25 °C for 24 h, washed with H₂O (20 mL), extracted with ethyl acetate (30 mL × 3). The organic layer was dried with MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography to afford **7aa** as yellow oil in 80% yield (63.1 mg). ¹H NMR (**400 MHz, CDCl3**) δ 9.76 (s, 1H), 8.82 – 8.73 (m, 2H), 8.19 – 8.12 (m, 1H), 7.57 – 7.41 (m, 3H), 7.29 – 7.20 (m, 8H), 7.19 – 7.10 (m, 2H), 3.92 (d, *J* = 8.0 Hz, 1H), 2.52 (t, *J* = 7.6 Hz, 2H), 2.13 (q, *J* = 7.6 Hz, 2H), 1.92 – 1.81 (m, 2H), 1.47 – 1.35 (m, 2H); ¹³C NMR (**100 MHz, CDCl3**) δ 171.2, 148.1, 145.0, 138.3, 136.4, 134.5, 128.4, 127.9, 127.8, 127.4, 126.1, 121.6, 121.3, 116.4, 51.2, 38.1, 35.5, 27.7, 25.6; HRMS (ESI) m/z [M+Na]⁺: Calcd for C₂₇H₂₇N₂ONa: 417.1937. Found: 417.1929.

(E)-6,6-Diphenyl-N-(quinolin-8-yl)hex-2-enamide (8aa)^[13]

To a 10 mL round-bottom flask was added compound **3aa** (0.20 mmol, 1.0 equiv.), EtMgBr (1 M in THF, 0.8 mmol, 4.0 equiv.) were dissolved in 2.0 mL of THF. After

being stirred at 50 °C for 24 h, the reaction mixture was cooled to room temperature, washed with H₂O (20 mL), extracted with ethyl acetate (30 mL × 3). The organic layer was dried with MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography to afford **8aa** as colorless oil in 60% yield (47.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.77 (s, 1H), 8.76 – 8.67 (m, 2H), 8.14 – 8.07 (m, 1H), 7.53 – 7.41 (m, 2H), 7.42 – 7.34 (m, 1H), 7.14 – 7.01 (m, 10H), 6.03 – 5.93 (m, 1H), 5.52 – 5.40 (m, 1H), 4.60 (d, *J* = 7.6 Hz, 1H), 2.64 – 2.48 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 147.8, 143.8, 139.6, 136.8, 134.3, 134.1, 130.1, 128.5, 128.2, 128.0, 127.6, 126.1, 121.5, 121.5, 117.0, 53.9, 37.9, 28.6; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₇H₂₅N₂O: 393.1961. Found: 393.1960.

6,6-Diphenyl-N-(quinolin-8-yl)hexa-3,5-dienamide (9aa)^[14]

To a 10 mL round-bottom flask was added compound **3aa** (0.20 mmol, 1.0 equiv.) were dissolved in 2.0 mL of Toluene (2 mL). Then the tube was stirred at 0 °C under 24 W Blue LED_S for 12 h until complete consumption of starting material as monitored by TLC analysis. After the reaction was finished, the mixture was extracted three times with EtOAc. The organic layer was dried over Na₂SO₄, filtration and evaporation of the solvent. And the resulting residue was purified by silica gel column chromatography to obtain the desired products **9aa** as yellow oil in 78% yield (60.9 mg, E/Z = 15:85). ¹H

NMR (400 MHz, CDCl₃) δ 9.96 (s, 1H), 8.76 – 8.72 (m, 1H), 8.71 – 8.67 (m, 1H), 8.13 (d, J = 8.4 Hz, 1H), 7.52 – 7.43 (m, 2H), 7.43 – 7.38 (m, 1H), 7.33 – 7.26 (m, 3H), 7.23 – 7.18 (m, 7H), 6.73 (d, J = 11.2 Hz, 1H), 6.42 – 6.33 (m, 1H), 6.14 – 6.05 (m, 1H), 3.30 (d, J = 7.6 Hz, 2H).; ¹³C **NMR (100 MHz, CDCl₃)** δ 169.3, 148.2, 142.8, 142.1, 139.6, 138.4, 136.3, 134.3, 133.2, 130.5, 128.2, 127.9, 127.6, 127.5, 127.4, 127.4, 127.2, 127.2, 121.6, 116.4, 42.4.; **HRMS (ESI) m/z [M+H]**⁺: Calcd for C₂₇H₂₃N₂O: 391.1805. Found: 391.1800.

5-(2,2-Diphenylvinyl)dihydrofuran-2(3H)-one (10aa)^[15]

To a 25 mL round-bottom flask was added compound **3aa** (0.20 mmol, 1.0 equiv.), HCl (12 M, 760 μ L) and H₂O (2.0 mL) were dissolved in 2.0 mL of CH₂Cl₂. After being stirred at 120 °C for 36 h, washed with H₂O (20 mL), extracted with dichloromethane (30 mL × 3). The organic layer was dried with MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography to afford **10aa** as yellow oil in 60% yield (31.7 mg). ¹H NMR (**400** MHz, CDCl₃) δ 7.36 – 7.28 (m, 3H), 7.25 – 7.12 (m, 7H), 5.99 (d, *J* = 9.2 Hz, 1H), 4.93 – 4.85 (m, 1H), 2.58 – 2.38 (m, 2H), 2.34 – 2.24 (m, 1H), 2.11 – 1.96 (m, 1H); ¹³C NMR (**100** MHz, CDCl₃) δ 177.0, 147.3, 140.9, 138.4, 129.7, 128.4, 128.3, 128.3, 128.0, 127.7, 125.4, 78.5, 29.5, 29.1; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₈H₁₇O₂:

1-(5-Bromoquinolin-8-yl)-5-(2,2-diphenylvinyl)pyrrolidin-2-one (11aa)^[9]

To a 10 mL round-bottom flask was added compound **3aa** (0.20 mmol, 1.0 equiv.), *N*-Bromosuccinimide (0.30 mmol, 1.5 equiv.) were dissolved in 2.0 mL of CH₃CN. After being stirred at 25 °C for 2 h, washed with H₂O (20 mL), extracted with ethyl acetate (30 mL × 3). The organic layer was dried with MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography to afford **11aa** as colorless oil in 81% yield (76.0 mg). ¹H NMR (**400 MHz, CDCl₃**) δ 8.56 – 8.51 (m, 1H), 8.47 – 8.41 (m, 1H), 7.80 – 7.75 (m, 1H), 7.44 – 7.34 (m, 2H), 7.13 – 7.03 (m, 4H), 6.98 – 6.89 (m, 2H), 6.88 – 6.82 (m, 2H), 6.38 – 6.31 (m, 2H), 5.94 (d, *J* = 10.0 Hz, 1H), 5.17 – 5.09 (m, 1H), 2.70 – 2.64 (m, 2H), 2.52 – 2.40 (m, 1H), 2.15 – 2.03 (m, 1H); ¹³C NMR (**100** MHz, CDCl₃) δ 175.8, 150.4, 148.9, 145.4, 144.8, 140.9, 138.3, 135.9, 135.1, 130.4, 129.9, 129.0, 128.4, 128.1, 127.8, 127.7, 127.1, 127.1, 122.4, 121.5, 60.2, 31.1, 26.9; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₇H₂₃N₂O: 469.0910. Found: 469.0912.

5-(2,2-Diphenylvinyl)-1-(5-phenylquinolin-8-yl)pyrrolidin-2-one (12aa)^[16]

To a 10 mL round-bottom flask was added compound 11aa (0.2 mmol, 93.9 mg), Pd(OAc)₂ (0.02 mmol, 14.0 mg), 2-(Dicyclohexylphosphino)-2',4',6'-tri-i-propyl-1,1'biphenyl (0.03 mmol, 14.0 mg) and K₂CO₃ (0.6 mmol, 82.8 mg) followed by EtOH (2.0 mL) and phenylboronic acid (0.4 mmol, 48.8 mg). After being stirred at 80 °C for 12 h, the reaction mixture was cooled to room temperature, washed with H₂O (20 mL), extracted with ethyl acetate (30 mL \times 3). The organic layer was dried with MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography to afford 12aa as yellow oil in 79% yield (73.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.57 – 8.51 (m, 1H), 8.15 – 8.09 (m, 1H), 7.61 – 7.55 (m, 1H), 7.48 – 7.34 (m, 6H), 7.25 – 7.18 (m, 1H), 7.13 – 7.02 (m, 4H), 6.98 – 6.90 (m, 2H), 6.92 – 6.85 (m, 2H), 6.40 – 6.34 (m, 2H), 6.01 (d, J = 10.0 Hz, 1H), 5.20 -5.09 (m, 1H), 2.75 - 2.66 (m, 2H), 2.54 - 2.41 (m, 1H), 2.18 - 2.04 (m, 1H).; ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 149.6, 145.1, 141.1, 140.6, 139.0, 138.4, 134.7, 134.6, 134.4, 130.0, 129.6, 129.0, 128.6, 128.5, 128.1, 127.8, 127.8, 127.6, 127.6, 127.1, 127.0, 126.8, 121.2, 60.4, 31.2, 26.9; HRMS (ESI) m/z [M+H]⁺: Calcd for C₃₃H₂₇N₂O: 467.2118. Found: 467.2117.

Mechanism studies and their NMR spectra:

Control Experiment for scheme 3-A-l^[17]:

A mixture of **1a** (0.2 mmol, 1.0 equiv.), Pd(OAc)₂ (0.2 mmol, 1.0 equiv.) was dissolved in CH₃CN (2.0 mL) in a Schlenk tube. The mixture was allowed to stir at 60 °C for 4 hours after the **1a** was consumed (determined by TLC). The solvent was removed and the crude residue was purified by flash column chromatography (DCM: MeCN = 5:1) to afford desired product **3aa-Int** (67.1 mg, 97% yield). ¹H NMR (**400** MHz, DMSO*d*₆) δ 9.04 (dd, *J*₁ = 4.8, *J*₂ = 1.6 Hz, 1H), 8.87 (dd, *J*₁ = 8.0, *J*₂ = 1.4 Hz, 1H), 8.52 (dd, *J*₁ = 8.4, *J*₂ = 1.6 Hz, 1H), 7.67 (dd, *J*₁ = 8.4, *J*₂ = 4.8 Hz, 1H), 7.56 – 7.41 (m, 2H), 2.65 (t, *J* = 7.2 Hz, 2H), 1.91 (s, 3H), 1.51 (t, *J* = 7.2 Hz, 2H); ¹³C NMR (**100** MHz, DMSO-*d*₆) δ 13C NMR (101 MHz, DMSO) δ 184.4, 172.0, 149.4, 145.5, 144.8, 138.9, 129.6, 128.5, 121.6, 119.0, 118.7, 21.1, 8.1; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₄H₁₄N₃OPd: 346.0166. Found: 346.0165.

A mixture of **3aa-Int** (0.2 mmol, 1.0 equiv.) and **2a** (0.6 mmol, 3.0 equiv.) was dissolved in DCM (4.0 mL) in a Schlenk tube. The mixture was allowed to stir at room temperature until the **3aa-Int** was consumed (determined by TLC). Then the reaction

mixture was concentrated under reduced pressure and purified by column chromatography to give the desired product **3aa** (81.5 mg, 82%).

Kinetic isotopic effects for scheme 3-A-||:

(1) Preparation of 1a-D^[18]

A mixture of **1a** (200 mg, 1 mmol, 1.0 equiv), Pd(OAc)₂ (15 mol%, 45 mg, 0.15 mol), and D₂O (2.0 mL) in a 10 mL pressure tube was stirred at 140 °C nitrogen atmosphere for 48 h. After cooling to room temperature, the mixture was filtered through a layer of celite. The layer of celite was washed with EtOAc (5.0 mL). The product was purified by flash column chromatography over silica gel (Hexane/EtOAc = 20/1) to give **1a-D** as a colorless oil (92 mg, 95% yield). ¹H NMR (**400** MHz, CDCl₃) δ 9.85 (s, 1H), 8.84 – 8.77 (m, 1H), 8.22 – 8.16 (m, 1H), 7.59 – 7.43 (m, 3H), 2.59 (s, 2H); ¹³C NMR (**100** MHz, CDCl₃) δ 172.6, 147.9, 138.1, 136.7, 134.3, 128.0, 127.6, 127.5, 121.5, 121.4, 31.0; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₂H₁₀D₃N₂O: 204.1211. Found: 204.1209.

(2) Determination of kinetic isotopic effect (KIE)

A mixture of amide **1a** (0.1 mmol, 0.5 equiv.), **1a-D** (0.1 mmol, 0.5 equiv.) and Pd(OAc)₂ (0.26 mmol, 1.3 equiv.) was dissolved in DCM (2.0 mL) in a Schlenk tube. To the stirring reaction mixture was added a solution of cyclopropene **2a** (0.6 mmol, 3.0 equiv.) in DCM (2 mL). The mixture was allowed to stir at room temperature for 4 h. Then the reaction mixture was concentrated under reduced pressure and purified by column chromatography to give the desired product **3aa** and **3aa-D**. The KIE value by competitive experiments was determined to be $k_H/k_D = 1.72/(2.19-1.72)$, the value is 3.66 on the basis of ¹H NMR spectroscopy.

(3) KIE by parallel experiments

+ Ph Ph 2a	Pd(OAc)₂ (130 mol%) DCM, rt.	Pd···N Pd···N Ph Ph Jaa
Time (h)	Convesion (%)	
0.2	16	
1	27	
4	50	
8	86	
12	90	

KIE=k_H/k_D=6.5534/5.7071=1.15

A mixture of amide **1a** (0.1 mmol, 1.0 equiv.) and $Pd(OAc)_2$ (0.13 mmol, 1.3 equiv.) was dissolved in DCM (1.0 mL) in a Schlenk tube. To the stirring reaction mixture was added a solution of cyclopropene **2a** (0.3 mmol, 3.0 equiv.) in DCM (1.0 mL). The mixture was allowed to stir at room temperature. Then the reaction mixture was concentrated under reduced pressure and purified by column chromatography to give the desired product **3aa**.

In another reaction pressure tube, **1a-D** was used instead of **1a**. The kinetic isotope effect (KIE) is determined as 1.15.

		Ph Ph DC	(OAc) ₂ CM, rt.	
	1a	2a	Ph convers	3aa ition (%)
Entry	Detection time (h)	Solvent	1a ^b	3aa ^b
1	0.2	DCM	83	16
2	0.5	DCM	80	19
3	1	DCM	71	27
4	2	DCM	70	29
5	3	DCM	56	42
6	4	DCM	49	50
7	5	DCM	35	63
8	6	DCM	31	68
9	8	DCM	13	86
10	10	DCM	9	89
11	12	DCM	8	90
12	15	DCM	8	90
13	24	DCM	7	90

Real-time tracing experiments for scheme 3-B:

^aUnless otherwise noted, reactions were carried out using **1a** (0.20 mmol), **2a** (0.60 mmol), Pd(OAc)₂ (0.26 mmol) in DCM

(0.05 M, 4 mL) at room temperature. ^bIsolated yields.

A mixture of amide **1a** (0.2 mmol, 1.0 equiv.) and $Pd(OAc)_2$ (0.26 mmol, 1.3 equiv.)was dissolved in CH₂Cl₂ (2.0 m)in a Schlenk tube. To the stirring reaction mixture was added a solution of cvclopropene **2a** (0.6 mmol, 3.0 equiv.) in CH₂Cl₂ (2.0 ml). The mixture was allowed to stir at room temperature. Then, the reaction mixture was concentrated under reduced pressure and purified by column chromatography to afford the unreacted starting material **1a** and the desired product **3aa**.

DFT calculation results

Computational Details

Density functional theory (DFT) calculations were performed by Gaussian 16¹⁹program. All the geometrical structures involved in the selected reaction model were optimized at the B3LYP-D3²⁰⁻²²/def2-SVP²³/IEF-PCM_{CH2CI2}^{24,25} level, and then the single point energies of the obtained stationary points were refined at the B3LYP/def2-TZVP²⁶/IEF-PCM_{CH2CI2} level. Subsequently, frequency calculations were performed to determine whether the stationary point is a local minima or transition structure to afford the zero-point and thermochemical corrections for the enthalpies and free energies. In addition, CYLview²⁷ software was used for the optimized 3D structure drawing.

2a

Zero-point correction= 0.218144

Thermal correction to Energy= 0.230032 Thermal correction to Enthalpy= 0.230976

Thermal confection to Enthalpy – 0.230970

Thermal correction to Gibbs Free Energy= 0.178628

Sum of electronic and zero-point Energies= -578.126033

Sum of electronic and thermal Energies= -578.114145

Sum of electronic and thermal Enthalpies= -578.113201

Sum of electronic and thermal Free Energies= -578.165549

Cartesian coordinates

С	-0.000025	1.063387	-0.000027
С	0.002161	2.434896	0.648451
С	-0.002262	2.434846	-0.648614
Н	-0.000326	2.963209	1.599460
Н	0.000144	2.963043	-1.599686
С	-1.283585	0.259261	0.041614

С	-1.388279	-0.881097	0.858237
С	-2.411158	0.650884	-0.697034
С	-2.582252	-1.603009	0.935499
Н	-0.520887	-1.207246	1.437496
С	-3.606495	-0.072220	-0.627941
Н	-2.353260	1.537755	-1.334206
С	-3.697849	-1.202612	0.190604
Н	-2.642339	-2.483495	1.580980
Н	-4.469348	0.248782	-1.217737
Н	-4.631249	-1.768527	0.247601
С	1.283576	0.259330	-0.041589
С	2.410904	0.650634	0.697589
С	1.388531	-0.880632	-0.858727
С	3.606285	-0.072405	0.628499
Н	2.352778	1.537200	1.335167
С	2.582544	-1.602475	-0.935985
Н	0.521303	-1.206516	-1.438388
С	3.697909	-1.202396	-0.190567
Н	4.468958	0.248340	1.218699
Н	2.642852	-2.482647	-1.581874
Н	4.631340	-1.768259	-0.247564
Vibrational frequencies			

requenc

21.5530	44.2609	79.1103
117.4814	210.2557	215.7929
291.7041	295.1717	339.4573

418.3345	423.5391	437.1687
445.2426	559.2809	559.7847
588.0416	631.3047	631.9087
665.1191	709.6388	722.7111
723.9619	772.5808	791.5026
866.1089	866.1696	878.6448
879.9320	917.5754	919.8355
950.4476	957.9373	1006.2030
1006.4204	1010.7850	1011.1919
1017.5648	1028.9284	1029.1298
1047.8494	1052.7677	1100.8090
1104.4464	1131.0317	1171.5388
1171.9565	1195.0629	1195.3220
1250.4498	1274.6775	1326.8794
1334.7122	1359.2288	1363.1758
1471.1442	1476.0992	1521.9521
1525.0873	1630.2819	1634.0990
1656.1628	1657.0004	1734.1663
3165.4690	3165.6096	3171.2906
3171.6023	3179.8867	3180.0075
3186.6251	3186.7216	3195.4486
3195.5782	3239.8796	3288.4123

A

Zero-point correction= 0.196688

Thermal correction to Energy= 0.209418

Thermal correction to Enthalpy= 0.210363 Thermal correction to Gibbs Free Energy= 0.156671 Sum of electronic and zero-point Energies= -775.361776 Sum of electronic and thermal Energies= -775.349045 Sum of electronic and thermal Enthalpies= -775.348101 Sum of electronic and thermal Free Energies= -775.401792 Cartesian coordinates

С	1.981773	1.615922	0.050997
0	1.927159	2.839910	-0.005132
С	3.286486	0.845811	0.228685
Н	3.526047	0.925923	1.304533
Н	4.085145	1.392802	-0.300567
С	3.164129	-0.625763	-0.184452
Н	3.791795	-1.294382	0.430577
Н	3.426605	-0.769552	-1.248494
Ν	0.888394	0.773096	0.020105
С	-0.450220	1.153674	-0.010503
С	-1.415292	0.080262	0.010260
С	-0.937555	2.464318	-0.044872
С	-2.817952	0.357893	0.000523
С	-2.327060	2.722725	-0.053526
Н	-0.224256	3.283175	-0.062908
С	-1.803279	-2.221110	0.061085
С	-3.704722	-0.752555	0.022655
С	-3.261571	1.706136	-0.031573

Н	-2.6	59917	3.763774	-0.079793
С	-3.20	04417	-2.036978	0.052711
Н	-1.3	73281	-3.226733	0.086244
Н	-4.78	82829	-0.571915	0.015344
Н	-4.3	33114	1.917390	-0.040279
Н	-3.80	62778	-2.907055	0.070482
Pd	1.22	25223	-1.174743	-0.025362
Ν	-0.9	50232	-1.209743	0.039984
Vibrational frequ	uencies			
50.2658	76.3268	112.3	3681	
149.8097	168.6372	176	5.0730	
209.3554	256.7767	262	2.9840	
295.6572	349.0070	451	1.0946	
456.7435	461.5031	49().3216	
523.6877	543.5374	551	1.8954	
565.2266	608.8166	633	3.4155	
667.0210	681.6008	696	5.8828	
783.0570	810.4382	816	5.0117	
822.1362	872.6498	881	1.8113	
928.9784	941.2176	967	7.5481	
968.9404	1006.4624	102	20.4472	
1028.4009	1067.1057	1()82.9647	
1100.3854	1106.4701	11	31.7093	

1155.41351191.33631232.38161242.16361256.33251275.1537

1306.0682	1354.2733	1363.9707
1411.0291	1416.8901	1420.2794
1430.6033	1452.6333	1495.4435
1544.2783	1619.3392	1637.8234
1654.1412	1722.4087	3001.8128
3024.5101	3060.2930	3075.1826
3177.8816	3181.0182	3186.8557
3196.1657	3213.8573	3260.5751

B

Zero-point correction= 0.417860 Thermal correction to Energy= 0.443518Thermal correction to Enthalpy=0.444462Thermal correction to Gibbs Free Energy= 0.360830 Sum of electronic and zero-point Energies= -1353.523958 Sum of electronic and thermal Energies= -1353.498300 Sum of electronic and thermal Enthalpies= -1353.497356 Sum of electronic and thermal Free Energies= -1353.580988 Cartesian coordinates С -2.521420 -2.652700 -0.171564 0 -3.534222 -3.339303 -0.072663 С -1.151093 -3.240240 -0.478187

H-1.133530-3.386602-1.573736H-1.092936-4.249932-0.036812C0.007127-2.339173-0.046593

Н	0.899054	-2.481794	-0.664492
Н	0.284465	-2.503672	1.006524
Ν	-2.463816	-1.277742	-0.087299
С	-3.561048	-0.428323	0.038046
С	-3.269616	0.984975	0.039000
С	-4.901262	-0.811558	0.146478
С	-4.321685	1.950004	0.130932
С	-5.931297	0.152627	0.242897
Н	-5.138143	-1.871577	0.152878
С	-1.654424	2.665725	-0.070501
С	-3.956542	3.322417	0.112692
С	-5.667257	1.507320	0.234969
Н	-6.963617	-0.197755	0.325280
С	-2.629603	3.683832	0.009483
Н	-0.593582	2.919466	-0.149965
Н	-4.739839	4.081985	0.180031
Н	-6.469353	2.244918	0.308769
Н	-2.320567	4.730119	-0.009459
Pd	-0.645079	-0.402124	-0.096340
Ν	-1.959788	1.379511	-0.053503
С	2.374703	0.350178	-0.021413
С	1.105560	0.717094	-0.773548
С	1.054317	0.783882	0.581661
Н	0.884322	1.298641	-1.671091
Н	0.764724	1.447089	1.399428

С	3.446103	1.425420	-0.019183
С	4.805792	1.104485	0.154435
С	3.107787	2.784930	-0.179287
С	5.786761	2.099580	0.164468
Н	5.102172	0.063193	0.284217
С	4.089281	3.779849	-0.171930
Н	2.066123	3.081116	-0.311030
С	5.435256	3.443181	-0.000104
Н	6.834636	1.820279	0.301962
Н	3.797273	4.825319	-0.300660
Н	6.203145	4.220733	0.006531
С	2.891129	-1.058083	0.078408
С	3.352183	-1.724554	-1.066176
С	2.967406	-1.703135	1.318168
С	3.856029	-3.024855	-0.976703
Н	3.298491	-1.221371	-2.035471
С	3.472069	-3.004130	1.413333
Н	2.609011	-1.185070	2.211642
С	3.914272	-3.669553	0.265147
Н	4.199944	-3.539712	-1.877558
Н	3.514298	-3.502318	2.385393
Н	4.303408	-4.688444	0.336593

Vibrational frequencies

17.4444	28.2466	43.9549
50.1392	58.4171	62.2279

69.7830	84.7515	91.2127
104.4104	134.0672	141.2634
163.6010	181.1076	189.4841
204.9172	208.8182	236.7495
250.0167	258.7785	275.1384
305.8144	306.8599	344.1465
399.9439	419.1285	423.9254
450.0951	451.5820	456.0725
456.4563	462.9017	492.0110
504.1238	524.9813	546.5258
549.4747	560.2332	567.7548
575.7990	610.6091	629.7438
630.6020	632.2476	643.2969
672.4876	690.8335	694.7000
712.6674	717.1453	724.1359
724.8712	777.3705	783.7761
787.2131	811.9546	818.8393
827.6006	861.2635	866.8411
869.4094	874.7406	889.1209
899.2009	928.8938	931.0841
946.3510	951.4953	960.5601
976.7013	977.6388	982.1470
1006.5187	1008.3750	1010.9567
1014.1311	1017.0375	1022.3233
1030.6407	1030.9064	1032.4707
1034.5213	1048.5289	1056.2086
-----------	-----------	-----------
1073.5116	1092.9320	1098.4593
1102.1161	1112.3180	1118.1210
1135.4219	1140.9905	1153.7987
1171.6838	1175.8422	1187.3850
1191.1670	1210.9224	1227.6299
1232.4606	1242.9241	1259.5648
1272.0600	1300.2876	1312.9082
1324.6191	1342.3981	1358.3162
1359.3966	1365.1702	1365.5453
1413.9803	1419.3999	1423.2360
1441.1402	1451.2145	1470.7016
1474.0397	1499.4652	1505.6802
1523.4505	1535.0229	1545.6360
1620.6616	1630.1855	1635.9994
1638.2604	1655.0435	1655.2586
1660.7316	1721.4836	3019.5619
3056.9298	3069.5594	3168.0196
3168.9077	3172.4479	3172.5724
3177.8434	3180.5269	3180.8745
3182.0214	3185.9571	3186.6557
3187.7846	3193.7580	3195.8562
3197.2768	3202.1506	3211.3457
3214.5355	3215.0676	3260.6659

TS-1

Zero-point correction= 0.414821

Thermal correction to Energy= 0.440976

Thermal correction to Enthalpy= 0.441921

Thermal correction to Gibbs Free Energy= 0.356073

Sum of electronic and zero-point Energies= -1353.492109

Sum of electronic and thermal Energies= -1353.465953

Sum of electronic and thermal Enthalpies= -1353.465009

Sum of electronic and thermal Free Energies= -1353.550857

Cartesian coordinates

С	2.974900	-2.723488	0.668843
0	4.119417	-3.081648	0.944577
С	1.771205	-3.644561	0.835681
Н	1.502148	-3.585704	1.906411
Н	2.099970	-4.684393	0.663394
С	0.575573	-3.240298	-0.030909
Н	-0.370858	-3.618657	0.383807
Н	0.676222	-3.631911	-1.059240
Ν	2.600109	-1.473829	0.237319
С	3.435515	-0.372303	0.124159
С	2.812638	0.850514	-0.326047
С	4.805880	-0.337374	0.410501
С	3.587376	2.045562	-0.476702
С	5.553014	0.852080	0.264488
Н	5.285251	-1.252171	0.746704

С	0.884148	1.941381	-1.042235
С	2.918815	3.210644	-0.938274
С	4.973587	2.027603	-0.169876
Н	6.620295	0.828343	0.501150
С	1.573034	3.160179	-1.226693
Н	-0.185442	1.891817	-1.245421
Н	3.486133	4.137215	-1.060242
Н	5.558590	2.942684	-0.286093
Н	1.026933	4.035251	-1.582346
Pd	0.652367	-1.212185	-0.275556
Ν	1.468058	0.836516	-0.607073
С	-1.466243	-1.240799	-0.413750
Н	-1.914042	-1.944929	0.278713
С	-1.754713	-0.402367	-1.422178
Н	-1.264740	-0.075516	-2.343025
С	-2.603924	0.150729	-0.406041
С	-2.207735	1.426573	0.274384
С	-2.677894	2.656200	-0.216092
С	-1.348311	1.414070	1.381683
С	-2.276279	3.854077	0.381624
Н	-3.354227	2.670695	-1.074688
С	-0.952628	2.612018	1.983643
Н	-0.971238	0.461086	1.760749
С	-1.409889	3.834497	1.481073
Н	-2.639133	4.806210	-0.013581

Н	-0.277552	2.589063	2.842551
Н	-1.091920	4.771434	1.944926
С	-3.998793	-0.343444	-0.227431
С	-4.608223	-1.181819	-1.182464
С	-4.740682	0.029429	0.909872
С	-5.911512	-1.645543	-0.995451
Н	-4.058249	-1.466714	-2.082474
С	-6.046565	-0.431232	1.091087
Н	-4.287647	0.682722	1.658194
С	-6.637147	-1.273211	0.142252
Н	-6.368013	-2.291895	-1.749393
Н	-6.605239	-0.132620	1.981746
Н	-7.659519	-1.631825	0.284509

Vibrational frequencies

-561.7446	13.8962	21.0866
35.6054	40.4184	50.2898
60.0331	68.8426	74.2530
81.4631	102.5791	119.0413
128.7772	146.6103	167.8499
179.2461	193.3815	211.4130
221.6186	244.9150	254.2833
259.0529	290.6259	301.6135
334.1524	354.0882	386.8344
416.0565	421.3103	440.0141
448.3801	456.2867	458.3633

463.7009	493.2207	524.0112
536.9282	548.2892	565.7844
568.4237	580.6249	608.3338
618.5762	629.6979	631.6284
639.8361	671.7252	687.0950
713.6126	714.9829	721.7093
723.1530	727.4014	773.6292
781.5754	788.7410	811.3444
813.2833	817.2044	827.1436
835.1041	862.3965	867.6778
872.4660	896.5495	928.5873
932.9091	940.2566	949.0307
956.9815	970.7593	971.6653
1007.1723	1007.9676	1009.5089
1012.6520	1015.3038	1019.5026
1027.7106	1032.8585	1033.3541
1046.7575	1051.6516	1073.7163
1090.5340	1093.2885	1101.0022
1101.8643	1110.2502	1118.6721
1151.6246	1154.8523	1173.6553
1174.3888	1184.5897	1191.2030
1191.4682	1199.0991	1230.4820
1240.6700	1256.6269	1275.2850
1302.5924	1313.2459	1316.7062
1325.2336	1356.0360	1358.7387

1360.1077	1363.5645	1368.3089
1411.4791	1417.1673	1423.3502
1438.0147	1452.5619	1470.4997
1477.7277	1497.6174	1516.7936
1524.8403	1537.2994	1545.7694
1617.7057	1627.8621	1630.6825
1638.7673	1651.9988	1654.7138
1654.9139	1708.4681	3013.4767
3018.9096	3058.5787	3091.8361
3172.7520	3174.1181	3174.6381
3176.6373	3181.0373	3183.6506
3184.3978	3189.2069	3192.0027
3192.2362	3193.3511	3196.6002
3201.2324	3202.3981	3210.6951
3229.5993	3258.2883	3300.8150

С

Zero-point correction= 0.418987 Thermal correction to Energy= 0.444861 Thermal correction to Enthalpy= 0.445806 Thermal correction to Gibbs Free Energy= 0.360071 Sum of electronic and zero-point Energies= -1353.546232 Sum of electronic and thermal Energies= -1353.520358 Sum of electronic and thermal Enthalpies= -1353.519414 Sum of electronic and thermal Free Energies= -1353.605148

Cartesian coordinates

С	3.584209	-2.427137	-0.476988
0	4.716540	-2.755240	-0.832062
С	2.477925	-3.456083	-0.227898
Н	2.646620	-3.819228	0.802836
Н	2.662479	-4.322988	-0.886657
С	1.052820	-2.893376	-0.358586
Н	0.327017	-3.468748	0.236829
Н	0.715717	-2.917329	-1.409510
Ν	3.154212	-1.153890	-0.201946
С	3.926033	-0.008139	-0.221971
С	3.246552	1.197072	0.200022
С	5.275329	0.099715	-0.579817
С	3.942482	2.445345	0.262709
С	5.946410	1.341671	-0.522249
Н	5.796860	-0.799268	-0.898192
С	1.275211	2.184414	0.966591
С	3.212326	3.581578	0.703034
С	5.311695	2.498784	-0.112027
Н	7.000178	1.377861	-0.812181
С	1.885732	3.454746	1.057855
Н	0.228201	2.049913	1.248514
Н	3.716879	4.549801	0.759381
Н	5.840264	3.453818	-0.071520
Н	1.302350	4.308738	1.406160

Pd	1.154470	-0.912579	0.185724
Ν	1.921571	1.107555	0.547257
С	-0.766067	-0.815978	0.401451
Н	-1.312576	-1.632574	0.898455
С	-1.594652	0.227485	-0.061209
Н	-1.109360	1.130048	-0.445759
С	-2.992061	0.221499	-0.075187
С	-3.734354	1.462160	-0.355590
С	-4.976054	1.423884	-1.029755
С	-3.218312	2.721109	0.028805
С	-5.666544	2.600218	-1.319914
Н	-5.385557	0.464346	-1.349548
С	-3.918159	3.893060	-0.249522
Н	-2.278156	2.775884	0.580067
С	-5.142153	3.837264	-0.928845
Н	-6.617371	2.552137	-1.855630
Н	-3.512330	4.855584	0.070250
Н	-5.687641	4.757952	-1.149758
С	-3.759368	-1.017259	0.149104
С	-3.385038	-2.227185	-0.475228
С	-4.889240	-1.013782	0.996657
С	-4.108797	-3.398211	-0.245382
Н	-2.545122	-2.233186	-1.172340
С	-5.596565	-2.189969	1.238818
Н	-5.191297	-0.084928	1.484584

С	-5.20	9727	-3.384584	0.617272
Н	-3.81	5067	-4.323078	-0.747061
Н	-6.45	4969	-2.176865	1.914472
Н	-5.77	3317	-4.302812	0.799698
Vibrational fr	equencies			
13.1916	21.4409	22.1	704	
46.7829	58.8608	59.5	128	
71.7764	74.6854	79.9	114	
90.6153	124.1371	142.	3650	
158.8791	169.1422	184	1.6463	
207.5086	217.7211	222	2.9352	
250.3367	260.7316	268	3.2257	
298.6751	307.2752	334	4.8015	
345.5707	365.6263	419	9.9768	
431.1586	450.7292	455	5.4834	
464.2692	465.1777	470).8371	
493.9210	521.7587	534	1.7874	
547.8105	564.6102	589	9.6772	
607.9403	617.3462	626	5.6619	
628.7163	641.9476	670).6257	
676.0290	693.8085	713	3.8151	
715.3164	723.4024	727	7.4912	
754.1857	781.0793	794	1.6775	
807.6410	810.5806	817	7.6533	
828.5380	865.3568	872	2.0851	

873.4569	889.0155	903.3062
931.0956	938.4659	941.1920
960.7677	967.7414	968.5439
972.4993	979.2282	1008.0418
1008.9086	1009.5386	1015.3208
1016.0243	1020.0716	1027.3365
1040.2009	1041.6500	1049.3784
1053.3331	1069.1943	1092.5578
1100.1927	1110.1131	1112.9250
1118.8472	1139.1376	1154.0284
1160.4736	1177.6025	1179.0084
1188.9062	1200.3965	1204.5935
1226.2351	1236.1765	1240.1711
1255.4310	1271.7921	1273.7937
1310.1845	1314.7995	1326.2279
1343.1332	1356.6346	1365.1945
1367.3972	1370.7681	1403.3204
1412.3214	1417.2351	1424.7515
1439.9538	1451.2647	1468.4161
1475.8176	1495.2687	1516.3662
1520.0278	1523.7132	1542.9224
1616.9686	1618.9592	1622.1393
1635.0749	1647.1990	1650.6416
1652.0913	1704.5413	3011.4228
3024.6996	3055.1649	3088.6624

3093.3947	3154.8532	3174.3405
3181.4212	3182.5036	3183.9001
3189.6227	3191.2612	3193.2408
3194.7127	3196.6644	3199.7402
3203.3158	3207.6042	3207.9432
3210.7231	3213.5567	3252.7958

TS-2

Zero-point correction= 0.418495 Thermal correction to Energy= 0.443802 Thermal correction to Enthalpy= 0.444746 Thermal correction to Gibbs Free Energy= 0.360215 Sum of electronic and zero-point Energies= -1353.517295 Sum of electronic and thermal Energies= -1353.491988 Sum of electronic and thermal Enthalpies= -1353.491044 Sum of electronic and thermal Free Energies= -1353.575575

Cartesian coordinates

С	2.896497	-2.153099	-1.440859
0	3.853902	-2.774667	-1.897105
С	1.476973	-2.777699	-1.437483
Н	1.436872	-3.411180	-0.534265
Н	1.423219	-3.469645	-2.293623
С	0.193891	-1.859212	-1.487104
Н	-0.634711	-2.583803	-1.496534
Н	0.147145	-1.306817	-2.436964

Ν	2.939479	-0.945427	-0.817580
С	4.010544	-0.208136	-0.376829
С	3.635020	0.885025	0.486335
С	5.365606	-0.404606	-0.649841
С	4.624155	1.759367	1.026589
С	6.337150	0.463326	-0.100087
Н	5.650705	-1.236605	-1.291609
С	1.911021	2.052576	1.555605
С	4.174256	2.821578	1.855808
С	5.991793	1.526758	0.714358
Н	7.389943	0.285231	-0.335180
С	2.827705	2.970610	2.115266
Н	0.840749	2.136961	1.754305
Н	4.905835	3.512840	2.282234
Н	6.751641	2.195068	1.124980
Н	2.454075	3.777325	2.747764
Pd	1.094035	-0.374812	-0.191109
Ν	2.296290	1.050532	0.776944
С	-0.789856	-0.937534	-0.234653
Н	-1.094592	-1.630393	0.559788
С	-1.868138	-0.210577	-0.858850
Н	-1.620273	0.326887	-1.779892
С	-3.120268	-0.022221	-0.329571
С	-4.028756	1.006478	-0.886158
С	-5.429759	0.835641	-0.824030

С	-3.535723	2.176319	-1.505118
С	-6.296035	1.777781	-1.380291
Н	-5.839748	-0.056210	-0.345872
С	-4.403776	3.118738	-2.059445
Н	-2.460007	2.363002	-1.526416
С	-5.788598	2.924180	-2.003106
Н	-7.375784	1.615395	-1.328248
Н	-3.995847	4.019151	-2.526151
Н	-6.467587	3.665082	-2.432500
С	-3.610066	-0.819710	0.831357
С	-3.646014	-2.225838	0.775929
С	-4.068597	-0.183175	1.999510
С	-4.112778	-2.973078	1.860418
Н	-3.312895	-2.730941	-0.134224
С	-4.529657	-0.929818	3.086876
Н	-4.059002	0.908336	2.051521
С	-4.552650	-2.327568	3.021634
Н	-4.138957	-4.063934	1.796162
Н	-4.873930	-0.417871	3.989217
Н	-4.917685	-2.911556	3.870265

Vibrational frequencies

-175.2490	14.9981	18.7851
25.7450	38.4860	56.9576
60.4373	62.7572	69.8947
93.3647	103.5403	141.2913

158.7982	166.2118	177.5112
200.3065	212.5970	228.9389
242.8857	267.0651	276.2568
287.5843	300.3130	313.3597
344.5996	385.7992	421.1384
424.9303	431.1653	458.2630
460.3330	477.0255	479.1870
491.8684	502.0944	513.9675
547.3327	555.3608	591.9956
605.9178	611.4365	625.8324
629.1731	630.5500	658.8265
665.2337	683.0780	704.9504
715.4831	719.1595	726.4967
748.4014	779.5397	794.4061
800.3254	806.8210	813.5048
825.7162	863.5102	870.9807
871.9349	899.0361	916.0170
931.5401	934.2003	940.7332
947.8999	954.2650	963.5713
969.0729	982.7804	1003.2994
1006.5853	1009.6139	1010.8082
1011.4840	1020.4008	1025.9781
1031.1953	1032.7468	1047.9629
1053.2072	1063.5761	1090.9086
1099.6994	1106.8580	1108.0271

1144.6535	1153.1994	1157.0234
1170.9502	1172.8843	1174.2241
1191.7043	1195.3258	1200.7400
1215.8747	1228.9799	1233.6216
1253.4138	1277.6362	1282.9878
1307.7504	1323.3506	1328.1085
1328.9605	1355.9899	1357.3293
1361.6539	1387.0073	1396.5776
1397.9022	1413.9525	1419.7224
1437.8067	1453.9866	1469.7918
1473.6173	1500.0799	1519.5276
1524.3854	1539.6605	1586.7426
1622.1522	1622.6642	1628.5050
1634.6163	1650.1351	1651.1058
1654.6598	1710.0985	3037.9901
3058.9167	3087.3551	3118.8329
3130.2355	3151.2089	3171.0463
3172.0539	3176.7308	3178.1416
3179.6810	3184.8758	3187.9004
3190.3480	3190.8723	3196.3836
3196.6689	3199.0920	3201.1218
3206.1446	3218.9224	3236.5128

3aa

Zero-point correction= 0.422527

Thermal correction to Energy= 0.447334

Thermal correction to Enthalpy= 0.448279

Thermal correction to Gibbs Free Energy= 0.367101

Sum of electronic and zero-point Energies= -1353.619497

Sum of electronic and thermal Energies= -1353.594690

Sum of electronic and thermal Enthalpies= -1353.593746

Sum of electronic and thermal Free Energies= -1353.674923

Cartesian coordinates

С	2.686527	-2.344867	-0.729426
0	3.878277	-2.637935	-0.876942
С	1.662284	-3.460143	-1.026315
Н	1.380185	-3.895407	-0.049449
Н	2.239217	-4.233474	-1.552010
С	0.375597	-3.147820	-1.812238
Н	-0.074438	-4.112147	-2.112342
Н	0.613238	-2.604727	-2.741710
Ν	2.224702	-1.142458	-0.264499
С	3.068511	-0.113249	0.157728
С	2.433198	1.137140	0.513883
С	4.463264	-0.165816	0.289792
С	3.197940	2.256179	0.975304
С	5.206686	0.942210	0.755029
Н	4.970656	-1.086038	0.020203
С	0.444412	2.365478	0.678661
С	2.495712	3.449906	1.290404

С	4.606783	2.137520	1.095141
Н	6.291644	0.836879	0.841319
С	1.126085	3.510653	1.141235
Н	-0.638062	2.379746	0.527791
Н	3.058221	4.317007	1.646492
Н	5.189423	2.990520	1.449799
Н	0.563510	4.417523	1.368246
С	-0.601195	-2.367330	-0.973858
Н	-0.901184	-2.864659	-0.043326
Pd	0.216121	-0.569639	-0.298438
С	-1.404363	-1.299385	-1.459924
Н	-1.345819	-1.022660	-2.518000
С	-1.993699	-0.380255	-0.532666
С	-2.497437	0.939391	-1.032254
С	-3.663537	1.521891	-0.498072
С	-1.819998	1.645059	-2.050665
С	-4.136935	2.751837	-0.965593
Н	-4.214368	1.002755	0.287417
С	-2.294291	2.870215	-2.519522
Н	-0.891634	1.243059	-2.462423
С	-3.456659	3.433105	-1.978467
Н	-5.046797	3.176882	-0.533932
Н	-1.744208	3.395822	-3.304251
Н	-3.823786	4.396685	-2.340329
С	-2.561891	-0.879344	0.766790

С	-3.360999	-2.035097	0.798392
С	-2.342912	-0.186230	1.972602
С	-3.908843	-2.496373	2.000217
Н	-3.557573	-2.573774	-0.131350
С	-2.891778	-0.642555	3.171954
Н	-1.727165	0.715594	1.965849
С	-3.675228	-1.803435	3.191463
Н	-4.526328	-3.398329	2.002136
Н	-2.703173	-0.092531	4.097379
Н	-4.103041	-2.162654	4.130746
Ν	1.072481	1.235131	0.389909

Vibrational frequencies

22.1676	34.2033	37.8583
49.3328	57.0123	64.7065
74.0168	88.7861	102.1487
137.5404	154.2266	173.6930
191.6475	198.5381	205.5326
223.3889	243.7515	248.5309
265.1459	268.4541	304.1904
309.0827	319.4027	347.7788
400.8227	420.8865	426.2326
441.3275	455.4088	461.3237
469.2349	493.2944	499.9562
504.0799	514.1164	535.1382
549.9073	565.6647	600.8881

611.4512	623.3360	631.9849
642.2800	647.8011	658.2241
674.1390	713.3422	722.5911
724.4790	744.5829	781.9830
784.7705	791.2848	794.8288
814.0282	816.8929	867.2408
867.8839	871.4352	877.3305
887.6004	922.6317	932.1223
942.5350	949.7259	951.9776
956.8211	971.0484	974.4318
993.2380	1008.5523	1009.1130
1012.1509	1012.3125	1020.8450
1030.2275	1031.7741	1032.6170
1046.9681	1050.3252	1055.7061
1074.2465	1095.5919	1099.9532
1104.4403	1108.9242	1116.6415
1145.2357	1154.6645	1173.0945
1174.5900	1180.5245	1187.3058
1196.5818	1207.5208	1230.0963
1244.4194	1247.8102	1255.5926
1264.5529	1277.6552	1309.5655
1316.9137	1331.7830	1344.9288
1354.7407	1358.8589	1359.3831
1362.8679	1364.7393	1395.1227
1411.7088	1417.7196	1438.5492

1451.3070	1453.7888	1471.0878
1477.8879	1491.9601	1522.4302
1524.4394	1540.0737	1545.3424
1615.0962	1625.4008	1628.8898
1637.1804	1652.2644	1652.4836
1655.2438	1677.3130	3010.4277
3021.9576	3072.9857	3112.9865
3131.0688	3157.6770	3172.4872
3172.8691	3175.1513	3179.9672
3180.2490	3185.4473	3188.9844
3189.3214	3191.4172	3194.9730
3195.4368	3197.6418	3201.5548
3206.6711	3215.6728	3270.4811

X-ray crystallography of compound 3aa and 4aa:

X-ray crystallography of compound 3aa:

Good quality crystal of **3aa** (colourless block crystal) was obtained by vaporization of a petroleum ether/ethyl acetate solution of compound **3aa** (~20 mg). Single colourless plate crystals of **3aa** were used as supplied. A suitable crystal with dimensions $0.10 \times 0.10 \times 0.10 \text{ mm}^3$ was selected and mounted on a Bruker APEX-II CCD diffractometer. The crystal was kept at a steady T = 273.15 K during data collection. CCDC: 2304190 contains the supplementary crystallographic data for this paper. The ellipsoid contour % probability level is 50%. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>https://www.ccdc.cam.ac.uk/</u>.

 $C_{27}H_{22}N_2OPd$ (*M* =496.86 g/mol): monoclinic, space group P2₁/n (no. 14), *a* = 8.993(3) Å, *b* =22.743(6) Å, *c* =10.981(4) Å, *β* =109.413(14)°, *V* = 2118.1(11) Å³, *Z* = 4, *T* = 273.15 K, μ (MoK α) = 0.898 mm⁻¹, *Dcalc* = 1.558 g/cm³, 20985 reflections measured (6.232° ≤ 2 Θ ≤ 50°), 3525 unique (R_{int} = 0.0294, R_{sigma} = 0.0199) which were used in all calculations. The final R_1 was 0.0302 (I > 2 σ (I)) and wR_2 was 0.0717 (all data).

Compound	3aa
Empirical formula	$C_{27}H_{22}N_2OPd$
Formula weight	496.86
Temperature/K	273.15
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	8993(3)
b/Å	22.743(6)
c/Å	10.981(4)
a/°	90
β/°	109.413(14)
γ/°	90
Volume/Å ³	2118.1(11)
Z	4
$\rho_{calc}g/cm^3$	1.558
μ/mm ⁻¹	0.898
F(000)	1008.0
Crystal size/mm ³	$0.13 \times 0.11 \times 0.09$
Radiation	Mo Kα (λ = 0.71076)
20 range for data collection/°	6.232 to 50

Index ranges	$-10 \le h \le 10, -27 \le k \le 27, -13 \le l \le 11$
Reflections collected	20985
Independent reflections	$3525[R_{int} = 0.0294, R_{sigma} = 0.0199]$
Data/restraints/parameters	3525/0/281
Goodness-of-fit on F ²	1.297
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0302, wR_2 = 0.0708$
Final R indexes [all data]	$R_1 = 0.0318, wR_2 = 0.0717$
Largest diff. peak/hole / e Å ⁻³	0.32/-0.33

X-ray crystallography of compound 4aa:

Good quality crystal of **4aa** (colourless block crystal) was obtained by vaporization of a petroleum ether/ethyl acetate solution of compound **4aa** (~20 mg). Single colourless plate crystals of **4aa** were used as supplied. A suitable crystal with dimensions $0.10 \times 0.10 \times 0.10 \text{ mm}^3$ was selected and mounted on a Bruker APEX-II CCD diffractometer. The crystal was kept at a steady T = 100.00(10) K during data collection. CCDC: 2358373 contains the supplementary crystallographic data for this paper. The ellipsoid contour % probability level is 50%. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>https://www.ccdc.cam.ac.uk/</u>.

 $C_{27}H_{22}N_2O$ (*M* =390.46 g/mol): orthorhombic, space group Pbca (no. 61), *a* = 12.94530(13) Å, *b* = 11.28159(12) Å, *c* = 27.8952(3) Å, *V* = 4073.91(7) Å³, *Z* = 8, *T* =

100.00(10) K, μ (Cu K α) = 0.607 mm ⁻¹ , <i>Dcalc</i> = 1.273 g/cm ³ , 24443 reflections
measured ($6.338^{\circ} \le 2\Theta \le 146.668^{\circ}$), 4013 unique ($R_{int} = 0.0360$, $R_{sigma} = 0.0235$) which
were used in all calculations. The final R_1 was 0.0378 (I > 2 σ (I)) and wR_2 was 0.0943
(all data).

Empirical formula	C ₂₇ H ₂₂ N ₂ O
Formula weight	390.46
Temperature/K	100.00(10)
Crystal system	orthorhombic
Space group	Pbca
a/Å	12.94530(13)
b/Å	11.28159(12)
c/Å	27.8952(3)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	4073.91(7)
Z	8
$\rho_{calc}g/cm^3$	1.273
μ/mm^{-1}	0.607
F(000)	1648.0
Crystal size/mm ³	$0.14 \times 0.12 \times 0.11$
Radiation	Cu K α ($\lambda = 1.54184$)
2Θ range for data collection/°	6.338 to 146.668
Index ranges	$-15 \le h \le 16, -13 \le k \le 12, -34 \le l \le$
index ranges	20
Reflections collected	24443
Independent reflections	4013 [$R_{int} = 0.0360, R_{sigma} = 0.0235$]
Data/restraints/parameters	4013/0/271
Goodness-of-fit on F ²	1.032
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0378, wR_2 = 0.0920$
Final R indexes [all data]	$R_1 = 0.0410, wR_2 = 0.0943$
Largest diff. peak/hole / e $Å^{-3}$	0.30/-0.21

NMR spectra for amide compounds:

¹H NMR (400 MHz, CDCl₃) of **1e**

 ^{13}C NMR (100 MHz, CDCl₃) of 1e

 ^{13}C NMR (100 MHz, CDCl₃) of 1g

¹H NMR (400 MHz, CDCl₃) of 1t

¹³C NMR (100 MHz, CDCl₃) of **1t**

¹H NMR (400 MHz, CDCl₃) of **1u**

^{13}C NMR (100 MHz, CDCl₃) of 1u

NMR spectra for cyclopropenes:

¹H NMR (400 MHz, CDCl₃) of **2b**

^{13}C NMR (100 MHz, CDCl₃) of $\mathbf{2b}$

Spectra of complex-Pd:

¹H NMR (400 MHz, CDCl₃) of **3aa**

¹³C NMR (100 MHz, CDCl₃) of 3aa

 ^1H NMR (400 MHz, CDCl₃) of **3ba**

¹³C NMR (100 MHz, CDCl₃) of **3ba**

NOESY:

.

¹H NMR (400 MHz, CDCl₃) of **3ca**

¹³C NMR (100 MHz, CDCl₃) of 3ca

¹H NMR (400 MHz, CDCl₃) of **3ea**

¹³C NMR (100 MHz, CDCl₃) of 3ea

¹H NMR (400 MHz, CDCl₃) of **3fa**

¹³C NMR (100 MHz, CDCl₃) of **3fa**

¹H NMR (400 MHz, CDCl₃) of 3ga

9.330 9.330 9.310 9.310 9.310 9.310 9.310 9.310 9.310 9.310 9.315

$^{19}\mathrm{F}$ NMR (376 MHz, CDCl_3) of $3\mathrm{ga}$

¹H NMR (400 MHz, CDCl₃) of **3ia**

No NOE was observed between H^{α} and H^{β}

4.1

4.0 3.9

3.8

3.7 3.6 3.5

NOESY:

3.4

3.3 3.2 f2 (ppm)

3.1 3.0

2.9

2.8 2.7

-4.4

2.4

2.6

2.5

¹³C NMR (100 MHz, CDCl₃) of 3ka

1 H NMR (400 MHz, CDCl₃) of **3ma**

^{13}C NMR (100 MHz, CDCl₃) of **3ma**

No NOE was observed between H^{α} and H^{β}

NOESY:

¹H NMR (400 MHz, CDCl₃) of **3na**

¹³C NMR (100 MHz, CDCl₃) of **30a**

¹H NMR (400 MHz, CDCl₃) of **3pa**

¹H NMR (400 MHz, CDCl₃) of **3qa**

¹³C NMR (100 MHz, CDCl₃) of **3qa**

¹H NMR (400 MHz, CDCl₃) of **3ra**

9.345 9.324 9.324 9.324 9.324 8.264 8.264 8.264 7.7876 7.7876 7.7860 7.7864 7.7864 7.7864 7.7864 7.7864 7.7467 7.7266 6.5366 6.5366 6.5366 7.7266 7.7273 7.7266 6.5366 6.5366 7.7273 7.7266 7.7273 7.7266 7.7273 7.7

^{13}C NMR (100 MHz, CDCl₃) of **3ra**

¹H NMR (400 MHz, CDCl₃) of 3sa

¹H NMR (400 MHz, CDCl₃) of **3ta-major**

¹³C NMR (100 MHz, CDCl₃) of **3ta-major**

¹H NMR (400 MHz, CDCl₃) of **3ta-minor**

¹³C NMR (100 MHz, CDCl₃) of **3ta-minor**

¹³C NMR (100 MHz, CDCl₃) of **3ua-major**

¹³C NMR (100 MHz, CDCl₃) of **3ua-minor**

$\begin{array}{c} -2.22\\ -2$

¹³C NMR (100 MHz, CDCl₃) of **3eb**

 ^1H NMR (400 MHz, CDCl₃) of 3ec

¹³C NMR (100 MHz, CDCl₃) of **3ec**

$^{19}\mathrm{F}$ NMR (376 MHz, CDCl_3) of 3ec

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 . f1 (ppm)

¹H NMR (400 MHz, CDCl₃) of 3eg

¹H NMR (400 MHz, CDCl₃) of **3eh-Z**

9.189 9.189 9.188 9.188 9.188 8.775 8.776 8.776 8.279 8.273 8.273 8.273 8.273 8.275 8.273 8.275

¹³C NMR (100 MHz, CDCl₃) of **3ei**

¹⁹F NMR (376 MHz, CDCl₃) of **3ei**

¹³C NMR (100 MHz, CDCl₃) of **3ej**

¹³C NMR (100 MHz, CDCl₃) of **3ek**

¹³C NMR (100 MHz, CDCl₃) of **3el**

¹H NMR (400 MHz, CDCl₃) of **3em**

¹³C NMR (100 MHz, CDCl₃) of **3em**

NMR spectra for late-stage modification products:

¹H NMR (400 MHz, CDCl₃) of 4aa

¹³C NMR (100 MHz, CDCl₃) of **4aa**

¹H NMR (400 MHz, CDCl₃) of **4ba**

¹H NMR (400 MHz, CDCl₃) of **4ea**

¹H NMR (400 MHz, CDCl₃) of **4fa**

¹H NMR (400 MHz, CDCl₃) of **4ga**

¹³C NMR (100 MHz, CDCl₃) of 4ga

$^{19}\mathrm{F}$ NMR (376 MHz, CDCl_3) of $4\mathrm{ga}$

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

✓-100.77
✓-101.49
✓-105.02
✓-105.74

No NOE was observed between H^{α} and H^{β}

NOESY:

¹H NMR (400 MHz, CDCl₃) of 4ka

8.650 8.650 8.633 8.145 8.145 8.143 8.128 8.128 8.128 8.128 8.128 8.132 8.138

 1 H NMR (400 MHz, CDCl₃) of **4ma**

No NOE was observed between H^{α} and H^{β}

NOESY:

•

¹H NMR (400 MHz, CDCl₃) of **40a**

 8.652

 8.652

 8.652

 8.652

 8.652

 8.652

 8.652

 8.652

 8.652

 8.652

 8.652

 8.652

 8.652

 8.652

 8.653

 8.712

 8.712

 8.712

 8.712

 8.712

 8.712

 8.712

 8.712

 8.712

 8.712

 8.712

 8.712

 8.712

 8.712

 8.712

 8.712

 8.712

 8.712

 8.712

 8.712

 8.712

 7.7173

 7.733

 7.733

 7.733

 7.733

 7.733

 7.733

 7.733

 7.733

 7.733

 7.733

 8.8455

 8.845

¹H NMR (400 MHz, CDCl₃) of **4sa**

¹H NMR (400 MHz, CDCl₃) of **4eb**

¹H NMR (400 MHz, CDCl₃) of **4ec** ⁸²⁸ ⁸²⁸

¹³C NMR (100 MHz, CDCl₃) of 4ec

$^{19}\mathrm{F}\,\mathrm{NMR}$ (376 MHz, CDCl_3) of 4ec

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹³C NMR (100 MHz, CDCl₃) of **4el**

1 H NMR (400 MHz, CDCl₃) of 6aa

¹³C NMR (100 MHz, CDCl₃) of 6aa

¹H NMR (400 MHz, CDCl₃) of 9aa

¹H NMR (400 MHz, CDCl₃) of 11**aa** ¹H NMR (400 MHz, CDCl₃) of 11**aa** ¹H NMR (400 MHz, CDCl₃) of 11**aa**

¹³C NMR (100 MHz, CDCl₃) of **11aa**

¹H NMR (400 MHz, CDCl₃) of 12**aa**

NMR spectra for mechanism studies:

$^{13}\mathrm{C}$ NMR (DMSO- d_6 100 MHz) of **3aa-Int**

References and Notes

- 1. R. Shang, L. Ilies, A. Matsumoto and E. Nakamura, J. Am. Chem. Soc., 2013, 135, 6030–6032.
- 2. B. V. S. Reddy, L. R. Reddy and E. Corey, J. Org. Lett., 2006, 8, 3391–3394.
- 3. S.-Y. Zhang, Q. Li, G. He, W. A. Nack and G. Chen, J. Am. Chem. Soc., 2013, **135**, 12135–12141.
- 4. S. Zhang, W. Sun, P. Cao, X. Dong, J. Liu and B. Wu, J. Org. Chem., 2016, **81**, 956–968.
- 5. N. Hoshiya, K. Takenaka, S. Shuto and J. Uenishi, Org. Lett., 2016, 18, 48–51.
- 6. W.-W. Sun, P. Cao, R.-Q. Mei, Y. Li, Y.-L. Ma and B. Wu, Org. Lett., 2014, 16, 480–483.
- 7. J. Chen, P. Guo, J. Zhang, J. Rong, W. Sun, Y. Jiang and T.-P. Loh, *Angew. Chem. Int. Ed.*, 2019, **58**, 12674–12679.
- 8. C. Jiang, J. Wu, J. Han, K. Chen, Y. Qian, Z. Zhang and Y. Jiang, Chem. Commun., 2021, 57, 5710–5713.
- 9. E. Y. Aguilera and M. S. Sanford, Angew. Chem. Int. Ed., 2021, 60, 11227-11230.
- 10. H.-Q. Ni, M. K. Karunananda, T. Zeng, S. Yang, Z. Liu, K. N. Houk, P. Liu and K. M. Engle, *J. Am. Chem. Soc.*, 2023, 145, 12351–12359.
- 11. Y. Lv, W. Pu and L. Shi, *Org. Lett.*, 2019, **21**, 6034–6039.
- 12. X. Ji, C. Shen, Y. Ni, Z.-Y. Si, Y. Wang, X. Zhi, Y. Zhao, H. Peng and L. Liu, *Angew. Chem. Int. Ed.* 2024, **63**, e202400805.
- 13. B. N. Babu and K. R. Chauhan, *Tetrahedron Lett.*, 2009, **50**, 66-67.
- 14. M. L. Czyz, G. K. Weragoda, T. H. Horngren, T. U. Connell, D. Gomez, R. A. J. O'Hair and A. Polyzos, *Chem. Sci.*, 2020, **11**, 2455-2463.
- 15. H. Lv, L.-J. Xiao, D. Zhao and Q.-L. Zhou, *Chem. Sci.*, 2018, **9**, 6839-6843.
- 16. Y. Wang, Y. Wang, K. Jiang, Q. Zhang and D. Li, Org. Biomol. Chem. 2016, 14, 10180-10184.
- 17. Y. Li, P. Zhang, Y.-J. Liu, Z.-X. Yu and B.-F. Shi, ACS Catal. 2020, 10, 8212–8222.
- 18. D, Zhao, H. Luo, B. Chen, W. Chen, G. Zhang and Y. Yu, J. Org. Chem., 2018, 83, 7860–7866.
- M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, ; M. A. Robb, J. R. C., G. Scalmani, V. Barone, ; G. A. Petersson, H. N., X. Li, M. Caricato, A. V. Marenich, ; J. Bloino, B. G. J., R. Gomperts, B. Mennucci, H. P. Hratchian, ; J. V. Ortiz, A. F. I., J. L. Sonnenberg, D. Williams-Young, ; F. Ding, F. L., F. Egidi, J. Goings, B. Peng, A. Petrone, ; T. Henderson, D. R., V. G. Zakrzewski, J. Gao, N. Rega, ; G. Zheng, W. L., M. Hada, M. Ehara, K. Toyota, R. Fukuda, ; J. Hasegawa, M. I., T. Nakajima, Y. Honda, O. Kitao, H. Nakai, ; T. Vreven, K. T., J. A. Montgomery, Jr., J. E. Peralta, ; F. Ogliaro, M. J. B., J. J. Heyd, E. N. Brothers, K. N. Kudin, ; V. N. Staroverov, T. A. K., R. Kobayashi, J. Normand, ; K. Raghavachari, A. P. R., J. C. Burant, S. S. Iyengar, ; J. Tomasi, M. C., J. M. Millam, M. Klene, C. Adamo, R. Cammi, ; J. W. Ochterski, R. L. M., K. Morokuma, O. Farkas, ; J. B. Foresman, D. J. Fox, Gaussian 16, Revision B.01. Gaussian, Inc., Wallingford, CT, 2016.
- 20. C. Lee, W. Yang and R. G. Parr, *Phys Rev B.*, 1988, **37**, 785-789.
- 21. B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett., 1989, 157, 200-206.
- 22. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 23. E. Cancès, B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 107, 3032-3041.
- 24. B. Mennucci and J. Tomasi, J. Chem. Phys. 1997, 106, 5151-5158.
- 25. V. Barone and M. Cossi, J. Phys. Chem. A., 1998, 102, 1995-2001.
- 26. F. Weigend and R. Ahlrichs, *Phys. Chem. Chem.*, Phys. 2005, **7**, 3297-3305.
- 27. C. Y. Legault, CYLview, 1.0b. Université de Sherbrooke, 2009, http://www.cylview.org