Supporting Information

Synthesis and antiproliferative activities of 2,3,5-trisubstituted 1*H*-pyrroles *via* formal [3+2] cycloaddition of 1-arylpropynes and nitriles

Dandan He,‡*^{ab} Ling Li,‡^{ab} Xiong Wen,^{ab} Luxiang Yin,^{ab} Jue Li,^{ab} Sha Wu,^{ab} Huili Li,^{ab} Fei Jiang,*^{ab} and Xiangchun Shen*^{ab}

^a The State Key Laboratory of Functions and Applications of Medicinal Plants (The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), No.6 Ankang Avenue, Guizhou Medical University, Guiyang City and Guian New District, 561113, Guizhou, China
^b TThe Key Laboratory of Optimal Utilization of Natural Medicine Resources (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), No.6 Ankang Avenue, Guizhou Medical University, Guiyang City and Guian New District, 561113, Guizhou, China

E-mail: hdd8877817@163.com; Jonesfrede@126.com; shenxiangchun@126.com

Contents

Supporting Information	S1
General Information	S2
Experimental procedures, bioassay and spectroscopic data	S2
1. Experimental procedures	S2
1) Condition optimization	
2) General experimental procedure	S3
2. Biological assays	S4
1) Cell lines and culture conditions	S4
2) MTT assay	S4
3. Spectroscopic data	S5
References	
NMR Spectra for all compounds	S24

General Information

Melting points were determined with a WRX-4 Melting-point instrument. ¹H and ¹³C NMR spectra were recorded using Bruker DRX-400 spectrometer or Bruker DRX-600 spectrometer using CDCl₃ or DMSO- d_6 as solvent. The peaks were internally referenced to SiMe₃ (0.00 ppm) or residual solvent signals (7.26 and 77.0 ppm for Chloroform-d, and 2.50 and 39.5 ppm for DMSO- d_6). The data of HRMS was carried out on a high-resolution mass spectrometer (LCMSIT-TOF). TLC was performed by using commercially prepared 100-400 mesh silica gel plates and visualization was effected at 254 nm. Unless otherwise noted, all reagents and solvents were obtained from commercial suppliers and used without further purification.

Experimental procedures, bioassay and spectroscopic data

1. Experimental procedures

1) Condition optimization

Table S1. Optimization of the reaction conditions^a

Entry ^a	Base	Additive	Solvent	T/ºC	Time/h	Yield of 3a (%)
1	LiN(SiMe ₃) ₂	t-BuOK	СРМЕ	110	1	55
2	LiN(SiMe ₃) ₂	t-BuOK	CPME	110	2	57
3	LiN(SiMe ₃) ₂	t-BuOK	CPME	110	3	82
4	LiN(SiMe ₃) ₂	t-BuOK	CPME	110	4	73
5	LiN(SiMe ₃) ₂	t-BuOK	CPME	110	5	57
6	LiN(SiMe ₃) ₂	t-BuOK	CPME	110	6	56
7	NaN(SiMe3)2	t-BuOK	CPME	110	3	64
8	KN(SiMe ₃) ₂	t-BuOK	CPME	110	3	68
9	LiN(SiMe ₃) ₂	t-BuOLi	CPME	110	3	trace
10	LiN(SiMe ₃) ₂	t-BuONa	CPME	110	3	80
11	LiN(SiMe ₃) ₂	Cs ₂ CO ₃	CPME	110	3	51
12	KN(SiMe ₃) ₂	-	CPME	110	3	65
13	LiN(SiMe ₃) ₂	t-BuOK	CPME	120	3	80
14	LiN(SiMe ₃) ₂	t-BuOK	CPME	60	3	57
15	LiN(SiMe ₃) ₂	t-BuOK	CPME	70	3	65
16	LiN(SiMe ₃) ₂	t-BuOK	CPME	80	3	70
17	LiN(SiMe ₃) ₂	t-BuOK	CPME	90	3	74

18	LiN(SiMe ₃) ₂	t-BuOK	CPME	100	3	77
19	LiN(SiMe ₃) ₂	t-BuOK	THF	110	3	63
20	LiN(SiMe ₃) ₂	t-BuOK	1,4-dioxane	110	3	69
21	LiN(SiMe ₃) ₂	t-BuOK	toluene	110	3	50
22	LiN(SiMe ₃) ₂	t-BuOK	benzene	110	3	60
23	LiN(SiMe ₃) ₂	t-BuOK	DMF	110	3	36
24 ^c	LiN(SiMe ₃) ₂	t-BuOK	CPME	110	3	87 (82) ^d

^{*a*}All reactions were performed with **1** (0.2 mmol), **2** (2 equiv), base (2 equiv), additive (1.5 equiv), solvent (1 mL) under N₂. ^{*b*}Yield was determined by ¹H-NMR with CH₂Br₂ as internal standard. ^{*c*}Solvent (0.5 mL). ^{*d*}Isolated yield. CPME = cyclopentyl methyl ether.

2) General experimental procedure

A. General procedure for the synthesis of 2,3,5-triphenyl-1*H*-pyrrole

A mixture of 1 (0.2 mmol), 2 (2.0 equiv), Li(SiMe₃)₂ (2.0 equiv), and *t*-BuOK (1.5 equiv) dissolved in 0.5 mL dry CPME was added to an oven-dried Schlenk tube equipped with a magnetic stirring bar and stirred at 110 °C under N₂ for 3 h (*Cautious:* the rising pressure produced by CPME). After finished, the reaction mixture was cooled to room temperature and quenched by 10 mL of water. The product was extracted with ethyl acetate (10 mL \times 3). The organic phase was dried over Na₂SO₄ and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography using petroleum ether/ethyl acetate/(100:1) as eluent to afford the corresponding product.

B. General procedure for the preparation of compound 1^[1]

An oven-dried Schlenk tube equipped with a magnetic stirring bar was added successively M_1 (2 mmol), M_2 (3 mol), CuI (5 mol %), Li(SiMe_3)₂ (1.2 equiv), and DCE (4 mL) under N₂. The mixture was stirred at 90 °C for 1 h and monitored by TLC. Upon completion, the reaction mixture was diluted with water (15 mL) and extracted with ethyl acetate (15 mL × 3). The combined organic layers were washed with water and brine, dried over Na₂SO₄, and filtered. The solvent was removed under vacuum. The residue was purified by chromatography on silica gel (petroleum

ether/ethyl acetate 200:1~100:1 v/v).

2. Biological assays

1) Cell lines and culture conditions

The cytotoxic activity of the synthesized compounds against MDA-MB-231 (human breast cancer cell line), SGC-7901 (human gastric cancer cell line), HCT-116 (human colon cancer cells) was investigated. The cells were cultured in RPMI-1640 (Hyclon) or high glucose DMEM (Hyclon) medium with 10% heat-inactivated fetal bovine serum (Hyclon) 1% penicillin–streptomycin (Hyclon), and incubated at standard culture conditions (37 °C, 5% CO₂ in air) (Thermo Fisher Scientific, Wisconsin, USA). The culture medium was refreshed every 2 days. The cells were subcultured twice each week, seeding at a density of about 1×10^5 cells/mL. Before the analysis of the compounds, cells were washed with PBS and fresh medium was added. For fifinal analysis, exponentially growing cells were collected and resuspended in fresh culture medium with 10% FBS. Cells were maintained in a humidified incubator with 5% CO₂ at 37 °C.

2) MTT assay

Cytotoxic activity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide (MTT) assay as described. 5-fluorouracil (**5-Fu**) was selected as a positive control. Cell suspensions were prepared at a concentration of $1 \times 10^5 \mu g/mL$, added to 96-well plates at 100 µL per well, and incubated at 37 °C in a 5% CO₂ incubator for 24 h. Different concentrations of subjects were added to the 96-well plates of cultured tumor cells, and incubation was continued for 48h and observed under an inverted microscope. The culture medium was discarded, and 100 µL of 0. 05% MTT application solution was added to each well and incubated for 4 h. The culture medium was discarded, 100 µL of DMSO was added to each well and shaken for 10 min to dissolve the methylzan crystals, and the absorbance (OD) of the cells was measured at 490 nm.

The concentration and growth inhibition curves were obtained by plotting the growth inhibition rates at different doses and plotted using GraphPad Prism 9.0 software to calculate the semi-inhibitory concentration IC_{50} of the target compounds on three tumor cells and one normal cell.

		IC50(uM)	
compound	MDA-MB-231	SGC-7901	HCT116
3 e	227.6(±93.0)	119.9(±2.7)	201.3(±3.4)
3m	47.9(±1.2)	50.8(±0.9)	91.75(±1.9)
3n	43.3(±0.6)	141.5(±1.9)	174.3(±3.9)
3r	3.5(±0.2)	8.3(±0.3)	10.7(±0.4)
3x	41.1(±0.8)	66.0(±0.8)	98.05(±1.4)
5-Fu	4.7(±0.4)	10.7(±0.3)	12.9(±0.3)

(±) Standard deviation; n = 3. NA: not active up to significant concentrations.

3. Spectroscopic data

prop-1-yne-1,3-diyldibenzene (1a):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 7.46 – 7.43 (m, 2H), 7.40 (d, *J* = 7.0 Hz, 2H), 7.32 (t, *J* = 7.7 Hz, 2H), 7.27 (m, *J* = 5.1, 2.1 Hz, 3H), 7.23 (t, *J* = 7.4 Hz, 1H), 3.81 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 136.7, 131.6, 128.5, 128.2, 127.9, 127.8, 126.6, 123.6, 87.5, 82.6, 25.7. The spectroscopic data are in agreement with literature data.^[1]

1-4-(3-phenylprop-2-yn-1-yl)-1,1'-biphenyl (1b):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm7.56 (dd, J = 11.3, 7.7 Hz, 4H), 7.46 (d, J = 7.8 Hz, 4H), 7.40 (t, J = 7.7 Hz, 2H), 7.29 (m, J = 25.3, 6.3 Hz, 4H), 3.84 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 140.8, 139.6, 135.8, 131.6, 128.7, 128.3, 128.2, 127.8, 127.3, 127.1, 127.0, 123.6, 87.4, 82.7, 25.4. The spectroscopic data are in agreement with literature data.^[2]

2-fluoro-4-(3-phenylprop-2-yn-1-yl)benzene (1c):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 7.44 (dd, J = 6.7, 3.0 Hz, 2H), 7.35 (dd, J = 8.5, 5.5 Hz, 2H), 7.28 (dd, J = 5.0, 2.1 Hz, 3H), 7.01 (t, J = 8.7 Hz, 2H), 3.78 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 161.7 (d, J = 243.0 Hz), 132.4 (d, J = 3.0 Hz), 131.6, 129.4 (d, J = 7.8 Hz), 128.2, 127.9, 123.5, 115.3 (d, J = 21.3 Hz), 87.3, 82.8, 25.0. The spectroscopic data are in agreement with literature data.^[2]

1-methyl-3-(3-phenylprop-2-yn-1-yl)benzene (1d):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 7.44 (dd, J = 7.5, 2.3 Hz, 2H), 7.30 – 7.26 (m, 3H), 7.21 (d, J = 6.5 Hz, 3H), 7.05 (d, J = 7.5 Hz, 1H), 3.78 (s, 2H), 2.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ ppm 138.2, 136.6, 131.6, 128.7, 128.4, 128.2, 127.7, 127.3, 125.0, 123.7, 87.7, 82.5, 25.61, 21.38. The spectroscopic data are in agreement with literature data.^[1]

1-(tert-butyl)-4-(3-phenylprop-2-yn-1-yl)benzene (1e)

Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ ppm 7.47 – 7.42 (m, 2H), 7.35 (d, J = 1.7 Hz, 4H), 7.26 (dd, J = 5.1, 2.0 Hz, 3H), 3.78 (s, 2H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 149.5, 133.7, 131.6, 128.2, 127.7, 127.6, 125.4, 123.8, 87.8, 82.4, 34.4, 31.4, 25.2. The spectroscopic data are in agreement with literature data.^[1]

1,3-dimethoxy-5-(3-phenylprop-2-yn-1-yl)benzene (1f):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 7.44 (d, J = 5.3 Hz, 2H), 7.29 (d, J = 5.2 Hz, 3H), 6.58 (s, 2H), 6.36 (s, 1H), 3.79 (s, 6H), 3.77 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 160.9, 139.1, 131.6, 128.2, 127.8, 123.6, 106.1, 98.6, 87.2, 82.7, 55.3, 25.9. The spectroscopic data are in agreement with literature data.^[3]

1-(tert-butyl)-4-(3-phenylprop-1-yn-1-yl)benzene (1g):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 7.43 – 7.37 (m, 4H), 7.34 – 7.30 (m, 4H), 7.23 (t, J = 8.2 Hz, 1H), 3.82 (s, 2H), 1.30 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 151.0, 136.9, 131.3, 128.5, 127.9, 126.5, 125.2, 120.6, 86.7, 82.7, 34.7, 31.2, 25.7. The spectroscopic data are in agreement with literature data.^[2]

1-fluoro-4-(3-phenylprop-1-yn-1-yl)benzene (1h):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 7.36 – 7.28 (m, 4H), 7.25 (t, *J* = 7.7 Hz, 2H), 7.16 (t, *J* = 7.4 Hz, 1H), 6.89 (t, *J* = 8.7 Hz, 2H), 3.72 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 162.2 (d, *J* = 247.1 Hz), 136.6, 133.4 (d, *J* = 8.4 Hz), 128.5, 127.9, 126.7, 119.7 (d, *J* = 3.4 Hz), 115.4 (d, *J* = 21.8 Hz), 87.2, 81.5, 25.6. The spectroscopic data are in agreement with literature data.^[1]

1-methyl-3-(3-phenylprop-1-yn-1-yl)benzene (1i):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 7.41 (d, J = 6.7 Hz, 2H), 7.34 (t, J = 7.8 Hz, 2H), 7.28 – 7.23 (m, 3H), 7.18 (t, J = 7.6 Hz, 1H), 7.10 (d, J = 7.6 Hz, 1H), 3.83 (s, 2H), 2.32 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 137.9, 136.8,

132.2, 128.7, 128.7, 128.5, 128.1, 127.9, 126.6, 123.4, 87.1, 82.8, 25.7, 21.2. The spectroscopic data are in agreement with literature data.^[1]

1-methoxy-4-(3-phenylprop-1-yn-1-yl)benzene(1j):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 7.33 (d, J = 7.1 Hz, 2H), 7.31 – 7.29 (m, 2H), 7.24 (t, J = 7.7 Hz, 2H), 7.15 (t, J = 7.3 Hz, 1H), 6.74 – 6.73 (m, 2H), 3.73 (s, 2H), 3.69 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 159.2, 137.0, 132.9, 128.5, 127.9, 126.5, 115.8, 113.8, 85.9, 82.4, 55.2, 25.7. The spectroscopic data are in agreement with literature data.^[1]

N,N-diphenyl-4-(3-phenylprop-1-yn-1-yl)aniline(1k):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 7.29 (d, J = 7.1 Hz, 2H), 7.21 – 7.17 (m, 4H), 7.13 – 7.10 (m, 5H), 6.97 (d, J = 7.3 Hz, 4H), 6.90 (t, J = 7.4 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 3.69 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 147.4, 147.2, 136.9, 132.5, 129.3, 128.4, 127.9, 126.5, 124.6, 123.2, 122.6, 116.8, 86.5, 82.6, 25.74. HRMS (ESI): calculated [M+H]⁺ for C₂₇H₂₂N: 360.1747, found :360.1743

2-4,4'-(prop-1-yne-1,3-diyl)bis(methylbenzene) (11):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 7.25 (d, J = 8.1 Hz, 2H), 7.21 (d, J = 7.8 Hz, 2H), 7.05 (d, J = 7.8 Hz, 2H), 7.00 (d, J = 7.8 Hz, 2H), 3.69 (s, 2H), 2.25 (s, 3H), 2.24 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 137.7, 136.1, 133.8, 131.5, 129.2, 128.9, 127.8, 120.6, 87.0, 82.4, 25.3, 21.4, 21.0. The spectroscopic data are in agreement with literature data.^[4]

4,4'-(prop-1-yne-1,3-diyl)bis(tert-butylbenzene) (1m):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 7.38 (d, J = 8.4 Hz, 2H), 7.35 (s, 4H), 7.31 (d, J = 8.4 Hz, 2H), 3.79 (s, 2H), 1.32 (s, 9H), 1.30 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 150.9, 149.5, 133.9, 131.3, 127.6, 125.4, 125.2, 120.7, 87.0, 82.5, 34.7, 34.4, 31.4, 31.2, 25.2. HRMS (ESI): calculated [M+H]⁺ for C₂₃H₂₉: 305.2264, found :305.2259

4,4"-(prop-1-yne-1,3-diyl)di-1,1'-biphenyl (1n):

Yellow solid. M.p.: 98.3-100.2 °C.¹H NMR (600 MHz, Chloroform-*d*) δ ppm 7.60 – 7.57 (m, 6H), 7.55 – 7.52 (m, 4H), 7.50 (d, J = 7.9 Hz, 2H), 7.43 (t, J = 7.6 Hz, 4H), 7.34 (m, J = 7.4, 3.5 Hz, 2H), 3.90 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 140.9, 140.6, 140.5, 139.7, 135.9, 132.1, 128.9, 128.8, 128.4, 127.6, 127.4, 127.2, 127.1, 127.0, 127.0, 122.6, 88.2, 82.6, 25.6. HRMS (ESI): calculated [M+H]⁺ for C₂₇H₂₁: 345.1638, found :345.1633

4,4'-(prop-1-yne-1,3-diyl)bis(fluorobenzene) (10):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 7.32 (dd, J = 8.7, 5.5 Hz, 2H), 7.26 (dd, J = 8.4, 5.5 Hz, 2H), 6.91 (m, J = 20.2, 8.7 Hz, 4H), 3.68 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 162.2 (d, J = 247.4 Hz), 161.7 (d, J = 243.1 Hz), 133.4 (d, J = 8.1 Hz), 132.2 (d, J = 3.3 Hz), 129.3 (d, J = 8.0 Hz), 119.5 (d, J = 3.5 Hz), 115.5 (d, J = 22.2 Hz), 115.3 (d, J = 21.6 Hz), 86.9, 81.7, 24.9. HRMS (ESI): calculated [M-H]⁻ for C₁₅H₉F₂: 227.0678, found :227.0675

3,3'-(prop-1-yne-1,3-diyl)bis(methylbenzene) (1p):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 7.28 (s, 1H), 7.25 (d, J = 7.7 Hz, 1H), 7.22 (d, J = 6.6 Hz, 3H), 7.18 (t, J = 7.6 Hz, 1H), 7.10 (d, J = 7.7 Hz, 1H), 7.06 (d, J = 6.5 Hz, 1H), 3.79 (s, 2H), 2.36 (s, 3H), 2.32 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 138.2, 137.8, 136.7, 132.2, 128.7, 128.7, 128.6, 128.4, 128.1, 127.3, 125.0, 123.5, 87.3, 82.6, 25.6, 21.4, 21.2. HRMS (ESI): calculated [M+H]⁺ for C₁₇H₁₇: 221.1325, found :221.1323

5,5'-(prop-1-yne-1,3-diyl)bis(1,3-dimethoxybenzene) (1q):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 6.60 (d, J = 2.3 Hz, 2H), 6.57 (d, J = 2.3 Hz, 2H), 6.42 (s, 1H), 6.36 (s, 1H), 3.79 (s, 6H), 3.77 (s, 6H), 3.76 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 160.9, 160.4, 138.9, 124.9, 109.4, 106.1, 101.3, 98.6, 86.9, 82.6,55.3, 55.3, 25.9. HRMS (ESI): calculated [M+H]⁺ for C₁₉H₂₁O₄: 313.1434, found :313.1429

2,2'-(prop-1-yne-1,3-diyl)dinaphthalene (1r):

Yellow solid. M.p.: 107.2-110.5 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 7.98 (s, 1H), 7.89 (s, 1H), 7.82 (d, J = 8.5 Hz, 3H), 7.79 – 7.74 (m, 3H), 7.52 (d, J = 5.4 Hz, 2H), 7.45 (s, 4H), 4.02 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 134.2, 133.5, 133.0, 132.6, 132.4, 131.3, 128.7, 128.2, 127.9, 127.7, 127.6, 127.6, 126.5, 126.4, 126.4, 126.3, 126.1, 125.4, 120.9, 87.8, 83.2, 26.1. HRMS (ESI): calculated [M+H]⁺ for C₂₃H₁₇: 293.1325, found :293.1320

2,3,5-triphenyl-1*H*-pyrrole (3a):

Yellow solid. M.p.: 126.6-128.4 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.35 (s, 1H), 7.47 (d, J = 8.1 Hz, 2H), 7.34 – 7.30 (m, 6H), 7.25 – 7.12 (m, 7H), 6.63 (d, J = 2.9 Hz, 1H); ¹³C NMR (150MHz, CDCl₃) δ ppm 136.5, 133.2, 132.4, 132.4, 129.5, 129.1, 128.9, 128.6, 128.5, 127.6, 127.1, 126.7, 126.1, 124.0, 123.9, 108.7. HRMS (ESI): calculated [M+H]⁺ for C₂₂H₁₈N: 296.1434, found :296.1431. The spectroscopic data are in agreement with literature data.^[5]

3,5-diphenyl-2-(p-tolyl)-1*H*-pyrrole (3b):

Yellow solid. M.p.: 69.8-73.3 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.27 (s, 1H), 7.43 (d, *J* = 7.5 Hz, 2H), 7.34 – 7.25 (m, 4H), 7.23 – 7.15 (m, 4H), 7.15 – 7.08 (m, 2H), 7.04 (d, *J* = 7.8 Hz, 2H), 6.60 (s, 1H), 2.26 (s, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ ppm 136.8, 136.5, 132.3, 131.9, 130.2, 129.4, 128.9, 128.3, 128.3, 127.4, 126.4, 125.8, 123.7, 123.4, 108.4, 21.2. HRMS (ESI): calculated [M+H]⁺ for C₂₃H₂₀N: 310.1590, found :310.1586. The spectroscopic data are in agreement with literature data.^[5]

2-(4-(tert-butyl)phenyl)-3,5-diphenyl-1*H*-pyrrole (3c):

Yellow solid. M.p.: 121.6-127.3 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.38 (s, 1H), 7.53 (d, J = 7.4 Hz, 2H), 7.44 – 7.36 (m, 4H), 7.33 (s, 4H), 7.29 (t, J = 7.6 Hz,

2H), 7.25 - 7.18 (m, 2H), 6.69 (d, J = 2.8 Hz, 1H), 1.33 (s, 9H); ¹³C NMR (150 MHz, Chloroform-*d*) δ ppm 150.0, 136.6, 132.3, 131.9, 130.2, 129.4, 129.0, 128.4, 128.3, 127.1, 126.4, 125.7, 125.7, 123.7, 123.5, 108.5, 34.6, 31.3. HRMS (ESI): calculated [M+H]⁺ for C₂₆H₂₆N: 352.2060, found :352.2056. The spectroscopic data are in agreement with literature data.^[5]

1-(4-methoxyphenyl)-3,5-diphenyl-1*H*-pyrrole (3d):

Yellow solid. M.p.: 95.2-98.4 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.25 (s, 1H), 7.43 (d, J = 7.5 Hz, 2H), 7.31 – 7.26 (m, 4H), 7.23 – 7.17 (m, 4H), 7.14 – 7.08 (m, 2H), 6.77 (d, J = 8.7 Hz, 2H), 6.60 (d, J = 2.7 Hz, 1H), 3.70 (s, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ ppm 158.7, 136.4, 132.3, 131.7, 129.3, 128.9, 128.3, 128.2, 126.3, 125.7, 125.7, 123.7, 123.0, 114.1, 108.2, 55.2; HRMS (ESI): calculated [M+H]⁺ for C₂₃H₂₀NO :326.1539 , found :326.1535. The spectroscopic data are in agreement with literature data.^[5]

2-(4-(methylthio)phenyl)-3,5-diphenyl-1*H*-pyrrole (3e):

Yellow solid. M.p.: 165.0-169.3 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.40 (s, 1H), 7.55 – 7.52 (m, 2H), 7.40 – 7.37 (m, 4H), 7.31 – 7.27 (m, 4H), 7.22 (m, J = 7.4, 5.6 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 6.68 (d, J = 2.8 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 137.1, 136.3, 132.2, 132.1, 129.8, 128.9, 128.8, 128.4, 128.3, 127.8, 126.6, 126.5, 126.0, 123.8, 123.8, 108.6, 15.6. HRMS (ESI): calculated [M+H]⁺ for C₂₃H₂₀N₁S:342.1311, found :342.1308.

2-(3,5-dimethylphenyl)-3,5-diphenyl-1*H*-pyrrole (3f):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.36 (s, 1H), 7.52 (d, J = 7.6 Hz, 2H), 7.40 (d, J = 7.4 Hz, 2H), 7.37 (t, J = 7.7 Hz, 2H), 7.27 (t, J = 7.6 Hz, 2H), 7.22 – 7.16 (m, 2H), 7.01 (s, 2H), 6.89 (s, 1H), 6.68 (d, J = 2.8 Hz, 1H), 2.25 (s, 6H); ¹³C NMR (150 MHz, Chloroform-*d*) δ ppm 138.2, 136.4, 133.0, 132.3, 131.9, 129.6, 128.9, 128.7, 128.3, 128.2, 126.4, 125.8, 125.3, 123.7, 123.5, 108.4, 21.3. HRMS (ESI): calculated [M+H]⁺ for C₂₄H₂₂N: 324.1747, found :324.1744.

Yellow solid. M.p.: 108.6-113.6 °C. ¹H NMR (600 MHz, Chloroform-d) δ ppm 8.26 (s, 1H), 7.45 (d, J = 7.7 Hz, 2H), 7.33 – 7.27 (m, 4H), 7.21 (t, J = 7.7 Hz, 2H), 7.16 – 7.10 (m, 2H), 6.80 (d, J = 8.0 Hz, 1H), 6.76 (s, 1H), 6.70 (d, J = 8.0 Hz, 1H), 6.59 (d, J = 2.9 Hz, 1H), 5.87 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 148.0, 146.9, 136.4, 132.4, 131.9, 129.3, 129.1, 128.5, 128.5, 127.3, 126.6, 126.0, 123.9, 123.4, 121.4, 108.8, 108.5, 108.4, 101.2. HRMS (ESI): calculated [M+H]⁺ for C₂₃H₁₈NO₂: 340.1332, found :340.1330.

2-(4-fluorophenyl)-3,5-diphenyl-1*H*-pyrrole (3h):

Yellow solid. M.p.: 105.9-107.9 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.34 (s, 1H), 7.52 (d, J = 6.8 Hz, 2H), 7.39 – 7.32 (m, 6H), 7.28 (t, J = 7.7 Hz, 2H), 7.24 – 7.19 (m, 2H), 7.00 (t, J = 8.6 Hz, 2H), 6.67 (d, J = 2.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 161.9 (d, J = 245.4 Hz), 136.1, 132.2 (d, J = 19.0 Hz), 129.3 (d, J = 8.1 Hz), 129.2 (d, J = 3.2 Hz), 129.0, 128.4, 128.3, 126.6, 126.0, 123.8, 123.8, 115.7 (d, J = 21.3 Hz), 108.4. HRMS (ESI): calculated [M+H]⁺ for C₂₂H₁₇FN: 314.1340, found :314.1335. The spectroscopic data are in agreement with literature data.^[5]

1-(4-chlorophenyl)-3,5-diphenyl-1*H*-pyrrole (3i):

Yellow solid. M.p.: 94.4-100.3 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.34 (s, 1H), 7.51 (d, J = 7.3 Hz, 2H), 7.39 – 7.33 (m, 4H), 7.30 – 7.19 (m, 8H), 6.65 (d, J = 2.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 136.1, 132.7, 132.7, 132.1, 131.6, 129.1, 129.0, 128.7, 128.5, 128.5, 128.1, 126.8, 126., 1324.4, 124.0, 108.9. HRMS (ESI): calculated [M+H]⁺ for C₂₂H₁₇ClN: 330.1044, found: 330.1040. The spectroscopic data are in agreement with literature data.^[5]

2-(2-fluorophenyl)-3,5-diphenyl-1*H*-pyrrole (3j):

Yellow solid. M.p.: 75.1-80.4 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.80 (s, 1H), 7.54 (d, J = 7.3 Hz, 2H), 7.39 (t, J = 7.7 Hz, 4H), 7.33 – 7.17 (m, 6H), 7.17 – 7.10 (m, 1H), 6.98 (t, J = 7.5 Hz, 1H), 6.69 (d, J = 2.9 Hz, 1H); ¹³C NMR (150 MHz, Chloroform-*d*) δ ppm 159.4 (d, J = 244.1 Hz), 136.5, 132.6, 132.1, 130.7 (d, J = 3.4 Hz), 129.0, 128.4, 128.4, 128.3, 126.7, 126.2, 125.8, 124.2 (d, J = 3.2 Hz), 123.9, 122.7, 120.4 (d, J = 12.6 Hz), 116.1 (d, J = 22.4 Hz), 108.2. HRMS (ESI): calculated [M+H]⁺ for C₂₂H₁₇FN: 314.1340, found: 314.1336.

2-(3-chlorophenyl)-3,5-diphenyl-1*H*-pyrrole (3k):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.37 (s, 1H), 7.52 (d, J = 7.2 Hz, 2H), 7.37 (m, J = 15.8, 8.2 Hz, 5H), 7.29 (t, J = 8.4, 6.8 Hz, 2H), 7.25 – 7.16 (m, 5H), 6.66 (d, J = 2.9 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ ppm136.0, 134.9, 134.6, 132.9, 132.1, 130.0, 129.1, 128.6, 127.8, 127.1, 126.9, 126.9, 126.4, 125.9, 124.9, 124.0, 109.0. HRMS (ESI): calculated [M+H]⁺ for C₂₂H₁₇ClN: 330.1044, found: 330.1041.

2-(3,5-difluorophenyl)-3,5-diphenyl-1*H*-pyrrole (31):

Yellow solid. M.p.: 106.4-112.4 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.34 (s, 1H), 7.48 (d, J = 8.4 Hz, 2H), 7.34 (t, J = 7.8 Hz, 2H), 7.30 (d, J = 6.8 Hz, 2H), 7.26 (t, J = 7.7 Hz, 2H), 6.80 (d, J = 6.6 Hz, 2H), 6.64 – 6.54 (m, 2H); ¹³C NMR (150 MHz, Chloroform-*d*) δ ppm 164.0 (d, J = 13.5 Hz), 162.4 (d, J = 13.3 Hz), 135.9, 135.6, 132.5 (d, J = 219.2 Hz), 129.0, 128.6, 126.8 (d, J = 60.6 Hz), 126.7, 125.6, 124.0, 109.7 (d, J = 25.9 Hz), 109.7 (d, J = 15.0 Hz), 109.2, 102.0 (d, J = 50.6 Hz), 101.8. HRMS (ESI): calculated [M+H]⁺ for C₂₂H₁₆F₂N: 332.1245, found: 332.1241.

3,5-diphenyl-2-(4-(trifluoromethyl)phenyl)-1*H*-pyrrole (3m):

Yellow solid. M.p.: 79.4-83.6 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.37 (s, 1H), 7.45 (t, *J* = 6.9 Hz, 4H), 7.37 (d, *J* = 8.1 Hz, 2H), 7.32 (t, *J* = 7.7 Hz, 2H), 7.28 (d, *J* = 7.2 Hz, 2H), 7.23 (t, *J* = 7.5 Hz, 2H), 7.19 – 7.12 (m, 2H), 6.59 (d, *J* = 2.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 136.4, 135.9, 133.3, 131.8, 129.0, 128.5, 128.5, 127.5, 127.1, 126.9, 126.4, 125.6 (q, *J* = 3.8 Hz), 125.5, 124.2 (q, *J* = 270.4 Hz), 124.0, 109.2. HRMS (ESI): calculated [M+H]⁺ for C₂₂H₁₇F₃N: 364.1308, found: 364.1304. The spectroscopic data are in agreement with literature data.^[6]

4-(3,5-diphenyl-1*H*-pyrrol-2-yl)benzonitrile (3n):

Yellow solid. M.p.: 168.6-170.0 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.66 (s, 1H), 7.57 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.45 – 7.39 (m, 4H), 7.37 – 7.31 (m, 4H), 7.27 (m, J = 7.3 Hz, 2H), 6.66 (d, J = 2.7 Hz, 1H); ¹³C NMR (150MHz, CDCl₃) δ ppm 137.3, 135.7, 134.1, 132.4, 131.6, 129.0, 128.6, 127.1, 127.0, 126.8, 126.5, 124.1, 119.1, 109.7, 109.3. HRMS (ESI): calculated [M+H]⁺ for C₂₂H₁₇N₂: 321.1386, found: 321.1383.

2-(naphthalen-2-yl)-3,5-diphenyl-1*H*-pyrrole (30):

Yellow solid. M.p.: 122.8-127.5 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.44 (s, 1H), 7.82 (s, 1H), 7.74 (m, J = 15.5, 8.2 Hz, 2H), 7.68 (d, J = 8.5 Hz, 1H), 7.52 (d, J = 6.8 Hz, 2H), 7.47 – 7.33 (m, 7H), 7.27 – 7.15 (m, 4H), 6.71 (d, J = 2.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 136.4, 133.7, 132.7, 132.5, 132.3, 130.80, 129.4, 129.1, 128.6, 128.5, 128.3, 127.9, 127.6, 126.7, 126.5, 126.4, 126.2, 126.0, 125.4, 124.4, 124.0, 108.9. HRMS (ESI): calculated [M+H]⁺ for C₂₆H₂₀N: 346.1590, found: 346.1586.

3,5-diphenyl-2-(thiophen-2-yl)-1*H*-pyrrole (3p):

Yellow solid. M.p.: 93.8-99.0 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.37 (s, 1H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.38 (t, *J* = 7.8 Hz, 2H), 7.32 (t, *J* = 7.9 Hz, 2H), 7.26 – 7.22 (m, 2H), 7.20 (d, *J* = 5.0 Hz, 1H), 7.03 – 7.00 (m, 1H), 6.98 (dd, *J* = 5.0, 3.5 Hz, 1H), 6.66 (d, *J* = 2.7 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 135.8, 134.8, 132.3, 131.9, 129.0, 128.6, 128.3, 127.4, 126.7, 126.3, 124.9, 124.8, 124.5, 123.8, 123.0, 108.5. HRMS (ESI): calculated [M+H]⁺ for C₂₀H₁₆NS: 302.0998, found: 302.0995.

2-(furan-2-yl)-3,5-diphenyl-1*H*-pyrrole (3q):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.78 (s, 1H), 7.54 (d, J = 7.3 Hz, 4H), 7.41 – 7.36 (m, 5H), 7.29 (t, J = 7.4 Hz, 1H), 7.23 (t, J = 7.4 Hz, 1H), 6.60 (d, J = 3.0 Hz, 1H), 6.35 (dd, J = 3.4, 1.8 Hz, 1H), 6.28 (d, J = 3.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 147.3, 140.3, 136.1, 132.0, 131.9, 128.9, 128.7, 128.3, 126.6, 126.6, 124.1, 123.8, 120.6, 111.6, 108.7, 104.3. HRMS (ESI): calculated [M+H]⁺ for C₂₀H₁₆NO: 286.1226, found: 286.1223.

3-(5-(3,5-diphenyl-1*H*-pyrrol-2-yl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-1-yl)-N,N-dimethylpropan-1-amine (3r):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.56 (s, 1H), 7.56 – 7.51 (m, 2H), 7.49 – 7.42 (m, 2H), 7.40 – 7.34 (m, 4H), 7.30 – 7.24 (m, 3H), 7.24 – 7.17 (m, 4H), 6.98 (t, J = 8.7 Hz, 2H), 6.67 (d, J = 2.8 Hz, 1H), 5.30 – 4.96 (m, 2H), 2.23 (t, J = 7.3 Hz, 2H), 2.20 – 2.07 (m, 2H), 2.12 (s, 6H), 1.53 – 1.34 (m, 2H); ¹³C NMR (150 MHz, Chloroform-*d*) δ ppm 161.8 (d, J = 243.7 Hz), 142.9, 140.9 (d, J = 3.1 Hz), 139.6, 136.2, 132.8, 132.3, 132.1, 128.9, 128.9, 128.3, 127.0, 126.8, 126.7, 126.5, 125.9, 123.9, 123.8, 122.0, 120.0, 115.0 (d, J = 21.1 Hz), 108.6, 90.8, 71.7, 59.5, 45.2, 39.4, 22.1. HRMS (ESI): calculated [M+H]⁺ for C₃₅H₃₄FN₂O: 517.2650, found: 517.2646.

2-phenyl-3,5-di-p-tolyl-1*H*-pyrrole (3s):

Yellow solid. M.p.: 132.4-134.3 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.18 (s, 1H), 7.28 (m, J = 14.8, 7.7 Hz, 4H), 7.19 – 7.16 (m, 4H), 7.11 (t, J = 7.4 Hz, 1H), 7.06 (d, J = 7.8 Hz, 2H), 6.98 (d, J = 7.7 Hz, 2H), 6.51 (d, J = 2.8 Hz, 1H), 2.23 (s, 3H), 2.22 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 136.1, 135.4, 133.4, 133.2, 132.3, 129.6, 129.4, 129.0, 128.6, 128.2, 127.3, 126.7, 123.7, 123.6, 108.1, 21.1. HRMS (ESI): calculated [M+H]⁺ for C₂₄H₂₂N: 324.1747, found: 324.1744.

2-phenyl-3,5-di-m-tolyl-1*H*-pyrrole (3t):

Yellow oil.¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.36 (s, 1H), 7.39 (d, J = 6.9 Hz, 2H), 7.36 – 7.30 (m, 3H), 7.30 – 7.20 (m, 4H), 7.16 (t, J = 5.8 Hz, 2H), 7.03 (m, J = 14.4, 6.8 Hz, 2H), 6.67 (d, J = 2.8 Hz, 1H), 2.39 (s, 3H), 2.31 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 138.5, 137.8, 136.3, 133.1, 132.3, 132.2, 129.1, 129.1, 128.8, 128.6, 128.1, 127.2, 127.3, 126.8, 126.7, 125.5, 124.5, 123.8, 120.9, 108.2, 21.5, 21.4. HRMS (ESI): calculated [M+H]⁺ for C₂₄H₂₂N: 324.1747, found: 324.1745.

3,5-bis(4-(tert-butyl)phenyl)-2-phenyl-1*H*-pyrrole (3u):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.32 (s, 1H), 7.45 (d, J = 8.3 Hz, 2H), 7.42 – 7.39 (m, 4H), 7.33 – 7.28 (m, 6H), 7.24 – 7.20 (m, 1H), 6.63 (d, J = 2.8 Hz, 1H), 1.34 (s, 9H), 1.32 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 149.4, 148.6, 133.4, 133.4, 132.2, 129.5, 128.7, 128.6, 127.9, 127.4, 126.7, 125.8, 125.2, 123.6, 123.5, 108.3, 34.5, 34.4, 31.4, 31.3. HRMS (ESI): calculated [M+H]⁺ for C₃₀H₃₄N: 408.2686, found: 408.2684.

3,5-bis(3,5-dimethoxyphenyl)-2-phenyl-1*H*-pyrrole (3v):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.44 (s, 1H), 7.42 (d, J = 6.7 Hz, 2H), 7.33 (t, J = 7.7 Hz, 2H), 7.27 – 7.24 (m, 1H), 6.68 (t, J = 2.6 Hz, 3H), 6.55 (d, J = 2.3 Hz, 2H), 6.37 (s, 1H), 6.34 (s, 1H), 3.83 (s, 6H), 3.68 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 161.3, 160.6, 138.2, 134.1, 132.9, 132.0, 129.6, 128.6,

127.7, 127.1, 123.6, 108.7, 106.3, 102.2, 98.6, 98.6, 55.4, 55.2. HRMS (ESI): calculated $[M+H]^+$ for C₂₆H₂₆NO₄: 416.1856, found: 416.1853.

3,5-di([1,1'-biphenyl]-4-yl)-2-phenyl-1*H*-pyrrole (3w):

Yellow solid. M.p.: 203.7-209.2 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ ppm 11.51 (s, 1H), 7.91 (d, *J* = 8.1 Hz, 2H), 7.72 (t, *J* = 8.5 Hz, 4H), 7.68 (d, *J* = 7.7 Hz, 2H), 7.60 (d, *J* = 8.1 Hz, 2H), 7.49 – 7.44 (m, 6H), 7.41 – 7.39 (t, 3H), 7.38 – 7.29 (m, 4H), 6.89 (d, *J* = 2.7 Hz, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ ppm 139.8, 139.7, 137.3, 137.1, 135.7, 132.9, 131.7, 131.4, 129.9, 128.9, 128.9, 128.4, 128.3, 127.2, 127.1, 126.8, 126.8, 126.5, 126.3, 124.4, 122.2, 108.2. HRMS (ESI): calculated [M+H]⁺ for C₃₄H₂₆N: 448.2060, found: 448.2056.

3,5-bis(4-fluorophenyl)-2-phenyl-1*H*-pyrrole (3x):

Yellow solid. M.p.: 151.5-155.9 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.35 (s, 1H), 7.50 (dd, J = 8.5, 5.2 Hz, 2H), 7.36 (d, J = 6.9 Hz, 2H), 7.34 – 7.31 (m, 4H), 7.28 – 7.25 (t, 1H), 7.09 (t, J = 8.6 Hz, 2H), 6.98 (t, J = 8.7 Hz, 2H), 6.58 (d, J = 2.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 161.7 (d, J = 244.6 Hz), 161.5 (d, J = 243.2 Hz), 132.7, 132.2(d, J = 3.0 Hz), 131.4, 129.8(d, J = 7.6 Hz), 129.2, 128.8, 128.5(d, J = 3.2 Hz), 127.4, 127.1, 125.5(d, J = 7.6 Hz), 122.8, 116.0 (d, J = 21.6 Hz), 115.2(d, J = 21.1 Hz), 108.3. HRMS (ESI): calculated [M+H]⁺ for C₂₂H₁₆F₂N: 332.1245, found: 332.1242.

3,5-di(naphthalen-2-yl)-2-phenyl-1*H*-pyrrole (3y):

Yellow solid. M.p.: 139.2-142.0 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.61 (s, 1H), 7.93 (d, J = 9.9 Hz, 2H), 7.89 – 7.78 (m, 4H), 7.78 – 7.70 (m, 3H), 7.55 – 7.39 (m, 7H), 7.33 (t, J = 7.4 Hz, 2H), 7.27 (t, J = 7.3 Hz, 1H), 6.93 (d, J = 2.8 Hz, 1H); ¹³C NMR (150 MHz, Chloroform-*d*) δ ppm 133.9, 133.8, 133.8, 133.0, 132.4, 132.3, 132.0, 130.1, 129.5, 128.8, 128.7, 127.8, 127.8, 127.7, 127.7, 127.6, 127.5,

127.5, 127.1, 126.6, 126.4, 125.9, 125.6, 125.3, 124.0, 123.0, 121.1, 109.4. HRMS (ESI): calculated $[M+H]^+$ for $C_{30}H_{22}N$: 396.1747, found: 396.1743.

2,5-diphenyl-3-(m-tolyl)-1*H*-pyrrole (3aa):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.42 (s, 1H), 7.55 (d, J = 8.2 Hz, 2H), 7.43 – 7.37 (m, 4H), 7.32 (t, J = 7.8 Hz, 2H), 7.24 (m, J = 7.6 Hz, 3H), 7.17 (d, J = 5.1 Hz, 2H), 7.03 (d, J = 3.6 Hz, 1H), 6.69 (d, J = 2.8 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 137.8, 136.2, 133.1, 132.2, 132.1, 129.2, 129.1, 128.9, 128.6, 128.2, 127.4, 126.9, 126.7, 126.5, 125.6, 123.9, 123.8, 108.6, 21.4. HRMS (ESI): calculated [M+H]⁺ for C₂₃H₂₀N: 310.1590, found: 310.1586.

2,3-diphenyl-5-(m-tolyl)-1*H*-pyrrole (3aa'):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.40 (s, 1H), 7.40 (d, J = 8.3 Hz, 4H), 7.36 (d, J = 5.5 Hz, 1H), 7.34 (d, J = 5.6 Hz, 1H), 7.32 (s, 1H), 7.31 – 7.26 (m, 4H), 7.25 (d, J = 4.7 Hz, 1H), 7.21 (t, J = 7.4 Hz, 1H), 7.06 (d, J = 7.5 Hz, 1H), 6.69 (d, J = 2.9 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 138.6, 136.4, 133.1, 132.3, 132.1, 129.1, 128.9, 128.7, 128.4, 128.3, 127.4, 127.4, 126.9, 125.9, 124.5, 123.7, 120.9, 108.5, 21.5. HRMS (ESI): calculated [M+H]⁺ for C₂₃H₂₀N: 310.1590, found: 310.1585.

3-(4-(tert-butyl)phenyl)-2,5-diphenyl-1*H*-pyrrole (3ba):

Yellow solid. M.p.: 115.4-119.5 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ ppm 8.33 (s, 1H), 7.45 (d, J = 8.6 Hz, 2H), 7.41 – 7.36 (m, 5H), 7.34 – 7.23 (m, 5H), 7.23 – 7.15 (m, 2H), 6.64 (d, J = 2.9 Hz, 1H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 149.5, 136.4, 133.2, 132.4, 129.4, 128.9, 128.7, 128.4, 128.3, 127.4, 126.8, 125.8, 123.7, 123.6, 108.2, 34.5, 31.3. HRMS (ESI): calculated [M+H]⁺ for C₂₆H₂₆N: 352.2060, found: 352.2056.

5-(4-(tert-butyl)phenyl)-2,3-diphenyl-1*H*-pyrrole (3ba'):

Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ ppm 8.37 (s, 1H), 7.53 (d, J = 7.7 Hz, 2H), 7.44 – 7.36 (m, 4H), 7.35 – 7.29 (m, 6H), 7.27 – 7.21 (m, 2H), 6.69 (d, J = 2.8 Hz, 1H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 148.7, 133.3, 132.3, 132.1, 129.1, 128.9, 128.7, 127.9, 127.5, 126.9, 126.4, 125.2, 123.7, 123.7, 108.6, 34.4, 31.2. HRMS (ESI): calculated [M+H]⁺ for C₂₆H₂₆N: 352.2060, found: 352.2057.

3-(3,5-dimethoxyphenyl)-2,5-diphenyl-1*H*-pyrrole (3ca):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.44 (s, 1H), 7.54 (d, J = 7.7 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 7.39 (t, J = 7.8 Hz, 2H), 7.33 (t, J = 7.7 Hz, 2H), 7.26 – 7.22 (m, 2H), 6.70 (d, J = 2.8 Hz, 1H), 6.56 (d, J = 2.3 Hz, 2H), 6.34 (t, J = 2.3 Hz, 1H), 3.68 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 160.6, 138.2, 132.9, 132.1, 129.6, 129.0, 128.6, 127.7, 127.1, 126.5, 123.8, 123.7, 108.3, 106.3, 98.6, 55.2. HRMS (ESI): calculated [M+H]⁺ for C₂₄H₂₂NO₂: 356.1645, found: 356.1642.

5-(3,5-dimethoxyphenyl)-2,3-diphenyl-1*H*-pyrrole (3ca'):

Yellow solid. M.p.: 121.3-124.1 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.41 (s, 1H), 7.39 (d, J = 8.1 Hz, 4H), 7.32 (t, J = 7.6 Hz, 2H), 7.28 (t, J = 7.7 Hz, 2H), 7.25 (d, J = 5.6 Hz, 1H), 7.21 (t, J = 7.3 Hz, 1H), 6.69 (dd, J = 5.2, 2.4 Hz, 3H), 6.37 (s, 1H), 3.84 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 161.3, 136.3, 134.1, 133.0, 132.1, 129.3, 128.7, 128.4, 128.3, 127.5, 127.0, 125.9, 123.7, 108.9, 102.3, 98.5, 55.4. HRMS (ESI): calculated [M+H]⁺ for C₂₄H₂₂NO₂: 356.1645, found: 356.1640.

3-(4-fluorophenyl)-2,5-diphenyl-1*H*-pyrrole (3da):

Yellow solid. M.p.: 138.0-143.1 °C. ¹H NMR (600 MHz, CDCl₃) δ ppm 8.27 (s, 1H), 7.45 – 7.41 (m, 2H), 7.34 – 7.29 (m, 4H), 7.28 – 7.17 (m, 6H), 7.14 (t, *J* = 7.4 Hz, 1H),

7.02 (t, J = 8.7 Hz, 2H), 6.55 (d, J = 2.9 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 161.7 (d, J = 244.8 Hz), 136.2, 133.0, 131.4, 129.3, 128.7, 128.6 (d, J = 3.1 Hz), 128.4, 128.3, 127.5, 127.0, 126.0, 125.5 (d, J = 8.0 Hz), 123.8, 116.0 (d, J = 21.7 Hz), 108.5. HRMS (ESI): calculated [M+H]⁺ for C₂₂H₁₇FN: 314.1340, found: 314.1335. The spectroscopic data are in agreement with literature data.^[5]

5-(4-fluorophenyl)-2,3-diphenyl-1*H*-pyrrole (3da'):

Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ ppm 8.34 (s, 1H), 7.47 (d, J = 7.1 Hz, 2H), 7.37 – 7.28 (m, 4H), 7.28 – 7.23 (m, 4H), 7.22 – 7.09 (m, 2H), 6.91 (t, J = 8.7 Hz, 2H), 6.58 (d, J = 2.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 161.2 (d, J = 243.2 Hz), 132.9, 132.4 (d, J = 3.3 Hz), 132.2(d, J = 24.4 Hz), 129.9, 129.8, 129.2, 129.0, 128.8, 127.4, 127.1, 126.6, 123.8, 122.8, 115.2 (d, J = 21.1 Hz), 108.5. HRMS (ESI): calculated [M+H]⁺ for C₂₂H₁₇FN: 314.1340, found: 314.1336.

3-([1,1'-biphenyl]-4-yl)-2,5-diphenyl-1*H*-pyrrole (3ea):

Yellow solid. M.p.: 91.3-96.3 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ ppm 8.30 (s, 1H), 7.52 (d, J = 7.1 Hz, 2H), 7.46 – 7.42 (m, 4H), 7.39 – 7.29 (m, 8H), 7.27 (d, J = 6.3 Hz, 1H), 7.25 – 7.22 (m, 2H), 7.19 – 7.16 (t, 1H), 7.13 (t, J = 11.0 Hz, 1H), 6.64 (d, J = 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl3) δ ppm140.9, 138.5, 135.4, 133.1, 132.3, 132.1, 129.5, 129.0, 128.7, 128.6, 127.6, 127.0, 127.0, 127.0, 126.8, 126.5, 123.8, 123.3, 108.4. HRMS (ESI): calculated [M+H]⁺ for C₂₈H₂₂N: 372.1747, found: 372.1745.

5-([1,1'-biphenyl]-4-yl)-2,3-diphenyl-1*H*-pyrrole (3ea'):

Yellow solid. M.p.: 151.3-156.8 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 11.47 (s, 1H), 7.90 (d, *J* = 8.3 Hz, 2H), 7.73 – 7.68 (t, 4H), 7.45 (m, *J* = 13.8, 7.3 Hz, 4H), 7.37 – 7.25 (m, 8H), 7.18 (t, *J* = 7.0 Hz, 1H), 6.83 (d, *J* = 2.6 Hz, 1H); ¹³C NMR (100 MHz, DMSO) δ ppm 139.7, 137.3, 136.6, 132.9, 131.6, 131.4, 129.7, 128.9, 128.3, 128.1,

128.0, 127.2, 126.8, 126.7, 126.3, 125.6, 124.4, 122.8, 108.4. HRMS (ESI): calculated $[M+H]^+$ for $C_{28}H_{22}N$: 372.1747, found: 372.1743.

2,3-diphenyl-5-(m-tolyl)-1*H*-pyrrole (3ab):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.38 (s, 1H), 7.39 (d, J = 7.6 Hz, 4H), 7.36 – 7.18 (m, 9H), 7.05 (d, J = 7.5 Hz, 1H), 6.68 (s, 1H), 2.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 138.5, 136.4, 133.1, 132.3, 132.1, 129.1, 128.8, 128.7, 128.4, 128.3, 127.4, 127.3, 126.9, 125.9, 124.5, 123.7, 120.9, 108.5, 21.5. HRMS (ESI): calculated [M+H]⁺ for C₂₃H₂₀N: 310.1590, found: 310.1586.

2,5-diphenyl-3-(m-tolyl)-1*H*-pyrrole (3ab'):

Yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.39 (s, 1H), 7.54 (d, J = 6.9 Hz, 2H), 7.41 – 7.37 (m, 4H), 7.31 (t, J = 7.7 Hz, 2H), 7.24 (m, J = 7.8 Hz, 3H), 7.18 – 7.15 (m, 2H), 7.03 (d, J = 3.4 Hz, 1H), 6.69 (d, J = 2.9 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 137.8, 136.2, 133.1, 132.2, 132.1, 129.2, 129.1, 128.9, 128.6, 128.2, 127.4, 126.9, 126.7, 126.5, 125.6, 123.9, 123.8, 108.7, 21.4. HRMS (ESI): calculated [M+H]⁺ for C₂₃H₂₀N: 310.1590, found: 310.1587.

5-(4-(tert-butyl)phenyl)-2,3-diphenyl-1*H*-pyrrole (3ac):

Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ ppm 8.36 (s, 1H), 7.52 (dd, J = 8.3, 1.3 Hz, 2H), 7.43 – 7.35 (m, 4H), 7.34 – 7.28 (m, 6H), 7.26 – 7.20 (m, 2H), 6.68 (d, J = 2.9 Hz, 1H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 148.7, 133.3, 133.2, 132.2, 132.0, 129.1, 128.9, 128.6, 127.9, 127.5, 126.8, 126.4, 125.2, 123.7, 128.6, 34.4, 31.2. HRMS (ESI): calculated [M+H]⁺ for C₂₆H₂₆N: 352.2060, found: 352.2057.

3-(4-(tert-butyl)phenyl)-2,5-diphenyl-1*H*-pyrrole (3ac'):

Yellow solid. M.p.: 115.8-118.7 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ ppm 8.37 (s, 1H), 7.47 (d, J = 8.5 Hz, 2H), 7.43 – 7.38 (m, 5H), 7.30 (m, J = 12.9, 7.4 Hz, 5H), 7.24 – 7.17 (m, 2H), 6.65 (d, J = 2.8 Hz, 1H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 149.6, 136.4, 133.2, 132.4, 129.5, 128.9, 128.7, 128.4, 128.3, 127.4, 126.8, 125.9, 123.7, 123.6, 108.2, 34.5, 31.3. HRMS (ESI): calculated [M+H]⁺ for C₂₆H₂₆N:352.2060, found: 352.2058.

5-(4-fluorophenyl)-2,3-diphenyl-1*H*-pyrrole (3ad):

Yellow oil. ¹H NMR (400 MHz, Chloroform-d) δ ppm 8.33 (s, 1H), 7.49 (dd, J = 8.8, 5.2 Hz, 2H), 7.38 (d, J = 8.4 Hz, 4H), 7.35 – 7.23 (m, 6H), 7.21 (t, J = 7.3 Hz, 1H), 7.09 (t, J = 8.7 Hz, 2H), 6.62 (d, J = 2.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 161.7 (d, J = 244.5 Hz), 136.2, 133.0, 131.4, 129.3, 128.7, 128.6 (d, J = 3.2 Hz), 128.4, 128.3, 127.5, 127.0, 126.0, 125.5 (d, J = 7.8 Hz), 123.8, 115.9 (d, J = 21.6 Hz), 108.4. HRMS (ESI): calculated [M+H]⁺ for C₂₂H₁₇FN: 314.1340, found: 314.1336.

3-(4-fluorophenyl)-2,5-diphenyl-1*H*-pyrrole (3ad'):

Yellow solid. M.p.: 138.7-142.4 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ ppm 8.42 (s, 1H), 7.54 (d, J = 7.0 Hz, 2H), 7.40 (d, J = 7.5 Hz, 1H), 7.37 (t, J = 12.5 Hz, 2H), 7.35 – 7.31 (m, 4H), 7.25 (m, J = 7.4 Hz, 3H), 6.98 (t, J = 8.7 Hz, 2H), 6.65 (d, J = 2.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 161.5 (d, J = 243.2 Hz), 160.7, 132.9, 132.3 (d, J = 3.2 Hz), 132.3, 132.1, 129.9 (d, J = 7.6 Hz), 129.2, 129.0, 128.8, 127.4, 127.0, 126.6, 123.8, 122.8, 115.2 (d, J = 21.1 Hz), 108.4. HRMS (ESI): calculated [M+H]⁺ for C₂₂H₁₇FN: 314.1340, found: 314.1336.

5-(4-methoxyphenyl)-2,3-diphenyl-1*H*-pyrrole(3ae):

Yellow oil.¹H NMR (600 MHz, Chloroform-d) δ ppm 8.39 (s, 1H), 7.53 (d, J = 6.8

Hz, 2H), 7.38 (t, J = 7.7 Hz, 4H), 7.32 – 7.29 (m, 4H), 7.23 (m, J = 7.4 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 6.64 (d, J = 2.8 Hz, 1H), 3.79 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ ppm 158.0, 133.1, 132.2, 132.1, 129.5, 128.9, 128.8, 128.7, 127.3, 126.8, 126.4, 123.7, 123.5, 113.8, 108.5, 55.2; HRMS (ESI): calculated [M+H]⁺ for C₂₃H₂₀NO: 326.1539, found: 326.1534

3-(4-methoxyphenyl)-2,5-diphenyl-1*H*-pyrrole(3ae'):

Yellow solid. M.p.: 71.4-75.7 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ ppm 11.26 (s, 1H), 7.72 (d, *J* = 8.7 Hz, 2H), 7.40 (d, *J* = 7.0 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.26 (m, *J* = 14.6, 7.0 Hz, 5H), 7.16 (t, *J* = 7.0 Hz, 1H), 6.96 (d, *J* = 8.7 Hz, 2H), 6.62 (d, *J* = 2.7 Hz, 1H), 3.78 (s, 3H); ¹³C NMR (150 MHz, DMSO) δ ppm 157.7, 136.8, 133.1, 132.1, 128.5, 128.2, 128.0, 127.9, 126.4, 125.5, 125.3, 125.2, 122.5, 114.1, 106.9, 55.1; HRMS (ESI): calculated [M+H]⁺ for C₂₃H₂₀NO: 326.1539, found: 326.1535

4-(4,5-diphenyl-1*H*-pyrrol-2-yl)-N,N-diphenylaniline(3af):

Yellow solid. M.p.: 90.3-94.5 °C.¹H NMR (600 MHz, DMSO-*d*₆) δ ppm 11.31 (s, 1H), 7.72 (d, *J* = 8.6 Hz, 2H), 7.39 (d, *J* = 6.8 Hz, 2H), 7.34 – 7.28 (m, 7H), 7.27 – 7.23 (m, 4H), 7.16 (t, *J* = 6.7 Hz, 1H), 7.03 (t, *J* = 7.4 Hz, 6H), 7.00 (d, *J* = 8.6 Hz, 2H), 6.66 (d, *J* = 2.7 Hz, 1H); ¹³C NMR (150 MHz, DMSO) δ ppm 147.2, 145.1, 136.6, 132.9, 131.8, 129.5, 129.0, 128.2, 128.0, 127.9, 127.2, 126.5, 125.5, 125.1, 123.9, 123.6, 122.8, 122.6, 107.5; HRMS (ESI): calculated [M+H]⁺ for C₃₄H₂₇N₂: 463.2169, found: 463.2162

4-(2,5-diphenyl-1*H*-pyrrol-3-yl)-N,N-diphenylaniline(3af'):

Yellow solid. M.p.: 78.5-81.6 °C.¹H NMR (600 MHz, DMSO-*d*₆) δ ppm 11.35 (s, 1H), 7.78 (d, *J* = 7.8 Hz, 2H), 7.45 (d, *J* = 7.2 Hz, 2H), 7.36 (m, *J* = 9.0, 8.5 Hz, 4H), 7.28 (t, *J* = 7.2 Hz, 4H), 7.25 (d, *J* = 7.3 Hz, 1H), 7.22 (d, *J* = 8.3 Hz, 2H), 7.18 (d, 1H), 7.00 (d, *J* = 7.1 Hz, 6H), 6.90 (d, *J* = 8.1 Hz, 2H), 6.74 (d, *J* = 2.7 Hz, 1H); ¹³C NMR (150 MHz, DMSO) δ ppm 147.2, 144.8, 133.0, 132.3, 131.9, 131.4, 129.4, 129.2,

128.8, 128.6, 128.3, 128.0, 126.6, 125.8, 123.9, 123.7, 123.5, 122.7, 122.2, 107.9; HRMS (ESI): calculated $[M+H]^+$ for $C_{34}H_{27}N_2$: 463.2169, found: 463.2162

References

- Zhang, H.; Sun, N.; Hu, B.; Shen, Z.; Hu. X.; Jin, L. Copper-catalyzed direct couplings of terminal alkynes with primary and secondary benzyl bromides. *Org. Chem. Front.* 2019, *6*, 1983–1988.
- [2] Li, X.; Jiang, M.; Zhu, X.; Song, X.; Deng, Q.;Lv, J.; Yang, D. A desulphurization strategy for Sonogashira couplings by visible light/copper catalysis. *Org. Chem. Front.* 2022, 9, 386–393.
- [3] Biradar, D.; Gau, H. Simple and efficient nickel-catalyzed cross-coupling reaction of alkynylalanes with benzylic and aryl bromides. *Chem. Commun.* **2011**, 47, 10467–10469
- [4] Han, J.; San, H.; Guo, A.; Wang, L.; Tang, X. Boryl Radical-mediated C-H activation of inactivated alkanes for the synthesis of internal alkynes. *Adv. Synth. Catal.* 2021, 363, 2366–2370.
- [5] Zhao, M.; Ren Z.; Yang, D.; Guan, Z. Iron-catalyzed radical cycloaddition of 2 H-azirines and enamides for the synthesis of pyrroles. *Org. Lett.* **2018**, 205, 1287–1290.
- [6] Shen. J.; Cheng, G.; Cui, X. "One pot" regiospecific synthesis of polysubstituted pyrroles from benzylamines and ynones under metal free conditions. *Chem. Commun.* 2013, 49, 10641–10643.

NMR Spectra for the compounds

¹³C NMR (150 MHz, CDCl₃) spectrum of compound 1b

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR (600 MHz, CDCl₃) spectrum of compound 1q

S43

¹³C NMR (150 MHz, CDCl₃) spectrum of compound 3g

147.7934 136.70634 136.70634 136.70634 132.19337 128.3171 128.3171 128.3171 128.3171 128.3171 128.3171 128.3171 128.3171 128.327097 128.327097 128.3667 128.3667 128.3667 128.3667 128.3667 128.3667 128.3667 128.3667 128.3667 128.3677 128.3777 128.37777 128.37777 128.37777 128.377777 128.	$\underbrace{\{77.2119}{77.0000}$
--	-----------------------------------

S49

¹³C NMR (150 MHz, CDCl₃) spectrum of compound 3k

135.8819 134.854 134.854 132.7845 131.9105 131.9105 132.7847 122.8764 122.9770 122.9770 122.76164 122.67367 122.6647 122.67367 122.7100 122.7100 122.7100 122.88153 	$\left\{ \begin{array}{c} 77.2119 \\ 77.0001 \\ 76.7883 \end{array} \right.$
	$(\mathbf{r}) = (\mathbf{r}) + ($

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR (150 MHz, DMSO-*d*₆) spectrum of compound 3w

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ba

¹H NMR (600 MHz, CDCl₃) spectrum of compound 3ca

S72

3.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3ac

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR (600 MHz, CDCl₃) spectrum of compound 3ad'

¹³C NMR (150 MHz, CDCl₃) spectrum of compound 3ad'

<pre>> 162.2844 > 162.2844 > 160.6652 132.3631 132.3631 132.3631 132.3631 132.3643 132.3643 132.3798 132.0794 132.0794 122.09218 135.779 135.779 135.779 135.779 135.760 135.760 135.760 115.2163 108.4391 108.4381 108.438</pre>	
	F N N
210 200 190 180 170 160 150 140 130 120 110 100 90 80 fl (ppm)	70 60 50 40 30 20 10 0 -10

¹H NMR (600 MHz, CDCl₃) spectrum of compound 3ae

¹³C NMR (150 MHz, CDCl₃) spectrum of compound 3ae

157.980 133.146 133.2725 132.2730 132.470 122.8024 122.8024 126.422 126.422 126.422 126.422 126.422 127.3100 127.3100 127.3100 127.3100 127.3100 127.3100 127.3100 127.3100 127.3100 127.3100 127.3100 127.3100 127.3100 127.3100 127.3100 127.3100 127.3100	77.0013	-55.1846
--	---------	----------

¹³C NMR (150 MHz, DMSO-d6) spectrum of compound 3ae'

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR (150 MHz, DMSO-d6) spectrum of compound 3af'

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)