Supporting Information Palladium-catalyzed dearomative Heck/[4 + 3] decarboxylative cyclization of indoles with αoxocarboxylic acids via C–H activation

Liwei Zhou,* Pengyang Jing, Wenbo Deng, Shuyi Guo, Yun Liang,* and Yuan Yang*

Email: hnzhouliwei@126.com, yliang@hunnu.edu.cn, and yuanyang@hunnu.edu.cn.

Table of Contents

1	General Information	S1
2	Optimization of the Reaction Conditions	S1
3	General Procedure for the Synthesis of Starting Materials	S3
4	Typical Procedures	S9
5	Synthetic Transformations of 3aa	.S10
6	Mechanistic Experiments	S11
7	Crystal Culture Procedure of Product 3af and 5aa	.S13
8	Characterization Data	.S13
9	References	.S39
10	The X-ray Single-Crystal Diffraction Analysis of 3af and 5aa	.S39
11	NMR Spectra of Products	.S44

1 General Information

¹H-NMR and ¹³C-NMR spectra were recorded at room temperature using a Bruker Avance-500 instrument (¹H NMR at 500 MHz, ¹³C NMR at 125 MHz and ¹⁹F NMR at 471MHz), NMR spectra of all products were reported in ppm with reference to solvent signals [¹H NMR: CDCl₃ (7.26 ppm), ¹³C NMR: CDCl₃ (77.00 ppm)]. Signal patterns are indicated as s, singlet; d, doublet; dd, doublets of doublet; t, triplet, and m, multiplet. X-ray data were taken on an agilent Super Nova, X-ray diffractometer equipped with a large area CCD detector. HPLC/Q-TOF-MS analysis was performed with an Agilent 1290 LC system coupled with a 6530Q-TOF/MS accurate-mass spectrometer (Agilent Technologies, USA). High-resolution mass spectra (HRMS) were equipped with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) sources. Reactions were monitored by thin-layer chromatography (TLC). Column chromatography (petroleum ether/ethyl acetate) was performed on silica gel (200-300 mesh). Analytical grade solvents and commercially available reagents were purchased from commercial sources and used directly without further purification unless otherwise stated.

2 Optimization of the Reaction Conditions

		+ Br	СООН [Pd] Base, S	l, Ligiand Solvent, Additive		
Entry	Pd source	Ligand	Base	Solvent	Additive	Yield ^b /%
1	PdCl ₂ (MeCN) ₂	dippf	Na ₂ CO ₃	DMF		55%
2	Pd(OAc) ₂	dippf	Na ₂ CO ₃	DMF		61%
3	PdCl ₂	dippf	Na ₂ CO ₃	DMF		57%
4	Pd(dba) ₂	dippf	Na ₂ CO ₃	DMF		trace
5	PdCl ₂ (PhCN) ₂	dippf	Na ₂ CO ₃	DMF		38%

Table S1. Optimization of reaction conditions for the synthesis of 3aa^a

6	PdCl ₂ (dppf) ₂	dippf	Na ₂ CO ₃	DMF		trace
7	Pd(OAc) ₂	PPh ₃	Na ₂ CO ₃	DMF		40%
8	Pd(OAc) ₂	PCy ₃	Na ₂ CO ₃	DMF		56%
9	Pd(OAc) ₂	dppf	Na ₂ CO ₃	DMF		57%
10	Pd(OAc) ₂	Xant-phos	Na ₂ CO ₃	DMF		49%
11	Pd(OAc) ₂	PCy ₃ ·HBF ₄	Na ₂ CO ₃	DMF		45%
12	Pd(OAc) ₂	DcHPF	Na ₂ CO ₃	DMF		61%
13	Pd(OAc) ₂	DtBPF	Na ₂ CO ₃	DMF		60%
14	Pd(OAc) ₂	dippf	K ₂ CO ₃	DMF		23%
15	Pd(OAc) ₂	dippf	Cs ₂ CO ₃	DMF		trace
16	Pd(OAc) ₂	dippf	K ₃ PO ₄	DMF		54%
17	Pd(OAc) ₂	dippf	NaHCO ₃	DMF		59%
18	Pd(OAc) ₂	dippf	CH ₃ COONa	DMF		54%
19	Pd(OAc)2	dippf	NaOPiv	DMF		62%
20	Pd(OAc) ₂	dippf	Li ₂ CO ₃	DMF		trace
21	Pd(OAc) ₂	dippf	NaH ₂ PO ₄	DMF		NR
22	Pd(OAc) ₂	dippf	Na ₂ HPO ₄	DMF		NR
23	Pd(OAc) ₂	dippf	NaOPiv	DMA		78%
24	Pd(OAc) ₂	dippf	NaOPiv	DMSO		47%
25	Pd(OAc) ₂	dippf	NaOPiv	NMP		trace
26	Pd(OAc) ₂	dippf	NaOPiv	Dioxant		NR
27 ^c	Pd(OAc) ₂	dippf	NaOPiv	DMA		70%
28^d	Pd(OAc) ₂	dippf	NaOPiv	DMA		65%
29	Pd(OAc) ₂	dippf	NaOPiv	DMA	TBAI	70%
30	Pd(OAc) ₂	dippf	NaOPiv	DMA	TBAB	84%
31	Pd(OAc) ₂	dippf	NaOPiv	DMA	TBAC	74%
32	Pd(OAc) ₂	dippf	NaOPiv	DMA	PivOH	79%
33 ^e	Pd(OAc) ₂	dippf	NaOPiv	DMA	TBAB	76%
34 ^f	Pd(OAc) ₂	dippf	NaOPiv	DMA	TBAB	75%

35 ^g	$Pd(OAc)_2$	dippf	NaOPiv	DMA	TBAB	42%
36 ^h	$Pd(OAc)_2$	dippf	NaOPiv	DMA	TBAB	74%

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (3.0 equiv), palladium catalyst (10 mol%), monodentate ligand (20 mol%) or bidentate ligand (10 mol%), base (5.0 equiv), additive (1.0 equiv), and solvent (2.0 mL) at 130 °C under nitrogen atmosphere for 12 h. ^{*b*}Isolated yields. ^{*c*}120 °C. ^{*d*}140 °C. ^{*e*}**2a** (2.0 equiv). ^{*f*}Pd(OAc)₂ (5.0 mol%), dippf (5.0 mol%). ^{*g*}NaOPiv (3.0 equiv). ^{*h*}DMA (1.0 mL). dippf =1,1'-Bis(diisopropylphosphino)ferrocene. dr > 20:1. The diastereomeric ratio (dr) was determined by 1H NMR spectra of the corresponding product.

3 General Procedure for the Synthesis of Starting Materials

3.1 General procedure for the synthesis of substrates 1a-l^[1]

An oven dried reaction tube containing a PTFE-coated stir bar was charged with 1-methyl-1*H*-indole-2-carboxylic acid (5.0 mmol, 1.0 equiv, 0.87 g), oxalyl chloride (7.5 mmol, 1.5 equiv, 0.6 mL) in dichloromethane (10.0 mL), and DMF (7 drops). The mixture was stirred by 1 h at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for another 3 h. The solvent was evaporated and the crude **S1** was used directly in the next step.

An oven dried reaction tube containing a PTFE-coated stir bar was charged with 2-iodobenzoic acid (5.0 mmol, 1.0 equiv, 1.24 g), oxalyl chloride (6.0 mmol, 1.2 equiv, 0.5 mL) in dichloromethane (10.0 mL) and DMF (3 drops). The mixture was stirred for 2 hours at 0 °C and then warmed at room temperature. The solvent was evaporated and the crude was used directly in the next step. The 2-iodobenzoyl chloride (5.0 mmol, 1.0 equiv, 1.33 g) was dissolved in dichloromethane (10.0 mL). Phenylmethanamine (10.0 mmol, 2.0 equiv, 1.1 mL) (in some cases is necessary to add 2.0 equiv more) and Et₃N

(10.0 mmol, 2.0 equiv, 1.4 mL) were added and the mixture was stirred at 0 °C until consumption of acylchloride. The corresponding amide was isolated after addition of 5.0 mL of saturated Na_2CO_3 solution and extraction with dichoromethane. It was used without any purification in the next step.

S1 (5.0 mmol, 1.2 equiv, 1.16 g) in dichoromethane (5.0 mL) was added on a mixture of 2-iodo-*N*-methylbenzamide (5.0 mmol, 1.0 equiv, 1.31 g), triethylamine (10.0 mmol, 2.0 equiv, 1.4 mL) and DMAP (0.25 mmol, 0.05 equiv, 39.0 mg) in toluene (5.0 mL). The mixture was stirred overnight at reflux in oil bath. The reaction was quenched with saturated aqueous Na₂CO₃ (5.0 mL), then the mixture was extracted with dichloromethane (3×5.0 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc = 10:1) affording the corresponding product **1a**.

The procedures for **1b-m** were similar to that for **1a**.

3.2 General procedure for the synthesis of substrate 1n^[1]

An oven dried reaction tube containing a PTFE-coated stir bar was charged with 1-methyl-1H-indole-2-carboxylic acid (4.0 mmol, 1.0 equiv, 0.7 g) and phenylmethanamine (5.0 mmol, 1.25 equiv, 0.5 g) was added in CH_2Cl_2 (20.0 mL). DMAP (0.5 mmol, 0.125 equiv, 61.1 mg) and EDCI (6.0 mmol, 1.5 equiv, 1.2 g) were added and the mixture was stirred at 0 °C. After 5 minutes, the reaction was allowed to warm to room temperature and was stirred for 16 h and afterwards diluted by excess amount of CH_2Cl_2 . The organic solution was washed by water and dried over Na_2SO_4 . The solvent was evaporated and the crude was used directly in the next step. *N*-benzyl-1-methyl-1*H*-indole-2-carboxamide (5.0 mmol, 1.0 equiv, 1.3 g) were dissolved in THF (15.0 mL) and LiAlH₄ (10.0 mmol, 2.0 equiv, 379.5 mg) was added at 0 °C. The mixture

was stirred for 4 h at 70 °C. The reaction mixture was washed with water and extracted with EtOAc. The organic layers were combined and dried with Na_2SO_4 . Subsequently, the solvent was evaporated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc = 5:1) to afford the corresponding product *N*-benzyl-1-(1-methyl-1*H*-indol-2-yl)methanamine.

An oven dried reaction tube containing a PTFE-coated stir bar was charged with 2-iodobenzoic acid (5.0 mmol, 1.0 equiv, 1.2 g), oxalyl chloride (6.0 mmol, 1.2 equiv, 0.5 mL) in dichloromethane (10.0 mL) and DMF (3 drops). The mixture was stirred by 2 h at 0 °C and was warmed at room temperature. The solvent was evaporated and the crude was used directly in the next step. The 2-iodobenzoyl chloride (5.0 mmol, 1.5 equiv, 1.3 g) was dissolved in dichloromethane (10.0 mL). *N*-benzyl-1-(1-methyl-1*H*-indol-2-yl)methanamine (3.3 mmol, 1.0 equiv, 0.8 g) and Et₃N (10.0 mmol, 2.0 equiv, 1.4 mL) were added and the mixture was stirred at 0 °C until consumption of acylchloride. The reaction mixture was washed with water and extracted with DCM. The organic layers were combined and dried with Na₂SO₄. Subsequently, the solvent was evaporated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc = 5:1) to afford the corresponding product **1n**.

3.3 General procedure for the synthesis of substrate 10^[1]

To a solution of *o*-iodoacetophenone (5.0 mmol, 1.0 equiv, 1.2 g) in MeOH (30.0 mL) at 0 °C was added benzylamine (10.0 mmol, 2.0 equiv, 1.1 g) slowly, and the reaction mixture was stirred at 0 °C for 30 minutes, then at rt for 3 h. The reaction mixture was again cooled to 0 °C, and NaBH₄ (7.5 mmol, 1.5 equiv, 0.3 g) was added every 10 min in three portions. Then it was stirred at rt for 1 h, and the solvent was evaporated to 1/3 of its original volume under reduced pressure. H₂O (10.0 mL) and

NaHCO₃ (0.4 g) were added, and the reaction mixture was stirred at rt for 10 minutes. Aqueous phase was separated and extracted with CH_2Cl_2 three times. Combined organic layers were dried over K_2CO_3 , filtered, and concentrated. The obtained residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 2:1) to afford *N*-benzyl-1-(2-iodophenyl)methanamine as a colorless oil.

S1 (5.0 mmol, 1.2 equiv, 1.2 g) in CH₂Cl₂ (5.0 mL) was added to a mixture of *N*benzyl-1-(2-iodophenyl)methanamine (5.0 mmol, 1.0 equiv, 1.6 g), triethylamine (10.0 mmol, 2.0 equiv, 1.4 mL) and DMAP (0.25 mmol, 0.05 equiv, 39.0 mg) in CH₂Cl₂ (5.0 mL). The mixture was stirred overnight at reflux in oil bath. The reaction was quenched with saturated aqueous Na₂CO₃ (5.0 mL), then the mixture was extracted with dichloromethane (3×5.0 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc = 10:1) to afford the corresponding product **10**.

To a solution of *o*-iodoaniline (5.0 mmol, 1.0 equiv, 1.1 g) in CH₂Cl₂ (20.0 mL) at 0 °C was added **S1** (7.5 mmol, 1.5 equiv, 1.4 g) in CH₂Cl₂ (5.0 mL) slowly, and the reaction mixture was stirred at 0 °C for 30 minutes, then allowed to warm to room temperature and stirred for 2 h. The reaction mixture was washed with water and extracted with CH₂Cl₂. The organic layers were combined and dried with Na₂SO₄. Subsequently, the solvent was evaporated under vacuum. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc = 5:1) to afford the corresponding product *N*-(2-iodophenyl)-1-methyl-1*H*-indole-2-carboxamide.

To a solution of *N*-(2-iodophenyl)-1-methyl-1*H*-indole-2-carboxamide (4.0 mmol, 1.0 equiv, 1.5 g) in DMF (20.0 mL) was added sodium hydride (60% dispersion in

mineral oil, 6.0 mmol, 1.5 equiv, 240.0 mg) in small portions at 0 °C. After stirring at room temperature for 1 h, the reaction mixture was cooled to 0 °C. Methyl iodide (8.0 mmol, 2.0 equiv, 0.5 mL) was added dropwise and the mixture was allowed to warm to room temperature and stirred for 3 h. The solution was poured into an ice-water mixture and extracted with EtOAc (3 x 25.0 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and the solvent was removed in vacuo. The crude product was purified by silica gel chromatography (eluent: petroleum ether/EtOAc= 10:1) to afford **1p**.

3.5 General procedure for the synthesis of substrates 4a-h^[1]

(1) A mixture of 2-iodoacetophenone (5.0 mmol, 1.0 equiv, 1.23 g), phenylhydrazine (6.0 mmol, 1.2 equiv, 0.65 g) and polyphosphoric acid (PPA, 15.0 g) was added to a round bottom flask and stirred at 110 °C for 6 h. Upon completion of the reaction, the residue was quenched with ice water and extracted into ethyl acetate. The organic phases were dried over anhydrous Na_2SO_4 and concentrated in vacuo. The crude product was purified by silica gel column chromatography (petroleum ether/EtOAc) to afford the corresponding substituted indole **S2**.

(2) S2 (1.0 equiv) and tetrabutylammonium hydrogensulfate (5 mol%) were dissolved in DMF and sodium hydride (2.5 equiv) was added at 0 °C. The mixture was stirred for 20 minutes, after which S1 (2.0 equiv) was added dropwise under air followed by stirring for 8 h at 40 °C. The reaction mixture was washed with water and extracted with DCM. The organic layers were combined and dried with Na₂SO₄. Subsequently, the solvent was evaporated under vacuum. The residue was purified by flash chromatography over silica gel with *n*-pentane/ethyl acetate to yield the pure products **4a**.

The procedures for **4b-h** were similar to that for **4a**.

3.6 General procedure for the preparation of α -oxocarboxylic acids^[2]

According to a literature procedure, to a cold (-10 °C) magnetically stirred solution of a 2-bromobenzaldehyde (5.0 mmol, 1.0 equiv, 0.92 g) in dry ether (20.0 mL) was added methylmagnesium bromide (5.0 mmol, 1.0 equiv) [prepared from magnesium (5.0 mmol, 1.0 equiv, 0.12 g) and methyl bromomethane (5.0 mmol, 1.0 equiv, 0.48 g) and a catalytic amount of iodine in 10.0 mL of dry ether]. The reaction mixture was stirred at -10 °C for 3 h. It was then poured into a saturated aqueous NH₄Cl solution and extracted with EtOAc (3×15.0 mL). The ethyl acetate extract was dried with Na₂SO₄. After evaporation of the solvent, the residue was purified by silica gel column chromatography using petroleum ether/EtOAc as eluent furnished the 1-(2bromophenyl)ethan-1-ol. To a magnetically stirred solution of the 1-(2bromophenyl)ethan-1-ol (5.0 mmol, 1.0 equiv, 1.0 g) in dry CH₂Cl₂ (20.0 mL) was added a homogeneous mixture of PCC (15.0 mmol, 3.0 equiv, 3.23 g) and silica gel. The resulted reaction mixture was stirred at room temperature for 2 h. The reaction mixture was then filtered through a short silica gel column and eluted with excess CH₂Cl₂. Evaporation of the solvent furnished the 1-(2-bromophenyl)ethan-1-one.

1-(2-bromophenyl)ethan-1-one (5.0 mmol, 1.0 equiv, 0.99 g) was dissolved in pyridine (10.0 mL) and SeO₂ (10.0 mmol, 2.0 equiv, 1.1 g) was added. The reaction mixture was heated in an oil bath at 90 °C under nitrogen for 5 h. The reaction was monitored by TLC. Upon completion, the reaction mixture was filtered, and the residue was washed with EtOAc (3×20.0 mL). The combined filtrate was treated with 1 M HCl (40.0 mL), the organic layer was separated, and the aqueous layer was re-extracted with EtOAc (3×20.0 mL). The organic layers were combined and treated with 1 M NaOH (50.0 mL), and the aqueous layer was separated. The aqueous layer was acidified with 1 M HCl to pH 1.5. The mixture was extracted with EtOAc (3×50.0 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. The crude products

were further purified by recrystallization (PE/DCM = 10:1) to afford α -oxocarboxylic acids **2a**.

The procedures for **2b-m** were similar to that for **2a**.

4 Typical Procedures

4.1 Typical procedures for the synthesis of hexacyclic fused indolines 3

To an oven-dried 25 mL Schlenk tube equipped with a magnetic stir bar, *N*-benzyl-*N*-(2-iodobenzoyl)-1-methyl-1*H*-indole-2-carboxamide **1a** (0.1 mmol, 1.0 equiv, 49.4 mg), 2-(2-bromoaryl)-2-oxoacetic acid **2a** (0.3 mmol, 3.0 equiv, 68.4 mg), Pd(OAc)₂ (0.01 mmol, 10 mol%, 2.3 mg), dippf (0.01mmol, 10 mol%, 4.2 mg), NaOPiv (0.5 mmol, 5.0 equiv, 71.0 mg) and TBAB (0.1 mmol, 1.0 equiv, 32.2 mg) were added, and dissolved in DMA (2.0 mL). The vessel was evacuated, backfilled with N₂, and stirred at 130 °C for 12 h. The reaction mixture was filtered, and the filtrate was washed by H₂O and saturated salt solution and then evaporated under reduced pressure. The crude product was purified by flash column chromatography (PE/EA = 10:1) to afford the desired products **3aa** (84%, 39.4 mg).

The procedures for **3ba-pa** and **3ab-am** were similar to that for **3aa**.

To an oven-dried 50 mL Schlenk tube equipped with a magnetic stir bar, *N*-benzyl-*N*-(2-iodobenzoyl)-1-methyl-1*H*-indole-2-carboxamide **1a** (1.0 mmol, 1.0 equiv, 494.0 mg), 2-(2-bromoaryl)-2-oxoacetic acid **2a** (3.0 mmol, 3.0 equiv, 684.0 mg), Pd(OAc)₂ (0.1 mmol, 10 mol%, 23.0 mg), dippf (0.1mmol, 10 mol%, 42.0 mg), NaOPiv (5.0 mmol, 5.0 equiv, 710.0 mg) and TBAB (1.0 mmol, 1.0 equiv, 322.0 mg) were added, and dissolved in DMA (20.0 mL). The vessel was evacuated, backfilled with N₂, and stirred at 130 °C for 12 h. The reaction mixture was filtered and the filtrate was washed by H₂O and saturated salt solution and then evaporated under reduced pressure. The crude product was purified by flash column chromatography (PE/EA = 10:1) to afford the desired products **3aa** (72%, 338.5 mg).

To an oven-dried 25 mL Schlenk tube equipped with a magnetic stir bar, (2-(2-iodophenyl)-1H-indol-1-yl)(1-methyl-1H-indol-2-yl)methanone**4a**(0.1 mmol, 1.0 equiv, 47.6 mg), 2-(2-bromoaryl)-2-oxoacetic acid**2a**(0.3 mmol, 3.0 equiv, 68.4 mg), Pd(OAc)₂ (0.01 mmol, 10 mol%, 2.3 mg), dippf (0.01mmol, 10 mol%, 4.2 mg), NaOPiv (0.5 mmol, 5.0 equiv, 71.0 mg) and TBAB (0.1 mmol, 1.0 equiv, 32.2 mg) were added, dissolved in DMA (2.0 mL). The vessel was evacuated, backfilled with N₂, and stirred at 130 °C for 12 h. The reaction mixture was filtered and the filtrate was washed by H₂O and saturated salt solution and then evaporated under reduced pressure. The crude product was purified by flash column chromatography (PE/EA = 10:1) to afford the desired products**5aa**(79%, 35.7 mg).

The procedures for 5ba-ha, 5ab-af and 5ah-am were similar to 5aa.

5 Synthetic Transformation of **3**aa^[3]

S10

To a 25 mL Schlenk tube was added **3aa** (0.2 mmol, 94.0 mg), KOH (2.0 mmol, 112.2 mg), EtOH (2.0 mL) and H₂O (1.0 mL). Then the tube was stirred at room temperature for the indicated time until complete consumption of starting material as monitored by TLC analysis. After the reaction was finished, the resulting suspension was filtered and washed with ethyl acetate. The combined filtrates were concentrated under reduced pressure and purified on a silica-gel column chromatography (eluent: petroleum ether/EtOAc = 5:1) to provide the desired product **6** (71%, 62.8 mg).

6 Mechanistic Experiments

6.1 Parallel experiment

To an oven-dried 25 mL schlenk tube equipped with a magnetic stir bar, **1a** (0.1 mmol, 1.0 equiv, 49.4 mg), **2a** (0.3 mmol, 3.0 equiv, 68.4 mg), $Pd(OAc)_2$ (0.01 mmol, 10 mol%, 2.3 mg), dippf (0.01mmol, 10 mol%, 4.2 mg), NaOPiv (0.5 mmol, 5.0 equiv, 71.0 mg) and TBAB (0.1 mmol, 1.0 equiv, 32.2 mg) were added, dissolved in DMA (2.0 mL). The other oven-dried Schlenk tube was added **1a-D**₄ (0.1 mmol, 1.0 equiv, 49.4 mg), **2a** (0.3 mmol, 3.0 equiv, 68.4 mg), $Pd(OAc)_2$ (0.01 mmol, 1.0 equiv, 49.4 mg), **2a** (0.3 mmol, 3.0 equiv, 68.4 mg), $Pd(OAc)_2$ (0.01 mmol, 10 mol%, 2.3 mg), dippf (0.01mmol, 10 mol%, 4.2 mg), NaOPiv (0.5 mmol, 5.0 equiv, 71.0 mg), TBAB (0.1 mmol, 1.0 equiv, 32.2 mg) and DMA (2.0 mL). The vessel was evacuated, backfilled with N₂, and stirred at 130 °C for 1 h. The reaction mixture was filtered and the filtrate was washed by H₂O and saturated salt solution and then evaporated under reduced pressure. The crude product was purified by flash column chromatography

(PE/EA = 10:1) to afford the products **3aa** in 38% yield and **3aa-D₃** in 33% yield $(K_H/K_D = 1.15)$.

To an oven-dried 25 mL Schlenk tube equipped with a magnetic stir bar, **1a** (0.05 mmol, 1.0 equiv, 29.7 mg), **1a-D**₄ (0.05 mmol, 1.0 equiv, 29.7 mg), **2a** (0.3 mmol, 3.0 equiv, 68.4 mg), Pd(OAc)₂ (0.01 mmol, 10 mol%, 2.3 mg), dippf (0.01mmol, 10 mol%, 4.2 mg), NaOPiv (0.5 mmol, 5.0 equiv, 71.0 mg) and TBAB (0.1 mmol, 1.0 equiv, 32.2 mg) were added, dissolved in DMA (2.0 mL). The vessel was evacuated, backfilled with N₂, and stirred at 130 °C for 1 h. The reaction mixture was filtered and the filtrate was washed by H₂O and saturated salt solution and then evaporated under reduced pressure. The crude product was purified by flash column chromatography (PE/EA = 10:1) to afford the products **3aa** and **3aa-D**₃ in 37% yield.

The KIE value for this reaction was estimated to be $K_H/K_D = 1.27$ by ¹H NMR spectra.

8.365 8.357 8.357 8.357 8.357 8.357 8.357 8.357 8.357 8.357 7.5037 7.4018 7.391 7.391 7.391 7.391 7.391 7.391 7.391 7.293 7.293 7.293 7.293 7.293 7.203 7.7.20

7 Crystal Culture Procedure of Product 3af and 5aa

To a round-bottom flask (25 mL) was added **3af** (10.0 mg) or **5aa** (10.0 mg). Dichloromethane (1.0 mL) was added slowly to make it dissolve completely. Then petroleum ether (5.0 mL) was added. Finally, the round-bottom flask was sealed with a rubber stopper, and connected the air with a syringe needle. Putting the flask in a dry and ventilated place to make the organic solvent volatilize slowly. After a few days, the crystal of **3af** and **5aa** were separated out.

8 Characterization Data

2-benzyl-4-methyl-4,8b-dihydro-1H,9H-benzo[4,5]indolo[2',3':1,7]cyclohepta[1,2,
3-de]isoquinoline-1,3,9(2H)-trione (3aa): column chromatoghraphy (silica gel;
PE/EA = 10:1); yellow solid, isolated yield 84% (39.4 mg) (2-(2-bromophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (22.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (22.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (22.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (22.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (22.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (22.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (22.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (22.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (22.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (22.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (22.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (22.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (22.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (22.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (22.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (20.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (20.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (20.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (20.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (20.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (20.5 mg) (2-(2-iodophenyl)-2-oxoacetaldehyde acid was used), isolated yield 48% (20.5 mg) (2-(2-iodophenyl)-2-

oxoacetic acid was used); mp: 191.5-193.8 °C; ¹H NMR (CDCl₃, 500 MHz) $\delta = 8.35$ (dd, J = 7.5, 1.5 Hz, 1H), 7.64 (t, J = 8.0 Hz, 1H), 7.59 (dd, J = 8.0, 1.5 Hz 1H), 7.44-7.38 (m, 3H), 7.38-7.35 (m, 1H), 7.31-7.27 (m, 2H), 7.25-7.32 (m, 1H), 7.06-7.00 (m, 3H), 6.85-6.80 (m, 1H), 6.72-6.65 (m, 1H), 6.09 (d, J = 7.5 Hz, 1H), 5.15 (s, 2H), 4.53 (s, 1H), 2.24 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) $\delta = 200.1$, 170.7, 162.8, 153.4, 139.8, 138.5, 137.6, 137.5, 136.5, 133.5, 131.1, 130.1, 129.5, 129.2, 128.9, 128.5, 127.7, 127.5, 127.3, 126.9, 125.2, 124.8, 122.8, 119.2, 105.9, 74.3, 71.9, 44.0, 29.6; HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₃₁H₂₃N₂O₃⁺ 471.1703; found 471.1706.

2-benzyl-4,15-dimethyl-4,8b-dihydro-1*H***,9***H***-benzo[4,5]indolo[2',3':1,7]cyclohep ta[1,2,3-***de***]isoquinoline-1,3,9(2***H***)-trione (3ba): column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 75% (36.3 mg); mp: 196.0-197.7 °C; ¹H NMR (CDCl₃, 500 MHz) \delta = 8.16 (s, 1H), 7.42-7.40 (m, 3H), 7.39-7.35 (m, 2H), 7.30-7.27 (m, 2H), 7.25-7.23 (m, 1H), 7.05-7.00 (m, 3H), 6.82 (d,** *J* **= 7.5 Hz, 1H), 6.68 (t,** *J* **= 7.5 Hz, 1H), 6.08 (d,** *J* **= 8.0 Hz, 1H), 5.15 (s, 2H), 4.50 (s, 1H), 2.47 (s, 3H), 2.23 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) \delta = 200.3, 170.9, 163.1, 153.4, 140.4, 139.8, 138.7, 138.5, 137.6, 136.6, 131.0, 130.5, 129.5, 128.9, 128.5, 127.7, 127.5, 127.1, 126.8, 125.2, 124.8, 123.0, 119.0, 105.8, 74.1, 71.8, 43.9, 29.5, 21.1; HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₃₂H₂₅N₂O₃⁺ 485.1860; found 485.1862.**

2-benzyl-15-methoxy-4-methyl-4,8b-dihydro-1*H*,9*H*-benzo[4,5]indolo[2',3':1,7]cy clohepta[1,2,3-de]isoquinoline-1,3,9(2*H*)-trione (3ca): column chromatoghraphy (silica gel; PE/EA = 5:1); yellow solid, isolated yield 78% (39.0 mg); mp: 163.4-165.1 $^{\circ}$ C; ¹H NMR (CDCl₃, 500 MHz) δ = 7.82 (d, *J* = 3.0 Hz, 1H), 7.42-7.40 (m, 2H), 7.38-7.34 (m, 2H), 7.30-7.27 (m, 2H), 7.25-7.23 (m, 1H), 7.13 (d, *J* = 3.0 Hz, 1H), 7.05-7.00 (m, 3H), 6.82 (d, *J* = 7.5 Hz, 1H), 6.68 (t, *J* = 7.5 Hz, 1H), 6.07 (d, *J* = 8.0 Hz, 1H), 5.14 (s, 2H), 4.50 (s, 1H), 3.91 (s, 3H), 2.23 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 200.3, 171.0, 162.9, 160.3, 153.3, 141.5, 138.6, 137.3, 136.5, 131.0, 129.4, 128.9, 128.7, 128.5, 127.7, 127.5, 127.0, 125.4, 125.2, 125.1, 124.7, 123.0, 119.0, 111.6, 105.8, 76.7, 73.9, 71.6, 55.8, 44.0, 29.4; HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₃₂H₂₅N₂O₄⁺ 501.1809; found 501.1812.

2-benzyl-15-fluoro-4-methyl-4,8b-dihydro-1*H*,9*H*-benzo[4,5]indolo[2',3':1,7]cycl ohepta[1,2,3-*de*]isoquinoline-1,3,9(2*H*)-trione (3da): column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 66% (32.2 mg); mp: 179.3-182.1 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.02 (dd, *J* = 8.5, 3.0 Hz, 1H), 7.42-7.39 (m, 3H), 7.35-7.28 (m, 4H), 7.25-7.24 (m, 1H), 7.09-7.01 (m, 3H), 6.85-6.83 (m, 1H), 6.72-6.69 (m, 1H), 6.09 (d, *J* = 7.5 Hz, 1H), 5.14 (s, 2H), 4.52 (s, 1H), 2.23 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 199.6, 170.5, 162.9 (d, C-F, ¹*J*_{C-F} = 250.8 Hz), 153.2, 142.9 (d, C-F, ³*J*_{C-F} = 7.6 Hz), 138.5, 136.4, 136.2, 131.2, 129.7 (d, C-F, ³*J*_{C-F} = 8.1 Hz), 129.6, 129.4 (d, C-F, ⁴*J*_{C-F} = 3.3 Hz), 129.0, 128.6, 127.8, 127.7, 127.5, 125.1, 124.8, 124.6 (d, C-F, ²*J*_{C-F} = 22.6 Hz), 122.8, 119.3, 115.3 (d, C-F, ²*J*_{C-F} = 23.4 Hz), 106.1, 74.0, 71.7, 44.2, 29.6; ¹⁹F NMR (471 MHz, CDCl₃) δ = -109.3; HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₃₁H₂₂FN₂O₃⁺ 489.1609; found 489.1611.

2-benzyl-15-chloro-4-methyl-4,8b-dihydro-1*H*,9*H*-benzo[4,5]indolo[2',3':1,7]cycl ohepta[1,2,3-*de*]isoquinoline-1,3,9(2*H*)-trione (3ea): column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 51% (26.9 mg); mp: 218.5-220.2 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.31 (d, *J* = 2.5 Hz, 1H), 7.57 (d, *J* = 2.5 Hz, 1H), 7.43-7.40 (m, 3H), 7.35 (d, *J* = 7.5 Hz, 1H), 7.31-7.27 (m, 2H), 7.25-7.24 (m, 1H), 7.09-7.01 (m, 3H), 6.85-6.83 (m, 1H), 6.70 (t, *J* = 7.0 Hz, 1H), 6.09 (d, *J* = 7.5 Hz, 1H), 5.14 (s, 2H), 4.52 (s, 1H), 2.24 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 199.6, 170.3, 161.8, 153.2, 141.8, 138.6, 137.1, 136.5, 136.2, 131.9, 131.2, 129.6, 129.0, 128.8, 128.7, 128.6, 127.9, 127.7, 127.5, 125.1, 124.8, 122.7, 119.4, 106.1, 74.0, 71.7, 44.1, 29.6; HRMS (ESI-TOF) m/z: (M+Na)⁺ Calcd for C₃₁H₂₁ClN₂NaO₃⁺ 527.1133; found 527.1136.

2-benzyl-4-methyl-15-(trifluoromethyl)-4,8b-dihydro-1*H***,9***H***-benzo[4,5]indolo [2', 3':1,7]cyclohepta**[1,2,3-*de*]isoquinoline-1,3,9(2*H*)-trione (3fa): column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 53% (28.5 mg); mp: 101.4-103.6 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.62 (d, *J* = 1.0 Hz, 1H), 7.80 (d, *J* = 1.5 Hz, 1H), 7.46-7.39 (m, 4H), 7.31-7.25 (m, 3H), 7.10 (td, *J* = 7.5, 1.0 Hz, 1H), 7.06-7.03 (t, *J* = 7.3 Hz, 2H), 6.86 (d, *J* = 7.5 Hz, 1H), 6.73 (t, *J* = 7.5 Hz, 1H), 6.12 (d, *J* = 8.0 Hz, 1H), 5.16 (s, 2H), 4.55 (s, 1H), 2.26 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 199.2, 170.0, 161.7, 153.2, 141.3, 138.5, 137.3, 136.2, 136.1, 133.4 (q, ³*J* _C. $_{\rm F}$ = 3.4 Hz), 132.6 (q, $^2J_{\rm C-F}$ = 33.8 Hz), 131.4, 129.7, 129.0, 128.6, 128.3, 127.9, 127.8, 127.7, 126.1 (q, $^3J_{\rm C-F}$ = 3.6 Hz), 125.1, 124.9, 124.1 (q, $^1J_{\rm C-F}$ = 271.4 Hz), 122.5, 119.6, 106.2, 74.3, 72.0, 44.2, 29.8; ¹⁹F NMR (471 MHz, CDCl₃) δ = -63.2; HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₃₂H₂₂F₃N₂O₃⁺ 539.1577; found 539.1580.

2-benzyl-4,16-dimethyl-4,8b-dihydro-1*H,9H*-benzo[4,5]indolo[2',3':1,7]cyclohept a[1,2,3-*de*]isoquinoline-1,3,9(2*H*)-trione (3ga) column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 51% (24.7 mg); mp: 195.7-198.7 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 7.42-7.41 (m, 4H), 7.39-7.34 (m, 2H), 7.31-7.28 (m, 2H), 7.27-7.24 (m, 1H), 7.03-6.98 (m, 3H), 6.81 (d, *J* = 7.5 Hz, 1H), 6.67 (t, *J* = 7.0 Hz, 1H), 6.07 (d, *J* = 8.0 Hz, 1H), 5.16-5.09 (m, 2H), 4.41 (s, 1H), 2.80 (s, 3H), 2.25 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = ¹³C NMR (126 MHz, CDCl₃) δ 200.16, 169.95, 163.30, 153.49, 142.63, 138.53, 138.15, 137.77, 136.70, 136.17, 134.16, 134.06, 131.05, 129.54, 128.92, 128.51, 127.62, 127.44, 126.42, 125.68, 124.92, 124.49, 122.06, 118.97, 105.49, 75.02, 71.69, 43.88, 29.46, 23.98. HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₃₂H₂₅N₂O₃⁺ 485.1860; found 485.1866.

2,4-dimethyl-4,8b-dihydro-1*H***,9***H***-benzo**[**4,5**]**indolo**[**2',3':1,7**]**cyclohepta**[**1,2,3***-de*] **isoquinoline-1,3,9(2***H***)-trione (3ia):** column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 59% (23.2 mg); mp: > 230 °C; ¹H NMR (CDCl₃, 500 MHz) $\delta = 8.36$ (dd, J = 7.5, 1.5 Hz, 1H), 7.66 (t, J = 8.0 Hz, 1H), 7.61 (dd, J = 8.0, 1.5 Hz, 1H), 7.43-7.38 (m, 2H), 7.07-7.01 (m, 3H), 6.85-6.84 (m, 1H), 6.69 (t, J = 7.5 Hz, 1H), 6.10 (d, J = 8.0 Hz, 1H), 4.60 (s, 1H), 3.36 (s, 3H), 2.27 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) $\delta = 200.2$, 171.1, 163.2, 153.4, 139.8, 138.6, 137.5, 137.5, 133.4, 131.1, 130.1, 129.5, 129.0, 127.5, 127.3, 126.9, 125.1, 124.8, 122.7, 119.1, 105.8, 74.4, 71.9, 29.6, 27.4. HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₂₅H₁₉N₂O₃⁺ 395.1390; found 395.1391.

4-methyl-2-phenyl-4,8b-dihydro-1*H***,9***H***-benzo**[**4,5**]**indolo**[**2'**,**3'**:**1**,7]**cyclohepta**[**1**, **2,3-***de*]**isoquinoline-1,3,9(2***H***)-trione (3ja):** column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 55% (25.1 mg); mp > 230 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.39 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.71-7.66 (m, 2H), 7.47 (t, *J* = 8.0 Hz, 2H), 7.44-7.39 (m, 3H), 7.21 (d, *J* = 7.5 Hz, 2H), 7.09-7.03 (m, 2H), 6.97 (t, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 7.5 Hz, 1H), 6.65 (t, *J* = 7.5 Hz, 1H), 6.08 (d, *J* = 7.5 Hz, 1H), 4.76 (s, 1H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 200.2, 170.7, 163.0, 153.3, 140.0, 138.6, 137.8, 137.6, 134.3, 133.5, 131.2, 130.3, 129.4, 129.4, 129.3, 128.9, 128.3, 127.6, 127.4, 127.0, 125.2, 124.9, 122.6, 119.2, 106.0, 75.0, 72.1, 29.6. HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₃₀H₂₁N₂O₃⁺ 457.1547; found 457.1549.

2,4-dibenzyl-4,8b-dihydro-1*H*,9*H*-benzo[4,5]indolo[2',3':1,7]cyclohepta[1,2,3-*de*] isoquinoline-1,3,9(2*H*)-trione (3ka) : column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 60% (32.8 mg); mp: 117.5-119.2 °C; ¹H NMR (CDCl₃, 500 MHz) $\delta = 8.29$ (dd, J = 8.0, 1.5 Hz, 1H), 7.57 (t, J = 8.0 Hz, 1H), 7.51-

7.50 (m, 1H), 7.47-7.44 (m, 3H), 7.33-7.28 (m, 3H), 7.25-7.23 (m, 1H), 7.15-7.08 (m, 3H), 7.04-7.01 (m, 2H), 6.98-6.95 (m, 1H), 6.92 (d, J = 7.5 Hz, 1H), 6.75 (t, J = 7.5 Hz, 1H), 6.58 (d, J = 7.5 Hz, 2H), 6.10 (d, J = 8.0 Hz, 1H), 5.09 (s, 2H), 4.65 (s, 1H), 3.95 (d, J = 15.0 Hz, 1H), 3.73 (d, J = 15.0 Hz, 1H); ¹³**C NMR** (CDCl₃, 125 MHz) $\delta = 200.2$, 171.1, 162.6, 153.4, 139.9, 138.7, 137.9, 137.2, 136.4, 135.9, 133.8, 130.9, 130.1, 129.3, 129.3, 129.2, 128.5, 128.1, 127.8, 127.7, 127.6, 127.5, 127.2, 127.0, 126.9, 124.8, 123.9, 120.0, 108.0, 73.9, 72.4, 50.9, 43.9. HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₃₇H₂₇N₂O₃⁺ 547.2016; found 547.2023.

2-benzyl-4,7-dimethyl-4,8b-dihydro-1*H*,9*H*-benzo[4,5]indolo[2',3':1,7]cyclohepta [1,2,3-*de*]isoquinoline-1,3,9(2*H*)-trione (3la): column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 85% (41.2 mg); mp: 196.0-197.6 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.35-8.33 (m, 1H), 7.63 (t, *J* = 8.0 Hz, 1H), 7.59-7.58 (m, 1H), 7.43-7.42 (m, 2H), 7.39 (d, *J* = 7.0 Hz, 1H), 7.35 (d, *J* = 7.5 Hz, 1H), 7.30-7.27 (m, 2H), 7.25-7.23 (s, 1H), 7.05 (t, *J* = 7.5 Hz, 1H), 6.87-6.81 (m, 3H), 5.99 (d, *J* = 8.0 Hz, 1H), 5.15 (s, 2H), 4.50 (s, 1H), 2.22 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ = 200.3, 170.8, 162.9, 151.3, 139.9, 138.6, 137.6, 137.5, 136.5, 133.7, 131.1, 130.0, 129.8, 129.1, 129.0, 128.5, 127.7, 127.6, 127.2, 126.9, 125.6, 125.2, 122.9, 105.7, 74.4, 71.9, 43.9, 29.8, 20.7; HRMS (ESI-TOF) m/z: (M+Na)⁺ Calcd for C₃₂H₂₄N₂NaO₃⁺ 507.1679; found 507.1681.

2-benzyl-7-chloro-4-methyl-4,8b-dihydro-1*H*,9*H*-benzo[4,5]indolo[2',3':1,7]cyclo hepta[1,2,3-*de*]isoquinoline-1,3,9(2*H*)-trione (3ma): column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 61% (30.8 mg); mp: 148.4-150.1 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.37-8.35 (m, 1H), 7.65 (t, *J* = 8.0 Hz, 1H), 7.60-7.59 (m, 1H), 7.42-7.41 (m, 3H), 7.38-7.36 (m, 1H), 7.31-7.28 (m, 2H), 7.25-7.24 (m, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 7.01-7.00 (s, 1H), 6.97 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.90 (d, *J* = 7.5 Hz, 1H), 6.00 (d, *J* = 8.5 Hz, 1H), 5.15 (s, 2H), 4.48 (s, 1H), 2.22 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 199.6, 170.6, 162.7, 152.1, 139.8, 138.3, 137.7, 137.5, 136.3, 132.8, 131.4, 130.3, 129.4, 129.3, 128.9, 128.6, 127.8, 127.7, 127.3, 127.2, 125.3, 124.9, 123.5, 106.5, 74.5, 71.4, 44.0, 29.7; HRMS (ESI-TOF) m/z: (M+Na)⁺ Calcd for C₃₁H₂₁ClN₂NaO₃⁺ 527.1133; found 527.1136.

2-benzyl-4-methyl-2,3,4,8b-tetrahydro-1*H*,9*H*-benzo[4,5]indolo[2',3':1,7]cyclohe pta[1,2,3-*de*]isoquinoline-1,9-dione (3na): column chromatoghraphy (silica gel; PE/EA = 5:1); yellow solid, isolated yield 26% (11.9 mg, dr = 3.3:1); mp: 83.7-85.5 °C; ¹H NMR (CDCl₃, 500 MHz) δ =7.68 (d, *J* = 7.0 Hz, 0.23H), 7.59 (t, *J* = 8.0 Hz, 2H), 7.54-7.45 (m, 4H), 7.42 (d, *J* = 8.0 Hz, 0.77H), 7.37-7.25 (m, 6H), 7.17-7.09 (m, 3H), 6.43 (s, 0.23H), 6.35 (s, 0.77H), 5.49 (d, *J* = 15.0 Hz, 0.77H), 5.36 (d, *J* = 15.0 Hz, 0.23H), 4.55 (d, *J* = 15.0 Hz, 0.77H), 4.49-4.44 (m, 0.46H), 4.40-4.33 (m, 1H), 4.24 (d, *J* = 16.0 Hz, 0.77H), 3.99 (s, 2.30H), 3.29 (s, 0.70H); ¹³C NMR (CDCl₃, 125 MHz) δ = 192.0, 168.5, 144.7(2C), 143.7, 143.6, 138.1, 138.7, 135.8, 135.0(2C), 134.9, 134.8, 134.2, 134.0, 133.7, 133.6, 133.3, 129. 6, 128.9, 128.7, 128.5, 127.6, 127.4, 127.3, 127.2, 124.6, 124.5, 121.7, 121.6, 120.9, 120.8, 120.5, 120.4(2C), 119.7, 119.4, 109.7, 108.9, 104.0, 101.9, 50.1, 47.1, 44.3, 38.3, 30.4, 29.7; HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for $C_{31}H_{25}N_2O_2^+$ 457.1911; found 457.1918.

2-benzyl-4,12-dimethyl-4,8b-dihydro-1H,9H-benzo[4,5]indolo[2',3':1,7]cyclohep ta[1,2,3-*de*]**isoquinoline-1,3,9(2H)-trione (3ab):** column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 75% (36.3 mg); mp: 194.5-196.2 °C; ¹H **NMR** (CDCl₃, 500 MHz) δ = 8.34 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.63 (t, *J* = 8.0 Hz, 1H), 7.59 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.43-7.41 (m, 2H), 7.30-7.27 (m, 3H), 7.25-7.23 (m, 2H), 7.17 (s, 1H), 7.05-7.02 (m, 2H), 6.86 (d, *J* = 8.0 Hz, 1H), 6.76 (d, *J* = 8.0 Hz, 1H), 6.69 (t, *J* = 7.5 Hz, 1H), 6.12 (d, J = 8.0 Hz, 1H), 5.15 (s, 2H), 4.52 (s, 1H), 2.35 (s, 3H), 2.26 (s, 3H); ¹³C **NMR** (CDCl₃, 125 MHz) δ = 200.3, 170.9, 162.9, 153.4, 141.4, 140.0, 137.6, 137.5, 136.5, 135.9, 133.4, 130.0, 129.4, 129.1, 128.9, 128.5, 127.8, 127.7, 127.3, 125.9, 124.8, 123.2, 119.1, 105.9, 74.3, 71.8, 44.0, 29.6, 21.6; HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₃₂H₂₅N₂O₃⁺ 485.1860; found 485.1862.

2-benzyl-12-methoxy-4-methyl-4,8b-dihydro-1*H***,9***H***-benzo**[4,5]**indolo**[2',3':1,7]**cy clohepta**[1,2,3-*de*]**isoquinoline-1,3,9**(2*H*)-**trione** (**3ac**)**:** column chromatoghraphy (silica gel; PE/EA = 5:1); yellow solid, isolated yield 80% (40.0 mg); mp: 223.6-225.8 °C; ¹**H** NMR (CDCl₃, 500 MHz) $\delta = 8.34$ (dd, J = 7.5, 1.5 Hz, 1H), 7.62 (t, J = 7.5 Hz, 1H), 7.59 (dd, J = 7.5, 1.5 Hz, 1H), 7.43-7.41 (m, 2H), 7.30-7.24 (m, 3H), 7.04-7.02 (m, 2H), 6.88 (d, J = 2.0 Hz, 1H), 6.84 (d, J = 8.5 Hz, 1H), 6.69 (t, J = 7.5 Hz, 1H), 6.56 (dd, J = 8.5, 1.5 Hz 1H), 6.14 (d, J = 8.0 Hz, 1H), 5.15 (s, 2H), 4.49 (s, 1H), 3.80 (s, 3H), 2.28 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) $\delta = 199.4$, 170.8, 162.8, 161.7, 153.3, 139.7, 139.5, 137.5, 136.5, 133.5, 131.4, 130.0, 129.7, 129.3, 129.3, 128.9, 128.5, 127.7, 127.2, 124.7, 123.4, 119.1, 111.5, 111.4, 106.0, 74.2, 71.6, 55.3, 43.9, 29.7; HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₃₂H₂₅ N₂O₄⁺ 501.1809; found 501.1812.

2-benzyl-4-methyl-12-phenoxy-4,8b-dihydro-1*H*,9*H*-benzo[4,5]indolo[2',3':1,7]cy clohepta[1,2,3-*de*]isoquinoline-1,3,9(2*H*)-trione (3ad): column chromatoghraphy (silica gel; PE/EA = 5:1); yellow solid, isolated yield 73% (41.1 mg); mp: 194.2-197.9 °C; ¹H NMR (CDCl₃, 500 MHz) $\delta = 8.34$ (dd, J = 8.0, 1.5 Hz, 1H), 7.62 (t, J = 8.0 Hz, 1H), 7.54 (dd, J = 8.0, 1.5 Hz, 1H), 7.45-7.39 (m, 2H), 7.39-7.33 (m, 2H), 7.31-7.28 (m, 2H), 7.25-7.24 (m, 1H), 7.14 (t, J = 7.5 Hz, 1H), 7.09-7.02 (m, 2H), 7.01 (d, J = 2.0Hz, 1H), 6.99-6.95 (m, 2H), 6.82 (d, J = 8.5 Hz, 1H), 6.70 (t, J = 7.5 Hz, 1H), 6.63 (dd, J = 8.5, 2.5 Hz, 1H), 6.19 (d, J = 8.0 Hz, 1H), 5.15 (s, 2H), 4.51 (s, 1H), 2.28 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) $\delta = 199.3$, 170.7, 162.7, 159.6, 156.3, 153.4, 139.8, 139.3, 137.4, 136.4, 133.6, 133.5, 130.1, 129.9, 129.7, 129.5, 129.4, 128.9, 128.5, 127.7, 127.3, 124.9, 124.0, 123.0, 119.3, 119.1, 116.7, 115.2, 105.9, 74.3, 71.7, 44.0, 29.7; HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₃₇H₂₇N₂O₄⁺ 563.1965; found 563.1969.

2-benzyl-12-fluoro-4-methyl-4,8b-dihydro-1*H*,9*H*-benzo[4,5]indolo[2',3':1,7]cycl ohepta[1,2,3-*de*]isoquinoline-1,3,9(2*H*)-trione (3ae): column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 64% (31.3 mg); mp: 174.7-178.7 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.37 (d, *J* = 7.5 Hz, 1H), 7.66 (t, *J* = 7.5 Hz, 1H), 7.58 (d, *J* = 7.0 Hz, 1H), 7.42 (d, *J* = 7.0 Hz, 2H), 7.30-7.24 (m, 3H), 7.08-7.03 (m, 3H), 6.84 (dd, J = 8.5, 6.0 Hz, 1H), 6.77-6.68 (m, 2H), 6.15 (d, *J* = 7.5 Hz, 1H), 5.15 (s, 2H), 4.52 (s, 1H), 2.27 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 198.9, 170.5, 164.1 (d, C-F, ¹*J*_{C-F} = 249.5 Hz), 162.6, 153.3, 140.0 (d, C-F, ⁴*J*_{C-F} = 8.5 Hz) 138.6, 137.3, 136.4, 134.9 (d, C-F, ⁴*J*_{C-F} = 3.3 H z), 133.7, 130.3, 130.0 (d, C-F, ³*J*_{C-F} = 9.0 Hz), 129.7 (d, C-F, ³*J*_{C-F} = 11.9 Hz), 128.9, 128.5, 127.8, 127.4, 124.9, 122.7, 119.4, 114.0 (d, C-F, ²*J*_{C-F} = 21.8 Hz), 112.2 (d, C-F, ²*J*_{C-F} = 22.8 Hz), 106.2, 74.2, 71.6, 44.0, 29.7; ¹⁹F NMR (471 MHz, CDCl₃) δ = -108.2; HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₃₁H₂₂FN₂O₃⁺ 489.1609; found 489.1612.

2-benzyl-12-chloro-4-methyl-4,8b-dihydro-1*H***,9***H***-benzo**[**4,5**]**indolo**[**2',3':1,7**]**cycl ohepta**[**1,2,3-***de*]**isoquinoline-1,3,9**(*2H*)**-trione** (**3af**): column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 79% (39.9 mg); mp: 210.1-212.8 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.38 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.60 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.43-7.41 (m, 2H), 7.37 (d, *J* = 2.0 Hz, 1H), 7.32-7.27 (m, 2H), 7.25-7.24 (m, 1H), 7.08-7.01 (m, 3H), 6.78 (d, *J* = 8.0 Hz, 1H), 6.71 (t, *J* = 7.5 Hz, 1H), 6.16 (d, J = 7.5 Hz, 1H), 5.15 (s, 2H), 4.52 (s, 1H), 2.27 (s, 3H); ¹³C **NMR** (CDCl₃, 125 MHz) δ = 198.9, 170.5, 162.6, 153.3, 139.2, 138.4, 137.4, 137.1, 137.0, 136.4, 133.7, 130.3, 129.8, 129.7, 129.1, 129.0, 128.6, 127.8, 127.5, 127.0, 125.2, 124.9, 122.5, 119.5, 106.3, 74.3, 71.6, 44.0, 29.7; HRMS (ESI-TOF) m/z: (M+Na)⁺ Calcd for C₃₁H₂₁ClN₂NaO₃⁺ 527.1133; found 527.1136.

2-benzyl-4-methyl-12-(trifluoromethyl)-4,8b-dihydro-1*H***,9***H***-benzo[4,5]indolo[2', 3':1,7]cyclohepta**[1,2,3-*de*]isoquinoline-1,3,9(2*H*)-trione (3ag): column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 74% (39.8 mg); mp: 95.8-97.5 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.40 (d, *J* = 8.0 Hz, 1H), 7.69 (t, *J* = 7.5 Hz, 1H), 7.63 (d, *J* = 8.5 Hz, 2H), 7.42 (d, *J* = 7.0 Hz, 2H), 7.31-7.27 (m, 4H), 7.06 (t, *J* = 7.0 Hz, 2H), 6.92 (d, *J* = 8.0 Hz, 1H), 6.73 (t, *J* = 7.5 Hz, 1H), 6.12 (d, *J* = 8.0 Hz, 1H), 5.15 (s, 2H), 4.55 (s, 1H), 2.25 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 198.6, 170.3, 162.5, 153.3, 141.8, 138.2 (2C), 137.4, 136.3, 133.7, 132.9 (q, ²*J* _{C-F} = 31.8 Hz), 130.1, 130.0, 129.9, 129.0, 128.6, 128.1, 127.8, 127.5, 125.0, 123.5 (q, ³*J* _{C-F} = 3.8 Hz), 123.4 (q, ¹*J*_{C-F} = 271.4 Hz), 121.9, 121.9 (q, ³*J*_{C-F} = 3.8 Hz), 119.6, 106.3, 74.3, 71.6, 44.0, 29.7; ¹⁹F NMR (471 MHz, CDCl₃) δ = -62.8; HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₃₂H₂₂F₃N₂O₃⁺ 539.1577; found 539.1575.

2-benzyl-4-methyl-12-morpholino-4,8b-dihydro-1*H*,9*H*-benzo[4,5]indolo[2',3':1,7] cyclohepta[1,2,3-*de*]isoquinoline-1,3,9(2*H*)-trione (3ah): column chromatoghraphy

(silica gel; PE/EA = 3:1); yellow solid, isolated yield 71% (39.4 mg); mp: 185.2-188.7 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.34 (dd, *J* = 7.0, 2.0 Hz, 1H), 7.64-7.59 (m, 2H), 7.43-7.41 (m, 2H), 7.30-7.27 (m, 2H), 7.25-7.23 (m 1H), 7.03 (t, *J* = 6.5 Hz, 2H), 6.84-6.81 (m, 2H), 6.69 (t, *J* = 7.5 Hz, 1H), 6.54 (dd, *J* = 9.0, 2.5 Hz, 1H), 6.16 (d, *J* = 8.0 Hz, 1H), 5.14 (s, 2H), 4.48 (s, 1H), 3.84 (t, *J* = 5.0 Hz, 4H), 3.27-3.18 (m, 4H), 2.29 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 199.3, 170.9, 162.9, 153.4, 153.2, 140.5, 139.3, 137.5, 136.5, 133.5, 129.9, 129.8, 129.5, 129.2, 129.1, 129.0, 128.5, 127.7, 127.3, 124.7, 123.8, 119.1, 112.9, 111.0, 105.9, 74.3, 71.5, 66.5, 48.0, 43.9, 29.8; HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₃₅H₃₀N₃O₄⁺ 556.2231; found 556.2234.

2-benzyl-11-methoxy-4-methyl-4,8b-dihydro-1*H*,9*H*-benzo[4,5]indolo[2',3':1,7]cy clohepta[1,2,3-*de*]isoquinoline-1,3,9(2*H*)-trione (3ai): column chromatoghraphy (silica gel; PE/EA = 5:1); yellow solid, isolated yield 66% (33.0 mg); mp: 218.2-219.8 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.32 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.62 (t, *J* = 8.0 Hz, 1H), 7.56 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.43-7.42 (m, 2H), 7.31-7.27 (m, 3H), 7.25-7.24 (m, 1H), 7.03 (t, *J* = 7.5 Hz, 2H), 6.93 (dd, J = 8.5, 3.0 Hz, 1H), 6.69 (t, *J* = 7.5 Hz, 1H), 6.34 (d, *J* = 3.0 Hz, 1H), 6.12 (d, *J* = 8.0 Hz, 1H), 5.15 (s, 2H), 4.54 (s, 1H), 3.61 (s, 3H), 2.24 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 200.0, 170.9, 162.9, 158.3, 153.5, 139.7, 137.3, 136.5, 133.1, 130.2, 130.0, 129.6, 128.9, 128.8, 128.5, 127.7, 127.3, 126.8, 124.8, 123.0, 119.0, 117.9, 111.8, 106.0, 74.2, 71.9, 55.5, 43.9, 29.5; HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₃₂H₂₅N₂O₄⁺ 501.1809; found 501.1812.

2-benzyl-13-methoxy-4-methyl-4,8b-dihydro-1*H*,9*H*-benzo[4,5]indolo[2',3':1,7]cy clohepta[1,2,3-*de*]isoquinoline-1,3,9(2*H*)-trione (3aj): column chromatoghraphy (silica gel; PE/EA = 5:1); yellow solid, isolated yield 36% (18.0 mg); mp: 222.1-224.2 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.32 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.76 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.57 (t, *J* = 8.0 Hz, 1H), 7.42-7.40 (m, 2H), 7.30-7.27 (m, 2H), 7.25-7.22 (m, 1H), 7.03-6.97 (m, 2H), 6.96-6.94 (m, 2H), 6.68-6.64 (m, 1H), 6.43-6.40 (m, 1H), 6.10 (d, *J* = 8.0 Hz, 1H), 5.15 (s, 2H), 4.42 (s, 1H), 3.81 (s, 3H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 199.9, 170.6, 162.9, 153.9, 153.6, 140.3, 139.0, 136.6, 135.8, 133.5, 129.5, 129.1, 129.1, 128.9, 128.5, 127.7, 127.7, 127.0, 126.2, 124.8, 122.7, 120.0, 118.9, 113.5, 105.7, 74.6, 72.0, 55.9, 43.9, 29.7; HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₃₂H₂₅ N₂O₄⁺ 501.1809; found 501.1811.

2-benzyl-11,12-dimethoxy-4-methyl-4,8b-dihydro-1*H*,9*H*-benzo[4,5]indolo[2',3': 1,7]cyclohepta[1,2,3-*de*]isoquinoline-1,3,9(2*H*)-trione (3ak): column chromatoghraphy (silica gel; PE/EA = 5:1); yellow solid, isolated yield 70% (37.1 mg); mp: 192.6-194.5 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.33-8.32 (m, 1H), 7.63 (t, *J* = 7.5 Hz, 1H), 7.60-7.58 (m, 1H), 7.43 (d, *J* = 7.0 Hz, 2H), 7.31-7.28 (m, 2H), 7.25-7.24 (m, 1H), 7.02 (t, *J* = 8.0 Hz, 2H), 6.83 (s, 1H), 6.69 (t, *J* = 7.5 Hz, 1H), 6.36 (s, 1H), 6.14 (d, *J* = 7.5 Hz, 1H), 5.15 (s, 2H), 4.53 (s, 1H), 3.94 (s, 3H), 3.64 (s, 3H), 2.28 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 199.5, 170.8, 162.9, 153.4, 151.2, 147.8, 139.9, 137.1, 136.5, 133.3, 131.3, 131.2, 129.9, 129.4, 129.0, 128.8, 128.5, 127.7, 127.3, 124.7, 123.3, 119.0, 110.6, 108.2, 106.1, 74.0, 72.1, 56.1, 56.0, 43.9, 29.7; HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₃₃H₂₇N₂O₅⁺ 531.1914; found 531.1917.

2-benzyl-4-methyl-4,8b-dihydro-1*H*,9*H*-[**1**,3]dioxolo[4'',5'':4',5']benzo[1',2':4,5] indolo[2',3':1,7]cyclohepta[1,2,3-*de*]isoquinoline-1,3,9(2*H*)-trione (3al): column chromatoghraphy (silica gel; PE/EA = 5:1); yellow solid, isolated yield 73% (37.5 mg); mp: 244.1-246.0 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.32 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.61 (t, *J* = 8.0 Hz, 1H), 7.53 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.42-7.41 (m, 2H), 7.30-7.27 (m, 2H), 7.25-7.22 (m, 1H), 7.06 (t, *J* = 8.0 Hz, 1H), 7.02 (d, *J* = 7.5 Hz, 1H), 6.81 (s, 1H), 6.70 (t, *J* = 7.5 Hz, 1H), 6.37 (s, 1H), 6.20 (d, *J* = 8.0 Hz, 1H), 5.93 (dd, *J* = 7.5, 1.5 Hz, 2H), 5.14 (s, 2H), 4.51 (s, 1H), 2.29 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ = 199.0, 170.7, 162.8, 153.4, 150.1, 146.5, 139.6, 137.4, 136.5, 133.2, 133.0, 132.9, 130.0, 129.5, 128.9, 128.5, 127.7, 127.2, 124.8, 123.2, 119.3, 108.1, 106.1, 105.9, 101.7, 74.2, 71.9, 43.9, 29.8; HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₃₂H₂₃N₂O₅⁺ 515.1601; found 515.1605.

2-benzyl-4-methyl-4,8b-dihydro-1*H***,9***H***-indolo**[**2',3':1,7**]**thieno**[**3',2':4,5**]**cyclohep ta**[**1,2,3-***de*]**isoquinoline-1,3,9**(*2H*)**-trione** (**3am**)**:** column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 21% (10.0 mg); mp: 120.1-121.4 °C; ¹**H NMR** (CDCl₃, 500 MHz) δ = 8.34 (dd, *J* = 7.5, 2.0 Hz, 1H), 7.66-7.61 (m, 2H), 7.43-7.42 (m, 3H), 7.31-7.27 (m, 2H), 7.25-7.24 (m, 1H), 7.18 (d, J = 5.0 Hz, 1H), 7.12-7.08 (m, 2H), 6.77 (t, J = 7.5 Hz, 1H), 6.25 (d, J = 7.5 Hz, 1H), 5.16 (s, 2H), 4.66 (s, 1H), 2.30 (s, 3H); ¹³**C NMR** (CDCl₃, 125 MHz) $\delta = 191.0$, 171.1, 162.8, 153.5, 142.1, 138.2, 136.5, 135.9, 135.5, 133.0, 131.1, 130.0, 129.4, 129.05, 129.00, 128.6, 128.0, 127.8, 125.7, 125.3, 124.2, 120.0, 106.3, 74.1, 71.7, 44.0, 30.1; HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₂₉H₂₁N₂O₃S⁺ 477.1267; found 477.1269.

20-methyl-4b,20-dihydro-5*H***,19***H***-benzo[4,5]indolo[2',3':1,7]cyclohepta[1,2,3-***de***] indolo[2,1-***a***]isoquinoline-5,19-dione (5aa): column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 79% (35.7 mg); mp: 180.4-181.9 °C; ¹H NMR (CDCl₃, 500 MHz) \delta = 8.41-8.38 (m, 1H), 7.90 (d,** *J* **=8.0 Hz, 1H), 7.62-7.58 (m, 1H), 7.54 (t,** *J* **=8.0 Hz, 1H), 7.39-7.37 (m, 2H), 7.33-7.28 (m, 3H), 7.13 (s, 1H), 7.08 (d,** *J* **=7.0 Hz, 1H), 7.06-7.01 (m, 2H), 6.84 (d,** *J* **=7.5 Hz, 1H), 6.70 (t,** *J* **=7.0 Hz, 1H), 6.11 (d,** *J* **=7.5 Hz, 1H), 4.70 (s, 1H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) \delta = 200.7, 166.8, 153.6, 140.8, 138.6, 138.5, 135.3, 134.2, 132.8, 130.9, 130.8, 129.9, 129.5, 128.4, 127.3, 127.3, 126.5, 125.8, 125.1, 125.0, 124.8, 123.7, 123.5, 120.8, 118.8, 117.0, 105.6, 105.2, 75.7, 71.5, 29.6; HRMS (ESI) m/z calcd for C₃₁H₂₁N₂O₂+ (M+H)⁺ 453.1598, Found 453.1601.**

11,20-dimethyl-4b,20-dihydro-5*H*,19*H*-benzo[4,5]indolo[2',3':1,7]cyclohepta[1, 2, 3-*de*]indolo[2,1-*a*]isoquinoline-5,19-dione (5ba): column chromatoghraphy (silica

gel; PE/EA = 10:1); yellow solid, isolated yield 74% (34.5 mg); mp: 162.1-164.0 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.41-8.38 (m, 1H), 7.70 (s, 1H), 7.61-7.58 (m, 1H), 7.38 (d, *J* = 4.0 Hz, 2H), 7.32-7.29 (m, 2H), 7.12-7.10 (m, 2H), 7.08 (d, *J* = 7.0 Hz, 1H), 7.04-7.00 (m, 2H), 6.84 (d, *J* = 7.5 Hz, 1H), 6.69 (t, *J* = 7.5 Hz, 1H), 6.10 (d, *J* = 8.0 Hz, 1H), 4.68 (s, 1H), 2.45 (s, 3H), 2.33 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 200.9, 167.0, 153.5, 140.5, 139.8, 138.7, 138.5, 135.2, 134.3, 133.9, 130.8, 130.8, 129.4, 127.2, 127.1, 126.3, 125.7, 125.5, 125.0, 125.0, 124.7, 124.0, 123.5, 120.7, 118.7, 116.9, 105.6, 104.9, 75.5, 71.4, 29.5, 21.2; HRMS (ESI) m/z calcd for C₃₂H₂₃N₂O₂⁺ (M+H)⁺ 467.1754, Found 467.1776.

11-fluoro-20-methyl-4b,20-dihydro-5*H***,19***H***-benzo[4,5]indolo[2',3':1,7]cyclohepta [1,2,3-***de***]indolo[2,1-***a***]isoquinoline-5,19-dione (5ca): column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 50% (23.5 mg); mp: 188.4-190.1 °C; ¹H NMR (CDCl₃, 500 MHz) \delta = 8.41-8.37 (m, 1H), 7.64-7.61 (m, 1H), 7.57 (dd,** *J* **= 8.5, 2.5 Hz, 1H), 7.43-7.40 (m, 1H), 7.37-7.32 (m, 3H), 7.13 (s, 1H), 7.09-7.03 (m, 4H), 6.86-6.83 (m, 1H), 6.71 (t,** *J* **= 7.5 Hz, 1H), 6.12 (d,** *J* **= 8.0 Hz, 1H), 4.69 (s, 1H), 2.35 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) \delta = 200.3, 166.5, 162.9 (d, C-F, ¹***J***_{C-F} = 248.0 Hz), 153.4, 143.7 (d, C-F, ³***J***_{C-F} = 8.3 Hz), 138.5, 137.4, 135.3, 133.1 (d, C-F, ³***J***_{C-F} = 3.3 Hz), 131.0, 130.5, 129.5, 127.4, 127.0, 126.3, 125.3, 124.9, 124.8, 123.4, 121.1, 119.8 (d, C-F, ²***J***_{C-F} = 22.6 Hz), 119.0, 117.0, 109.7 (d, C-F, ²***J***_{C-F} = 23 Hz), 106.2, 105.8, 75.4, 71.3, 29.6; ¹⁹F NMR (471 MHz, CDCl₃): \delta = -111.3; HRMS (ESI) m/z calcd for C₃₁H₂₀FN₂O₂⁺ (M+H)⁺ 471.1503, Found 471.1504.**

14,16,20-trimethyl-4b,20-dihydro-5*H*,19*H*-benzo[4,5]indolo[2',3':1,7]cyclohepta [1,2,3-*de*]indolo[2,1-*a*]isoquinoline-5,19-dione (5da): column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 69% (33.2 mg); mp: 180.5-182.3 °C; ¹H NMR (CDCl₃, 500 MHz) $\delta = 8.10$ (s, 1H), 7.91 (d, *J* =7.0 Hz, 1H), 7.53 (t, *J* =7.5 Hz, 1H), 7.41-7.37 (m, 2H), 7.27 (d, *J* =8.0 Hz, 1H), 7.13 (s, 1H), 7.08 (d, *J* =7.5 Hz, 1H), 7.06-7.02 (m, 2H), 6.97 (s, 1H), 6.84 (d, *J* =7.0 Hz, 1H), 6.70 (t, *J* =7.5 Hz, 1H), 6.11 (d, *J* =8.0 Hz, 1H), 4.68 (s, 1H), 2.55 (s, 3H), 2.38 (s, 3H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) $\delta = 200.9$, 166.9, 153.6, 140.7, 138.6, 136.4, 135.4, 132.9, 132.4, 130.9, 129.9, 129.8, 129.4, 128.0, 128.0, 127.6, 127.2, 127.0, 126.4, 125.0, 124.7, 123.5, 123.5, 118.7, 114.8, 105.6, 103.8, 75.7, 71.5, 29.5, 21.7, 18.4; HRMS (ESI) m/z calcd for C₃₃H₂₅N₂O₂⁺ (M+H)⁺ 481.1911, Found 481.1931.

15-fluoro-20-methyl-4b,20-dihydro-5*H***,19***H***-benzo[4,5]indolo[2',3':1,7]cyclohepta [1,2,3-***de***]indolo[2,1-***a***]isoquinoline-5,19-dione (5ea): column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 73% (34.3 mg); mp: 206.3-208.1 °C; ¹H NMR (CDCl₃, 500 MHz) \delta = 8.35-8.33 (m, 1H), 7.90 (dd,** *J* **= 8.0, 1.0 Hz, 1H), 7.56 (t,** *J* **= 8.0 Hz, 1H), 7.42-7.38 (m, 2H), 7.32 (dd,** *J* **= 7.5, 1.0 Hz, 1H), 7.27-7.25 (m, 1H), 7.09-7.00 (m, 5H), 6.84 (d,** *J* **= 7.5 Hz, 1H), 6.73-6.70 (m, 1H), 6.12 (d,** *J* **=** 8.0 Hz, 1H), 4.69 (s, 1H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 200.6, 166.7, 160.4 (d, C-F, ¹*J*_{C-F} = 240.8 Hz), 153.5, 140.8, 138.5, 138.3, 135.7, 133.1, 132.0 (d, C-F, ³*J*_{C-F} = 10.3 Hz), 131.5, 130.9, 130.0, 129.5, 128.6, 127.2, 126.9, 126.5, 125.0, 124.8, 123.8, 123.3, 118.0 (d, C-F, ³*J*_{C-F} = 9.1 Hz), 113.3 (d, C-F, ²*J*_{C-F} = 24.6 Hz), 106.5 (d, C-F, ²*J*_{C-F} = 24.1 Hz), 105.7, 104.6 (d, C-F, ⁴*J*_{C-F} = 4.0 Hz), 75.6, 71.5, 29.6; ¹⁹F NMR (471 MHz, CDCl₃): δ = -117.0; HRMS (ESI) m/z calcd for C₃₁H₂₀FN₂O₂⁺ (M+H)⁺ 471.1503, Found 471.1494.

15-chloro-20-methyl-4b,20-dihydro-5*H*,19*H*-benzo[4,5]indolo[2',3':1,7]cyclohep ta[1,2,3-*de*]indolo[2,1-*a*]isoquinoline-5,19-dione (5fa): column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 45% (21.9 mg); mp: 213.1-215.0 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.30 (d, *J* = 9.0 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.56-7.52 (m, 2H), 7.42-7.37 (m, 2H), 7.32 (d, *J* = 7.5 Hz, 1H), 7.28-7.25 (m, 1H), 7.09 (d, *J* = 7.0 Hz, 1H), 7.06-7.02 (m, 3H), 6.84 (d, *J* = 7.5 Hz, 1H), 6.71 (t, *J* = 7.5 Hz, 1H), 6.12 (d, *J* = 8.0, 1H), 4.69 (s, 1H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 200.5, 166.8, 153.4, 140.8, 138.5, 138.3, 135.5, 133.5, 133.2, 132.1, 131.0, 130.7, 130.0, 129.5, 128.6, 127.3, 126.8, 126.6, 125.9, 125.0, 124.8, 123.9, 123.3, 120.4, 118.9, 117.9, 105.7, 104.2, 75.7, 71.5, 29.6; HRMS (ESI) m/z calcd for C₃₁H₂₀ClN₂O₂+ (M+H)⁺ 487.1208, Found 487.1211.

3,20-dimethyl-4b,20-dihydro-5*H***,19***H***-benzo[4,5]indolo[2',3':1,7]cyclohepta[1,2,3***de***]indolo[2,1-***a***]isoquinoline-5,19-dione (5ga): column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 51% (23.8 mg); mp: 201.1-203.0 °C; ¹H NMR (CDCl₃, 500 MHz) \delta = 8.42-8.40 (m, 1H), 7.89 (d,** *J* **= 7.5 Hz, 1H), 7.61-7.59 (m, 1H), 7.55-7.52 (m, 1H), 7.41-7.36 (m, 2H), 7.32-7.28 (m, 3H), 7.12 (s, 1H), 7.05-7.02 (m, 1H), 6.91 (s, 1H), 6.86-6.83 (m, 2H), 6.02 (d,** *J* **= 8.0 Hz, 1H), 4.66 (s, 1H), 2.32 (s, 3H), 2.24 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) \delta = 200.9, 166.9, 151.5, 140.8, 138.7, 138.6, 135.3, 134.2, 132.8, 130.9, 130.8, 129.8, 129.8, 128.7, 128.2, 127.34, 127.25, 126.5, 125.8, 125.5, 125.1, 125.0, 123.7, 123.6, 120.8, 117.0, 105.5, 105.1, 75.9, 71.6, 29.8, 20.8; HRMS (ESI) m/z calcd for C₃₂H₂₃N₂O₂⁺ (M+H)⁺ 467.1754, Found 467.1776.**

3-chloro-20-methyl-4b,20-dihydro-5*H***,19***H***-benzo[4,5]indolo[2',3':1,7]cyclohepta [1,2,3-***de***]indolo[2,1-***a***]isoquinoline-5,19-dione (5ha): column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 65% (31.6 mg); mp: 168.5-170.4 °C; ¹H NMR (CDCl₃, 500 MHz) \delta = 8.40-8.36 (m, 2H), 7.91 (d,** *J* **= 8.0 Hz, 1H), 7.63-7.60 (m, 1H), 7.56 (t,** *J* **= 8.0 Hz, 1H), 7.43-7.38 (m, 2H), 7.34-7.32 (m, 2H), 7.28 (d,** *J* **=7.5 Hz, 1H), 7.13 (s, 1H), 7.09-7.05 (m, 2H), 6.99 (dd,** *J* **= 8.5, 2.0 Hz, 1H), 6.91 (d,** *J* **= 7.5 Hz, 1H), 6.03 (d,** *J* **= 8.0 Hz, 1H), 4.66 (s, 1H), 2.32 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) \delta = 200.2, 166.6, 152.2, 140.7, 138.4, 138.3, 135.2, 133.9, 132.8, 131.1, 130.8, 130.1, 129.2, 127.7, 127.4, 127.2, 126.7, 125.9, 125.4, 125.2, 125.1, 124.8, 123.9, 123.0, 120.9, 116.9, 106.2, 105.5, 75.9, 71.0, 29.6; HRMS (ESI) m/z calcd for C₃₁H₂₀ClN₂O₂⁺ (M+H)⁺ 487.1208, Found 487.1192.**

8,20-dimethyl-4b,20-dihydro-5*H***,19***H***-benzo[4,5]indolo[2',3':1,7]cyclohepta[1,2,3***de***]indolo[2,1-***a***]isoquinoline-5,19-dione (5ab): column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 84% (39.2 mg); mp: >230 °C; ¹H NMR (CDCl₃, 500 MHz) \delta = 8.41-8.38 (m, 1H), 7.91-7.89 (m, 1H), 7.62-7.60 (m, 1H), 7.54 (t,** *J* **=7.5 Hz, 1H), 7.34-7.29 (m, 3H), 7.19 (s, 1H), 7.13 (s, 1H), 7.09-7.05 (m, 2H), 6.85 (d,** *J* **=7.5 Hz, 1H), 6.77 (d,** *J* **=7.5 Hz, 1H), 6.70 (t,** *J* **=7.5 Hz, 1H), 6.15 (d,** *J* **=8.0 Hz, 1H), 4.69 (s, 1H), 2.37 (s, 3H), 2.36 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) \delta = 200.8, 166.9, 153.6, 141.1, 140.9, 138.5, 136.0, 135.2, 134.2, 132.8, 130.8, 129.8, 129.3, 128.4, 127.4, 127.3, 127.2, 125.8, 125.7, 125.1, 124.7, 123.8, 123.6, 120.8, 118.7, 117.0, 105.7, 105.1, 75.7, 71.4, 29.6, 21.6; HRMS (ESI) m/z calcd for C₃₂H₂₃N₂O₂⁺ (M+H)⁺ 467.1754, Found 467.1756.**

8-methoxy-20-methyl-4b,20-dihydro-5*H*,19*H*-benzo[4,5]indolo[2',3':1,7]cyclohep ta[1,2,3-*de*]indolo[2,1-*a*]isoquinoline-5,19-dione (5ac): column chromatoghraphy (silica gel; PE/EA = 5:1); yellow solid, isolated yield 64% (30.9 mg); mp: 180.0-181.5 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.40-8.37 (m, 1H), 7.91-7.89 (m, 1H), 7.62-7.59 (m, 1H), 7.53 (t, *J* = 8.0 Hz, 1H), 7.32-7.29 (m, 3H), 7.25 (s, 1H), 7.12 (s, 1H), 7.08-7.04 (m, 2H), 6.90 (d, *J* = 2.5 Hz, 1H), 6.85 (d, *J* = 8.5 Hz, 1H), 6.70 (t, *J* = 7.5 Hz, 1H), 6.55 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.17 (d, *J* = 8.0 Hz, 1H), 4.66 (s, 1H), 3.82 (s, 3H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 200.1, 166.9, 161.6, 153.5, 140.7, 140.5, 135.3, 134.1, 132.7, 131.6, 130.8, 129.9, 129.4, 129.3, 128.5, 127.3, 125.8, 125.1,
124.7, 124.0, 123.8, 120.8, 118.8, 117.0, 111.2, 111.1, 105.8, 105.1, 75.7, 71.3, 55.3,
29.7; HRMS (ESI) m/z calcd for C₃₂H₂₃N₂O₃⁺ (M+H)⁺ 483.1703, Found 483.1704.

20-methyl-8-phenoxy-4b,20-dihydro-5*H***,19***H***-benzo[4,5]indolo[2',3':1,7]cyclohep ta[1,2,3-***de***]indolo[2,1-***a***]isoquinoline-5,19-dione (5ad): column chromatoghraphy (silica gel; PE/EA = 5:1); yellow solid, isolated yield 58% (31.6 mg); mp: > 230 °C; ¹H NMR (CDCl₃, 500 MHz) \delta = 8.40-8.39 (m, 1H), 7.90-7.89 (m, 1H), 7.61-7.59 (mz, 1H), 7.51 (t,** *J* **= 8.0 Hz, 1H), 7.37-7.31 (m, 4H), 7.24 (s, 1H), 7.15-7.11 (m, 2H), 7.08 (d,** *J* **= 7.5 Hz, 2H), 7.03 (s, 1H), 6.97 (d,** *J* **= 8.0 Hz, 2H), 6.84 (d,** *J* **= 8.5 Hz, 1H), 6.72 (t,** *J* **= 7.5 Hz, 1H), 6.64 (d,** *J* **= 8.5 Hz, 1H), 6.22 (d,** *J* **= 8.0 Hz, 1H), 4.68 (s, 1H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) \delta = 199.9, 166.7, 159.4, 156.6, 153.6, 140.8, 140.2, 135.3, 134.0, 133.8, 132.5, 130.7, 129.9, 129.9, 129.5, 129.4, 128.5, 127.3, 125.9, 125.1, 124.8, 123.9, 123.8, 123.6, 120.8, 118.9, 116.95, 116.5, 115.2, 105.6, 105.3, 75.6, 71.3, 29.7; HRMS (ESI) m/z calcd for C₃₇H₂₅N₂O₃⁺ (M+H)⁺ 545.1860, Found 545.1883.**

8-fluoro-20-methyl-4b,20-dihydro-5*H*,19*H*-benzo[4,5]indolo[2',3':1,7]cyclohepta [1,2,3-*de*]indolo[2,1-*a*]isoquinoline-5,19-dione (5ae): column chromatoghraphy (silica gel; PE/EA = 5:1); yellow solid, isolated yield 66% (31.0 mg); mp: 195.0-196.7 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.40-8.38 (m, 1H), 7.93-7.92 (m, 1H), 7.62-7.60
(m, 1H), 7.55 (t, J = 7.5 Hz, 1H), 7.33-7.32 (m, 2H), 7.28-7.25 (m, 1H), 7.14 (s, 1H), 7.10-7.06 (m, 3H), 6.86-6.83 (m, 1H), 6.73-6.60 (m, 2H), 6.17 (d, J = 8.0, 1H), 4.68 (s, 1H), 2.37 (s, 3H); ¹³**C NMR** (CDCl₃, 125 MHz) $\delta = 199.5$, 166.5, 164.1 (d, C-F, ${}^{1}J_{C-F} = 248.9$ Hz), 153.5, 141.0 (d, C-F, ${}^{3}J_{C-F} = 8.5$ Hz), 139.6, 135.3, 134.9, 133.9, 132.5, 130.7, 130.0, 129.7 (d, C-F, ${}^{3}J_{C-F} = 9.0$ Hz), 129.6, 128.6, 127.5, 125.9, 125.2, 124.8, 124.2, 123.3, 120.9, 119.1, 117.0, 113.5 (d, C-F, ${}^{2}J_{C-F} = 21.6$ Hz), 112.0 (d, C-F, ${}^{2}J_{C-F} = 22.6$ Hz), 105.9, 105.4, 75.7, 71.3, 29.7; ¹⁹F **NMR** (471 MHz, CDCl₃) $\delta = -108.7$; HRMS (ESI) m/z calcd for C₃₁H₂₀FN₂O₂⁺ (M+H)⁺ 471.1503, Found 471.1539.

8-chloro-20-methyl-4b,20-dihydro-5*H***,19***H***-benzo[4,5]indolo[2',3':1,7]cyclohepta [1,2,3-***de***]indolo[2,1-***a***]isoquinoline-5,19-dione (5af): column chromatoghraphy (silica gel; PE/EA = 10:1); yellow solid, isolated yield 40% (19.5 mg); mp: 162.3-163.9 °C; ¹H NMR (CDCl₃, 500 MHz) \delta = 8.41-8.37 (m, 1H), 7.95-7.93 (m, 1H), 7.62-7.61 (m, 1H), 7.57 (t,** *J* **= 8.0 Hz, 1H), 7.39 (d,** *J* **= 2.0 Hz, 1H), 7.35-7.32 (m, 2H), 7.30 (dd,** *J* **= 7.5, 1.0 Hz, 1H), 7.15 (s, 1H), 7.10-7.07 (m, 2H), 7.00 (dd,** *J* **= 8.0, 2.0 Hz, 1H), 6.79 (d,** *J* **= 8.0 Hz, 1H), 6.74-6.71 (m, 1H), 6.19 (d,** *J* **= 8.0 Hz, 1H), 4.69 (s, 1H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) \delta = 199.5, 166.5, 153.5, 140.2, 139.4, 137.1, 136.8, 135.3, 133.9, 132.6, 130.7, 130.1, 129.7, 128.8, 128.6, 127.5, 126.5, 126.0, 125.2, 125.0, 124.8, 124.2, 123.1, 120.9, 119.1, 117.0, 106.1, 105.5, 75.7, 71.2, 29.7; HRMS (ESI) m/z calcd for C₃₁H₂₀ClN₂O₂⁺ (M+H)⁺ 487.1208, Found 487.1237.**

20-methyl-8-(morpholinooxy)-4b,20-dihydro-5*H***,19***H***-benzo[4,5]indolo[2',3':1,7] cyclohepta[1,2,3-***de***]indolo[2,1-***a***]isoquinoline-5,19-dione (5ah): column chromatoghraphy (silica gel; PE/EA = 5:1); yellow solid, isolated yield 56% (30.1 mg,); mp: 215.7-217.5 °C; ¹H NMR (CDCl₃, 500 MHz) \delta = 8.40-8.38 (m, 1H), 7.89 (d,** *J* **= 8.0 Hz, 1H), 7.60-7.58 (m, 1H), 7.51 (t,** *J* **= 8.0 Hz, 1H), 7.32-7.20 (m, 3H), 7.25 (s, 1H), 7.11 (s, 1H), 7.09-7.04 (m, 2H), 6.85-6.83 (m, 2H), 6.70 (t,** *J* **= 7.5 Hz, 1H), 6.54-6.52 (m, 1H), 6.17 (d,** *J* **= 8.0 Hz, 1H), 4.65 (s, 1H), 3.87-3.84 (m, 4H), 3.27-3.17 (m, 4H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) \delta = 199.9, 167.0, 153.5, 153.1, 141.4, 140.2, 135.2, 134.2, 132.7, 130.7, 130.0, 129.7, 129.2, 129.1, 128.5, 127.2, 125.7, 125.0, 124.6, 124.3, 123.6, 120.7, 118.7, 116.9, 112.6, 110.9, 105.7, 105.0, 75.6, 71.1, 66.6, 48.1, 29.8; HRMS (ESI) m/z calcd for C₃₅H₂₈N₃O₃⁺ (M+H)⁺ 538.2125, Found 538.2127.**

7-methoxy-20-methyl-4b,20-dihydro-5*H*,19*H*-benzo[4,5]indolo[2',3':1,7]cyclohep ta[1,2,3-*de*]indolo[2,1-*a*]isoquinoline-5,19-dione (5ai): column chromatoghraphy (silica gel; PE/EA = 5:1); yellow solid, isolated yield 41% (19.8 mg); mp: > 230 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.41-8.39 (m, 1H), 7.87 (d, *J* = 7.5 Hz, 1H), 7.61-7.59 (m, 1H), 7.52 (t, *J* = 8.0 Hz, 1H), 7.33-7.30 (m, 2H), 7.28-7.25 (m, 2H), 7.12 (s, 1H), 7.08-7.03 (m, 2H), 6.94-6.92 (m, 1H), 6.70 (t, *J* = 7.5 Hz, 1H), 6.36-6.35 (m, 1H), 6.14 (d, *J* = 7.5 Hz, 1H), 4.71 (s, 1H), 3.61 (s, 3H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 200.58, 166.96, 158.00, 153.65, 140.58, 139.68, 135.25, 134.27, 132.50, 131.21, 130.81, 129.84, 129.58, 128.16, 127.29, 126.55, 125.77, 125.08, 124.68, 123.60, 123.26, 120.79, 118.63, 117.73, 116.97, 111.51, 105.74, 105.07, 75.61, 71.54, 55.46, 29.54; HRMS (ESI) m/z calcd for C₃₂H₂₃N₂O₃⁺ (M+H)⁺ 483.1703, Found 483.1707.

9-methoxy-20-methyl-4b,20-dihydro-5H,19H-benzo[4,5]indolo[2',3':1,7]cyclohep ta[1,2,3-*de*]**indolo[2,1-***a***]isoquinoline-5,19-dione** (**5aj**)**:** column chromatoghraphy (silica gel; PE/EA = 5:1); yellow solid, isolated yield 46% (22.2 mg); mp: > 230 °C; ¹H **NMR** (CDCl₃, 500 MHz) δ = 8.40-8.38 (m, 1H), 7.87 (dd, *J* =7.0, 2.0 Hz, 1H), 7.61-7.58 (m, 1H), 7.50-7.45 (m, 2H), 7.33-7.30 (m, 2H), 7.10 (s, 1H), 7.06-7.02 (m, 2H), 6.96-6.91 (m, 2H), 6.68 (t, *J* =7.5 Hz, 1H), 6.44 (dd, *J* =6.5, 1.5 Hz, 1H), 6.14 (d, *J* =8.0 Hz, 1H), 4.60 (s, 1H), 3.82 (s, 3H), 2.45 (s, 3H). ¹³C **NMR** (CDCl₃, 125 MHz) δ = 200.4, 166.6, 153.8, 140.3, 136.6, 135.2, 134.4, 133.9, 130.8, 129.4, 129.0, 128.5, 127.2, 127.0, 125.6, 125.0, 124.7, 123.4, 123.2, 120.7, 119.8, 118.5, 116.9, 113.4, 105.4, 104.6, 75.9, 71.5, 55.9, 29.7; HRMS (ESI) m/z calcd for C₃₂H₂₃N₂O₃⁺ (M+H)⁺ 483.1703, Found 483.1704.

7,8-dimethoxy-20-methyl-4b,20-dihydro-5*H*,19*H*-benzo[4,5]indolo[2',3':1,7]cycl ohepta[1,2,3-*de*]indolo[2,1-*a*]isoquinoline-5,19-dione (5ak): column chromatoghraphy (silica gel; PE/EA = 5:1); yellow solid, isolated yield 55% (28.2 mg); mp: > 230 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.41-8.40 (m, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.60-7.59 (m, 1H), 7.52 (t, *J* = 5 Hz, 1H), 7.32-7.28 (m, 3H), 7.25 (s, 1H), 7.12 (s, 1H), 7.08-7.02 (m, 2H), 6.86 (s, 1H), 6.70 (t, *J* = 7.5 Hz, 1H), 6.38 (s, 1H), 6.16 (d, *J* = 8.0 Hz, 1H), 4.70 (s, 1H), 3.95 (s, 3H), 3.65 (s, 3H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 200.1, 166.9, 153.6, 151.0, 147.5, 140.8, 135.2, 134.2, 132.3, 132.2, 131.4, 130.8, 129.8, 129.4, 128.3, 127.3, 125.8, 125.1, 124.6, 123.9, 123.3, 120.8, 118.7, 117.0, 110.4, 108.1, 105.9, 105.1, 75.5, 71.8, 56.0, 56.0, 29.7; HRMS (ESI) m/z calcd for C₃₃H₂₅N₂O₄⁺ (M+H)⁺ 513.1809, Found 513.1827.

5-methyl-5,21a-dihydro-6*H*,21*H*-[1,3]dioxolo[4'',5'':4',5']benzo[1',2':4,5]indolo [2',3':1,7]cyclohepta[1,2,3-*de*]indolo[2,1-*a*]isoquinoline-6,21-dione (5al): column chromatoghraphy (silica gel; PE/EA = 5:1); yellow solid, isolated yield 42% (20.9 mg); mp: > 230 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.40-8.39 (m, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.61-7.59 (m, 1H), 7.51 (t, *J* = 8.0 Hz, 1H), 7.33-7.31 (m, 2H), 7.25-7.22 (m, 2H), 7.12-7.06 (m, 3H), 6.84 (s, 1H), 6.72 (t, *J* = 7.5 Hz, 1H), 6.39 (s, 1H), 6.23 (d, *J* = 8.0 Hz, 1H), 5.94 (d, *J* = 10.0 Hz, 2H), 4.68 (s, 1H), 2.40 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 199.6, 166.8, 153.6, 149.9, 146.1, 140.5, 135.2, 134.1, 134.0, 132.8, 132.6, 130.7, 129.9, 129.5, 128.2, 127.2, 125.8, 125.1, 124.8, 123.7, 123.4, 120.8, 119.0, 117.0, 107.9, 105.9, 105.8, 105.1, 101.5, 75.6, 71.5, 29.8; HRMS (ESI) m/z calcd for C₃₂H₂₁N₂O₄⁺ (M+H)⁺ 497.1496, Found 497.1497.

19-methyl-4b,19-dihydro-5H,18H-indolo[2,1-*a***]indolo[2',3':1,7]thieno[3',2':4,5] cyclohepta[1,2,3-***de***]isoquinoline-5,18-dione (5am): column chromatoghraphy (silica gel; PE/EA = 5:1); yellow solid, isolated yield 38% (17.4 mg); mp: 168.5-170.3 °C; ¹H NMR (CDCl₃, 500 MHz) \delta = 8.42-8.39 (m, 1H), 7.89 (d,** *J* **= 8.0 Hz, 1H), 7.62-7.59 (m, 1H), 7.53 (t,** *J* **= 7.5 Hz, 1H), 7.41 (d,** *J* **= 5.0 Hz, 1H), 7.36 (d,** *J* **= 7.5 Hz, 1H),** 7.34-7.31 (m, 2H), 7.19 (d, J = 5.0 Hz, 1H), 7.16 (d, J = 7.5 Hz, 1H), 7.13-7.10 (m, 2H), 6.78 (t, J = 7.5 Hz, 1H), 6.29 (d, J = 8.0 Hz, 1H), 4.85 (s, 1H), 2.41 (s, 3H); ¹³**C NMR** (CDCl₃, 125 MHz) $\delta = 191.6$, 167.1, 153.6, 143.0, 137.6, 136.4, 135.2, 134.0, 131.1, 130.7, 129.8, 129.3, 127.9, 125.9, 125.8, 125.2, 125.1, 124.8, 123.6, 120.8, 119.6, 117.0, 106.1, 105.3, 75.5, 71.5, 30.2; HRMS (ESI) m/z calcd for C₂₉H₁₉N₂O₂S⁺ (M+H)⁺ 459.1162, Found 459.1164.

N-benzyl-14-methyl-9-oxo-9,14-dihydrodibenzo[4,5:6,7]cyclohepta[1,2-b]indole-1-carboxamide (6) : column chromatoghraphy (silica gel; PE/EA = 5:1); white solid, isolated yield 71% (62.8 mg); mp: 217.5-219.2 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.05 (d, *J* = 8.0 Hz, 1H), 7.88 (d, *J* = 7.5 Hz, 2H), 7.81 (dd, *J* = 12.5, 8.0 Hz, 2H), 7.59-7.52 (m, 2H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.36-7.29 (m, 2H), 7.16 (d, *J* = 8.0 Hz, 1H), 7.11-7.10 (m, 1H), 7.01 (t, *J* = 8.0 Hz, 2H), 6.70-6.68 (m, 2H), 5.72 (t, *J* = 5, 1H), 4.25 (dd, *J* = 14.0, 6.0 Hz, 1H), 4.14 (dd, *J* = 14.0, 5.5 Hz, 1H), 3.58 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 189.11, 169.01, 143.58, 138.06, 137.98, 137.82, 137.21, 136.62, 135.75, 134.06, 130.65, 130.17, 129.64, 129.00, 128.53, 128.51, 128.02, 127.83, 127.45, 124.63, 123.79, 123.26, 122.80, 120.53, 110.23, 44.59, 32.62; HRMS (ESI-TOF) m/z: (M+H)⁺ Calcd for C₃₀H₂₃N₂O₂⁺ 443.1754; found 443.1759.

9 References

- [1] S. Guo, W. Deng, X. Xiao, J. Xia, X. Yang, Y. Liang and Y. Yang, Palladium-Catalyzed Dearomative Heck/C(sp²)-H Activation/Decarboxylative Cyclization of C2-Tethered Indoles. *Org. Lett.*, 2024, 26, 9389-9394..
- [2] L. Zhou, S. Qiao, F. Zhou, X. Xuchen, G. Deng, Y. Yang and Y. Liang, α-Oxocarboxylic Acids as Three-Carbon Insertion Units for Palladium-Catalyzed Decarboxylative Cascade Synthesis of Diverse Fused Heteropolycycles. Org. Lett.,

2021, **23**, 2878-2883.

[3] L. Zhou, X. Chen, Q. Peng, Z. Li, S. Qiao, G. Deng, Y. Liang, M. Lei and Y.Yang,
 A Cascade C(sp³)-H Annulation Involving C(alkyl), C(alkyl)-Palladacycle
 Intermediates. Angew. Chem., Int. Ed., 2024, 63, e202412336.

10 The X-ray Single-Crystal Diffraction Analysis of 3af and 5aa

10.1 The X-ray single-crystal diffraction analysis of 3af

A suitable crystal of **3af** was selected and measured on a SuperNova, Dual, Cu at zero, EosS2 diffractometer. The crystal was kept at 293(2) K during data collection. Using Olex2, the structure was solved with the olex2.solve3 structure solution program using Charge Flipping and refined with the ShelXL4 refinement package using Least Squares minimisation.

Crystallographic data for **3af** has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No. 2340392, respectively.

CCDC deposition No.	2340392
Empirical formula	C ₃₁ H ₂₁ ClN ₂ O ₃
Formula weight	504.19
Temperature/K	293
Crystal system	orthorhombic
Space group	Pb ca
a/Å	11.7884(3)
b/Å	17.5725(4)
c/Å	24.1043(7)
a/°	90
β/°	90
γ/°	90
Volume/Å ³	4993.2(2)
Z	8

Table S2. Crystallographic data details of 3af

$\rho_{calc}g/cm^3$	1.341
μ/mm^{-1}	1.629
F(000)	2093.0
Crystal size/mm ³	0.3 imes 0.2 imes 0.05
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
The range for data collection/°	7.334 to 133.184
Index ranges	$-14 \le h \le 14, \ -20 \le k \le 20, \ -28 \le l \le 28$
Reflections collected	66096
Independent reflections	4401 [Rint = 0.0948, Rsigma = 0.0327]
Independent reflections Data/restraints/parameters	4401 [Rint = 0.0948, Rsigma = 0.0327] 4401/7/346
Independent reflections Data/restraints/parameters Goodness-of-fit on F2	4401 [Rint = 0.0948, Rsigma = 0.0327] 4401/7/346 1.054
Independent reflections Data/restraints/parameters Goodness-of-fit on F2 Final R indexes [I>=2σ (I)]	4401 [Rint = 0.0948, Rsigma = 0.0327] 4401/7/346 1.054 R1 = 0.0736, wR2 = 0.2059
Independent reflections Data/restraints/parameters Goodness-of-fit on F2 Final R indexes [I>=2σ (I)] Final R indexes [all data]	4401 [Rint = 0.0948, Rsigma = 0.0327] 4401/7/346 1.054 R1 = 0.0736, wR2 = 0.2059 R1 = 0.0827, wR2 = 0.2138

Fig. S1 X-ray structure of 3af. The thermal ellipsoids are 50% probability level

10.2 The X-ray single-crystal diffraction analysis of 5aa

A suitable crystal of **5aa** was selected and measured on a SuperNova, Dual, Cu at zero, EosS2 diffractometer. The crystal was kept at 293(10) K during data collection.

Using Olex2, the structure was solved with the olex2.solve3 structure solution program using Charge Flipping and refined with the ShelXL4 refinement package using Least Squares minimisation.

Crystallographic data for **5aa** has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No. 2359843, respectively.

CCDC deposition No.	2359843
Empirical formula	$C_{31}H_{20}N_2O_2$
Formula weight	452.49
Temperature/K	293(10)
Crystal system	monoclinic
Space group	P21/c
a/Å	23.3443(12)
b/Å	9.3993(3)
c/Å	23.0066(11)
α/°	90
$\beta^{\prime\circ}$	117.957(7)
γ/°	90
Volume/Å ³	4459.0(4)
Z	8
$\rho_{calc}g/cm^3$	1.348
μ/mm^{-1}	0.674
F(000)	1888.0
Crystal size/mm ³	0.3 imes 0.2 imes 0.2
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
The range for data collection/°	4.286 to 133.196
Index ranges	$-27 \le h \le 26, -10 \le k \le 11, -24 \le l \le 27$
Reflections collected	16302
Independent reflections	7877 [$R_{int} = 0.0339, R_{sigma} = 0.0525$]

Table S3. Crystallographic data details of 5aa

Data/restraints/parameters	7877/0/633
Goodness-of-fit on F ²	1.027
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0586, wR_2 = 0.1401$
Final R indexes [all data]	$R_1 = 0.0911, wR_2 = 0.1619$
Largest diff. peak/hole / e Å ⁻³	0.16/-0.19

Fig. S2 X-ray structure of 5aa. The thermal ellipsoids are 50% probability level

11 NMR Spectra of Products

¹H NMR of **3aa** (500 MHz, CDCl₃) and ¹³C NMR of **3aa** (125 MHz, CDCl₃)

 $^1\mathrm{H}$ NMR of **3da** (500 MHz, CDCl_3), $^{13}\mathrm{C}$ NMR of **3da** (125 MHz, CDCl_3) and $^{19}\mathrm{F}$ NMR of **3da** (471 MHz, CDCl_3)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

¹H NMR of **3ea** (500 MHz, CDCl₃) and ¹³C NMR of **3ea** (125 MHz, CDCl₃) 2238 2338 2338 2338 23394 23395 23394 23395 23394 23395 2339

¹H NMR of **3fa** (500 MHz, CDCl₃), ¹³C NMR of **3fa** (125 MHz, CDCl₃) and ¹⁹F NMR of **3fa** (471 MHz, CDCl₃)

fl (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

7.710 7.659 7.667 7.667 7.667 7.667 7.465 7.465 7.465 7.465 7.465 7.465 7.465 7.465 7.465 7.465 7.400 7.436 7.730 7.745 7.730 7.745 7.730 7.730 7.730 7.735 6.635 6.555 6.5556 6.5556 6.5556 6.5556 6.5556 6.5556 6.5556 6.5556 6.55 8.394 8.391 8.379 8.379 8.379

¹H NMR of **3ka** (500 MHz, CDCl₃) and ¹³C NMR of **3ka** (125 MHz, CDCl₃)

¹H NMR of **3na** (500 MHz, CDCl₃) and ¹³C NMR of **3na** (125 MHz, CDCl₃)

---0.000

¹H NMR of **3ae** (500 MHz, CDCl₃), ¹³C NMR of **3ae** (125 MHz, CDCl₃) and ¹⁹F NMR of **3ae** (471 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fil (ppm)

¹H NMR of **3af** (500 MHz, CDCl₃) and ¹³C NMR of **3af** (125 MHz, CDCl₃)

fl (ppm)

000.0----

¹H NMR of **3aj** (500 MHz, CDCl₃) and ¹³C NMR of **3aj** (125 MHz, CDCl₃)

¹H NMR of **3al** (500 MHz, CDCl₃) and ¹³C NMR of **3al** (125 MHz, CDCl₃) 8.8.330 8.8.321 8.8.327 8.8.327 8.8.327 7.7.550 7.7.553 7.7.553 7.7.553 7.7.553 7.7.553 7.7.553 7.7.553 7.7.553 7.7.553 7.7.553 7.7.553 7.7.553 7.7.553 7.7.254 7.7.256 7.7.25

 000.0----

¹H NMR of **5ca** (500 MHz, CDCl₃), ¹³C NMR of **5ca** (125 MHz, CDCl₃) and ¹⁹F NMR of **5ca** (471 MHz, CDCl₃)

S77

¹H NMR of **5ea** (500 MHz, CDCl₃), ¹³C NMR of **5ea** (125 MHz, CDCl₃) and ¹⁹F NMR of **5ea** (471 MHz, CDCl₃)

¹H NMR of 5ga (500 MHz, CDCl₃) and ¹³C NMR of 5ga (125 MHz, CDCl₃)

¹H NMR of **5ha** (500 MHz, CDCl₃) and ¹³C NMR of **5ha** (125 MHz, CDCl₃)

---0.000

S85

¹H NMR of **5ae** (500 MHz, CDCl₃), ¹³C NMR of **5ae** (125 MHz, CDCl₃) and ¹⁹F NMR of **5ae** (471 MHz, CDCl₃)

S86

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm) 8.405 8.83393 8.83393 8.83393 8.83393 8.83393 8.83393 8.83393 8.83393 8.8339 8.8359 8.

¹H NMR of **5ah** (500 MHz, CDCl₃) and ¹³C NMR of **5ah** (125 MHz, CDCl₃)

8,419 2,8429 2,8429 2,8439 2,8439 2,8439 2,413 2,413 2,413 2,413 2,413 2,413 2,413 2,413 2,413 2,414 2,414 2,114 2 -2.407

