Supporting Information

Photoredox Trifluoromethylation of Isocyanides to Access 2-Trifluoromethylated Quinolines and Indoles

Jin Wang,*† Yaohui Liu,† Jinhai Xu, Peiyuan Li, Xiaoxi Xu, Shuo Zhang, Jie Yang, and Xianxiu Xu*

College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China.

Table of Contents

I. General information	1
II. Optimization of reaction conditions for quinoline compounds	1
III. Preparation and analytical data of quinoline 3	5
IV. Optimization of reaction conditions for indole compounds	13
V. Preparation and analytical data of indole 5	15
VI. Scale-up experiment	23
VII. Synthetic utility of quinolines and indoles	23
VIII. Mechanistic investigation	27
IX. X-ray Crystallographic Data of compounds 3a and 5a	34
X. NMR spectra of compounds 3, 5, 6, 7, 8 and 9	37

I. General information

All reagents were commercially available and used without further purification, unless otherwise indicated. The *ortho*-vinylphenylisocyanides **1** and **4** were synthesized based on reported literature (*Org. Chem. Front.* **2022**, *9*, 6484; *Chem. Commun.*, **2023**, *59*, 14595-14598). Chromatography was carried out on flash silica gel (300–400 mesh). All reactions were monitored by TLC, performed on glass plates with precoated silica gel 60 (F254). ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were measured on a 400 MHz Bruker instrument, with TMS as the internal standard. All chemical shifts are reported in ppm scale. High-resolution mass spectra (HRMS) were acquired using a Bruker microTOF II focusing spectrometer (ESI). UV-Vis analyses were conducted on a SHIMADZU UV-2700 220V, CH Spectrophotometer using a 1.0 cm path length quartz cuvette. The photochemical reaction was performed in the RLH-18CU 8-position photoreaction system.

II. Optimization of reaction conditions for quinoline compounds

MeO NC	+ CF3	DABCO 410 nm, 30℃, air	MeO N CF ₃
1a	2		3a
Entry	1a : 2	Solvent	Yield(%) ^[b]
1	1:3.0	THF	79
2	1:3.0	CH ₃ CN	70
3	1:3.0	DMF	68
4	1:3.0	1,4-dioxane	65
5	1:3.0	CH ₃ OH	46
6	1:3.0	DCE	53

 Table 1. Optimization of reaction solvent ^[a].

7	1:3.0	DMSO	23
8 ^[c]	1:3.0	Toluene	37
9	1:3.0	DMF+THF	52
10 ^[d]	1:3.0	THF	54
11 ^[e]	1:3.0	THF	76
12 ^[f]	1:3.0	THF	76
13 ^[g]	1:3.0	THF	76

a) Reaction conditions: **1a** (0.2 mmol), **2** (0.6 mmol), DABCO (0.6 mmol) and solvent (2 mL) were reacted in a schlenk tube under 410 nm LED light at 30 °C for 3 h. b) Determined by ¹H NMR using CH_2Br_2 (0.2 mmol) as internal standard. c) 10 h. d) Under N₂ atmosphere. e) Using Umemoto's reagent as CF₃ reagent. f) Using CF₃I as CF₃ reagent. g) Using CF₃SO₂Cl as CF₃ reagent.

Table 2. Optimization of reaction temperatur	re ^[a] .
--	---------------------

MeO NC	+ CF3	DABCO, THF 410 nm, air	N CF3
1a	2		3a
Entry	1a : 2	Temperature (°C)	Yield (%) ^[b]
1	1:3.0	20	70
2	1:3.0	30	79
3	1:3.0	40	71
4	1:3.0	50	69
5	1:3.0	60	44

a) Reaction conditions: **1a** (0.2 mmol), **2** (0.6 mmol), DABCO (0.6 mmol) and solvent (2 mL) were reacted in a schlenk tube under 410 nm LED light for 3 h. b) Determined by ¹H NMR using CH_2Br_2 (0.2 mmol) as internal standard.

Table 3. Optimization of Togni's reagent amount ^[a].

MeO NC	+ CF3	DABCO, THF 410 nm, 30℃, air	CF3
1a	2		3a
Entry	1a : 2	Temperature (°C)	Yield (%) ^[b]
1	1:1.0	30	40
2	1:1.5	30	41
3	1:2.0	30	58
4	1:3.0	30	79
5	1:4.0	30	70

a) Reaction conditions: **1a** (0.2 mmol), **2** (x mmol), DABCO (0.6 mmol) and solvent (2 mL) were reacted in a schlenk tube under 410 nm LED light at 30 °C for 3 h. b) Determined by ¹H NMR using CH_2Br_2 (0.2 mmol) as internal standard.

MeO	+ CF3	base, THF 410 nm, 30℃, air	MeO N CF ₃
1a	2		3a
Entry	1a:2	Base	Yield (%) ^[b]
1 ^[c]	1:3.0	K ₂ HPO ₄	72
2 ^[c]	1:3.0	t-BuOK	75
3 ^[c]	1:3.0	DABCO	77
4	1:3.0	NaOH	44
5	1:3.0	Cs_2CO_3	45
6	1:3.0	NaH	42
7	1:3.0	DMAP	55
8	1:3.0	<i>t</i> -BuONa	46
9	1:3.0	t-BuOK	65
10	1:3.0	DBU	59
11	1:3.0	K ₂ HPO ₄	72
12	1:3.0	Et ₃ N	39
13	1:3.0	NMM	64
14	1:3.0	Na ₂ CO ₃	48
15	1:3.0	DABCO	79

 Table 4. Optimization of base [a].

16 ^[d]	1:3.0	none	17

a) Reaction conditions: **1a** (0.2 mmol), **2** (0.6 mmol), base (0.6 mmol) and solvent (2 mL) were reacted in a schlenk tube under 410 nm LED light at 30 °C for 3 h. b) Determined by ¹H NMR using CH₂Br₂ (0.2 mmol) as internal standard. c) Add 1 mol% photocatalyst Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆. d) Unreacted Togni's reagent **2** was filtered off upon work-up.

 Table 5. Optimization of base amount ^[a].

MeO NC	+ CF3	DABCO, THF 410 nm, 30℃, air	N CF3
1a	2		3a
Entry	Base	Base amount	Yield(%) ^[b]
1	DABCO	1.5 eq	50
2	DABCO	2.0 eq	65
3	DABCO	3.0 eq	79
4	DABCO	4.0 eq	57

a) Reaction conditions: **1a** (0.2 mmol), **2** (0.6 mmol), DABCO (x eq) and solvent (2 mL) were reacted in a schlenk tube under 410 nm LED light at 30 °C for 3 h. b) Determined by ¹H NMR using CH_2Br_2 (0.2 mmol) as internal standard.

Table 6. Optimization of wavelength ^[a].

MeO NC	+ CF3	DABCO(3eq), THF 410 nm, 30℃, air	N CF3
1a	2		3a
Entry	1a:2	Wavelength (nm)	Yield(%) ^[b]
1	1:3.0	365	61
2	1:3.0	390	59
3	1:3.0	410	79
4	1:3.0	430	56
5	1:3.0	450	65
6 ^[c]	1:3.0	dark	0
		4	

a) Reaction conditions: **1a** (0.2 mmol), **2** (0.6 mmol), DABCO (0.6 mmol) and solvent (2 mL) were reacted in a schlenk tube under different wavelength LED light at 30 °C for 3 h. b) Determined by ¹H NMR using CH_2Br_2 (0.2 mmol) as internal standard. c) Unreacted Togni's reagent **2** was filtered off upon work-up.

III. Preparation and analytical data of quinoline 3

Typical synthetic procedure (with 3a as an example)

1-Isocyano-4-methoxy-2-(1-phenylvinyl)benzene **1** (0.2 mmol, 47 mg), Togni's reagent **2a** (0.6 mmol, 3.0 eq, 190 mg) and DABCO (0.6 mmol, 3.0 eq, 47.1 mg) were dissolved in 2.0 mL THF in a schlenk tube. The reaction was placed in the RLH-18CU 8-position photoreaction system, irradiated with a 410 nm light source, and heated up at 30 °C for 3 h, until the complete consumption of isocyanide **1** as monitored by TLC. After this time, the mixture was quenched with H₂O and extracted with CH₂Cl₂ (3 × 20mL). The organic layers were combined, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (PE/EA=20:1) to give 6-methoxy-4-phenyl-2- (trifluoromethyl) quinoline **3a** (46.8 mg, 79 %).

Analytical data of quinoline 3

6-methoxy-4-phenyl-2-(trifluoromethyl)quinoline (3a). Eluent: PE/EA (20:1), White solid, 46.8 mg, 79% yield, m.p.: 75 – 77 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 9.3 Hz, 1H), 7.62 (s, 1H), 7.58 – 7.49 (m, 5H), 7.44 (dd, J = 9.3, 2.8 Hz, 1H), 7.21 (d, J = 2.8 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 149.0, 145.0 (q, J = 34.2 Hz), 143.8, 137.4, 131.8, 129.1, 128.9, 128.8, 128.6, 123.3, 121.8 (q, J = 273.0 Hz), 117.3 (q, J = 2.1 Hz), 103.3, 55.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -67.1. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₇H₁₃F₃NO⁺ 304.0944; found 304.0947.

6-methyl-4-phenyl-2-(trifluoromethyl)quinolone (3b). Eluent: PE/EA (20:1) , Colorless oil, 32.5 mg, 57% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.5 Hz, 1H), 7.72 (s, 1H), 7.67 – 7.63 (m, 2H), 7.58 – 7.49 (m, 5H), 2.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 146.5, 146.4 (q, J = 34.6 Hz), 138.9, 137.4, 132.9, 130.2, 129.5, 128.9, 128.8, 127.4, 124.5, 123.2 (q, J = 274.3 Hz), 117.1 (q, J = 2.9 Hz), 22.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -67.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₃F₃N⁺ 288.0995; found 288.1009.

6-(tert-butyl)-4-phenyl-2-(trifluoromethyl)quinolone (3c). Eluent: PE/EA (20:1), White oil, 35.6 mg, 53% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 9.0 Hz, 1H), 7.87 – 7.80 (m, 2H), 7.56 (s, 1H), 7.51 – 7.43 (m, 5H), 1.26 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 151.7, 150.5, 146.9 (q, *J* = 34.1 Hz), 146.4, 137.4, 130.0, 129.6, 129.4, 128.9, 128.8, 127.0, 121.8 (q, *J* = 273.5 Hz), 120.7, 117.0 (q, *J* = 2.3 Hz), 35.3, 31.0. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.3. **HRMS** (**ESI**) m/z: [M+H] ⁺ calcd for C₂₀H₁₉F₃N⁺ 330.1464; found 330.1467.

4,6-diphenyl-2-(trifluoromethyl)quinolone (3d). Eluent: PE/EA (20:1), Bright yellow solid, 47.6 mg, 71% yield, m.p.: 171 - 173 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 8.8 Hz, 1H), 8.17 (d, J = 2.0 Hz, 1H), 8.10 (dd, J = 8.8, 2.0 Hz, 1H), 7.71 (s, 1H), 7.65 - 7.55 (m, 7H), 7.47 (t, J = 7.4 Hz, 2H), 7.42 - 7.40 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 151.0, 147.3 (q, J = 34.2 Hz), 147.2, 141.4, 140.0, 137.1, 130.9, 130.4, 129.5, 129.1, 129.0, 128.9, 128.1, 127.6, 127.5, 123.4, 121.7 (q, J = 273.6 Hz), 117.4 (q, J = 2.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.4. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₂₂H₁₅F₃N⁺ 350.1151; found 350.1140.

6-fluoro-4-phenyl-2-(trifluoromethyl)quinolone (3e). Eluent: PE/EA (20:1), White solid, 32.0 mg, 55% yield, m.p.: 98 – 100 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (dd, J = 10.1, 5.5 Hz, 1H), 7.70 (s, 1H), 7.64 – 7.55 (m, 5H), 7.53 – 7.48 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 161.8 (d, J = 249.7 Hz), 150.4 (d, J = 5.9 Hz), 147.0 (q, J = 34.7 Hz), 144.9, 136.7, 133.2 (d, J = 9.4 Hz), 129.3, 129.0, 128.5 (d, J = 9.9 Hz), 121.5 (q, J = 273.7 Hz), 121.1 (d, J = 25.9 Hz), 117.6, 109.4 (d, J = 23.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -108.9, -67.5. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₆H₁₀F₄N⁺ 292.0744; found 292.0750.

6-chloro-4-phenyl-2-(trifluoromethyl)quinolone (3f). Eluent: PE/EA (20:1), White solid, 38.0 mg, 62% yield, m.p.: 94 – 96 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 9.0 Hz, 1H), 7.95 (d, *J* = 2.3 Hz, 1H), 7.76 (dd, *J* = 9.0, 2.3 Hz, 1H), 7.70 (s, 1H), 7.63 – 7.47 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 150.2, 147.8 (q, *J* = 30.0 Hz), 146.2, 136.5, 134.9, 132.1, 131.6, 129.4, 129.3, 129.0, 128.1, 124.7, 121.5 (q, *J* = 273.8 Hz), 117.8 (q, *J* = 2.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.6. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₆H₁₀ClF₃N⁺ 308.0448; found 308.0443.

6-bromo-4-phenyl-2-(trifluoromethyl)quinolone (3g). Eluent: PE/EA (20:1), White solid, 52.2 mg, 78% yield, m.p.: 81 – 83 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.20 – 8.11 (m, 2H), 7.90 (d, J = 9.0 Hz, 1H), 7.69 (s, 1H), 7.62 – 7.47 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 147.9 (q, J = 34.6 Hz), 146.4, 136.4, 134.2, 132.1, 129.4, 129.3, 129.0, 128.5, 128.1, 123.2, 121.5 (q, J = 273.8 Hz), 117.8 (q, J = 2.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.6. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₆H₁₀BrF₃N⁺ 351.9943; found 351.9932.

ethyl-4-phenyl-2-(trifluoromethyl)quinoline-6-carboxylate (3h). Eluent: PE/EA (20:1), White solid, 47.4 mg, 67% yield, m.p.: 162 – 164 °C. ¹H NMR (400 MHz,

CDCl₃) δ 8.75 (d, *J* = 1.8 Hz, 1H), 8.41 (dd, *J* = 8.8, 1.8 Hz, 1H), 8.34 – 8.32 (m, 1H), 7.74 (s, 1H), 7.64 – 7.50 (m, 5H), 4.41 (q, *J* = 7.1 Hz, 2H), 1.40 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 165.8, 152.5, 149.6, 149.3 (q, *J* = 34.6 Hz), 136.5, 130.8, 130.4, 130.0, 129.6, 129.5, 129.0, 128.9, 126.7, 121.4 (q, *J* = 274.0 Hz), 117.7 (q, *J* = 2.3 Hz), 61.6, 14.3. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.7. **HRMS (ESI)** m/z: [M+H] ⁺ calcd for C₁₉H₁₅F₃NO₂⁺ 346.1049; found 346.1030.

7-bromo-4-phenyl-2-(trifluoromethyl)quinolone (3i). Eluent: PE/EA (20:1), White oil, 51.2 mg, 54% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 1.5 Hz, 1H), 7.86 (d, *J* = 9.0 Hz, 1H), 7.73 – 7.69 (m, 2H), 7.60 – 7.54 (m, 3H), 7.53 – 7.48 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 151.2, 148.5 (q, *J* = 34.5 Hz), 148.4, 136.6, 132.7, 132.1, 129.4, 129.3, 129.0, 127.3, 126.1, 125.1, 121.4 (q, *J* = 273.9 Hz), 117.3 (q, *J* = 2.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.7. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₆H₁₀BrF₃N⁺ 351.9943; found 351.9945.

5,7-dimethyl-4-phenyl-2-(trifluoromethyl)quinolone (3j). Eluent: PE/EA (20:1), White solid, 43.6 mg, 73% yield, m.p.: $123 - 125 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.49 – 7.43 (m, 4H), 7.34 – 7.31 (m, 2H), 7.24 (s, 1H), 2.52 (s, 3H), 2.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.0, 149.3, 146.1 (q, *J* = 34.2 Hz), 141.6, 140.5, 135.3, 134.1, 128.6, 128.2, 128.1, 125.1, 121.6 (q, *J* = 273.7 Hz), 118.3 (q, *J* = 2.6 Hz), 24.2, 21.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -67.5. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₈H₁₅F₃N⁺ 302.1151; found 302.1161.

8-methyl-4-phenyl-2-(trifluoromethyl)quinolone (3k). Eluent: PE/EA (20:1), White oil, 46.3 mg, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.5 Hz, 1H), 7.68 – 7.66 (m, 2H), 7.58 – 7.50 (m, 6H), 2.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 146.8, 146.2 (q, *J* = 34.2 Hz), 138.7, 137.7, 130.5, 129.5, 128.8, 128.7, 128.2, 127.4, 123.7, 121.8 (q, *J* = 273.5 Hz), 116.7 (q, *J* = 2.2 Hz), 18.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -67.4. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₇H₁₃F₃N⁺ 288.0995; found 288.0988.

4-(4-methoxyphenyl)-2-(trifluoromethyl)quinolone (3l). Eluent: PE/EA (20:1), White solid, 28.5 mg, 47% yield, m.p.: 85 - 87 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 8.5 Hz, 1H), 8.04 (d, *J* = 8.5 Hz, 1H), 7.94 - 7.77 (m, 1H), 7.69 - 7.54 (m, 2H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 8.5 Hz, 2H), 3.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.3, 150.6, 147.5 (q, *J* = 34.2 Hz), 130.9, 130.5, 130.5, 130.2, 130.2, 128.4, 125.9, 121.7 (q, *J* = 273.7 Hz), 116.9 (q, *J* = 2.3 Hz), 114.3, 113.7, 55.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -67.5. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₇H₁₃F₃NO⁺ 304.0944; found 304.0935.

4-(p-tolyl)-2-(trifluoromethyl)quinolone (3m). Eluent: PE/EA (20:1), Colorless oil, 39.1 mg, 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 8.4 Hz, 1H), 8.02 (d, *J* = 7.1 Hz, 1H), 7.82 (t, *J* = 8.4 Hz, 1H), 7.67 (s, 1H), 7.64 – 7.59 (m, 1H), 7.46 – 7.41 (m, 2H), 7.39 – 7.36 (m, 2H), 2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.0, 147.8, 147.5 (q, *J* = 34.2 Hz), 139.1, 134.2, 130.5, 129.5, 129.4, 128.5, 127.5, 126.0, 121.7 (q, *J* = 273.7 Hz), 121.5, 116.9 (q, *J* = 2.3 Hz), 21.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -67.5. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₇H₁₃F₃N⁺ 288.2995; found 288.0981.

2,4-bis(trifluoromethyl)quinolone (3n). Eluent: PE/EA (20:1), Bright yellow oil, 35.5 mg, 66% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J* = 8.2 Hz, 1H), 8.23 (d, *J* = 7.5 Hz, 1H), 8.03 (s, 1H), 7.97 – 7.90 (m, 1H), 7.86 – 7.82 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 147.5 (q, *J* = 35.6 Hz), 136.5 (q, *J* = 32.5 Hz), 131.6, 131.1, 130.5, 124.2, 124.0 (q, *J* = 2.4 Hz), 123.8, 120.6 (q, *J* = 186.3 Hz), 114.2 – 114.0 (m). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.7, -61.5. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₁H₁₁F₆N⁺ 266.0399; found 266.0410.

4-cyclohexyl-2-(trifluoromethyl)quinoline (30). Eluent: PE/EA (20:1), Yellow oil, 39.5 mg, 71% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.4 Hz, 1H), 8.15 (d, J = 8.5 Hz, 1H), 7.79 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 7.67 (ddd, J = 8.4, 6.8, 1.3 Hz, 1H), 7.61 (s, 1H), 3.43 – 3.36 (m, 1H), 2.12 – 1.83 (m, 5H), 1.66 – 1.51 (m, 4H), 1.36 – 1.32 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 147.9 (q, J = 33.7 Hz), 147.4, 131.1, 130.0, 128.1, 127.5, 123.0, 121.8 (q, J = 273.7 Hz), 113.1 (q, J = 2.2 Hz), 39.2, 33.5,

26.8, 26.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -67.5. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₆H₁₇F₃N⁺ 280.1308; found 280.1295.

4-phenyl-2-(trifluoromethyl)benzo[g]quinoline (**3p**). Eluent: PE/EA (20:1) , Colorless oil, 35.4 mg, 55% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.14 – 8.02 (m, 2H), 7.90 (d, J = 7.8 Hz, 1H), 7.74 – 7.70 (m, 2H), 7.58 – 7.52 (m, 4H), 7.46 – 7.40 (m, 2H), 7.20 (t, J = 7.8 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 150.4, 149.4, 146.1 (q, J = 34.5Hz), 141.8, 133.5, 132.8, 129.5, 129.1, 128.8, 128.7, 128.5, 128.4, 128.1, 127.7, 126.0, 125.4, 121.7 (q, J = 273.3 Hz), 120.2 (q, J = 2.5 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.3. **HRMS (ESI)** m/z: [M+H] ⁺ calcd for C₂₀H₁₃F₃N⁺ 324.0995; found 324.0986.

IV. Optimization of reaction conditions for indole compounds

+ (CF_3 t -BuOK , 365 nm, 3	$\xrightarrow{\text{MeOH}}_{0^{\circ}\mathbb{C}, \text{ air,}} \xrightarrow{N}_{H} CF_3$
4a	2	5a
Entry	4a : 2	Yield(%) ^[b]
1	1:1.0	51
2	1:1.5	48
3	1:2.0	56
4	1:3.0	62
5	1:4.0	60

 Table 7. Optimization of Togni's reagent amount ^[a].

a) Reaction conditions: **4a** (0.2 mmol), **2** (x mmol), *t*-BuOK (0.3 mmol) and MeOH (2 mL) were reacted in a schlenk tube under 365 nm LED light at 30 °C for 1 h. b) Determined by ¹H NMR using CH_2Br_2 (0.2 mmol) as internal standard.

 Table 8. Optimization of reaction temperature [a].

NC	+ 0 -	<i>t</i> -BuOK , MeOH → 365 nm, 30℃, air,	CF ₃
4a	2		5a
Entry	4a : 2a	Temperature (°C)	Yield (%) ^[b]
1	1:3.0	10	46
2	1:3.0	20	56
3	1:3.0	30	62
4	1:3.0	40	54
5	1:3.0	50	50

a) Reaction conditions: **4a** (0.2 mmol), **2** (0.6 mmol), *t*-BuOK (0.3 mmol) and MeOH (2 mL) were reacted in a schlenk tube under 365 nm LED light at different temprature for 1 h. b) Determined by ¹H NMR using CH₂Br₂ (0.2 mmol) as internal standard.

 Table 9. Optimization of base [a].

NC	+ (, , , , , , , , , , , , , , , , , , ,	base , MeOH 365 nm, 30℃, air,	CF ₃
4a	2		5a
Entry	4a : 2	Base	Yield (%) ^[b]
1	1:3.0	t-BuOK	62
2	1:3.0	<i>t</i> -BuONa	51
3	1:3.0	t-BuOLi	46
4	1:3.0	Cs_2CO_3	40
5	1:3.0	Na ₂ CO ₃	33
6	1:3.0	K ₂ HPO ₄	45
7	1:3.0	DMAP	n.d.
8	1:3.0	DBU	n.d.
9	1:3.0	DABCO	21
10	1:3.0	NaH	40
11	1:3.0	NMM	33

a) Reaction conditions: **4a** (0.2 mmol), **2** (0.6 mmol), base (0.3 mmol) and MeOH (2 mL) were reacted in a schlenk tube under 365 nm LED light at 30 °C for 1 h. b) Determined by ¹H NMR using CH_2Br_2 (0.2 mmol) as internal standard.

Table 10.	Optimization	of base	amount	[a]	•
-----------	--------------	---------	--------	-----	---

NC	+ CF ₃	<i>t</i> -BuOK , MeOH → 365 nm, 30℃, air,	CF ₃
4a	2		5a
Entry	Base	Base amount	Yield (%) ^[b]
1	t-BuOK	1.5 eq	62
2	t-BuOK	2.0 eq	70
3	t-BuOK	3.0 eq	86(82 ^[c])
4 ^[d]	t-BuOK	3.0 eq	75
5 ^[e]	t-BuOK	3.0 eq	n.d.
6 ^[f]	t-BuOK	3.0 eq	<20

a) Reaction conditions: **4a** (0.2 mmol), **2** (0.6 mmol), *t*-BuOK (x mmol) and MeOH (2 mL) were reacted in a schlenk tube under 365 nm LED light at 30 °C for 1 h. b)

Determined by ¹H NMR using CH₂Br₂ (0.2 mmol) as internal standard. c) Isolated yield.

d) Under N₂. e) No light irradiation. f) Under natural light irradiation. **Table 11.** Optimization of wavelength ^[a].

NC	+ () - CF ₃	t-BuOK , MeOH 30℃, air,	CF ₃
4a	2		5a
Entry	4a : 2	Wavelength (nm)	Yield(%) ^[b]
1	1:3.0	365	86(82 ^[c])
2	1:3.0	390	61
3	1:3.0	410	40
4	1:3.0	430	55

a) Reaction conditions: **4a** (0.2 mmol), **2** (0.6 mmol), *t*-BuOK (0.6 mmol) and MeOH (2 mL) were reacted in a schlenk tube under different wavelength LED light at 30 °C for 1 h. b) Determined by ¹H NMR using CH_2Br_2 (0.2 mmol) as internal standard. c) Isolated yield.

V. Preparation and analytical data of indole 5

Typical synthetic procedure (with 5a as an example)

(*E*)-1-isocyano-2-styrylbenzene **4** (0.2 mmol, 41.1 mg), Togni's reagent **2** (0.6 mmol, 3.0 eq, 190 mg) and *t*-BuOK (0.6 mmol, 3.0 eq, 73.2 mg) were dissolved in 2.0 mL CH₃OH in a schlenk tube. The reaction was placed in the RLH-18CU 8-position photoreaction system, irradiated with a 360 nm light source, and heated up at 30 °C for

1 h, until the complete consumption of isocyanide **4** as monitored by TLC. After this time, the mixture was quenched with H_2O and extracted with CH_2Cl_2 (3 × 20mL). The organic layers were combined, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (PE/EA=10:1) to give 3-(methoxy(phenyl)methyl)-2-(trifluoromethyl)-1H-indole **5a** (40.1 mg, 82 %).

Analytical data of indole 5

3-(methoxy(phenyl)methyl)-2-(trifluoromethyl)-1H-indole (5a). Eluent: PE/EA (10:1), White solid, 40.4 mg, 82% yield, m.p.: 105 – 107 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (br.s, 1H), 7.77 (d, *J* = 8.2 Hz, 1H), 7.47 (d, *J* = 7.6 Hz, 2H), 7.38 – 7.17 (m, 5H), 7.08 (t, *J* = 7.5 Hz, 1H), 5.81 (s, 1H), 3.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 135.4, 128.2, 127.2, 126.4, 125.5, 124.9, 123.0 (q, *J* = 36.6 Hz), 122.9, 121.8 (q, *J* = 267.8 Hz), 121.0, 117.9 (q, *J* = 3.0 Hz), 111.6, 77.5, 56.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.0. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₇H₁₅F₃NO⁺ 306.1100; found 306.1084.

5-methoxy-3-(methoxy(phenyl)methyl)-2-(trifluoromethyl)-1H-indole (5b). Eluent: PE/EA (10:1), White oil, 39.2 mg, 57% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (br.s, 1H), 7.47 (d, J = 7.5 Hz, 2H), 7.31 (t, J = 7.8 Hz, 3H), 7.23 (t, J = 7.3 Hz, 1H), 7.13 (s, 1H), 6.94 (d, J = 8.9 Hz, 1H), 5.78 (s, 1H), 3.73 (s, 3H), 3.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 141.2, 130.5, 128.2, 127.3, 126.4, 126.0, 123.1 (q, J = 36.1 Hz), 121.7 (q, J = 267.4 Hz), 117.3 (q, J = 2.3 Hz), 116.1, 112.4, 103.4, 77.4, 56.9, 55.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.1. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₈H₁₇F₃NO₂⁺ 336.1206; found 336.1208.

4-(methoxy(phenyl)methyl)-5-methyl-2-(trifluoromethyl)-1H-indole (5c). Eluent: PE/EA (10:1), White solid, 26.4 mg, 54% yield, m.p.: 100 – 102 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.32 (br.s, 1H), 7.53 (s, 1H), 7.46 (d, J = 7.5 Hz, 2H), 7.36 – 7.18 (m, 4H), 7.09 (d, J = 8.3 Hz, 1H), 5.78 (s, 1H), 3.40 (s, 3H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 133.8, 130.4, 128.2, 127.2, 126.8, 126.4, 125.7, 123.1 (q, J = 36.7 Hz), 122.2, 121.8 (q, J = 267.6 Hz), 117.2 (q, J = 2.7 Hz), 111.3, 77.5, 57.0, 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.0. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₈H₁₇F₃NO⁺ 320.1257; found 320.1268.

5-chloro-3-(methoxy(phenyl)methyl)-2-(trifluoromethyl)-1H-indole (5d). Eluent: PE/EA (10:1), White solid, 42.1 mg, 67% yield, m.p.: 121 – 123 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (br.s, 1H), 7.77 (s, 1H), 7.44 (d, J = 7.5 Hz, 2H), 7.35 – 7.27 (m, 3H), 7.25 – 7.21 (m, 2H), 5.76 (s, 1H), 3.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 133.7, 128.4, 127.5, 126.8, 126.4, 126.3, 125.6, 124.1 (q, J = 37.2 Hz), 122.3, 121.4 (q, J = 267.8 Hz), 117.8 (q, J = 2.8 Hz), 112.8, 77.4, 57.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.3. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₇H₁₄ClF₃NO⁺ 340.0711; found 340.0704.

5-bromo-3-(methoxy(phenyl)methyl)-2-(trifluoromethyl)-1H-indole (5e). Eluent: PE/EA (10:1), White solid, 25.0 mg, 33% yield, m.p.: 189 – 191 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.52 (br.s, 1H), 7.95 (s, 1H), 7.44 (d, J = 7.7 Hz, 2H), 7.40 – 7.29 (m, 4H), 7.24 (d, J = 4.0 Hz, 1H), 5.77 (s, 1H), 3.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 134.0, 128.4, 128.1, 127.5, 127.0, 126.3, 125.3, 123.9 (q, J = 37.2 Hz), 121.4 (q, J = 268.0 Hz), 117.6 (q, J = 2.8 Hz), 114.4, 113.2, 77.4, 57.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.3. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₇H₁₄BrF₃NO⁺ 384.0205; found 384.0210.

methyl-3-(methoxy(phenyl)methyl)-2-(trifluoromethyl)-1H-indole-5-carboxylate (5f). Eluent: PE/EA (10:1), White solid, 40.4 mg, 62% yield, m.p.: 191 – 193 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (br.s, 1H), 8.59 (s, 1H), 7.99 (d, J = 9.2 Hz, 1H), 7.47 (d, J = 7.7 Hz, 2H), 7.40 (d, J = 8.7 Hz, 1H), 7.31 (t, J = 7.6 Hz, 2H), 7.23 (t, J = 7.3 Hz, 1H), 5.82 (s, 1H), 3.90 (s, 3H), 3.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.54, 140.89, 137.86, 128.36, 127.49, 126.39, 126.12, 125.97, 125.05, 124.1 (q, J = 37.2 Hz), 123.38, 121.4 (q, J = 267.8 Hz), 119.5 (q, J = 2.8 Hz), 111.53, 77.60, 57.12, 52.01. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.4. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₉H₁₇F₃NO₃⁺ 364.1155; found 364.1140.

3-(methoxy(phenyl)methyl)-2,5-bis(trifluoromethyl)-1H-indole (5g). Eluent: PE/EA (10:1), White solid, 49.1 mg, 65% yield, m.p.: 114 – 116 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.59 (br.s, 1H), 8.12 (s, 1H), 7.55 – 7.43 (m, 4H), 7.32 (t, *J* = 7.5 Hz, 2H), 7.23 (d, *J* = 7.3 Hz, 1H), 5.81 (s, 1H), 3.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.71, 136.66, 135.13, 128.5 (q, *J* = 5.1 Hz), 128.4, 127.6, 126.3, 124.4 (q, *J* = 37.3 Hz), 123.6 (q, *J* = 32.2 Hz), 121.7 (q, *J* = 3.4 Hz), 121.4 (q, *J* = 267.9 Hz), 120.9 (q, *J* = 4.6 Hz), 119.2 (q, *J* = 2.7 Hz), 112.2, 77.5, 57.1. ¹⁹F NMR (376 MHz, CDCl₃) δ - 60.8, -57.4. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₈H₁₄F₆NO⁺ 374.0974; found 374.0979.

3-(methoxy(phenyl)methyl)-6-methyl-2-(trifluoromethyl)-1H-indole (5h). Eluent: PE/EA (10:1), White solid, 39.1 mg, 63% yield, m.p.: 102 – 104 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (br.s, 1H), 7.64 (d, *J* = 8.2 Hz, 1H), 7.46 (d, *J* = 7.6 Hz, 2H), 7.30 (t, *J* = 7.3 Hz, 2H), 7.21 (t, *J* = 7.3 Hz, 1H), 7.17 (s, 1H), 6.93 (d, *J* = 8.2 Hz, 1H), 5.79 (s, 1H), 3.41 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.38, 135.93, 135.12, 128.18, 127.19, 126.36, 123.32, 123.05, 122.4 (q, *J* = 37.0 Hz), 122.49, 121.9 (q, *J* = 267.4 Hz), 117.9 (q, *J* = 2.7 Hz), 111.30, 77.42, 56.89, 21.76. ¹⁹F NMR (376 MHz, CDCl₃) δ -56.9. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₈H₁₇F₃NO⁺ 320.1257; found 320.1244.

3-(methoxy(4-methoxyphenyl)methyl)-2-(trifluoromethyl)-1H-indole (5i). Eluent: PE/EA (10:1), White solid, 45.4 mg, 66% yield, m.p.: 141 - 143 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (br.s, 1H), 7.81 (d, *J* = 7.4 Hz, 1H), 7.38 (dd, *J* = 8.3, 3.2 Hz, 3H), 7.29 (t, J = 7.1 Hz, 1H), 7.14 – 7.08 (m, 1H), 6.83 (d, J = 8.8 Hz, 2H), 5.77 (s, 1H), 3.77 (s, 3H), 3.40 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.7, 135.4, 133.6, 127.7, 125.5, 124.9, 123.0, 122.8 (q, J = 37.3 Hz), 121.8 (q, J = 267.6 Hz), 121.0, 118.2 (q, J = 2.7 Hz), 113.6, 111.6, 77.2, 56.9, 55.2. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -57.1. **HRMS** (**ESI**) m/z: [M+H] ⁺ calcd for C₁₈H₁₇F₃NO₂⁺ 336.1206; found 336.1201.

3-(methoxy(p-tolyl)methyl)-2-(trifluoromethyl)-1H-indole (5j). Eluent: PE/EA (10:1), White solid, 43.3 mg, 67% yield, m.p.: 141 – 143 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (br.s, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.41 – 7.32 (m, 3H), 7.29 (t, J = 7.5 Hz, 1H), 7.14 – 7.08 (m, 3H), 5.78 (s, 1H), 3.40 (s, 3H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.3, 136.9, 135.4, 128.9, 126.3, 125.5, 124.9, 123.0, 122.9 (q, J = 37.3 Hz), 121.8 (q, J = 267.8 Hz), 121.0, 118.2 (q, J = 2.8 Hz), 111.6, 77.5, 56.9, 21.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.0. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₈H₁₇F₃NO⁺ 320.1275; found 320.1267.

3-((4-bromophenyl)(methoxy)methyl)-2-(trifluoromethyl)-1H-indole (5k). Eluent: PE/EA (10:1), White oil, 43.2 mg, 56% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 8.46 (br.s, 1H), 7.68 (d, *J* = 8.3 Hz, 1H), 7.39 (t, *J* = 9.3 Hz, 3H), 7.35 – 7.27 (m, 3H), 7.12 – 7.03 (m, 1H), 5.74 (s, 1H), 3.38 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 140.41, 135.44, 131.28, 128.09, 125.24, 125.10, 123.2 (q, *J* = 37.1 Hz), 122.65, 121.7 (q, *J* = 268.0 Hz), 121.20, 121.13, 117.2 (q, *J* = 2.8 Hz), 111.72, 76.68, 56.89. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -57.0. **HRMS (ESI)** m/z: [M+H] ⁺ calcd for C₁₇H₁₄BrF₃NO⁺ 384.0205; found 384.0195.

3-(methoxy(4-(trifluoromethyl)phenyl)methyl)-2-(trifluoromethyl)-1H-indole (51). Eluent: PE/EA (10:1), Bright yellow oil, 42.1 mg, 54% yield. ¹**H** NMR (400 MHz, CDCl₃) δ 8.50 (br.s, 1H), 7.69 (d, *J* = 8.1 Hz, 1H), 7.58 (q, *J* = 8.4 Hz, 4H), 7.41 (d, *J* = 8.3 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.11 (t, *J* = 7.5 Hz, 1H), 5.85 (s, 1H), 3.43 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 145.3, 135.5, 129.4 (q, *J* = 32.1 Hz), 126.6, 125.2, 125.2, 125.1, 124.2 (q, *J* = 270.3 Hz), 123.4 (q, *J* = 37.0 Hz), 122.5, 121.7 (q, *J* = 267.6 Hz), 121.3, 116.9 (q, *J* = 2.5 Hz), 111.8, 77.2, 56.9. ¹⁹**F** NMR (376 MHz, CDCl₃) δ - 62.5, -56.9. **HRMS (ESI)** m/z: [M+H] ⁺ calcd for C₁₈H₁₄F₆NO⁺ 374.0974; found 374.0977.

4-(methoxy(4-nitrophenyl)methyl)-2-(trifluoromethyl)-1H-indole (5m). Eluent: PE/EA (10:1), Bright yellow oil, 46.1 mg, 66% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (br.s, 1H), 8.22 – 8.10 (m, 2H), 8.66 – 8.60 (m, 3H), 7.43 (d, J = 8.3 Hz, 1H), 7.31 (t, J = 7.7 Hz, 1H), 7.15 – 6.99 (m, 1H), 5.87 (s, 1H), 3.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.70, 147.04, 135.47, 127.07, 125.31, 125.01, 123.7 (q, J = 37.1 Hz), 123.45, 122.16, 121.7 (q, J = 267.7 Hz), 121.40, 116.1 (q, J = 2.8 Hz), 111.93, 76.17, 56.90. ¹⁹F NMR (376 MHz, CDCl₃) δ -56.8. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₇H₁₄F₃N₂O₃⁺ 351.0951; found 351.0947.

methyl-2-methoxy-2-(2-(trifluoromethyl)-1H-indol-3-yl)acetate (5n). Eluent: PE/EA (10:1), White solid, 45.0 mg, 78% yield, m.p.: 130 – 132 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.85 (br.s, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.41 (d, J = 8.3 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 5.32 (s, 1H), 3.71 (s, 3H), 3.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 135.2, 125.4, 125.2, 124.1 (q, J = 37.3 Hz), 122.0, 121.6, 121.4 (q, J = 267.9 Hz), 112.1 (q, J = 2.8 Hz), 111.8, 74.4, 57.0, 52.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.6. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₃H₁₃F₃NO₃⁺ 288.0842; found 288.0838.

methyl-2-methoxy-2-(5-methyl-2-(trifluoromethyl)-1H-indol-3-yl)acetate (50). Eluent: PE/EA (10:1), White solid, 42.1 mg, 70% yield, m.p.: 138 - 140 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.55 (br.s, 1H), 7.70 (s, 1H), 7.30 (d, J = 8.4 Hz, 1H), 7.16 (d, J = 8.3 Hz, 1H), 5.26 (s, 1H), 3.71 (s, 3H), 3.39 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 133.5, 131.2, 127.2, 125.6, 124.0 (q, J = 37.2 Hz), 121.4 (q, J = 267.6 Hz), 121.3, 111.8 (q, J = 2.6 Hz), 111.4, 74.4, 57.0, 52.4, 21.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.6. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₄H₁₅F₃NO₃⁺ 302.0999; found 302.0989.

VI. Scale-up experiment

In a 100 mL round bottom flask equipped was added 4-bromo-1-isocyano-2-(1phenylvinyl)benzene (5 mmol, 1.4108 g) **1g**, Togni's reagent **2** (15 mmol, 3.0 eq, 4.7402 g), DABCO (15 mmol, 3.0 eq, 1.6825 g) and THF (5 mL). The reaction (open to air) was placed in a metal bath, irradiated with a 410 nm light source and heated up at 30 °C for 3 h, until the complete consumption of isocyanide **1g** as monitored by TLC. After this time, the mixture was quenched with H₂O and extracted three times with CH₂Cl₂. The organic layers were combined, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (PE/EA=20:1) to give 6-bromo-4-phenyl-2-(trifluoromethyl)quinolone **3g** (1.127 g, 64 %).

VII. Synthetic utility of quinolines and indoles

Ethyl 2,2-difluoro-2-(6-methoxy-4-phenylquinolin-2-yl)acetate (6): 1isocyano-4-methoxy-2-(1-phenylvinyl)benzene 1a (0.2 mmol, 47 mg) and ethyl 2-

bromo-2,2-difluoroacetate **2b** (0.6 mmol, 3.0 eq, 121.1 mg) were dissolved in 2.0 mL CH₃CN in a schlenk tube. The reaction was placed in the RLH-18CU 8-position photoreaction system, irradiated with a 365 nm light source, and heated at 30 °C for 2 h, until the complete consumption of isocyanide **1a** as monitored by TLC. After this time, the mixture was quenched with H₂O and extracted with CH₂Cl₂ (3×20 mL). The organic layers were combined, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (PE/EA=20:1) to give ethyl 2,2-difluoro-2-(6-methoxy-4-phenylquinolin-2-yl)acetate **6**. Yellow oil, 41.8 mg, 59% yield. **1H NMR** (400 MHz, CDCl₃) δ 8.09 (d, J = 9.3 Hz, 1H), 7.68 (s, 1H), 7.60 – 7.48 (m, 5H), 7.42 (dd, J = 9.2, 2.8 Hz, 1H), 7.21 (d, J = 2.8 Hz, 1H), 4.45 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). **1³C NMR** (100 MHz, CDCl₃) δ 163.7 (t, J = 64.8 Hz), 159.1, 148.8, 148.7 (t, J = 56.3 Hz), 143.8, 137.8, 131.9, 129.3, 128.8, 128.7, 127.4 (t, J = 222.6 Hz), 122.8, 117.6 (t, J = 5.2 Hz), 112.8 (t, J = 500.5 Hz), 103.4, 63.2, 55.5, 14.0. ¹⁹F **NMR** (376 MHz, CDCl₃) δ -98.3. **HRMS** (**ESI**) m/z: [M+H] ⁺ calcd for C₂₀H₁₈F₂NO₃⁺ 358.1249; found 358.1206.

Synthesis of indole 7

5-((4-methoxyphenyl)(2-(trifluoromethyl)-1H-indol-3-yl)methyl)morpholine (7): (*E*)-1-isocyano-2-(4-methoxystyryl)benzene 4d (0.2 mmol, 47.1 mg), Togni's reagent 2 (0.6 mmol, 3.0 eq, 190 mg), *t*-BuOK (0.6 mmol, 3.0 eq, 73.2 mg) and morpholine (1.0 mL, 58 eq) were dissolved in 1.0 mL CH₃OH in a schlenk tube. The reaction was placed in the RLH-18CU 8-position photoreaction system, irradiated with a 365 nm light source, and heated up at 30 °C for 1 h, until the complete consumption of isocyanide 4d as monitored by TLC. After this time, the mixture was quenched with H₂O and extracted with CH₂Cl₂ (3 × 20 mL). The organic layers were combined, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (PE/EA=10:1) to give 4-((4-methoxyphenyl)(2-(trifluoromethyl)-1H-indol-3-yl)methyl)morpholine 7. Note: when the quinoline **5a** was used to react with morpholine directly, no product **7** was obtained. Yellow oil, 47.2 mg, 61% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 8.1 Hz, 1H), 8.33 (br.s, 1H), 7.49 (d, *J* = 8.7 Hz, 2H), 7.35 – 7.28 (m, 2H), 7.21 (d, *J* = 7.6 Hz, 1H), 6.79 (d, *J* = 8.7 Hz, 2H), 4.68 (s, 1H), 3.73 (s, 3H), 3.71 (d, *J* = 5.4 Hz, 4H), 2.56 – 2.34 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 135.4, 133.7, 129.3, 125.6, 124.8, 123.7, 122.1 (q, *J* = 36.5 Hz), 121.8 (q, *J* = 267.7 Hz), 120.9, 119.4 (q, *J* = 2.3 Hz), 113.8, 111.7, 67.5, 67.3, 55.2, 52.8.¹⁹F NMR (376 MHz, CDCl₃) δ -56.7. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₂₁H₂₂F₃N₂O₂⁺ 391.1628; found 391.1616.

Synthesis of quinoline 8

6-(4-methoxyphenyl)-4-phenyl-2-(trifluoromethyl)quinoline (8): A round mixture bottom flask was charged with the of 6-bromo-4-phenyl-2-(trifluoromethyl)quinoline 3g (0.2 mmol), K₂CO₃ (0.4 mmol), Pd(PPh₃)₄ (3 %) and (4methoxyphenyl)boronic acid (0.2 mmol) in 1,4-dioxane (2.0 mL). The reaction was kept at 70 °C for 12 h under nitrogen atmosphere. After completion, H₂O (5.0 mL) was added and the mixture was extracted with CH_2Cl_2 (5.0 mL \times 3). The organic layers were combined, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (PE/EA=20:1) to give 6-(4-methoxyphenyl)-4-phenyl-2-(trifluoromethyl)quinoline 8. White solid, 63.2 mg, 84% yield, m.p. $105 - 107 \,^{\circ}\text{C}$. ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, $J = 8.4 \,\text{Hz}$, 1H), 8.13

-8.03 (m, 2H), 7.67 (d, J = 2.1 Hz, 1H), 7.60 -7.51 (m, 7H), 6.99 (d, J = 7.4 Hz, 2H), 3.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 150.7, 147.0 (q, J = 34.2 Hz), 146.9, 140.9, 137.3, 132.3, 130.8, 130.1, 129.5, 129.0, 128.9, 128.6, 127.7, 122.5, 121.7 (q, J = 273.6 Hz), 117.4 (q, J = 2.3 Hz), 114.5, 55.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -67.4. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₂₃H₁₇F₃NO⁺ 380.1257; found 380.1241.

Synthesis of quinoline 9

(*E*)-6-(4-methoxystyryl)-4-phenyl-2-(trifluoromethyl)quinoline (9): To a solution of 6-bromo-4-phenyl-2-(trifluoromethyl)quinoline 3g (0.2 mmol) in dry acetonitrile was added palladium acetate (10 %), tri-*ortho*-tolyl phosphine (20 %), triethylamine (6 eq) and 1-methoxy-4-vinylbenzene (1.2 eq) under nitrogen atmosphere. The reaction was stirred under reflux in oil bath for 16 h. After cooling to room temperature, the crude solution was filtered using celite plug and washed with ethyl acetate. The filtrate was concentrated under vacuum and the resulting mixture was purified by flash column chromatography on silica gel using a mixture of PE/EA = 70/30 as eluent to afford the corresponding (*E*)-6-(4-methoxystyryl)-4-phenyl-2- (trifluoromethyl)quinoline 9. Yellow solid, 51.0 mg, 63% yield, m.p. 121 – 123 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 8.9 Hz, 1H), 8.09 (dd, *J* = 8.9, 2.0 Hz, 1H), 7.88 (d, *J* = 1.9 Hz, 1H), 7.65 (s, 1H), 7.63 – 7.54 (m, 5H), 7.47 (d, *J* = 8.8 Hz, 2H), 7.19 (d, *J* = 16.3 Hz, 1H), 7.06 (d, *J* = 16.3 Hz, 1H), 6.90 (d, *J* = 46.8 Hz), 138.0, 137.3, 130.9, 130.7, 129.5, 129.5, 129.0, 128.9, 128.1, 127.9, 125.5, 123.6, 121.7 (q, *J*

= 273.6 Hz), 120.4, 117.5 (q, J = 2.3 Hz), 114.3, 55.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -67.4. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₂₅H₁₉F₃NO⁺ 406.1413; found 406.1429.

VIII. Mechanistic investigation

Radical trapping experiment

1-Isocyano-4-methoxy-2-(1-phenylvinyl)benzene **1a** (0.2 mmol, 47 mg), Togni's reagent **2** (0.6 mmol, 3.0 eq, 190 mg) and DABCO (0.6 mmol, 3.0 eq, 47.1 mg) and TEMPO (0.6 mmol, 3.0 eq, 93.7 mg) were dissolved in THF (2.0 mL) in a schlenk tube. The reaction was placed in the RLH-18CU 8-position photoreaction system, irradiated with a 410 nm light source, and heated up at 30 °C for 3 h. No desired product **3a** was detected; only a large amount of starting material **1a** was recovered. TEMPO-CF₃ trapping product was formed in 44% as indicated by ¹⁹F NMR with PhCF₃ (0.1 mmol) as internal standard.

1-Isocyano-4-methoxy-2-(1-phenylvinyl)benzene **1a** (0.2 mmol, 47 mg), Togni's reagent **2** (0.6 mmol, 3.0 eq, 190 mg) and DABCO (0.6 mmol, 3.0 eq, 47.1 mg) and

BHT (0.6 mmol, 3.0 eq, 132.2 mg) were dissolved in THF (2.0 mL) in a schlenk tube. The reaction was placed in the RLH-18CU 8-position photoreaction system, irradiated with a 410 nm light source, and heated up at 30 °C for 3 h. No desired product **3a** was detected; only a large amount of starting material **1a** was recovered.

(*E*)-1-isocyano-2-styrylbenzene **4a** (0.2 mmol, 41.1 mg), Togni's reagent **2** (0.6 mmol, 3.0 eq, 190 mg) and *t*-BuOK (0.6 mmol, 3.0 eq, 73.2 mg) and TEMPO (0.6 mmol, 3.0 eq, 93.7 mg) were dissolved in CH₃OH (2.0 mL) in a schlenk tube. The reaction was placed in the RLH-18CU 8-position photoreaction system, irradiated with a 365 nm light source, and heated up at 30 °C for 3 h. No desired product **5a** was detected; only a large amount of starting material **4a** was recovered.

(*E*)-1-isocyano-2-styrylbenzene **4a** (0.2 mmol, 41.1 mg), Togni's reagent **2** (0.6 mmol, 3.0 eq, 190 mg) and *t*-BuOK (0.6 mmol, 3.0 eq, 73.2 mg) and BHT (0.6 mmol, 3.0 eq, 132.2 mg) were dissolved in CH₃OH (2.0 mL) in a schlenk tube. The reaction was placed in the RLH-18CU 8-position photoreaction system, irradiated with a 365 nm light source, and heated up at 30 °C for 3 h. No desired product **5a** was detected; only a large amount of starting material **4a** was recovered.

UV-Vis Absorption Spectroscopy Studies

The UV-Vis absorption spectra of **1a**, **2**, **4a** and base (DABCO or *t*-BuOK) were measured at room temperature in THF or MeOH in an attempt to show a possible shift in absorbance caused by the formation of an EDA complex. The data in Figure S3 and Figure S6 suggested EDA complexes were formed by Togni's reagent **2** and DABCO as well as **2** and *t*-BuOK. On the other hand, no EDA complexes were observed when mixing **1a** and **2**, **1a** and DABCO, **4a** and **2**, **4a** and *t*-BuOK.

Figure S1. UV/Vis spectrum (recorded 0.1 mmol in THF) of 1a, DABCO and 1:1 mixture of 1a and DABCO

Figure S2. UV/Vis spectrum (recorded 0.1 mmol in THF) of 1a, 2 and 1:1 mixture of 1a and 2

Figure S3. UV/Vis spectrum (recorded 0.1 mmol in THF) of 2, DABCO and 1:1 mixture of 2 and DABCO

Figure S4. UV/Vis spectrum (recorded 0.1 mmol in THF) of **4a**, *t*-BuOK and 1:1 mixture of **4a** and *t*-BuOK

Figure S5. UV/Vis spectrum (recorded 0.1 mmol in THF) of 4a, 2 and 1:1 mixture of 4a and 2

Figure S6. UV/Vis spectrum (recorded 0.1 mmol in THF) of 2, *t*-BuOK and 1:1 mixture of 2 and *t*-BuOK

1-Isocyano-4-methoxy-2-(1-phenylvinyl)benzene **1a** (0.2 mmol, 47 mg), Togni's reagent **2** (0.6 mmol, 3.0 eq, 190 mg) and DABCO (0.6 mmol, 3.0 eq, 47.1 mg) were dissolved in 2.0 mL THF in a schlenk tube. Irradiate the reaction with a 410 nm LED light and maintain the temperature at 30 °C. For light-off operations, wrap the entire schlenk tube with tin foil. After given time, 100 μ L the reaction solution was taken and dissolved in CDCl₃ as crude NMR sample. Yields were determined by ¹H-NMR using 1,3,5-trimethoxybenzene as an internal standard.

Reaction time (min)	Light (on/off)	Yield of 3a (%)
0 - 20	on	33

Figure S7. Light on/off Experiments

Proposed mechanism for formation of 2-CF₃ substituted indole 5

Figure S8. Proposed mechanism for indole 5 formation

IX. X-ray Crystallographic Data of compounds 3a, 5a

X-ray Crystallographic Data of compound 3a Sample preparation

30 mg of **3a** was dissolved in CH₂Cl₂ and petroleum ether (500 μ L / 3 mL) and the solvent was evaporated slowly at room atmosphere.

Crystal measurement for compound 3a

Suitable single crystals of complex **3a** were selected and mounted in air onto thin glass fibers. X-ray intensity data were measured at 293K on an Agilent SuperNova CCD-based diffractometer (Cu K α radiation $\lambda = 1.54184$ Å). The raw frame data for the complexes were integrated into SHELX-format reflection files and corrected for Lorentz and polarization effects using SAINT. Corrections for incident and diffracted beam absorption effects were applied using SADABS. None of the crystals showed evidence of crystal decay during data collection. All structures were solved by a combination of direct methods and difference Fourier syntheses and refined against F2 by full-matrix least-squares techniques. Non-hydrogen atoms were refined with anisotropic displacement parameters during the final cycles. Hydrogen atoms bonded to carbon and nitrogen were placed in geometrically idealized positions with isotropic displacement parameters set to 1.2Ueq of the attached atom.

Figure S8. Crystal measurement for compound 3a 3a CCDC 2339671, displacement ellipsoids are drawn at the 30% probability level.

Crystal data and structure refinement for 3a

Empirical formula	C ₁₇ H ₁₂ NF ₃ O
Formula weight	303.28
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	10.6930(7)
b/Å	7.2066(4)
c/Å	19.6695(11)
α/\circ	90.00
---	---
β/°	104.091(7)
$\gamma/^{\circ}$	90.00
Volume/Å ³	1470.13(15)
Z	4
$\rho_{calc}mg/mm^3$	1.370
m/mm ⁻¹	0.954
F(000)	624.0
Crystal size/mm ³	0.25 imes 0.2 imes 0.15
2Θ range for data collection 8.66 to 134.1°	
Index ranges	$-11 \le h \le 12, -6 \le k \le -8, -23 \le l \le 23$
Reflections collected	5973
Independent reflections	2606[R(int) = 0.0320]
Data/restraints/parameters	2606/0/228
Goodness-of-fit on F ²	1.157
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0702, wR_2 = 0.1976$
Final R indexes [all data]	$R_1 = 0.1176, wR_2 = 0.2266$
Largest diff. peak/hole / e Å ⁻³	0.17/-0.21

X-ray Crystallographic Data of compound 5a

Sample preparation

30 mg of **5a** was dissolved in CH₂Cl₂ and petroleum ether (500 μ L / 3 mL) and the solvent was evaporated slowly at room atmosphere.

Crystal measurement for compound 5a

Suitable single crystals of complex **5a** were selected and mounted in air onto thin glass fibers. X-ray intensity data were measured at 113.15 K on an Agilent SuperNova CCD-based diffractometer (Cu K α radiation $\lambda = 1.54184$ Å). The raw frame data for the complexes were integrated into SHELX-format reflection files and corrected for Lorentz and polarization effects using SAINT. Corrections for incident and diffracted beam absorption effects were applied using SADABS. None of the crystals showed evidence of crystal decay during data collection. All structures were solved by a combination of direct methods and difference Fourier syntheses and refined against F2 by full-matrix least-squares techniques. Non-hydrogen atoms were refined with anisotropic displacement parameters during the final cycles. Hydrogen atoms bonded to carbon and nitrogen were placed in geometrically idealized positions with isotropic displacement parameters set to 1.2Ueq of the attached atom.

Figure S9. Crystal measurement for compound 5a

5a CCDC 2339666, displacement ellipsoids are drawn at the 30% probability level.

Empirical formula	C ₁₇ H ₁₄ NOF ₃
Formula weight	305.29
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	14.6371(4)
b/Å	12.8598(5)
c/Å	16.1477(5)
$\alpha/^{\circ}$	90.00
β/°	94.065(3)
$\gamma/^{\circ}$	90.00
Volume/Å ³	3031.84(17)
Z	8
$\rho_{calc}mg/mm^3$	1.338
m/mm ⁻¹	0.926
F(000)	1264.0
Crystal size/mm ³	$0.12\times0.08\times0.05$
2Θ range for data collection	7.88 to 134.14°
Index ranges	$-16 \le h \le 17, -15 \le k \le 11, -19 \le l \le 18$
Reflections collected	13414
Independent reflections	5326[R(int) = 0.0500]
Data/restraints/parameters	5326/36/427
Goodness-of-fit on F ²	1.048
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0735, wR_2 = 0.1975$
Final R indexes [all data]	$R_1 = 0.1056, wR_2 = 0.2268$
Largest diff. peak/hole / e Å ⁻³ 0.44/-0.41	

Crystal data and structure refinement for 3m

X. NMR spectra of compounds 3, 5, 6, 7, 8 and 9

¹³C NMR (100 MHz, CDCl₃) for **3b**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -11 (ppm)

¹H NMR (400 MHz, CDCl₃) for **3c**

^{13}C NMR (100 MHz, CDCl₃) for 3c

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR (376 MHz, CDCl₃) for 3c

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppu)

1H NMR (400 MHz, CDCl₃) for 3d

^{13}C NMR (100 MHz, CDCl₃) for 3d

¹H NMR (400 MHz, CDCl₃) for **3e**

¹³C NMR (100 MHz, CDCl₃) for 3e

¹H NMR (400 MHz, CDCl₃) for **3f**

^{13}C NMR (100 MHz, CDCl₃) for 3f

10 0 -50 -70 -170 -180 -190 -200 -210 -10 -20 -30 -40 -60 -80 -100 f1 (ppm) -120 -160 -110 -130 -140 -150 -90

1H NMR (400 MHz, CDCl₃) for 3g

^{13}C NMR (100 MHz, CDCl_3) for 3g

^{19}F NMR (376 MHz, CDCl₃) for 3g

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

1H NMR (400 MHz, CDCl₃) for 3h

^{13}C NMR (100 MHz, CDCl₃) for 3h

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (pps)

¹H NMR (400 MHz, CDCl₃) for 3i

^{13}C NMR (100 MHz, CDCl₃) for 3i

¹⁹F NMR (376 MHz, CDCl₃) for 3i

1H NMR (400 MHz, CDCl₃) for 3j

^{13}C NMR (100 MHz, CDCl₃) for 3j

¹H NMR (400 MHz, CDCl₃) for 3k

¹³C NMR (100 MHz, CDCl₃) for 3k

1H NMR (400 MHz, CDCl₃) for **3**l

¹³C NMR (100 MHz, CDCl₃) for 31

¹H NMR (400 MHz, CDCl₃) for **3m**

¹³C NMR (100 MHz, CDCl₃) for **3m**

^{19}F NMR (376 MHz, CDCl₃) for 3m

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

1H NMR (400 MHz, CDCl₃) for 3n

¹³C NMR (100 MHz, CDCl₃) for **3n**

¹⁹F NMR (376 MHz, CDCl₃) for 3n

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

1H NMR (400 MHz, CDCl_3) for 3o

¹³C NMR (100 MHz, CDCl₃) for 30

^{19}F NMR (376 MHz, CDCl₃) for 30

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) for **3p**

¹³C NMR (100 MHz, CDCl₃) for 3p

200 190 180 170 160 150 140 130 120 110 100 f1 (ppm) 210 -10 90 60 50 20 10

¹⁹F NMR (376 MHz, CDCl₃) for 3p

WJ230919.31.fid

¹H NMR (400 MHz, CDCl₃) for 5a

210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 80 50 40 30 20 10 0 -10 f1 (ppm)

^{19}F NMR (376 MHz, CDCl₃) for 5a

^{13}C NMR (100 MHz, CDCl₃) for 5b

^{19}F NMR (376 MHz, CDCl₃) for 5b

-57.08

WJ230906.101.fid

¹H NMR (400 MHz, CDCl₃) for 5c

^{13}C NMR (100 MHz, CDCl₃) for 5c

^{19}F NMR (376 MHz, CDCl₃) for 5c

-90 -100 -110 f1 (ppm) 10 0 -10 -20 -30 -40-50 -60 -70 -120 -150 -160 -200 -210 -80 -130 -140 -170 -180 -190

¹H NMR (400 MHz, CDCl₃) for 5d

^{13}C NMR (100 MHz, CDCl₃) for 5d

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) for 5e

^{13}C NMR (100 MHz, CDCl₃) for 5e

¹⁹F NMR (376 MHz, CDCl₃) for 5e

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) for 5f

¹³C NMR (100 MHz, CDCl₃) for 5f

^{19}F NMR (376 MHz, CDCl_3) for 5f

-40 -50 -60 -70 -80

10

0 -10 -20 -30

WJ230901.141.fid -57.38 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

^1H NMR (400 MHz, CDCl₃) for 5g

^{13}C NMR (100 MHz, CDCl_3) for 5g

^{19}F NMR (376 MHz, CDCl₃) for 5g

^{13}C NMR (100 MHz, CDCl₃) for 5h

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) for 5i

^{13}C NMR (100 MHz, CDCl₃) for 5i

^{19}F NMR (376 MHz, CDCl₃) for 5i

^1H NMR (400 MHz, CDCl₃) for 5j

^{13}C NMR (100 MHz, CDCl₃) for 5j

^{19}F NMR (376 MHz, CDCl₃) for 5j

-57.04

WJ230905.181.fid

 $\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

^1H NMR (400 MHz, CDCl₃) for 5k

 ^{13}C NMR (100 MHz, CDCl₃) for 5k

^{19}F NMR (376 MHz, CDCl₃) for 5k

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

^1H NMR (400 MHz, CDCl₃) for 5l

^{13}C NMR (100 MHz, CDCl₃) for 5l

¹H NMR (400 MHz, CDCl₃) for **5m**

¹³C NMR (100 MHz, CDCl₃) for 5m

^{19}F NMR (376 MHz, CDCl₃) for 5m

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

$^1\mathrm{H}$ NMR (400 MHz, CDCl_3) for 5n

^{13}C NMR (100 MHz, CDCl₃) for 5n

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) for **50**

¹³C NMR (100 MHz, CDCl₃) for 50

¹⁹F NMR (376 MHz, CDCl₃) for **50**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

^{1}H NMR (400 MHz, CDCl₃) for 6

^{13}C NMR (100 MHz, CDCl₃) for 6

1H NMR (400 MHz, CDCl₃) for 7

^{13}C NMR (100 MHz, CDCl₃) for 7

^{19}F NMR (376 MHz, CDCl₃) for 7

¹H NMR (400 MHz, CDCl₃) for **8**

^{13}C NMR (100 MHz, CDCl₃) for 8

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR (376 MHz, CDCl₃) for 8

¹H NMR (400 MHz, CDCl₃) for 9

¹³C NMR (100 MHz, CDCl₃) for 9

^{19}F NMR (376 MHz, CDCl₃) for 9

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)