Supporting information for

Modular Synthesis of β -Oxygen-containing Sulfones from Alkenes through Hexatungstate-catalyzed Cascade Hydroxysulfenylation/Selective Oxidation

Jiaoxiong Li,^a Zhibin Zhou,^a Xianghua Zeng*a,^b and Yongge Wei*^b

^aCollege of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P.R. China; E-mail: xianghuazeng@zjxu.edu.cn_

^bKey Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China; E-mail: <u>yonggewei@tsinghua.edu.cn</u>

Contents page 1. General information S2 2. General procedure for preparation of polyoxometalate catalyst S2 S4 3. Optimization of reaction conditions 4. General procedure for oxysulfonylation of alkenes with thiols and **S6** hydrogen peroxide 5. General procedure for synthesis of compound 5 **S6** 6. General procedure for synthesis of compound 7 **S**7 7. Recycling and reuse of catalyst **S**7 8. Radical intermediate trap reaction **S**8 9. Control experiment under N₂ atmosphere **S**8 S9 **10.** Preparation and characterization of $[W_6O_{19}]^3$ -H⁺ species 11. Deuterium labeling experiment S10 12. Oxidation of β -hydroxysulfide S11 13. Kinetic profile of 1a with 2a and H_2O_2 under standard conditions S11 14. Experimental characterization S12 15. Reference S27 16. NMR spectra of products S28

Experimental procedures and analytical data

1. General information

The alkenes, thiols, H_2O_2 , $(NH_4)_6Mo_7O_{24}4H_2O$, $Na_2WO_4.2H_2O$, WO_3 , $(n-Bu)_4NBr$, $W_{10}O_{32}(TBA)_4$, compound **6**, and all commercial reagents were obtained from Energy Chemical, Sinopharm Chemical Reagent Co., Ltd and TCI, and used without further purification. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Varian 400 MHz NMR spectrometer using CDCl₃ as solvent and TMS as an internal standard. Chemical shifts are reported in parts per million (ppm, δ). Reactions were monitored using thin-layer chromatography (TLC) on commercial silica gel plates (GF 254), and were performed under UV light (254 nm). Liquid chromatography was performed using forced flow (flash chromatography) on silica gel (SiO₂, 200 × 300 Mesh) purchased from Huanghai Chemical Co., Ltd. All the new products were further characterized by high resolution mass spectra (ESI-QTOF). IR spectra were recorded on a Nicolet iS10 FT-IR spectrophotometer (KBr pellets) over the region of 400-4000 cm⁻¹. Gas Chromatography (GC) was tested on Agilent 7890B.

2. General procedure for preparation of polyoxomolybdate catalyst

Na₂WO₄.2H₂O + (Bu)₄NBr
$$\xrightarrow{(CH_3CO)_2O, HCI}$$
 [N(Bu)₄]₂W₆O₁₉ \rightarrow [N(Bu)₄]₂W₆O₁₉

A mixture of sodium tungstate dihydrate (16.5 g, 50 mmol), acetic anhydride (20 ml), and *N*,*N*-dimethylformamide (DMF, 15 ml) was heated at 100 °C for 3 h to obtain a white cream. A solution of acetic anhydride (10 ml) and HCl (9 ml, 12 mol/L) in DMF (15 ml) was then added in a drop-wise manner with stirring, and the resulting mixture was filtered to remove the undissolved white solids. A solution of tetrabutylammonium bromide (7.6 g, 23.5 mmol) in methanol (25 ml) was then added to the filtrate with rapid stirring to give a white precipitate, and the resulting suspension was stirred for 5 min and the product subsequently collected by filtration. Recrystallization from hot dimethyl sulfoxide (DMSO) gave the product as colorless solids. (7.7 g, 70%). [N(Bu)₄]₂[W₆O₁₉] (1892): calcd. C 20.31, H 3.84, N 1.48; found C 20.29, H 3.91, N 1.52. IR (KBr pellet): 2964 (s), 2937 (s), 2884 (s), 1634 (m), 1471 (δ CH, m), 1383 (s), 1169 (w), 1105 (w), 1070 (w), 975 (v WO, s), 884 (v WO, s), 811 (s), 590 (v WOW, vs), 450 (s) cm⁻¹. Spectral data were in accordance with the literature.^[1]

$$(NH_4)_6Mo_7O_{24}.4H_2O + (Bu)_4NBr \xrightarrow{H_2O} [N(Bu)_4]_4Mo_8O_{26}$$

To a round-bottomed flask (500 mL) was added (NH₄)₆Mo₇O₂₄4H₂O (18.5g, 15mmol) and H₂O (200 mL), and then a solution of (*n*-Bu)₄NBr (17g, 53 mmol) in 100 mL H₂O was added dropwise within 1 hour. Then the resulting mixture was stirred at room temperature for another three hours and filtered to separate the white powder. Subsequently, the powder was recrystallized three times from acetonitrile to obtain analytically pure [**Mo-1**] (17.5 g, 65%, white solid). [N(Bu)₄]₄[β -Mo₈O₂₆] (2168): calcd. C 35.95, H 6.74, N 2.62; found C 35.85, H 6.70, N 2.51. IR (KBr pellet): 2968 (s), 2944 (s), 2876 (s), 1635 (m), 1491 (δ CH, m), 1484(s), 1464(s), 1376 (s), 1152 (w), 1109 (w), 1060 (w), 949 (v MoO, s), 927 (v MoO, s), 914 (v MoO, s), 854 (w), 806 (s), 663 (v MoOMo, vs), 558 (w) cm⁻¹. Spectral data were in accordance with the literature.^[2]

$$(NH_4)_6Mo_7O_{24}.4H_2O + (Bu)_4NBr \xrightarrow{pH 3\sim 4} [N(Bu)_4]_2Mo_6O_{19}$$

To a round-bottomed flask (500 mL) was added $(NH_4)_6Mo_7O_{24}4H_2O$ (5.0 g, 4mmol) and H₂O (100 mL), and then a solution of $(Bu)_4NBr$ (4.0g, 12 mmol) in 100 mL H₂O was added dropwise within 1 hour. Then, the hydrochloric acid (1M) was added into the muddy solution dropwise under stirring, and the appearance of the precipitates changed from white to yellow. It should be noted that the pH of the solution must be controlled between 3.0 and 4.0. The yellow muddy solution continued to stir for 4 hours. Finally, the yellow precipitates were filtered out, and the resulting yellow solid was placed in the vacuum drying oven at 60 °C for 24 h. IR (KBr pellet): 949 (v Mo=O, vs), 890 (v Mo=O, vs), 653 (v Mo-O-Mo, vs), 572 (v M-O-Mo, w) cm⁻¹. Spectral data were in accordance with the literature.^[3]

3. Optimization of reaction conditions

Ph + $H_2O_2 (5.0 \text{ eq})$ MeCN/EtOH Ph + $H_2O_2 (5.0 \text{ eq})$ Time Ph + $H_2O_2 (5.0 \text{ eq})$ $H_2O_2 (5.0 \text$						
	1a 2a	3a		4a		
Entry	Catalyst	Oxidant	Solvent (V/V)	Tim	3a	4a
		(x equiv.)		e (h)	(%) ^b	(%) ^b
1	$[Mo_8O_{26}][(Bu)_4N]_4$	$H_2O_2(5.0)$	EtOH/H ₂ O (1/1)	8	40	9
2	$[Mo_6O_{19}][(Bu)_4N]_2$	$H_2O_2(5.0)$	EtOH/H ₂ O (1/1)	8	54	15
3	$[W_6O_{19}][(Bu)_4N]_2$	$H_2O_2(5.0)$	EtOH/H ₂ O (1/1)	8	88	5
4	$[W_{10}O_{32}][(Bu)_4N]_4$	$H_2O_2(5.0)$	EtOH/H ₂ O (1/1)	8	71	10
5	WO ₃	$H_2O_2(5.0)$	EtOH/H ₂ O (1/1)	8	30	7
6	Na ₂ WO ₄ .2H ₂ O	$H_2O_2(5.0)$	EtOH/H ₂ O (1/1)	8	35	12
7	$[W_6O_{19}][(Bu)_4N]_2$	$H_2O_2(5.0)$	MeCN	8	65	17
8	$[W_6O_{19}][(Bu)_4N]_2$	$H_2O_2(5.0)$	EtOH	8	36	8
9	$[W_6O_{19}][(Bu)_4N]_2$	$H_2O_2(5.0)$	EtOH/H ₂ O (2/1)	8	78	15
10	$[W_6O_{19}][(Bu)_4N]_2$	$H_2O_2(5.0)$	EtOH/H ₂ O (1/2)	8	80	11
11	$[W_6O_{19}][(Bu)_4N]_2$	H_2O_2 (4.0)	EtOH/H ₂ O (1/1)	8	72	14
12	$[W_6O_{19}][(Bu)_4N]_2$	$H_2O_2(5.0)$	EtOH/H ₂ O (1/1)	10	88	6
13 ^c	$[W_6O_{19}][(Bu)_4N]_2$	$H_2O_2(5.0)$	EtOH/H ₂ O (1/1)	8	67	9
14 ^d	$[W_6O_{19}][(Bu)_4N]_2$	$H_2O_2(5.0)$	EtOH/H ₂ O (1/1)	8	80	17
15	$[W_6O_{19}][(Bu)_4N]_2$	O_2	EtOH/H ₂ O (1/1)	8	trace	-
16	[W ₆ O ₁₉][(Bu) ₄ N] ₂	^t BuOOH		0	75	10
		(5.0)	$EIOH/H_2O(1/1)$	8		
17	-	$H_2O_2(5.0)$	EtOH/H ₂ O (1/1)	8	trace	trace
18	WO ₃	H ₂ O ₂ (5.0)	EtOH/H ₂ O (1/1)	24	41	12

Table S1. Optimization of reaction conditions for 3a^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.21 mmol), catalyst (1 mol%), oxidant (x equiv.), Solvent (1 mL), 25 °C. ^{*b*}Isolated yield. ^{*c*}Catalyst (0.5 mol%). ^{*d*}Catalyst (1.5

mol%).

Ph + $H_2O_2 (3.0 \text{ eq})$ MeCN/H ₂ O Time Ph + $H_2O_2 (3.0 \text{ eq})$ $H_2O_2 (3.0 e$						
1a 2a		За		4a		
entry	catalyst	oxidant	solvent (V/V)	time	3 a	4 a
		(x equiv.)		(h)	(%) ^b	$(\%)^{b}$
1	$[W_6O_{19}][(Bu)_4N]_2$	$H_2O_2(3.0)$	AcOH/H ₂ O(1/4)	12	7	80
2	$[W_{10}O_{32}][(Bu)_4N]_4$	$H_2O_2(3.0)$	AcOH/H ₂ O(1/4)	12	12	73
3	$[Mo_8O_{26}][(Bu)_4N]_4$	$H_2O_2(3.0)$	AcOH/H ₂ O(1/4)	12	16	39
4	$[Mo_6O_{19}][(Bu)_4N]_2$	$H_2O_2(3.0)$	AcOH/H ₂ O(1/4)	12	8	45
5	WO ₃	$H_2O_2(3.0)$	AcOH/H ₂ O(1/4)	12	10	25
6	Na ₂ WO ₄ .2H ₂ O	$H_2O_2(3.0)$	AcOH/H ₂ O(1/5)	12	14	30
7	$[W_6O_{19}][(Bu)_4N]_2$	$H_2O_2(3.0)$	$AcOH/H_2O(1/3)$	12	15	64
8	$[W_6O_{19}][(Bu)_4N]_2$	$H_2O_2(3.0)$	$AcOH/H_2O(1/2)$	12	12	50
9	$[W_6O_{19}][(Bu)_4N]_2$	H_2O_2 (4.0)	AcOH/H ₂ O(1/4)	12	27	70
10	[W ₆ O ₁₉][(Bu) ₄ N] ₂	$H_2O_2(3.0)$	AcOH/H ₂ O(1/4)	10	5	75
11	[W ₆ O ₁₉][(Bu) ₄ N] ₂	O_2	AcOH/H ₂ O(1/4)	12	-	20
12	[W ₆ O ₁₉][(Bu) ₄ N] ₂	Air	AcOH/H ₂ O(1/4)	12	-	trace
13 ^c	$[W_6O_{19}][(Bu)_4N]_2$	$H_2O_2(3.0)$	AcOH/H ₂ O(1/4)	12	5	65
14^d	[W ₆ O ₁₉][(Bu) ₄ N] ₂	H ₂ O ₂ (3.0)	AcOH/H ₂ O(1/4)	12	18	72

Table S2. Optimization of reaction conditions for 4a^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.21 mmol), catalyst (1 mol%), oxidant (x equiv.), Solvent (1 mL), 25 °C. ^{*b*}Isolated yield. ^{*c*}Catalyst (0.5 mol%). ^{*d*}Catalyst (1.5 mol%).

4. General procedure for oxysulfonylation of alkenes with thiols and hydrogen peroxide

0.2 mmol scale: In a 10 mL tube was added **1** (0.2 mmol), **2** (0.2 mmol), $[W_6O_{19}][(Bu)_4N]_2$ (3.8mg, 1 mol%), H_2O_2 (115 mg, 30 wt%), EtOH/H₂O (1 mL, V/V=1:1). The reaction mixture was stirred at 28 °C for 8 h. Then the resulting mixture was evaporated under reduced pressure and purified by flash chromatography to afford the desired product.

8 mmol scale: In a 10 mL tube was added **1a** (0.85 g, 8 mmol), **2a** (1.0 g, 8.1 mmol), $[W_6O_{19}][(Bu)_4N]_2$ (70 mg, 0.5 mol%), H_2O_2 (4600 mg, 30 wt%), EtOH/H₂O (10 mL, V/V=1:1). The reaction mixture was stirred at 28 °C for 24 h. Then the resulting mixture was evaporated under reduced pressure and purified by flash chromatography to afford the desired product (1.73 g, 79%).

0.2 mmol scale: In a 10 mL tube was added **1** (0.2 mmol), **2** (0.21 mmol), $[W_6O_{19}][(Bu)_4N]_2$ (3.8 mg, 1 mol%), H_2O_2 (70 mg, 30 wt%), AcOH/H₂O (1 mL, V/V=1:4). The reaction mixture was stirred at 28 °C for 12 h. Then the resulting mixture was evaporated under reduced pressure and purified by flash chromatography

to afford the desired product.

5. General procedure for synthesis of compound 5

6. General procedure for synthesis of compound 7

In a 20 mL tube was added **6** (0.76g, 3 mmol), **2c** (0.4 g, 3.1mmol), $[W_6O_{19}][(Bu)_4N]_2$ (29 mg, 0.5 mol%), H_2O_2 (1380 mg, 30 wt%), AcOH/H₂O (5 mL, V/V=1:4). The reaction mixture was stirred at 28 °C for 18 h. Then the resulting mixture was evaporated under reduced pressure and purified by flash chromatography to afford the desired product.

7. Recycling and reuse of catalyst

A 10 mL tube was charged with **1a** (5 mmol), **2a** (5 mmol), $[W_6O_{19}][(Bu)_4N]_2$ (95 mg), H_2O_2 (1.75 g), EtOH/H₂O (10 mL, V/V=1:1). The reaction mixture was stirred at 28 °C for 12 h. In each run, the resulting mixture was evaporated under reduced pressure, and then washed thoroughly with ethyl acetate, and dried under vacuum. Subsequently, the dried catalyst was used further, without any purification or reactivation. The washing liquid was evaporated under vacuum, and the residue was purified by column chromatography.

	× .	[W ₆ O ₁₉] SH H	[W ₆ O ₁₉][(Bu) ₄ N] ₂ (1 mol%) H ₂ O ₂ (5.0 eq) EtOH/H ₂ O 28 °C, 24 h				
		E 2					
Run	1st	2nd	3rd	4th	5th		
Yield (%)	88	83	80	75	72		

Table S3. Recycling of $[W_6O_{19}][(Bu)_4N]_2$ catalyst

Figure S1. IR spectrums of the $[W_6O_{19}][(Bu)_4N]_2$ catalyst

8. Radical intermediate trap reaction

1a (0.2 mmol), 2a (0.21 mmol), [W₆O₁₉][(Bu)₄N]₂ (3.8 mg, 1 mol%), additive (2

equiv.), H₂O₂ (70 mg, 30 wt%), AcOH/H₂O (1 mL, V/V=1:4) were added to a tube (10 mL) under air atmosphere. The resulting mixture was stirred at 25 °C for 12 h. After completion, the solvent was removed under reduced pressure and the resulting crude compound was tested by ¹H NMR.

2a (0.2 mmol), [W₆O₁₉][(Bu)₄N]₂ (3.8 mg, 1 mol%), 1,1-Diphenylethylene (0.2 mmol), and H₂O₂ (12 mg, 30 wt%), EtOH/H₂O (1 mL, V/V=1:1) were added to a tube (10 mL) under air atmosphere.. The resulting mixture was stirred at 28 °C for 12 h. After completion, the solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography with petroleum ether (60~90 °C b.p.) and ethyl acetate as the eluent (PE/EA=20:1, V/V) to afford the compound 8 in 21% yield (White solid, 17.5 mg).

9. Control experiment under N₂ atmosphere

2a (38 mg, 0.3 mmol), $[W_6O_{19}][(Bu)_4N]_2$ (189 mg, 0.1 mmol), and EtOH/H₂O (1.0 mL) were added to a tube (10 mL) under N₂ atmosphere. The resulting mixture was stirred at 28 °C for 8 h. After completion, the resulting mixture was evaporated under reduced pressure, and the residue was purified by column chromatography to give 9 in 76% yield.

10. Preparation and characterization of [W₆O₁₉]³⁻H⁺ species

$$[W_6O_{19}][(Bu)_4N]_2 + SH \longrightarrow MeCN, N_2 \longrightarrow [W_6O_{19}]^3 H^4$$

0.1 mmol

2a (13 mg, 0.1 mmol), $[W_6O_{19}][(Bu)_4N]_2$ (189 mg, 0.1 mmol), and MeCN (2.0 mL) were added to a tube (10 mL) under N₂ atmosphere. The resulting mixture was stirred at 28 °C for 2 h.

Figure S2. UV-visible spectra of the complexes in MeCN solution, and the concentration is about 0.001 mmol/mL (based on $[W_6O_{19}][(Bu)_4N]_2$). All the test conditions are in N₂ atmosphere.

11. Deuterium labeling experiment

In a 10 mL tube was added **1** (0.2 mmol), **2a** (0.2 mmol), $[W_6O_{19}][(Bu)_4N]_2$ (3.8 mg), H_2O_2 (70 mg), EtOH/D₂O (1 mL, V/V=1:1). The reaction mixture was stirred at 28 °C for 12 h. Then the resulting mixture was evaporated under reduced pressure and purified by flash chromatography to afford the desired product.

Figure S3. ¹H NMR spectra of the compound 4a-D

12. Oxidation of β -hydroxysulfide

In a 10 mL tube was added **10** (0.2 mmol), $[W_6O_{19}][(Bu)_4N]_2$ (3.8 mg), H_2O_2 (46 mg), EtOH/H₂O (1 mL, V/V=1:1). The reaction mixture was stirred at 28 °C for 12 h. Then the resulting mixture was evaporated under reduced pressure and purified by flash chromatography to afford the desired product.

13. Kinetic profile of 1a with 2a and H₂O₂ under standard conditions

In a 10 mL tube was added **1** (0.2 mmol), **2** (0.21 mmol), $[W_6O_{19}][(Bu)_4N]_2$ (3.8mg, 1 mol%), H_2O_2 (115 mg, 30 wt%), EtOH/ H_2O (1 mL, V/V=1:1). The reaction mixture was stirred at 28 °C for 8 h. Then the resulting mixture was monitored by Gas Chromatography (GC).

Figure S4. Kinetic profile of 1a with 2a and H_2O_2

14. Experimental characterization

 $\begin{array}{c} \textbf{Ja} \\ \hline \textbf{I-phenyl-2-tosylethanone} (\textbf{3a}). White solid, yield 48.2 mg \\ (88\%); TLC (petroleum ether: AcOEt=3:1), R_f = 0.40. ^1H NMR (400 MHz, CDCl_3): \delta \\ (ppm) = 7.79 (d, J=7.2 Hz, 2H), 7.71 (d, J=8.0 Hz, 2H), 7.54-7.58 (m, 1H), 7.40-7.44 \\ (m, 2H), 7.27 (d, J=8.0 Hz, 2H), 4.70 (s, 2H), 2.38 (s, 3H); ^{13}C NMR (101 MHz, CDCl_3): \delta (ppm) = 188.2, 145.3, 135.8, 135.7, 134.3, 129.8, 129.3, 128.8, 128.5, 63.4, \\ 21.7. Spectral data were in accordance with the literature.⁴ \\ \end{array}$

1-(p-tolyl)-2-tosylethanone (3b). White solid, yield 49.0

mg (85%); TLC (petroleum ether: AcOEt=3:1), $R_f = 0.41$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) =7.88 (d, *J*=8.0 Hz, 2H), 7.72 (d, *J*=8.0 Hz, 2H), 7.27 (d, *J*=8.0 Hz, 2H), 7.21 (d, *J*=8.0 Hz, 2H), 4.65 (s, 2H), 2.38 (s, 3H), 2.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 187.6, 145.5, 145.2, 135.8, 133.3, 129.8, 129.5, 129.4, 128.5, 63.4, 21.7, 21.6. Spectral data were in accordance with the literature.⁵

1-(4-ethylphenyl)-2-tosylethanone (3c). White solid,

yield 51.9 mg (86%); TLC (petroleum ether: AcOEt=3:1), $R_f = 0.43$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.80 (d, *J*=8.0 Hz, 2H), 7.70 (d, *J*=8.0 Hz, 2H), 7.22-7.27 (m, 4H), 4.66 (s, 2H), 2.64 (q, *J*=7.6 Hz, 2H), 2.37 (s, 3H), 1.19 (t, *J*=7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 187.7, 151.5, 145.2, 135.8, 133.5, 129.8, 129.5, 128.5, 128.3, 63.4, 28.9, 21.7, 15.0. Spectral data were in accordance with the literature.⁶

3d *1-(p-tolyl)-2-tosylethanone* (**3d**). White solid, yield 43.8 mg (72%); TLC (petroleum ether: AcOEt=2:1), $R_f = 0.35$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) =7.87 (d, *J*=7.2 Hz, 2H), 7.70 (d, *J*=6.4 Hz, 2H), 7.27 (d, *J*=5.6 Hz, 2H), 6.88 (d, *J*=7.2 Hz, 2H), 4.62 (s, 2H), 3.82 (s, 3H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 186.3, 164.5, 148.7, 145.2, 131.9, 129.8, 129.4, 128.5, 114.0, 63.4, 55.6, 21.7. Spectral data were in accordance with the literature.⁵

1-(4-fluorophenyl)-2-tosylethanone (3e). White solid,

yield 50.2 mg (86%); TLC (petroleum ether: AcOEt=3:1), $R_f = 0.35$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) =7.95 (d, *J*=8.4 Hz, 2H), 7.70 (d, *J*=8.0 Hz, 2H), 7.29 (d,

J=8.0 Hz, 2H), 6.10 (d, *J*=8.8 Hz, 2H), 4.67 (s, 2H), 2.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 186.6, 166.3 (d, *J*=256 Hz), 145.5, 135.6, 132.3, 132.2, 129.9, 128.5, 116.0 (d, *J*=22 Hz), 63.6, 21.7; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) = -102.6. Spectral data were in accordance with the literature.⁵

1-(4-chlorophenyl)-2-tosylethanone (3f). White solid,

yield 52.4 mg (85%); TLC (petroleum ether: AcOEt=3:1), $R_f = 0.45$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) =7.82 (d, *J*=8.4 Hz, 2H), 7.67 (d, *J*=8.4 Hz, 2H), 7.36 (d, *J*=8.4 Hz, 2H), 7.26 (d, *J*=8.0 Hz, 2H), 4.64 (s, 2H), 2.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 187.0, 145.5, 140.9, 135.5, 134.0, 130.7, 129.8, 129.1, 128.5, 63.6, 21.7. Spectral data were in accordance with the literature.⁵

Br 3g 1-(4-bromophenyl)-2-tosylethanone (3g). White solid, yield 56.3 mg (80%); TLC (petroleum ether: AcOEt=3:1), R_f = 0.41. ¹H NMR (600 MHz, CDCl₃): δ (ppm) =7.81 (d, J=8.4 Hz, 2H), 7.73 (d, J=7.8 Hz, 2H), 7.62 (d, J=8.4 Hz, 2H), 7.33 (d, J=7.8 Hz, 2H), 4.67 (s, 2H), 2.45 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ (ppm) = 187.3, 145.6, 135.5, 134.5, 132.3, 130.8, 130.0, 129.4, 128.6, 63.7, 21.5. Spectral data were in accordance with the literature.⁵

1-([1,1'-biphenyl]-4-yl)-2-tosylethanone (3h). White

solid, yield 49.0 mg (70%); TLC (petroleum ether: AcOEt=3.5:1), $R_f = 0.45$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) =7.97 (d, *J*=8.0 Hz, 2H), 7.74 (d, *J*=7.2 Hz, 2H), 7.63 (d, *J*=7.6 Hz, 2H), 7.56 (d, *J*=7.2 Hz, 2H), 7.37-7.45 (m, 3H), 7.28 (d, *J*=8.0 Hz, 2H), 4.72 (s, 2H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 187.7, 146.9,

145.3, 139.3, 135.8, 134.4, 130.0, 129.9, 129.8, 129.0, 128.6, 127.3, 127.2, 63.6, 21.7. Spectral data were in accordance with the literature.⁷

2-tosyl-1-(4-(trifluoromethyl)phenyl)ethanone(3i).

Light yellow solid, yield 49.2 mg (72%); TLC (petroleum ether: AcOEt=4:1), $R_f = 0.50$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) =8.05 (d, *J*=8.0 Hz, 2H), 7.71-7.74 (m, 4H), 7.32 (d, *J*=8.0 Hz, 2H), 4.75 (s, 2H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 187.5, 145.7, 138.3, 135.4, 130.0, 129.9, 129.7, 129.0, 128.6, 125.8 (q, *J*=4 Hz), 63.8, 21.7; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) = -63.3. Spectral data were in accordance with the literature.⁷

 $I-(m-tolyl)-2-tosylethanone (3j). White solid, yield 48.9 mg (85%); TLC (petroleum ether: AcOEt=3:1), R_f = 0.42. ¹H NMR (400 MHz, CDCl₃): <math>\delta$ (ppm) =7.67 (d, *J*=8.0 Hz, 2H), 7.60-7.74 (m, 2H), 7.30 (d, *J*=7.6 Hz, 1H), 7.21-7.26 (m, 3H), 4.65 (s, 2H), 2.32 (s, 3H), 2.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 188.3, 145.2, 138.6, 135.8, 135.7, 135.0, 129.7, 129.6, 128.6, 128.5, 126.5, 63.4, 21.6, 21.2. Spectral data were in accordance with the literature.⁸

1-(naphthalen-2-yl)-2-tosylethanone (3k). White solid,

yield 57.0 mg (87%); TLC (petroleum ether: AcOEt=5:1), $R_f = 0.37$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) =8.44 (s, 1H), 7.95 (d, *J*=8.4 Hz, 2H), 7.87 (d, *J*=10.0 Hz, 2H), 7.77 (d, *J*=8.4 Hz, 2H), 7.55-7.65 (m, 2H), 7.30 (d, *J*=8.4 Hz, 2H), 4.85 (s, 2H), 2.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 188.0, 145.3, 135.9, 135.6, 133.0, 132.2, 132.1, 129.9, 129.8, 129.3, 128.7, 128.6, 127.7, 127.1, 123.9, 63.7, 21.6.

Spectral data were in accordance with the literature.⁷

 $I-(o-tolyl)-2-tosylethanone (31). White solid, yield 46.1 mg (80%); TLC (petroleum ether: AcOEt=3:1), R_f = 0.42. ¹H NMR (400 MHz, CDCl₃): <math>\delta$ (ppm) = 7.65-7.70 (m, 3H), 7.36 (t, *J*=7.2 Hz, 1H), 7.27 (d, *J*=8.0 Hz, 2H), 7.18-7.23 (m, 2H), 4.65 (s, 2H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 190.5, 145.2, 139.9, 135.9, 135.7, 132.7, 132.3, 130.4, 129.8, 128.4, 125.9, 65.5, 21.7, 21.5. Spectral data were in accordance with the literature.⁹

1-(furan-2-yl)-2-tosylethanone (3m). White solid, yield 33.8

mg (64%); TLC (petroleum ether: AcOEt=2.5:1), $R_f = 0.30$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.75 (d, *J*=8.0 Hz, 2H), 7.61 (s, 1H), 7.32-7.33 (m, 3H), 6.57 (d, *J*=1.6 Hz, 1H), 4.56 (s, 2H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 175.8, 151.8, 148.1, 145.4, 135.6, 129.8, 128.5, 120.4, 113.2, 63.6, 21.7. Spectral data were in accordance with the literature.¹⁰

1-(p-tolyl)-2-tosylpropan-1-one (3n). Colorless oil, yield

24.8 mg (41%); TLC (petroleum ether: AcOEt=3:1), $R_f = 0.45$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.84 (d, *J*=8.0 Hz, 2H), 7.60 (d, *J*=8.4 Hz, 2H), 7.23-7.28 (m, 4H), 5.09 (q, *J*=6.8 Hz, 1H), 2.41 (s, 3H), 2.38 (s, 3H), 1.50 (d, *J*=6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 192.0, 145.2, 144.6, 137.6, 133.7, 132.9, 129.0, 129.4, 129.3, 64.8, 21.7, 21.6, 13.2. Spectral data were in accordance with the literature.¹¹

2-tosyl-2, 3-dihydro-1H-inden-1-one (**30**). White solid, yield 34.3 mg (60%); TLC (petroleum ether: AcOEt=2.5:1), $R_f = 0.35$. ¹H NMR (600 MHz, CDCl₃): δ (ppm) = 7.79 (d, *J*=7.8 Hz, 2H), 7.71 (d, *J*=7.8 Hz, 1H), 7.61 (d, *J*=7.8 Hz, 1H), 7.49 (d, *J*=8.4 Hz, 1H), 7.35-7.39 (m, 3H), 4.25-4.27 (m, 1H), 3.80 (d, *J*=1.8 Hz, 1H), 3.53 (q, *J*=8.4 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ (ppm) = 194.7, 151.9, 145.4, 135.9, 135.8, 129.8, 129.3, 128.2, 126.4, 124.9, 68.8, 28.2, 21.8. Spectral data were in accordance with the literature.⁷

2-tosylcyclohexanone (3p). Colorless oil, yield 16.1 mg (31%);

TLC (petroleum ether: AcOEt=2.5:1), $R_f = 0.4$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.77 (d, *J*=8.0 Hz, 2H), 7.29 (d, *J*=8.8 Hz, 2H), 3.77-3.81 (m, 1H), 2.71-2.77 (m, 1H), 2.46-2.49 (m, 1H), 2.35-2.39 (m, 4H), 2.11-2.18 (m, 2H), 1.94-1.96 (m, 1H),, 1.69-1.77 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 202.4, 145.1, 135.1, 129.9, 128.9, 72.7, 41.6, 21.8, 27.5, 26.4, 21.9, 21.7. Spectral data were in accordance with the literature.¹²

1-phenyl-2-(phenylsulfonyl)ethanone (**3q**). White solid, yield 46.8 mg (90%); TLC (petroleum ether: AcOEt=5:1), $R_f = 0.45$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.85-7.90 (m, 4H), 7.59-7.61 (m, 2H), 7.49 (d, *J*=5.6 Hz, 2H), 7.42 (d, *J*=5.6 Hz, 2H), 4.75 (s, 2H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 188.0, 138.7, 135.6, 134.3, 134.2, 129.2, 129.19, 128.8, 128.5, 63.3. Spectral data were in accordance with the literature.⁴

 $\begin{array}{c} \textbf{J} = \textbf{J} = (4-fluorophenyl)-2-tosylethanone (3r). Light yellow solid, yield 47.3 mg (85%); TLC (petroleum ether: AcOEt=3:1), R_f = 0.37. ¹H NMR (400 MHz, CDCl_3): \delta (ppm) =7.86-7.89 (m, 4H), 7.58 (t, J=7.2 Hz, 1H), 7.42-7.46 (m, 2H), 7.14-7.16 (m, 2H), 4.71 (s, 2H); ¹³C NMR (101 MHz, CDCl_3): \delta (ppm) = 188.0, 166.0 (d, J=256 Hz), 135.5, 134.5, 131.7, 131.6, 129.2, 128.9, 116.4 (d, J=22 Hz), 63.3; ¹⁹F NMR (376 MHz, CDCl_3): \delta (ppm) = -102.4. Spectral data were in accordance with the literature.⁴$

2-((4-chlorophenyl)sulfonyl)-1-phenylethanone (3s).

Light yellow solid, yield 52.9 mg (90%); TLC (petroleum ether: AcOEt=3:1), $R_f = 0.42$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.92 (d, *J*=7.2 Hz, 2H), 7.82 (d, *J*=8.8 Hz, 2H), 7.62 (t, *J*=7.2 Hz, 1H), 7.46-7.51 (m, 4H), 4.75 (s, 2H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 187.9, 141.0, 137.0, 135.5, 134.5, 130.1, 129.5, 129.2, 128.9, 63.2. Spectral data were in accordance with the literature.⁴

2-(ethylsulfonyl)-1-phenylethanone (**3t**). Colorless oil, yield 19.1 mg (45%); TLC (petroleum ether: AcOEt=2:1), $R_f = 0.30$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.01 (d, *J*=7.6 Hz, 2H), 7.65 (t, *J*=7.6 Hz, 1H), 7.52 (t, *J*=7.6 Hz, 2H), 4.57 (s, 2H), 3.28 (q, *J*=7.6 Hz, 2H), 3.28 (t, *J*=7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 189.2, 135.7, 134.6, 129.3, 128.9, 58.7, 48.2, 6.7. Spectral data were in accordance with the literature.⁷

(2-tosylacetyl)benzoate (**3u**). White solid, yield 68.6 mg (75%); TLC (petroleum ether: AcOEt=5:1), $R_f = 0.55$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.11 (d, *J*=8.0 Hz, 2H), 7.99 (d, *J*=8.4 Hz, 2H), 7.73 (d, *J*=8.0 Hz, 2H), 7.31 (d, *J*=8.0 Hz, 2H), 5.12 (d, *J*=9.6 Hz, 1H), 4.75 (s, 2H), 2.45-2.47 (m, 1H), 2.42 (s, 3H), 2.05-2.08 (m, 1H), 1.74-1.80 (m, 2H), 1.39-1.44 (m, 1H), 1.24-1.30 (m, 1H), 1.09-1.12 (m, 1H), 0.95 (s, 3H), 0.90 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 187.9, 165.6, 145.5, 138.6, 135.6, 135.5, 129.9, 129.8, 129.2, 128.5, 81.3, 63.8, 49.1, 47.9, 44.9, 36.8, 28.1, 27.3, 21.7, 19.7, 18.9, 13.6. HRMS (ESI-QTOF) Calcd for C₂₆H₃₀O₅SNa, [M+Na]⁺ 477.1706; Found 477.1703.

(1R,2R,5S)-2-isopropyl-5-methylcyclohexyl 4-

(2-tosylacetyl)benzoate (**3v**). White solid, yield 72.9 mg (80%); TLC (petroleum ether: AcOEt=5:1), $R_f = 0.60$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.10 (d, *J*=8.0 Hz, 2H), 7.98 (d, *J*=7.6 Hz, 2H), 7.72 (d, *J*=8.0 Hz, 2H), 7.30 (d, *J*=8.0 Hz, 2H), 4.93(t, *J*=6.4 Hz, 1H), 4.74 (s, 2H), 2.41 (s, 3H), 2.09-2.12 (m, 1H), 1.90-1.93 (m, 1H), 1.71-1.73 (m, 2H), 1.53-1.58 (m, 2H), 1.06-1.12 (m, 2H), 0.90-0.91 (m, 7H), 0.77 (d, *J*=6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 187.9, 164.9, 145.5, 138.6, 135.6, 135.5, 129.9, 129.8, 129.2, 128.5, 75.6, 63.8, 47.1, 40.8, 34.2, 31.4, 26.5, 23.5, 22.0, 21.7, 20.7, 16.5. HRMS (ESI-QTOF) Calcd for C₂₆H₃₂O₅SNa, [M+Na]⁺ 479.1863; Found 479.1858.

(R)-2-(4-isobutylphenyl)propyl 4-

(2-tosylacetyl)benzoate (**3w**). White solid, yield 72.8 mg (74%); TLC (petroleum ether:AcOEt=5:1), $R_f = 0.55$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.05 (d, *J*=7.6 Hz, 2H), 7.97 (d, *J*=8.0 Hz, 2H), 7.74 (d, *J*=8.0 Hz, 2H), 7.33 (d, *J*=8.0 Hz, 2H), 7.19 (d, *J*=7.6 Hz, 2H), 7.11 (d, *J*=7.6 Hz, 2H), 4.73 (s, 2H), 4.39-4.44 (m, 2H), 3.23 (q, *J*=6.8 Hz, 1H), 2.44 (s, 3H), 1.85 (t, *J*=6.8 Hz, 1H), 1.39 (q, *J*=6.8 Hz, 3H), 0.89 (d, *J*=6.4 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 187.8, 165.3, 145.6, 140.2, 140.0, 138.7, 135.5, 135.1, 129.9, 129.8, 129.3, 129.2, 128.6, 126.9, 70.6, 63.8, 45.0, 38.6, 30.2, 22.4, 21.7, 17.9. HRMS (ESI-QTOF) Calcd for C₂₉H₃₂O₅SNa, [M+Na]⁺ 515.1863; Found 515.1857.

(S)-2-(6-methoxynaphthalen-2-

yl)propyl 4-(2-tosylacetyl)benzoate (**3x**). White solid, yield 70.2 mg (68%); TLC (petroleum ether:AcOEt=2:1), $R_f = 0.35$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.03 (d, *J*=8.4 Hz, 2H), 7.94 (d, *J*=8.8 Hz, 2H), 7.69-7.74 (m, 4H), 7.66 (s, 1H), 7.39 (d, *J*=8.4 Hz, 1H), 7.30 (d, *J*=8.0 Hz, 2H), 7.13-7.16 (m, 2H), 4.72 (s, 2H), 4.46-4.56 (m, 2H), 3.90 (s, 3H), 3.39 (q, *J*=6.8 Hz, 1H), 2.41 (s, 3H), 1.47 (d, *J*=6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 187.8, 165.3, 157.5, 145.6, 138.0, 129.9, 129.8, 129.2, 129.1, 129.0, 128.5, 127.1, 126.2, 125.6, 119.0, 105.6, 70.4, 63.8, 55.3, 38.9, 21.7, 18.1. HRMS (ESI-QTOF) Calcd for C₃₀H₂₈O₆SNa, [M+Na]⁺ 539.1499; Found 539.1495.

1-phenyl-2-tosylethanol (4a). Colorless oil, yield 44.2 mg

(80%); TLC (petroleum ether: AcOEt=2.5:1), $R_f = 0.40$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.81 (d, *J*=8.0 Hz, 2H), 7.35 (d, *J*=7.6 Hz, 2H), 7.27-7.29 (m, 5H), 5.25 (d, *J*=10.0 Hz, 1H), 3.46 (dd, *J*=10.4, 4.0 Hz, 1H), 3.29 (d, *J*=10.4 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 145.3, 140.7, 136.1, 130.1, 128.7, 128.3, 128.0, 125.7, 68.5, 64.0, 21.7. Spectral data were in accordance with the literature.¹³

I-(p-tolyl)-2-tosylethanol (4b). Colorless oil, yield 47.0mg (81%); TLC (petroleum ether: AcOEt=2.5:1), R_f = 0.40. ¹H NMR (600 MHz, CDCl₃): δ (ppm) = 7.82 (d, *J*=7.8 Hz, 2H), 7.37 (d, *J*=8.4 Hz, 2H), 7.16 (d, *J*=7.8 Hz, 2H), 7.11 (d, *J*=7.8 Hz, 2H), 5.19 (d, *J*=9.6 Hz, 1H), 3.47 (q, *J*=10.2 Hz, 1H), 3.29 (d, *J*=14.4 Hz, 1H), 2.46 (s, 3H), 2.31 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ (ppm) = 145.2, 138.1, 137.8, 136.2, 130.1, 129.4, 128.0, 125.6, 68.4, 64.0, 21.7, 21.1. Spectral data were in accordance with the literature.¹³

I-(4-ethylphenyl)-2-tosylethanol (4c). White solid, yield 51.6 mg (85%); TLC (petroleum ether: AcOEt=2.5:1), R_f = 0.41. ¹H NMR (600 MHz, CDCl₃): δ (ppm) = 7.81 (d, *J*=7.8 Hz, 2H), 7.36 (d, *J*=7.8 Hz, 2H), 7.19 (d, *J*=7.2 Hz, 2H), 7.14 (d, *J*=7.8 Hz, 2H), 5.21 (d, *J*=7.8 Hz, 1H), 3.46-3.51 (m, 1H), 3.31 (d, *J*=8.4 Hz, 1H), 2.60 (q, *J*=7.8 Hz, 2H), 2.45 (s, 3H), 1.92 (d, *J*=7.8 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ (ppm) = 145.2, 144.5, 138.1, 136.3, 130.1, 128.2, 128.0, 125.7, 68.4, 64.0, 28.5, 21.7, 15.6. HRMS (ESI-QTOF) Calcd for C₁₇H₂₀O₃SNa, [M+Na]⁺ 327.1025; Found 327.1021.

1-(4-methoxyphenyl)-2-tosylethanol (4d). Colorless oil,

yield 46.5 mg (76%); TLC (petroleum ether: AcOEt=2:1), $R_f = 0.32$. ¹H NMR (600 MHz, CDCl₃): δ (ppm) = 7.82 (d, *J*=7.8 Hz, 2H), 7.37 (d, *J*=7.8 Hz, 2H), 7.20 (d, *J*=7.8 Hz, 2H), 6.83 (d, *J*=8.4 Hz, 2H), 5.19 (d, *J*=10.2 Hz, 1H), 3.77 (s, 3H), 3.69 (s, 1H), 3.45-3.49 (m, 1H), 3.28 (d, *J*=14.4 Hz, 1H), 2.46 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ (ppm) = 159.6, 145.2, 136.2, 132.9, 130.1, 128.0, 127.0, 114.1, 68.1, 64.0, 55.3, 21.7. Spectral data were in accordance with the literature.¹⁴

1-(4-fluorophenyl)-2-tosylethanol (4e). Colorless oil,

yield 44.1 mg (75%); TLC (petroleum ether: AcOEt=2.5:1), $R_f = 0.43$. ¹H NMR (600 MHz, CDCl₃): δ (ppm) = 7.74 (d, *J*=7.8 Hz, 2H), 7.30 (d, *J*=7.8 Hz, 2H), 7.18-7.20 (m, 2H), 6.91 (d, *J*=8.4 Hz, 2H), 5.16 (d, *J*=10.2 Hz, 1H), 3.37 (q, *J*=10.2 Hz, 1H), 3.20 (d, *J*=14.4 Hz, 1H), 3.03 (s, 1H), 2.38 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ (ppm) = 162.4 (d, *J*=164 Hz), 145.4, 136.6, 136.1, 130.2, 128.0, 127.5, 127.4, 115.5 (d, *J*=15 Hz), 67.9, 64.0, 21.7; ¹⁹F NMR (576 MHz, CDCl₃): δ (ppm) = -113.6. Spectral data were in accordance with the literature.¹³

White solid, yield 44.7 mg (65%); TLC (petroleum ether: AcOEt=3:1), $R_f = 0.41$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.79 (d, *J*=8.0 Hz, 2H), 7.54 (d, *J*=8.4 Hz, 2H), 7.40 (d, *J*=8.0 Hz, 2H), 7.36 (d, *J*=8.0 Hz, 2H), 5.32 (d, *J*=9.6 Hz, 1H), 4.0 (s, 1H), 3.45 (dd, *J*=9.6, 4.8 Hz, 1H), 3.31 (d, *J*=14.0 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 145.5, 144.6, 135.9, 130.1, 127.9, 126.1, 125.1 (q, *J*=4Hz),

67.9, 63.7, 21.6; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) = -62.7. Spectral data were in accordance with the literature.¹⁵

I-(m-tolyl)-2-tosylethanol (4g). Colorless oil, yield 49.9 mg (86%); TLC (petroleum ether: AcOEt=2:1), R_f = 0.41. ¹H NMR (600 MHz, CDCl₃): δ (ppm) = 7.81 (d, *J*=7.8 Hz, 2H), 7.36 (d, *J*=7.8 Hz, 2H), 7.17-7.20 (m, 1H), 7.06-7.09 (m, 3H), 5.19 (d, *J*=10.2 Hz, 1H), 3.47 (q, *J*=10.2 Hz, 1H), 3.30 (q, *J*=14.4 Hz, 1H), 2.45 (s, 3H), 2.30 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ (ppm) = 145.2, 140.8, 138.5, 136.2, 130.1, 128.7, 128.1, 126.4, 122.8, 68.5, 64.0, 21.7, 21.4. Spectral data were in accordance with the literature.¹⁴

I-(o-tolyl)-2-tosylethanol (4h). White solid, yield 46.4 mg (80%); TLC (petroleum ether: AcOEt=2.5:1), R_f = 0.4. ¹H NMR (600 MHz, CDCl₃): δ (ppm) = 7.85 (d, *J*=7.8 Hz, 2H), 7.49 (d, *J*=7.8 Hz, 1H), 7.39 (d, *J*=7.8 Hz, 2H), 7.15-7.21 (m, 2H), 7.07 (d, *J*=7.2 Hz, 1H), 5.42 (d, *J*=10.2 Hz, 1H), 3.39 (q, *J*=10.2 Hz, 1H), 3.23 (q, *J*=14.4 Hz, 1H), 2.47 (s, 3H), 2.08 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ (ppm) = 145.3, 138.8, 136.1, 133.7, 130.6, 130.1, 128.1, 128.0, 126.6, 125.3, 65.1, 63.0, 21.7, 18.6. Spectral data were in accordance with the literature.¹³

1-phenyl-2-(phenylsulfonyl)ethanol (4i). Colorless oil, yield

40.8 mg (78%); TLC (petroleum ether: AcOEt=2.5:1), $R_f = 0.4$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.92 (d, *J*=7.4 Hz, 2H), 7.67 (t, *J*=7.8 Hz, 1H), 7.56-7.58 (m, 2H), 7.23-7.31 (m, 5H), 5.25 (d, *J*=10.0 Hz, 1H), 3.49 (q, *J*=10.0 Hz, 1H), 3.31 (d, *J*=10.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 140.7, 139.1, 134.1, 129.5, 128.8,

128.3, 128.0, 125.7, 68.4, 63.9. Spectral data were in accordance with the literature.¹⁴

2-((4-fluorophenyl)sulfonyl)-1-phenylethanol (4j).

Colorless oil, yield 43.1 mg (77%); TLC (petroleum ether: AcOEt=2.5:1), $R_f = 0.40$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.94-7.97 (m, 2H), 7.22-7.31 (m, 7H), 5.27 (d, *J*=10.0 Hz, 1H), 3.50 (dd, *J*=10.0, 4.0 Hz, 1H), 3.32 (d, *J*=14.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 166.0 (d, *J*=256 Hz), 140.5, 135.3, 131.0, 130.9, 128.8, 128.5, 125.6, 116.7 (d, *J*=23 Hz), 68.6, 64.1; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) = -102.7. Spectral data were in accordance with the literature.¹⁴

2-((4-chlorophenyl)sulfonyl)-1-phenylethanol (4k).

Colorless oil, yield 44.4 mg (75%); TLC (petroleum ether: AcOEt=2.5:1), $R_f = 0.45$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.85 (d, *J*=8.4 Hz, 2H), 7.52 (d, *J*=8.4 Hz, 2H), 7.28-7.30 (m, 5H), 5.25 (d, *J*=10.0 Hz, 1H), 3.48-3.53 (m, 2H), 3.31 (d, *J*=14.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 140.8, 140.5, 137.8, 129.7, 129.5, 128.8, 128.5, 125.6, 68.6, 64.0. Spectral data were in accordance with the literature.¹⁴

41 *2-(ethylsulfonyl)-1-phenylethanol* (**41**). Colorless oil, yield 12.8 mg (30%); TLC (petroleum ether: AcOEt=2:1), $R_f = 0.32$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.32-7.39 (m, 5H), 5.35 (d, *J*=10.0 Hz, 1H), 3.41 (dd, *J*=10.4, 4.0 Hz, 1H), 3.09-3.21 (m, 4H), 1.42 (t, *J*=7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 141.1, 128.9, 128.6, 125.6, 68.9, 59.6, 49.1, 6.6. Spectral data were in accordance with the literature.¹⁶

4m 2-phenyl-1-(phenylsulfonyl)propan-2-ol (**4m**). White solid, yield 49.7 mg (90%); TLC (petroleum ether: AcOEt=3:1), $R_f = 0.40$. ¹H NMR (600 MHz, CDCl₃): δ (ppm) = 7.49 (d, *J*=7.8 Hz, 2H), 7.43 (t, *J*=7.2 Hz, 1H), 7.26-7.29 (m, 2H), 7.19 (d, *J*=7.2 Hz, 2H), 7.07 (t, *J*=7.2 Hz, 3H), 3.67 (d, *J*=14.4 Hz, 1H), 3.54 (d, *J*=14.4 Hz, 1H), 1.61 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ (ppm) = 144.3, 140.2, 133.5, 129.1, 128.3, 127.5, 127.3, 124.7, 73.2, 66.6, 30.9. Spectral data were in accordance with the literature.¹³

2-phenyl-1-tosylpropan-2-ol (**4n**). White solid, yield 53.4 mg (92%); TLC (petroleum ether: AcOEt=3:1), $R_f = 0.40$. ¹H NMR (600 MHz, CDCl₃): δ (ppm) = 7.39 (d, *J*=7.8 Hz, 2H), 7.19 (d, *J*=7.8 Hz, 2H), 7.07-7.10 (m, 5H), 4.59 (s, 1H), 3.62 (d, *J*=15.0 Hz, 1H), 3.51 (d, *J*=15.0 Hz, 1H), 2.30 (s, 3H), 1.62 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ (ppm) = 144.6, 144.5, 137.3, 129.7, 128.3, 127.6, 127.1, 124.7, 73.2, 66.7, 30.8, 21.6. Spectral data were in accordance with the literature.⁷

1-((4-fluorophenyl)sulfonyl)-2-phenylpropan-2-ol (40).

Colorless oil, yield 50.5 mg (86%); TLC (petroleum ether: AcOEt=3:1), $R_f = 0.40$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.51 (t, *J*=4.8 Hz, 2H), 7.21 (d, *J*=4.8 Hz, 2H), 7.15-7.16 (m, 3H), 6.98 (t, *J*=8.4 Hz, 2H), 3.75 (d, *J*=14.8 Hz, 1H), 3.62 (d, *J*=14.8 Hz, 1H), 1.65 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 165.4 (d, *J*=255 Hz), 140.0, 136.1, 130.5, 130.4, 128.3, 127.3, 124.7, 116.3 (d, *J*=23 Hz), 73.0, 66.7, 31.1; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) = -103.6. Spectral data were in accordance with the literature.¹³

1-((4-chlorophenyl)sulfonyl)-2-phenylpropan-2-ol (4**p**).

White solid, yield 53.9 mg (87%); TLC (petroleum ether: AcOEt=3:1), $R_f = 0.42$. ¹H NMR (600 MHz, CDCl₃): δ (ppm) = 7.42 (d, *J*=8.4 Hz, 2H), 7.16-7.29 (m, 7H), 3.75 (d, *J*=14.8 Hz, 1H), 3.61 (d, *J*=14.8 Hz, 1H), 1.65 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ (ppm) = 143.9, 140.2, 138.4, 129.3, 129.0, 128.3, 127.3, 124.7, 73.0, 66.7, 31.1. Spectral data were in accordance with the literature.¹³

1-((4-fluorophenyl)sulfonyl)-2-phenylpropan-2-ol (5).

Light yellow solid, yield 1000 mg (61%); TLC (petroleum ether: AcOEt=4:1), $R_f = 0.50$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.02 (d, *J*=8.0 Hz, 2H), 7.85 (d, *J*=8.0 Hz, 2H), 7.61-7.68 (m, 3H), 7.51 (t, *J*=7.6 Hz, 2H), 4.81 (s, 2H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 187.5, 138.5, 138.2, 135.3, 135.0, 134.4, 129.3, 129.3, 128.4, 125.8 (q, *J*=4 Hz), 61.5; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) = -63.3. Spectral data were in accordance with the literature.⁷

N-(4-cyano-3-(trifluoromethyl)phenyl)-3-((4-

fluorophenyl)sulfonyl)-2-hydroxy-2-methylpropanamide (6). White solid, yield 980 mg (76%); TLC (petroleum ether: AcOEt=2:1), $R_f = 0.26$. ¹H NMR (400 MHz, DMSO-D₆): δ (ppm) = 10.36 (s, 1H), 8.40 (s, 1H), 8.18 (d, *J*=8.4 Hz, 1H), 8.04 (d, *J*=8.4 Hz, 1H), 7.88-7.91 (m, 2H), 7.32 (t, *J*=8.4 Hz, 2H), 6.40 (s, 1H), 3.92 (d, *J*=14.8 Hz, 1H), 3.68 (d, *J*=14.8 Hz, 1H), 1.38 (s, 3H); ¹³C NMR (101 MHz, DMSO-D₆): δ (ppm) = 174.2, 165.2 (d, *J*=251 Hz), 143.6, 137.5, 136.6, 131.9, 131.8, 123.3, 117.9, 116.4 (q, *J*=12 Hz), 102.4, 73.5, 63.9, 27.6; ¹⁹F NMR (376 MHz, DMSO-D₆):

 δ (ppm) = -105.6, -61.2. Spectral data were in accordance with the literature.¹⁴

15. References

- Mavoodnia, A.; Zare-Bidaki A.; Behmadi, H. Chin. J. Catal. 2012, 33, 1797-1801.
- (2) Marcoux, P. R.; Hasenknopf, B.; Vaissermann, J.; Gouzerh, P. Eur. J. Inorg. Chem. 2003, 2406-2412.
- (3) Jiang, S.; Jiang, Z.; Gao, J.; Zhu, W.; Chen, X.; Chen, B.; Gan, Q.; Yuan, L.; Huang, G.; Yu, H.; Ma, L.; Zhang, X. ACS Catal. 2023, 13, 14965-14974.
- (4) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481-11484.
- (5) Chen, Y.; Xu, L.; Wang, B.; Jiang, J.; Sun, Y.; Li, L. Tetrahedron lett. 2021, 65, 152794.
- (6) Jadhao, A. R.; Gaikwad, S. S.; Patil, L. R.; Waghmode, S. B. *Chemical Papers* 2021, 75, 4959-4968.
- Wang, Y.; Zhao, Y.; Cai, C.; Wang, L.; Gong, H. Org. Lett. 2021, 23, 8296-8301.
- (8) Cai, S.; Chen, D.; Xu, Y.; Weng, W.; Li, L.; Zhang, R.; Huang, M. Org. Biomol. Chem. 2014, 12, 8550-8554.
- (9) Chen, R.; Tang, Y.; He, X.; Wang, K.-K.; Ding, L.; Liu, L. Org. Lett. 2023, 25, 5454-5458.
- (10) Pan, X.-J.; Gao, J.; Yuan, G.-Q. Tetrahedron lett. 2015, 71, 5525-5530.
- (11) Muneeswara, M.; Sundaravelu, N.; Sekar, G. Tetrahedron 2019, 75, 3479-3484.
- (12) Rawat, V. S.; Reddy, P. L. M.; Sreedhar, B. RSC Adv. 2014, 4, 5165-5168.
- (13) Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Angew. Chem. Int. Ed. 2013, 52, 7156-7159.
- (14) Wang, Y.; Jiang, W.; Huo, C. J. Org. Chem. 2017, 82, 10628-10634.
- (15) Khokan, C.; Kumar, A. T.; Prasenjit, M. Adv. Syn. Catal. 2017, 359, 3566-3576.
- (16) Noah, J.; Lis-Marie, M.; Thorsten, B. Org. Lett. 2021, 23, 5674-5678.

16. NMR spectra of products

 ^{19}F NMR spectrum for compound 3e (CDCl_3, 376 MHz)

 ^{19}F NMR spectrum for compound 3i (CDCl_3, 376 MHz)

 $^1\mathrm{H}$ NMR spectrum for compound 3s (CDCl_3, 400 MHz)

 ^{13}C NMR spectrum for compound 3t (CDCl_3, 101 MHz)

 $^1\mathrm{H}$ NMR spectrum for compound $\boldsymbol{3u}$ (CDCl_3, 400 MHz)

 ^{13}C NMR spectrum for compound 3u (CDCl_3, 101 MHz)

 ^1H NMR spectrum for compound 3v (CDCl_3, 400 MHz)

 ^{13}C NMR spectrum for compound 3v (CDCl_3, 101 MHz)

 $^1\mathrm{H}$ NMR spectrum for compound $\boldsymbol{3w}$ (CDCl_3, 400 MHz)

 $^{13}\mathrm{C}$ NMR spectrum for compound 3w (CDCl_3, 101 MHz)

 ^1H NMR spectrum for compound 3x (CDCl_3, 400 MHz)

 ^{13}C NMR spectrum for compound 3x (CDCl_3, 101 MHz)

-187.81 -165.28-165.28

 $^1\mathrm{H}$ NMR spectrum for compound 4a (CDCl_3, 400 MHz)

 ^{13}C NMR spectrum for compound 4c (CDCl_3, 151 MHz)

 $^1\mathrm{H}$ NMR spectrum for compound 4d (CDCl_3, 600 MHz)

 $^1\mathrm{H}$ NMR spectrum for compound 4i (CDCl_3, 400 MHz)

