Supporting Information

A Mechanochemical Addition/Reduction Cascade Process for the Synthesis of Dual Stereocentered Chiral δ-Hydroxysulfones

Yongjin Zhang, Yanwen Gong, Donghua He, Tianqi Xu, Binhong Jiang, Kun Zhuang,* and Guohua Liu*

Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China. E-mail: <u>ghliu@shnu.edu.cn</u>, <u>zhangkun@shnu.edu.cn</u>.

CONTENTS

Experimental.	S2
Table S1. Optimizing reaction conditions for the Michael addition reaction.	S 12
Table S2 . Optimizing reaction conditions for the asymmetric transfer hydrogenation.	S13
Figure S1. The contrastive ¹ H–NMR spectra in the reactions of 1a in Equation 3 of Scheme	: 1 S 14
Figure S2. HPLC analyses of chiral products	S16
Figure S3. Characterizations of chiral products	S44
Table S3. The single-crystal structure data of (S,R)-50.	S76
Figure S4. The contrastive ¹ H-NMR spectra for the deuterium labeling experiments	S77

Experimental

1. General: Mechanochemical reactions under the ball-mill conditions were conducted using a Planetary Mill Focucy (F-P400). The milling instrument consists of a main disk that can rotate at a speed of 200-900 rpm and accommodates four grinding bowls (25 mL). These bowls and balls (5 mm diameter) are made of stainless steel. Chiral ruthenium catalysts, chiral squaramide, α -cyclodextrin, β -cyclodextrin, and γ -cyclodextrin were purchased from Sigma–Aldrich Company Ltd and used as received. The enones (Org. Lett., 2004, 6, 2701; Angew. Chem. Int. Ed. 2013, 52, 5818.) anitrosulfones (Org. Lett. 2012, 14, 3260), and (S)-3-((3,5-bis(trifluoromethyl)phenyl)amino)-4-((3,3dimethyl-1-(piperidin-1-yl)butan-2-yl)amino)cyclobut-3-ene-1,2-dione ([SA-1]) (Org. Biomol. *Chem.*, **2014**, *12*, 6425.) were prepared according to the published procedures. All other reagents were obtained from commercial sources and used without further purification. Deuterated solvents were purchased commercially and were degassed and stored over activated 4 Å molecular sieves. The ¹H NMR spectra were performed on a Bruker Avance DPX-400 spectrometer. Chemical shifts are given in parts per million (δ units) downfield from tetramethylsilane using the residual solvent signal (Methanol- d_4 , δ 3.31) as an internal standard. ¹H NMR information is given in the following format: multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; qui, quintet; sept, septet; m, multiplet), coupling constant(s) (J) in Hertz (Hz), the number of protons. The prefix app is occasionally applied when the true signal multiplicity is unresolved and br indicates the signal in question broadened. ¹³C{¹H} NMR spectra are reported in ppm (δ) relative to residual methanol- d_4 (δ 49.01) unless otherwise noted. The enantiomeric excesses (ee) and/or diastereomeric ratios (dr) were determined using a Daicel Chiralcel column with the above HPLC setup.

2. General procedures.

2.1. General procedure for the single-step Michael addition under the batch conditions.

In a typical procedure, 5.0 mol% of [SA-1], 1a (0.20 mmol), 2a (0.24 mmol), 0.30 equivalent of β cyclodextrin and 1.0 mL of mesitylene were added sequentially to a 10.0 mL round-bottom flask. The resulting mixture was then stirred at 25 °C for 1 h. During this period, the reaction was monitored by TLC. After completion of the reaction, the water was added, and the aqueous solution was extracted with ethyl ether (3 × 3.0 mL). The combined ethyl ether extracts were washed with aqueous Na₂CO₃ and then dehydrated with Na₂SO₄. After the evaporation of the solvent, the resulting residue was purified by silica gel flash column chromatography to afford (*R*)-**3a**. The *ee* values were determined using HPLC analysis using a UV–Vis detector and Daicel chiral-cel column (Φ 0.46 × 25 cm).

2.2. General procedure for the single-step ATH transformation under the batch conditions.

In a typical reaction, 1.0 mol% of [**Ru-1**], (*R*)-**3a** (95%*ee*, 0.20 mmol), HCO₂Na (2.0 mmol), 0.30 equivalent of β -cyclodextrin, 1.0 equivalent of CTAB and 2.0 mL of DMSO/H₂O (v/v = 1:1) were added sequentially to a 10.0 mL round–bottom flask. The resulting mixture was then stirred at 25 °C for 20 h. During this period, the reaction was monitored by TLC. After completion of the reaction, the aqueous solution was extracted with ethyl ether (3 × 3.0 mL). The combined ethyl ether extracts were washed with aqueous Na₂CO₃ and then dehydrated with Na₂SO₄. After the evaporation of the solvent, the resulting residue was purified by silica gel flash column chromatography to afford (*S*,*R*)-**5a**. The *ee* and *dr* values were determined using HPLC analysis using a UV–Vis detector and Daicel chiral-cel column (Φ 0.46 × 25 cm).

2.3. General procedure for the gram-scale preparation of (S,R)-**5a** in the addition/reduction cascade process under the ball-milling conditions.

A typical procedure was as follows. In a 100 mL stainless-steel jar, 0.5 mol% of [SA-1], 1a (3.0 mmol), 2a (4.5 mmol) in 1.0 mL of mesitylene were introduced with 0.30 equivalent of β -cyclodextrin on one side, while 1.0 mol% of [Ru-1] in 1.0 mL of DMSO/H₂O (v/v = 1/1) were introduced with 0.30 equivalent of β -cyclodextrin and 10.0 equivalent of HCO₂Na on the other side, then 1.0 equivalent of CTAB were added into this jar. After this, 9 stainless steel balls (\emptyset = 5 mm) were added to the system. The sealed jars were placed in a mixing mill and agitated at 550 rpm at 25 °C for 2 h. After completion of the reaction, the products were dissolved in 10.0 mL of ethyl ether,

the jars and balls were washed twice with ethyl ether (2 × 1.0 mL), and the resulting mixture was filtrated. The combined ethyl ether extracts were washed with aqueous Na₂CO₃ and then dehydrated with Na₂SO₄. After evaporation of the solvent, the resulting residue was purified by silica gel flash column chromatography to afford (*S*,*R*)-**5**. The enantiomeric excess (*ee*) and diastereomeric ratio (*dr*) values were determined using HPLC analysis employing a UV–Vis detector and a Daicel chiralcel column (Φ 0.46 × 25 cm).

2.4. Deuterium experiment for the single-step Michael addition under the ball-milling conditions.

The mechanochemical reactions were conducted in a 25 mL stainless-steel ball mill operating at 450 rpm, containing 5 stainless steel balls ($\emptyset = 5$ mm). In a typical procedure, 0.5 mol% of [**SA-1**], **1a** (0.20 mmol), and **2a** (0.24 mmol) in 100 µL of C₆D₆ were introduced into 0.30 equivalent of β -cyclodextrin in the jar, then 5 stainless steel balls were added to the system. The closed jars were placed into a mixing mill and agitated at 450 rpm at 25 °C for 0.5 h. After completion of the reaction, the products were dissolved in 2.0 mL of ethyl ether, the jars and balls were washed twice with ethyl ether (2 × 1.0 mL), and the resulting mixture was filtrated. The combined ethyl ether extracts were washed with aqueous Na₂CO₃ and then dehydrated with Na₂SO₄. After evaporation of the solvent, the resulting residue was purified by silica gel flash column chromatography to afford the desired products (**3a**). The *ee* values were determined using HPLC analysis using a UV–Vis detector and Daicel chiral-cel column (Φ 0.46 × 25 cm).

2.5. Deuterium experiment for the single-step Michael addition under the batch conditions.

In a typical procedure, 5.0 mol% of [SA-1], 1a (0.20 mmol), 2a (0.24 mmol), 0.30 equivalent of β cyclodextrin and 1.0 mL of C₆D₆ were added sequentially to a 10.0 mL round-bottom flask. The resulting mixture was then stirred at 25 °C for 1 h. During this period, the reaction was monitored by TLC. After completion of the reaction, the water was added, and the aqueous solution was extracted with ethyl ether (3 × 3.0 mL). The combined ethyl ether extracts were washed with aqueous Na₂CO₃ and then dehydrated with Na₂SO₄. After the evaporation of the solvent, the resulting residue was purified by silica gel flash column chromatography to afford (*R*)-**3a**. 2.6. Deuterium experiment for the addition/reduction cascade process under the ball-milling conditions.

A typical procedure was as follows. In a 25 mL stainless-steel jar, 0.5 mol% of [**SA-1**], **1a** (0.20 mmol), **2a** (0.24 mmol) in 100 μ L of C₆D₆ were introduced with 0.30 equivalent of β -cyclodextrin on one side, while 1.0 mol% of [**Ru-1**] in 100 μ L of DMSO-*d*₆/D₂O (v/v = 1/1) were introduced with 0.30 equivalent of β -cyclodextrin and 10.0 equivalent of HCO₂Na on the other side, then 1.0 equivalent of CTAB were added into this jar. After this, 5 stainless steel balls ($\emptyset = 5$ mm) were added to the system. The sealed jars were placed in a mixing mill and agitated at 450 rpm at 25 °C for 2-3 h. After completion of the reaction, the products were dissolved in 2.0 mL of ethyl ether, the jars and balls were washed twice with ethyl ether (2 × 1.0 mL), and the resulting mixture was filtrated. The combined ethyl ether extracts were washed with aqueous Na₂CO₃ and then dehydrated with Na₂SO₄. After evaporation of the solvent, the resulting residue was purified by silica gel flash column chromatography to afford (*S*,*R*)-**5a**.

2.7. Deuterium experiment for the single-step ATH transformation under the batch condition.

In a typical reaction, 1.0 mol% of [**Ru-1**], (*R*)-**3a** (95%*ee*, 0.20 mmol), HCO₂Na (2.0 mmol), 0.30 equivalent of β -cyclodextrin, 1.0 equivalent of CTAB and 2.0 mL of DMSO-*d*₆/D₂O (v/v = 1:1) were added sequentially to a 10.0 mL round–bottom flask. The resulting mixture was then stirred at 25 °C for 20 h. During this period, the reaction was monitored by TLC. After completion of the reaction, the aqueous solution was extracted with ethyl ether (3 × 3.0 mL). The combined ethyl ether extracts were washed with aqueous Na₂CO₃ and then dehydrated with Na₂SO₄. After the evaporation of the solvent, the resulting residue was purified by silica gel flash column chromatography to afford (*S*,*R*)-**5a**.

3. Data of chiral products.

(S,R)-**5a**: (1S,4R)-4-nitro-1-phenyl-4-(phenylsulfonyl)pentan-1-ol. White solid, 97%, 99% *ee*, 48/1 *dr*. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.86 – 7.76 (m, 3H), 7.64 (m, *J* = 9.1, 5.6, 2.1 Hz, 2H), 7.37 – 7.20 (m, 5H), 4.63 (dd, *J* = 7.1, 5.2 Hz, 1H), 2.50 (m, *J* = 14.3, 12.1, 4.2 Hz, 1H), 2.11 (m, 1H),

1.89 (d, J = 3.3 Hz, 4H), 1.58 – 1.44 (m, 1H). ¹³C NMR (100 MHz, Methanold4) δ 143.87, 135.12, 132.91, 130.75, 128.96, 128.04, 127.14, 125.49, 106.91, 72.49, 32.36, 30.09, 15.82. HRMS (ESI): m/z [M+Na]⁺ calcd for

 $[C_{17}H_{19}NO_5SNa]^+$ 372.0876; found: 372.0876.

(S,R)-5b: (1S,4R)-1-(2-fluorophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol. White solid, 91%, 99% $ee, 23/1 dr. {}^{1}H NMR (400 MHz, Methanol-d_4) \delta 7.87 - 6.89 (m, 9H), 4.97 - 4.88 (m, 1H), 2.56 - 2.06 (m, 2H), 2.00 - 1.68 (m, 4H), 1.55 - 1.36 (m, 1H).$ ${}^{13}C NMR (100 MHz, Methanol-d_4) \delta 164.16, 161.73, 147.06, 135.13, 132.90, 130.75, 128.94, 121.19, 113.69, 112.00, 106.87, 71.57, 32.26, 29.87, 15.79.$

HRMS (ESI): $m/z [M+Na]^+$ calcd for $[C_{17}H_{18}FNO_5SNa]^+$ 390.0782; found: 390.0782.

(S,R)-5c: (1S,4R)-1-(3-fluorophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol. White solid, 93%, 99% $ee, 36/1 dr. {}^{1}H NMR (400 MHz, Methanol-d_4) \delta 7.94 - 7.75 (m, 3H), 7.71$ $- 7.58 (m, 2H), 7.31 (td, J = 7.9, 5.9 Hz, 1H), 7.11 - 6.87 (m, 3H), 4.67 (dd, J = 7.1, 4.9 Hz, 1H), 2.46 (m, J = 13.7, 12.0, 4.2 Hz, 1H), 2.19 - 2.04 (m, 1H), 2.00 - 1.73 (m, 4H), 1.56 - 1.38 (m, 1H). {}^{13}C NMR (100 MHz, 100 MHz,$

Methanol- d_4) δ 130.75, 129.78, 128.95, 121.20, 112.00, 106.99, 71.76, 32.44, 30.23, 15.84. HRMS (ESI): m/z [M+Na] ⁺ calcd for [C₁₇H₁₈FNO₅SNa]⁺ 390.0782; found: 390.0782.

(S,R)-5d: (1S,4R)-1-(4-fluorophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol. White solid, 97%, 99% $ee, 30/1 \ dr. \ ^{1}H \ NMR \ (400 \ MHz, \ Methanol-d_4) \ \delta \ 7.96 - 7.76 \ (m, \ 3H), \ 7.73$ $- 7.60 \ (m, \ 2H), \ 7.32 \ (m, \ J = 10.3, \ 5.5, \ 2.7 \ Hz, \ 2H), \ 7.16 - 6.98 \ (m, \ 2H), \ 4.78 - 4.57 \ (m, \ 1H), \ 2.50 \ (m, \ J = 14.1, \ 12.1, \ 4.2 \ Hz, \ 1H), \ 2.21 - 2.03 \ (m, \ J = 10.3, \ 5.5, \ 2.7 \ Hz, \ 2H), \ 7.16 - 6.98 \ (m, \ 2H), \ 4.78 - 4.57 \ (m, \ 1H), \ 2.50 \ (m, \ J = 14.1, \ 12.1, \ 4.2 \ Hz, \ 1H), \ 2.21 - 2.03 \ (m, \ J = 10.3, \ 5.5, \ 2.7 \ Hz, \ 1H), \ 5.5 \ (m, \ 2H), \ 7.16 - 6.98 \ (m, \ 2H), \ 7.16 \ (m, \ 2H), \ 7$

1H), 1.98 - 1.80 (m, 4H), 1.50 (m, J = 13.1, 11.7, 7.2, 4.3 Hz, 1H). ¹³C NMR (100 MHz, Methanold₄) δ 163.33, 135.14, 132.89, 130.76, 128.97, 127.35, 127.28, 114.71, 114.50, 106.89, 71.87, 71.70, 32.37, 29.96, 15.85. HRMS(ESI) calcd for [M-OH⁺]: [C₁₇H₁₇FNO₄S]⁺ 350.08568 Found 350.08539.

 $(S,R)-5e: (1S,4R)-1-(3-\text{chlorophenyl})-4-\text{nitro-4-(phenylsulfonyl)pentan-1-ol. White solid, 93\%, 99\%$ $ee, 29/1 \ dr. \ ^1\text{H NMR} (400 \ \text{MHz}, \text{Methanol-}d_4) \ \delta \ 8.22 - 7.02 \ (\text{m}, 9\text{H}), 4.65$ $(dd, J = 7.1, 4.8 \ \text{Hz}, 1\text{H}), 2.46 \ (\text{m}, J = 14.1, 11.9, 4.2 \ \text{Hz}, 1\text{H}), 2.19 - 2.11 \ (\text{m}, 1\text{H}), 1.87 \ (d, J = 28.2 \ \text{Hz}, 4\text{H}), 1.46 \ (\text{m}, J = 13.0, 11.6, 7.2, 4.2 \ \text{Hz}, 1\text{H}), 1.42 \ \text{Hz}, 110, 132.85, 130.75, 129.57, 128.97, 128.97, 128.97}$

127.05, 125.51, 123.84, 106.88, 71.55, 32.26, 29.87, 15.81. HRMS (ESI): m/z [M+Na]⁺ calcd for [C₂₇H₂₅NO₅SNa]⁺ 498.1346; found: 498.1346.

(S,R)-5f: (1S,4R)1-(4-chlorophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol. White solid, 97 %, 99%OH $ee, >50/1 dr. ^{1}H NMR (400 MHz, Methanol-d_4) \delta 7.98 - 7.76 (m, 3H), 7.73$ $-7.57 (m, 2H), 7.28 (m, J = 8.6, 1.8 Hz, 4H), 2.46 (m, J = 13.9, 12.1, 4.4, 1.6 Hz, 1H), 2.12 (m, J = 13.9, 11.5, 4.4, 1.7 Hz, 1H), 1.99 - 1.76 (m, 4H), 1.56 - 1.37 (m, 1H). ^{13}C NMR (100 MHz, Methanol-d_4) \delta 142.82, 135.16, 132.83, 132.65, 130.76, 128.99, 128.08, 127.11, 106.88, 71.59, 32.27, 29.90, 15.87. HRMS (ESI): m/z [M+Na]⁺ calcd for [C₁₇H₁₈ClNO₅SNa]⁺ 406.0486; found: 406.0486.$

(S,R)-5g: (1S,4R)-1-(3-bromophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol. White solid, 95%, 99%Br O_2N $ee, >50/1 \ dr. \ ^1H \ NMR \ (400 \ MHz, \ Methanol-d_4) \ \delta \ 7.86 \ (dd, \ J = 40.2, \ 7.9 \ Hz, \ 3H), \ 7.74 - 7.58 \ (m, \ 2H), \ 7.52 - 7.35 \ (m, \ 2H), \ 7.32 - 7.17 \ (m, \ 2H), \ 4.64 \ (dd, \ J = 7.3, \ 4.8 \ Hz, \ 1H), \ 2.51 - 2.28 \ (m, \ 1H), \ 2.20 - 2.05 \ (m, \ 1H),$

1.99 - 1.72 (m, 4H), 1.45 (dd, J = 14.5, 9.8 Hz, 1H). ¹³C NMR (100MHz, Methanol-*d*₄) δ 146.78, 135.16, 133.88, 130.74, 130.04, 129.84, 128.97, 128.52, 124.27, 122.01, 106.86, 71.48, 32.28, 29.88, 15.77. HRMS (ESI): m/z [M+Na]⁺ calcd for [C₁₇H₁₈BrNO₅SNa]⁺ 449.9981; found: 449.9981.

(S,R)-5h: (1S,4R)-1-(4-bromophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol. White solid, 95%, 99%OH $ee, 28/1 dr.^{1}H NMR (400 MHz, Methanol-d_4) \delta 8.04 - 7.76 (m, 4H), 7.76$ -7.59 (m, 3H), 7.49 - 7.43 (m, 1H), 7.24 - 7.19 (m, 1H), 4.73 - 4.48 (m, 1H), 2.45 (m, J = 13.9, 12.0, 4.2 Hz, 1H), 2.17 - 2.11 (m, 1H), 1.87 (d, J = 13.9, 12.0, 4.2 Hz, 14.9)

25.2 Hz, 4H), 1.47 (dddd, J = 17.6, 16.2, 7.9, 3.7 Hz, 1H). ¹³C NMR (100Hz, Methanol- d_4) δ 143.30, 135.13, 133.89, 131.07, 130.75, 128.97, 127.43, 120.62, 106.86, 71.60, 32.21, 29.88, 15.82. HRMS (ESI): m/z [M+Na]⁺ calcd for [C₁₇H₁₈BrNO₅SNa]⁺ 449.9981; found: 449.9981.

(S,R)-**5i:** (1S,4R)-1-(4-iodophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol. White solid, 91%, 99% *ee*, OH SO_2Ph O_2N OH O_2N OH O_2N OH O_2N OH OHO

NMR (100 MHz, Methanol-*d*₄) δ 159.87, 145.51, 135.14, 132.88, 130.75, 129.10, 128.97, 117.75, 112.55, 111.00, 106.95, 72.36, 54.28, 32.32, 30.06, 15.84, 15.81. HRMS (ESI): m/z [M+Na]⁺ calcd for [C₁₇H₁₈INO₅SNa]⁺ 497.9843; found: 497.9843.

(S,R)-5j: (1S,4S)-4-nitro-1-(4-nitrophenyl)-4-(phenylsulfonyl)pentan-1-ol. White solid, 96%, 99% ee,

OH

SO₂Ph (td, J = 6.8, 1.4 Hz, 3H), 7.69 – 7.59 (m, 2H), 7.57 – 7.47 (m, 2H), 4.83 (dd, J = 7.3, 4.4 Hz, 1H), 2.56 – 2.33 (m, 1H), 2.22 (ddd, J = 14.2, 12.0,

4.5 Hz, 1H), 2.01 – 1.82 (m, 4H), 1.47 (m, J = 13.6, 11.9, 7.2, 4.2 Hz, 1H). ¹³C NMR (100 MHz, Methanol- d_4) δ 151.83, 147.15, 135.16, 132.80, 130.77, 128.98, 126.52, 126.45, 123.14, 123.09, 106.85, 71.17, 32.15, 29.63, 15.86. HRMS (ESI): m/z [M+Na]⁺ calcd for [C₁₇H₁₈N₂O₇SNa]⁺ 417.0727; found: 417.0727.

 $(S,R)-5k: 4-((1S,4R)-1-hydroxy-4-nitro-4-(phenylsulfonyl)pentyl)benzonitrile. White solid, 98\%, 99\% ee, 24/1 dr. 1H NMR (400 MHz, Methanol-d_4) & 7.95 - 7.75 (m, 3H), 7.66 (td, <math>J = 8.9, 4.0$ Hz, 4H), 7.53 - 7.38 (m, 2H), 4.74 (dd, J = 7.3, 4.0 Hz, 1H), 3.03 - 2.11 (m, 2H), 2.00 - 1.68 (m, 4H), 1.51 - 1.38 (m, 1H).

¹³C NMR (100 MHz, Methanol-*d*₄) δ 149.98, 135.19, 132.85, 131.93, 130.79, 130.77, 129.00, 126.42, 126.40, 118.39, 110.62, 106.85, 71.37, 32.14, 29.67, 15.87. HRMS (ESI): m/z [M+Na]⁺ calcd for [C₁₈H₁₈N₂O₅SNa]⁺ 397.0829; found: 397.0829.

 $(S,R)-51: (1S,4R)-4-nitro-4-(phenylsulfonyl)-1-(m-tolyl)pentan-1-ol. White solid, 91\%, 99\% ee, >50/1 dr. ¹H NMR (400 MHz, Methanol-d_4) \delta 7.96 - 7.58 (m, 6H), 7.19 (t, J = 7.5 Hz, 1H), 7.12 - 7.02 (m, 2H), 4.58 (dd, J = 7.2, 5.4 Hz, 1H), 2.55 - 2.01 (m, 5H), 1.86 (d, J = 22.2 Hz, 4H), 1.49 (m, J = 12.8, 11.4, 7.0, 4.2 Hz, 1H). ¹³C NMR (100 MHz, Methanol-d_4) \delta 143.76, 137.74, 7.0, 4.2 Hz, 1H).$

135.14, 135.12, 130.75, 129.01, 128.95, 127.95, 127.81, 126.09, 122.59, 106.94, 72.53, 32.34, 30.11, 20.16, 15.80. HRMS (ESI): m/z [M+Na]⁺ calcd for [C₁₈H₂₁NO₅SNa]⁺ 386.1033; found: 386.1033.

(S,R)-5m: (1S,4R)-4-nitro-4-(phenylsulfonyl)-1-(p-tolyl)pentan-1-ol. White solid, 92%, 99% ee, 38/1 $\overset{OH}{\underset{Me}{}} \underbrace{C_{Q_2N}}_{O_2N} \underbrace{C_{M}}_{O_2N} \underbrace{dr. ^{1}H NMR (400 MHz, Methanol-d4) \delta 8.13 - 6.92 (m, 9H), 4.57 (dd, J = 7.0, 5.5 Hz, 1H), 2.55 - 1.14 (m, 10H). ^{13}CNMR (100 MHz, Methanol-d4) \delta 140.84, 136.85, 135.07, 132.88, 130.74, 128.93, 128.60, 125.40, 107.05, 125.40, 125.4$

72.44, 32.40, 30.39, 19.74, 15.84. HRMS (ESI): m/z [M+Na]⁺ calcd for [C₁₈H₂₁NO₅SNa]⁺ 386.1033; found: 386.1033.

(S,R)-**5n:** (1S,4R)-1-(3-chlorophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol. White solid, 93%, 99% $ee, >50/1 \ dr. ^{1}H \ NMR \ (400 \ MHz, \ Methanol-d4) \ \delta \ 7.98 - 7.58 \ (m, \ 6H), \ 7.21 - 7.13 \ (m, \ 3H), \ 4.58 \ (dd, \ J = 7.0, \ 5.4 \ Hz, \ 1H), \ 2.62 \ (q, \ J = 7.6 \ Hz, \ 2H), \ 2.46 \ (ddd, \ J = 14.3, \ 12.1, \ 4.2 \ Hz, \ 1H), \ 2.14 - 1.97 \ (m, \ 1H), \ 1.85 \ (d, \ J = 20.8 \ Hz, \ 1H), \ 2.14 - 1.97 \ (m, \ 1H), \ 1.85 \ (d, \ J = 20.8 \ Hz, \ 1H), \ 2.14 - 1.97 \ (m, \ 1H), \ 1.85 \ (d, \ J = 20.8 \ Hz, \ 1H), \ 2.14 - 1.97 \ (m, \ 1H), \ 1.85 \ (d, \ J = 20.8 \ Hz, \ 1H), \ 2.14 - 1.97 \ (m, \ 1H), \ 1.85 \ (d, \ J = 20.8 \ Hz, \ 1H), \ 2.14 - 1.97 \ (m, \ 1H), \ 1.85 \ (d, \ J = 20.8 \ Hz, \ 1H), \ 2.14 - 1.97 \ (m, \ 1H), \ 1.85 \ (d, \ J = 20.8 \ Hz, \ 1H), \ 2.14 - 1.97 \ (m, \ 1H), \ 1.85 \ (d, \ J = 20.8 \ Hz, \ 1H), \ 2.14 - 1.97 \ (m, \ 1H), \ 2.14 - 1.97 \ (m, \ 1H), \ 1.85 \ (d, \ J = 20.8 \ Hz, \ 1H), \ 2.14 - 1.97 \ (m, \ 1H), \ 2.14 \ (m, \ 1H), \ 2.14 \ (m, \ 1$

4H), 1.57 - 1.41 (m, 1H), 1.21 (d, J = 15.2 Hz, 3H).¹³C NMR (100 MHz, Methanol- d_4) δ 143.42, 141.02, 135.10, 132.92, 130.75, 128.96, 127.49, 125.54, 106.93, 72.42, 32.31, 30.15, 28.13, 14.85. HRMS(ESI) calcd for [M-OH+]: [C₁₈H₂₀NO₄S]⁺ 346.11076; Found 346.11087.

(*S*,*R*)-**50:** (*1S*,*4R*)-1-(4-isopropylphenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol. White solid, 91%, 99% *ee*, 16/1 *dr*. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.94 – 7.76 (m, 3H), 7.72 – 7.59 (m, 2H), 7.19

OH SO₂Ph O₂N

(s, 4H), 4.58 (dd, *J* = 7.1, 5.4 Hz, 1H), 2.89 (dq, *J* = 13.8, 6.9 Hz, 1H), 2.47 (m, *J* = 16.0, 12.2, 4.2 Hz, 1H), 2.08 (m, *J* = 14.2, 12.1, 4.4 Hz, 1H), 1.89 (s, 4H), 1.49 (m, *J* = 12.0, 7.0, 4.3 Hz, 1H), 1.23 (d, *J* = 6.9 Hz, 6H). ¹³C NMR

(100 MHz, Methanol-*d*₄) δ 148.01, 141.19, 135.09, 132.95, 130.76, 128.94, 126.00, 125.52, 107.42, 72.41, 33.70, 32.30, 30.17, 23.08, 15.78. HRMS(ESI) calcd for [M-OH⁺]: [C₂₀H₂₄NO₄S]⁺ 374.14206; Found 374.14227.

(S,R)-5p: (1S,4R)-1-(4-(tert-butyl)phenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol. White solid, 89%,OH(S,R)-5p: (1S,4R)-1-(4-(tert-butyl)phenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol. White solid, 89%,99%*ee*, 17/1*dr*. ¹H NMR (400 MHz, Methanol-*d* $₄) <math>\delta$ 7.96 – 7.89 (m, 2H), 7.87 – 7.78 (m, 2H), 7.76 – 7.60 (m, 3H), 7.42 – 7.13 (m, 2H), 4.60 (t, *J* = 6.3 Hz, 1H), 2.58 – 2.00 (m, 2H), 1.87 (d, *J* = 22.7 Hz, 4H), 1.59 – 0.78 (m, 2H), 011) ¹³C NMP (100 MHz, Methanol *d*) δ 125 12, 125 10, 120 76, 120 60, 120 26, 120 00, 128 05

9H). ¹³C NMR (100 MHz, Methanol-*d*₄) δ 135.13, 135.10, 130.76, 129.60, 129.26, 129.00, 128.95, 128.52, 125.23, 124.88, 72.32, 32.27, 30.42, 30.16, 29.38, 15.79, 15.79, 11.86. HRMS(ESI) calcd for [M-OH⁺]: [C₂₁H₂₆NO₄S]⁺ 388.15771; Found 388.15778.

(*S*,*R*)-**5q:** (*IS*,*4R*)-1-(3-methoxyphenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol. White solid, 96%, MeO OH OH OSO_2Ph $OSO_$

1H), 2.18 – 1.99 (m, 1H), 1.99 – 1.78 (m, 4H), 1.49 (m, J = 13.1, 12.1, 7.0, 4.2 Hz, 1H).¹³C NMR (100 MHz, Methanol- d_4) δ 159.87, 145.51, 135.14, 132.88, 130.75, 129.10, 128.97, 117.75, 112.55, 111.00, 106.95, 72.36, 54.28, 32.32, 30.06, 15.84, 15.81. HRMS (ESI): m/z [M+Na]⁺ calcd for [C₁₈H₂₁NO₆SNa]⁺ 402.0982; found: 402.0982.

(S,R)-**5r:** (1S,4R)-1-(4-methoxyphenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol. White solid, 98%, 99% *ee*, 24/1 *dr*. ¹H NMR (400 MHz, Methanol-*d*₄) δ 8.03 – 7.59 (m, 5H), 7.29 – 7.08 (m, 2H), 6.99

 $\begin{array}{c} \mathsf{OH} \\ \mathsf{MeO} \end{array} \xrightarrow{\mathsf{OH}} \\ \mathsf{O}_2\mathsf{N} \end{array} \xrightarrow{\mathsf{OP}} \\ \mathsf{O}_2\mathsf{N} \end{array} \xrightarrow{\mathsf{OH}} \\ -6.71 \ (\mathsf{m}, 2\mathsf{H}), \ 4.57 \ (\mathsf{dd}, \ J = 6.9, \ 5.6 \ \mathsf{Hz}, \ 1\mathsf{H}), \ 3.79 \ (\mathsf{s}, 3\mathsf{H}), \ 2.61 - 1.99 \ (\mathsf{m}, 2\mathsf{H}), \ 2.01 - 1.73 \ (\mathsf{m}, 4\mathsf{H}), \ 1.51 \ (\mathsf{m}, \ J = 13.0, \ 12.1, \ 6.9, \ 4.2 \ \mathsf{Hz}, \ 1\mathsf{H}). \ ^{13}\mathsf{C} \\ \mathsf{NMR} \ (100 \ \mathsf{MHz}, \ \mathsf{Methanol-}d_4) \ \delta \ 135.77, \ 135.15, \ 132.90, \ 130.75, \ 128.97, \end{array}$

126.74, 113.41, 106.94, 72.20, 54.33, 32.31, 30.15, 15.86. HRMS (ESI): m/z [M+Na]⁺ calcd for [C₁₈H₂₁NO₆SNa]⁺ 402.0982; found: 402.0982.

(S,R)-5s: (1S,4R)-1-(4-(dimethylamino)phenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol. White solid,91% yield, 99%*ee*, 10/1*dr* $. ¹H NMR (400 MHz, Methanol-d₄) <math>\delta$ 7.85 - 7.74 (m, 3H), 7.63 (td, J = 8.0, 7.1, 1.5 Hz, 2H), 7.18 - 7.07 (m, 2H), 6.75 (d, J = 8.4 Hz, 2H), 4.50 (t, J = 6.4 Hz, 1H), 2.92 (d, J = 1.2 Hz, 6H), 2.52 - 2.37 (m, 1H), 2.08 - 1.94 (m, 1H), 1.88 (s, 3H),

1.84 (d, J = 5.4 Hz, 2H), 1.59 – 1.45 (m, 1H). ¹³C NMR (100 MHz, Methanol-d₄) δ 150.48, 135.09, 132.91, 131.73, 130.75, 128.96, 126.43, 112.70, 106.95, 72.55, 39.74, 32.19, 30.29, 15.81. HRMS(ESI) calcd. for [M-OH⁺]: C₁₉H₂₃N₂O₄S⁺ 375.13730; Found 375.13726.

(S,R)-5t: (1S,4R)-1-(naphthalen-2-yl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol. White solid, 82%, 99%OH $ee, 10/1 dr. {}^{1}H NMR (400 MHz, Methanol-d_4) \delta 7.87 - 7.66 (m, 7H), 7.55$ -7.37 (m, 5H), 4.80 (s, 1H), 2.46 (ddd, J = 14.0, 12.2, 4.4 Hz, 1H), 2.19 $-2.07 (m, 1H), 2.04 - 1.80 (m, 4H), 1.69 - 1.53 (m, 1H). {}^{13}C NMR (100)$

MHz, Methanol-*d*₄) δ 141.19, 135.00, 133.33, 133.06, 132.79, 130.66, 128.81, 127.85, 127.62, 127.29,

125.78, 125.48, 124.22, 123.58, 106.89, 72.47, 32.10, 30.13, 15.73. HRMS (ESI): $m/z [M+Na]^+$ calcd for $[C_{21}H_{21}NO_5SNa]^+$ 422.1033; found: 422.1033.

(S,R)-5u: (1S,4R)-4-((4-fluorophenyl)sulfonyl)-4-nitro-1-phenylpentan-1-ol. White solid, 97%, 99%

0,0

OH

OH O O

ee, 48/1 *dr*. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.95 – 7.66 (m, 4H), 7.50 – 7.30 (m, 5H), 4.83 – 4.67 (m, 1H), 2.60 – 2.36 (m, 1H), 2.23 -2.10(m, *J* = 16.2, 10.7, 4.5, 1.8 Hz, 1H), 2.01 (d, *J* = 1.8 Hz, 4H), 1.62 (dt, *J* = 12.2, 6.8,

3.2 Hz, 1H). ¹³C NMR (100 MHz, Methanol- d_4) δ 147.75, 145.84, 136.35, 135.46, 133.25, 132.02, 131.10, 129.44, 111.04, 76.29, 36.27, 34.14, 19.66. HRMS (ESI) calcd for [M-OH⁺]: [C₁₇H₁₇FNO₄S]⁺ 350.08568; Found 350.08463.

(S,R)-5v: (1S,4R)-4-((4-chlorophenyl)sulfonyl)-4-nitro-1-phenylpentan-1-ol. White solid, 95%, 99%

ee, >50/1 *dr*. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.96 – 7.76 (m, 2H), 7.49 – 6.86 (m, 7H), 4.64 (dd, *J* = 7.1, 5.1 Hz, 1H), 2.46 (m, *J* = 14.2, 12.1, 4.2 Hz, 1H), 2.23 – 2.01 (m, 1H), 1.90 (s, 4H), 1.51 (m, *J* = 16.8, 13.1, 7.1, 4.2 Hz,

1H). ¹³C NMR (100 MHz, Methanol-*d*₄) δ 168.21, 165.65, 143.85, 134.05, 133.95, 128.94, 128.91, 128.08, 127.17, 125.51, 116.42, 116.18, 107.05, 72.40, 32.36, 30.18, 15.81. HRMS (ESI) calcd for [M-OH⁺]: [C₁₇H₁₇ClNO₄S]⁺ 366.05613; Found 366.05630.

(S,R)-5w: (1S,4R)-4-nitro-1-phenyl-4-tosylpentan-1-ol. White solid, 92% yield, 94%, 99% ee, >50/1

 $dr. \ ^{1}H \ NMR \ (400 \ MHz, \ Methanol-d_{4}) \ \delta \ 7.72 - 7.62 \ (m, \ 2H), \ 7.37 - 7.21 \\(m, \ 5H), \ 4.64 \ (dd, \ J = 7.1, \ 5.3 \ Hz, \ 1H), \ 2.63 - 2.36 \ (m, \ 4H), \ 2.21 - 1.99 \\(m, \ 5H), \ 4.64 \ (dd, \ J = 7.1, \ 5.3 \ Hz, \ 1H), \ 2.63 - 2.36 \ (m, \ 4H), \ 2.21 - 1.99 \\(m, \ 1H), \ 1.97 - 1.78 \ (m, \ 4H), \ 1.62 - 1.43 \ (m, \ 1H). \ ^{13}C \ NMR \ (400 \ MHz, \ Methanol-d_{4}) \ \delta \ 146.92, \ 143.89, \ 130.75, \ 129.59, \ 128.58, \ 128.07, \ 127.14, \ 125.53, \ 106.88, \ 72.53, \ 32.40, \ 30.10, \ 20.40, \ 15.94. \ HRMS \ (ESI) \ calcd \ for \ [M-OH^+]: \ [C_{18}H_{20}NO_4S]^+ \ 346.11076; \ Found \ 346.11041.$

128.92, 128.08, 127.19, 125.65, 110.25, 72.99, 32.84, 26.68, 23.81, 7.00. HRMS (ESI) calcd for [M-OH⁺]: [C₁₈H₂₀NO₄S]⁺ 346.11076; Found 346.11087.

(S,R)-5y: (1S,4S)-4-nitro-1,5-diphenyl-4-(phenylsulfonyl)pentan-1-ol. White solid, 98%, 99% ee, $>50/1 dr. ¹H NMR (400 MHz, Methanol-d₄) <math>\delta$ 7.92 (d, J = 7.8 Hz, 2H), 7.83 (t, J = 7.5 Hz, 1H), 7.67 (t, J = 7.8 Hz, 2H), 7.38 – 7.20 (m, 8H), 7.12 – 7.00 (m, 2H), 4.52 (t, J = 6.3 Hz, 1H), 3.73 – 3.46 (m, 2H), 2.52 – 1.89 (m, 4H).

¹³C NMR (100MHz, Methanol-*d*₄) δ 144.00, 135.14, 134.13, 131.97, 130.99, 129.90, 128.96, 128.51,

127.97, 127.81, 127.07, 125.63, 109.93, 73.52, 38.89, 32.87, 27.82. HRMS (ESI) calcd for [M-OH⁺]: $[C_{23}H_{22}NO_4S]^+ 408.12969$; Found 408.12973.

(S,R)-5z: (1S,4R)-1-(furan-2-yl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol. White solid, 94% yield, 99%

ee, 49/1*dr*. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.94 – 7.80 (m, 3H), 7.68 (t, *J* = 7.9 Hz, 2H), 7.44 (d, *J* = 1.8 Hz, 1H), 6.36 (dd, *J* = 3.2, 1.9 Hz, 1H), 6.27 (d, *J* = 3.3 Hz, 1H), 4.64 (dd, *J* = 7.3, 5.5 Hz, 1H), 2.18 (m, *J* = 14.2, 12.0, 4.5 Hz, 1H), 2.03 (m, 1H), 1.94 (s, 3H), 1.60 (m,

1H).¹³C NMR (100 MHz, Methanol- d_4) δ 155.96, 141.84, 135.20, 135.16, 132.88, 130.78, 129.02, 109.77, 105.82, 66.05, 29.79, 29.23, 15.96. HRMS (ESI) m/z [M+Na]⁺ calcd for [C₁₅H₁₇NO₆SNa]⁺ 362.0669; found: 362.0669.

(S,R)-5z': (1S,4R)-4-nitro-4-(phenylsulfonyl)-1-(thiophen-2-yl)pentan-1-ol. White solid, 94% yield,

99% ee, 32/1dr. ¹H NMR (400 MHz, Methanol-d₄) δ 7.95 – 7.78 (m, 3H), 7.72 – 7.57 (m, 2H), 7.32 (dd, J = 4.8, 1.5 Hz, 1H), 7.01 – 6.91 (m, 2H), 2.58 (m, 1H), 2.17 (m,, 1H), 2.05 – 1.88 (m, 4H), 1.68 – 1.54 (m, 1H). ¹³C NMR (100 MHz, Methanol-d₄) δ 147.90, 135.22, 132.83,

130.78, 129.05, 126.30, 124.10, 123.41, 106.90, 68.52, 32.78, 29.98, 16.04. HRMS (ESI) m/z $[M+Na]^+$ calcd for $C_{15}H_{17}NO_5S_2Na]^+$ 378.0440; found: 378.0440. .

(S,R)-5 z'': (1S,4R)-1-(benzo[d][1,3]dioxol-5-yl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol. White solid,OHOHO2NSO₂PhO₂NSO₂NSO₂PhO₂NSO₂PhO₂NSO₂PhO₂NSO₂NSO₂NSO₂PhO₂NSO₂N

- 1.78 (m, 4H), 1.49 (m, , 1H). ¹³C NMR (100 MHz, Methanol-*d*₄) δ 147.81, 146.95, 137.89, 135.16, 132.87, 130.77, 128.98, 118.94, 107.54, 106.94, 105.81, 100.93, 72.34, 32.36, 30.44, 30.10, 15.85.
HRMS(ESI) calcd. for [M-OH⁺]: C18H18NO6S⁺ 376.08493; Found 376.08494.

	Ph \xrightarrow{O} + $\xrightarrow{SO_2Ph}$ Michael addition \xrightarrow{O} Ph \xrightarrow{O} Ph $\xrightarrow{O_2N}$ 1a \xrightarrow{O} 2a \xrightarrow{O} (R)-3a	SO ₂ Ph	() (F ₃) N (SA-1]	℃F ₃
Entry	Loading of [SA-1] (mol%) /Mesitylene (µL)/Additive/Milling speed (rpm)	Time (minute)	Yield (%)	ee (%)
1	10.0 mol%///450	30	99	72
2	1.0 mol%///450	30	99	86
3	1.0 mol%/100µL//450	30	99	89
4	0.5 mol%/100µL//450	30	99	91
5	0.5 mol%/100µL//350	30	93	91
6	0.5 mol%/100µL//550	30	99	90
7	0.5 mol%/75µL//450	30	89	88
8	0.5 mol%/125µL//450	30	99	90
9	0.4 mol%/100µL//450	30	83	91
10	0.5 mol%/100µL/CTAB(1 equivalents)/450	30	99	91
11	$0.5 \text{ mol}\%/100 \mu L/\beta$ -CD (0.3 equivalents)/450	30	98	95
12	$0.5 \text{ mol}\%/100 \mu L/\beta$ -CD (0.25 equivalents)/450	30	91	95
13	$0.5 \text{ mol}\%/100 \mu L/\beta$ -CD (0.35 equivalents)/450	30	99	94
14	$0.5 \text{ mol}\%/100 \mu L/\beta$ -CD(0.3 equivalents)/450	20	93	95
15	$0.5 \text{ mol}\%/100 \mu L/\beta$ -CD(0.3 equivalents)/450	40	99	92

Table S1. Optimizing the single-step Michael addition reaction under the ball-milling conditions.^a

Ξ

^a Reaction conditions: [SA-1] (0.40-10.0 mol%), 1a (0.20 mmol), 2a (0.24 mmol), and/or additive, air atmosphere. ^b All yields were determined using ¹H NMR spectroscopy, and the *ee* values were determined by a chiral HPLC analysis.

	$(R)-3a (95\% ee) \xrightarrow{SO_2Ph} HCOONa Ball-milling} OH Ph OH O2N OH O4N O4N OH O4N O4N OH O4N O4N O4N O4N O4N O4N O4N O4N O4N O4N$	H_2N H_2N $(S,S)-[I$	-CI NSO ₂ Ph Ru-1]	/
Entry	Loading of [Ru-1](mol%)/ DMSO-H ₂ O (µL)/Additive/Milling speed (rpm)	Time (h)	Yield (%)	<i>ee/dr</i> (%)
1	1.2 mol%/100 µL//450	2.5	72	97/32:1
2	1.0 mol%/100 µL//450	2.5	57	99(48:1)
3	0.8 mol%/100 µL//450	2.5	38	99(48:1)
4	1.0 mol%/100 µL//350	2.5	44	99(48:1)
5	1.0 mol%/100 µL//550	2.5	66	99(40:1)
6	1.0 mol%/80 µL//450	2.5	51	99(48:1)
7	$1.0 \text{ mol}\%/120 \ \mu\text{L//450}$	2.5	62	99(42:1)
8	1.0 mol%/100µL/β-CD(0.25 equivalents)/450	2.5	69	99(48:1)
9	$1.0 \text{ mol}\%/100 \mu L/\beta$ -CD(0.25 equivalents) + CTAB/450	2.5	91	99(48:1)
10	$1.0 \text{ mol}\%/100 \mu L/\beta$ -CD(0.30 equivalents) + CTAB/450	2.5	98	99(48:1)
11	$1.0 \text{ mol}\%/100 \mu L/\beta$ -CD(0.35 equivalents) + CTAB/450	2.5	98	99(48:1)
12	$1.0 \text{ mol}\%/100 \mu L/\beta$ -CD(0.3 equivalents) + CTAB/450	2.0	93	99(48:1)
13	$1.0 \text{ mol}\%/100 \mu L/\beta$ -CD(0.3 equivalents) + CTAB/450	3.0	98	99(48:1)

Table S2. Optimizing the single-step ATH transformation under the ball-milling conditions.^a

 \geq

^a Reaction conditions: MesRuTsDPEN (0.8-1.2 mol%), (*R*)-**3a** (95%*ee*, 0.20 mmol), 5.0 equivalent of HCOONa, 80-120µL of DMSO/H₂O (v/v = 1/1), 0.25-0.35 equivalent of β -cyclodextrin, and/or 1.0 equivalent of CTAB, air atmosphere, 400-800 rpm at 25 °C for 2 h. ^{*b*} All yields were determined using ¹H NMR spectroscopy, and the *ee* and *dr* values were determined by a chiral HPLC analysis.

Figure S1. The contrastive ¹H–NMR spectra in the reactions of 1a in Equation 3 of Scheme 1.
(a) The standard ¹H-NMR spectrum of by-products of (*S*)-1-phenylpropan-1-ol ((*R*)-4a).

(b) The standard ¹H-NMR spectrum of by-products of (S)-1-phenylpropan-1-ol.

(c) The standard ¹H-NMR spectrum of **1a**.

(d) The obtained ¹H-NMR spectrum of the mixed products in the reaction of **1a** under the ball-milling conditions.

Figure S2. HPLC analyses of chiral products

(S,R)-5a: (1S,4R)-4-nitro-1-phenyl-4-(phenylsulfonyl)pentan-1-ol (HPLC: Chiracel OZ-H, detected at 210 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0mL/min, 25°C).

(S,R)-5b: (1S,4S)-1-(2-fluorophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol (HPLC: Chiracel OZ-H, detected at 210 nm, eluent: n-hexane/2-propanol = 93/7, flow rate = 0.8mL/min, 25°C).

250-(S,R) (R,S) 10.0 15.0 20.0 25.0 30.0 35.0 45.0 50.0 55.0 60.0 70.0 75.0 80.0 85.0 50 40.0 65.0 0.0 ъ 4 □ 化合物表视图

ID#	名称	保留时间	峰#	面积	高度	面积%
1	RT32.222	32.222	1	29130	260	0.0437
2	RT38.440	38.440	2	615977	6601	0.9233
3	RT42.643	42.643	3	2188776	23859	3.2807
4	RT67.221	67.221	4	63883181	367754	95.7524

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

17

(S,R)-5c: (1S,4R)-1-(3-fluorophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol (HPLC: Chiracel

IC, detected at 254 nm, eluent: n-hexane/2-propanol = 85/15, flow rate = 1.0mL/min, 25°C).

11							
	ID#	名称	保留时间	峰#	面积	高度	面积%
	1	RT14.633	14.633	1	55347	1556	0.7983
	2	RT18.788	18.788	2	131077	2912	1.8907
Γ	3	RT20.262	20.262	3	6725363	135615	97.0093
	4	RT24.026	24.026	4	20911	348	0.3016

(S,R)-5d: (1S,4R)-1-(4-fluorophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol (HPLC: Chiracel IC, detected at 210 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0mL/min, 25°C).

(S,R)-5e: (1S,4R)-1-(3,9-dihydropyren-4-yl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol (HPLC: Chiracel IC, detected at 254 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 0.7mL/min, 25°C).

(*S*,*R*)-**5f:** (*IS*,*4R*-**1-(4-chlorophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol (HPLC:** Chiracel OZ-H, detected at 210, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0mL/min, 25°C).

4

168352

2166

40.951

RT40.951

4

0.7603

(S,R)-5f: (1S,4S)-1-(3-bromophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol (HPLC: Chiracel OD-

3, detected at 254 nm, eluent: n-hexane/2-propanol = 85/15, flow rate = 1.0mL/min, 25°C).

60 ^{mV} 50- 40-	· 测器 A:254nm		H		时间 11.875 3	<u>最大强度:26.808</u> 强度 36.593 ▲
20- 10- 0- 0.0	2'.5 5.0	(±	O ₂ N	20.0 22.5 25.0	27.5 30.0 32.5	
•						Þ
	初表视图	(mfmm 1)77	1.6.1			
ID#		保留时间	峰7	面积 4004400	高度	面积%
	RT20.023	20.023	1	1201402	22487	29.2081
1 2	RT24.842	22.410		848250	13700	20.6650
4	RT29.644	29.644	4	935553	11570	22,7916
50- 25- 0- 0- 0.0	, 3.测器 A:254nm 2.5 5.0	Br. 7.5 10.0 12.5	OH O ₂ N (S,R)	Ph 20.0 22.5 25.0	时间 11.333 · · · · · · · · · · · · · · · · · ·	最大强度: 60.927 型度 59.043
□化合	 物表视图					
L. I						
ID#	名称	保留时间	峰#	面积	高度	面积%
ID#	名称 RT20.260	保留时间 20.260	<u>峰</u> #1	面积 48219	<u>高度</u> 1056	面积% 1.1051
ID# 1 2	名称 RT20.260 RT22.566	保留时间 20.260 22.566	1 2	面积 48219 26199	高度 1056 561	面积% 1.1051 0.6005
ID# 1 2 3	名称 RT20.260 RT22.566 RT24.570	保留时间 20.260 22.566 24.570	u≩ # 2 3	面积 48219 26199 4280230	高度 1056 561 56768	面积% 1.1051 0.6005 98.0998

(*S*,*R*)-**5h:** (*1S*,*4R*)-**1-**(**4-bromophenyl**)-**4-nitro-4-**(**phenylsulfonyl**)**pentan-1-ol** (**HPLC:** Chiracel OZ-H, detected at 210 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0mL/min, 25°C).

I	ID#	名称	保留时间	峰#	面积	高度	面积%
I	1	RT23.180	23.180	1	725485	11600	2.7590
I	2	RT34.001	34.001	2	27550	250	0.1048
I	3	RT38.955	38.955	3	25348893	261877	96.4005
I	4	RT44.798	44.798	4	193460	1853	0.7357
1							

(*S*,*R*)-**5i:** (*1S*,*4R*)-**1-**(**4-iodophenyl**)-**4-nitro-4-**(**phenylsulfonyl**)**pentan-1-ol** (**HPLC:** Chiracel OZ-H, detected at 210 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0mL/min, 25°C).

mV	1198 A.O.4.0				Detical	最大强度: 819,165
-1位川	则器 A:210nm				中小日	短度
750-						
3						
500-						
-		SO ₂ Ph				
250		02N				
2007		(+)	\wedge	\wedge		
-	ft.	(/ \		$\land \land$	
0-						·
0.0	5.0 10.0	15.0 20.0	25.0 30.0 35.0	0 40.0 45.0	50.0 55.0 60.0	65.0 min
•						•
■ 化合物	1表视图					
ID#	名称	保留时间	峰#		高度	面积%
1	RT27.703	27.703	1	19490482	276236	20.4730
2	RT39.344	39.344	2	27774344	280989	29.1745
3	RT47.230	47.230	3	28195074	237907	29.6164
4	RT54.573	54.573	4	19740998	143341	20.7361
1000	测器 A:210nm	15.0 20.0	OH O2N (R,S) 25.0 30.0 35.	1	时间 0.07 OH (S,R) 55.0 60.0	<u> </u>
	勿表视图 ┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━					
- ID#	名称	保留时间	峰#	面积 面积	高度	面积%
1	RT29.021	29.021	1	2132491	32281	5.9106
2	R138.053	38.053	2	87658	1436	0.2430
3	R148.317	48.317	3	33/07023	278195	93.4260
4	R150.358	56.358	4	151666	1/6/	0.4204

(*S*,*R*)-**5j:** (*IS*,*4R*)-**4**-nitro-**1**-(**4**-nitrophenyl)-**4**-(phenylsulfonyl)pentan-**1**-ol (HPLC: Chiracel OZ-H, detected at 210 nm, eluent: n-hexane/2-propanol = 85/15, flow rate = 1.0mL/min, 25°C).

mV 750_稏 500- 250-	测器 A:210nm		2 ^{Ph}	Λ	时间	<u>最大强度: 296,503</u> 强度 ▲
	5.0 10		20.0 25.0	30.0 35.0	40.0 45.0	50.0 min 50.0 j
	叨表视图					
ID#	名称	保留时间	峰#	面积	高度	面积%
1	RT22.053	22.053	1	12877688	260158	21.1271
2	RT28.469	28.469	2	17516260	281109	28.7372
3	RT31.605	31.605	3	17859488	254769	29.3003
4	RT42.684	42.684	4	12699917	130910	20.8355

Translation of all characters (Chinese) in the above two frameworks to English is as follows:

25

(*S*,*R*)-**5k: 4-**((*1S*,*4S*)-**1-hydroxy-4-nitro-4-(phenylsulfonyl)pentyl)benzonitrile:** (HPLC: Chiracel OZ-H, detected at 210nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0mL/min, 25°C).

(S,R)-51: (1S,4S)-4-nitro-4-(phenylsulfonyl)-1-(m-tolyl)pentan-1-ol (HPLC: Chiracel OD3, detected at 210 nm, eluent: n-hexane/2-propanol = 95/5, flow rate = 1.0mL/min, 25°C).

mv mv			,			取入5由長: 768,608
- 1位	(则嚣 A:210nm				时间94.144 59	超度 -/4.915 🔺
1500-						
-						
1000-						
-		Me	\times ^{SO₂Ph}			
500		U 02N		\wedge	~	
300-		~			(•
	l.	(±)				Ð
0			<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>	······································	3
ó	10	20 30	40 50	60	70 80	90 min
						•
し見化合物	物表视图					
ID#	名称	保留时间	峰#	面积	高度	面积%
1	RT42.708	42.708	1	93919484	766368	20.6057
2	RT47.258	47.258	2	112321604	678279	24.6431
3	RT55.414	55.414	3	126639940	618703	27.7845
4	R168.257	68.257	4	122912956	529535	26.9668
mV Tech	加出的人:210.cm				ntiol	最大强度: 137,937
300-1124	次968 (5.410)1111					1411
			OH		0	
		Ме	OH	- Ph		H
200-		Me	OH SO	₂ Ph	Me	H SO ₂ Ph
200-		Me		₂ Ph	Me	H O ₂ N SO ₂ Ph
200-	1	Me	O2N ¹ SO	2Ph	OI Me	H O ₂ N SO ₂ Ph
200-	K	Ме		₂ Ph		$H = \frac{SO_2Ph}{O_2N}$
200-		Ме	OPH O2N [×] SO (R,S)	2Ph	Me (S,/	H O_2N O_2N R)
200-		Me	OH O ₂ N [×] SO, (<i>R</i> , <i>S</i>)	2Ph	Me (S,/	$H = \frac{SO_2Ph}{O_2N}$
200-		Me		2Ph	Me (S,/	H O_2N O_2N R)
200-	10	Me	OPH O2N [×] SO, (R,S) 40 50	2Ph	70 80 OI	H O_2N
200- 100-	」 10 加速和图	Me	O2N [×] SO (R,S) 40 50	2Ph		$H \rightarrow SO_2Ph O_2N \rightarrow Ph O_2$
200- 100- 	10 10 勿表视图	Me	QH O2N ¹ SO (R,S) 40 50	2Ph		H O_2N P SO_2Ph O_2N P SO_2Ph O_2N P P P
200- 100- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0-	10 10 刻表视图 名称	Me 20 30	QH QN (R,S) 40 50	2Ph * * * *	Me OI 70 80	H O ₂ N R) 90 min •••
200- 100- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0-	10 10 列表视图 RT43.803 PT405-00	Me 20 30 保留时间 43.803	QH QN (R,S) 40 50	2Ph * * * * * * * * * * * * * * * * * * *	Me OI 70 80 高度 1802	H SO ₂ Ph O ₂ N R) 90 min • • • • • • • • • • • • •
200- 100- 0 0 100- 100- 100- 100- 100- 1	10 10 刻表视图 名称 RT43.803 RT49.540 DTEF 225	Me 20 30 保留时间 43.803 49.540 656.925	QH QN (R,S) (R,S) 40 50	2Ph 本 60 198838 279184 94977	Me OI 70 80 高度 1802 2495 236	H SO ₂ Ph O ₂ N R) 90 min • • • • • • • • • • • • •
200- 100- 0 0 100- 100- 100- 100- 100- 1	10 加 加 加 加 加 加 加 加 加 加 加 加 加	Me 20 30 保留时间 43.803 49.540 56.235 69.625	QH QN (R,S) 40 50 ## 1 2 3 4	2Ph ب ب ب ب ب 60 Баң 198838 279184 84877 33489301	Me OI 70 80 高度 1802 2495 236 154/983 154/983	H SO ₂ Ph O ₂ N P) 90 min • • • • • • • • • • • • •
2000 100- 0 0 100- 100- 100- 100- 100- 1	10 加表视图 RT43.803 RT49.540 RT56.235 RT69.635	Me 20 30 保留时间 43.803 49.540 56.235 69.635	QH QN (R,S) 40 50 ### 1 2 3 4	2Ph 本 60	Me OI 70 80 高度 1802 2495 236 154263 154263	H SO ₂ Ph O ₂ N P) 90 min 10 10 10 10 10 10 10 10 10 10

(S,R)-5m: (1S,4R)-4-nitro-4-(phenylsulfonyl)-1-(p-tolyl)pentan-1-ol (HPLC: Chiracel OD-3, detected at 254 nm, eluent: n-hexane/2-propanol = 85/15, flow rate = 1.0mL/min, 25°C).

125 ^{mV} 指入测器 A:254nm 100- 75- 50- 25- 0- 0- 0- 2.5 5.0	DH O_2N T_2	2.5 15.0 17.5	20.0 22.5 25	Bijjej 29.167 g	最大强度: 54,757 型度 -18.092 ▲ 32.5 min →
□□化合物表视图					
ID# 名称	保留时间	峰#	面积	高度	面积%
1 RT12.632	12.632	1	1765330	51677	20.4824
2 RT14.119	14.119	2	1855279	47599	21.5260
3 RT16.845	16.845	3	2520710	53340	29.2467
4 RT19.237	19.237	4	2477465	44046	28.7449
mV 检测器 A:254nm 50- 25- 0- 0- 0- 0.0 2.5 5.0	OH O ₂ N (S,R)	SO ₂ Ph	Me 20.0 22.5 25.0	OH 时间 15.411 强 SO ₂ P O ₂ N (<i>R</i> , <i>S</i>)	最大强度: 53,175 健康 -6.336 ▲ h
□化合物表视图					
ID# 名称	保留时间	峰#		高度	面积%
1 RT12.886	12.886	1	12327	401	0.3976
2 RT14.252	14.252	2	66140	1993	2.1334
3 RT16.881	16.881	3	3018131	55634	97.3505
4 RT22.518	22.518	4	3674	53	0.1185

(S,R)-5n: (1S,4R)-1-(4-ethylphenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol (HPLC: Chiracel IC, detected at 254 nm, eluent: n-hexane/2-propanol = 93/7, flow rate = 1.0 mL/min, 25°C).

OH OH	
50 40 30 20 Et O_2N O_2Ph (\pm) O_2N O_2 O	
10- 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.	0 55.0 min
□ 化合物表视图	
ID# 名称 保留时间 峰# 面积 高度	面积%
1 RT27.865 27.865 1 1947921 31436	21.3301
2 RT35.022 35.022 2 1995818 28591	21.8546
<u>3 RT37.511 37.511 3 2635326 33458</u>	28.8573
4 RT45.596 45.596 4 2553193 27966	27.9580

(S,R)-50: (1S,4R)-1-(4-isopropylphenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol (HPLC: Chiracel IC, detected at 210 nm, eluent: n-hexane/2-propanol = 93/7, flow rate = 0.9 mL/min, 25°C).

(S,R)-**5p:** (1S,4R)-1-(4-(tert-butyl)phenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol (HPLC: Chiracel IC, detected at 210 nm, eluent: n-hexane/2-propanol = 93/7, flow rate = 0.9 mL/min, 25°C).

(S,R)-5q: (1S,4R)-1-(3-methoxyphenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol (HPLC: Chiracel OZ-H, detected at 254 nm, eluent: n-hexane/2-propanol = 85/15, flow rate = 1.0mL/min, 25°C).

(S,R)-**5r:** (1S,4R)-1-(4-methoxyphenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol (HPLC: Chiracel IC, detected at 210 nm, eluent: n-hexane/2-propanol = 85/15, flow rate = 1.0mL/min, 25°C).

(S,R)-5s: (1S,4R)-1-(4-(dimethylamino)phenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol (HPLC: Chiracel OZ-H, detected at 254 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 25°C).

_{co} mV						最大强度: 39,789
~ 7松	测器 A:254nm				时间	强度
-						
25-			∼ ^{SO} 2Ph	_		
1	ß		2N N	ΛΛ	\wedge	
-		(+)	<u>۲</u>		/ \	
0-	/ Sandy	_/	/_		_	
-	V		T	т т	T	
0.0	5.0 10.0	15.0 20.0	25.0 30.0 35.0	0 40.0 45.0	50.0 55.0 60.0	65.0 min
■ 化合物						
ID#	名称	保留时间	峰#	面积	高度	面积%
1	RT32.540	32.540	1	1721054	27208	23.0221
2	RT37.877	37.877	2	1704211	23671	22.7968
3	RT41.923	41.923	3	1967070	24973	26.3130
4	RT54.624	54.624	4	2083330	20226	27.8681
				· · · · · · · · · · · · · · · · · · ·	· · · · ·	
mV Jæ	/ 		<u> </u>		Ptiol 4.0	最大强度: 51,115
50-12	应测器 A.204000	<u>^</u>	$\hat{\mathbf{J}}$	Ph .	ŮH +.∪	04 班皮
-				· · · · · · · · · · · · · · · · · · ·		_SO₂Ph
25-		\searrow		$\langle \rangle$		
	\ \		(<i>S</i> , <i>R</i>)	\rightarrow		
0-1			<u>/ v</u>	<u>_ </u>	★ (R,S)	
	\sim	ſ	Υ.	ጥ ጥ	ጥ	
0.0	5.0 10.0	15.0 20.0	25.0 30.0 35	.0 40.0 45.0	50.0 55.0 60.0) 65.0 min
						•
미브┉ㅋ	17347217054					
ID#	名称	保留时间	峰#	面积	高度	面积%
ID# 1	名称 RT32.028	保留时间 32.028	峰 # 1	面积 382296	高度 5790	面积% 8.3076
ID# 1 2	名称 RT32.028 RT37.494	保留时间 32.028 37.494	峰 # 1 2	面积 382296 28299	高度 5790 372	面积% 8.3076 0.6150
ID# 1 2 3	名称 RT32.028 RT37.494 RT41.120	保留时间 32.028 37.494 41.120	<mark>⊯</mark> # 1 2 3	面积 382296 28299 4184560	高度 5790 372 50088	面积% 8.3076 0.6150 90.9340
1 2 3 4	名称 RT32.028 RT37.494 RT41.120 RT54.044	保留时间 32.028 37.494 41.120 54.044	雌≇ # 1 2 3 4	面积 382296 28299 4184560 6602	高度 5790 372 50088 66	面积% 8.3076 0.6150 90.9340 0.1435

(S,R)-5t: (1S,4R)-1-(naphthalen-2-yl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol (HPLC: Chiracel IC, detected at 254 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0mL/min, 25°C).

mV						最大强度: 25,405
检	则器 A:254nm				均同	通度
30-		0 0				
3						
25-		\sim \sim \sim \sim	Λ η			
3		N \ L	А А			
20-		··· ~ F	11 11	^	Ĺ	
-	Щ	(1)	[\ \	(\land)	/\\	
15-		(±)		/ \	/ \	
-		. /				ī
10-	-	~~	<u> </u>	······································	×	
0.0	5.0	10.0 15.0	20.0 25.0	30.0	35.0 40.0	45.0 min
■ 化合物						
	夕投	化空时间	山谷井	孟卯	古座	西 和%
1	PT17 409	17 409	ui≢‴ 1	四1次 725200	15437	22.6600
2	RT23.873	23.873	2	856337	14322	26 7645
3	RT32 498	32 498	3	730228	9040	22.8231
4	RT39.017	39.017	4	887656	8842	27.7434
<u> </u>		4				
mV -依	· 御哭 A:254nm				Astiel	最大强度: 34,478 强度
mV 「私	测器 A:254nm	QH O	<i>,</i> 0	ОН 0. ,0	时间	最大强度: 34,478 强度
mV 1私 30-	测器 A:254nm	OH O	0		U Biel	最大强度: 34,478 强度
mV -孫 30-	测器 A:254nm	OH OS				<u>最大强度:</u> 34,478 强度
mV -孫 30-	·测器 A:254nm	O ₂ N	P F			<u>最大强度: 34,478</u> 强度
mV -孫 30- 20-	[测器 A:254nm		F C			<u>最大强度: 34,478</u> 强度
mV 18 30- 20-	3 测器 A:254nm	OH O ₂ N (<i>R</i> , <i>S</i>)	P F	OH 0,0 S O ₂ N (S,R)		<u>最大强度: 34,478</u> 强度
mV 30- 20-	3.测器 A:254nm	OH O ₂ N (<i>R</i> , <i>S</i>)		$(S,R) \xrightarrow{OH O O}_{O_2N}$		<u>最大</u> 强度: 34,478 强度
30- 20- 10-	3.测器 A:254nm	OH O ₂ N (<i>R</i> , <i>S</i>)		OH 0,0 S O ₂ N (S,R)		最大强度: 34,478 强度
30- 20- 10-	3.测器 A:254nm	OH O ₂ N (<i>R</i> , <i>S</i>)		OH O O O O O O O O O O O O O O O O O O		最大强度: 34,478 强度
mV 10- 10- 0.0	3.0 Sin 254nm	OH O ₂ N (<i>R</i> , <i>S</i>) 10.0 15.0	P F 20.0 25.	OH O O O O O O O O O O O O O O O O O O	时间 40.0	最大强度: 34,478 强度 45.0 min
mV 18 20 10 10 0.0	3.79)器 A:254nm	OH O ₂ N (<i>R</i> , <i>S</i>) 10.0 15.0	P F 20.0 25.	OH O O O O O O O O O O O O O O O O O O	Byiel	最大强度: 34,478 强度 45.0 min
mV 播 30- 10- 	3.测器 A:254nm	OH 0,2N (<i>R</i> , <i>S</i>) 10.0 15.0	P F 20.0 25.	OH O O O O O O O O O O O O O O O O O O	Bjiel	最大强度: 34,478 强度 45.0 min
mV 7種 30- 10- 10- 10- 10- 10- 10- 10- 10- 10- 1	3测器 A:254nm	OH O ₂ N (<i>R</i> , <i>S</i>) 10.0 15.0	P F 20.0 25.	OH 0,0 O ₂ N (S,R) (S,R) 面积	时间 * * * * * * * * * * * * * * * * * * *	最大强度: 34,478 强度 45.0 min ▲
mV 10 10 10 10 10 10 10 10 10 10 10 10 10	·····································	OH - - - - - - - - - - - - -	P F 20.0 25.	OH 0,0 O ₂ N (S,R) (S,R) 面积 48013	时间 	最大强度: 34,478 强度 45.0 min ▲ 1.7872
mV 10 10 10 10 10 10 10 10 10 10 10 10 10	·····································	OH - - - - - - - - - - - - -	P F 20.0 25.	OH 0,0 02N (S,R) (S,R) 0 30.0 0 30.0 0 48013 7356	时间 	最大强度: 34,478 强度 45.0 min ▲ 1.7872 0.2738
mV 10 10 10 10 10 10 11 2 3	·····································	OH O ₂ N (<i>R</i> , <i>S</i>) (<i>R</i> , <i>S</i>) 10.0 15.0 保留时间 17.608 24.147 32.903	P F 20.0 25. ₩ 1 2 3	OH 0,0 02N (S,R) (S,R) 0 30.0 面根 48013 7356 6459	时间	最大强度: 34,478 强度 45.0 min ↓ 1.7872 0.2738 0.2404
mV 10 10 10 10 10 10 11 2 3 4	·····································	OH O ₂ N (<i>R</i> , <i>S</i>) (<i>R</i> , <i>S</i>) 10.0 15.0 (<i>R</i> , <i>S</i>) (<i>R</i> , <i>S</i>) 10.0 15.0 (<i>R</i> , <i>S</i>) 10.0 15.0 (<i>R</i> , <i>S</i>) (P F 20.0 25. ₩ 20.0 25. 4	OH 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	时间	最大强度: 34,478 强度 45.0 min ↓ 1.7872 0.2738 0.2404 97.6986

(S,R)-**5u:** (1S,4R)-4-((4-fluorophenyl)sulfonyl)-4-nitro-1-phenylpentan-1-ol (HPLC: Chiracel OZ-H, detected at 254 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 25°C).

最大强度: 16,779 强度 4.087 时间 56.667 • ŌН \mathcal{O} 0, 15- O_2N 10-5 (\pm) • Ð 0-20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 10 min • F □ 化合物表视图 ID# 名称 保留时间 峰# 面积 高度 面积% 1010 RT75.468 5.465 2010611 22.4291 RT82.889 2 2516043 2 82.889 13630 28.0674 3 RT92.325 92.325 3 2392993 11602 26.6947 RT114.677 114.677 4 2044641 7461 22.8087 最大强度: 57,125 强度 34.209 时间 63.559 • o S OH 0_0 ``S` ρ ΟН 50-'ı, O₂N O₂N CI 25 (S,R)(R,S)• €

× .						T	- T - T			- T						
<u> </u>	10	20	30	40 50	60	70	80	90	100	110	120	130	140	150	160	min
4																•
■ 化合物	勿表视图															
ID#	名称			保留时间		峰#			面积			高度			面积%	
1	RT76.063			76	.063			1		23	331			127		0.0687
2	RT80.613			80	.613			2		51	893			359		0.1527
3	RT86.187			86	.187			3		479	195			2681		1.4104
4	RT113.286			113	.286			4		33421	576		5	6935		98.3682

(S,R)-5w: (1S,4R)-4-nitro-1-phenyl-4-tosylpentan-1-ol (HPLC: Chiracel OZ-H, detected at 254 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 25°C).

(S,R)-5x: (1S,4R)-4-nitro-1-phenyl-4-(phenylsulfonyl)hexan-1-ol (HPLC: Chiralpak IC, elute: Hexanes/i-PrOH =90/10, detector: 210 nm, flow rate: 1.0 mL/min, 25 °C).

	mV						最大强度: 563,494
	_检》	则器 A:210nm				时间 91.	347 强度 -51.314
	500- - - 250-		SO ₂ Ph Et				
		(±	E) <u> </u>	40 50	,	70 80	90 min
	•						•
]	■ 化合物	叨表视图					
-	ID#	名称	保留时间	峰#	面积	高度	面积%
Ш	1	RT34.806	34.806	1	15367559	244757	7 25.2427
	2	RT36.886	36.886	2	14499038	227415	5 23.8160
	3	RT43.495	43.495	3	16410621	217170	26.9560
	4	RT68.557	68.557	4	14602119	123964	4 23.9853

(S,R)-5y: (1S,4S)-4-nitro-1,5-diphenyl-4-(phenylsulfonyl)pentan-1-ol (HPLC: Chiracel IC, detected at 210 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0mL/min, 25°C).

(S,R)-**3z:** (1S,4R)-1-(furan-2-yl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol (HPLC: Chiracel IC, detected at 210 nm, eluent: n-hexane/2-propanol = 95/5, flow rate = 1.0mL/min, 25°C).

最大强度: 176,896 强度 179.023 200-检测器 A:210nm 时间 22.072 150 QН SO₂Ph 100-O₂N 50- (\pm) 0 • €Q -50-7.5 2.5 5.0 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 0.0 min • ► ■ 化合物表视图 ID# 名称 保留时间 峰# 面积 高度 面积% 22.0427 RT15.312 1 15 3 1 2 1 3639061 RT16.966 16.966 2 3388834 81920 20.5270 2 RT18 719 18.719 3 4609747 94829 27.9224 3

4

4871491

88867

29.5079

21.535

RT21.535

(S,R)-**3z'':** (1S,4R)-1-(benzo[d][1,3]dioxol-5-yl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol (HPLC: Chiracel OZ-H, detected at 254 nm, eluent: n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 25°C).

Figure S3. Characterization of chiral products (The ¹H NMR, ¹³C NMR, and/or ¹⁹F NMR spectra of all chiral products).

(*S*,*R*)-5a: (*1S*,*4R*)-4-nitro-1-phenyl-4-(phenylsulfonyl)pentan-1-ol.

(*S*,*R*)-5b: (*1S*,*4R*)-1-(2-fluorophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 δ ← fl (ppm)

(*S*,*R*)-5c: (*1S*,*4S*)-1-(3-fluorophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol.

(S,R)-5d: (1S,4R)-1-(4-fluorophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol.

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 fl (ppm)

(*S*,*R*)-**5e:** (*1S*,*4R*)-1-(3-chlorophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol.

(*S*,*R*)-**5f**: (*1S*,*4R*)-1-(4-chlorophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol.

(*S*,*R*)-**5g:** (*1S*,*4R*)-1-(3-bromophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol.

(*S*,*R*)-**5h:** (*1S*,*4R*)-1-(4-bromophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol.

δ 🔶

S54

(S,R)-5i: (1S,4R-1-(4-iodophenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol.

(*S*,*R*)-**5j**: (*1S*,*4R*)-4-nitro-1-(4-nitrophenyl)-4-(phenylsulfonyl)pentan-1-ol.

(*S*,*R*)-**5k:** 4-((*1S*,*4R*)-1-hydroxy-4-nitro-4-(phenylsulfonyl)pentyl)benzonitrile.

(*S*,*R*)-**51:** (*1S*,*4R*)-4-nitro-4-(phenylsulfonyl)-1-(m-tolyl)pentan-1-ol.

(S,R)-**5m:** (1S,4R)-4-nitro-4-(phenylsulfonyl)-1-(p-tolyl)pentan-1-ol.

 $\delta \stackrel{100}{\longleftarrow} f1 (ppm)$

(*S*,*R*)-**5n:** (*1S*,*4R*)-1-(4-ethylphenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol.

-10

(*S*,*R*)-**5p:** (*1S*,*4R*)-1-(4-(tert-butyl)phenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol.

(*S*,*R*)-**5q**: (*1S*,*4R*)-1-(3-methoxyphenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol.

(S,R)-**5r:** (IS,4R)-1-(4-methoxyphenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol.

(S,R)-5s: (1S,4R)-1-(4-(dimethylamino)phenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol

(*S*,*R*)-**5t**: (*1S*,*4R*)-1-(naphthalen-2-yl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol.

(*S*,*R*)-**5u**: (*1S*,*4R*)-4-((4-fluorophenyl)sulfonyl)-4-nitro-1-phenylpentan-1-ol.

(*S*,*R*)-**5v:** (*1S*,*4R*)-4-((4-chlorophenyl)sulfonyl)-4-nitro-1-phenylpentan-1-ol.

(*S*,*R*)-**5w:** (*1S*,*4R*)-4-nitro-1-phenyl-4-tosylpentan-1-ol.

(*S*,*R*)-**5x:** (*1S*,*4R*)-4-nitro-1-phenyl-4-(phenylsulfonyl)hexan-1-ol.

(*S*,*R*)-**5y:** (*1S*,*4R*)-4-nitro-1,5-diphenyl-4-(phenylsulfonyl)pentan-1-ol.

¹⁰**☉** ← ⁹⁰_{f1 (ppm)}⁸⁰

S72

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **♂** ← f1 (ppm)

(*S*,*R*)-**5z':** (*1S*,*4R*)-4-nitro-4-(phenylsulfonyl)-1-(thiophen-2-yl)pentan-1-ol.

(*S*,*R*)-**5**z": (*1S*,*4R*)-1-(4-(dimethylamino)phenyl)-4-nitro-4-(phenylsulfonyl)pentan-1-ol.

Table S3. Crystal data and structure refinement for (S,R)-50 (d8v23543)

Identification code	d8v23543	
Empirical formula	C20 H25 N O5 S	
Formula weight	391.47	
Temperature	213(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 6.0512(3) Å	α= 90°.
	b = 10.9727(6) Å	β= 90°.
	c = 29.9353(15) Å	$\gamma = 90^{\circ}$.
Volume	1987.64(18) Å ³	
Z	4	
Density (calculated)	1.308 Mg/m ³	
Absorption coefficient	0.193 mm ⁻¹	
F(000)	832	
Crystal size	0.190 x 0.150 x 0.070 mm ³	
Theta range for data collection	2.722 to 25.997°.	
Index ranges	-7<=h<=7, -13<=k<=12, -36<=l<=36	
Reflections collected	26178	
Independent reflections	3914 [R(int) = 0.1159]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.3567	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3914 / 0 / 248	
Goodness-of-fit on F ²	1.065	
Final R indices [I>2sigma(I)]	R1 = 0.0463, wR2 = 0.0979	
R indices (all data)	R1 = 0.0565, wR2 = 0.1042	
Absolute structure parameter	0.12(6)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.248 and -0.330 e.Å ⁻³	

Figure S4. Contrastive ¹H-NMR spectra for the deuterium labeling experiments. (a) The standard ¹H-NMR spectra of (*R*)-**3a**.

(b) The obtained ¹H-NMR spectra of (R)-**3a**- d_2 under the batch conditions.

(c) The obtained ¹H-NMR spectra of (R)-**3a**- d_2 under the ball-milling conditions.

(d) The obtained ¹H-NMR spectra of (R)-**3a**- d_3 under the ball-milling conditions with D₂O/DMSO- d_6 co-solvents.

(e) The standard ¹H-NMR spectra of (S,R)-5a.

(f) The obtained ¹H-NMR spectra of (S,R)-**5a**-d₄ under the ball-milling conditions.

