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1. Experimental details 
1.1 General experimental procedures 

NMR spectra were recorded on a Bruker Avance III 400 MHz or 600 MHz 

spectrometer. Chemical shifts are expressed in δ (ppm) and referenced to the residual 

solvent signals. Semi-preparative HPLC was conducted on a Shimadzu LH-20AT 

system with a SPD-M20A prominence diode array (PDA) detector and four ODS 

columns (Waters X-Bridge: 250×10 mm, 5 μm; YMC-Pack ODS-A: 250 × 10 mm, 5 

μm; Cosmosil 5C18-MS-Ⅱ: 250 × 10 mm, 5 μm; Thermo Gold PFP: 250 × 10 mm, 5 

μm). Optical rotations were measured on an Anton Paar MCP 4100 automatic 

polarimeter. IR spectrum was measured on a Nicolet 5700 FTIR spectrometer. ECD 

spectra were recorded on a JASCO-1500 spectropolarimeter. HRESIMS were acquired 

on AB SCIEX Triple TOF 5600 spectrometer. X-ray data were collected on a Bruker 

D8 Venture diffractometer. Melting points were obtained on a Melting Point Apparatus 

WRX-4 (Shanghai Yice Apparatus & Equipments CO. Ltd., PR China). Column 

chromatography (CC) was carried out using silica gel (100−200 or 200−300 mesh, 

Qingdao Marine Chemical Co. Ltd., PR China), MCI gel CHP20P (75−150 μm, 

Mitsubishi Chemical Industries, Tokyo, Japan), and Sephadex LH-20 (GE Healthcare 

Bio-Sciences AB, Uppsala, Sweden). 

1.2 LC-ESI-MS analysis of A. yunnanensis extract 

Fresh twigs and needles (80 g) of A. yunnanensis were extracted using 90% MeOH 

at room temperature three times (twelve hours soaking for each time), and the combined 

extracts were concentrated in vacuo to give a residue (6.7 g). The residue was analyzed 

using a Shimadzu LC-20A system coupled to a Shimadzu LCMS-2020 mass 

spectrometer. LC-MS was performed using a Shim-pack GISI-HP column (C18, 3 μm, 

2.1×150 mm) with a flow rate of 0.2 mL/min, and the column temperature was 

maintained at 40°C. The mobile phase consisted of H2O (A) and MeOH (B) with a 

linear gradient: 40−40% B (0.0−5.0 min); 40−100% B (5.1−25.0 min); 100−100% B 

(25.1−45.0 min). The analysis of the LC-MS data is shown in Figure S9. 

Another 80 g sample of twigs and needles from A. yunnanensis was extracted with 

ethyl acetate (EtOAc) using ultrasonic treatment at room temperature, repeated three 

times with each extraction lasting twelve hours. The combined extracts were then 

concentrated in vacuo to give a residue (3.1 g). The residue was analyzed using a 
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Shimadzu LC-20A system coupled with a Shimadzu LCMS-2020 mass spectrometer. 

LC-MS was performed using the same Shim-pack GISI-HP column (C18, 3 μm, 2.1×150 

mm) at a flow rate of 0.2 mL/min, with the column temperature maintained at 40°C. 

The mobile phase consisted of H2O (A) and MeOH (B) with a linear gradient: 40−100% 

B (0.0−30.0 min); 100−100% B (30.1−50.0 min). The analysis of the LC-MS data is 

shown in Figure S10. The spiroamentotaxols were detected in both the MeOH and 

EtOAc extracts. These findings support the conclusion that these heterodimers are 

genuine natural products, rather than artifacts resulting from the isolation procedures. 
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Figure S1. 2D NMR correlations of compounds 2−4. 
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Figure S2. Calculated and experimental ECD spectra of compounds 1−3 (in MeOH). 
 

 

 

Figure S3. Calculated and experimental ECD spectra of compound 4 (in MeOH). 
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Figure S4. MoIN of A. yunnanensis MeOH extract. (underneath): Organized landscape 
of the complete network. (above): Molecular cluster of the predicted heterodimers. 
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Table S1. 1H NMR (400 MHz) and 13C NMR (100 MHz) data (δ in ppm, J in Hz, in 
CDCl3) of compounds 1a and 1b. a 

No. 1a  1b 
δH δC  δH δC 

1 α: 1.72, m; β: 0.73, m 38.9  α: 1.73, m; β: 0.73, m 38.8 
2 α: 1.19, m; β: 1.33, m 18.6  α: 1.17, m; β: 1.30, m 18.7 
3 α: 1.28, m; β: 1.36, m 35.1  α: 1.26, m; β: 1.38, m 35.0 
4  37.5   37.4 
5 1.19, br d (12.1) 48.6  1.19, br d (12.5) 48.5 
6α α: 1.47, m 17.6  α: 1.49, m 17.6 
6β β: 1.62, m   β: 1.63, m  
7 α: 1.81, m; β: 1.81, m 27.6  α: 1.80, m; β: 1.80, m 27.6 
8  52.1   52.1 
9 1.08, m 52.9  1.10, m 53.0 
10  39.6   39.6 
11 α: 1.64, m; β: 1.31, m 18.4  α: 1.64, m; β: 1.31, m 18.4 
12 α: 1.88, m; β: 1.32, m 34.4  α: 1.86, m; β: 1.31, m 34.4 
13 2.15, br s 38.4  2.18, br d (2.6) 38.6 
14α 2.43, br d (12.1) 35.2  2.40, br d (12.5) 35.0 
14β 1.83, br d (12.1)   1.82, br d (12.5)  
15  221.1   221.7 
16  48.3   51.8 
17 2.02, d (13.1); 1.79, d (13.1) 36.3  2.18, d (13.0); 1.67, d (13.0) 33.8 
18 0.77, s 17.3  0.75, s 17.3 
19 3.40, d (11.0); 3.12, d (11.0) 72.1  3.38, d (11.2); 3.07, d (11.2) 72.0 
20 1.12, s 17.9  1.11, s 17.9 
1' 7.13, d (7.0) 120.1  6.62, d (6.7) 119.0 
2' 3.32, d (7.0) 53.6  3.23, d (6.7) 52.9 
3'  213.2   214.4 
4'  46.7   47.3 
5'  50.0   47.4 
6' 5.80, d (9.8) 128.1  α: 1.70, br dd (15.0, 14.3) 27.9 
    β: 1.88, br dd (15.0, 6.9)  
7' 6.53, d (9.8) 128.8  α: 2.66, ddd (15.2, 6.9, 3.7) 27.6 
    β: 2.81, ddd (15.2, 14.3, 4.4)  
8'  128.9   139.7 
9'  114.4   118.9 
10'  143.3   143.8 
11'  147.6   146.7 
12'  144.2   142.7 
13'  140.3   139.7 
14' 6.56, s 117.2  6.54, s 116.2 
15' 3.23, m 26.6  3.23, m 26.5 
16' 1.25, d (6.5) 23.7  1.24, d (6.5) 23.9 
17' 1.25, d (6.5) 23.4  1.24, d (6.5) 23.5 
18' 1.09, s 19.6  1.05, s 20.3 
19' 0.93, s 25.4  0.98, s 24.9 
OCH3 3.81, s 62.0  3.78, s 61.8 

aAssignments were made by a combination of 1D and 2D NMR experiments. 
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Table S2. X-ray crystallographic data for 1. 

Identification code  231116zpj_yns_27 

Empirical formula  1/4(2.C40H54O6.3H2O) 

Formula weight  328.93 

Temperature  173.00 K 

Wavelength  1.34139 Å 

Crystal system  Triclinic 

Space group  P1 

Unit cell dimensions a = 7.3136(4) Å α = 79.809(3)°. 

 b = 11.2985(5) Å β = 85.535(3)°. 

 c = 21.3261(11) Å γ = 88.994(3)°. 

Volume 1729.15(15) Å3 

Z 4 

Density (calculated) 1.263 Mg/m3 

Absorption coefficient 0.436 mm-1 

F(000) 714 

Crystal size 0.17 × 0.17 × 0.05 mm3 

Theta range for data collection 3.619 to 55.155°. 

Index ranges -8<=h<=8, -13<=k<=13, -25<=l<=25 

Reflections collected 47022 

Independent reflections 12854 [R(int) = 0.1093] 

Completeness to theta = 53.594° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7508 and 0.5717 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 12854 / 7 / 890 

Goodness-of-fit on F2 1.040 

Final R indices [I>2σ(I)] R1 = 0.0626, wR2 = 0.1498 

R indices (all data) R1 = 0.0903, wR2 = 0.1647 

Absolute structure parameter 0.13(19) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.250 and -0.332 e.Å-3 
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Table S3. X-ray crystallographic data for 2. 

Identification code  240717zzy 

Empirical formula  C40 H58.50 O8.25 

Formula weight  671.36 

Temperature  170.00 K 

Wavelength  1.34139 Å 

Crystal system  Orthorhombic 

Space group  P212121 

Unit cell dimensions a = 11.9633(5) Å α = 90°. 

 b = 14.1368(6) Å β = 90°. 

 c = 43.3418(19) Å γ = 90°. 

Volume 7330.1(5) Å3 

Z 8 

Density (calculated) 1.217 Mg/m3 

Absorption coefficient 0.427 mm-1 

F(000) 2916 

Crystal size 0.17 × 0.17 × 0.05 mm3 

Theta range for data collection 2.860 to 54.960°. 

Index ranges -14<=h<=14, -17<=k<=16, -52<=l<=51 

Reflections collected 84677 

Independent reflections 13910 [R(int) = 0.1283] 

Completeness to theta = 53.594° 99.8 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7508 and 0.5142 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 13910 / 1 / 905 

Goodness-of-fit on F2 1.033 

Final R indices [I>2σ(I)] R1 = 0.0733, wR2 = 0.1914 

R indices (all data) R1 = 0.1118, wR2 = 0.2173 

Absolute structure parameter 0.17(18) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.461 and -0.285 e. Å-3 
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Table S4. X-ray crystallographic data for 1a. 

Identification code  240522zpj_27r1 

Empirical formula  C40 H52 O5 

Formula weight  612.81 

Temperature  170.00 K 

Wavelength  1.34139 Å 

Crystal system  Monoclinic 

Space group  P 1 21 1 

Unit cell dimensions a = 7.4099(5)Å α = 90°. 

 b = 11.3371(8) Å β = 94.441(4)°. 

 c = 19.5146(14) Å γ = 90°. 

Volume 1634.4(2) Å3 

Z 2 

Density (calculated) 1.245 Mg/m3 

Absorption coefficient 0.402 mm-1 

F(000) 7664 

Crystal size 0.17 × 0.17 × 0.05 mm3 

Theta range for data collection 3.926 to 54.936°. 

Index ranges -9<=h<=9, -13<=k<=13, -23<=l<=23 

Reflections collected 30184 

Independent reflections 6174 [R(int) = 0.0761] 

Completeness to theta = 53.594° 99.8 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7508 and 0.5220 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6174 / 2 / 426 

Goodness-of-fit on F2 1.039 

Final R indices [I>2σ(I)] R1 = 0.0485, wR2 = 0.1157 

R indices (all data) R1 = 0.0665, wR2 = 0.1272 

Absolute structure parameter 0.05(19) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.165 and -0.207 e.Å-3 
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 ECD calculations for 1−4. 
 

Figure S5. The optimized low-energy reoptimized MMFF conformers of 1 at B3LYP/6-
31g level in gas. 
 
 
 
Table S5. Boltzmann populations and relative binding free-energies (ΔG) of 
conformations of 1. 

Species Boltzmann Population (%) ΔG† (kJ/mol) 
conformer 1-a 0.0044 3.14 
conformer 1-b 0.0005 4.37 
conformer 1-c 0.8834 0 
conformer 1-d 0.1117 1.23 

† Relative binding free energy 
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Figure S6. The optimized low-energy reoptimized MMFF conformers of 2 at B3LYP/6-
31g level in gas. 

 

 

Table S6. Boltzmann populations and relative binding free-energies (ΔG) of 
conformations of 2. 

Species Boltzmann Population (%) ΔG† (kJ/mol) 
conformer 2-a 0.8667 0 
conformer 2-b 0.0935 

 

1.32 
conformer 2-c 0.0398 1.82 

† Relative binding free energy 
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Figure S7. The optimized low-energy reoptimized MMFF conformers of 3 at B3LYP/6-
31g level in gas. 

 

 

Table S7. Boltzmann populations and relative binding free-energies (ΔG) of 
conformations of 3. 

Species Boltzmann Population (%) ΔG† (kJ/mol) 
conformer 3-a 0.0828 1.19 
conformer 3-b 0.0305 

 

1.79 
conformer 3-c 0.6212 0 
conformer 3-d 0.2655 0.50 

† Relative binding free energy 
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Figure S8. The optimized low-energy reoptimized MMFF conformers of 4 at B3LYP/6-
31g level in gas  

 

 

Table S8. Boltzmann populations and relative binding free-energies (ΔG) of 
conformations of 4. 

Species Boltzmann Population (%) ΔG† (kJ/mol) 
conformer 4-a 0.0293 1.74 
conformer 4-b 0.0618 

 

1.30 
conformer 4-c 0.5527 0 
conformer 4-d 0.3562 0.26 

† Relative binding free energy 
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Figure S9. TIC and MIC (m/z [M+H]+ 631) of the 90% MeOH/H2O extract (top) and 
key MS spectra (tR = 27.1 min) of m/z 631 ([M+H]+) and m/z 629 ([M−H]−) (bottom). 
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Figure S10. TIC and MIC (m/z [M+H]+ 631) of the EtOAc extract (top) and key MS 
spectra (tR = 24.1 min) of m/z 631 ([M+H]+) and m/z 629 ([M−H]−) (bottom). 
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Figure S11. 1H NMR spectrum of 1 in CDCl3 (400 MHz) 
 

 
Figure S12. 13C NMR spectrum of 1 in CDCl3 (100 MHz) 
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Figure S13. 1H-1H COSY spectrum of 1 in CDCl3 (400 MHz) 
 

Figure S14. HSQC spectrum of 1 in CDCl3 (400 MHz) 
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Figure S15. HMBC spectrum of 1 in CDCl3 (400 MHz) 
 
 

 

Figure S16. NOESY spectrum of 1 in CDCl3 (400 MHz) 
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Figure S17. HRESIMS report of 1 
 
 
 

 
Figure S18. IR spectrum of 1 
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Figure S19. 1H NMR spectrum of 2 in CDCl3 (400 MHz) 
 

Figure S20. 13C NMR spectrum of 2 in CDCl3 (100 MHz) 
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Figure S21. 1H-1H COSY spectrum of 2 in CDCl3 (400 MHz) 
 
 

Figure S22. HSQC spectrum of 2 in CDCl3 (400 MHz) 
 



23 
 

 
 

Figure S23. HMBC spectrum of 2 in CDCl3 (400 MHz) 
 

Figure S24. NOESY spectrum of 2 in CDCl3 (400 MHz) 
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Figure S25. HRESIMS report of 2 
 
 

 

Figure S26. IR spectrum of 2 
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Figure S27. 1H NMR spectrum of 3 in CDCl3 (600 MHz) 
 

Figure S28. 13C NMR spectrum of 3 in CDCl3 (150 MHz) 
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Figure S29. 1H-1H COSY spectrum of 3 in CDCl3 (600 MHz) 
 
 

Figure S30. HSQC spectrum of 3 in CDCl3 (400 MHz) 
 



27 
 

Figure S31. HMBC spectrum of 3 in CDCl3 (600 MHz) 
 
 

 
Figure S32. NOESY spectrum of 3 in CDCl3 (600 MHz) 
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Figure S33. HRESIMS report of 3. 
 
 

 
Figure S34. IR spectrum of 3. 
  



29 
 

 
 

Figure S35. 1H NMR spectrum of 4 in CDCl3 (600 MHz) 
 

Figure S36. 13C NMR spectrum of 4 in CDCl3 (150 MHz) 
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Figure S37. 1H-1H COSY spectrum of 4 in CDCl3 (600 MHz) 
 

Figure S38. HSQC spectrum of 4 in CDCl3 (600 MHz) 
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Figure S39. HMBC spectrum of 4 in CDCl3 (600 MHz) 
 

Figure S40. NOESY spectrum of 4 in CDCl3 (400 MHz) 
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Figure S41. HRESIMS report of 4 
 
 

Figure S42. 1H NMR spectrum of 1a in CDCl3 (400 MHz) 
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Figure S43. 13C NMR spectrum of 1a in CDCl3 (100 MHz) 
 
 

Figure S44. HRESIMS report of 1a 
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Figure S45. 1H NMR spectrum of 1b in CDCl3 (400 MHz) 
 

Figure S46. 13C NMR spectrum of 1b in CDCl3 (100 MHz) 
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Figure S47. HRESIMS report of 1b 
 


