5-Methylated Polyprenylated Acylphloroglucinols Derivatives as Low-Voltage-Gated Ca²⁺ Channels Inhibitors

Ya-Li Hu, ^{‡a} Ding Dong, ^{‡ab} Jian-Jun Zhao, ^a Kun Hu, ^a Ling-Mei Kong, ^a Yun-Xia Hu, ^{ab} Xing-Ren Li, ^a Song-Yu Li, ^a Yin Nian ^{*a} and Gang Xu ^{*a}

^aKey Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China ^bUniversity of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

Supporting Information

Table of contents

- SI-1. Experimental procedures (Page S2–S3).
- SI-2. Physical data of the new compounds (Page S4–S6).
- SI-3. Structure elucidation of new compounds (S7–S12)
- SI-4. Biological assays (S13–S18)
- SI-5. The NMR spectroscopic data of new compounds (S19–S26)
- SI-6. The original NMR and MS spectra of new compounds (Page S27–S94).
- SI-7. Computational methods and results (Page S95–S119).

SI-1. Experimental procedures.

General experimental procedures. X-ray data were collected on Bruker APEX DUO instrument using Cu K α radiation. Melting points were recorded on an RDY-1B micro melting point apparatus. Optical rotations were measured on a Jasco P-1020 polarimeter with MeOH as solvent. UV spectra were recorded on a Shimadzu UV-2401PC spectrometer. IR spectra were determined by using a Bruker FT-IR Tensor-27 infrared spectrophotometer with KBr disks. 1D and 2D NMR spectra were recorded on a Bruker Avance III 600 spectrometer. ESIMS and HRESIMS data were acquired on Agilent G6230 TOF and Agilent 6540 Q-TOF mass spectrometers. Semi-preparative HPLC was performed on an Agilent 1100 HPLC. Silica gel (100-200 and 200-300 mesh, Qingdao Marine Chemical Co., Ltd., Qingdao, People's Republic of China), and MCI gel (75–150 µm, Mitsubishi Chemical Corporation, Tokyo, Japan) were used for column chromatography. Fractions were monitored by TLC (GF 254, Qingdao Marine Chemical Co., Ltd.), and spots were visualized by heating silica gel plates immersed in 10%H₂SO₄ in ethanol.

Plant material. The aerial parts of *Hypericum ascyron* L. were collected in Haba Snow Mountain of Shangri-La, Yunnan Province, P. R. China, in August 2015. The plant was identified by Dr. Yong-Zeng Zhang, Kunming Institute of Botany, Kunming, P. R. China. A voucher specimen was deposited with Kunming Institute of Botany with identification number 2015H01.

Extraction and isolation. The air-dried and powdered entire plants of *H. ascyron* L. (16.0 kg) were extracted with MeOH at room temperature and then filtered. The solvent was evaporated in vacuo and the obtained crude extract (5.0 kg) was subjected to a silica gel column chromatography eluted with petroleum ether/acetone in gradient (1:0-1:1, v/v) to afford five fractions (Fr. A–E).

Fraction A (109 g) was separated over a MCI-gel column (MeOH-H₂O from 7:3 to 10:0) to obtain five fractions (Fr. A1–A5). Fraction A3 (18.2 g) and A4 (16.7 g) were further chromatographed over silica gel, MCI, RP-18, preparative and semi-preparative HPLC to yield 4 (4.5 mg, $t_R = 11.45$ min, 95% MeOH), 5 (2.0 mg, $t_R = 15.53$ min, 90%

MeOH), **6** (8.5 mg, $t_R = 12.64$ min, 90% MeOH), **7** (18.5 mg, $t_R = 3.42$ min, 90% MeOH), **9** (2.0 mg, $t_R = 13.71$ min, 90% MeOH), **12** (5.0 mg, $t_R = 16.13$ min, 95% MeOH), **13** (5.0 mg, $t_R = 17.51$ min, 95% acetonitrile), **18** (2.5 mg, $t_R = 22.73$ min, 85% MeOH), **19** (3.5 mg, $t_R = 11.91$ min, 90% MeOH), **16** (15.5mg, $t_R = 10.30$ min, 90% MeOH), **20** (1.5 mg, $t_R = 17.58$ min, 95% acetonitrile), and **23** (2000.0 mg, $t_R = 6.99$ min, 95% MeOH).

Fraction B (77 g) was separated over an MCI-gel column (MeOH-H₂O from 7:3 to 10:0, v/v) to obtain seven fractions (Fr. B1–B7). Fraction B4 (16.8 g) was further chromatographed over silica gel, RP-18, Sephadex LH-20, preparative and semi-preparative HPLC to obtain **10** (10.0 mg, t_R = 17.13 min, 90% MeOH), **11** (4.3 mg, t_R = 8.87 min, 85% MeOH), **17** (5.0 mg, t_R = 24.75 min, 85% MeOH), **14** (4.5 mg, t_R = 24.24 min, 85% MeOH), **15** (4.0 mg, t_R = 26.29 min, 85% MeOH), **21** (1.5 mg, t_R = 13.67 min, 80% MeOH), **22** (2.0 mg, t_R = 13.72 min, 80% MeOH), **25** (30.0 mg, t_R = 17.41 min, 80% MeOH), **24** (20.0 mg, t_R = 10.72 min, 85% MeOH), **26** (200.0 mg, t_R = 23.42 min, 75% MeOH), and **27** (160.0 mg, t_R = 11.37 min, 85% MeOH).

Fraction C (63.0 g) was separated over an MCI-gel column (MeOH-H₂O from 6:4 to 10:0, v/v) to obtain eight fractions (Fr. C1–C8). Fraction C4 (9.7 g) was further chromatographed over a silica gel column, eluted with petroleum ether/acetone (100:1-0:1, v/v), to obtain six fractions (Fr. C4.1-C4.6). Sephadex LH-20 was applied to afford three fractions (Fr. C4.5.1-C4.5.3) from Fr. C4.5 (740 mg). Compounds **1** (1.2 mg, t_R = 9.93 min, 85% MeOH) and **2** (1.2 mg, t_R = 8.90 min, 85% MeOH), and compound **8** (1.7 mg, t_R = 10.80 min, 80% MeOH) were purified from Fr. C4.5.3 (140 mg) and Fr. C4.5.2 (480 mg), respectively, by preparative HPLC. Fr. C5.4 (37.9 mg) was separated by preparative HPLC to give compound **3** (1.6 mg, t_R = 5.63 min, 85% MeOH).

SI-2. Physical data of the new compounds.

Ascynol A (1): colorless needle crystals; mp 127–129 °C; $[\alpha]^{21}_{D}$ –42.6 (*c* 0.06, MeOH); UV (MeOH) λ_{max} (log ε) 204 (4.20), 257 (3.95), 294 (3.19) nm; IR (KBr) ν_{max} 3423, 2956, 2929, 2876, 1714, 1644, 1595, 1239, 764 cm⁻¹; ECD (MeOH) λ_{max} ($\Delta \varepsilon$) 377 (–0.1), 337 (–6.7), 292 (+1.3), 255 (+10.3), 222 (–4.1), 206 (+21.2); ¹H and ¹³C NMR data, see Table S1; HRESIMS *m/z* 405.2404 [M + Na]⁺ (calcd for C₂₅H₃₄O₃Na, 405.2406).

Ascynol B (2): colorless needle crystals; mp 115–117 °C; $[\alpha]^{21}_{D}$ +17 (*c* 0.1, MeOH); UV (MeOH) λ_{max} (log ε) 202 (4.13), 245 (3.85), 279 (2.88), 326 (2.44) nm; IR (KBr) ν_{max} 3442, 2968, 2929, 1713, 1670, 1446, 1416, 1366, 1215, 698cm⁻¹; ECD (MeOH) λ_{max} (Δε) 307 (+0.1), 280 (-0.7), 243 (+3.9), 211 (-3.3); ¹H and ¹³C NMR data, see Table S1; HRESIMS *m/z* 407.2559 [M + Na]⁺ (calcd for C₂₅H₃₆O₃Na, 407.2562).

Ascynol C (3): colorless gum; $[\alpha]^{20}_{D}$ -82 (*c* 0.06, MeOH); UV (MeOH) λ_{max} (log ε) 196 (3.58), 260 (2.14) nm; IR (KBr) v_{max} 2920, 1754, 1714, 1272 cm⁻¹; ECD (MeOH) λ_{max} ($\Delta \varepsilon$) 279 (-0.1), 235 (+0.1), 209 (-0.6), 193 (-0.6); ¹H and ¹³C NMR data, see Table S1; HRESIMS *m/z* 307.2283 [M + H]⁺ (calcd for C₁₉H₃₀O₃Na, 307.2268).

Ascynol D (4): colourless gum; $[α]^{19}_D$ –31 (*c* 0.1, MeOH); UV (MeOH) $λ_{max}$ (log ε) 201 (4.40), 228 (4.43), 271 (3.22) nm; IR (KBr) v_{max} 3454, 2969, 2934, 2879, 1706, 1678, 1451, 1381, 1287, 1115 cm⁻¹; ECD (MeOH) $λ_{max}$ (Δε) 240 (–5.2), 200 (+15.9), 196 (–45.2); ¹H and ¹³C data, see Table S2; HRESIMS *m/z* 435.2517 [M + Na]⁺ (calcd for C₂₆H₃₆O₄Na, 435.2506).

Ascynol E (5): colorless gum; $[\alpha]^{20}{}_{D}$ –39 (*c* 0.2, MeOH); UV (MeOH) λ_{max} (log ε) 203 (3.90), 270 (3.38), 378 (1.77) nm; IR (KBr) v_{max} 2960, 2873, 1692, 1629, 1466, 1384, 1366 cm⁻¹; ¹H and ¹³C data, see Table S2; ESIMS *m/z* 359 [M + H]⁺; HRESIMS *m/z* 359.2944 [M + H]⁺ (calcd for C₂₄H₃₉O₂, 359.2945).

Ascynol F (8): colorless gum; $[\alpha]^{18}_{D}$ +22 (*c* 0.1, MeOH); UV (MeOH) λ_{max} (log ε) 245 (4.11), 199 (4.52), 221 (3.69)nm; IR (KBr) ν_{max} 3435, 2969, 2928, 1712, 1686, 1597, 1448, 1376, 1181, 688cm⁻¹; ECD (MeOH) λ_{max} ($\Delta \varepsilon$) 337 (+1.3), 317 (+0.6), 284 (+2.9), 252 (-5.7), 220 (-3.7), 200 (+16.1), 195 (+8.5); ¹H and ¹³C NMR data, see Table S2; HRESIMS *m*/*z* 419.2559 [M + Na]⁺ (calcd for C₂₆H₃₆O₃Na, 419.2557).

Ascynol G (9): colourless oil; $[α]^{20}_D$ +78 (*c* 0.1, MeOH); UV (MeOH) $λ_{max}$ (log ε) 204 (4.04), 291 (2.54) nm; IR (KBr) v_{max} 3437, 2969, 2930, 2873, 1770, 1726, 1628, 1453, 1381, 1221 cm⁻¹; ECD (MeOH) $λ_{max}$ (Δε) 342 (+0.4), 301 (+6.7), 243 (-1.7), 196 (-8.4); ¹H and ¹³C data, see Table S3; HRESIMS *m/z* 523.3402[M + Na]⁺ (calcd for C₃₁H₄₈O₅Na, 523.3394).

Ascynol H (10): colourless crystals; $[α]^{20}D - 22$ (*c* 0.3, MeOH); UV (MeOH) $λ_{max}$ (log ε) 203 (4.39), 246 (3.45) nm; IR (KBr) v_{max} 2968, 1743, 1630, 1448, 1379, 1233, 1133, 764 cm⁻¹; ECD (MeOH) $λ_{max}$ (Δε) 308 (-4.5), 248 (+4.7), 212 (-8.2), 201 (+2.6), 197 (-8.5); ¹H and ¹³C data, see Tables S4 and S5; HRESIMS *m/z* 553.2917 [M + Na]⁺ (calcd for C₃₄H₄₂O₅Na, 553.2924).

Ascynol I (11): colourless gum; $[\alpha]^{24}{}_{D}$ –149 (*c* 0.1, MeOH); UV (MeOH) λ_{max} (log ε) 338 (3.35), 251 (4.11), 203 (4.45) nm; IR (KBr) v_{max} 3419, 2969, 2933, 1723, 1703, 1673, 1386, 1215, 692 cm⁻¹; ¹H and ¹³C data, see Tables S4 and S5; HRESIMS *m*/*z* 545.3242 [M + Na]⁺ (calcd for C₃₃H₄₆O₅Na, 545.3243).

Ascynol J (12): colourless gum; $[α]^{21}D^{-30}$ (*c* 0.1, MeOH); UV (MeOH) $λ_{max}$ (log ε) 202 (3.86), 220 (3.57), 268 (3.02), 320 (2.70) nm; IR (KBr) v_{max} 3435, 2972, 2930, 1712, 1694, 1630, 1461, 1383 cm⁻¹; ECD (MeOH) $λ_{max}$ (Δε) 332 (-1.5), 229 (-2.9), 206 (-0.8), 196 (-13.6); ¹H and ¹³C data, see Tables S4 and S5; HRESIMS *m/z* 511.3405 [M + Na]⁺ (calcd for C₃₀H₄₈O₅Na, 511.3394).

Ascynol K (13): colourless gum; $[α]^{22}_D - 24$ (*c* 0.1, MeOH); UV (MeOH) $λ_{max}$ (log ε) 202 (3.98) nm; IR (KBr) v_{max} 3435, 2972, 2932, 1713, 1691, 1462, 1384 cm⁻¹; ECD (MeOH) $λ_{max}$ (Δε) 333 (-1.8), 304 (+1.1), 229 (-4.0), 202 (+0.9), 196 (-19.4); ¹H and ¹³C data, see Tables S4 and S5; HRESIMS *m/z* 525.3565 [M + Na]⁺ (calcd for C₃₁H₅₀O₅Na, 525.3550).

Ascynol L (14): colourless gum; $[α]^{21}D + 20$ (*c* 0.1, MeOH); UV (MeOH) $λ_{max}$ (log ε) 280 (4.07), 202 (4.16) nm; IR (KBr) v_{max} 3430, 2961, 2928, 1726, 1619, 1384, 1245 cm⁻¹; ECD (MeOH) $λ_{max}$ (Δε) 306 (–20.9), 278 (+37.3), 243 (+5.9), 233 (+7.8), 209 (–16.3); ¹H and ¹³C data, see Tables S6 and S7; HRESIMS *m/z* 535.3407 [M + Na]⁺ (calcd for C₃₂H₄₈O₅Na, 535.3394). Ascynol M (15): colourless gum; $[\alpha]^{21}_{D}$ –15 (*c* 0.21, MeOH); UV (MeOH) λ_{max} (log ε) 449 (1.55), 280 (3.98), 203 (4.02) nm; IR (KBr) ν_{max} 3430, 2961, 2928, 2859, 1726, 1619, 1451, 1384, 1245 cm⁻¹; ¹H and ¹³C data, see Tables S6 and S7; HRESIMS *m/z* 535.3397 [M + Na]⁺ (calcd for C₃₂H₄₈O₅Na, 535.3399).

Ascynol N (17): colourless gum; $[α]^{22}_D$ +44 (*c* 0.2, MeOH); UV (MeOH) $λ_{max}$ (log ε) 202 (4.15), 281 (4.07) nm; IR (KBr) v_{max} 3432, 2973, 2934, 2873, 1727, 1622, 1458, 1383, 1173 cm⁻¹; ECD (MeOH) $λ_{max}$ (Δε) 305 (–18.9), 277 (+24.3), 244 (–7.3), 216 (+5.2), 196 (–25.3); ¹H and ¹³C data, see Tables S6 and S7; HRESIMS *m/z* 535.3404 [M + Na]⁺ (calcd for C₃₂H₄₈O₅Na, 535.3394).

Ascynol O (18): colourless oil; $[α]^{27}D - 55$ (*c* 0.1, MeOH); UV (MeOH) $λ_{max}$ (log ε) 196 (4.28), 248 (3.63), 280 (3.97) nm; IR (KBr) v_{max} 3430, 1728, 1618, 1384, 1172 cm⁻¹; ECD (MeOH) $λ_{max}$ (Δε) 331 (+1.0), 303 (-11.9), 276 (+11.0), 248 (-6.9), 212 (+4.5); ¹H and ¹³C data, see Tables S6 and S7; HRESIMS *m/z* 535.3402 [M + Na]⁺ (calcd for C₃₂H₄₈O₅Na, 535.3394).

Ascynol P (20): colourless gum; $[α]^{20}_D$ –130 (*c* 0.1, MeOH); UV (MeOH) $λ_{max}$ (log ε) 203 (4.33), 247 (4.06), 276 (3.82), 513 (2.49), 549 (2.51) nm; IR (KBr) v_{max} 2973, 2931, 1724, 1696, 1631, 1449, 1382, 1223 cm⁻¹; ECD (MeOH) $λ_{max}$ (Δε) 354 (– 3.8), 326 (–8.7), 247 (+11.3), 216 (–13.9), 201 (+11.2); ¹H and ¹³C data, see Table S8; HRESIMS *m/z* 537.2995 [M + Na]⁺ (calcd for C₃₄H₄₂O₆Na, 537.2975).

Ascynol Q (21): colourless gum; $[α]^{21}_D$ –112 (*c* 0.1, MeOH); UV (MeOH) $λ_{max}$ (log ε) 247 (4.22), 202 (4.47) nm; IR (KBr) v_{max} 3444, 2974, 2922, 1723, 1697, 1663, 1626, 1447, 1377, 1221, 985, 688 cm⁻¹; ECD (MeOH) $λ_{max}$ (Δε) 328 (–3.9), 291 (+1.9), 265 (–6.9), 244 (+10.0), 215 (–24.7), 195 (+7.5); ¹H and ¹³C data, see Table S8; HRESIMS *m/z* 555.3082 [M + Na]⁺ (calcd for C₃₄H₄₄O₅Na, 555.3086).

SI-3. Structure elucidation of new compounds.

Ascynol D (4) had a molecular formula of C₂₆H₃₆O₄ (*m/z* 435.2517 [M + Na]⁺, calcd 435.2506), indicating 9 indices of hydrogen deficiency (IHCs). Its ¹H NMR spectrum illustrated one monosubstituted benzene ring ($\delta_{\rm H}$ 7.88, d, H-12/16; 7.39, t, H-13/15; 7.50, t, H-14; *J* = 7.2 Hz), an olefinic proton ($\delta_{\rm H}$ 5.11, t, *J* = 6.6 Hz), a doublet methyl ($\delta_{\rm H}$ 0.88, d, *J* = 6.0 Hz), five singlet methyls and a hydroxyl ($\delta_{\rm H}$ 4.05, s). The ¹³C NMR and HSQC spectra showed the presence of 26 carbon signals attributable to a phenyl, a prenyl group, one nonconjugated ($\delta_{\rm C}$ 216.5) and one esterified ($\delta_{\rm C}$ 166.2) carbonyls, three quaternary carbons, three methines, three methylenes, and four methyls. Despite 7 IHCs accounted to the phenyl and prenyl groups and two carbonyls, the 2 remaining IHCs inferred that **4** should feature a bicyclic system.

Fig. S1. ¹H-¹H COSY (bold), selected HMBC (arrow) and key NOESY (double arrow) of new compounds.

The ¹H-¹H COSY correlations of Me-22/H-5/H₂-6/H-7 and H₂-29/H₂-30/H-31, together with the HMBC correlations from Me-22 to C-1/C-9, from Me-28 to C-1/C-7/C-8, and from H-31 to C-1/C-9 established a 5/6 ring system. A prenyl group was attached to C-7 by the ¹H-¹H COSY correlations of H-7/H-23/H-24 and HMBC correlations from Me-26/27 to C-24. The quaternary carbon at $\delta_{\rm C}$ 88.6 (C-1) was oxygenated by a hydroxyl, which was supported by the HMBC correlations from OH-

1 to C-1/C-8/C-9. In addition, the HMBC correlations from a *gem*-dimethyl at Me-33/34 to C-31/C-32 indicated the existence of an isopropyl moiety at C-31. Then, another oxygenated quaternary carbon at $\delta_{\rm C}$ 86.3 (C-32) was attached by a phenyl ester side group, which was deduced by the HMBC correlations from H-9/13 to C-10. This deduction was consistent with the molecular formula and chemical shifts as well. In the ROESY spectrum, the cross-peaks of Me-28/OH-1, OH-1/H-7, H-7/H-5, H-7/H-31 suggested the α -configuration of Me-28, OH-1, H-5, H-7, and H-31. Hence, the structure of **4** was elucidated as shown.

The molecular formula of ascynol E (5) was deduced as $C_{24}H_{38}O_2$ on the basis of its ¹³C NMR and (+)-HRESIMS data (*m/z* 359.2944 [M + H]⁺, calcd 359.2945), which suggested that 5 had 12 more molecular weight than hypermogin A (6) [1]. The 1D and 2D NMR spectra of 5 and 6 implied the presence of *sec*-butyl group in 5 instead of an isopropyl group in 6. Meanwhile, compounds 5 and 6 shared the same skeletons and configurations by detailed comparison of their 1D and 2D NMR data.

Ascynol F (8) was assigned the molecular formula $C_{26}H_{36}O_3$ on the basis of its HRESIMS (*m*/*z* 419.2559 [M + Na]⁺ calcd 419.2562) and ¹³C NMR data (Table S2). Extensive analysis of both 1D and 2D NMR data pointed that compound 8 shared a similar carbon skeleton and relative configuration with norascyronone C [2], the known analogue previously obtained from *H. ascyron* Linn. as well. The structural novelty involves a 2-methylbut-3-en-2-ol side chain at C-29 in 8 instead of a prenyl group as confirmed by the HMBC correlations of Me-33 and Me-34 with C-31, as well as the ¹H-¹H COSY cross-peaks of H₂-29/H-30/H-31 (Fig. S1).

The molecular formula of ascynol G (**9**) was determined as $C_{31}H_{48}O_5$ by a sodium adduct ion at m/z 523.3402 [M + Na]⁺ (calcd 523.3394) in the HRESIMS spectrum, which was consistent with its ¹³C NMR and DEPT data. The IR spectrum displayed absorption bands due to carbonyls (1770 and 1726 cm⁻¹) and hydroxyl (3437 cm⁻¹) functionalities. ¹H NMR resonances of **9** revealed the presence of four olefinic protons, two doublet methyls, and seven singlet methyls. The ¹³C and NMR spectra showed 31 carbon signals corresponding to ten quaternary carbons (including three carbonyls and two oxygenated), five methines, five methylenes, and nine methyls, 15 of which were attributable to an isovaleryl and two prenyl groups. The characteristic signals of three carbonyls at δ_C 208.5 (C-2), 208.9 (C-9), and 201.4 (C-10), three quaternary carbons at δ_C 78.8 (C-1), 56.7 (C-5), and 55.7 (C-8), one methine at δ_C 43.3 (C-7), and one methylene at δ_C 41.5 (C-6) indicated that **9** should be a PPAP-type natural product.

Comparison of its 1D NMR data with those of garcinielliptone G [3], a known BPAP with bicyclo[3.3.1]nonane-2,4,9-trinone core, revealed some significant similarities, especially for the signals of C-1, C-2, C-5, C-6, C-7, C-8, C-9 and corresponding substituents at C-5, C-7 and C-8. However, the isobutyryl group at C-1 in garcinielliptone G was replaced by the isovaleryl group in 9, which was supported by the ¹H-¹H cosy correlations of Me-13(14)/H-12/H₂-11 and the HMBC cross-peaks of H₂-11 to C-1/C-10. Furthermore, the signal for olefinic carbon C-3 and carbonyl C-4 in hyperibine J was absent in 9, while an oxygenated quaternary carbon at $\delta_{\rm C}$ 82.0 was present. The oxygenated carbon of 9 should be ascribed to C-4 and connected with C-2 on the basis of HMBC correlations from H₂-6 and Me-22 to $\delta_{\rm C}$ 82.0 and from Me-22 to C-2. Subsequently, a 2-methylbut-3-en-2-ol side chain, together with a hydroxyl, was deduced at C-3 by the HMBC correlations of Me-20 and Me-21 with C-19, H-17/18 and C-3, as well as the ¹H-¹H COSY cross-peaks of H-17/H-18. Therefore, the structure of 9 was elucidated as a 3-nor-BPAP with bicyclo[3.2.1]octane-2,9-bione core. The cross-peaks of H-7/H-17, H-17/H-6a, H-6b/Me-28, and H₂-6/Me-22 in the ROESY spectrum suggested the α -orientations of H-7 and β -orientations of Me-28, Me-22, OH-4, and isobutyryl group at C-1.

Ascynol H (10), obtained as colorless crystals, possessed a molecular formula $C_{34}H_{42}O_5$ by analyzing its HRESIMS (*m/z* 553.2931 [M + Na]⁺, calcd 553.2924) and NMR spectroscopic data. The ¹H NMR spectrum of **10** showed the presence of an ortho-disubstituted benzene ring, two olefinic protons, and eight singlet methyls. The ¹³C and DEPT NMR spectra revealed 34 carbon signals corresponding to nine quaternary carbons, two methines, three methylenes, four methyls, and sixteen other signals assignable to a benzene and two prenyl groups. These data suggested that 10 was highly similar to hyphenrone D [4], a known PPAP comprising a 6/6/5/8/5 fused ring system. Analysis of the NMR spectroscopic data of 10 and hyphenrone D indicated that a prenyl group in hyphenrone D was replaced by a methyl in 10. This deduction was confirmed by correlations from Me-22 to C-4/C-5/C-6 in the HMBC spectrum. Other parts of 10 were identical to those of hyphenrone D by detailed analysis of 2D NMR spectroscopic data. In ROESY spectrum, the correlations of H-6a/Me-28, Me-28/H₂-23, Me-28/H-31, and H-17/Me-22 determined that Me-28, H-31 and the prenyl group at C-7 were β -oriented, while the prenyl group at C-3 and Me-22 were α -oriented. The definition of the C-1 configuration was problematic. Fortunately, quality crystals of 10 were obtained in methanol and its absolute configuration was unambiguously assigned to be 1R,3S,5R,7S,8R,31S via the single-crystal X-ray diffraction analysis

[Flack parameter = 0.08(6), CCDC 2359944].

The molecular formula of ascynol I (11) was deduced as $C_{33}H_{46}O_5$ based on its ¹³C NMR and HRESIMS data, which was 16 mass units more than that of ascyronone C [5], a known 9-*nor*-PPAP derivative isolated from *H. ascyron* as well. A 2-methylbut-3-en-2-ol side chain at C-29 in 11 instead of a prenyl group was evidenced by the HMBC correlations of Me-33 and Me-34 with C-31 and the ¹H-¹H COSY cross-peaks of H₂-29/H-30/H-31. The ROESY correlations of Me-28/H₂-23, H-7/H-1, H-1/H₂-17, and OH-3/H-5 determined the relative configuration of 11 to be the same as that of ascyronone C. Based on the MS and NMR data of ascynols J and K (12 and 13), they had the same carbon skeletons and configurations as those of 11. Differently, the existence of a phenyl group in 11 at C-10 was replaced by a isopropyl group in 12 and a *sec*-butyl group in 13, respectively.

The molecular formulas of ascynols N and O (**17** and **18**) were confirmed as $C_{32}H_{48}O_5$ via the sodium-added molecules at m/z 535.3404 [M + Na]⁺ (calcd 535.3394) and m/z 535.3402 [M + Na]⁺ (calcd. 535.3394) in the HRESIMS spectra of **17** and **18**, respectively. Comparative analyses of their NMR data revealed the commonality of a isobutyl group, a dihydrofuran ring and two prenyl groups in their structures. The substituents at C-1 were confirmed by HMBC correlations from H₂-11 to C-1/C-10 and ¹H-¹H COSY cross peaks of Me-13/14/H-12/H₂-11, which implied that the benzoyl groups in compounds hyperascyrins A and B [6] were replaced by the isovaleryl groups in **17** and **18**, respectively. Differences in their structures were established by NOESY experiments, in which the correlations of H-7/H-29b, H-29a/Me-28, Me-28/H-6b, H₂-6/Me-22 revealed the same orientations of H-7, Me-22, and Me-28 in both structures. The α -orientation of H-18 in **17** was deduced by the correlations of Me-20/Me-26, while the β -orientation of H-18 in **18** was based on the correlations of Me-20/H-6a.

The molecular formulas of ascynols L and M (14 and 15) were identified as $C_{32}H_{48}O_5$, in accordance with compound 18 (ascynol O), from their ¹³C NMR and HRESIMS data (15: m/z 535.3397 [M + Na]⁺, calcd 535.3399; 14: m/z 535.3407 [M + Na]⁺, calcd 535.3394). Comparative analyses of their NMR data suggested that compounds compounds 14 and 15) shared the same skeleton as well as the isovaleryl group, the dihydrofuran ring, and two prenyl groups in their structures, which were similar to those of 18. However, their chemical shifts of C-2 (15: δ_C 171.8; 14: δ_C 171.5; 18: δ_C 188.2) and C-4 (15: δ_C 190.1; 14: δ_C 190.7; 18: δ_C 177.0) implied that the dihydrofuran rings in compounds **14** and **15** were linked to C-2 and C-3 instead of C-3 and C-4 as in **17** and **18**. In the NOESY spectra of **14** and **15**, correlations were evident among H-6a, Me-28, and H₂-23, as well as between Me-28 and H-12, suggesting that the relative configurations of C-1, C-5, C-7 and C-8 were identical to those of **18**. Furthermore, the ROESY correlation of H-12/Me-20 in the spectrum of **14** indicated the α -orientation of H-18. In contrast, the correlations of H-12/H-18 and Me-20/H-31 were found in the ROESY spectrum of **15**. Therefore, compounds **14** and **15** were established as pairs of epimers at C-18. Finally, the absolute configuration of **14** was determined as 1*S*,*SR*,*7S*,*8R*,18*S* by the X-ray diffraction data [Flack parameter = 0.07(4), CCDC 2359945] unequivocally.

Ascynol P (20) was obtained as colourless gum. Its molecular formula $C_{34}H_{42}O_4$ was deduced on the basis of the positive HRESIMS peak at *m/z* 537.2995 [M + Na]⁺ (calcd 537.2975). Distinct signals for a monosubstituted benzene moiety, three olefinic protons, and seven methyl singlets were discovered in the ¹H NMR spectrum. The ¹³C NMR data displayed characteristic resonances for three carbonyls and an epoxane. Compared 1D data for 20 with those of hypercohone D [7], they shared the bicyclo[3,3,1]nonane-2,4,9-trinone core fused a furan ring because of the prenyl side chain at C-8 and *O*-2 cyclization, except for the signals of its acyl group and the loss of one olefinic proton specific for prenyl group in 20. The presence of a benzoyl group at C-1 in 20 was determined by the ¹H-¹H COSY correlations of H-12/16/H-13/15/H-14 and the HMBC cross-peaks of H-12/16 to C-1/C-10. The correlations from Me-22 to C-4/C-5/C-6/C-9 in the HMBC spectrum confirmed the decorated methyl at C-5. In the ROESY spectrum, cross-peaks of Me-22/H-6a, H-6b/Me-28, Me-28, Me-22, and benzoyl group at C-1 were β -orientated.

Ascynol Q (21) had the same molecular formula, $C_{33}H_{44}O_5$, as hyperascyrin H (22) [6] according to the HRESIMS (*m*/*z* 555.3082 [M + Na]⁺, calcd 555.3086) and ¹³C NMR data. The ¹H and ¹³C NMR data of 22 and those of 21, while differences were observed for the chemical shifts of H-31, implying that 21 was a stereoisomer of 22 at C-31. The deduction was further identified by the NOE contacts of H-31/H-18, Me-23a/Me-28, Me-28/H-6b, and H-6a/Me-22.

In addition, hypermogin A (6) [1], yezo'otogirin C (7) [8], hypermongone A (16) [9], hypermongone F (19) [9], hyperascyrin H (22) [6], hyperelatone A (23) [10],

longistylione B (24) [11], longistylione A (25) [11], longistylione C (26) [11], and longistylione D (27) [11] were carefully identified by comparison of their spectroscopic data with literature values. Meanwhile, crystals of longistylione C (26) [11] was obtained. And the absolute configuration of 26 was the first time to be confirmed as 1R,5R,7R,8S,31R via single-crystal X-ray crystallography with a Flack parameter = 0.06(5) (CCDC 2359946).

[1] Y. Zeng, J. Yang, Y. Li, W. Gu, L. Huang, P. Yi, C. Yuan, X. Hao, Hypermogins A–D, four highly modified polycyclic polyprenylated acylphloroglucinols from *Hypericum monogynum*. Tetrahedron Lett. 64 (2021) 152733.

[2] Y.-L. Hu, K. Hu, L.-M. Kong, F. Xia, X.-W. Yang, G. Xu, Norascyronones A and B, 2,3,4-nor-polycyclic polyprenylated acylphloroglucinols from *Hypericum ascyron*. Org. Lett. 21 (2019) 1007-1010.

[3] J.-R. Weng, C.-N. Lin, L.-T Tsao, J.-P. Wang, Terpenoids with a new skeleton and novel triterpenoids with anti-inflammatory effects from *Garcinia subelliptica*. Chem. Eur. J. 9 (2003) 5520-5527.

[4] X.-W. Yang, Y. Ding, J.-J. Zhang, X. Liu, L.-X. Yang, X.-N. Li, D. Ferreira, L.A. Walker, G. Xu, New acylphloroglucinol derivatives with diverse architectures from *Hypericum henryi*, Org. Lett. 16 (2014) 2434-2437.

[5] L.-M. Kong, X.-W. Long, X.-W. Yang, F. Xia, A. Khan, H. Yan, J. Deng, X. Li, G. Xu, seco-polycyclic polyprenylated acylphloroglucinols with unusual carbon skeletons from *Hypericum ascyron*, Tetrahedron Lett. 58 (2017) 2113-2117.

[6] J.-W. Hu, M.-J. Shi, J.-J. Wang, L. Li, J.-D. Jiang, T.-F. Ji, Methylated polycyclic polyprenylated acylphloroglucinol derivatives from *Hypericum ascyron*, J. Nat. Prod. 81 (2018) 2348-2356.

[7] J.-J. Zhang, X.-W. Yang, J.-Z. Ma, X. Liu, L.-X. Yang, S.-C. Yang, G. Xu, Hypercohones D-G, new polycyclic polyprenylated acylphloroglucinols type natural products from *Hypericum cohaerens*, Nat. Prod. Bioprospect. 4 (2014) 73-79.

[8] N. Tanaka, Y. Kakuguchi, H. Ishiyama, T. Kubota, J. Kobayashi. Yezo'otogirins A–C, new tricyclic terpenoids from *Hypericum yezoense*, Tetrahedron Lett. 50 (2009) 4747-4750.

[9] W.-J. Xu, M.-D. Zhu, X.-B. Wang, M.-H. Yang, J. Luo, L.-Y. Kong, Hypermongones A–J, rare methylated polycyclic polyprenylated acylphloroglucinols from the flowers of *Hypericum monogynum*, J. Nat. Prod. 78 (2015) 1093-1100.

[10] X.-T. Yan, Z. An, Y. Huangfu, Y.-T. Zhang, C.-H. Li, X. Chen, P.-L. Liu, J.-M. Gao, Polycyclic polyprenylated acylphloroglucinol and phenolic metabolites from the aerial parts of *Hypericum elatoides* and their neuroprotective and anti-neuroinflammatory activities, Phytochemistry, 159 (2016) 65-74.

[11] X. Cao, X. Yang, P. Wang, Y. Liang, F. Liu, M. Tuerhong, D.-Q. Jin, J. Xu, D. Lee, Y. Ohizumi, Y. Guo, Polycyclic phloroglucinols as PTP1B inhibitors from *Hypericum longistylum*: Structures, PTP1B inhibitory activities, and interactions with PTP1B, Bioorg. Chem. 75 (2017) 139-148.

SI-4. Biological assays.

Materials and regents. The chemicals used in electrophysiology including NaCl, KCl, CsCl, CaCl₂, MgCl₂, HEPES, Glucose, TEA-Cl, NaOH, KOH, EGTA, CsCH₃SO₃, Na₂-ATP were purchased Sangon Biotech unless otherwise noted. Carrageenan were purchased from SlarbiO.

Cell culture and transfection. HEK 293T cells (American Type Culture Collection (ATCC)) were grown in DMEM (HyClone, SH30243.01), with 10% fetal bovine serum (Gibco, 2424346) and 1% penicillin (10,000 U/ml)/streptomycin (10 mg/ml) (VivaCell Biosciences, 2233204). HEK 293T cells were transiently transfected with human pCDNA3.1-Ca_v3.2 with pCDNA3.1-EGFP plasmids together using Lipofectamine 3000 (Invitrogen, CN2465613) and used within 48 h.

All the cell were cultured in the incubator with 5% CO_2 atmosphere at 37°C.

Patch-clamp electrophysiology. Double IPA (Sutter Instrument, USA), which is an integrated patch clamp amplifier with data acquisition system, was used for cell electrical signal amplification. Currents were low-pass filtered at 2 kHz and sampled at 10 kHz. SutterPatch2.1 software (Sutter Instrument) was used for data acquisition and analysis. All experiments were performed at room temperature (approximately 23°C). For patch-clamp recordings, pipettes were fabricated from borosilicate glass (Sutter Instrument, 2605321) using a micropipette puller (P-1000, Sutter Instrument), and were fire-polished to resistances of 4-6 MΩ for whole-cell recording.

For LVGCCs (hCa_v3.1-3.3) current measurements, the extracellular solution contained (in mM): 105 CsCl, 40 TEA-Cl, 10 Glucose, 10 HEPES, 2 CaCl₂ and 1 MgCl₂ (pH 7.4 adjusted with CsOH). The intracellular solution contained (in mM): 130 CsCH₃SO₃, 10 TEA-Cl, 10 HEPES, 5 MgCl₂, 5 EGTA, 5 Na₂-ATP (pH 7.4 adjusted with CsOH). Peak currents of LVGCCs were elicited by 300-ms (hCa_v3.1 and hCa_v3.2)/600-ms (hCa_v3.3) depolarizations to -40 mV at 3-s intervals from a holding potential (HP) of -100 mV. For studying state-dependent of hCa_v3.2, the HP was set to -100 mV and -75 mV, respectively. I-V curves of LVGCCs were evoked by 300-ms (hCa_v3.1 and hCa_v3.2)/600-ms (hCa_v3.3) depolarizations from -80 mV to +50 mV in 5-

mV increments with a 3-s interval from a HP of -100 mV.

Animals. All the procedures and care and handling of the animals were approved by the Animal Care and Use Committee at Kunming Institute of Botany, Chinese Academy of Sciences and the principles of laboratory animal care (NIH publication No. 86-23, revised 1985) were followed.

Experiments were performed on 18-22 g and aged 6-8 weeks Wilde type C57BL/6J mice (SKbex Biotechnology Co., Ltd.). Mice were housed in a temperature-and humidity-controlled environment and maintained in a 12 h light-dark cycle, and food and water were available *ad libitum*. All efforts were made to minimize both the suffering and number of animals used.

Acetic acid induced writhing test in mice. Before the measurement of acetic acid (AA)-induced writhing test, mice were acclimated to a plexiglas chamber for at least 1 hour to adapt to the experimental environment. AA was diluted with 0.9% (v/v) normal saline to 0.6% for modeling. Vehicle for compound 23 and Z944 is 20% (v/v) β -cyclodextrin and 0.4% DMSO in normal saline (same vehicle was used in following experiments). After 30 minutes of intraperitoneal injection of 23 (5, 15, 30 mg/kg) and Z944 (10 mg/kg) into mice, 0.6% (v/v) AA was i.p. injection at a volume of 10 ml/kg. During 20 minutes after i.p. administrating 0.6% (v/v) AA, the number of abdominal writhes was recorded for each group of mice. The definition of a writhe is a contraction of the abdominal muscles followed by body elongation and hind limb extension.

The above behavioral experiment was conducted in a double blind setting. Other behavioral tests in this study also followed this procedure.

Fig. S2. Inhibitory effect of compounds **4** (A), **9** (B), **12** (C), **21** (D) on Ca_v3.1. The first column: representative Ca_v3.1 peak current traces were elicited by 200 ms depolarization to -40 mV at 4 s intervals from a holding potential (HP) of -100 mV in the absence (Bath) and presence of various concentrations of indicated compounds. The second column: Dose-response curve of peak current inhibiton by indicated compounds. Solid curve represents fit to the Hill equation. Data are represented as mean \pm SEM (n \geq 3). The third column: time course of peak current inhibition by indicated compounds at 10 µmol/L. Ordinate axis, peak current during exposure to testing compounds, which normalized by the peak current before drug exposure. The IC₅₀ of compounds **4**, **9**, **12**, **21** are 7.51, 1.84, 10.81, 3.57 µmol/L, respectively.

Fig. S3. Inhibitory effect of compounds **9** (A), **19** (B), **21** (C) on Ca_v3.2. The first column: representative Ca_v3.2 peak current traces were elicited by 300 ms depolarization to -40 mV at 4 s intervals from a holding potential (HP) of -100 mV in the absence (Bath) and presence of various concentrations of indicated compounds. The second column: Dose-response curve of peak current inhibiton by indicated compounds. Solid curve represents fit to the Hill equation. Data are represented as mean \pm SEM (n \geq 3). The third column: time course of peak current inhibition by indicated compounds at 10 µmol/L or 30 µmol/L. Ordinate axis, peak current during exposure to testing compounds, which normalized by the peak current before drug exposure. The IC₅₀ of compounds **9**, **19**, **21** are 3.83, 7.53, 3.57 µmol/L, respectively.

Figure S3-1. The activity of compound **1** was tested on $Ca_v3.1$, $K_v1.5$, and ASIC3 channels.

Figure S3-2. The activity of compound 2 on $Ca_v3.1$, $Ca_v3.2$, $K_v1.3$, $K_v1.5$, $Na_v1.5$, and ASIC3 channels.

Figure S3-3. The activity of compound **3** was assessed on channels including Ca_v3.1, Ca_v3.2, Ca_v3.3, K_v1.3, K_v1.5, Na_v1.5, Na_v1.7, and ASIC3.

		1		2		3
no.	$\delta_{\rm C}$	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	δc	$\delta_{\rm H} (J \text{ in Hz})$
1	70.1		54.5	3.72, d (9.0)	55.3	2.84, d (10.3)
5	208.4		208.7		209.2	
6	45.8	α: 2.38, dd (16.0, 3.3)	46.0	2.01, m	45.9	β: 2.76, dd (17.8, 2.8)
		β: 2.06, dd (16.0, 10.8)				<i>α</i> : 2.33, dd (17.8, 7.5)
7	42.9	1.42, m	42.0	2.19, m	45.8	2.12, m
8	63.6		51.8		49.2	
)						
10	205.1		204.8		177.2	
11	134.4		139.3			
12	128.0	7.83, d (7.8)	128.7	7.82, d (7.7)		
13	126.7	7.27, t (7.8)	128.2	7.37, t (7.7)		
14	134.0	7.48, t (7.8)	132.5	7.45, t (7.7)		
15	125.2	7.30, d (7.8)	128.2	7.37, t (7.7)		
16	150.7		128.7	7.82, d (7.7)		
22	30.0	1.91, s	29.9	1.75, s	30.6	2.04, s
23	34.5	1.57, m	30.0	<i>α</i> : 2.04, m	30.1	β: 1.93, m
				<i>β</i> : 1.71, m		<i>α</i> : 1.83, m
24	58.4	2.23, overlap	123.6	4.79, t (7.3)	123.5	4.86, t (6.6)
25	37.8		132.7		132.7	
26	34.9	1.32, s	25.7	1.54, s	25.7	1.57, s
27	27.3	1.35, s	17.7	1.45, s	17.8	1.54, s
28	21.3	1.01, s	18.8	0.74, s	18.0	0.92, s
29	33.9	<i>β</i> : 1.66, m	38.5	β: 1.73, overlap	42.3	<i>α</i> : 1.62, m
		α: 1.26, dd (12.2, 7.6)		<i>α</i> : 1.49, m		β: 1.47, m
30	27.8	<i>α</i> : 2.26, overlap	25.2	<i>α</i> : 1.82, m	27.1	<i>β</i> : 1.67, m
		<i>β</i> : 1.97, m		<i>β</i> : 1.58, m		<i>α</i> : 1.58, overlap
31	64.4	2.42, br t (8.8)	55.3	2.82, q (9.0)	51.5	2.58, m
32	71.9		72.5		83.0	
33	31.2	1.13, s	30.3	1.09, s	30.5	1.28, s
34	30.3	1.08, s	26.3	1.16, s	23.5	1.30, s
ОН-32		5.18, s				

SI-5. The NMR spectroscopic data of new compounds.

no.		4	5		8	
	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	$\delta_{\rm C}$, type	$\delta_{\mathbb{H}} (J \text{ in Hz})$	$\delta_{\rm C}$, type	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$, type
1		88.6, C		72.7, C	4.36, s	63.9, CH
5	3.09, m	39.7, CH		107.4, C	2.55, m	45.3, CH
6	2.04, m	39.4, CH ₂	1.82, m	32.3, CH ₂	2.13, m	37.3, CH ₂
	1.15, q (13.2)				1.25, q (12.6)	
7	1.83, m	41.7, CH	1.20, m	47.1, CH	1.87, br t (12.6)	43.0, CH
8		60.2, C		48.2, C		47.5, C
9		216.5, C		149.4, C		210.0, C
10		166.2, C		212.9, C		197.1, C
11		131.6, C	2.57, dd (6.0, 18.0)	$48.8, \mathrm{CH}_2$		138.4, C
			2.20, dd (6.0, 18.0)			
12	7.88, d (7.2)	129.4, CH	2.04, m	24.0, CH	7.68, d (7.8)	127.5, CH
13	7.39, t (7.2)	128.2, CH	0.87, d (6.9)	22.9, CH ₃	7.34, t (7.8)	128.6, CH
14	7.50, t (7.2)	132.6, CH	0.86, d (6.9)	22.7, CH ₃	7.44, t (7.8)	132.7, CH
15	7.39, t (7.2)	128.2, CH			7.34, t (7.8)	128.6, CH
16	7.88, d (7.2)	129.4, CH			7.68, d (7.8)	127.5, CH
22	0.88, d (6.0)	14.3, CH ₃	1.68, s	16.2, CH ₃	0.98, d (6.6)	14.4, CH ₃
23	2.07, m	29.5, CH ₂	1.91, m	29.6, CH ₂	2.20, m	27.1, CH ₂
	1.60, m		1.79, m		1.72, m	122.9, CH
24	5.11, t, (6.6)	123.5, CH	5.09, t (7.2)	124.2, CH	5.09, t (7.2)	133.1, C
25		132.9, C		132.4, C		25.9, CH ₃
26	1.70, s	25.9, CH ₃	1.70, s	25.9, CH ₃	1.69, s	18.0, CH ₃
27	1.57, s	17.8, CH ₃	1.58, s	17.9, CH ₃	1.58, s	16.9, CH ₃
28	0.70, s	12.7, CH ₃	0.76 s	19.2, CH ₃	1.13, s	39.1, CH ₂
29	1.89, m	34.6, CH ₂	1.73, m	$41.7, \mathrm{CH}_2$	2.28, dd (14.6, 5.6)	34.6, CH ₂
	1.64, m		1.36, m		2.22, overlap	
30	1.98, m	24.5, CH ₂	1.52, m	$25.5, \mathrm{CH}_2$	5.56, m	121.0, CH
31	3.85, t (9.6)	53.2, CH	3.07, dd (7.2, 11.4)	56.0, CH	5.22, d (15.4)	142.6, CH
32		86.3, C		83.2, C		70.5, C
33	1.58, s	26.5, CH ₃	1.12, s	29.7, CH ₃	1.01, s	29.8, CH ₃
34	1.54 s	25.0, CH ₃	1.16, s	25.2, CH ₃	0.89, s	29.4, CH ₃
OH-1	4.05, s					

Table S2 ¹ I	H (600 MHz)) and ¹³ C NMR ((150 MHz) s	spectroscop	ic data of 4	5, and 8	(in CDCl ₃).
-------------------------	-------------	-----------------------------	-------------	-------------	--------------	----------	--------------------------

no			9		
	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	$\delta_{\rm C}$, type		$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$, type
1		78.8, C	20	1.36, s	29.8, CH ₃
2		208.5, C	21	1.35, s	29.8, CH ₃
4		82.0, C	22	1.06, s	11.7, CH ₃
5		56.7, C	23	2.09, m	27.9, CH ₂
6	1.91, m	41.5, CH ₂		1.60, m	
	1.49, m		24	4.92, t (7.2)	121.9, CH
7	1.51, m	43.3, CH	25		133.8, C
8		55.7, C	26	1.64, s	25.8, CH ₃
9		208.9, C	27	1.50, s	17.9, CH ₃
10		201.4, C	28	1.11, s	15.0, CH ₃
11	2.29, m	51.1, CH ₂	29	1.76, m	37.3, CH ₂
	2.11, m			1.58, m	
12	2.12, m	23.4, CH	30	2.02, m	24.5, CH ₂
13	0.83, overlap	22.5, CH ₃	31	5.01, t (7.2)	124.3, CH
14	0.82, overlap	22.2, CH ₃	32		131.7, C
17	5.82, d (15.6)	118.6, CH	33	1.54, s	17.6, CH ₃
18	6.32, d (15.6)	144.6, CH	34	1.64, s	25.7, CH ₃
19		70.9, C			

Table S3 1 H (600 MHz) and 13 C NMR (150 MHz) spectroscopic data of 9 (in CDCl₃).

no	10	11	12	13
1		4.97, s	4.08, s	4.05, s
2				
3				
4				
5		3.44, m	3.46, m	3.46, m
6	3.27, dd (7.2, 15.6)	H _a , 1.73, m	Ha, 1.60, m	Ha, 1.59, m
	1.48, d (15.6)	H _b , 1.32, dd (17.3, 4.2)	H _b , 1.18, m	H _b , 1.18, m
7	0.99, m	1.37, m	1.22, m	1.22, m
8				
9				
10				
11			2.89, m	2.67, m
12		7.93, d (7.4)	0.98, d (6.6)	1.00, d (6.6)
13	7.32, overlap	7.43, t (7.4)	1.01, d (6.6)	Ha, 1.49, m
				H _b , 1.21, overlap
14	7.49, t (7.2)	7.52, t (7.4)		0.87, s
15	7.35, overlap	7.43, d (7.4)		
16	8.02, d (7.2)	7.93, d (7.4)		
17	2.64, dd (7.8, 15.0)	Ha, 2.46, dd (15.3, 7.6)	Ha, 2.71, dd (7.2, 15.6)	Ha, 2.72, dd (6.6, 15.6)
	2.21, dd (5.4, 15.0)	H _b , 2.09, dd (15.3, 7.6)	H _b , 2.40, dd (7.2, 15.6)	H _b , 2.18, dd (6.6, 15.6)
18	3.96, t (7.2)	4.39, t (6.0)	4.75, t (6.6)	4.78, t (6.6)
19				
20	1.34, s	1.43, s	1.56, s	1.56, s
21	1.28, s	1.21, s	1.62, s	1.63, s
22	1.14, s	0.93, d (6.9)	0.85, d (6.6)	0.86, s
23	1.82, m	Ha, 1.98, overlap	Ha, 1.97, m	H _a , 1.98, overlap
		H _b , 1.71, m	H _b , 1.71, m	Нь, 1.71, т
24	4.84, t (7.2)	4.91, t (6.0)	4.88, m	4.89, m
25				
26	1.71, s	1.65, s	1.66, s	1.66, s
27	1.55, s	1.53, s	1.56, s	1.54, s
28	1.30, s	1.24, s	1.15, s	1.14, s
29	1.80, m	H _a , 2.13, m	Ha, 2.18, m	H _a , 2.17, m
		H _b , 2.01, m	H _b , 1.92, dd (5.4, 15.6)	H _b , 1.98, m
30	2.33, m	5.38, m	5.58, m	5.57, m
	1.76, m			
31	2.82, t (10.5)	5.23, d (15.5)	5.62, m	5.62, m
32				
33	1.24, s	1.10, s	1.33, s	1.33, s
34	1.19, s	1.12, s	1.35, s	1.34, s
OH-3			4.27, s	4.28, s

 Table S4
 ¹H (600 MHz) spectroscopic data of 10–13 (in CDCl₃)

1010 00) speedoseopie data		•
no	10	11	12	13
1	71.8, C	57.1, CH	64.2, CH	64.2, CH
2	202.4, C	200.8, C	203.0, C	203.2, C
3	100.2, C	88.1, C	88.0, C	88.0, C
4	203.1, C	212.5, C	210.8, C	210.9, C
5	49.5, C	41.2, CH	40.7, CH	40.6, CH
6	39.7, CH ₂	31.4, CH ₂	30.9, CH ₂	30.9, CH ₂
7	45.7, CH	39.9, CH	38.9, CH	38.9, CH
8	55.3, C	50.2, C	49.0, C	49.0, C
9	174.3, C			
10	195.6, C	192.4, C	208.2, C	207.6, C
11	135.5, C	137.5, C	41.2, CH	47.6, CH
12	151.3, C	128.9, CH	19.7, CH ₃	15.5, CH ₃
13	126.1 CH	129.0, CH	19.2, CH ₃	26.1, CH ₂
14	133.0, CH	133.9, CH		11.3, CH ₃
15	126.5, CH	129.0, CH		
16	130.0, CH	128.9, CH		
17	32.8, CH ₂	33.4, CH ₂	33.2, CH ₂	33.3, CH ₂
18	114.2, CH	115.2, CH	115.5, CH	115.6, CH
19	137.7, C	137.0, C	137.1, C	136.9, C
20	17.8, CH ₃	25.8, CH ₃	18.2, CH ₃	18.2, CH ₃
21	25.9, CH ₃	17.8, CH ₃	25.9, CH ₃	25.9, CH ₃
22	17.6, CH ₃	13.3, CH ₃	13.6, CH ₃	13.6, CH ₃
23	31.8, CH ₂	29.8, CH ₃	29.8, CH ₂	29.8, CH ₂
24	122.6, CH	123.1, CH	123.2, CH	123.2, CH
25	134.6, C	133.1, C	132.9, C	132.9, C
26	25.8, CH ₃	25.9, CH ₃	26.0, CH ₃	25.9, CH ₃
27	18.1, CH ₃	18.0, CH ₃	18.0, CH ₃	18.0, CH ₃
28	20.4, CH ₃	16.4, CH ₃	16.2, CH ₃	16.3, CH ₃
29	39.7, CH ₂	40.8, CH ₃	41.0, CH ₂	40.8, CH ₂
30	21.0, CH ₂	120.9, CH	120.2, CH	120.4, CH
31	54.6, CH	142.4, CH	142.8, CH	142.7, CH
32	38.1, C	70.5, C	70.7, C	70.7, C
33	34.4, CH ₃	29.7, CH ₃	29.8, CH ₃	29.8, CH ₃
34	23.5, CH ₃	29.4, CH ₃	29.9, CH ₃	29.9, CH ₃

Table S5¹³C NMR (150 MHz) spectroscopic data of 10–13 (in CDCl₃).

Tab	Table S6 $^{\circ}$ H (600 MHz) spectroscopic data of 14, 15, 17, and 18 (in CDCl ₃).					
no.	14	15	17	18		
6	1.91, m	1.88, dd (13.7, 4.4)	1.93, dd (4.2, 13.8)	1.90, m		
	1.26, m	1.22, br t (13.7)	1.39, br t (13.2)	1.41, m		
7	1.69, m	1.56, m	1.63, m	1.57, m		
11	1.37, dd (6.0, 18.0)	2.26, dd (17.0, 6.1)	2.01, dd (3.0, 6.6)	2.05, dd (3.0, 6.6)		
	2.50, m	2.05, m				
12	2.20, m	2.21, m	2.18, m	2.18, m		
13	0.91, d (6.0)	0.82, d (6.6)	0.85, d (6.6)	0.88, d (6.6)		
14	0.90, d (6.0)	0.88, d (6.6)	0.89, d (6.6)	0.86, d (6.6)		
17	2.99, m	2.99, dd (15.0, 9.5)	3.00, dd (10.8, 15.0)	2.97, dd (10.2, 15.0)		
	2.93, m	2.85, dd (15.0, 9.5)	2.87, dd (7.8, 15.0)	2.83, dd (7.8, 15.0)		
18	4.74, t (9.6)	4.62, t (9.9)	4.75, dd (7.8, 10.8)	4.75, dd (7.8, 10.4)		
20	1.33, s	1.26, s	1.28, s	1.24, s		
21	1.26, s	1.17, s	1.19, s	1.18, s		
22	1.19, s	1.16, s	1.30, s	1.29, s		
23	2.05, m	2.02, m	2.10, m	2.10, m		
	1.69, m	1.63, m	1.76, m	1.72, m		
24	4.92, t (6.0)	4.86, t (6.3)	4.93, t (7.2)	4.89, t (7.2)		
26	1.68, s	1.61, s	1.68, s	1.63, s		
27	1.58, s	1.47, s	1.55, s	1.53, s		
28	1.09, s	1.03, s	1.01, s	1.01, s		
29	1.70, m	2.17, m	1.86, m	1.88, overlap		
	1.61, m	1.61, m	1.45, m	1.37, m		
30	2.01, m	2.01, m	2.08, m	2.08, m		
	1.92, overlap	1.94, m	1.87, overlap	1.87, overlap		
31	4.97, t (6.0)	4.94, t (6.3)	5.01, t (7.2)	5.02, t (7.2)		
33	1.55, s	1.59, s	1.57, s	1.57, s		
34	1.63, s	1.54, s	1.63, s	1.61, s		

Table S6 ¹H (600 MHz) spectroscopic data of 14, 15, 17, and 18 (in CDCl₃).

No.	14	15	17	18
1	72.2, C	73.3, C	82.2, C	82.1, C
2	171.5, C	171.8, C	188.2, C	188.2, C
3	119.9, C	119.9, C	117.7, C	117.5, C
4	190.7, C	191.0, C	177.0, C	176.8, C
5	60.0, C	59.8, C	50.5, C	50.5, C
6	41.3, CH ₂	41.5, CH ₂	39.5, CH ₂	39.2, CH ₂
7	42.0, CH	44.3, CH	42.8, CH	43.3, CH
8	46.9, C	46.6, C	47.6, C	47.7, C
9	207.0, C	206.6, C	206.7, C	206.6, C
10	202.5, C	202.5, C	203.6, C	203.7, CH
11	51.0, CH ₂	50.6, CH ₂	51.1, CH ₂	51.1, CH ₂
12	23.8, CH	24.1, CH	24.1, CH	24.0, CH
13	22.9, CH ₃	22.6, CH ₃	22.6, CH ₃	22.7, CH ₃
14	22.4, CH ₃	22.5, CH ₃	22.5, CH ₃	22.5, CH ₃
17	26.9, CH ₂	26.8, CH ₂	27.4, CH ₂	27.6, CH ₂
18	93.0, CH	93.5, CH	93.1, CH	92.5, CH
19	71.6, C	71.3, C	72.0, C	72.1, C
20	26.5, CH ₃	26.4, CH ₃	25.4, CH ₃	24.8, CH ₃
21	25.5, CH ₃	24.8, CH ₃	23.8, CH ₃	23.4, CH ₃
22	16.0, CH ₃	15.9, CH ₃	15.3, CH ₃	15.3, CH ₃
23	27.9, CH ₂	27.8, CH ₂	27.2, CH ₂	26.9, CH ₂
24	122.2, CH	122.2, CH	122.3, CH	122.4, CH
25	133.5, C	133.5, C	133.5, C	133.6, C
26	25.9, CH ₃	25.8, CH ₃	25.9, CH ₃	25.8, CH ₃
27	18.0, CH ₃	17.9, CH ₃	18.0, CH ₃	17.8, CH ₃
28	14.5, CH ₃	12.6, CH ₃	13.7, CH ₃	13.5, CH ₃
29	37.7, CH ₂	25.3, CH ₂	36.4, CH ₂	36.5, CH ₂
30	24.3, CH ₂	39.0, CH ₂	24.9, CH ₂	24.9, CH ₂
31	124.3, CH	124.2, CH	124.5, CH	124.5, CH
32	131.6, C	132.2, C	131.2, C	131.2, C
33	17.7, CH ₃	17.8, CH ₃	17.7, CH ₃	17.7, CH ₃
34	25.7, CH ₃	25.6, CH ₃	25.7, CH ₃	25.7, CH ₃

Table S7 ¹³C NMR (150 MHz) spectroscopic data of 14, 15, 17, and 18 (in CDCl₃).

no	20)	2	1
	$\delta_{\mathrm{H}} \left(J \text{ in Hz} \right)$	$\delta_{\rm C}$, type	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$, type
1		69.9, C		73.8, C
2		169.4, C		166.7, C
3		128.7, C		131.1, C
4		196.4, C		197.6, C
5		62.8, C		62.3, C
6	2.03, dd (13.6, 5.0)	43.0, CH ₂	2.01, dd (12.9, 4.8)	43.3, CH ₂
	1.45, brt (13.2)		1.41, brt (12.9)	
7	2.32, m	38.1, CH	2.11, m	36.7, CH
8		49.4, C		46.3, C
9		207.5, C		208.3, C
10		195.0, C		194.3, C
11		137.2, C		137.6, C
12	7.52, d (7.2)	128.5, CH	7.51, d (7.8)	128.2, CH
13	7.23, t (7.2)	128.0, CH	7.22, t (7.8)	128.1, CH
14	7.39, t (7.2)	132.2, CH	7.38, t (7.8)	132.2, CH
15	7.23, t (7.2)	128.0, CH	7.22, t (7.8)	128.1, CH
16	7.52, d (7.2)	128.5, CH	7.51, d (7.8)	128.2, CH
17	3.07, d (7.2)	22.4, CH ₂	3.03, m	22.9, CH ₂
18	4.97, m	120.2, CH	4.92, t (6.9)	119.5, CH
19		133.3, C		138.7, C
20	1.57, s	17.7, CH ₃	1.61, s	25.7, CH ₃
21	1.62, s	25.7, CH ₃	1.55, s	18.1, CH ₃
22	1.30, s	15.8, CH ₃	1.25, s	15.9, CH ₃
23	2.01, m	28.2, CH ₂	1.89, m	26.9, CH ₂
	1.64, overlap		1.59, m	
24	4.98, m	121.9, CH	4.89, t (6.8)	121.8, CH
25		133.8, C		133.8, C
26	1.66, s	25.7, CH ₃	1.63, s	25.8, CH ₃
27	1.55, s	17.8, CH ₃	1.50, s	18.0, CH ₃
28	1.26, s	15.2, CH ₃	1.20, s	15.8, CH ₃
29	2.44, dd (12.0, 15.0)	36.3, CH ₂	2.74, m	31.4, CH ₂
	1.69, overlap		1.66, overlap	
30	4.91, m	79.6, CH	1.79, m	22.7, CH ₂
31	5.19, d (8.4)	123.8, CH	4.02, t (4.8)	87.2, CH
32		138.2, C		73.5, C
33	1.63, s	18.2, CH ₃	0.99, s	25.9, CH ₃
34	1.70, s	25.8, CH ₃	1.01, s	25.2, CH ₃

Tabl	e S8	¹ H (600 MHz) and ¹³	C NMR (150 MHz)	spectroscopic data	of 20 and 21 (in CDCl ₃).

SI-6. The original NMR and MS spectra of new compounds.

Figure S1. ¹H (in CDCl₃) spectrum of ascynol A (1).

Figure S2. ¹³C and DEPT (in CDCl₃) spectrum of ascynol A (1).

Figure S6. ROESY spectrum of ascynol A (1).

Figure S7. ESIMS spectrum of ascynol A (1).

Qualitative Analysis Report

Figure S8. HRESIMS spectrum of ascynol A (1).

Figure S9. ¹H (in CDCl₃) spectrum of ascynol B (2).

Figure S10. ¹³C and DEPT (in CDCl₃) spectrum of ascynol B (2).

Figure S12. HMBC spectrum of ascynol B (2).

Figure S14. ROESY spectrum of ascynol B (2).

Qualitative Analysis Report

Figure S16. HRESIMS spectrum of ascynol B (2).

Figure S17. 1 H (in CDCl₃) spectrum of ascynol C (3).

Figure S18. ¹³C and DEPT (in CDCl₃) spectrum of ascynol C (3).

Figure S20. HMBC spectrum of ascynol C (3).

Figure S22. ROESY spectrum of ascynol C (3).

Figure S23. ESIMS spectrum of ascynol C (3).

Qualitative Analysis Report

Figure S24. HRESIMS spectrum of ascynol C (3).

Figure S25. ¹³C (in CDCl₃) spectrum of ascynol D (4).

Figure S27. HSQC spectrum of ascynol D (4).

Figure S28. HMBC spectrum of ascynol D (4).

Figure S29 ¹H–¹H COSY spectrum of ascynol D (4).

Figure S30. ROESY spectrum of ascynol D (4).

Figure S31. ESIMS spectrum of ascynol D (4).

Figure S32. HRESIMS spectrum of ascynol D (4).

Figure S25. ¹H (in CDCl₃) spectrum of ascynol E (5).

Figure S26. ¹³C (in CDCl₃) spectrum of ascynol E (5).

Figure S27. HSQC spectrum of ascynol E (5).

Figure S28. HMBC spectrum of ascynol E (5).

Figure S29 ¹H–¹H COSY spectrum of ascynol E (5).

Figure S30. ROESY spectrum of ascynol E (5).

Figure S31. ESIMS spectrum of ascynol E (5).

Figure S32. HRESIMS spectrum of ascynol E (5).

Figure S26. ¹³C and DEPT (in CDCl₃) spectrum of ascynol F (8).

Figure S28. HMBC spectrum of ascynol F (8).

Figure S30. ROESY spectrum of ascynol F (8).

Figure S31. ESIMS spectrum of ascynol F (8).

Figure S32. HRESIMS spectrum of ascynol F (8).

rx142.85.1.1r — h CDCI3 D:\\ nmr 5

Figure S25. ¹H (in CDCl₃) spectrum of ascynol G (9).

Figure S26. ¹³C (in CDCl₃) spectrum of ascynol G (9).

Figure S27. HSQC spectrum of ascynol G (9).

Figure S28. HMBC spectrum of ascynol G (9).

Figure S29 $^{1}H^{-1}H$ COSY spectrum of ascynol G (9).

Figure S30. ROESY spectrum of ascynol G (9).

Figure S31. ESIMS spectrum of ascynol G (9).

Figure S32. HRESIMS spectrum of ascynol G (9).

Figure S25. ¹H (in CDCl₃) spectrum of ascynol H (10).

Figure S26. ¹³C (in CDCl₃) spectrum of ascynol H (10).

Figure S27. HSQC spectrum of ascynol H (10).

Figure S28. HMBC spectrum of ascynol H (10).

Figure S29 ¹H–¹H COSY spectrum of ascynol H (10).

Figure S30. ROESY spectrum of ascynol H (10).

Figure S31. ESIMS spectrum of ascynol H (10).

Figure S32. HRESIMS spectrum of ascynol H (10).

Figure S25. ¹H (in CDCl₃) spectrum of ascynol I (11).

Figure S26. ¹³C (in CDCl₃) spectrum of ascynol I (11).

Figure S27. HSQC spectrum of ascynol I (11).

Figure S28. HMBC spectrum of ascynol I (11).

Figure S29 $^{1}H-^{1}H$ COSY spectrum of ascynol I (11).

Figure S30. ROESY spectrum of ascynol I (11).

Figure S31. ESIMS spectrum of ascynol I (11).

Figure S32. HRESIMS spectrum of ascynol I (11).

0.85 0.85 ∕5.62 ∕5.58 ---4.88 ---4.75 --2.89 --2.71 --4.27 --4.08 -3.46

rx164 — h CDC13 av600

Figure S25. ¹H (in CDCl₃) spectrum of ascynol J (12).

Figure S26. ¹³C (in CDCl₃) spectrum of ascynol J (12).

Figure S27. HSQC spectrum of ascynol J (12).

Figure S28. HMBC spectrum of ascynol J (12).

Figure S29 ¹H–¹H COSY spectrum of ascynol J (12).

Figure S30. ROESY spectrum of ascynol J (12).

Figure S31. ESIMS spectrum of ascynol J (12).

Figure S32. HRESIMS spectrum of ascynol J (12).

√5.62 √5.62 √5.57 √5.57 √4.08 √4.08 √4.06 √4.06 √1.17 √1.17 √1.17 √1.17 √1.16 √1.17 √1.16 √1.17 √1.17 √1.16 √1.17 √1.16 √1.17 √1.17 √1.16 √1.17 √1.17 √1.17 √1.17 √1.17 √1.16 √1.17 √1.16 √1.17 √1.16 √1.17 √1.16 √1.16 √1.17 √1.16 <li

Figure S25. ¹H (in CDCl₃) spectrum of ascynol K (13).

Figure S26. ¹³C (in CDCl₃) spectrum of ascynol K (13).

Figure S27. HSQC spectrum of ascynol K (13).

Figure S28. HMBC spectrum of ascynol K (13).

Figure S29 ¹H–¹H COSY spectrum of ascynol K (13).

Figure S31. ESIMS spectrum of ascynol K (13).

Figure S32. HRESIMS spectrum of ascynol K (13).

Figure S25. ¹H (in CDCl₃) spectrum of ascynol L (14).

Figure S26. ¹³C (in CDCl₃) spectrum of ascynol L (14).

Figure S27. HSQC spectrum of ascynol L (14).

Figure S28. HMBC spectrum of ascynol L (14).

Figure S29 ¹H–¹H COSY spectrum of ascynol L (14).

Figure S30. ROESY spectrum of ascynol L (14).

Figure S31. ESIMS spectrum of ascynol L (14).

Figure S32. HRESIMS spectrum of ascynol L (14).

7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 f1 (ppm) rxo64.41.1.1r — h CDC13 av600

Figure S25. ¹H (in CDCl₃) spectrum of ascynol M (15).

Figure S26. ¹³C (in CDCl₃) spectrum of ascynol M (15).

Figure S29 ¹H–¹H COSY spectrum of ascynol M (15).

Figure S31. ESIMS spectrum of ascynol M (15).

Figure S32. HRESIMS spectrum of ascynol M (15).

Figure S25. ¹H (in CDCl₃) spectrum of ascynol N (17).

Figure S26. ¹³C (in CDCl₃) spectrum of ascynol N (17).

Figure S29 ¹H–¹H COSY spectrum of ascynol N (17).

Figure S31. ESIMS spectrum of ascynol N (17).

-

Sample Typ Instrument Acq Method IRM Calibra Comment	me Nam I Ition 1	e Status	RxI-77.d Sample Instrument 1 SIBU.m Success	Sample Nam Position User Name Acquired Tim DA Method	e Rx6-77 P1-A3 e 1/18/2017 9:04:56 AM ESI+.m
Sample Gro Acquisition Version	up SW	6200 si Q-TOF	eries TOF/6500 series B.05.01 (B5125.2)	Info.	
User Spec	tra				
Fragmer	ntor Ve	oltage	Collision Energy	Ionization Mode	
1.5 1.25 1.25 1.0.75 0.5 0.25 0 534.	4	534.6 53	94.8 535 50 Counts	35.2 535.4 535.6 .vs. Mass-to-Charge (m/z)	sika sida sika
m /m	1.4	Tabund	I Ferrenda	17	1
m/z 309.17	Z	Abund 18080.01	Formula	Ion	
m/z 309.17 513.3586	2 1 1	Abund 18080.01 290113.31	Formula	Ion	
m/z 309.17 513.3586 514.3619	2 1 1 1	Abund 18080.01 290113.31 98509.68	Formula	Ion	
m/z 309.17 513.3586 514.3619 535.3404	2 1 1 1 1	Abund 18060.01 290113.31 98509.68 189078.36	C32 H48 O5	Ion (M+Na)+	
m/z 309.17 513.3586 514.3619 535.3404 536.3436	2 1 1 1 1 1	Abund 18060.01 290113.31 98509.68 189078.36 62370.7	Formula C32 H48 05 C32 H48 05	(M+Na)+ (M+Na)+	
m/z 309.17 513.3586 514.3619 535.3404 536.3436 551.3147	2 1 1 1 1 1 1	Abund 18060.01 290113.31 98509.68 189078.36 62370.7 239817.58	Formula C32 H48 05 C32 H48 05	(M+Na)+ (M+Na)+	
m/z 309.17 513.3586 514.3619 535.3404 536.3436 551.3147 552.3178	2 1 1 1 1 1 1 1 1 1	Abund 18080.01 290113.31 98509.68 189078.36 62370.7 239817.58 76723.95	Formula C32 H48 05 C32 H48 05	[Ion (M+Na)+ (M+Na)+	
m/2 309.17 513.3586 514.3619 535.3404 536.3436 551.3147 552.3178 553.3166 Formula Cal	2 1 1 1 1 1 1 1 1 1 1 0 1	Abund 18080.01 290113.31 98509.68 189078.36 62370.7 239817.58 76723.95 24866.9 or Element L	Formula C32 H48 05 C32 H48 05	(M+Na)+ (M+Na)+	
m/z 309.17 513.3586 514.3619 535.3404 536.3436 551.3147 552.3178 553.3166 Formula Cal Element	2 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1	Abund 18080.01 290113.31 98509.68 189078.36 62370.7 239817.58 76723.95 24866.9 or Element L Max	C32 H48 05 C32 H48 05 C32 H48 05	[00 (M+Na)+ (M+Na)+	
m/z 309.17 513.3586 514.3619 535.3404 536.3436 551.3147 552.3178 553.3166 Formula Cal Element C	2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0	Abund 18080.01 290113.31 98509.68 189078.36 62370.7 239817.58 76723.95 24866.9 or Element L Max 3	C32 H48 05 C32 H48 05 C32 H48 05	(M+Na)+ (M+Na)+	
m/z 309.17 513.3586 514.3619 535.3404 551.3147 552.3178 553.3166 Formula Cal Element C H	2 1 1 1 1 1 1 1 1 1 1 0 0 Min	Abund 18080.01 290113.31 98509.68 189078.36 62370.7 239817.58 76723.95 24866.9 or Element L Max 3 60 0 120	C32 H48 O5 C32 H48 O5 C32 H48 O5	[0n (M+Na)+ (M+Na)+	
m/z 309.17 513.3586 514.3619 535.3404 536.3436 551.3147 552.3178 553.3166 Formula Cal Element C H O	2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0	Abund 18080.01 290113.31 98509.68 189078.36 62370.7 239817.58 76723.95 24866.9 or Element L Max 3 60 0 120 0 30	Formula C32 H48 O5 C32 H48 O5 C32 H48 O5	Ion (M+Na)+ (M+Na)+	
m/z 309.17 513.3586 514.3619 535.3404 536.3436 551.3147 552.3178 553.3166 Formula Cal Formula Cal Formula Cal	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Abund 18080.01 290113.31 98509.68 189078.36 62370.7 239817.58 76723.95 24866.9 or Element L Max 3 60 0 120 0 30 or Results Calculated	Formula C32 H48 O5 C32 H48 O5 C32 H48 O5 Imits mits Calculate	On (M+Na)+ (M+Na)+	15HF (mba) 10HF (mm) 10HF
m/2 309.17 513.3586 514.3619 535.3404 536.3436 551.3147 552.3178 553.3166 Formula Cal Formula Cal Formula Cal Formula Cal Correspondences Cal Cal Cal Cal Cal Cal Correspondences Cal Cal Cal Cal Cal Cal Cal Cal Cal Cal	2 1 1 1 1 1 1 1 1 1 1 1 Culab	Abund 18080.01 290113.31 98509.68 189078.36 62370.7 239817.58 76723.95 24866.9 76723.95 24866.9 0 120 0 120 0 30 0 0 30 0 r Results Calculated	Formula C32 H48 O5 C32 H48 O5 C32 H48 O5 Imite Imite S12,3902	Ion (M+Na)+ (M+Na)+ (M+Na)+ 535.3394 535.3	Diff. (mDa) Diff. (ppm) DBE 3404 -0.9 -1.7 9.0000

Figure S32. HRESIMS spectrum of ascynol N (17).

Figure S25. ¹H (in CDCl₃) spectrum of ascynol O (18).

Figure S26. ¹³C (in CDCl₃) spectrum of ascynol O (18).

Figure S27. HSQC spectrum of ascynol O (18).

Figure S28. HMBC spectrum of ascynol O (18).

Figure S29 ¹H–¹H COSY spectrum of ascynol O (18).

Figure S31. ESIMS spectrum of ascynol O (18).

Figure S32. HRESIMS spectrum of ascynol O (18).

Figure S25. ¹H (in CDCl₃) spectrum of ascynol P (20).

Figure S26. ¹³C (in CDCl₃) spectrum of ascynol P (20).

Figure S27. HSQC spectrum of ascynol P (20).

Figure S28. HMBC spectrum of ascynol P (20).

Figure S29 ¹H–¹H COSY spectrum of ascynol P (**20**).

Figure S31. ESIMS spectrum of ascynol P (20).

Figure S32. HRESIMS spectrum of ascynol P (20).

Figure S25. ¹H (in CDCl₃) spectrum of ascynol Q (21).

Figure S26. ¹³C (in CDCl₃) spectrum of ascynol Q (21).

Figure S27. HSQC spectrum of ascynol Q (21).

Figure S29 ¹H–¹H COSY spectrum of ascynol Q (21).

Qualitative Analysis Report

Figure S31. ESIMS spectrum of ascynol Q (21).

SI-7. Computational data of compound 3

4.1 Methods for NMR and ECD calculation

Conformational searching of **3a** and **3b** were performed with the Crest code (version 2.10) using the default iMTD-GC procedure [1]. The first 50 conformers of **3a** and **3b**, respectively, were subjected to DFT geometry optimizations at B3LYP-D3BJ/6-31G(d) level of theory in the gas phase. Frequency analyses of all optimized conformers were undertaken at the same level of theory to ensure that no imaginary frequency exists. More accurate energies of optimized conformers were evaluated at M06-2X-D3/6-311+G(2d,p) level of theory in the gas phase, and were then added to "thermal correction to Gibbs free energies" obtained by frequency analysis to get the Gibbs free energy of each conformer. Those two B3LYP geometries with RMSD below 0.15 Å and energy difference below 0.15 kcal were regarded as duplicate conformers, and the one with higher energy was removed. Subsequently, Room-temperature (298.15 K) equilibrium populations were calculated according to Boltzmann distribution law:

$$p_i = \frac{n_i}{\sum_j n_j} = \frac{e^{-\Delta G_i/RT}}{\sum_j e^{-\Delta G_j/RT}}$$

Where P_i is the population of the i^{th} conformer; n_i the number of molecules in i^{th} conformer; ΔG is the relative Gibbs free energy (kcal/mol); T is room temperature (298.15 K); R is the ideal gas constant (0.0019858995).

NMR shielding tensors of all dereplicated conformers were calculated with the GIAO method at mPW1PW91-SCRF/6-31+G(d,p) level (Chloroform, IEFPCM solvent model). For each possible candidate, the parameters *a* and *b* of the linear regression $\delta_{cal} = a\delta_{exp} + b$; the correlation coefficient, R^2 ; the mean absolute error (*MAE*) defined as $\Sigma n |\delta_{cal} - \delta_{exp}|/n$; the corrected mean absolute error, *CMAE*, defined as $\Sigma n |\delta_{corr} - \delta_{exp}|/n$, where $\delta_{corr} = (\delta_{cal} - b)/a$, were calculated. Then, DP4+ probability analysis based on random conformational amplitudes [2] were undertaken using the calculated NMR shielding tensors and scripts provided by Sarotti, *et al*, and DP4+ probabilities of each structural candidates were obtained (Figures S33).

For ECD calculation, those conformers with a population over 2% were subjected to TDDFT calculations at CAM-B3LYP/6-311+G(d,p) level of theory (MeOH, IEFPCM

solvent model), and 36 excited states were calculated for each conformer. The calculated ECD curves were generated using the Multiwfn software (version 3.8) [3].

The geometry optimization, single-point energy calculation, NMR shielding constant calculation were all completed in Gaussian 09 program [4].

- [1] P. Pracht, F. Bohle, S. Grimme, Automated exploration of the low-energy chemical space with fast quantum chemical methods, *Phys. Chem. Chem. Phys.* 22 (2020) 7169–7192.
- [2] M.M. Zanardi, M.O. Marcarino, A.M. Sarotti, Redefining the impact of Boltzmann analysis in the stereochemical assignment of polar and flexible molecules by NMR calculations, *Org. Lett.* 22 (2020) 52–56.
- [3] T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem. 33 (2012) 580–592.
- [4] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E.P. Jr., F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision E.01; Gaussian, Inc., Wallingford CT: **2010**.

4.2 General results for NMR calculation

Figure S33. Structures of (1*S**,7*S**,8*R**,31*S**)-3 (3a) and (1*S**,7*R**,8*R**,31*S**)-3 (3b).

No	S ()	$\delta_{\it calcd.}$ (ppm)		No	δ (nnm)	δ _{calcd.} (ppm)	
190.	<i>o_{exptl.} (ppm)</i>	3 a	3b	110.	<i>o_{exptl.} (ppm)</i>	3a	3b
1	55.3	56.7	56.5	27	17.8	18.6	18.8
5	209.2	208.6	207.7	28	18.0	17.3	18.5
6	45.9	45.2	44.0	29	42.3	43.7	42.5
7	45.8	48.3	47.8	30	27.1	28.3	28.2
8	49.2	51.6	51.0	31	51.5	51.5	53.0
10	177.2	175.6	174.8	32	83.0	82.3	82.1
22	30.6	31.3	31.6	33	30.5	31.0	30.1
23	30.1	31.3	33.7	34	23.5	23.9	22.8
24	123.5	123.8	124.6	R ²	-	0.9997	0.9994
25	132.7	133.9	133.9	MAE	-	1.0	1.3
26	25.7	26.7	27.0	CMAE	-	0.8	1.1

Table S9. Experimental and calculated ¹³C NMR chemical shifts of **3a** and **3b**.

Table S10. Experimental and calculated ¹H NMR chemical shifts of 3a and 3b.

No	\$ (mmm)	$\delta_{\it calcd.}$ (ppm)		No	\$ (mmm)	δ _{calcd.} (ppm)	
190.	<i>O_{exptl.}</i> (ppm)	3 a	3b	INO.	<i>O_{exptl.}</i> (ppm)	3a	3b
1	2.84	3.07	2.94	29a	1.62	1.44	1.36
6a	2.76	2.89	2.21	29b	1.47	1.36	1.21
6b	2.33	2.23	2.20	30a	1.67	1.70	1.60
7	2.12	2.26	2.10	30b	1.58	1.57	1.45
22	2.04	0.82	1.98	31	2.58	2.59	2.52
23a	1.93	1.99	2.24	33	1.28	1.13	1.15
23b	1.83	1.79	1.93	34	1.3	1.21	1.19
24	4.86	1.61	5.32				
26	1.57	5.20	1.54	R ²	-	0.9911	0.9622
27	1.54	1.54	1.56	MAE	-	0.12	0.16
28	0.92	1.58	0.81	CMAE	-	0.07	0.11

Figure S34. Linear regression analysis between the experimental and calculated NMR chemical shifts of 3a.

Figure S35. Linear regression analysis between the experimental and calculated NMR chemical shifts of **3b**.

DP4/DP4	DP4/DP4+ RANDOM CONFORMATIONAL AMPLITUDE CALCULATOR by Zanardi, Marcarino & Sarotti Org. Lett. 2020, 22, 52-56										
Select DP4	or DP4+ analysis (1 for D	P4, 2 for DP4+):	2								
You have cl Warning: th	nosen DP4+ analysis (see ne DP4+ parameters were	Grimblat, Zanaro e taken at the PC	di & Sarotti, . M/mPW1PW	JOC 20 /91/6-	- 015, 80, 12526) -31+G**//B3LYP/6-31G* level						
Ensemble R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 Choose the pum	Warning: the DP4+ parameters were taken at the PCM/mPW1PW91/6-31+G**//B3LYP/6-31G* levelEnsembleSubset of conformers generated by random selection ofE window (kcal/mol)R1Up to 100 conformations of the full set3R2Up to 100 conformations of the full set6R3Up to 100 conformations of the full set9R425% of the full set conformations3R525% of the full set conformations6R625% of the full set conformations9R750% of the full set conformations6R950% of the full set conformations9R1075% of the full set conformations3R1175% of the full set conformations9R13Full set of conformations9R14Full set of conformations3R14Full set of conformations9										
Average	ed Probabilities with the	R0 strategy after	10000 iterati	ons	-						
Isomer N°	Averaged Probability	N ^o times ra	nked #1	Nº ti	- mes ranked #2						
1 (3a) 2 (3b)	0.818 0.182	0.820 0.180	0.180 0.820								
The most lil	kely isomer is Nº 1, with	an averaged prot	ability of 81	.76%							
Normal termination. Thanks for using our method For further inquiries, please contact Dr. A. Sarotti at sarotti@iquir-conicet.gov.ar Cite this: Org. Lett. 2020, 22, 1, 52-56											

Figure S36. DP4+ analysis of 3a and 3b based on random conformational amplitudes.

Figure S37. Experimental ECD spectrum of 3 (black). Calculated ECD spectra of (1*S*,7*S*,8*R*,31*S*)-

3 at CAM-B3LYP-SCRF/6-311+G(d,p) level of theory (red, shift = 4 nm).

4.3 Computational data of 3a

Table S11. Conformational analysis of the B3LYP-D3BJ/6-31G(d) optimized conformers of **3a** in the gas phase (T=298.15 K)

Conformer	E (Hartree) ^a	C (Hartree) ^{b}	G (kcal/mol) ^c	$\Delta G (\text{kcal/mol})^d$	Population ^e
3 a-1	-967.654783	0.399582	-606952.638446	0.0	56.43%
3a-2	-967.653598	0.399411	-606952.002441	0.636005	19.28%
3a-3	-967.654537	0.400751	-606951.750408	0.888038	12.59%
3a-4	-967.652671	0.398955	-606951.70676	0.931686	11.70%

^{*a*}Electronic energy obtained at M06-2X-D3/6-311+G(2d,p) level of theory; ^{*b*}Thermal correction to Gibbs free energy obtained at B3LYP-D3BJ/6-31G(d) level of theory; ^{*c*}Gibbs free energy (E + C); ^{*d*}The relative Gibbs free energy; ^{*e*}The Boltzmann distribution of each conformer.

С	1.567789	0.219020	-0.190890	Н	3.039772	-2.635893	-1.302781
С	-2.126595	1.809504	-0.418558	Н	0.662805	-3.057413	-0.173266
С	-1.374286	0.846207	0.488113	Н	0.649606	-2.048341	-1.625923
С	-0.895651	-0.420591	-0.244982	Н	-1.992086	0.596570	1.358158
С	0.508861	-0.881770	0.212708	Н	-0.522177	1.414736	0.889259
С	-3.174166	2.679844	0.243689	Н	-2.104601	-1.836711	0.881430
С	-1.976665	-1.522698	-0.158904	Н	-1.631289	-2.405910	-0.712482
С	-3.278444	-1.054739	-0.745775	Н	-3.240911	-0.850159	-1.816032
С	-4.435133	-0.805327	-0.113746	Н	-3.557021	3.416724	-0.464957
С	-4.671533	-0.997785	1.362846	Н	-3.997237	2.048660	0.599055
С	-5.630359	-0.286556	-0.874532	Н	-2.754406	3.185738	1.121805
С	0.536462	-1.214175	1.715745	Н	-6.484047	-0.973185	-0.788630
С	1.015198	-2.109277	-0.591795	Н	-5.967232	0.678557	-0.470193
С	2.541266	-1.979650	-0.582478	Н	-5.406821	-0.147676	-1.936300
С	2.749502	-0.487762	-0.890212	Н	-3.800119	-1.384793	1.894921
С	4.005606	0.227636	-0.329753	Н	-4.959101	-0.048217	1.836031
С	4.433435	1.374706	-1.247077	Н	-5.506538	-1.690840	1.533696
С	5.184190	-0.674156	0.009745	Н	1.539343	-1.510041	2.042815
0	-1.866361	1.909655	-1.605227	Н	0.238375	-0.361100	2.327373
0	1.656899	1.623973	1.818257	Н	-0.136512	-2.050633	1.929153
0	3.558019	0.834387	0.925914	Н	4.911354	-1.416621	0.763395
С	2.210186	0.975206	0.960435	Н	5.528816	-1.198342	-0.887873
Н	1.088700	0.961278	-0.837697	Н	6.014403	-0.079030	0.402235
Н	2.708267	-0.344271	-1.974720	Н	4.845248	0.980796	-2.182620
Н	-0.799136	-0.146726	-1.303439	Н	3.580847	2.017277	-1.492791
Н	2.928912	-2.232385	0.409952	Н	5.196349	1.988014	-0.758614

Table S12. Atomic coordinates (Å) of **3a-1** obtained at the B3LYP-D3BJ/6-31G(d) level of theory in the gas phase.

С	1.394671	0.068607	-0.342035	Н	2.602708	-2.970940	-1.221188
С	-1.051276	2.198524	-0.500086	Н	0.187463	-3.094653	-0.099208
С	-1.513963	0.997527	0.309720	Н	0.300423	-2.162927	-1.598591
С	-1.147283	-0.384740	-0.256319	Н	-2.610192	1.087818	0.340319
С	0.257878	-0.893752	0.172481	Н	-1.175893	1.128147	1.341786
С	-1.147359	3.536685	0.199080	Н	-2.409437	-1.450428	1.165493
С	-2.266844	-1.403598	0.081542	Н	-1.942762	-2.404547	-0.230647
С	-3.555601	-1.082260	-0.620293	Н	-3.505541	-1.159143	-1.707854
С	-4.722663	-0.692448	-0.085705	Н	-0.322709	3.591265	0.919389
С	-4.976556	-0.513704	1.390004	Н	-1.054523	4.348518	-0.525159
С	-5.914203	-0.398152	-0.963133	Н	-2.083995	3.631931	0.760091
С	0.343963	-1.126981	1.693562	Н	-6.763211	-1.047157	-0.706795
С	0.643032	-2.210246	-0.555904	Н	-6.260902	0.635345	-0.824487
С	2.175601	-2.251858	-0.515017	Н	-5.684637	-0.540363	-2.023458
С	2.570103	-0.799467	-0.843710	Н	-4.097569	-0.709833	2.007376
С	3.830542	-0.168452	-0.183295	Н	-5.313470	0.510497	1.601044
С	4.574452	0.720551	-1.180546	Н	-5.782280	-1.179862	1.727755
С	4.781178	-1.139674	0.503857	Н	0.107840	-0.227212	2.264537
0	-0.642410	2.105023	-1.646282	Н	-0.343848	-1.921272	1.999127
0	1.424300	1.796053	1.395055	Н	1.351730	-1.434116	1.991846
0	3.315845	0.719982	0.861352	Н	4.285317	-1.667453	1.322054
С	1.992776	0.968263	0.717828	Н	5.155541	-1.878446	-0.212544
Н	0.990954	0.702320	-1.133025	Н	5.635653	-0.597497	0.920143
Н	2.668890	-0.709053	-1.929693	Н	5.037290	0.108587	-1.962650
Н	-1.119184	-0.277917	-1.348875	Н	3.885174	1.425015	-1.658722
Н	2.511839	-2.547844	0.482823	Н	5.356759	1.293814	-0.674086

Table S13. Atomic coordinates (Å) of 3a-2 obtained at the B3LYP-D3BJ/6-31G(d) level of theory in the gas phase.

-							
С	-1.415743	0.185087	0.156361	Н	-2.728656	-2.932710	0.491165
С	2.244467	1.742743	0.311976	Н	-0.600465	-2.861230	-1.114721
С	1.375869	1.114517	-0.768980	Н	-0.309204	-2.390499	0.565143
С	0.999492	-0.345050	-0.439688	Н	1.864283	1.194391	-1.746292
С	-0.473910	-0.676424	-0.774333	Н	0.476936	1.744748	-0.833283
С	3.325300	2.699209	-0.143651	Н	1.877796	-1.369432	-2.147058
С	2.021776	-1.326019	-1.061498	Н	1.820620	-2.335972	-0.683173
С	3.452726	-0.930420	-0.778105	Н	4.003990	-0.497842	-1.612805
С	4.078895	-1.006160	0.405429	Н	3.807455	3.164656	0.718174
С	3.436274	-1.548972	1.654945	Н	4.069697	2.150678	-0.732585
С	5.479812	-0.481229	0.582814	Н	2.901756	3.471559	-0.797627
С	-0.779420	-0.485475	-2.270829	Н	6.155165	-1.262395	0.957190
С	-0.854337	-2.120270	-0.349888	Н	5.892606	-0.091892	-0.353405
С	-2.354238	-2.056259	-0.047158	Н	5.494684	0.328322	1.325984
С	-2.472787	-0.758959	0.770469	Н	4.141883	-2.170523	2.220192
С	-3.791079	0.054728	0.706642	Н	3.130218	-0.720731	2.307734
С	-4.025643	0.811407	2.015529	Н	2.547735	-2.149956	1.443260
С	-5.030799	-0.725912	0.292821	Н	-0.565475	0.531684	-2.603600
0	2.041266	1.521491	1.494994	Н	-0.185046	-1.181455	-2.870861
0	-1.822430	2.179530	-1.212679	Н	-1.834207	-0.680769	-2.493134
0	-3.555938	1.062682	-0.328891	Н	-4.912709	-1.159211	-0.703064
С	-2.231723	1.259228	-0.543056	Н	-5.221336	-1.535417	1.005284
Н	-0.809084	0.683557	0.919734	Н	-5.904402	-0.067120	0.276621
Н	-2.240336	-0.982635	1.816602	Н	-4.848012	1.523915	1.901653
Н	1.084196	-0.439662	0.648267	Н	-4.276601	0.111287	2.819835
Н	-2.917539	-1.985693	-0.983785	Н	-3.128706	1.366090	2.312354

Table S14. Atomic coordinates (Å) of **3a-3** obtained at the B3LYP-D3BJ/6-31G(d) level of theory in the gas phase.

С	1.219203	0.035821	-0.285008	Н	1.961457	-3.239105	-0.698870
С	-1.039104	2.359543	-0.449184	Н	-0.155451	-2.841156	0.876704
С	-1.399893	1.425578	0.696872	Н	-0.289741	-2.238884	-0.781910
С	-1.270646	-0.079921	0.407180	Н	-2.451156	1.660233	0.919658
С	0.153975	-0.656419	0.645941	Н	-0.835414	1.731455	1.582318
С	-0.896953	3.821173	-0.085150	Н	-2.235098	-0.695669	2.260535
С	-2.356180	-0.869121	1.184888	Н	-2.197180	-1.941513	1.029772
С	-3.763936	-0.495714	0.786398	Н	-4.288241	0.192495	1.448971
С	-4.412021	-0.907365	-0.312830	Н	-1.683979	4.142731	0.606464
С	-3.822954	-1.852457	-1.328936	Н	0.064461	3.941204	0.427486
С	-5.808909	-0.433025	-0.622016	Н	-0.909630	4.436945	-0.986785
С	0.563042	-0.588244	2.130129	Н	-5.844422	0.079861	-1.593231
С	0.263543	-2.127278	0.160531	Н	-6.507550	-1.278511	-0.691237
С	1.759950	-2.354139	-0.087042	Н	-6.182993	0.257098	0.140526
С	2.202087	-1.049587	-0.778629	Н	-3.675144	-1.342419	-2.290682
С	3.616448	-0.460213	-0.492170	Н	-2.859626	-2.264449	-1.019878
С	4.255351	0.063810	-1.778247	Н	-4.506120	-2.690741	-1.520794
С	4.574515	-1.367898	0.268992	Н	0.520855	0.429768	2.522677
0	-0.892271	1.970701	-1.596556	Н	-0.088804	-1.221107	2.739846
0	1.725722	2.093241	0.944815	Н	1.589875	-0.939271	2.276657
0	3.385864	0.707435	0.361688	Н	4.183630	-1.614176	1.259527
С	2.083198	1.072385	0.399554	Н	4.738429	-2.299007	-0.283415
Н	0.701283	0.521653	-1.113160	Н	5.539198	-0.868628	0.401192
Н	2.099929	-1.183604	-1.859660	Н	4.506451	-0.769287	-2.444223
Н	-1.482731	-0.207022	-0.661087	Н	3.565228	0.730153	-2.306961
Н	2.274133	-2.503251	0.866260	Н	5.169521	0.621614	-1.553913

Table S15. Atomic coordinates (Å) of 3a-4 obtained at the B3LYP-D3BJ/6-31G(d) level of theory in the gas phase.

Num ^a	<i>Transition</i> ^b	CI-coeff ^b	$\Delta E \ (eV)^d$	λ (nm) ^e	ſ	R_{vel}^{g}	$R_{len}{}^h$
	83->86	0.62435					
1	83->87	0.15896	4.6341	267.55	0.0001	-2.3906	-4.1635
	83->89	-0.16429					
	82->87	0.42848			0.0008		1.0106
2	82->88	-0.18555	5 7609	215.22		1 0094	
2	82->90	0.3445	5.7008	213.22	0.0008	1.0964	1.9190
	82->92	0.24503					
3	84->86	0.67388	6.0720	204.19	0.0673	-27.1548	-27.2723
	84->85	0.41098					
	84->87	0.20661					
4	84->88	0.28075	6.3404	195.55	0.0103	1.3511	1.2151
	84->89	-0.33598					
	84->91	0.20517					
	84->85	0.14882					
Ę	84->87	0.22108					28.2197
	84->88	0.2324					
	84->89	0.34577					
	84->91	-0.22025	(7100	104 70	0.2221	27 5902	
5	84->92	-0.18911	6./100	184.78	0.3321	27.5893	
	84->93	-0.20011					
	84->94	-0.15457					
	84->95	-0.2076					
	84->99	0.14909					
	83->85	0.48555					
	83->87	-0.16483					
6	83->88	0.29369	6.9038	179.59	0.0555	1.2054	0.9171
	83->91	-0.17552					
	83->97	0.15318					
	84->87	-0.35055					
	84->90	0.35135					
7	84->91	-0.21959	6 0172	170.24	0.0520	6 9214	6 579
/	84->93	0.21917	0.9172	1/9.24	0.0550	-0.8314	-0.3/8
	84->95	-0.16829					
	84->96	0.21487					
	84->85	-0.20651					
0	84->88	0.33993	7.0240	176.24	0.0718	31.8906	31.7853
8	84->89	0.18117	7.0349	9 176.24			
	84->90	0.20964					

Table S16. Key transitions, oscillator strengths, and rotatory strengths in the ECD spectrum of conformer **3a-1** at the CAM-B3LYP/6-311+G(d,p) level of theory in MeOH with IEFPCM solvent model.

Num ^a	<i>Transition^b</i>	CI-coeff ^b	$\Delta E (eV)^d$	λ (nm) ^e	f	R_{vel}^{g}	R_{len}^{h}
	84->91	0.32903			5	, , , ,	
	84->92	-0.15944	-				
	84->94	0.17847					
	84->96	-0.2068					
	84->85	-0.30593					
0	84->87	0.31693	7 2022	170.10	0 1101	12 (014	14 114
9	84->90	0.33364	7.2033	1/2.12	0.1101	-13.6914	-14.114
	84->94	-0.15757					
	84->87	0.29558					
	84->89	0.16767					
10	84->92	0.16413	7 4617	166 16	0.0714	7 0950	76660
10	84->94	0.37958	/.461/	166.16	0.0714	-7.0839	-/.0009
	84->100	-0.20416					
	84->101	0.21136					
	83->87	0.48684					
11	83->88	0.1855	7 5142	165.00	0.0145	5 2705	4 0262
11	83->89	0.24901	7.3142	105.00	0.0143	5.2705	4.7505
	83->90	0.14166					
	81->87	0.36783					
	81->90	0.2406					
12	81->92	0.14612	7.5378	164.48	0.0852	-64.03	-67.0151
	82->85	0.21101	-				
	83->87	-0.14629					
	84->85	-0.22811					
	84->89	-0.19544					
	84->90	-0.18028					
13	84->93	-0.21844	7.5895	163.36	0.0013	13.4785	12.9162
	84->95	-0.22848					
	84->96	0.2515					
	84->98	0.19026					
	84->85	-0.14593					
	84->88	0.15348					
	84->93	-0.15791					
14	84->95	0.44171	7 6198	162 71	0.0066	5 8335	6.0802
11	84->96	0.2187	7.0170	102.71	0.0000	5.0555	0.0002
	84->98	0.14969					
	84->99	-0.14459					
	84->101	-0.18062					
	81->87	-0.20736					
15	82->85	0.36796	7 6440	0 162.20	0 0838	8 8213	7 9083
1.5	82->86	0.25271	,.0110	102.20	0.0050	0.0215	,.,005
	82->89	0.16146					

Num ^a	<i>Transition^b</i>	CI-coeff ^b	$\Delta E \ (eV)^d$	λ (nm) ^e	¢	R_{vel}^{g}	R_{len}^{h}
	82->92	0.14185					
	83->90	-0.14546					
	84->85	-0.146					
	84->88	0.22254					
	84->90	-0.20953					
	84->92	0.17169					
16	84->93	0.27343	7.6819	161.40	0.0078	-4.3511	-4.6483
	84->97	0.29038					
	84->98	-0.25942	-				
	84->99	0.21794					
	84->103	0.15832					
	82->85	0.15271					
	83->86	-0.16954					
17	83->89	-0.27704	7 7402	160.19	0.0216	12 0422	12 2126
1/	83->90	0.33988	7.7402	100.18	0.0210	-12.9433	-13.3120
	83->95	-0.28115					
	83->96	0.18742					
	79->86	-0.22971					
18	80->86	0.48625	7.8202	158.54	0.0140	10.0755	10.2101
	80->87	0.15168					
	84->89	0.14657					
	84->91	0.16553					
	84->92	0.2809	7.8707				10.7277
19	84->98	0.21336		157.53	0.0205	10.8394	
	84->99	0.16956					
	84->101	-0.14935					
	84->102	0.16794					
	82->86	-0.15153					
	83->85	0.28082					
20	83->87	0.24226	7 9155	156.63	0.0141	-32 6934	-33 7742
20	83->88	-0.26421	7.9155	150.05	0.0141	-52.0754	-33.7742
	83->92	0.20392					
	84->101	0.14519					
	83->85	-0.14378					
	84->94	-0.14507					
21	84->96	-0.1834	7 9360	156.23	0.0064	7 9817	7 4315
<i>2</i> 1	84->97	0.17359	,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	130.23	0.0004	,.,01/	,.TJ1J
	84->100	0.1899					
	84->101	0.19413					
	78->86	0.18203			0.0251		1.1181
22	79->86	0.16264	7.9681	31 155.60		1.068	
	83->88	0.26856					

Num ^a	<i>Transition^b</i>	CI-coeff ^b	$\Delta E \ (eV)^d$	λ (nm) ^e	f	R_{vel}^{g}	R_{len}^{h}
	83->89	-0.16104					
	83->91	0.18857					
	83->92	-0.17411					
23	78->86	0.24664	7.9821	155.33	0.0032	-13.0892	-12.9086
	79->86	0.26496					
	83->85	-0.19322					
	83->89	0.23305					
	83->91	-0.14928					
24	83->91	-0.1686	7.9870	155.23	0.0124	-15.096	-15.2586
	83->92	-0.26936					
	83->93	-0.19503					
	83->95	-0.26662					
	83->96	0.30021					
25	78->87	-0.16537	8.0886	153.28	0.0131	-30.7056	-30.9983
	82->86	0.27416					
	82->87	0.1473					
	84->102	-0.19435					
26	79->86	0.17767	8.0951	153.16	0.0312	-5.932	-5.4421
	82->86	0.29361					
	84->102	0.17022					
27	78->86	0.14546	8.1492	152.14	0.0082	26.3852	27.3169
	80->91	0.15179					
	80->95	0.15294					
28	79->87	-0.14309	8.1587	151.97	0.0071	14.5622	14.3009
	81->85	0.27323					
	84->90	0.17286					
	84->92	0.2308					
	84->93	-0.20383					
	84->102	-0.14934					
29	79->87	0.18703	8.1619	151.91	0.0021	-3.442	-2.9857
	81->85	0.35838					
	81->88	-0.22983					
	81->89	0.17482					
30	78->87	0.23944	8.2188	150.86	0.0015	1.5776	1.6147
	81->85	-0.15602					
	82->86	0.20862					
	82->87	-0.1992					
	82->90	0.14309					
31	84->88	0.1492	8.2349	150.56	0.0041	-1.2884	-1.1274
	84->90	-0.15513					
	84->92	0.29763					
	84->93	0.22179					
Num ^a	<i>Transition^b</i>	CI-coeff ^b	$\Delta E \ (eV)^d$	λ (nm) ^e	f	R_{vel}^{g}	$R_{len}{}^h$
------------------	-------------------------------	-----------------------	---------------------	---------------------	--------	---------------	---------------
	84->97	-0.20934					
	84->99	-0.17477					
	84->102	-0.16372					
	84->103	-0.22328					
	84->104	0.17581					
	82->87	0.1539					
	84->89	0.15709					
22	84->91	0.23416	<u> 2041</u>	149.48	0.0268	0.0405	1 1006
52	84->94	-0.21184	0.2741		0.0208	0.9495	1.4000
	84->104	0.17249					
	84->106	-0.18552					
	78->87	0.1899					
22	82->85	-0.16441	8 2021	140.24	0.0210	12 6731	12.4648
55	82->87	0.18411	0.3021	149.54	0.0219	12.0751	
	84->91	-0.15442					
	76->87	0.19139					
24	77->87	-0.22446	8.3303	148.84	0.0007	11 0424	11 5417
54	80->87	0.23175		140.04	0.0097	11.0121	-11.5+17
	82->90	0.15686					
	84->95	0.17189					
	84->96	-0.16495					
	84->97	-0.18781					
25	84->98	0.22382	9 2 4 5 6	149 56	0.0047	2 0500	2 0/12
55	84->99	0.32797	0.5450	146.30	0.0047	2.0309	2.9415
	84->100	-0.174					
	84->103	-0.16509					
	84->106	-0.17442					
	82->88	0.16619					
	83->88	0.15902					7.6645
36	83->90	-0.18498	8.3663	148.19	0.0208	7.4949	
	83->92	0.20842					
	83->99	0.2386					

^{*a*}Number of the excited states; ^{*b*}Only transitions with contribution over 4.0% were listed; ^{*c*}Configuration-interaction coefficient; ^{*d*}Excitation energy; ^{*e*}Wavelength; ^{*f*}Oscillator strength; ^{*g*}Rotatory strength in velocity form (10⁻⁴⁰ cgs); ^{*h*}Rotatory strength in length form (10⁻⁴⁰ cgs).

4.4 Computational data of 3b

Table S17. Conformational analysis of the B3LYP-D3BJ/6-31G(d) optimized conformers of	of 3b in
the gas phase (T=298.15 K)	

Conformer	E (Hartree) ^a	C (Hartree) ^b	G (kcal/mol) ^c	$\Delta \mathbf{G} \ (\mathbf{kcal/mol})^d$	Population ^e
3b-1	-967.652564	0.3999	-606951.046605	0.0	32.48%
3b-2	-967.650046	0.398224	-606950.518277	0.528327	13.31%
3b-3	-967.650043	0.398236	-606950.509076	0.537529	13.10%
3b-4	-967.650044	0.39824	-606950.507032	0.539573	13.06%
3b-5	-967.651049	0.399474	-606950.363061	0.683543	10.24%
3b-6	-967.65173	0.400249	-606950.304402	0.742203	9.27%
3b-7	-967.651526	0.400124	-606950.254769	0.791835	8.53%

^{*a*}Electronic energy obtained at M06-2X-D3/6-311+G(2d,p) level of theory; ^{*b*}Thermal correction to Gibbs free energy obtained at B3LYP-D3BJ/6-31G(d) level of theory; ^{*c*}Gibbs free energy (E + C); ^{*d*}The relative Gibbs free energy; ^{*e*}The Boltzmann distribution of each conformer.

С	1.605357	-0.229326	0.313897	Н	3.130442	2.785641	-0.045625
С	-2.970921	1.803632	0.343055	Н	0.798802	2.638221	-1.315360
С	-1.880949	1.361711	-0.631994	Н	0.715342	2.478921	0.444728
С	-0.849381	0.417514	0.010469	Н	-1.402076	2.292826	-0.965166
С	0.573724	0.556627	-0.586157	Н	-2.334589	0.915167	-1.523976
С	-4.346934	2.039191	-0.244220	Н	-0.627567	-1.712113	0.387065
С	-1.384351	-1.033637	-0.026042	Н	-1.517023	-1.342362	-1.066476
С	-2.666222	-1.175017	0.743413	Н	-2.585999	-0.936158	1.804126
С	-3.881091	-1.509769	0.282399	Н	-4.287933	2.720051	-1.102734
С	-4.195252	-1.858302	-1.150716	Н	-4.750958	1.089812	-0.613594
С	-5.068431	-1.562955	1.211612	Н	-5.014557	2.453654	0.513548
С	0.615229	0.126238	-2.064015	Н	-5.515855	-2.566473	1.227034
С	1.105723	2.013150	-0.470268	Н	-4.794691	-1.293250	2.235762
С	2.626908	1.869568	-0.369892	Н	-5.859468	-0.875520	0.879624
С	2.788446	0.712260	0.627443	Н	-3.328460	-1.796916	-1.811759
С	4.037043	-0.199526	0.521118	Н	-4.598208	-2.877939	-1.219346
С	4.403707	-0.781526	1.887963	Н	-4.974140	-1.193764	-1.551349
С	5.252493	0.421099	-0.154055	Н	0.371005	-0.928382	-2.194240
0	-2.729025	2.007803	1.518582	Н	-0.092304	0.725728	-2.647032
0	1.707048	-2.414933	-0.797280	Н	1.610283	0.281409	-2.495759
0	3.606843	-1.319212	-0.316077	Н	6.078029	-0.296736	-0.179687
С	2.254499	-1.447029	-0.326847	Н	5.028402	0.717959	-1.181266
Н	1.105188	-0.574742	1.224048	Н	5.580948	1.305972	0.401235
Н	2.718422	1.111478	1.644416	Н	5.159445	-1.564806	1.777580
Н	-0.775125	0.725947	1.061707	Н	4.802764	0.001725	2.541700
Н	3.038090	1.601012	-1.349021	Н	3.525290	-1.219053	2.375036

Table S18. Atomic coordinates (Å) of **3b-1** obtained at the B3LYP-D3BJ/6-31G(d) level of theory in the gas phase.

С	1.420328	-0.409215	0.290169	Н	2.937746	2.625487	0.078192
С	-2.145118	2.549616	0.367118	Н	0.562263	2.558299	-1.123667
С	-2.072457	1.263608	-0.443781	Н	0.547230	2.267577	0.620949
С	-1.049269	0.227637	0.046631	Н	-1.945873	1.505624	-1.505701
С	0.373418	0.429066	-0.544310	Н	-3.080945	0.828961	-0.363596
С	-2.811051	3.727544	-0.318988	Н	-0.782319	-1.928397	-0.004908
С	-1.586285	-1.205964	-0.193708	Н	-1.844271	-1.325291	-1.249937
С	-2.761701	-1.516728	0.686701	Н	-2.538246	-1.514279	1.755240
С	-4.030687	-1.763862	0.327372	Н	-2.154703	4.100722	-1.116085
С	-4.530503	-1.803308	-1.095182	Н	-3.751054	3.425945	-0.795858
С	-5.087624	-2.047764	1.366078	Н	-2.993762	4.528382	0.400005
С	0.416247	0.091060	-2.046704	Н	-4.681748	-2.009807	2.381508
С	0.903628	1.875736	-0.336679	Н	-5.911837	-1.323814	1.299925
С	2.426629	1.729463	-0.287619	Н	-5.533939	-3.040434	1.213583
С	2.602947	0.520189	0.644237	Н	-5.359371	-1.095306	-1.233397
С	3.853665	-0.377644	0.478501	Н	-3.759254	-1.566887	-1.831068
С	4.227857	-1.041263	1.805492	Н	-4.930433	-2.797753	-1.336298
С	5.063405	0.288277	-0.162379	Н	0.173919	-0.953798	-2.240795
0	-1.726846	2.632275	1.507893	Н	-0.287254	0.721825	-2.600607
0	1.528374	-2.524091	-0.953908	Н	1.412178	0.274520	-2.463743
0	3.423387	-1.445492	-0.424339	Н	5.888278	-0.426041	-0.245489
С	2.072259	-1.581003	-0.430656	Н	4.829798	0.656784	-1.163931
Н	0.933280	-0.814817	1.182628	Н	5.397550	1.132141	0.450444
Н	2.538975	0.864917	1.681269	Н	4.988923	-1.810670	1.645167
Н	-0.963379	0.379778	1.130487	Н	4.622130	-0.297298	2.506235
Н	2.819263	1.513829	-1.287097	Н	3.353397	-1.514404	2.265623

Table S19. Atomic coordinates (Å) of **3b-2** obtained at the B3LYP-D3BJ/6-31G(d) level of theory in the gas phase.

С	1.420217	-0.409323	0.290377	Н	2.937753	2.625404	0.079439
С	-2.144822	2.549875	0.367087	Н	0.562154	2.558787	-1.122256
С	-2.072614	1.263667	-0.443522	Н	0.547300	2.267289	0.622215
С	-1.049398	0.227676	0.046832	Н	-1.946391	1.505300	-1.505578
С	0.373370	0.429312	-0.543850	Н	-3.081089	0.829091	-0.362779
С	-2.809460	3.728200	-0.319597	Н	-0.782468	-1.928390	-0.005542
С	-1.586425	-1.205847	-0.193937	Н	-1.844535	-1.324818	-1.250186
С	-2.761759	-1.516910	0.686506	Н	-2.538178	-1.514819	1.755024
С	-4.030772	-1.763965	0.327213	Н	-2.152375	4.100742	-1.116388
С	-4.530694	-1.803056	-1.095317	Н	-3.749435	3.427200	-0.796919
С	-5.087623	-2.048142	1.365948	Н	-2.991984	4.529311	0.399149
С	0.416351	0.091870	-2.046368	Н	-5.911201	-1.323360	1.300912
С	0.903606	1.875857	-0.335616	Н	-5.534885	-3.040233	1.212458
С	2.426618	1.729552	-0.286776	Н	-4.681367	-2.011719	2.381287
С	2.603012	0.519851	0.644530	Н	-5.360140	-1.095659	-1.233108
С	3.853632	-0.378059	0.478219	Н	-3.759677	-1.565600	-1.831132
С	4.228106	-1.042028	1.804955	Н	-4.929794	-2.797713	-1.336965
С	5.063282	0.287837	-0.162863	Н	0.173601	-0.952819	-2.240856
0	-1.727167	2.632344	1.508105	Н	-0.286787	0.723144	-2.600161
0	1.527820	-2.523948	-0.954207	Н	1.412434	0.275042	-2.463175
0	3.423016	-1.445651	-0.424762	Н	4.829381	0.656787	-1.164187
С	2.071913	-1.581027	-0.430826	Н	5.397879	1.131389	0.450149
Н	0.933161	-0.814999	1.182794	Н	5.887942	-0.426662	-0.246564
Н	2.539291	0.864149	1.681718	Н	4.622559	-0.298222	2.505773
Н	-0.963736	0.379594	1.130743	Н	3.353718	-1.515226	2.265174
Н	2.819174	1.514433	-1.286391	Н	4.989109	-1.811429	1.644286

Table S20. Atomic coordinates (Å) of **3b-3** obtained at the B3LYP-D3BJ/6-31G(d) level of theory in the gas phase.

C1.420144-0.4093690.290235H2.9378872.6252280.078856C-2.1445232.5500350.367152H0.5622672.558600-1.122799C-2.0725571.263808-0.443473H0.5473642.2673970.621737C-1.0494060.2277290.046809H-1.9464511.505366-1.505548C0.3733070.429214-0.544045H-3.0810830.829371-0.362534C-2.8087883.728543-0.319583H-0.782554-1.928315-0.005333C-1.586504-1.205790-0.193847H-1.844578-1.324824-1.250093C-2.761871-1.5167090.686585H-2.538366-1.5143821.755119C4.4030865-1.7638390.327273H-2.1515844.100828-1.116399C-4.530695-1.803236-1.095286H-3.7488343.427811-0.796935C0.4161650.091590-2.046527H-5.534336-3.0404141.213152C0.9036431.875779-0.386322H-5.360549-1.096315-1.233096C2.4266451.729347-0.287136H-5.91798-2.1914942.381389C2.4266451.729347-0.287136H-5.960326-1.363081-1.644426C3.853507-0.3780980.478394H-3.759800-1.565367-1.831084C4.								
C -2.144523 2.550035 0.367152 H 0.562267 2.558600 -1.122799 C -2.072557 1.263808 -0.443473 H 0.547364 2.267397 0.621737 C -1.049406 0.227729 0.046809 H -1.946451 1.505366 -1.505548 C 0.373307 0.429214 -0.544045 H -3.081083 0.829371 -0.362534 C -2.808788 3.728543 -0.319583 H -0.782554 -1.928315 -0.005333 C -1.586504 -1.205790 -0.193847 H -1.844578 -1.324824 -1.250093 C -2.61871 -1.516709 0.686585 H -2.538366 -1.514382 1.755119 C -4.630865 -1.763839 0.327273 H -2.151584 4.100828 -1.16399 C -4.530695 -1.803236 -1.095286 H -2.374834 3.427811 -0.796935 C 0.416165 0.091590 -2	С	1.420144	-0.409369	0.290235	Н	2.937887	2.625228	0.078856
C -2.072557 1.263808 -0.443473 H 0.547364 2.267397 0.621737 C -1.049406 0.227729 0.046809 H -1.946451 1.505366 -1.505548 C 0.373307 0.429214 -0.544045 H -3.081083 0.829371 -0.362534 C -2.808788 3.728543 -0.319583 H -0.782554 -1.928315 -0.005333 C -1.586504 -1.205790 -0.193847 H -1.844578 -1.324824 -1.250093 C -2.761871 -1.516709 0.686585 H -2.538366 -1.514382 1.755119 C -4.030865 -1.763839 0.327273 H -2.151584 4.100828 -1.16399 C -4.530695 -1.803236 -1.095286 H -2.391082 4.529726 0.399135 C 0.416165 0.091590 -2.046527 H -5.543736 -3.04044 1.213152 C 0.903643 1.875779 -0	С	-2.144523	2.550035	0.367152	Н	0.562267	2.558600	-1.122799
C -1.049406 0.227729 0.046809 H -1.946451 1.505366 -1.505548 C 0.373307 0.429214 -0.544045 H -3.081083 0.829371 -0.362534 C -2.808788 3.728543 -0.319583 H -0.782554 -1.928315 -0.005333 C -1.586504 -1.205790 -0.193847 H -1.844578 -1.324824 -1.25093 C -2.761871 -1.516709 0.686585 H -2.538366 -1.514382 1.755119 C -4.030865 -1.763839 0.327273 H -2.151584 4.100828 -1.116399 C -4.530695 -1.803236 -1.095286 H -2.991082 4.529726 0.399135 C -5.087758 -2.047910 1.365985 H -2.991082 4.529726 0.399135 C 0.416165 0.091590 -2.046527 H -5.534336 -3.040414 1.213152 C 0.903643 1.875779 -	С	-2.072557	1.263808	-0.443473	Н	0.547364	2.267397	0.621737
C 0.373307 0.429214 -0.544045 H -3.081083 0.829371 -0.362534 C -2.808788 3.728543 -0.319583 H -0.782554 -1.928315 -0.005333 C -1.586504 -1.205790 -0.193847 H -1.844578 -1.324824 -1.250093 C -2.761871 -1.516709 0.686585 H -2.538366 -1.514382 1.755119 C -4.030865 -1.763839 0.327273 H -2.151584 4.100828 -1.116399 C -4.530695 -1.803236 -1.095286 H -2.991082 4.529726 0.399135 C -5.087758 -2.047910 1.365985 H -2.991082 4.529726 0.399135 C 0.416165 0.091590 -2.04527 H -5.534336 -3.040414 1.213152 C 0.416165 0.091590 -2.048713 H -5.911799 -1.323726 1.300202 C 2.426645 1.729347 -	С	-1.049406	0.227729	0.046809	Н	-1.946451	1.505366	-1.505548
C -2.808788 3.728543 -0.319583 H -0.782554 -1.928315 -0.005333 C -1.586504 -1.205790 -0.193847 H -1.844578 -1.324824 -1.250093 C -2.761871 -1.516709 0.686585 H -2.538366 -1.514382 1.755119 C -4.030865 -1.763839 0.327273 H -2.151584 4.100828 -1.116399 C -4.530695 -1.803236 -1.095286 H -3.748834 3.427811 -0.796935 C -5.087758 -2.047910 1.365985 H -2.991082 4.529726 0.399135 C 0.416165 0.091590 -2.046527 H -5.53436 -3.040414 1.213152 C 0.416165 0.091590 -2.046527 H -5.54336 -3.040414 1.213152 C 0.416165 0.091590 -2.046527 H -5.61758 -2.010449 2.381389 C 2.426645 1.729347 -0	С	0.373307	0.429214	-0.544045	Н	-3.081083	0.829371	-0.362534
C -1.586504 -1.205790 -0.193847 H -1.844578 -1.324824 -1.250093 C -2.761871 -1.516709 0.686585 H -2.538366 -1.514382 1.755119 C -4.030865 -1.763839 0.327273 H -2.151584 4.100828 -1.116399 C -4.530695 -1.803236 -1.095286 H -3.748834 3.427811 -0.796935 C -5.087758 -2.047910 1.365985 H -2.991082 4.529726 0.399135 C 0.416165 0.091590 -2.046527 H -5.534336 -3.040414 1.213152 C 0.416165 0.091590 -2.046527 H -5.534336 -3.040414 1.213152 C 0.426645 1.729347 -0.287136 H -5.911799 -1.323726 1.300202 C 2.402896 0.519831 0.644426 H -5.760549 -1.096315 -1.233096 C 3.853507 -0.378098	С	-2.808788	3.728543	-0.319583	Н	-0.782554	-1.928315	-0.005333
C-2.761871-1.5167090.686585H-2.538366-1.5143821.755119C-4.030865-1.7638390.327273H-2.1515844.100828-1.116399C-4.530695-1.803236-1.095286H-3.7488343.427811-0.796935C-5.087758-2.0479101.365985H-2.9910824.5297260.399135C0.4161650.091590-2.046527H-5.534336-3.0404141.213152C0.9036431.875779-0.336032H-4.681758-2.0104492.381389C2.4266451.729347-0.287136H-5.911799-1.3237261.300202C2.6028960.5198310.644426H-5.360549-1.096315-1.233096C3.853507-0.3780980.478394H-3.759800-1.565367-1.831084C4.227718-1.0420631.805207H4.4929241-2.798122-1.336905C5.0632810.287753-0.162473H1.4121680.274916-2.463460O-1.7270092.6323541.508231H0.173608-0.953165-2.240893O1.527875-2.524021-0.954288H-0.2871370.722679-2.600320O3.423030-1.445718-0.424669H4.8295480.656855-1.163781C2.071932-1.581088-0.430892H5.3978751.1312010.450685H0.933	С	-1.586504	-1.205790	-0.193847	Н	-1.844578	-1.324824	-1.250093
C-4.030865-1.7638390.327273H-2.1515844.100828-1.116399C-4.530695-1.803236-1.095286H-3.7488343.427811-0.796935C-5.087758-2.0479101.365985H-2.9910824.5297260.399135C0.4161650.091590-2.046527H-5.534336-3.0404141.213152C0.9036431.875779-0.336032H-4.681758-2.0104492.381389C2.4266451.729347-0.287136H-5.911799-1.3237261.300202C2.6028960.5198310.644426H-5.360549-1.096315-1.233096C3.853507-0.3780980.478394H-3.759800-1.565367-1.831084C4.227718-1.0420631.805207H-4.929241-2.798122-1.336905C5.0632810.287753-0.162473H1.4121680.274916-2.463460O-1.7270092.6323541.508231H0.173608-0.953165-2.240893O1.527875-2.524021-0.954288H-0.2871370.722679-2.600320O3.423030-1.445718-0.424669H4.8295480.656855-1.163781C2.071932-1.581088-0.430892H5.887889-0.426811-0.246147H0.933089-0.8151031.182628H5.887889-0.426811-0.246147H2.39	С	-2.761871	-1.516709	0.686585	Н	-2.538366	-1.514382	1.755119
C-4.530695-1.803236-1.095286H-3.7488343.427811-0.796935C-5.087758-2.0479101.365985H-2.9910824.5297260.399135C0.4161650.091590-2.046527H-5.534336-3.0404141.213152C0.9036431.875779-0.336032H-4.681758-2.0104492.381389C2.4266451.729347-0.287136H-5.911799-1.3237261.300202C2.6028960.5198310.644426H-5.360549-1.096315-1.233096C3.853507-0.3780980.478394H-3.759800-1.565367-1.831084C4.227718-1.0420631.805207H-4.929241-2.798122-1.336905C5.0632810.287753-0.162473H1.4121680.274916-2.463460O-1.7270092.6323541.508231H0.173608-0.953165-2.240893O1.527875-2.524021-0.954288H-0.2871370.722679-2.600320O3.423030-1.445718-0.424669H4.8295480.656855-1.163781C2.071932-1.581088-0.430892H5.3978751.1312010.450685H0.933089-0.8151031.182628H5.887889-0.426811-0.246147H2.5390380.8643291.681542H3.353237-1.5152542.265258H-0.963591	С	-4.030865	-1.763839	0.327273	Н	-2.151584	4.100828	-1.116399
C-5.087758-2.0479101.365985H-2.9910824.5297260.399135C0.4161650.091590-2.046527H-5.534336-3.0404141.213152C0.9036431.875779-0.336032H-4.681758-2.0104492.381389C2.4266451.729347-0.287136H-5.911799-1.3237261.300202C2.6028960.5198310.644426H-5.360549-1.096315-1.233096C3.853507-0.3780980.478394H-3.759800-1.565367-1.831084C4.227718-1.0420631.805207H-4.929241-2.798122-1.36905C5.0632810.287753-0.162473H1.4121680.274916-2.463460O-1.7270092.6323541.508231H0.173608-0.953165-2.240893O1.527875-2.524021-0.954288H-0.2871370.722679-2.600320O3.423030-1.445718-0.424669H4.8295480.656855-1.163781C2.071932-1.581088-0.430892H5.3978751.1312010.450685H0.933089-0.8151031.182628H5.887889-0.426811-0.246147H2.5390380.8643291.681542H3.353237-1.5152542.265258H-0.9635910.3796811.130701H4.988741-1.8114761.644688H2.819177	С	-4.530695	-1.803236	-1.095286	Н	-3.748834	3.427811	-0.796935
C0.4161650.091590-2.046527H-5.534336-3.0404141.213152C0.9036431.875779-0.336032H-4.681758-2.0104492.381389C2.4266451.729347-0.287136H-5.911799-1.3237261.300202C2.6028960.5198310.644426H-5.360549-1.096315-1.233096C3.853507-0.3780980.478394H-3.759800-1.565367-1.831084C4.227718-1.0420631.805207H-4.929241-2.798122-1.336905C5.0632810.287753-0.162473H1.4121680.274916-2.463460O-1.7270092.6323541.508231H0.173608-0.953165-2.240893O1.527875-2.524021-0.954288H-0.2871370.722679-2.600320O3.423030-1.445718-0.424669H4.8295480.656855-1.163781C2.071932-1.581088-0.430892H5.3978751.1312010.450685H0.933089-0.8151031.182628H5.887889-0.426811-0.246147H2.5390380.8643291.681542H3.353237-1.5152542.265258H-0.9635910.3796811.130701H4.988741-1.8114761.644688H2.8191771.513915-1.286698H4.622044-0.2982662.506103	С	-5.087758	-2.047910	1.365985	Н	-2.991082	4.529726	0.399135
C0.9036431.875779-0.336032H-4.681758-2.0104492.381389C2.4266451.729347-0.287136H-5.911799-1.3237261.300202C2.6028960.5198310.644426H-5.360549-1.096315-1.233096C3.853507-0.3780980.478394H-3.759800-1.565367-1.831084C4.227718-1.0420631.805207H-4.929241-2.798122-1.336905C5.0632810.287753-0.162473H1.4121680.274916-2.463460O-1.7270092.6323541.508231H0.173608-0.953165-2.240893O1.527875-2.524021-0.954288H-0.2871370.722679-2.600320O3.423030-1.445718-0.424669H4.8295480.656855-1.163781C2.071932-1.581088-0.430892H5.3978751.1312010.450685H0.933089-0.8151031.182628H5.887889-0.426811-0.246147H2.5390380.8643291.681542H3.353237-1.5152542.265258H-0.9635910.3796811.130701H4.988741-1.8114761.644688H2.8191771.513915-1.286698H4.622044-0.2982662.506103	С	0.416165	0.091590	-2.046527	Н	-5.534336	-3.040414	1.213152
C2.4266451.729347-0.287136H-5.911799-1.3237261.300202C2.6028960.5198310.644426H-5.360549-1.096315-1.233096C3.853507-0.3780980.478394H-3.759800-1.565367-1.831084C4.227718-1.0420631.805207H-4.929241-2.798122-1.336905C5.0632810.287753-0.162473H1.4121680.274916-2.463460O-1.7270092.6323541.508231H0.173608-0.953165-2.240893O1.527875-2.524021-0.954288H-0.2871370.722679-2.600320O3.423030-1.445718-0.424669H4.8295480.656855-1.163781C2.071932-1.581088-0.430892H5.3978751.1312010.450685H0.933089-0.8151031.182628H5.887889-0.426811-0.246147H2.5390380.8643291.681542H3.353237-1.5152542.265258H-0.9635910.3796811.130701H4.988741-1.8114761.644688H2.8191771.513915-1.286698H4.622044-0.2982662.506103	С	0.903643	1.875779	-0.336032	Н	-4.681758	-2.010449	2.381389
C2.6028960.5198310.644426H-5.360549-1.096315-1.233096C3.853507-0.3780980.478394H-3.759800-1.565367-1.831084C4.227718-1.0420631.805207H-4.929241-2.798122-1.336905C5.0632810.287753-0.162473H1.4121680.274916-2.463460O-1.7270092.6323541.508231H0.173608-0.953165-2.240893O1.527875-2.524021-0.954288H-0.2871370.722679-2.600320O3.423030-1.445718-0.424669H4.8295480.656855-1.163781C2.071932-1.581088-0.430892H5.3978751.1312010.450685H0.933089-0.8151031.182628H5.887889-0.426811-0.246147H2.5390380.8643291.681542H3.353237-1.5152542.265258H-0.9635910.3796811.130701H4.988741-1.8114761.644688H2.8191771.513915-1.286698H4.622044-0.2982662.506103	С	2.426645	1.729347	-0.287136	Н	-5.911799	-1.323726	1.300202
C3.853507-0.3780980.478394H-3.759800-1.565367-1.831084C4.227718-1.0420631.805207H-4.929241-2.798122-1.336905C5.0632810.287753-0.162473H1.4121680.274916-2.463460O-1.7270092.6323541.508231H0.173608-0.953165-2.240893O1.527875-2.524021-0.954288H-0.2871370.722679-2.600320O3.423030-1.445718-0.424669H4.8295480.656855-1.163781C2.071932-1.581088-0.430892H5.3978751.1312010.450685H0.933089-0.8151031.182628H5.887889-0.426811-0.246147H2.5390380.8643291.681542H3.353237-1.5152542.265258H-0.9635910.3796811.130701H4.988741-1.8114761.644688H2.8191771.513915-1.286698H4.622044-0.2982662.506103	С	2.602896	0.519831	0.644426	Н	-5.360549	-1.096315	-1.233096
C4.227718-1.0420631.805207H-4.929241-2.798122-1.336905C5.0632810.287753-0.162473H1.4121680.274916-2.463460O-1.7270092.6323541.508231H0.173608-0.953165-2.240893O1.527875-2.524021-0.954288H-0.2871370.722679-2.600320O3.423030-1.445718-0.424669H4.8295480.656855-1.163781C2.071932-1.581088-0.430892H5.3978751.1312010.450685H0.933089-0.8151031.182628H5.887889-0.426811-0.246147H2.5390380.8643291.681542H3.353237-1.5152542.265258H-0.9635910.3796811.130701H4.988741-1.8114761.644688H2.8191771.513915-1.286698H4.622044-0.2982662.506103	С	3.853507	-0.378098	0.478394	Н	-3.759800	-1.565367	-1.831084
C5.0632810.287753-0.162473H1.4121680.274916-2.463460O-1.7270092.6323541.508231H0.173608-0.953165-2.240893O1.527875-2.524021-0.954288H-0.2871370.722679-2.600320O3.423030-1.445718-0.424669H4.8295480.656855-1.163781C2.071932-1.581088-0.430892H5.3978751.1312010.450685H0.933089-0.8151031.182628H5.887889-0.426811-0.246147H2.5390380.8643291.681542H3.353237-1.5152542.265258H-0.9635910.3796811.130701H4.988741-1.8114761.644688H2.8191771.513915-1.286698H4.622044-0.2982662.506103	С	4.227718	-1.042063	1.805207	Н	-4.929241	-2.798122	-1.336905
O-1.7270092.6323541.508231H0.173608-0.953165-2.240893O1.527875-2.524021-0.954288H-0.2871370.722679-2.600320O3.423030-1.445718-0.424669H4.8295480.656855-1.163781C2.071932-1.581088-0.430892H5.3978751.1312010.450685H0.933089-0.8151031.182628H5.887889-0.426811-0.246147H2.5390380.8643291.681542H3.353237-1.5152542.265258H-0.9635910.3796811.130701H4.988741-1.8114761.644688H2.8191771.513915-1.286698H4.622044-0.2982662.506103	С	5.063281	0.287753	-0.162473	Н	1.412168	0.274916	-2.463460
O1.527875-2.524021-0.954288H-0.2871370.722679-2.600320O3.423030-1.445718-0.424669H4.8295480.656855-1.163781C2.071932-1.581088-0.430892H5.3978751.1312010.450685H0.933089-0.8151031.182628H5.887889-0.426811-0.246147H2.5390380.8643291.681542H3.353237-1.5152542.265258H-0.9635910.3796811.130701H4.988741-1.8114761.644688H2.8191771.513915-1.286698H4.622044-0.2982662.506103	0	-1.727009	2.632354	1.508231	Н	0.173608	-0.953165	-2.240893
O3.423030-1.445718-0.424669H4.8295480.656855-1.163781C2.071932-1.581088-0.430892H5.3978751.1312010.450685H0.933089-0.8151031.182628H5.887889-0.426811-0.246147H2.5390380.8643291.681542H3.353237-1.5152542.265258H-0.9635910.3796811.130701H4.988741-1.8114761.644688H2.8191771.513915-1.286698H4.622044-0.2982662.506103	0	1.527875	-2.524021	-0.954288	Н	-0.287137	0.722679	-2.600320
C2.071932-1.581088-0.430892H5.3978751.1312010.450685H0.933089-0.8151031.182628H5.887889-0.426811-0.246147H2.5390380.8643291.681542H3.353237-1.5152542.265258H-0.9635910.3796811.130701H4.988741-1.8114761.644688H2.8191771.513915-1.286698H4.622044-0.2982662.506103	0	3.423030	-1.445718	-0.424669	Н	4.829548	0.656855	-1.163781
H0.933089-0.8151031.182628H5.887889-0.426811-0.246147H2.5390380.8643291.681542H3.353237-1.5152542.265258H-0.9635910.3796811.130701H4.988741-1.8114761.644688H2.8191771.513915-1.286698H4.622044-0.2982662.506103	С	2.071932	-1.581088	-0.430892	Н	5.397875	1.131201	0.450685
H2.5390380.8643291.681542H3.353237-1.5152542.265258H-0.9635910.3796811.130701H4.988741-1.8114761.644688H2.8191771.513915-1.286698H4.622044-0.2982662.506103	Н	0.933089	-0.815103	1.182628	Н	5.887889	-0.426811	-0.246147
H-0.9635910.3796811.130701H4.988741-1.8114761.644688H2.8191771.513915-1.286698H4.622044-0.2982662.506103	Н	2.539038	0.864329	1.681542	Н	3.353237	-1.515254	2.265258
H 2.819177 1.513915 -1.286698 H 4.622044 -0.298266 2.506103	Н	-0.963591	0.379681	1.130701	Н	4.988741	-1.811476	1.644688
	Н	2.819177	1.513915	-1.286698	Н	4.622044	-0.298266	2.506103

Table S21. Atomic coordinates (Å) of **3b-4** obtained at the B3LYP-D3BJ/6-31G(d) level of theory in the gas phase.

С	0.991925	-0.196461	0.018049	Н	1.968469	-2.982361	-1.664725
С	-4.009728	-0.974180	-0.455712	Н	-0.274153	-3.330631	-0.271348
С	-2.734014	-1.451738	0.227497	Н	-0.373786	-2.179108	-1.609353
С	-1.540774	-0.515016	0.013669	Н	-2.528868	-2.457273	-0.170036
С	-0.186358	-1.197190	0.338562	Н	-2.945832	-1.599772	1.294577
С	-5.287836	-1.688733	-0.056840	Н	-1.014476	0.929573	1.579451
С	-1.741749	0.837593	0.768876	Н	-2.730445	0.832619	1.249092
С	-1.675657	2.019189	-0.161178	Н	-2.381733	1.957677	-0.988880
С	-0.873819	3.093525	-0.097312	Н	-5.152978	-2.776724	-0.065098
С	0.155553	3.350087	0.973538	Н	-5.556727	-1.408259	0.969838
С	-0.966381	4.175351	-1.146179	Н	-6.100122	-1.405680	-0.728975
С	-0.149770	-1.732382	1.781418	Н	-0.003705	4.311962	-1.659319
С	0.107438	-2.373240	-0.641278	Н	-1.726464	3.948686	-1.8999999
С	1.627744	-2.372341	-0.822230	Н	-1.213625	5.145087	-0.691800
С	1.937674	-0.877933	-0.990845	Н	-0.084366	4.272445	1.520842
С	3.338644	-0.369761	-0.584953	Н	0.252783	2.540206	1.696751
С	3.674903	0.942156	-1.297618	Н	1.145989	3.512500	0.523952
С	4.469209	-1.379138	-0.724247	Н	-0.918194	-2.500168	1.916133
0	-4.013347	-0.078429	-1.280111	Н	0.816402	-2.195371	2.008545
0	1.606051	0.589521	2.267244	Н	-0.305863	-0.945300	2.520435
0	3.207126	-0.062519	0.839748	Н	4.277468	-2.273643	-0.126947
С	1.910754	0.160009	1.179403	Н	4.579591	-1.676848	-1.772456
Н	0.587035	0.745004	-0.364240	Н	5.413766	-0.939496	-0.389454
Н	1.717922	-0.576912	-2.020675	Н	4.575492	1.388193	-0.865246
Н	-1.522027	-0.286781	-1.058681	Н	3.849485	0.763729	-2.364190
Н	2.108898	-2.762925	0.082395	Н	2.854868	1.662201	-1.201353

Table S22. Atomic coordinates (Å) of **3b-5** obtained at the B3LYP-D3BJ/6-31G(d) level of theory in the gas phase.

Num ^a	<i>Transition^b</i>	CI-coeff ^b	$\Delta E \ (eV)^d$	λ (nm) ^e	f	$R_{vel}{}^{g}$	$R_{len}{}^h$
	83->85	0.60158					
1	83->86	0.16699	4.6142	268.70	0.0000	0.5153	2.1607
	83->89	0.16341					
	82->85	0.17268					
	82->87	0.31173					
2	82->88	0.32633	5.7444	215.84	0.0008	2.4453	3.2435
	82->90	0.30858					
	82->92	0.26315					
2	84->85	0.66657	5.0720	207 59	0.0780	22 2520	22 7021
5	84->87	-0.16051	5.9729	207.38	0.0789	52.2528	52.7921
	84->86	0.46196					
	84->88	-0.28394	6.3128	196.40	0.0074		
4	84->89	0.27309				0.9336	1.0581
	84->90	0.16036					
	84->91	-0.18381					
	84->87	0.41543					-38.0493
5	84->91	0.38116	6.7005	185.04	0.2622	-37.1462	
	84->94	0.19645					
	84->86	-0.16509					-3.7867
	84->87	0.36458	6.8526				
	84->88	0.22498					
6	84->89	0.25101		180.93	0.1219	-3.1981	
	84->93	-0.22289					
	84->94	-0.21101					
	84->97	0.17029					
	83->86	0.45683					
	83->87	0.17111					
7	83->88	-0.23288	6.9473	178.46	0.0973	-10.531	-9.451
	83->89	-0.27909					
	83->96	-0.17824					
	84->86	-0.22402					
	84->88	-0.19103					
8	84->89	-0.18871	7.0311	176.34	0.0117	-16.4581	-16.7609
	84->90	0.48395					
	84->93	0.184					
	84->86	-0.25551					
9	84->87	-0.19926	7.2824	170.25	0.0918	-0.0612	0.9901
-	84->88	-0.24025					

Table S23. Key transitions, oscillator strengths, and rotatory strengths in the ECD spectrum of conformer **3b-1** at the CAM-B3LYP/6-311+G(d,p) level of theory in MeOH with IEFPCM solvent model.

Num ^a	<i>Transition^b</i>	CI-coeff ^b	$\Delta E \ (eV)^d$	λ (nm) ^e	ſ	R _{vel} ^g	R_{len}^{h}
	84->89	0.29235					
	84->91	0.19027					
	84->92	-0.2475					
	84->95	0.18611					
	84->96	0.18946					
	84->101	-0.15958					
	84->88	0.26774					
	84->89	0.17089					
	84->90	0.16649					
10	84->92	0.20903	7.3513	168.66	0.1375	-15.13	-13.9985
	84->93	0.19019					
	84->94	0.2146					
	84->99	0.32332					
	81->85	0.16819					
	81->87	0.28373					
11	81->88	0.25573	7.5191	164.80	0 1005	-62.816	-67 5852
11	81->90	0.21218		104.89	0.1095		-07.3832
	82->86	0.24607					
	82->89	0.1628					
	83->85	0.22513					
12	83->87	0.45444	7 5400	164.22	0.0104	5 8473	5 0815
12	83->91	0.20096	7.5477	104.22	0.0104	-3.8473	5.9015
	83->94	-0.20046					
	84->89	0.21288		164.04			-5.6019
	84->94	0.32093			0.0054	-5.4761	
13	84->95	-0.30885	7.5582				
	84->98	0.19502					
	84->101	0.22623					
	84->86	0.24301					
	84->88	0.21943					
14	84->92	-0.16008	7 6317	162 46	0.0196	28 1935	28 4765
11	84->94	0.16206	1.0517	102.10	0.0190	20.1755	20.1705
	84->97	0.33034					
	84->102	-0.19948					
	81->87	-0.1808					
15	81->88	-0.16813	7,6702	161 64	0.0524	-19 0554	-19 3913
	82->86	0.36168	,,02	101101	0.0021	1910001	1910910
	82->89	0.21368					
	84->88	-0.16228					
16	84->90	-0.25435	7.6872	161.29	0.0018	4.965	4.5377
10	84->93	0.30747	7.0072				
	84->96	-0.1986					

Num ^a	<i>Transition^b</i>	CI-coeff ^b	$\Lambda E (eV)^d$	$\lambda (nm)^e$	¢	R_{val}^{g}	R_{lan}^{h}
1,0000	84->97	0.24667			J	revel	rtien
	84->98	-0.21684	-				
	84->99	0.27099	-				
	80->85	-0.25998					
	83->88	-0.27818				0.7903	
17	83->91	0.28657	7.7685	159.60	0.0406		1.0526
	83->94	0.17962					
	84->89	0.21694					
	84->91	0.23883					
	84->95	-0.21248					
18	84->96	0.27603	7.8255	158.44	0.0018	3.198	3.2801
	84->97	-0.17743					
	84->98	-0.18192					
	84->100	-0.21913					
	80->85	0.35005					
10	83->86	-0.18676	7.0425	159.07	0.0216	((022	6.7566
19	83->90	0.26401	7.0433	158.07	0.0216	0.0032	
	83->94	0.24432					
20	80->85	0.23301	7.8859	157.22	0.0105	-10.4687	-10.7537
	80->85	0.22937					
21	84->92	0.18868	7 2072	156.00	0.0272	15 8204	15 7057
21	84->96	-0.15816	1.0770	130.99	0.0275	13.8294	15.7557
	84->101	0.15828					
	78->85	0.22711		155.90			
	83->89	0.22525			0.0030	-3.8295	
22	83->90	0.16756	7.9531				-4.3328
	83->91	-0.22631					
	83->94	-0.17347					
	78->85	0.37508					
23	83->86	-0.21953	7.9656	155.65	0.0177	21.9322	22.1875
	83->89	-0.25096					
	79->85	0.17562					
24	83->94	0.2607	8 0056	154.87	0.0077	-3 701	-3 4509
27	83->96	0.19314	0.0050	154.07	0.0077	-5.701	-3.4307
	83->99	0.17425					
	84->88	-0.17968					
25	84->92	0.2578	8 0872	153 31	0.0036	15 2449	15 7164
25	84->93	-0.24188	0.0072	155.51	0.0050	13.2117	13.7101
	84->102	-0.23192					
26	81->86	0.2959				-21.312	-22.0766
	81->88	0.2005	8.1259	152.58	0.0067		
	82->85	-0.18369					

r	1		1		<i>c</i>		7
Num ^a	<i>Transition^b</i>	CI-coeff [®]	$\Delta E \ (eV)^d$	λ (nm) ^e	f	R_{vel}^{g}	R_{len}^{h}
	79->85	-0.16451					
27	81->86	0.30011	8.1415	152.29	0.0007	5.0827	5.7529
	81->88	0.20598					
28	82->87	0.16082	8.1695	151.76	0.0020	14.1685	14.968
	84->87	-0.16488	-				
	84->90	0.16411	-				
29	84->91	0.24495	8.1781	151.61	0.0098	18.8085	19.5295
	84->96	-0.17732	-				
	84->102	0.18381					
	82->87	-0.17122					
30	82->90	0.16702	8 2343	150 57	0.0082	6 1733	6 3661
50	83->87	0.17034	0.2313	150.57	0.0082	0.1755	0.5001
	83->88	0.1998					
	76->85	-0.16647					
31	78->85	-0.19302	8 2617	150.07	0.0190	21 8661	25.265
51	79->85	0.26667	0.2017	150.07	0.0170	24.0004	
	82->85	-0.16056					
-	84->92	0.17177					
	84->94	-0.19688					
22	84->97	0.16309	8 2058	140.27	0.0008	15 0483	15.9032
52	84->98	0.31282	8.3038	149.27	0.0098	15.0465	
	84->103	0.20396					
	84->104	-0.22947					
22	78->87	0.21167	0 21 4 4	140.12	0.0220	0 7271	0 1507
33	78->88	0.19534	8.3144	149.12	0.0328	0./3/1	0.1507
	84->92	0.16317					
	84->95	-0.20811					
34	84->99	-0.16631	8.3242	148.94	0.0119	11.281	11.9206
	84->101	-0.22223					
	84->106	0.2455					
	77->85	0.18307					
25	77->87	0.30624	0.0461	1 40 55	0.01.4.4	10 71 (1	20 1525
35	77->88	0.22919	8.3461	148.55	0.0144	19./161	20.1525
	77->90	0.19766					
	82->86	0.30216					
	82->88	0.2117	1				
36	82->89	-0.29732	8.3781	147.99	0.0011	1.1873	1.5141
	82->92	-0.18609	1	147.99			
	82->95	-0.21038	1				

^{*a*}Number of the excited states; ^{*b*}Only transitions with contribution over 4.0% were listed; ^{*c*}Configuration-interaction coefficient; ^{*d*}Excitation energy; ^{*c*}Wavelength; ^{*f*}Oscillator strength; ^{*g*}Rotatory strength in velocity form (10⁻⁴⁰ cgs); ^{*b*}Rotatory strength in length form (10⁻⁴⁰ cgs).