Supplementary Information (SI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2025

Electronic Supplementary Information (ESI) for Org. Chem. Front. This journal is © The Royal Society of Chemistry 2025

Electronic Supplementary Information for:

Charge separation and intersystem crossing in compact orthogonal and sterically encumbered 6,12-diphenyl indolo[3,2-*b*]carbazole-naphthalimide electron donor-acceptor dyad

Xue Zhang^{1‡}, Ziqian Xu^{1‡}, Andrey A. Sukhanov^{2‡}, Xichuan Yang¹, Ayhan Elmali³, Jianzhang Zhao^{1*}, Bernhard

Dick^{4*}, Ahmet Karatay^{3*} & Violeta K. Voronkova^{2*}

¹ State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical

Engineering, Dalian University of Technology, Dalian 116024, P. R. China. *E-mail: zhaojzh@dlut.edu.cn (J. Z.)

² Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia. *E-mail: vio@kfti.knc.ru (V. K. V.)

³ Department of Engineering Physics, Faculty of Engineering, Ankara University, Ankara 06100, Türkiye. *E-mail: akaratay@eng.ankara.edu.tr (A. K.)

⁴ Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D-93053 Regensburg, Germany. *E-mail: Bernhard.Dick@chemie.uni-regensburg.de (B. D.)

[‡]X. Zhang, Z. Xu and A. A. Sukhanov contributed equally to this work.

Contents

1.	General information and synthesis	Page S3					
2.	NMR and HRMS spectra	Page S5					
3.	Crystallographic data	Page S9					
4.	UV/Vis absorption spectra	Page S10					
5.	Fluorescence spectra and lifetime	Page S11					
6.	Cyclic voltammograms	Page S16					
7.	Femtosecond transient absorption spectroscopy	Page S17					
8.	Nanosecond transient absorption spectroscopy	Page S20					
9.	Time-resolved electron paramagnetic resonance spectroscopy	Page S24					
10.	. Theoretical computations	Page S25					
11.	11. ReferencePage S28						

1. General information and synthesis

1.1 Synthesis of NI-Br (4-bromo-*N***-butyInaphthalimide).** The **NI-Br** was synthesized according to a literature method.¹ *n*-Butylamine (1.10 g, 15.0 mmol) was added to a suspension of 4-bromo-1,8-naphthalic anhydride **1** (2.70 g, 10.0 mmol) in ethanol (60 mL). The mixture was refluxed at 78 °C for 4 h under nitrogen atmosphere before cooling to room temperature. The crude product was concentrated in vacuo and purified by column chromatography (silica gel; DCM / petroleum ether, 1:2, v/v). The product was obtained as a pale-yellow solid (1.51 g, yield: 45%). ¹H NMR (CDCl₃, 400 MHz): δ = 8.68 (d, 1H, *J* = 8.0 Hz), 8.58 (d, 1H, *J* = 8.0 Hz), 8.43 (d, 1H, *J* = 8.0 Hz), 8.06 (d, 1H, *J* = 8.0 Hz), 7.87 – 7.83 (m, 1H), 4.20 (t, 2H, *J* = 8.0 Hz), 1.75 – 1.70(m, 2H), 1.48 – 1.42 (m, 2H), 1.00 (t, 3H, *J* = 8.0 Hz).

1.2 **Synthesis** 2,8-dimethoxy-6,12-bis(4-methoxyphenyl)-5,11-dihydroindolo[3,2of b]carbazole (ICz).² A mixture of aqueous fluoroboric acid (40 wt.%, 1.70 mmol, 0.37 g) and tetrabutylammonium iodide (1.70 mmol, 0.63 g) in acetonitrile (20 mL) was slowly added to a solution of 5-methoxy-indole (6.80 mmol, 1.00 g) and p-methoxybezaldehyde (6.80 mmol, 0.92 g) in acetonitrile (50 mL) in ice bath. The resulting orange-red mixture was stirred at room temperature for 8 h, after which the mixture was filtered and washed with acetonitrile (20 mL) and methanol (20 mL). The gravish-green solid was then mixed with iodine (0.30 mmol, 0.085 g) and acetonitrile (20 mL). The brownish mixture was then refluxed at 80 °C for 12 h before cooling to room temperature, and the crude product was purified by column chromatography (silica gel; DCM). The product was obtained as yellow-green powder (0.20 g, yield: 11%). Mp : >250 °C, ¹H NMR (DMSO-*d*₆, 400 MHz): δ = 10.23 (s, 2H), 7.60 (d, 4H, J = 8.5 Hz), 7.33 – 7.27 (m, 6H), 6.93 – 6.91 (m, 2H), 6.64 (d, 2H, J = 2.5 Hz), 3.93 (s, 6H), 3.54 (s, 6H). ¹³C NMR (DMSO- d_6 , 150 MHz): δ = 158.93, 157.29, 151.47, 136.64, 134.31, 131.22, 129.65, 128.88, 122.53, 120.03, 116.12, 114.42, 114.36, 113.53, 113.33, 111.29, 104.89, 34.87, 31.18, 30.59, 28.89, 28.59, 18.45. MALDI-TOF-MS ([C₃₄H₂₈N₂O₄]⁺): calcd m/z = 528.20, found m/z = 528.2.

1.3 Synthesis of NI-ICz.² Copper powder (36 mg, 0.57mmol) was added to a mixture of **NI-Br** (204 mg, 0.62 mmol), **ICz** (130 mg, 0.25 mmol), potassium carbonate (204 mg, 1.5 mmol), dibenzo-18-crown-6 (18 mg, 0.05 mmol) and 1,2-dichlorobenzene (5 mL) under nitrogen atmosphere. The

mixture was refluxed at 180 °C for 24 h before cooling to room temperature. The solvent was evaporated in vacuo, and the crude product was purified by column chromatography (silica gel; DCM). The product was obtained as crimson powder (19 mg, yield: 10%). Mp : >250 °C, ¹H NMR (DMSO-*d*₆, 400 MHz): δ = 10.48 (s, 1H), 8.46 (d, 1H, *J* = 7.1 Hz), 8.35 (d, 1H, *J* = 7.5 Hz), 7.74 (dd, 2H, *J*₁ = 9.3 Hz, *J*₂ = 7.9 Hz), 7.69 – 7.64 (m, 2H), 7.49 (d, 1H, *J* = 8.4 Hz), 7.36 – 7.31 (m, 3H), 6.92 – 6.88 (m, 3H), 6.72 (d, 2H, *J* = 7.4 Hz), 6.46 – 6.41 (m, 2H), 6.13 (s, 1H), 5.95 (d, 1H, *J* = 8.4 Hz), 4.11 (t, 2H, *J* = 7.1 Hz), 3.96 (s, 3H), 3.57 (s, 3H), 3.46 (s, 3H), 3.34 (s, 3H), 1.71 – 1.66 (m, 2H), 1.46 – 1.39 (m, 2H), 1.00 (t, 3H, *J* = 7.2 Hz). ¹³C NMR (DMSO-*d*₆, 150 MHz): δ = 163.23, 162.73, 157.59, 152.88, 151.48, 136.64, 135.12, 134.88, 130.92, 128.39, 123.10, 122.65, 122.11, 121.26, 117.43, 117.11, 114.65, 113.67, 111.39, 105.61, 30.59, 29.68, 28.88, 19.67, 18.45. MALDI-TOF-MS ([C₅₀H₄₁N₃O₆]⁺): calcd m/z 779.2995, found m/z 779.3003.

1.4 Singlet oxygen quantum yield (Φ_{Δ}). 1,3-Diphenylisobenzofuran (DPBF) was used as ¹O₂ scavenger for the determination of singlet oxygen quantum yield (Φ_{Δ}), the absorbance of which at λ = 414 nm was monitored at specific time intervals. The Φ_{Δ} values of the compounds were calculated according to Eq. S1:

$$\Phi_{\Delta,sam} = \Phi_{\Delta,std} \left(\frac{1 - 10^{-A_{std}}}{1 - 10^{-A_{sam}}} \right) \left(\frac{m_{sam} - m_{DPBF}}{m_{std} - m_{DPBF}} \right) \left(\frac{\eta_{sam}}{\eta_{std}} \right)^2$$
(Eq. S1)

In the above equation, 'sam' or 'std' represent 'sample' or 'standard'. A, *m* and η stand for the absorbance at excitation wavelength λ_{ex} , the slope of the absorbance at $\lambda = 414$ nm over time, and the refractive index of the solvent used for measurement, respectively. Optically matched solutions were used (the solutions of samples and standard give same absorbance at λ_{ex}).

2. NMR and HRMS spectra

Fig. S1 ¹H NMR spectra of compound NI-Br (400 MHz, CDCl₃), 25 °C.

Fig. S2 (a) ¹H NMR (400 MHz, DMSO- d_6) and (b) ¹³C NMR (150 MHz, DMSO- d_6) spectra of compound ICz, 25 °C.

Fig. S3 (a) ¹H NMR (400 MHz, DMSO- d_6), (b) locally enlarged ¹H NMR and (c) ¹³C NMR (150 MHz, DMSO- d_6) spectra of **NI-ICz**, 25 °C.

SmartFormula

Fig. S4 MALDI-TOF-HRMS of NI-ICz, 25 °C.

Fig. S5 MALDI-TOF-HRMS of ICz, 25 °C.

3. Crystallographic data

Compound	NI-ICz
Sum formula	C ₅₀ H ₄₁ N ₃ O ₆
<i>M</i> (g mol ^{−1})	779.86
Temperature / K	298 K
Crystal system	Monoclinic
Space group	C2/c
a (Å)	19.7004 (18)
b (Å)	23.323 (2)
<i>c</i> (Å)	19.0014 (15)
lpha (deg)	90
eta (deg)	112.623 (3)
γ(deg)	90
Volume / Å ³	8059.0 (12)
Ζ	8
$D_{ m calc}$ / g cm $^{-3}$	1.285
F (000)	3280.0
μ / mm ⁻¹	0.085
θ_{\max} (deg)	27.524
Reflections collected	35003
Independent reflections	9242 [R _{int} = 0.0973, R _{sigma} = 0.1104]
Parameters	538
Largest diff. peak and hole (e	0.82 / -0.39
Å ^{−3})	
Goodness of fit	1.012
R ^a	0.0728
ωR_2^a	0.2030

Table S1 Crystallographic data for NI-ICz^a

 ${}^{a}R = \sum ||F_0| - |F_c|| / \sum |F_0|$, $\omega R_2 = [\sum \omega (|F_0|^2 - |F_c|^2) / \sum \omega (F_0^2)^2]^{1/2}$, $[F_0 > 4\sigma(F_0)c^2]$. After repeated refinement, there are still a large reported Max. (positive) residual density (Alert level B), which is caused by poor crystal quality or weak diffraction points.

4. UV/Vis absorption spectra

Fig. S6 UV/Vis absorption spectra of (a) NI-Br; (b) NI-Cz; (c) ICz; (d) NI-ICz in different solvents. $c = 1.0 \times 10^{-5}$ M, 25 °C.

Fig. S7 UV/Vis absorption spectra of the compounds in (a) TOL; (b) THF; (c) DCM; (d) ACN. $c = 1.0 \times 10^{-5}$ M, 25 °C.

For Eq. 2 and Eq. 3, the ε (\tilde{v}_{CT}) is the molar absorption coefficient of CT band in M⁻¹ cm⁻¹, \tilde{v}_{CT} is the maximum wavenumber of the S₀ \rightarrow CT band in cm⁻¹, *n* is the refractive index of the solvent, *N*_A is the Avogadro constant in mol⁻¹, *h* is the Planck constant in erg s, the *R* is the separation between the center of nucleus and the acceptor group, is in Å, ε_{max}^{CT} is represent molar absorptivity at the absorbance maximum of the CT absorption band in M⁻¹ cm⁻¹, \tilde{v}_{max}^{CT} is absorption maximum of the CT absorption band (in cm⁻¹) and $\Delta \tilde{v}_{1/2}^{CT}$ is the full width of the CT band at the half maximum in cm⁻¹.

Fig. S8 Fluorescence emission spectra of the compounds in (a) HEX; (b) TOL; (c) THF; (d) DCM; (e) ACN. Optically matched solutions were used in each panel (each of the solutions gives the same absorbance at the excitation wavelength, A = 0.100). $\lambda_{ex} = 330$ nm, 25 °C.

Fig. S9 Fluorescence decay curves of LE excited state of (a) **NI-Br**; (b) **ICz**; (c) **NI-ICz** in different solvent. $\lambda_{ex} = 340$ nm, $c = 1.0 \times 10^{-5}$ M, 25 °C.

Fig. S10 Fluorescence decay curves of CT excited state of (a) NI-Cz and (b) NI-ICz in different solvent. $\lambda_{ex} = 340$ nm, $c = 1.0 \times 10^{-5}$ M, 25 °C.

Fig. S11 Fluorescence emission spectra of (a) **NI-Br**; (c) **NI-ICz**. $c = 1.0 \times 10^{-5}$ M, $\lambda_{ex} = 350$ nm and 410 nm, respectively. Decay curves of (b) **NI-Br** at 570 nm and (d) **NI-ICz** at 450 nm and 600 nm at 77 K, in 2Me-THF.

Fig. S12 Fluorescence emission spectra of (a) ICz; (c) NI-Cz at different tempreture. $c = 1.0 \times 10^{-5}$ M, $\lambda_{ex} = 340$ nm, in 2Me-THF, 77 K.

Fig. S13 Fluorescence decay curves of (a) NI derivatives in HEX, (b) CT band of NI-Cz and NI-ICz at 500 nm and 600 nm, respectively. $\lambda_{ex} = 340$ nm, $c = 1.0 \times 10^{-5}$ M, 25 °C.

Fig. S14 Fluorescence decay traces of **NI-ICz** under different atmospheres (N₂, Air). $\lambda_{ex} = 340$ nm, decay trace at 580 nm. Excited with nanosecond EPLED (340 nm). $c = 1.0 \times 10^{-5}$ M in toluene, 25 °C.

Compounds	HEX ^c		TOL ^d		THF ^e		DCN	DCM ^f		ACN ^g	
	$arPhi_{\!\Delta}$	$arPhi_{F}$	$arPhi_{\Delta}$	$arPhi_{F}$	$arPhi_{\!\Delta}$	$arPhi_{F}$	\varPhi_{Δ}	$arPhi_{F}$	$arPhi_{\Delta}$	$arPhi_{F}$	
NI-Br	42	0.3	54	0.4	33	0.2	71	0.3	84	0.1	
NI-Cz	38	52	44	25	29	14	59	18	31	6	
ICz	4	35	13	48	5	49	12	33	1	38	
NI-ICz	25	6	2	4	_ h	1	_ h	0.8	_ h	0.6	

Table S2 Singlet oxygen quantum yield $(\Phi_{\Delta})^a$ and absolute fluorescence quantum yield $(\Phi_{F})^b$ of the

^a In percentage. Ru(bpy)₃[PF₆]₂ was used as standard ($\Phi_{\Delta} = 0.57$ in DCM). Optically matched solutions were used in each panel (each of the solutions gives the same absorbance at the excitation wavelength, A = 0.25 at $\lambda_{ex} = 335$ nm). ^b $\lambda_{ex} = 330$ nm, measured with optical integration sphere. ^c *n*-Hexane, E_{T} (30) = 30.9 kcal/mol. ^d Toluene, E_{T} (30) = 33.9 kcal/mol. ^e Tetrahydrofuran, E_{T} (30) = 37.4 kcal/mol. ^f Dichloromethane, E_{T} (30) = 41.1 kcal/mol. ^g Acetonitrile, E_{T} (30) = 46 kcal/mol. ^h Not observed.

compounds in different solvents

6. Cyclic voltammograms

Table S3 Redox potentials of the compounds^a

	NI-Br	ICz
<i>E</i> (ox) (V)	_b	+0.17
		+0.70
<i>E</i> (red) (V)	-1.83	_b
	-1.98	_b

^aCyclic voltammetry in N₂ saturated DCM containing a 0.10 M Bu₄NPF₆ supporting electrolyte; Counter electrode is Pt electrode; working electrode is glassy carbon electrode; Ag/AgNO₃ couple as the reference electrode. ^bNot observed.

For Eq 6–8, ΔG_{CS} is the Gibbs free-energy change of charge separation process, *e* is the charge of a single electron, E_{RED} and E_{OX} are the half-wave potential for one-electron reduction and oxidation of the electron-acceptor unit, respectively, E_{00} represent the energy level approximated with the crossing point of UV/Vis absorption and fluorescence emission after normalization at the singlet excited state. ΔG_S is the static coulombic energy, ε_S is the static dielectric constant of the solvent, ε_0 is the permittivity of free space, R_{CC} is the center-to-center separation distance between the electron donor and acceptor determined by optimized conformation by DFT calculation, R_D and R_A are the radius of electron donor and acceptor, ε_{REF} is the static dielectric constant of the solvent used for the electrochemical studies and E_{CS} is charge separation state energy level.

Fig. S15 Femtosecond transient absorption spectra of **NI-Br**. Transient absorption spectra in (a) *n*-hexane and (c) acetonitrile; relative EADS obtained with global analysis (c) *n*-hexane and (d) acetonitrile. Excited at 340 nm.

Fig. S16 Femtosecond transient absorption spectra of **ICz**. Transient absorption spectra in (a) *n*-hexane and (c) acetonitrile; relative EADS obtained with global analysis (c) *n*-hexane and (d) acetonitrile. Excited at 340 nm.

Fig. S17 Femtosecond transient absorption spectra of **NI-Cz**. Transient absorption spectra in (a) *n*-hexane and (c) acetonitrile; relative EADS obtained with global analysis (b) *n*-hexane and (d) acetonitrile. Excited at 340 nm.

Fig. S18 The schematic diagram of relationship between the electron transfer rate constant (k_{ET})

and the Gibbs free energy changes of the electron transfer (ΔG_{ET}) for **NI-ICz**.

8. Nanosecond transient absorption spectroscopy

Fig. S19 (a) Transient absorption spectra of NI-ICz, $c = 1.0 \times 10^{-5}$ M and (b) decay curve at 470 nm, $c = 5.0 \times 10^{-6}$ M in aerated HEX. $\lambda_{ex} = 355$ nm, 25 °C.

Fig. S20 (a) Decay curve at 470 nm of **NI-Br** in aerated HEX, $c = 5.0 \times 10^{-6}$ M. $\lambda_{ex} = 355$ nm, 25 °C.

Fig. S21 (a) Transient absorption spectra of NI-ICz, $c = 2.0 \times 10^{-5}$ M and (b) decay curve at 470 nm, $c = 2.0 \times 10^{-5}$ M in aerated TOL. $\lambda_{ex} = 355$ nm, 25 °C.

Fig. S22 Nanosecond time-resolved transient absorption spectra of **ICz** upon pulsed laser excitation in (a) deaerated and (c) aerated toluene, decay trace of **ICz** at 510 nm in (b) deaerated and (d) aerated toluene, $c = 1 \times 10^{-5}$ M. $\lambda_{ex} = 355$ nm, 25 °C.

Fig. S23 (a) Transient absorption spectra of **NI-Br**, $c = 1.0 \times 10^{-5}$ M and (b) decay curve at 470 nm, $c = 5.0 \times 10^{-6}$ M in ACN. (c) Transient absorption spectra of **ICz** and (d) decay curve at 510 nm, $c = 5.0 \times 10^{-6}$ M in ACN. $\lambda_{ex} = 355$ nm, 25 °C.

Fig. S24 (a) Transient absorption spectra of NI-Cz, $c = 1.0 \times 10^{-5}$ M and (b) decay curve at 470 nm, $c = 5.0 \times 10^{-6}$ M in HEX. (c) Transient absorption spectra of NI-Cz, $c = 1.0 \times 10^{-5}$ M and (d) decay curve at 470 nm, $c = 5.0 \times 10^{-6}$ M in ACN. $\lambda_{ex} = 355$ nm, 25 °C.

Fig. S25 TREPR spectra of four studied compounds detected at different time delays after the laser flash (integration limits are given in legends). (a) **NI-Br** excited at 355 nm with energy 1 mJ, (b) **NI-Cz** excited at 355 nm with energy of 1 mJ per pulse, (c) **ICz** excited at 355 nm with energy 1 mJ and (d) **NI-ICz** excited at 355 nm with energy of 1 mJ per pulse. (e) **NI-ICz** excited at 502 nm with energy of 1 mJ per pulse. T = 80 K. $c = 1.0 \times 10^{-4} \text{ M}$.

Fig. S26 Spin density surfaces of the compounds in vacuo, at the optimized triplet state geometry, calculated at [CAM-B3LYP/6-31G(d)] (isovalue = 0.0004) level with Gaussian 16.

Fig. S27 The Absorption and corresponding orbital transitions of **NI-ICz** (a) anion **NI^{-•}-ICz** and (b) cation **NI-ICz^{+•}** calculated by DFT, [CAM-B3LYP/6-31G(d)] (isovalue = 0.0004) level with Gaussian 16.

Fig. S28 Hyperfine coupling constants obtained by DFT calculation of NI*--ICz and NI-ICz*+.

Scheme S1 Simplified energy diagram of the photophysical processes involved in NI-Br and ICz.

Table S4 Electronic excitation energies (eV) and corresponding oscillator strengths (*f*), main configurations, and CI coefficients of the low-lying electronic excited states compounds. Calculated by TDDFT// ω B97XD/6-31G(d) based on the DFT// ω B97XD/6-31G(d)-optimized ground state geometries for **NI-ICz** and TDDFT//CAM-B3LYP/6-31G(d) based on the DFT// ω B97XD/6-31G(d)-optimized ground state geometries for **NI-Br** and **ICz**^{*a*}

	State	Electronic transition	Energy ^b , eV nm ⁻¹	fc	Composition ^d	CI e	Character
NI-ICz	Singlet	$S_0 \!\rightarrow S_1$	3.13/395	0.0696	$H \rightarrow L$	0.62670	СТ
		$S_0\!\to S_2$	3.52/353	0.2905	$H \rightarrow L+1$	0.67157	LE
	Triplet	$S_0\!\rightarrow T_1$	2.26/548	0.0000 ^f	$H-5 \rightarrow L$	0.46205	СТ
		$S_0\!\rightarrow T_2$	2.68/463	0.0000 ^f	$H \rightarrow L+1$	0.60626	LE
		$S_0\!\rightarrow T_3$	2.92/425	0.0000 ^f	$H-1 \rightarrow L+1$	0.53379	LE
		$S_0\!\to T_4$	3.10/400	0.0000 ^f	$H \to L$	0.58491	СТ
NI-Br	Singlet	$S_0\!\to S_1$	3.62/342	0.0001	$H-1 \rightarrow L$	0.69467	LE
		$S_0\!\to S_2$	3.63/341	0.2293	$H \to L$	0.69696	LE
	Triplet	$S_0\!\rightarrow T_1$	2.26/548	0.0000 ^f	$H \rightarrow L$	0.68308	LE
		$S_0\!\rightarrow T_2$	3.35/370	0.0000 ^f	$H-1 \rightarrow L$	0.67686	LE
		$S_0\!\rightarrow T_3$	3.40/365	0.0000 ^f	$H-2 \rightarrow L$	0.61371	LE
		$S_0\!\rightarrow T_4$	3.65/340	0.0000 ^f	$H-3 \rightarrow L$	0.58785	LE
ICz	Singlet	$S_0\!\to S_1$	2.93/423	0.1375	$H \to L$	0.69975	LE
		$S_0\!\to S_2$	3.66/339	0.0002	$H-2 \rightarrow L$	0.69800	LE
	Triplet	$S_0\!\rightarrow T_1$	2.30/539	0.0000 ^f	$H \to L$	0.68692	LE
		$S_0\!\rightarrow T_2$	2.74/453	0.0000 ^f	$H-1 \rightarrow L$	0.62810	LE
		$S_0\!\rightarrow T_3$	3.07 /403	0.0000 ^f	$H-2 \rightarrow L$	0.58563	LE

^a In *c*–HEX. ^b Only the selected low lying excited states are presented. ^c Oscillator strengths. ^d TDDFT// ω97XD/6-31G(d)-optimized excited state geometries for **NI-ICz** and CAM-B3LYP/6-31G(d) for **NI-Br** and **ICz**. ^e CI coefficients are in absolute values. ^f No spin–orbital coupling effect was considered; thus, the *f* values are zero.

11. Reference

- X. Zhang, X. Liu, M. Taddei, L. Bussotti, I. Kurganskii, M. Li, X. Jiang, L. Xing, S. Ji, Y. Huo, J. Zhao, M. Di Donato, Y. Wan, Z. Zhao and M. V. Fedin, Red light-emitting thermally-activated delayed fluorescence of naphthalimide-phenoxazine electron donor-acceptor dyad: Time-resolved optical and magnetic spectroscopic studies, *Chem. Eur. J.*, 2022, 28, e202200510.
- 2. B. Cai, X. Yang, X. Jiang, Z. Yu, A. Hagfeldt and L. Sun, Boosting the power conversion efficiency of perovskite solar cells to 17.7% with an indolo[3,2-b]carbazole dopant-free hole transporting material by improving its spatial configuration, *J. Mater. Chem. A*, 2019, **7**, 14835-14841.