Supporting information

Photocatalytic Selective Disulfuration of Aryl Aldehydes and

Alkenyl Aldehydes with Dithiosulfonate as Bifunctional Disulfur

Reagent and Hydrogen Atom Accepter

Jingchao Jiao^{#[a]}, Juan Xu^{#[b]}, Jingru Li^[a], Hongru He^[a], Runliang Yang^[a],

Xiaorui Ren^[a], Qianwen Gao*^[a], and Xi Wang*^{[a], [c]}

^[a]College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China.

^[b]Sunshine Lake Pharma Co., Ltd, Dongguan 523000, P. R. China.

^[c]Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, P. R. China.

E-mail: cccewangxi@hnu.edu.cn

Table of Contents

1.	General2
2.	Preparation of starting materials
	2.1 Preparation of aryl aldehydes 1 and alkenyl aldehydes 4 2
	2.2 Preparation of disulfur transfer reagents 211
3.	Photocatalytic selective disulfuration of aryl aldehydes and alkenyl aldehydes
	with dithiosulfonate as bifunctional disulfur reagent and hydrogen atom accepter
	3.1 General procedure for disulfuration of aryl aldehydes11
	3.2 General procedure for disulfuration of alkenyl aldehydes12
	3.3 Screening of reaction conditions14
	3.4 Gram-scale synthesis
4.	Mechanistic studies
5.	Spectral data
6.	Spectra
7.	References

1. General

All reactions involving air- or moisture-sensitive reagents or intermediates were carried out in flame-dried glassware under an argon atmosphere using standard Schlenk techniques. All solvents were freshly distilled and degassed according to the handbook Purification of Laboratory Chemicals (4th Edition, Butterworth Heinemann, W. L. F. Armarego and Douglas Dalzell Perrin). The boiling point of petroleum ether (PE) was between 60 and 90 °C. The reactions above room temperature were heated by oil bath. Commercially available reagents were used as received from Energy Chemical, Aladdin, Leyan, Alfa Aesar China, TCI China. For chromatography, 200-300 mesh silica gel (Qingdao, China) was employed. Analytical thin layer chromatography (TLC) was performed using silica gel plates. Visualisation was by ultraviolet fluorescence, and/or phosphomolybdic acid, and/or KMnO₄ (1.5 g in 400 mL H₂O, 5.0 g NaHCO₃). ¹H-Nuclear Magnetic Resonance (¹H-NMR), ¹³C Nuclear Magnetic Resonance (¹³C-NMR) spectra and ¹⁹F-Nuclear Magnetic Resonance (¹⁹F-NMR) were recorded on Bruker Advance Neo 400 MHz and JEOL JNM-ECZ400S/L1 400MHz at 25 °C with CDCl₃, DMSO-d₆ as solvent. Chemical shifts (ppm) are given relative to solvent: references for CDCl₃ were 7.26 ppm (¹H NMR) and 77.16 ppm (¹³C NMR); references for DMSO-*d*₆ were 2.50 ppm (¹H NMR) and 39.52 ppm (¹³C NMR); references for D₂O were 4.79 ppm (¹H NMR). The data are reported as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant J(Hz), and integration. High resolution mass spectra were recorded on Thermo Oribtrap Exploris 120 and Thermo Finnigan MAT95XP. IR spectra were recorded on SHIMADZU IRSpirit-T and reported in unit of cm⁻¹. GC and GCMS data were recorded on SHIMADZU Nexis GC-2030 and SHIMADZU GCMS-QP2020NX respectively.

2. Preparation of starting materials

2.1 Preparation of aryl aldehydes 1 and alkenyl aldehydes 4

Aldehydes 1a - 1x, 1z - 1aa, 1ac - 1ag are commercially available from Energy Chemical, Aladdin, Leyan. All commercially available aldehydes were used as received. Aldehydes 1y,^[1] 1ab,^[2] 1ai,^[3] 1al,^[4] 1ao^[5] were prepared according to previously reported literature procedures. Aldehydes 1ah, 1aj, 1ak, 1am, 1an were prepared according to the following procedure.

Alkenyl aldehydes 4a - 4v were prepared according to previously reported literature procedures.^[6]

Preparation of aldehydes 1ah, 1aj, 1ak, 1am, and 1an

mmol, 1.0 equiv), (R)-2-(6-methoxynaphthalen-2-yl)propanoic acid (2.763 g, 12.00 mmol, 1.2 equiv), and DCC (4.127g, 20.00 mmol, 2.0 equiv), sealed with a septum, and degassed by alternating vacuum evacuation and nitrogen backfilling (three times) before DCM (25 mL) was added. Then DMAP (0.122 g, 1.00 mmol, 0.10 equiv) was added to the mixture under positive pressure. The reaction mixture was stirred at room temperature for 12 h. After the reaction was complete, the reaction mixture was diluted with DCM (30 mL) and filtrated through a small pad of silica gel. The solvent was removed under reduced pressure with the aid of a rotary evaporator and the crude residue was purified by a silica gel column chromatography (PE:EtOAc = 5:1) to give the corresponding pure aromatic aldehyde **1ah** as a white solid in 68% yield (2.2740 g). TLC $\mathbf{R}_{\mathbf{f}} = 0.4$ (PE:EtOAc = 3:1); MP: = 68 - 69 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 9.95 (s, 1H), 7.85 (d, J = 8.6 Hz, 2H), 7.81 - 7.70 (m, 3H), 7.50 $(dd, J^1 = 8.6 Hz, J^2 = 1.7 Hz, 1H), 7.22 - 7.10 (m, 4H), 4.13 (q, J = 7.2 Hz, 1H), 3.92$ (s, 3H), 1.72 (d, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 190.8, 172.4, 157.8, 155.5, 134.6, 133.9, 133.8, 131.0, 129.2, 128.9, 127.5, 126.1, 125.9, 122.1, 119.2, 105.6, 55.2, 45.5, 18.3; **HRMS** (EI) m/z = 334.1205 calcd. for $C_{21}H_{18}O_4$ [M]⁺, found: 334.1211; **IR** (neat, cm⁻¹): 2935w, 2848w, 1755s, 1698s, 1633w, 1599s, 1503m, 1462w, 1392m, 1264m, 1205s, 1155s, 1125s, 1067s, 1031s, 892m, 854s, 730m, 685w, 508w, 475w.

((3aS,5aR,8aR,8bS)-2,2,7,7-Tetramethyltetra hydro 3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d] pyran-3a-yl)methyl 4-formylbenzoate (1aj): A flame-dried Schlenk-flask equipped with a magnetic stir bar, was charged with

4-formylbenzoic acid (1.802 g, 12.00 mmol, 1.2 equiv), ((3aS,5aR,8aR,8bS) -2,2,7,7-tetramethyltetrahydro-3a*H*-bis([1,3]dioxolo) [4,5-b:4',5'-d]pyran-3a-yl) methanol (2.207 g, 10.00 mmol, 1.0 equiv), and DCC (4.127g, 20.00 mmol, 2.0 equiv), sealed with a septum, and degassed by alternating vacuum evacuation and nitrogen backfilling (three times) before DCM (25 mL) was added. Then DMAP (0.122 g, 1.00 mmol, 0.10 equiv) was added to the mixture under positive pressure. The reaction mixture was stirred at room temperature for 12 h. After the reaction was complete, the reaction mixture was diluted with DCM (30 mL) and filtrated through a small pad of silica gel. The solvent was removed under reduced pressure with the aid of a rotary evaporator and the crude residue was purified by a silica gel column chromatography (PE:EtOAc = 15:1) to give the corresponding pure aromatic aldehyde **1aj** as a white solid in 26% yield (1.0195 g). **TLC** $\mathbf{R}_{\mathbf{f}} = 0.4$ (PE:EtOAc = 5:1); **MP**: = $84 - 86 \,^{\circ}$ C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 10.10 (s, 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.95 (d, J = 8.5 Hz, 2H), 4.71 (d, J = 11.8 Hz, 1H), 4.64 (dd, $J^{1} = 7.9$ Hz, $J^{2} = 2.6$ Hz, 1H), 4.44 (d, J = 2.6 Hz, 1H), 4.36 (d, J = 11.8 Hz, 1H), 4.26 = 13.2 Hz, 1H), 1.55 (s, 3H), 1.45 (s, 3H), 1.35 (d, J = 4.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 191.5, 165.0, 139.2, 134.9, 130.4, 129.5, 109.2, 108.9, 101.5, 70.7, 70.7, 70.1, 66.0, 61.4, 26.5, 25.9, 25.4, 24.0; **HRMS** (ESI) m/z =415.1363 calcd. for $C_{20}H_{24}NaO_8 [M+Na]^+$, found: 415.1365; **IR** (neat, cm⁻¹): 2991w, 2935w, 1729s, 1706s, 1456w, 1375s, 1252s, 1165m, 1103s, 1089s, 1018w, 979w, 890w, 758m.

Me

Me

zaldehyde (**1ak**): A flame-dried Schlenk-flask equipped with a magnetic stir bar, was charged with 4-formylbenzoic acid (1.221 g, 10.00 mmol, 1.0 equiv), L-Menthol (1.563 g, 10.00 mmol, 1.0 equiv),

and triphenylphosphine (2.623g, 10.00 mmol, 1.0 equiv), sealed with a septum, and degassed by alternating vacuum evacuation and nitrogen backfilling (three times) before THF (15 mL) was added. Then DEAD (1.742 g, 10.00 mmol, 1.0 equiv) in THF (10 mL) was added to the mixture under positive pressure. The reaction mixture was stirred at room temperature for 30 h. After the reaction was complete, the reaction mixture was diluted with DCM (30 mL) and filtrated through a small pad of silica gel. The solvent was removed under reduced pressure with the aid of a rotary evaporator and the crude residue was purified by a silica gel column chromatography (PE:EtOAc = 20:1) to give the corresponding pure aromatic aldehyde **1ak** as a colorless liquid in 63% yield (1.640 g). TLC $\mathbf{R}_{\mathbf{f}} = 0.4$ (PE:EtOAc = 20:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 9.83 (s, 1H), 7.79 (d, J = 8.7 Hz, 2H), 6.96 (d, J = 8.7 Hz, 2H), 4.73 (s, 1H), 2.11 – 2.02 (m, 1H), 1.79 – 1.71 (m, 2H), 1.61 (dd, $J^1 = 15.3$ Hz, $J^2 = 6.6$ Hz, 2H), 1.53 (td, $J^1 = 13.6$ Hz, $J^2 = 12.7$ Hz, $J^3 = 4.3$ Hz, 1H), 1.09 – 0.93 (m, 3H), 0.90 (d, J = 6.7 Hz, 3H), 0.80 (m, 6H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 190.6, 163.6, 132.1, 129.4, 115.5, 73.9, 47.5, 37.5, 34.8, 29.3, 26.2, 24.8, 22.2, 21.0, 20.7; **HRMS** (ESI) m/z = 283.1669 calcd. for C₁₇H₂₄NaO₂ [M+Na]⁺, found: 283.1669; **IR** (neat, cm⁻¹): 2947*m*, 2924*m*, 2867*w*, 1690*s*, 1599*s*, 1576*m*, 1508*m*, 1456*w*, 1428*w*, 1308m, 1251s, 1216m, 1199m, 1154s, 1108w, 1022m, 959m, 937m, 891w, 874w, 828s.

4-Formylphenyl 2-(4-(2,2-dichlorocyclopo pyl)phenoxy)-2-methylpropanoate (1am): A flame-dried Schlenk-flask equipped with a magnetic stir bar, was charged with 4-hydroxybenzaldehyde (1.221 g, 10.00 mmol, 1.0 equiv), 2-(4-(2,2-dichlorocy

clopropyl)phenoxy)-2-methylpropanoic acid (3.470 g, 12.00 mmol, 1.2 equiv), and DCC (4.127g, 20.00 mmol, 2.0 equiv), sealed with a septum, and degassed by alternating vacuum evacuation and nitrogen backfilling (three times) before DCM (25 mL) was added. Then DMAP (0.122 g, 1.00 mmol, 0.10 equiv) was added to the mixture under positive pressure. The reaction mixture was stirred at room temperature for 12 h. After the reaction was complete, the reaction mixture was diluted with DCM (30 mL) and filtrated through a small pad of silica gel. The solvent was removed under reduced pressure with the aid of a rotary evaporator and the crude residue was purified by a silica gel column chromatography (PE:EtOAc = 20:1) to give the corresponding pure aromatic aldehyde 1am as a colorless liquid in 74% yield (2.910 g). **TLC** $\mathbf{R}_{\mathbf{f}} = 0.3$ (PE:EtOAc = 10:1); ¹**H** NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 9.97 (s, 1H), 7.89 (d, J = 8.6 Hz, 2H), 7.17 (d, J = 8.7 Hz, 2H), 7.14 (d, J = 8.5 Hz, 2H), 6.93 (d, J = 8.6 Hz, 2H), 2.86 (t, J = 8.0 Hz, 1H), 1.96 (dd, $J^1 = 10.7$ Hz, $J^2 = 7.4$ Hz, 1H), 1.82 - 1.77 (m, 7H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 190.8, 172.2, 155.1, 154.8, 134.2, 131.2, 129.8, 128.6, 122.1, 118.5, 79.3, 60.8, 34.7, 25.8, 25.4; **HRMS** (ESI) m/z = 415.0474 calcd. for C₂₀H₁₈Cl₂NaO₄ [M+Na]⁺, found: 415.0482; **IR** (neat, cm⁻¹): 1758*m*, 1700*m*, 1599*m*, 1510*s*, 1386*w*, 1242*w*, 1209*s*, 1156s, 1107s, 906s, 833s, 728w, 649s, 509w.

4-Formylphenyl 2-(4-(4-chloro-benzo yl)phenoxy)-2-methylpropanoate

(1an): A flame-dried Schlenk-flask equipped with a magnetic stir bar, was charged with 4-hydroxybenzaldehyde (1.221 g, 10.00 mmol, 1.0 equiv),

2-(4-(4-chlorobenzoyl)phenoxy)-2-methylpropanoic acid (3.825 g, 12.00 mmol, 1.2 equiv), and DCC (4.127g, 20.00 mmol, 2.0 equiv), sealed with a septum, and degassed by alternating vacuum evacuation and nitrogen backfilling (three times) before DCM (25 mL) was added. Then DMAP (0.122 g, 1.00 mmol, 0.1 equiv) was added to the mixture under positive pressure. The reaction mixture was stirred at room temperature for 12 h. After the reaction was complete, the reaction mixture was diluted with DCM (30 mL) and filtrated through a small pad of silica gel. The solvent was removed under reduced pressure with the aid of a rotary evaporator and the crude residue was purified by a silica gel column chromatography (PE:EtOAc = 20:1) to give the corresponding pure aromatic aldehyde 1an as a white solid in 76% yield (3.214 g); MP: = 103 - 105 °C; TLC R_f = 0.3 (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 9.94 (s, 1H), 7.87 (d, J = 8.6 Hz, 2H), 7.77 (d, J = 8.8 Hz, 2H), 7.68 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 7.16 (d, J = 8.6 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H), 1.82 (s, 6H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 194.0, 190.6, 171.7, 159.2, 154.8, 138.4, 136.0, 134.2, 132.0, 131.1, 131.0, 130.7, 128.4, 121.9, 117.2, 79.3, 25.2; **HRMS** (EI) m/z = 422.0921 calcd. for $C_{24}H_{19}Cl_2ClO_5[M]^+$, found: 422.0916; **IR** (neat, cm⁻¹): 1760*m*, 1700*m*, 1652*m*, 1596*s*, 1502m, 1386w, 1208s, 1155s, 1097s, 1013s, 852s, 763m, 649m, 478w.

2.2 Preparation of disulfur transfer reagents 2

The disulfur transfer reagents 2a - 2g and 2a' were prepared according to the previously reported literature procedures.^[7]

3. Photocatalytic selective disulfuration of aryl aldehydes and alkenyl aldehydes with dithiosulfonate as bifunctional disulfur reagent and hydrogen atom accepter

3.1 General procedure for disulfuration of aryl aldehydes (GP1)

GP1-1, for liquid aryl aldehydes and solid disulfuration reagent

A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged with the dithiosulfonate reagent **2** (0.24 mmol, 1.2 equiv), phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), and Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before H₂O (2 mL) was added. The corresponding liquid aldehyde **1** (0.20 mmol, 1.0 equiv) was added to the mixture successively by micro-syringe. The reaction mixture was then stirred and irradiated using a 20 W blue LED lamp at room temperature for 12 h. After the reaction was completed, the mixture was diluted with EtOAc (4 mL), which was followed by extraction with EtOAc (10 mL x 3 times). The combined organic phase was washed with brine (10 mL), dried with Na₂SO₄ and the solvent was evaporated with the aid of a rotary evaporator. The crude residue was purified by silica gel column chromatography to afford the desired product **3**.

GP1-2, for liquid aryl aldehydes and liquid disulfuration reagent

A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%) and Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before H₂O (2 mL) was added. The

liquid dithiosulfonate reagent 2 (0.24 mmol, 1.2 equiv) and the corresponding liquid aldehyde 1 (0.20 mmol, 1.0 equiv) were added to the mixture successively by micro-syringe. The reaction mixture was then stirred and irradiated using a 20 W blue LED lamp at room temperature for 12 h. After the reaction was completed, the mixture was diluted with EtOAc (4 mL), which was followed by extraction with EtOAc (10 mL x 3 times). The combined organic phase was washed with brine (10 mL), dried with Na₂SO₄ and the solvent was evaporated with the aid of a rotary evaporator. The crude residue was purified by silica gel column chromatography to afford the desired product **3**.

GP1-3, for solid aryl aldehydes and solid disulfuration reagent

A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged with the corresponding solid aldehyde 1 (0.20 mmol, 1.0 equiv), phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.3 equiv), and the dithiosulfonate reagent 2 (0.24 mmol, 1.2 equiv), sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before H₂O (2 mL) was added. The reaction mixture was then stirred and irradiated using a 20 W blue LED lamp at room temperature for 12 h. After the reaction was completed, the mixture was diluted with EtOAc (4 mL), which was followed by extraction with EtOAc (10 mL x 3 times). The combined organic phase was washed with brine (10 mL), dried with Na₂SO₄ and the solvent was evaporated with the aid of a rotary evaporator. The crude residue was purified by silica gel column chromatography to afford the desired product **3**.

GP1-4, for solid aryl aldehydes and liquid disulfuration reagent

A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged with the corresponding solid aldehyde 1 (0.20 mmol, 1.0 equiv), phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), and Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before H₂O (2 mL) was added. The liquid dithiosulfonate reagent 2 (0.24 mmol, 1.2 equiv) was added to the mixture successively by micro-syringe. The reaction mixture was then stirred and irradiated using a 20 W blue LED lamp at room temperature for 12 h. After the reaction was completed, the mixture was diluted with EtOAc (4 mL), which was followed by extraction with EtOAc (10 mL x 3 times). The combined organic phase was washed with brine (10 mL), dried with Na₂SO₄ and the solvent was evaporated with the aid of a rotary evaporator. The crude residue was purified by silica gel column chromatography to afford the desired product **3**.

3.2 General procedure for disulfuration of alkenyl aldehydes (GP2)

GP2-1, for liquid alkenyl aldehydes and solid disulfuration reagent

A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged with the dithiosulfonate reagent **2** (0.40 mmol, 2.0 equiv), phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), and Na₂CO₃ (27.3 mg, 0.260 mmol, 1.3 equiv), sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before MeCN (2 mL) was added. The corresponding liquid alkenyl aldehyde **4** (0.20 mmol, 1.0 equiv) was added to the mixture successively by micro-syringe. The reaction mixture was then stirred and irradiated using a 20 W blue LED lamp at room temperature for 12 h. After the reaction was complete, the solvent was removed under reduced pressure with the aid of a rotary evaporator. The crude residue was purified by silica gel column chromatography to afford the desired product **5**.

GP2-2, for liquid alkenyl aldehydes and liquid disulfuration reagent

A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), and Na₂CO₃ (27.3 mg, 0.260 mmol, 1.3 equiv), sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before MeCN (2 mL) was added. The liquid dithiosulfonate reagent **2** (0.40 mmol, 2.0 equiv) and the corresponding liquid alkenyl aldehyde **4** (0.20 mmol, 1.0 equiv) were added to the mixture successively by micro-syringe. The reaction mixture was then stirred and irradiated using a 20 W blue LED lamp at room temperature for 12 h. After the reaction was complete, the solvent was removed under reduced pressure with the aid of a rotary evaporator. The crude residue was purified by silica gel column chromatography to afford the desired desired product **5**.

GP2-3, for solid alkenyl aldehydes and solid disulfuration reagent

A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged with the corresponding solid alkenyl aldehyde **4** (0.20 mmol, 1.0 equiv), phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (27.3 mg, 0.260 mmol, 1.3 equiv), and the dithiosulfonate reagent **2** (0.40 mmol, 2.0 equiv), sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before MeCN (2 mL) was added. The reaction mixture was then stirred and irradiated using a 20 W blue LED lamp at room temperature for 12 h. After the reaction was complete, the solvent was removed under reduced pressure with the aid of a rotary evaporator. The crude residue was purified by silica gel column chromatography to afford the desired product **5**.

GP2-4, for solid alkenyl aldehydes and liquid disulfuration reagent

A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged with the corresponding solid alkenyl aldehyde **4** (0.20 mmol, 1.0 equiv), phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), and Na₂CO₃ (27.3 mg, 0.260 mmol, 1.3 equiv), sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before MeCN (2 mL) was added. The liquid dithiosulfonate reagent **2** (0.40 mmol, 2.0 equiv) was added to the mixture successively by micro-syringe. The reaction mixture was then stirred and irradiated using a 20 W blue LED lamp at room temperature for 12 h. After the reaction was complete, the solvent was removed under reduced pressure with the aid of a rotary evaporator. The crude residue was purified by silica gel column chromatography to afford the desired product **5**.

3.3 Screening of reaction conditions

General procedure for optimization of reaction conditions of 3a (GP3)

GP3-1, for solid base

A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged with the dithiosulfonate reagent **2a**, **PC** (0.010 mmol, 10 mol%), and solid base, sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before solvent (1 mL) was added. The liquid aldehyde **1a** (0.10 mmol, 1.0 equiv) was added to the mixture successively by micro-syringe. The reaction mixture was then stirred and irradiated using a 20 W blue LED lamp at room temperature for 12 h. After the reaction was completed, the mixture was diluted with EtOAc (4 mL), which was followed by extraction with EtOAc (10 mL x 3 times). The combined organic phase was washed with brine (10 mL), dried with Na₂SO₄ and the solvent was evaporated with the aid of a rotary evaporator. The crude residue was purified by silica gel column chromatography to afford the desired product **3a**.

GP3-2, for liquid base

A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged with the dithiosulfonate reagent 2a, and PC (0.010 mmol, 10 mol%), sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before solvent (1 mL) was added. The liquid base and aldehyde 1a (0.10 mmol, 1.0 equiv) were added to the mixture successively by micro-syringe. The reaction mixture was then stirred and irradiated using a 20 W blue LED lamp at room temperature for 12 h. After the reaction was completed, the mixture was diluted with EtOAc (4 mL), which was followed by extraction with EtOAc (10 mL x 3 times). The combined organic phase was washed with brine (10 mL), dried with Na₂SO₄ and the solvent was evaporated with the aid of a rotary evaporator. The crude residue was purified by silica gel column chromatography to afford the desired product **3a**.

	Р	+ TsSS ^t Bu –	PC, Base		SS ^t Bu
Me	1 a	2a		Me	3a
Entry ^a	PC	2 (equiv)	Base (equiv)	Solvent	Yield (%) ^b
1	PC 1	2a (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	MeCN	trace
2	PC 2	2a (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	MeCN	trace
3	PC 3	2a (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	MeCN	39
4	PC 4	2a (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	MeCN	84
5	PC 4	2a (1.2 equiv)	Cs ₂ CO ₃ (1.2 equiv)	MeCN	34
6	PC 4	2a (1.2 equiv)	K_2CO_3 (1.2 equiv	MeCN	60
7	PC 4	2a (1.2 equiv)	NaHCO ₃ (1.2 equiv)	MeCN	62
8	PC 4	2a (1.2 equiv)	DIPEA (1.2 equiv)	MeCN	trace
9	PC 4	2a (1.2 equiv)	Et ₃ N (1.2 equiv)	MeCN	trace
10	PC 4	2a (1.2 equiv)	DBU (1.2 equiv)	MeCN	22
11	PC 4	2a (1.2 equiv)	DMAP (1.2 equiv)	MeCN	13
12	PC 4	2a (1.2 equiv)	DABCO(1.2 equiv)	MeCN	18
13	PC 4	2a (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	DCM	66
14	PC 4	2a (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	DMF	trace
15	PC 4	2a (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	Toluene	38
16	PC 4	2a (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	H ₂ O	94
17 ^c	PC 4	2a (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	H ₂ O	55
18 ^d	PC 4	2a (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	H ₂ O	59
19 ^e	PC 4	2a (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv	H ₂ O	66
20	PC 4	2a' (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	H ₂ O	12
21	PC 5	2a (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	H ₂ O	nd.
22	PC 4	2a (1.5 equiv)	Na ₂ CO ₃ (1.2 equiv)	H ₂ O	87
23	PC 4	2a (1.2 equiv)	Na ₂ CO ₃ (1.5 equiv)	H ₂ O	84
24	PC 4	2a (1.2 equiv)	none	H ₂ O	35
25 ^f	PC 4	2a (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	H ₂ O	nd.
26	none	2a (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	H ₂ O	nd.
27	PC 5	2a (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	H ₂ O	nd.
28	PC4	2a' (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	H ₂ O	12

^aReaction condition: **1a** (0.10 mmol, 1.0 equiv), **2a**, **PC** (10 mol%), base, solvent (1 mL), blue LEDs, room temperature, 12 h. ^bIsolated yield. "nd." stands for "not detected". ^cThe reaction was conducted with CFL as light source. ^dThe reaction was conducted with green LEDs as light source. ^eThe reaction was conducted with white LEDs as light source. ^fThe reaction was conducted in the dark.

	о н о	+ TsSS ^t Bu ────────────────────────────────────	PC, Base		∕∽SS ^t Bu
4a		2a		5a	
Entry ^a	PC	2 (equiv)	Base (equiv)	Solvent	Yield (%) ^b
1	PC 1	2a (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	MeCN	trace
2	PC 2	2a (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	MeCN	trace
3	PC 3	2a (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	MeCN	nd.
4	PC 4	2a (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	MeCN	39
5	PC 5	2a (1.2 equiv)	Na ₂ CO ₃ (1.2 equiv)	MeCN	nd.
6	PC 4	2a (1.5 equiv)	Na ₂ CO ₃ (1.2 equiv)	MeCN	61
7	PC 4	2a (1.8 equiv)	Na ₂ CO ₃ (1.2 equiv)	MeCN	71
8	PC 4	2a (2.0 equiv)	Na ₂ CO ₃ (1.2 equiv)	MeCN	80
9	PC 4	2a (2.0 equiv)	Na ₂ CO ₃ (1.2 equiv)	Toluene	trace
10	PC 4	2a (2.0 equiv)	Na ₂ CO ₃ (1.2 equiv)	Dioxane	nd.
11	PC 4	2a (2.0 equiv)	Na ₂ CO ₃ (1.2 equiv)	CH_3CI_3	21
12	PC 4	2a (2.0 equiv)	Na ₂ CO ₃ (1.2 equiv)	H ₂ O	nd.
13	PC 4	2a (2.0 equiv)	Na ₂ CO ₃ (1.2 equiv)	THF	24
14	PC 4	2a (2.0 equiv)	Na ₂ CO ₃ (1.2 equiv)	EA	31
15	PC 4	2a (2.0 equiv)	Na ₂ CO ₃ (1.2 equiv)	DMF	12
16	PC 4	2a (2.0 equiv)	Na ₂ CO ₃ (1.2 equiv)	DMSO	trace
17	PC 4	2a (2.0 equiv)	Cs_2CO_3 (1.2 equiv)	MeCN	54
18	PC 4	2a (2.0 equiv)	K ₂ CO ₃ (1.2 equiv)	MeCN	41
19	PC 4	2a (2.0 equiv)	NaHCO ₃ (1.2 equiv)	MeCN	25
20	PC 4	2a (2.0 equiv)	NaOH (1.2 equiv)	MeCN	30
21	PC 4	2a (2.0 equiv)	DABCO (1.2 equiv)	MeCN	36
22	PC 4	2a (2.0 equiv)	Na ₂ CO ₃ (1.3 equiv)	MeCN	84
23	PC 4	2a (2.0 equiv)	Na ₂ CO ₃ (1.4 equiv)	MeCN	83
24	PC 4	2a (2.0 equiv)	Na ₂ CO ₃ (1.5 equiv)	MeCN	76
25 ^c	PC 4	2a (2.0 equiv)	Na ₂ CO ₃ (1.3 equiv)	MeCN	nd.
26	none	2a (2.0 equiv)	Na ₂ CO ₃ (1.3 equiv)	MeCN	nd.

^aReaction condition: **4a** (0.10 mmol, 1.0 equiv), **2a**, PC (10.0 mol%), base, solvent (2 mL), blue LEDs, room temperature, 12 h. ^bIsolated yield. "nd." stands for "not detected". ^cThe reaction was conducted in the dark.

General procedure for optimization of reaction conditions of 5a (GP4)

GP4-1, for solid base

A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged with the dithiosulfonate reagent **2a**, **PC** (0.010 mmol, 10 mol%), and solid base, sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before solvent (1 mL) was added. The alkenyl aldehyde **4a** (0.10 mmol, 1.0 equiv) was added to the mixture successively by micro-syringe. The reaction mixture was then stirred and irradiated using a 20 W blue LED lamp at room temperature for 12 h. After the reaction was complete, the solvent was removed under reduced pressure with the aid of a rotary evaporator. The crude residue was purified by silica gel column chromatography to afford the desired product **5a**.

GP4-2, for liquid base

A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged with the dithiosulfonate reagent 2a, and PC (0.010 mmol, 10 mol%), sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before solvent (1 mL) was added. The liquid base and alkenyl aldehyde 4a (0.10 mmol, 1.0 equiv) were added to the mixture successively by micro-syringe. The reaction mixture was then stirred and irradiated using a 20 W blue LED lamp at room temperature for 12 h. After the reaction was complete, the solvent was removed under reduced pressure with the aid of a rotary evaporator. The crude residue was purified by silica gel column chromatography to afford the desired product 5a.

Figure S1 The reaction setup

Figure S2 Inactive substrates

3.4 Gram-scale synthesis

The procedure for gram-scale synthesis of 3a

A flame-dried 250 mL Schlenk-flash equipped with a magnetic stir bar was charged with the dithiosulfonate reagent **2a** (2.650 g, 9.600 mmol, 1.2 equiv), phenanthrene-9,10-dione (166.5 mg, 0.8000 mmol, 10 mol%), and Na₂CO₃ (1.008 g, 9.600 mmol, 1.2 equiv), sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before H₂O (80 mL) was added. The aldehyde **1a** (960.0 mg, 8.000 mmol, 1.0 equiv) was added to the mixture successively by syringe. The reaction mixture was circulated by the continuous flow platform with photoreactor and irradiated using a 20 W blue LED lamp at room temperature for 36 h. After the reaction was completed, the mixture was diluted with EtOAc (10 mL), which was followed by extraction with EtOAc (30 mL x 3 times). The combined organic phase was washed with brine (50 mL), dried with Na₂SO₄ and the solvent was evaporated with the aid of a rotary evaporator. The crude residue was purified by silica gel column chromatography to afford the desired product **3a** as a colorless liquid in 72% yield (1.3850 g).

The procedure for gram-scale synthesis of 5a

A flame-dried 250 mL Schlenk-flash equipped with a magnetic stir bar was charged with the dithiosulfonate reagent **2a** (4.420 g, 16.00 mmol, 2.0 equiv), phenanthrene-9,10-dione (166.5 mg, 0.8000 mmol, 10 mol%), and Na₂CO₃ (1.090 g, 10.40 mmol, 1.3 equiv), sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before MeCN (80 mL) was added. The

alkenyl aldehyde **4a** (1.300 g, 8.000 mmol, 1.0 equiv) was added to the mixture successively by syringe. The reaction mixture was circulated by the continuous flow platform with photoreactor and irradiated using a 20 W blue LED lamp at room temperature for 36 h. After the reaction was complete, the solvent was removed under reduced pressure with the aid of a rotary evaporator. The crude residue was purified by silica gel column chromatography to afford the desired product **5a** as a colorless liquid in 70% yield (1.5815 g).

4. Mechanistic studies

A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged with the *SS*-(*tert*-butyl)4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv), phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), and radical scavenger TEMPO (78.1 mg, 0.500 mmol, 2.5 equiv) or BHT (110.2 mg, 0.5000 mmol, 2.5 equiv), sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before H₂O (2 mL) was added. The aldehyde **1a** (24.0 mg, 0.200 mmol, 1.0 equiv) was added to the mixture successively by micro-syringe. The reaction mixture was then stirred and irradiated using a 20 W blue LED lamp at room temperature for 12 h. After the reaction was completed, the mixture was diluted with EtOAc (4 mL), which was followed by extraction with EtOAc (10 mL x 3 times). The combined organic phase was washed with brine (10 mL), dried with Na₂SO₄ and the solvent was evaporated with the aid of a rotary evaporator. Trace amount of desired product **3a** was detected,

whereas TEMPO adduct and BHT adduct were not detected by TLC, GC-MS and ¹H NMR analysis.

A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged with the phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), and radical scavenger TEMPO (78.1 mg, 0.500 mmol, 2.5 equiv), sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before MeCN (2 mL) was added. The aldehyde 1a (24.0 mg, 0.200 mmol, 1.0 equiv) was added to the mixture successively by micro-syringe. The reaction mixture was then stirred and irradiated using a 20 W blue LED lamp at room temperature for 12 h. After the reaction was complete, the solvent was removed under reduced pressure with the aid of a rotary evaporator. The crude residue was purified by silica gel column chromatography (PE:EtOAc = 50:1) to afford the TEMPO adduct 6 as a colorless liquid in 72% yield (37.6 mg). TLC $R_f =$ 0.4 (PE:EtOAc = 20:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.97 (d, J = 7.8 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 2.42 (s, 3H), 1.74 (t, J = 15.9 Hz, 3H), 1.58 (d, J = 12.7 Hz, 2H), 1.46 (d, J = 12.2 Hz, 1H), 1.27 (s, 6H), 1.11 (s, 6H); ¹³C NMR (101) MHz, CDCl₃, 300 K): δ (ppm) = 166.0, 143.0, 129.1, 128.7, 126.5, 59.9, 38.6, 31.5, 21.2, 20.4, 16.6; The spectral data are in accordance with previous reported literature.^[8]

A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged with the *SS*-(*tert*-butyl)4-methylbenzenesulfono(dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv), phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), sodium carbonate (26.8 mg, 0.260 mmol, 1.3 equiv), and radical scavenger TEMPO (78.2 mg, 0.500 mmol, 2.5 equiv), sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before MeCN (2 mL) was added. The alkenyl aldehyde **1a** (32.4 mg, 0.200 mmol, 1.0 equiv) was added to the mixture

successively by micro-syringe. The reaction mixture was then stirred and irradiated using a 20 W blue LED lamp at room temperature for 12 h. After the reaction was complete, the solvent was removed under reduced pressure with the aid of a rotary evaporator. Trace amount of desired product 3a was detected, whereas TEMPO adduct was not detected by TLC, GC-MS and ¹H NMR analysis.

A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged with the *SS*-(*tert*-butyl)4-methylbenzenesulfono(dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv), phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), sodium carbonate (26.8 mg, 0.260 mmol, 1.3 equiv), and radical scavenger BHT (110.2 mg, 0.5000 mmol, 2.5 equiv), sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before MeCN (2 mL) was added. The alkenyl aldehyde **1a** (32.4 mg, 0.200 mmol, 1.0 equiv) was added to the mixture successively by micro-syringe. The reaction mixture was then stirred and irradiated using a 20 W blue LED lamp at room temperature for 12 h. After the reaction was complete, the solvent was removed under reduced pressure with the aid of a rotary evaporator. Trace amount of desired product **3a** was detected, and the BHT adduct **7** was detected by GC-MS.

Figure S4 The GC-MS spectrum of BHT capture experiment

5. Spectral data of products

SS-(*tert*-Butyl) 4-methylbenzo(dithioperoxoate) (3a): The title compound was prepared according to general procedure (GP1-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv),

4-methylbenzaldehyde **1a** (24.0 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3a** as a colorless liquid in 94% yield (45.2 mg); **TLC R**_f = 0.6 (PE:EtOAc = 100:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.94 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 2.43 (s, 3H), 1.35 (s, 9H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 189.8, 149.9, 133.3, 129.5, 127.8, 49.0, 29.8, 21.8; **HRMS** (ESI) m/z = 241.0715 calcd. for C₁₂H₁₆OS₂ [M+H]⁺, found: 241.0715; **IR** (neat, cm⁻¹): 2960w, 2921w, 1698s, 1606m, 1454m, 1364m, 1202s, 1174s, 821s, 820s, 785s, 717m, 638m, 620s, 471m.

SS-(*tert*-Butyl) benzo(dithioperoxoate) (3b): The title compound was prepared according to general procedure (GP1-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), benzaldehyde 1b (21.2 mg,

0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono (dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3b** as a colorless liquid in 90% yield (40.7 mg); **TLC R**_f = 0.4 (PE:EtOAc = 100:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.04 (d, *J* = 7.0 Hz, 2H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 1.36 (s, 9H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 190.4, 135.9, 133.9, 128.8, 127.8, 49.1, 29.8; The spectral data are in accordance with previous reported literature.^[9]

SS^tBu

SS-(*tert*-Butyl) 4-methoxybenzo(dithioperoxoate) (3c): The title compound was prepared according to general procedure (GP1-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv),

4-methoxybenzaldehyde **1c** (27.2 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3c** as a white solid in 96% yield (49.2 mg); **TLC R**_f = 0.4 (PE:EtOAc = 100:1); **MP**: = 91 – 93 °C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.02 (d, *J* = 8.9 Hz, 2H), 6.95 (d, *J* = 8.9 Hz, 2H), 3.87 (s, 3H), 1.35 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 188.5, 164.2, 130.0, 128.6, 114.0, 55.5, 48.8, 29.8; **HRMS** (ESI) *m*/*z* = 257.0664 calcd. for C₁₂H₁₇O₂S₂ [M+H]⁺, found: 257.0672; **IR** (neat, cm⁻¹): 2961*w*, 2921*w*, 1693*m*, 1599*s*, 1576*w*, 1508*m*, 1456*w*, 1419*w*, 1308*w*, 1261*m*, 1209*s*, 1161*s*, 1208*w*, 887*s*, 837*m*, 788*w*.

AcHN SS^tBu

SS-(*tert*-Butyl) 4-acetamidobenzo(dithioperoxoate) (3d): The title compound was prepared according to general procedure (GP1-3) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2

equiv), *N*-(4-formylphenyl)acetamide **1d** (32.6 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in MeCN (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE:EtOAc = 50:1) gave the desired product **3d** as a white solid in 71% yield (40.0 mg); **TLC R**_f = 0.3 (PE:EtOAc = 50:1); **MP**: = 141 – 144 °C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.00 – 7.98 (m, 3H), 7.66 (d, *J* = 8.4 Hz, 2H), 2.21 (s, 3H), 1.34 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 189.3, 168.9, 143.2, 131.1, 129.1, 119.0, 49.0, 29.8, 24.7; **HRMS** (ESI) *m*/*z* = 284.0773 calcd. for C₁₃H₈NO₂S₂ [M+H]⁺, found: 284.0773; **IR** (neat, cm⁻¹): 2961*w*, 2923*w*, 1679*s*, 1590*s*, 1530*s*, 1406*m*, 1364*m*, 1317*m*, 1265*m*, 1209*s*, 1170*s*, 890*s*, 846*m*, 687*w*, 645*w*.

SS-(*tert*-Butyl) 4-fluorobenzo(dithioperoxoate) (3e): The title compound was prepared according to general procedure (GP1-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%),

Na₂CO₃ (25.4)0.240 mmol, 1.2 mg, equiv), 4-fluorobenzaldehyde 1e (24.8 mg, 0.200 mmol, 1.0 equiv), and SS-(tert-butyl) 4-methylbenzenesulfono(dithioperoxoate) 2a (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product 3e as a colorless liquid in 88% yield (42.8 mg); TLC Rf = 0.4 (PE:EtOAc = 100:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.07 (dd, $J^{1} = 8.9$ Hz, $J^{2} = 5.3$ Hz, 2H), 7.16 (t, J = 8.9 Hz, 2H), 1.35 (s, 9H); ¹³C NMR (101) MHz, CDCl₃, 300 K): δ (ppm) = 189.0, 166.2 (d, J = 257.1 Hz, 1C), 132.2, (d, J = 3.2) Hz, 1C), 130.4 (d, J = 9.5 Hz, 2C), 116.0 (d, J = 22.1 Hz, 2C), 49.1, 29.8; **IR** (neat, cm⁻¹): 2962w, 1706m, 1683s, 1598s, 1503s, 1456w, 1408w, 1238m, 1196m, 1155s, 842s, 805w, 726w, 634m, 617w.

SS-(*tert*-Butyl) 4-bromobenzo(dithioperoxoate) (3f): The title compound was prepared according to general procedure (GP1-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv),

4-bromobenzaldehyde **1f** (37.0 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3f** as a white solid in 82% yield (50.1 mg); **TLC R_f** = 0.5 (PE:EtOAc = 100:1); **MP**: = 68 – 69 °C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.90 (d, *J* = 8.6 Hz, 2H), 7.63 (d, *J* = 8.6 Hz, 2H), 1.35 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 189.7, 134.6, 132.1, 129.1, 129.1, 49.3, 29.8; **HRMS** (APCI) *m*/*z* = 304.9664 calcd. for C₁₁H₁₄OS₂Br [M+H]⁺, found: 304.9667; **IR** (neat, cm⁻¹): 2961*w*, 2921*w*, 1689*s*, 1582*m*, 1395*m*, 1364*m*, 1198*s*, 1162*s*, 1168*s*, 1011*s*, 880*s*, 830*s*, 717*m*, 638*m*, 570*w*, 467*w*.

SS-(*tert*-Butyl) 4-iodobenzo(dithioperoxoate) (3g): The title compound was prepared according to general procedure (GP1-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), 4-iodobenzaldehyde

1g (46.4 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono (dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3g** as a white solid in 44% yield (31.0 mg); **TLC R**_f = 0.4 (PE:EtOAc = 100:1); **MP**: = 54 – 56 °C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.85 (d, *J* = 8.6 Hz, 2H), 7.74 (d, *J* = 8.5 Hz, 2H), 1.35 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 190.0, 138.1, 135.1, 129.0, 101.9, 49.3, 29.8; **HRMS** (ESI) *m*/*z* = 352.9525 calcd. for C₁₁H₁₄OS₂I [M+H]⁺, found: 352.9526; **IR** (neat, cm⁻¹): 2960*w*, 2920*w*, 1689*s*, 1578*s*, 1478*w*, 1455*w*, 1389*m*, 1364*m*, 1193*s*, 1162*s*, 1057*s*, 881*s*, 821*m*, 715*m*, 700*m*, 638*m*.

SS-(*tert*-Butyl) 4-(trifluoromethyl)benzo(dithioperoxoate) (3h): The title compound was prepared according to general procedure (GP1-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2

equiv), 4-(trifluoromethyl)benzaldehyde **1h** (34.8 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3h** as a white solid in 57% yield (33.4 mg); **TLC R**f = 0.5 (PE:EtOAc = 100:1); **MP**: = 49 – 52 °C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.13 (d, *J* = 7.8 Hz, 2H), 7.75 (d, *J* = 8.4 Hz, 2H), 1.37 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 190.0, 138.7, 135.1 (q, *J* = 32.3 Hz, 1C), 128.1, 125.9 (q, *J* = 3.0 Hz, 2C), 123.4 (q, *J* = 273.7 Hz, 1C), 49.5, 29.8; **HRMS** (ESI) *m*/*z* = 317.0252 calcd. for C₁₂H₁₃F₃NaOS₂ [M+Na]⁺, found: 317.0263; **IR** (neat, cm⁻¹): 2964*w*, 2921*w*, 1698*m*, 1408*w*, 1366*w*, 1322*s*, 1202*m*, 1165*m*, 1132*s*, 1110*m*, 1066*s*, 1016*w*, 892*m*, 848*m*, 772*m*, 692*w*, 648*w*.

SS-(*tert*-Butyl) 4-cyanobenzo(dithioperoxoate) (3i): The title compound was prepared according to general procedure (**GP1-3**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv),

4-formylbenzonitrile **1i** (26.2 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3i** as a white solid in 48% yield (24.2 mg); **TLC R**_f = 0.4 (PE:EtOAc = 100:1); **MP**: = 63 – 65 °C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.12 (d, *J* = 8.5 Hz, 2H), 7.79 (d, *J* = 8.5 Hz, 2H), 1.37 (s, 9H); ¹³C **NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 189.9, 139.0, 132.7, 128.2, 117.7, 117.2, 49.7, 29.8; **IR** (neat, cm⁻¹): 2962*w*, 2923*w*, 2852*w*, 2233*w*, 1698*s*, 1470*w*, 1403*w*, 1365*w*, 1199*s*, 1163*m*, 894*s*, 845*w*, 764*w*, 637*w*, 541*w*.

SS-(*tert*-Butyl) [1,1'-biphenyl]-4-carbo(dithioperoxoate) (3j): The title compound was prepared according to general procedure (**GP1-3**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2

equiv), 4-biphenylcarboxaldehyde **1j** (36.4 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3j** as a white solid in 68% yield (41.1 mg); **MP**: = 68 – 71 °C; **TLC R**_f = 0.4 (PE:EtOAc = 100:1); ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.12 (d, *J* = 8.6 Hz, 2H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.63 (d, *J* = 6.9 Hz, 2H), 7.48 (t, *J* = 7.3 Hz, 2H), 7.42 (t, *J* = 7.3 Hz, 1H), 1.38 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 189.9, 146.7, 139.6, 134.5, 129.0, 128.4, 128.3, 127.4, 127.3, 49.1, 29.8; **HRMS** (ESI) *m*/*z* = 303.0872 calcd. for C₁₇H₁₉OS₂ [M+H]⁺, found: 303.0877; **IR** (neat, cm⁻¹): 2961*w*, 2921*w*, 1690*s*, 1602*m*, 1364*m*, 1208*m*, 1175*s*, 1007*w*, 888*s*, 847*w*, 767*w*, 748*m*, 730*w*, 695*w*, 646*w*.

SS-(*tert*-Butyl) 4-(trimethylsilyl)benzo(dithioperoxoate) (3k): The title compound was prepared according to general procedure (GP1-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2

equiv), 4-(trimethylsilyl)benzaldehyde **1k** (35.7 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3k** as a colorless liquid in 80% yield (47.5 mg); **TLC R**_f = 0.5 (PE:EtOAc = 100:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ

(ppm) = 7.99 (d, J = 8.1 Hz, 2H), 7.63 (d, J = 8.1 Hz, 2H), 1.35 (s, 9H), 0.30 (s, 9H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 190.5, 148.4, 135.9, 133.7, 126.6, 49.0, 29.8, -1.41; **IR** (neat, cm⁻¹): 2958*w*, 1695s, 1386*m*, 1365*m*, 1249*m*, 1209*s*, 1181*s*, 1164*m*, 1105*w*, 890*m*, 838*s*, 824*s*, 760*w*, 714*s*, 647*w*.

SS-(*tert*-Butyl) **3**-methylbenzo(dithioperoxoate) (**3**l): The title compound was prepared according to general procedure (**GP1-1**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv),

3-methylbenzaldehyde **11** (24.0 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3l** as a white solid in 96% yield (46.0 mg); **TLC R**_f = 0.5 (PE:EtOAc = 100:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.84 – 7.82 (m, 2H), 7.41 (d, *J* = 7.5 Hz, 1H), 7.35 (t, *J* = 8.0 Hz, 1H), 2.41 (s, 3H), 1.35 (s, 9H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 190.4, 138.7, 135.8, 134.6, 128.7, 128.1, 125.0, 49.0, 29.8, 21.3; **HRMS** (APCI) *m*/*z* = 241.0715 calcd. for C₁₂H₁₇OS₂ [M+H]⁺, found: 241.0718; **IR** (neat, cm⁻¹): 2961*w*, 2920*w*, 1696*s*, 1559*m*, 1456*w*, 1364*w*, 1186*s*, 1162*m*, 995*m*, 898*m*, 791*w*, 721*m*, 691*s*.

SS-(*tert*-Butyl) 3-methoxybenzo(dithioperoxoate) (3m): The title compound was prepared according to general procedure (**GP1-1**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2

equiv), 3-methoxybenzaldehyde **1m** (27.2 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3m** as a colorless liquid in 96% yield (49.2 mg); **TLC R_f** = 0.5 (PE:EtOAc = 100:1); ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.64 (d, *J* = 7.7 Hz, 1H), 7.49 (s, 1H), 7.38 (t, *J* = 8.0 Hz, 1H), 7.14 (d, *J* = 9.2 Hz, 1H), 3.85 (s, 3H), 1.35 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 190.3, 159.8, 137.1, 129.8, 120.3, 120.3, 111.9, 55.5, 49.0, 29.8; **HRMS** (ESI) *m*/*z* = 257.0664 calcd. for C₁₂H₁₇OS₂ [M+H]⁺, found: 257.0672; **IR** (neat, cm⁻¹): 2923*w*, 1760*m*, 1685*w*, 1597*w*, 1512*s*, 1365*w*, 1242*w*, 1201*s*, 1112*s*, 1015*w*, 892*s*, 832*w*, 731*s*, 640*w*.

SS-(*tert*-Butyl) **3**-phenoxybenzo(dithioperoxoate) (**3**n): The title compound was prepared according to general procedure (**GP1-3**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol,

10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), 3-phenoxybenzaldehyde 1n (39.6 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) 2a (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3n** as a colorless liquid in 62% yield (39.8 mg); **TLC** $\mathbf{R}_{f} = 0.5 \text{ (PE:EtOAc} = 100:1); {}^{1}\mathbf{H} \text{ NMR} (400 \text{ MHz}, \text{CDCl}_{3}, 300 \text{ K}): \delta \text{ (ppm)} = 7.76 \text{ (d,}$ J = 7.9 Hz, 1H), 7.63 (s, 1H), 7.43 (t, J = 8.0 Hz, 1H), 7.37 (t, J = 8.0 Hz, 2H), 7.23 (d, J = 8.2 Hz, 1H), 7.16 (t, J = 7.4 Hz, 1H), 7.03 (d, J = 7.6 Hz, 2H), 1.35 (s, 9H); ¹³C **NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 190.0, 157.9, 156.2, 137.5, 130.1, 130.0, 124.1, 123.7, 122.3, 119.3, 117.3, 49.1, 29.8; **HRMS** (ESI) m/z = 319.0821 calcd. for $C_{17}H_{18}O_2S_2[M+H]^+$, found: 319.0828; **IR** (neat, cm⁻¹): 2961w, 2921w, 1694m, 1579m, 1489m, 1433m, 1365m, 1244s, 1211m, 1162m, 986w, 959w, 844m, 794m, 752m, 692s, 692s, 673w.

SS-(*tert*-Butyl) 3-iodobenzo(dithioperoxoate) (3o): The title compound was prepared according to general procedure (GP1-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), 3-iodobenzaldehyde

10 (46.4 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono (dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3o** as a colorless liquid in 80% yield (56.4 mg); **TLC R**_f = 0.5 (PE:EtOAc = 100:1); ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.33 (s, 1H), 8.00 (d, *J* = 7.8 Hz, 1H), 7.94 (d, *J* = 7.9 Hz, 1H), 7.23 (t, *J* = 7.9 Hz, 1H), 1.36 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 189.3, 142.6, 137.5, 136.4, 130.4, 126.9, 94.4, 49.3, 29.8; **HRMS** (ESI) *m*/*z* = 352.9525 calcd. for C₁₁H₁₄OS₂I [M+H]⁺, found: 352.9526; **IR** (neat, cm⁻¹): 2961*w*, 2923*w*, 1756*m*, 1686*w*, 1598*w*, 1501*w*, 1472*w*, 1411*w*, 1365*w*, 1261*s*, 1204*s*, 1106*s*, 1046*m*, 895*s*, 801*s*, 730*m*, 664*w*, 640*m*.

SS-(*tert*-Butyl) 3-cyanobenzo(dithioperoxoate) (3p): The title compound was prepared according to general procedure (*GP1-1*) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv),

3-formylbenzonitrile **1p** (26.2 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3p** as a colorless liquid in 68% yield (34.1 mg); **TLC R**_f = 0.3 (PE:EtOAc = 100:1); ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.30 (s, 1H), 8.24 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 7.8 Hz, 1H), 7.64 (t, *J* = 7.9 Hz, 1H), 1.36

(s, 9H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 189.2, 136.8, 136.6, 131.6, 131.2, 129.9, 117.5, 113.5, 49.6, 29.8; HRMS (EI) m/z = 251.0439 calcd. for C₁₂H₁₃NOS₂ [M]⁺, found: 251.0433; IR (neat, cm⁻¹): 2963*w*, 2923*w*, 2234*w*, 1692*s*, 1455*w*, 1422*w*, 1365*m*, 1232*s*, 1149*s*, 968*s*, 933*s*, 802*s*, 766*s*, 690*s*, 673*m*, 550*w*.

SS-(*tert*-Butyl) **3-nitrobenzo(dithioperoxoate)** (**3q**): The title compound was prepared according to general procedure (GP1-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv),

3-nitrobenzaldehyde **1q** (30.2 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3q** as a white solid in 34% yield (18.4 mg); **TLC R_f** = 0.5 (PE:EtOAc = 100:1); ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.86 (s, 1H), 8.47 (d, *J* = 8.3 Hz, 1H), 8.34 (d, *J* = 7.8 Hz, 1H), 7.72 (t, *J* = 8.0 Hz, 1H), 1.38 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 189.1, 148.4, 137.2, 133.2, 130.1, 128.0, 122.7, 49.7, 29.8; **HRMS** (EI) *m*/*z* = 271.0337 calcd. for C₁₁H₁₃NO₃S₂ [M]⁺, found: 271.0326; **IR** (neat, cm⁻¹): 2963*w*, 2923*w*, 1698*m*, 1612*w*, 1533*s*, 1456*w*, 1346*s*, 1199*s*, 1162*m*, 1082*m*, 962*m*, 854*m*, 812*w*, 734*m*, 705*s*, 684*m*.

SS-(*tert*-Butyl) 2-methylbenzo(dithioperoxoate) (3r): The title compound was prepared according to general procedure (GP1-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), 2-methylbenzaldehyde

Ir (24.0 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono (dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3r** as a white solid in 57% yield (27.3 mg); **TLC R**_f = 0.5 (PE:EtOAc = 100:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.86 (d, J = 7.6 Hz, 1H), 7.43 (t, J = 6.8 Hz, 1H), 7.34 – 7.26 (m, 2H), 2.47 (s, 3H), 1.37 (s, 9H); ¹³C NMR (101 MHz, CDCl₃, 300 K): 192.5, 137.1, 136.1, 132.2, 131.7, 128.6, 125.8, 49.0, 29.8, 20.5; **HRMS** (APCI) m/z = 241.0715 calcd. for C₁₂H₁₇OS₂ [M+H]⁺, found: 241.0711; **IR** (neat, cm⁻¹): 2961w, 1702s, 1456m, 1364m, 1209w, 1188s, 1162m, 1162s, 882s, 780w, 761s, 721m, 675m, 647s.

SS-(*tert*-Butyl) 2-methoxybenzo(dithioperoxoate) (3s): The title compound was prepared according to general procedure (GP1-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv),

2-methoxybenzaldehyde **1s** (27.2 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3s** as a colorless liquid in 64% yield (33.0 mg); **TLC R**f = 0.4 (PE:EtOAc = 100:1); ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.79 (d, *J* = 7.7 Hz, 1H), 7.50 (m, *J* = 8.0 Hz, 1H), 7.02 (m, 2H), 3.94 (s, 3H), 1.36 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 190.2, 158.1, 134.2, 129.9, 125.6, 120.6, 112.0, 55.8, 48.8, 29.9; **HRMS** (ESI) *m*/*z* = 257.0664 calcd. for C₁₂H₁₇O₂S₂ [M+H]⁺, found: 257.0674; **IR** (neat, cm⁻¹): 3360*w*, 2921*w*, 2851*m*, 2359*w*, 1653*m*, 1635*w*, 1647*m*, 1285*w*, 1249*w*, 1162*w*, 1019*w*, 880*m*, 781*w*.

SS-(*tert*-Butyl) 2-bromobenzo(dithioperoxoate) (3t): The title compound was prepared according to general procedure (GP1-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), 2-bromobenzaldehyde

1t (37.0 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono (dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3t** as a colorless liquid in 50% yield (30.3 mg); **TLC R**_f = 0.3 (PE:EtOAc = 100:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.66 (d, J = 7.8 Hz, 1H), 7.60 (d, J = 7.4 Hz, 1H), 7.40 (t, J = 6.7 Hz, 1H), 7.35 (t, J = 8.0 Hz, 1H), 1.40 (s, 9H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 192.0, 138.6, 134.0, 132.6, 129.0, 127.3, 118.9, 49.6, 29.9; **HRMS** (ESI) m/z = 304.9664 calcd. for C₁₁H₁₄OS₂Br [M+H]⁺, found: 304.9662; **IR** (neat, cm⁻¹): 2961*w*, 2921*w*, 1706*s*, 1458*m*, 1365*m*, 1195*m*, 1162*m*, 1049*w*, 1029*w*, 889*s*, 862*w*, 760*s*, 727s, 691*m*, 642*m*.

SS-(*tert*-Butyl) 2-(trifluoromethyl)benzo(dithioperoxoate) (3u): The title compound was prepared according to general procedure (*GP1-1*) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv),

2-(trifluoromethyl)benzaldehyde **1u** (34.8 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3u** as a colorless liquid in 59% yield (34.7 mg); **TLC R**_f = 0.3 (PE:EtOAc = 100:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.79 – 7.75 (m, 1H), 7.75 – 7.71 (m, 1H), 7.66 – 7.62 (m, 2H), 1.38 (s, 9H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 191.8, 136.4 (d, *J* = 1.8 Hz, 1C), 131.8, 131.5, 128.7, 127.6 (d, *J* = 32.8 Hz, 1C), 127.1 (q, *J* = 5.5 Hz, 1C), 123.0 (q, *J* = 274.1 Hz, 1C), 49.7, 29.8; **HRMS** (ESI) *m*/*z* = 317.0252 calcd. for C₁₂H₁₃F₃NaOS₂

[M+Na]⁺, found: 317.0263; **IR** (neat, cm⁻¹): 2963*w*, 2921*w*, 1698*m*, 1408*w*, 1366*w*, 1322*s*, 1202*m*, 1166*m*, 1134*s*, 1110*m*, 1056*s*, 1016*w*, 892*m*, 848*m*, 769*m*, 692*w*, 648*w*.

SS-(*tert*-Butyl) naphthalene-2-carbo(dithioperoxoate) (3v): The title compound was prepared according to general procedure (GP1-3) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2

equiv), 2-naphthaldehyde **1v** (31.2 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3v** as a white solid in 86% yield (47.5 mg); **TLC R**_f = 0.5 (PE:EtOAc = 100:1); **MP**: = 53 – 55 °C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.63 (s, 1H), 8.03 (d, *J* = 8.6 Hz, 1H), 7.99 (d, *J* = 8.0 Hz, 1H), 7.93 – 7.87 (m, 2H), 7.65 – 7.55 (m, 2H), 1.39 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 190.3, 135.9, 133.1, 132.4, 129.6, 129.5, 128.8, 128.7, 127.8, 127.1, 123.4, 49.1, 29.8; **HRMS** (ESI) *m*/*z* = 277.0715 calcd. for C₁₅H₁₇OS₂ [M+H]⁺, found: 277.0718; **IR** (neat, cm⁻¹): 2960*w*, 2921*w*, 1736*s*, 1455*m*, 1364*m*, 1159*s*, 1098*s*, 976*m*, 924*m*, 897*s*, 816*s*, 784*s*, 748*s*, 682*w*, 634*w*, 594*w*.

SS-(*tert*-Butyl) phenanthrene-9-carbo(dithioperoxoate) (3w): The title compound was prepared according to general procedure (**GP1-3**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), phenanthrene-9-carbaldehyde **1w** (41.2 mg, 0.200

mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3w** as a white solid in 80% yield (52.3 mg); **TLC R**_f = 0.5 (PE:EtOAc = 50:1); **MP**: = 121 – 123 °C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.72 – 8.66 (m, 2H), 8.43 (d, *J* = 9.6 Hz, 2H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.79 – 7.64 (m, 4H), 1.46 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 192.7, 133.2, 132.1, 130.7, 130.3, 129.9, 129.7, 129.2, 127.8, 127.5, 127.3, 127.2, 125.9, 122.9, 122.7, 49.3, 29.9; **HRMS** (ESI) *m*/*z* = 327.0872 calcd. for C₁₉H₁₉OS₂ [M+H]⁺, found: 327.0878; **IR** (neat, cm⁻¹): 2960*w*, 2921*w*, 1702*s*, 1528*w*, 1445*m*, 1364*m*, 1248*m*, 1204*m*, 1162*m*, 1065*s*, 1044*w*, 808*s*, 768*m*, 748*s*, 724*s*, 581*w*.

SS^tBu

SS-(*tert*-Butyl) 2,3,4,5,6-pentafluorobenzo(dithioperoxoate) (3x): The title compound was prepared according to general procedure (GP1-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2

equiv), 2,3,4,5,6-pentafluorobenzaldehyde **1x** (39.2 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3x** as a colorless liquid in 69% yield (43.6 mg); **TLC R**_f = 0.7 (PE:EtOAc = 100:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 1.37 (s, 9H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 184.1, 144.4 – 144.4(m, 1C), 142.2 – 142.0(m, 1C), 141.9 – 141.7(m, 1C), 139.1 – 138.7(m, 1C), 136.5 – 136.2(m, 1C), 113.4 – 113.0(m, 1C), 50.2, 29.7; **HRMS** (EI) *m*/*z* = 316.0015 calcd. for C₁₁H₉F₅OS₂ [M]⁺, found: 316.0006; **IR** (neat, cm⁻¹): 2965*w*, 2925*w*, 2360*w*, 1709*w*, 1649*w*, 1519*m*, 1498*s*, 1458*w*, 1415*w*, 1368*m*, 1314*m*, 1098*s*, 977*s*, 807*s*, 774*w*, 717*m*.

SS-(*tert*-Butyl) 1-methyl-1*H*-pyrrole-2-carbo(dithioperoxoate) (**3y**): The title compound was prepared according to general procedure (**GP1-1**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv),

Me mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), 1-methyl-1*H*-pyrrole-2-carbaldehyde **1y** (21.8 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3y** as a colorless liquid in 45% yield (20.7 mg); **TLC R**_f = 0.4 (PE:EtOAc = 100:1); ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.25 (d, *J* = 1.6 Hz, 1H), 6.89 (d, *J* = 1.9 Hz, 1H), 6.16 (dd, *J*¹ = 4.2 Hz, *J*² = 2.5 Hz, 1H), 3.91 (s, 3H), 1.34 (s, 9H); ¹³C **NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 179.5, 131.4, 127.4, 119.4, 108.9, 48.5, 37.2, 29.7; **HRMS** (ESI) *m*/*z* = 230.0668 calcd. for C₁₀H₁₆NOS₂ [M+H]⁺, found: 230.0677; **IR** (neat, cm⁻¹): 2961*w*, 2921*w*, 1386*m*, 1364*m*, 1198*s*, 1152*s*, 1170*s*, 1011*s*, 890*s*, 822*s*, 716*m*, 636*m*, 470*w*, 457*w*.

SS-(*tert*-Butyl) furan-2-carbo(dithioperoxoate) (3z): The title compound was prepared according to general procedure (GP1-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), furan-2-carbaldehyde 1z (19.2 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono (dithioperoxoate) 2a (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product 3z as a colorless liquid in 83% yield (36.0 mg); TLC $\mathbf{R}_{\mathbf{f}} = 0.5$ (PE:EtOAc = 100:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.65 (d, J = 1.4 Hz, 1H), 7.32 (d, J = 3.6 Hz, 1H), 6.58 (dd, $J^1 = 3.6$ Hz, $J^2 = 1.7$ Hz, 1H), 1.34 (s, 9H); ¹³**C** NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 179.0, 149.5, 147.1, 117.2, 112.5, 49.1, 29.7; **HRMS** (ESI) m/z = 217.0351 calcd. for C₉H₁₃O₂S₂ [M+H]⁺, found: 217.0362; **IR** (neat, cm⁻¹): 2961w, 2922w, 1688s, 1563m, 1461s, 1384m, 1365m, 1248s, 1159m, 1078w, 1012s, 944s, 885m, 821s, 761m, 597w.

SS-(*tert*-Butyl) thiophene-2-carbo(dithioperoxoate) (3aa): The title compound was prepared according to general procedure (GP1-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), thiophene-2-carbaldehyde **1aa** (22.4 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono (dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3aa** as a white solid in 95% yield (50.7 mg); **TLC R**_f = 0.5 (PE:EtOAc = 100:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.92 (d, *J* = 3.9 Hz, 1H), 7.69 (d, *J* = 4.9 Hz, 1H), 7.15 (t, *J* = 8.0 Hz, 1H), 1.34 (s, 9H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 182.2, 139.8, 133.9, 132.3, 128.1, 49.1, 29.7; HRMS (ESI) *m*/*z* = 233.0123 calcd. for C₉H₁₃OS₃ [M+H]⁺, found: 233.0121; **IR** (neat, cm⁻¹): 2960w, 2920w, 1679s, 1512w, 1455w, 1408s, 1364m, 1349m, 1232m, 1192s, 1161s, 1079w, 1052m, 871m, 847m, 784s, 718s, 680m, 658m, 615w, 525w.

SS-(*tert*-Butyl) 1-methyl-1*H*-indole-3-carbo(dithioperoxoate) (3ab): The title compound was prepared according to general procedure (GP1-3) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2

equiv), 1-methyl-1*H*-indole-3-carbaldehyde **1ab** (31.8 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE:EtOAc = 100:1) gave the desired product **3ab** as a white solid in 82% yield (50.1 mg); **TLC R**_f = 0.5 (PE:EtOAc = 30:1); **MP**: = 108 – 110 °C; ¹H **NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.28 (t, *J* = 4.0 Hz, 1H), 7.99 (s, 1H), 7.37 – 7.29 (m, 3H), 3.87 (s, 3H), 1.37 (s, 9H); ¹³C **NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 181.7, 137.2, 134.9, 125.7, 123.7, 122.9, 122.2, 113.8, 109.8, 48.4, 33.7, 29.8; **HRMS** (ESI) *m*/*z* = 280.0824 calcd. for C₁₄H₁₈NOS₂ [M+H]⁺, found: 280.0833; **IR** (neat, cm⁻¹): 2961*w*, 2921*w*, 1679*s*, 1526*s*, 1461*s*, 1362*s*, 1202*m*, 1162*m*, 1127*m*, 1075*m*, 1033*m*, 816*s*, 750*s*.

SS-(*tert*-Butyl) benzo[*b*]thiophene-3-carbo(dithioperoxoate) (3ac): The title compound was prepared according to general procedure (GP1-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2

equiv), benzo[*b*]thiophene-3-carbaldehyde **1ac** (32.4 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE:EtOAc = 200:1) gave the desired product **3ac** as a white solid in 64% yield (36.4 mg); **TLC R**_f = 0.5 (PE:EtOAc = 50:1); **MP**: = 97 – 100 °C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.58 (s, 1H), 8.54 (d, *J* = 8.2 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 1.39 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 183.9, 139.6, 136.5, 135.7, 133.0, 126.0, 125.8, 124.8, 122.3, 49.0, 29.8; **HRMS** (ESI) *m/z* = 283.0280 calcd. for C₁₃H₁₅OS₃ [M+H]⁺, found: 283.0285; **IR** (neat, cm⁻¹): 3070w, 2960w, 2920w, 1686s, 1489*m*, 1458*s*, 1423*m*, 1364*m*, 1258*m*, 1158*m*, 1138*m*, 1099*s*, 1051*s*, 1019*w*, 868*m*, 861*w*, 760*s*, 732*s*, 668*w*, 578*w*, 480*w*.

SS-(*tert*-Butyl) benzofuran-2-carbo(dithioperoxoate) (3ad): The title compound was prepared according to general procedure (**GP1-1**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2

equiv), benzofuran-2-carbaldehyde **1ad** (29.2 mg, 0.200 mmol, 1.0 equiv), and *SS-(tert-*butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3ad** as a colorless liquid in 42% yield (22.5 mg); **TLC R**_f = 0.5 (PE:EtOAc = 100:1); ¹H **NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.72 (d, *J* = 8.1 Hz, 1H), 7.66 (s, 1H), 7.61 (d, *J* = 8.4 Hz, 1H), 7.50 (t, *J* = 7.8 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 1.38 (s, 9H); ¹³C **NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 181.1, 155.8, 149.8, 128.6, 126.7, 124.2, 123.3, 112.9, 112.5, 49.4, 29.8; **HRMS** (ESI) *m/z* = 267.0508 calcd. for C₁₃H₁₅O₂S₂ [M+H]⁺, found: 267.0510; **IR** (neat, cm⁻¹): 2965*w*, 2921*w*, 1692*s*, 1678*s*, 1550*s*, 1364*w*, 1252*w*, 1155*m*, 1129*s*, 961*m*, 842*s*, 777*s*, 754*s*, 681*w*, 609*w*.

SS-(*tert*-Butyl) pyridine-3-carbo(dithioperoxoate) (3ae): The title compound was prepared according to general procedure (GP1-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), nicotinaldehyde

1ae (21.4 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono (dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room

temperature for 12 h. Purification via silica gel chromatography (PE:EtOAc = 100:1) gave the desired product **3ae** as a colorless liquid in 24% yield (11.0 mg); **TLC R**_f = 0.3 (PE:EtOAc = 50:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 9.25 (s, 1H), 8.83 (d, *J* = 4.2 Hz, 1H), 8.27 (d, *J* = 8.0 Hz, 1H), 7.44 (dd, *J*¹ = 8.0 Hz, *J*² = 4.9 Hz, 1H), 1.37 (s, 9H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 189.5, 154.2, 148.7, 135.0, 131.7, 123.7, 49.5, 29.8; HRMS (ESI) *m*/*z* = 228.0511 calcd. for C₁₀H₁₄NOS₂ [M+H]⁺, found: 228.0510; **IR** (neat, cm⁻¹): 2961*w*, 2921*w*, 1682*s*, 1482*m*, 1395*m*, 1364*m*, 1198*s*, 1062*s*, 1168*s*, 1011*s*, 880*s*, 830*s*, 717*m*, 638*m*, 487*w*.

SS-(*tert*-Butyl) quinoline-3-carbo(dithioperoxoate) (3af): The title compound was prepared according to general procedure (GP1-3) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2

equiv), quinoline-3-carbaldehyde **1af** (31.4 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE:EtOAc = 50:1) gave the desired product **3af** as a white solid in 57% yield (31.7 mg); **TLC R**_f = 0.3 (PE:EtOAc = 20:1); **MP**: = 83 – 85 °C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 9.43 (s, 1H), 8.86 (s, 1H), 8.18 (d, *J* = 8.5 Hz, 1H), 7.98 (d, *J* = 8.2 Hz, 1H), 7.88 (t, *J* = 7.7 Hz, 1H), 7.67 (t, *J* = 7.5 Hz, 1H), 1.40 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 189.3, 150.2, 147.8, 136.8, 132.5, 129.6, 129.4, 128.6, 127.9, 126.7, 49.5, 29.9; **HRMS** (ESI) *m*/*z* = 278.0668 calcd. for C₁₄H₁₆NOS₂ [M+H]⁺, found: 278.0674; **IR** (neat, cm⁻¹): 2961*w*, 2922*w*, 2853*s*, 1618*m*, 1569*w*, 1495*m*, 1456*w*, 1365*m*, 1274*w*, 1162*s*, 1124*s*, 921*w*, 897*m*, 825*s*, 781*m*, 754*m*.

4-(*tert*-Butyldisulfannecarbonyl)pheny
I (*R*)-2-(6-methoxynaphthalen-2-yl)
propanoate (3ag): The title compound
was prepared according to general
procedure (GP1-3) with

phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), 4-formylphenyl (*R*)-2-(6-methoxynaphthalen-2-yl)propanoate **1ag** (66.9 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono (dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in MeCN:H₂O (1 mL:1 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE:EtOAc = 50:1) gave the desired product **3ag** as a white solid in 82% yield (50.1 mg); **TLC R**_f = 0.3 (PE:EtOAc = 10:1); **MP**: = 77 – 79 °C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.02 (d, *J* = 8.8 Hz, 2H), 7.79 – 7.73 (m, 3H), 7.49 (d, *J* = 9.2 Hz, 1H), 7.19 –

7.10 (m, 4H), 4.12 (q, J = 7.1 Hz, 1H), 3.92 (s, 3H), 1.71 (d, J = 7.2 Hz, 3H), 1.35 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 189.2, 172.5, 157.8, 155.2, 134.6, 133.9, 133.3, 129.3, 129.5, 128.9, 127.5, 126.2, 125.9, 121.9, 119.2, 105.6, 55.3, 49.1, 45.6, 29.7, 18.4; **HRMS** (ESI) m/z = 455.1345 calcd. for C₂₅H₂₇O₄S₂ [M+H]⁺, found: 455.1347; **IR** (neat, cm⁻¹): 2961*w*, 1759*m*, 1686*m*, 1606*m*, 1501*w*, 1455*w*, 1392*w*, 1365*w*, 1265*w*, 1204*s*, 1161*s*, 1129*m*, 1068*w*, 1032*w*, 891*s*, 852*w*.

4-(*tert*-Butyldisulfannecarbonyl)phenyl (*R*)-2-(4-isobutylphenyl)propanoate

(**3ah**): The title compound was prepared according to general procedure (**GP1-3**) with phenanthrene-9,10-dione (4.2 mg,

0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), 4-formylphenyl (*R*)-2-(4-isobutylphenyl)propanoate **1ah** (74.5 mg, 0.240 mmol, 1.2 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (55.2 mg, 0.200 mmol, 1.0 equiv) in MeCN:H₂O (1 mL:1 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE:EtOAc = 100:1) gave the desired product **3ah** as a colorless liquid in 78% yield (67.0 mg); **TLC R**_f = 0.3 (PE:EtOAc = 50:1); ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.04 (d, *J* = 8.7 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 8.7 Hz, 2H), 3.96 (q, *J* = 7.1 Hz, 1H), 2.48 (d, *J* = 7.2 Hz, 2H), 1.91 – 1.84 (m, 1H), 1.62 (d, *J* = 7.1 Hz, 3H), 1.35 (s, 9H), 0.92 (d, *J* = 6.6 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 189.2, 172.5, 155.2, 141.0, 136.7, 133.2, 129. 6, 129.2, 127.1, 121.9, 49.1, 45.3, 45.0, 30.1, 29.7, 22.3, 18.4; **HRMS** (ESI) *m*/*z* = 431.1709 calcd. for C₂₄H₃₁O₃S₂ [M+H]⁺, found: 431.1719; **IR** (neat, cm⁻¹): 2957*w*, 2923*w*, 1760*m*, 1686*m*, 1598*m*, 1501*m*, 1455*m*, 1365*m*, 1199*s*, 1060*s*, 1131*s*, 1066*m*, 890*s*, 847*w*, 801*w*, 640*m*.

4-(*tert*-Butyldisulfannecarbonyl)phen yl2-(4-(2,2-dichlorocyclopropyl)phen oxy)-2-methyl propanoate (3ai): The title compound was prepared according to general procedure (GP1-3) with phenanthrene-9,10-dione (4.2 mg,

0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), 4-formylphenyl 2-(4-(2,2-dichlorocyclopropyl)phenoxy)-2-methylpropanoate **1ai** (78.7 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in MeCN:H₂O (1 mL:1 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE:EtOAc = 50:1) gave the desired product **3ai** as a colorless liquid in 70% yield (71.1 mg); **TLC R**_f = 0.4

(PE:EtOAc = 20:1); ¹**H** NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.05 (d, *J* = 8.7 Hz, 2H), 7.17 (d, *J* = 8.7 Hz, 2H), 7.09 (d, *J* = 8.6 Hz, 2H), 6.93 (d, *J* = 8.6 Hz, 2H), 2.86 (t, *J* = 8.7 Hz, 1H), 1.96 (dd, *J*¹ = 10.7 Hz, *J*² = 7.4 Hz, 1H), 1.81 (d, *J* = 7.9 Hz, 1H), 1.77 (s, 6H), 1.35 (s, 9H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 189.2, 172.3, 154.8, 154.8, 133.7, 129.9, 129.4, 128.7, 121.9, 118.6, 79.3, 60.8, 49.2, 34.8, 29.8, 25.8, 25.4, 25.4; **HRMS** (ESI) *m*/*z* = 535.0342 calcd. for C₂₄H₂₆O₄NaS₂Cl₂ [M+Na]⁺, found: 535.0549; **IR** (neat, cm⁻¹): 2923*w*, 1760*m*, 1658*m*, 1598*m*, 1512*s*, 1365*w*, 1242*w*, 1201*s*, 1166*s*, 1112*s*, 1015*w*, 892*s*, 832*w*, 731*s*, 640*s*.

according to general procedure with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), ((3aS,5aR,8aR,8bS) -2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-yl)methyl 4-formylbenzoate 1aj (78.5 mg, 0.200 mmol, 1.0 equiv), and SS-(tert-butyl) 4-methylbenzenesulfono(dithioperoxoate) 2a (66.2 mg, 0.240 mmol, 1.2 equiv) in MeCN (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE:EtOAc = 20:1) gave the desired product **3aj** as a white solid in 53% yield (54.7 mg); TLC $\mathbf{R}_{\mathbf{f}} = 0.5$ (PE:EtOAc = 5:1); MP: = 79 - 82 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.17 (d, J = 8.5 Hz, 2H), 8.07 (d, J = 8.2 Hz, 2H), 4.70 (d, J = 11.8 Hz, 1H), 4.64 (dd, $J^1 = 7.8$ Hz, $J^2 = 2.6$ Hz, 1H), 4.44 (d, J = 1.002.7 Hz, 1H), 4.35 (d, J = 11.8 Hz, 1H), 4.26 (d, J = 7.8 Hz, 1H), 3.95 (d, J = 13.0 Hz, 1H), 3.80 (d, J = 13.0 Hz, 1H), 1.54 (s, 3H), 1.45 (s, 3H), 1.36 (s, 9H), 1.35 (s, 3H), 1.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 190.2, 164.8, 139.3, 134.4, 130.2, 127.6, 109.2, 108.9, 101.5, 70.7, 70.6, 70.0, 65.8, 61.4, 49.4, 29.8, 26.5, 25.9, 25.5, 24.0; **HRMS** (ESI) m/z = 535.1431 calcd. for C₂₄H₃₂O₈NaS₂ [M+Na]⁺, found: 535.1436; **IR** (neat, cm⁻¹): 2977w, 294w, 1730s, 1695m, 1456w, 1382m, 1274s, 1252s, 1198s, 1163s, 1108s, 1072s, 1018w, 890s, 774w, 698w.

4-(*tert*-Butyldisulfannecarbonyl)ph enyl 5-(2,5-dimethylphenoxy)-2,2dimethylpentanoate (3ak): The title compound was prepared according to general procedure (GP1-3) with

phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), 4-formylphenyl 5-(2,5-dimethylphenoxy)-2,2-dimethylphentanoate
(70.9 0.200 1ak mg, mmol. 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) 2a (66.2 mg, 0.240 mmol, 1.2 equiv) in MeCN:H₂O (1 mL:2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE:EtOAc = 50:1) gave the desired product **3ak** as a colorless liquid in 76% yield (72.0 mg); **TLC** $\mathbf{R}_{\mathbf{f}} = 0.5$ (PE:EtOAc = 20:1); ¹**H** NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.06 (d, J = 8.7 Hz, 2H), 7.15 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 7.4 Hz, 1H), 6.67 (d, J = 7.5 Hz, 1H), 6.62 (s, 1H), 3.99 (t, J = 5.4 Hz, 2H), 2.30 (s, 3H), 2.17 (s, 3H), 1.93 – 1.84 (m, 4H), 1.39 (s, 6H), 1.36 (s, 9H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 189.3, 175.7, 156.8, 155.5, 136.5, 133.3, 130.4, 129.3, 123.6, 122.1, 120.8, 112.0, 67.6, 49.2, 42.6, 37.1, 29.8, 25.2, 25.1, 21.4, 15.8; **HRMS** (ESI) m/z = 497.1791 calcd. for C₂₆H₃₄O₄NaS₂ [M+Na]⁺, found: 497.1797; **IR** (neat, cm⁻¹): 2961w, 2923w, 1756m, 1686w, 1598w, 1501w, 1472w, 1411w, 1365w, 1261m, 1204s, 1159s, 1045m, 889s, 800s, 730m.

SS-(*tert*-Butyl)4-(((2*R*,5*R*)-5-isopropyl-2-methyl -cyclohexyl)oxy)benzo(dithioperoxoate) (3al): The title compound was prepared according to general procedure (GP1-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10

mol%), Na₂CO₃ (25.4)0.240 mmol, 1.2 equiv), 4-(((2R,5R))mg, -5-isopropyl-2-methylcyclohexyl)oxy)benzaldehyde 1al (52.1 mg, 0.200 mmol, 1.0 equiv), and SS-(tert-butyl) 4-methylbenzenesulfono(dithioperoxoate) 2a (66.2 mg, 0.240 mmol, 1.2 equiv) in MeCN:H₂O (1 mL:1 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE:EtOAc = 100:1) gave the desired product **3al** as a colorless liquid in 80% yield (61.0 mg); **TLC** $\mathbf{R}_{\mathbf{f}} = 0.5$ (PE:EtOAc = 20:1); ¹**H** NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.01 (d, J = 8.9 Hz, 2H), 6.93 (d, J = 8.9 Hz, 2H), 4.73 (s, 1H), 2.08 (dd, $J^1 = 15.9$ Hz, $J^2 = 1.9$ Hz, 1H), 1.82 – 1.74 (m, 2H), 1.70 - 1.62 (m, 2H), 1.56 (dd, $J^1 = 12.7$ Hz, $J^2 = 3.5$ Hz, 1H), 1.34 (s, 9H), 1.27 (d, J = 12.3 Hz, 1H), 1.06 (dt, $J^1 = 11.9$ Hz, $J^2 = 2.1$ Hz, 2H), 0.92 (d, J = 6.7 Hz, 3H), 0.85 - 0.79 (m, 6H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 188.3, 163.1, 130.2, 127.9, 115.1, 73.9, 48.8, 47.5, 37.5, 34.8, 29.7, 29.2, 26.2, 24.8, 22.2, 21.0 20.7; **HRMS** (ESI) m/z = 403.1736 calcd. for C₂₁H₃₃O₂S₂ [M+H]⁺, found: 403.1741; **IR** (neat, cm⁻¹): 2955w, 2922w, 1692m, 1599s, 1572w, 1505w, 1456w, 1365w, 1306w, 1258s, 1198s, 1162s, 1025w, 890s, 837m, 643w.

4-(*tert*-Butyldisulfannecarbonyl)
phenyl 2-(4-(4-chlorobenzoyl)
phenoxy)-2-methylpropanoate
(3am): The title compound was

prepared according to general procedure (GP1-3) with

phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 1.2 mmol, equiv), 4-formylphenyl 2-(4-(4-chlorobenzoyl)phenoxy) -2-methylpropanoate 1am (84.6 mg, 0.200 mmol, 1.0 equiv), and SS-(tert-butyl) 4-methylbenzenesulfono(dithioperoxoate) 2a (66.2 mg, 0.240 mmol, 1.2 equiv) in MeCN:H₂O (1 mL: 1mL) at room temperature for 12 h. Purification via silica gel chromatography (PE:EtOAc = 50:1) gave the desired product **3am** as a colorless liquid in 46% yield (50.5 mg); TLC $\mathbf{R}_{\mathbf{f}} = 0.5$ (PE:EtOAc = 10:1); MP: = 68 - 71 °C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.06 (d, J = 8.7 Hz, 2H), 7.79 (d, J = 8.8 Hz, 2H), 7.71 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 7.12 (d, J = 8.7 Hz, 2H), 6.99 (d, J = 8.8 Hz, 2H), 1.83 (s, 6H), 1.34 (s, 9H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 194.1, 189.2, 171.8, 159.3, 154.6, 138.5, 136.2, 133.8, 132.1, 131.1, 130.9, 129.4, 128.6, 121.7, 117.3, 79.4, 49.2, 29.8, 25.4; **HRMS** (ESI) m/z =565.0881 calcd. for $C_{28}H_{27}O_5NaS_2Cl [M+Na]^+$, found: 565.0883; **IR** (neat, cm⁻¹): 2961w, 2923w, 1762m, 1685m, 1653m, 1598s, 1506m, 1456w, 1365w, 1249w, 1201s, 1161s, 1111s, 1015w, 928m, 892s, 854w, 764m, 731m, 640w.

4-(*tert*-Butyldisulfannecarbonyl)pheny l(4*R*)-4-((8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-10,1 3-dimethyl-3,7,12-trioxohexadecahydr o-1*H*-cyclopenta[*a*]phenanthrene

-17-yl)pentanoate (**3an**): The title compound was prepared according to general procedure (**GP1-3**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), 4-formylphenyl

(4*R*)-4-((8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-10,13-dimethyl-3,7,12-trioxohexadecahydro-1*H*-cy clopenta[*a*]phenanthren-17-yl)pentanoate **1an** (101.3 mg, 0.2000 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (66.2 mg, 0.240 mmol, 1.2 equiv) in MeCN (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE:EtOAc = 5:1) gave the desired product **3an** as a white solid in 60% yield (75.2 mg); **TLC R**_f = 0.3 (PE:EtOAc = 2:1); **MP**: = 192 – 194 °C;

¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.07 (d, J = 8.8 Hz, 2H), 7.21 (d, J = 8.7 Hz, 2H), 2.94 – 2.85 (m, 3H), 2.72 – 2.64 (m, 1H), 2.59 – 2.50 (m, 1H), 2.37 – 2.32 (m, 4H), 2.27 – 2.15 (m, 4H), 2.06 (d, J = 11.6 Hz, 3H), 1.98 – 1.95 (m, 2H), 1.90 – 1.83 (m, 1H), 1.63 (s, 3H), 1.40 (s, 4H), 1.35 (s, 9H), 1.09 (s, 3H), 0.92 (d, J = 6.6 Hz, 3H), 0.88 – 0.83 (m, 1H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 211.9, 209.0, 208.6, 189.3, 171.8, 155.1, 133.3, 129.3, 122.0, 56.9, 51.7, 49.2, 49.0, 46.8, 45.6, 45.5, 44.9, 42.8, 38.6, 36.5, 36.0, 35.4, 35.2, 31.5, 30.2, 29.8, 27.6, 25.1, 21.9, 18.7, 11.8; **HRMS** (ESI) m/z = 649.2628 calcd. for C₃₅H₄₆O₆NaS₂ [M+Na]⁺, found: 649.2627; **IR** (neat, cm⁻¹): 2963*w*, 2940*w*, 1760*m*, 1709*s*, 1598*w*, 1463*w*, 1382*w*, 1205*m*, 1161*s*, 1121*m*, 1014*w*, 910*m*, 892*s*, 731*s*, 570*w*, 643*w*.

SS-Isopropyl 4-methylbenzo(dithioperoxoate) (3ao): The title compound was prepared according to general procedure (**GP1-2**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol,

1.2 equiv), 4-methylbenzaldehyde **1a** (24.0 mg, 0.200 mmol, 1.0 equiv), and *SS*-isopropyl 4-methylbenzenesulfono(dithioperoxoate) **2b** (63.0 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3ao** as a colorless liquid in 47% yield (21.1 mg); **TLC R**_f = 0.4 (PE:EtOAc = 100:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.92 (d, *J* = 7.8 Hz, 2H), 7.28 (d, *J* = 9.1 Hz, 2H), 3.18 – 3.08 (m, 1H), 2.43 (s, 3H), 1.34 (s, 3H), 1.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 190.1, 145.0, 133.3, 129.5, 127.8, 41.5, 22.5, 21.8; **HRMS** (ESI) *m*/*z* = 227.0599 calcd. for C₁₁H₁₅OS₂ [M+H]⁺, found: 227.0563; **IR** (neat, cm⁻¹): 2961*w*, 2922*m*, 2853*w*, 1698*s*, 1606*m*, 1203*s*, 1175*s*, 888*s*, 821*m*, 787*m*, 716*w*, 640*w*, 620*w*.

SS-Cyclohexyl 4-methylbenzo(dithioperoxoate) (3ap): The title compound was prepared according to general procedure (**GP1-3**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (25.4 mg, 0.240

mmol, 1.2 equiv), 4-methylbenzaldehyde **1a** (24.0 mg, 0.200 mmol, 1.0 equiv), and *SS*-cyclohexyl 4-methylbenzenesulfono(dithioperoxoate) **2c** (72.6 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product **3ap** as a colorless liquid in 53% yield (28.0 mg); **TLC R**_f = 0.4 (PE:EtOAc = 100:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.91 (d, *J* = 7.7 Hz, 2H), 7.27 (d, *J* = 8.2 Hz, 2H), 2.88 – 2.83 (m, 1H), 2.42 (s, 3H), 2.06 – 2.04 (m, 2H), 1.81 – 1.77 (m, 2H), 1.62 – 1.59 (m, 1H), 1.41 – 1.25 (m, 5H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 190.3, 144.9, 133.3, 129.5, 127.8, 49.6, 32.6, 26.0, 25.5, 21.7; HRMS (ESI) *m*/*z* = 266.0872 calcd. for C₁₄H₁₉OS₂

[M+H]⁺, found: 267.0879; **IR** (neat, cm⁻¹): 2928*s*, 2853*m*, 1695*s*, 1606*m*, 1448*m*, 1204*s*, 1174*s*, 1154*s*, 888*s*, 821*m*, 787*m*, 753*w*, 717*w*, 798*s*, 638*w*, 621*w*, 471*w*.

SS-(2-Methyl-1-oxo-1-phenylpropan-2-yl)4-methylb enzo(dithioperoxoate) (3aq): The title compound was prepared according to general procedure (GP1-2) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10

mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), 4-methylbenzaldehyde **1a** (24.0 mg, 0.200 mmol, 1.0 equiv), and *SS*-(2-methyl-1-oxo-1-phenylpropan-2-yl) 4-methylbenzenesulfono(dithioperoxoate) **2d** (72.6 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE:EtOAc = 150:1) gave the desired product **3aq** as a colorless liquid in 56% yield (37.2 mg); **TLC R**_f = 0.4 (PE:EtOAc = 50:1); ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.13 (d, *J* = 7.1 Hz, 2H), 7.86 (d, *J* = 8.3 Hz, 2H), 7.51 (t, *J* = 7.3 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.25 (d, *J* = 9.4 Hz, 2H), 2.41 (s, 3H), 1.65 (s, 6H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 199.3, 188.4, 145.3, 136.7, 132.8, 131.7, 129.5, 129.3, 128.0, 128.0, 56.7, 25.8, 21.7; **HRMS** (ESI) *m*/*z* = 353.0640 calcd. for C₁₈H₁₈NaO₂S₂ [M+Na]⁺, found: 353.0636; **IR** (neat, cm⁻¹): 2923*w*, 1702*m*, 1670*s*, 1605*m*, 1445*w*, 1262*w*, 1205*s*, 1174*s*, 1115*w*, 977*m*, 888*m*, 821*w*, 785*m*, 705*m*, 640*w*, 620*m*.

SS-(2-Methyl-4-phenylbutan-2-yl) 4-methylbenzo (dithioperoxoate) (3ar): The title compound was prepared according to general procedure (GP1-2) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol,

10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), 4-methylbenzaldehyde 1a (24.0 and SS-(2-methyl-4-phenylbutan-2-yl) mg, 0.200 mmol, 1.0 equiv), 4-methylbenzenesulfono(dithioperoxoate) 2e (88.0 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE) gave the desired product 3ar as a colorless liquid in 83% yield (54.7 mg); TLC $\mathbf{R}_{f} = 0.3 \text{ (PE:EtOAc} = 100:1); {}^{1}\mathbf{H} \text{ NMR} (400 \text{ MHz}, \text{CDCl}_{3}, 300 \text{ K}): \delta \text{ (ppm)} = 7.94 \text{ (d,}$ J = 8.2 Hz, 2H), 7.32 - 7.26 (m, 4H), 7.22 - 7.16 (m, 3H), 2.84 - 2.78 (m, 2H), 2.43(s, 3H), 1.90 – 1.84 (m, 2H), 1.39 (s, 6H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 189.8, 145.0, 142.1, 133.3, 129.5, 128.4, 128.4, 127.9, 125.8, 52.2, 43.6, 31.3, 27.6, 21.7; **HRMS** (ESI) m/z = 353.1004 calcd. for C₁₉H₂₂ONaS₂ [M+Na]⁺, found: 353.1007; **IR** (neat, cm⁻¹): 2958w, 2923w, 1698s, 1605m, 1698w, 1453w, 1365w, 1203s, 1174s, 1117w, 887s, 821w, 717m, 638m, 570w, 467w.

SS-(2-Methyl-4-oxopentan-2-yl) 4-methylbenzo (dithioperoxoate) (3as): The title compound was prepared according to general procedure (GP1-2) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol,

10 mol%), Na₂CO₃ (25.4 mg, 0.240 mmol, 1.2 equiv), 4-methylbenzaldehyde 1a (24.0 mg, 0.200 mmol, 1.0 equiv), and SS-(2-methyl-4-oxopentan-2-yl) 4-methylbenzenesulfono(dithioperoxoate) 2f (76.4 mg, 0.240 mmol, 1.2 equiv) in H₂O (2 mL) at room temperature for 12 h. Purification via silica gel chromatography (PE:EtOAc = 100:1) gave the desired product **3as** as a white solid in 64% yield (36.6 mg); TLC $\mathbf{R}_{\mathbf{f}} = 0.3$ (PE:EtOAc = 20:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.93 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 2.76 (s, 2H), 2.43 (s, 3H), 2.16 (s, 3H), 1.47 (s, 6H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 206.2, 189.5, 145.2, 133.0, 129.6, 127.9, 53.3, 50.0, 31.9, 26.9, 21.8; **IR** (neat, cm⁻¹): 2963w, 2923w, 1695s, 1605m, 1458w, 1369m, 1204s, 1172s, 1116m, 884s, 821m, 785s, 717w, 620s, 547w, 471w.

3-((*tert***-Butyldisulfaneyl)methyl)chroman-4-one (5a):** The title compound was prepared according to general procedure (**GP2-1**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (27.3 mg, 0.260 mmol, 1.3 equiv),

2-(allyloxy)benzaldehyde **4a** (32.4 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 100:1) gave the desired product **5a** as a colorlrss liquid in 82% yield (46.3 mg); **TLC R**_f = 0.5 (PE:EtOAc = 50:1); ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.88 (d, *J* = 8.2 Hz, 1H), 7.48 (t, *J* = 7.9 Hz, 1H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.98 (d, *J* = 8.4 Hz, 1H), 4.69 (dd, *J*¹ = 11.5 Hz, *J*² = 4.6 Hz, 1H), 4.43 (dd, *J*¹ = 11.3 Hz, *J*² = 9.6 Hz, 1H), 3.31 (dd, *J*¹ = 13.6 Hz, *J*² = 3.9 Hz, 1H), 3.19 – 3.10 (m, 1H), 2.72 (dd, *J*¹ = 13.6 Hz, *J*² = 10.0 Hz, 1H), 1.35 (m, 9H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 192.8, 161.6, 136.1, 127.4, 121.5, 120.5, 117.9, 69.1, 48.4, 45.4, 36.4, 29.9; **HRMS** (ESI) *m*/*z* = 283.0821 calcd. for C₁₄H₁₉O₂S₂ [M+H]⁺, found: 283.0830; **IR** (neat, cm⁻¹): 2960w, 2924w, 2857w, 1690s, 1606s, 1479s, 1466m, 1364m, 1326m, 1215m, 1165m, 1035w, 761s, 674w.

3-((tert-Butyldisulfaneyl)methyl)-6-methylchroman-4

-one (5b): The title compound was prepared according to general procedure (**GP2-1**) phenanthrene-9,10-dione with (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (27.3 mg,

0.260 mmol, 1.3 equiv), 2-(allyloxy)-5- methylbenzaldehyde 4b (35.2 mg, 0.200

mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 200:1) gave the desired product **5b** as a colorless liquid in 43% yield (25.5 mg); **TLC R**_f = 0.5 (PE:EtOAc = 50:1); ¹H **NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.66 (s, 1H), 7.29 (d, *J* = 8.2 Hz, 1H), 6.88 (d, *J* = 8.4 Hz, 1H), 4.65 (dd, *J*¹ = 11.4 Hz, *J*² = 4.5 Hz, 1H), 4.40 (dd, *J*¹ = 11.4 Hz, *J*² = 9.1 Hz, 1H), 3.29 (dd, *J*¹ = 13.5 Hz, *J*² = 3.9 Hz, 1H), 3.15 – 3.08 (m, 1H), 2.71 (dd, *J*¹ = 13.5 Hz, *J*² = 10.0 Hz, 1H), 2.30 (s, 3H), 1.35 (s, 9H); ¹³C **NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 193.0, 159.6, 137.2, 131.0, 120.1, 117.6, 69.1, 48.4, 45.5, 36.5, 29.9, 20.4; **HRMS** (ESI) *m*/*z* = 319.0797 calcd. for C₁₅H₂₀O₂NaS₂ [M+Na]⁺, found: 319.0712; **IR** (neat, cm⁻¹): 2964*w*, 2924*w*, 2861*w*, 1685*s*, 1616*s*, 1491*s*, 1456*w*, 1422*m*, 1365*w*, 1291*s*, 1256*w*, 1222*m*, 1159*w*, 1137*w*, 1028*w*, 822*m*, 754*w*, 537*w*.

3-((*tert***-Butyldisulfaneyl)methyl)-6-chlorochroman-4-o ne (5c):** The title compound was prepared according to general procedure (**GP2-1**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (27.3 mg, 0.260

mmol, 1.3 equiv), 2-(allyloxy)-5-chlorobenzaldehyde **4c** (39.3 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl)4-methylbenzenesulfono (dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 100:1) gave the desired product **5c** as a colorlrss liquid in 75% yield (47.6 mg); **TLC R**f = 0.4 (PE:EtOAc = 50:1); ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.83 (d, J = 2.7 Hz, 1H), 7.41 (dd, $J^1 = 8.9$ Hz, $J^2 = 2.7$ Hz, 1H), 6.94 (d, J = 8.9 Hz, 1H), 4.69 (dd, $J^1 = 11.6$ Hz, $J^2 = 4.6$ Hz, 1H), 4.42 (dd, $J^1 = 11.6$ Hz, $J^2 = 9.4$ Hz, 1H), 3.29 (dd, $J^1 = 13.6$ Hz, $J^2 = 3.9$ Hz, 1H), 3.19 – 3.12 (m, 1H), 2.70 (dd, $J^1 = 13.6$ Hz, $J^2 = 10.0$ Hz, 1H), 1.35 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 191.7, 160.0, 135.9, 127.1, 126.6, 121.3, 119.6, 69.3, 48.5, 45.2, 36.2, 29.9; **HRMS** (ESI) *m*/*z* = 317.0431 calcd. for C₁₄H₁₈O₂S₂Cl [M+H]⁺, found: 317.0438; **IR** (neat, cm⁻¹): 2961*w*, 2921*w*, 2853*w*, 1692*m*, 1605*m*, 1476*s*, 1456*w*, 1421*m*, 1362*w*, 1296*w*, 1271*s*, 1209*w*, 1165*w*, 824*w*.

3-((*tert***-Butyldisulfaneyl)methyl)-6-fluorochroman-4-o ne (5d):** The title compound was prepared according to general procedure (**GP2-1**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (27.3 mg, 0.260

mmol, 1.3 equiv), 2-(allyloxy)-5-fluorobenzaldehyde **4d** (36.0 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl)4-methylbenzenesulfono(dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 50:1) gave the desired product **5d** as a white solid in

63% yield (38.1 mg); **TLC R**_f = 0.4 (PE:EtOAc = 20:1); **MP**: = 43 – 45 °C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.55 (dd, J^1 = 8.2 Hz, J^2 = 3.2 Hz, 1H), 7.25 – 7.20 (m, 1H), 6.99 (dd, J^1 = 9.1 Hz, J^2 = 4.2 Hz, 1H), 4.70 (dd, J^1 = 11.5 Hz, J^2 = 4.6 Hz, 1H), 4.43 (dd, J^1 = 11.5 Hz, J^2 = 9.4 Hz, 1H), 3.32 (dd, J^1 = 13.6 Hz, J^2 = 3.9 Hz, 1H), 3.21 – 3.13 (m, 1H), 2.73 (dd, J^1 = 13.6 Hz, J^2 = 10.0 Hz, 1H), 1.38 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 192.1, 157.9 (d, J = 1.7 Hz, 1C), 157.3 (d, J = 243.0 Hz, 1C), 123.7 (d, J = 24.7 Hz, 1C), 120.9 (d, J = 6.3 Hz, 1C), 119.6 (d, J = 7.4 Hz, 1C), 112.2 (d, J = 23.5 Hz, 1C), 69.3, 48.4, 45.2, 36.3, 29.9; **HRMS** (ESI) m/z= 323.0546 calcd. for C₁₄H₁₇FNaO₂S₂ [M+Na]⁺, found: 323.0554; **IR** (neat, cm⁻¹): 2963*w*, 2923*w*, 1692*m*, 1622*w*, 1486*s*, 1456*w*, 1435*m*, 1364*w*, 1269*s*, 1166*w*, 1148*w*, 1121*w*, 1018*w*, 887*w*, 825*w*, 752*w*.

3-((*tert***-Butyldisulfaneyl)methyl)-6-nitrochroman-4-o ne (5e):** The title compound was prepared according to

general procedure (GP2-3) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10

mol%), Na₂CO₃ (27.3 mg, 0.260 mmol, 1.3 equiv), 2-(allyloxy)-5-nitrobenzaldehyde **4e** (41.4 mg, 0.200 mmol, 2.0 equiv), and *SS*-(*tert*-butyl)4-methylbenzenesulfono (dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 50:1) gave the desired product **5e** as a white solid in 40% yield (26.0 mg); **TLC R**f = 0.4 (PE:EtOAc = 20:1); **MP**: = 57 – 59 °C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.77 (d, *J* = 2.8 Hz, 1H), 8.33 (dd, *J*¹ = 9.2 Hz, *J*² = 2.9 Hz, 1H), 7.12 (d, *J* = 9.1 Hz, 1H), 4.84 (dd, *J*¹ = 11.7 Hz, *J*² = 4.8 Hz, 1H), 4.53 (dd, *J*¹ = 11.7 Hz, *J*² = 9.8 Hz, 1H), 3.33 (dd, *J*¹ = 13.6 Hz, *J*² = 3.9 Hz, 1H), 3.30 – 3.23 (m, 1H), 2.71 (dd, *J*¹ = 13.6 Hz, *J*² = 9.6 Hz, 1H), 1.36 (s, 9H); ¹³C **NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 190.8, 165.5, 142.2, 130.4, 123.9, 120.1, 119.3, 69.8, 48.6, 45.0, 35.8, 29.9; **HRMS** (ESI) *m*/*z* = 328.0672 calcd. for C₁₄H₁₈N8O₄S₂ [M+H]⁺, found: 328.0677; **IR** (neat, cm⁻¹): 2961*w*, 2923*w*, 1700*s*, 1618*s*, 1585*m*, 1525*m*, 1481*m*, 1436*m*, 1329*s*, 1299*w*, 1271*s*, 1219*w*, 1165*w*, 911*w*, 840*w*, 734*m*.

3-((tert-Butyldisulfaneyl)methyl)-7-methoxychroma

n-4-one (5f): The title compound was prepared according to general procedure (GP2-3) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10

mol%), Na₂CO₃ (27.3 mg, 0.260 mmol, 1.3 equiv), 2-(allyloxy) -4-methoxybenzaldehyde **4f** (39.2 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography

(PE:EtOAc = 100:1) gave the desired product **5f** as a white solid in 68% yield (42.5 mg); **TLC R**_f = 0.3 (PE:EtOAc = 20:1); **MP**: = 60 – 62 °C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.81 (d, J = 8.8 Hz, 1H), 6.58 (dd, J^1 = 8.8 Hz, J^2 = 2.4 Hz, 1H), 6.41 (d, J = 2.4 Hz, 1H), 4.65 (dd, J^1 = 11.4 Hz, J^2 = 4.5 Hz, 1H), 4.42 (dd, J^1 = 11.4 Hz, J^2 = 8.9 Hz, 1H), 3.83 (s, 3H), 3.30 (dd, J^1 = 13.6 Hz, J^2 = 3.8 Hz, 1H), 3.11 – 3.04 (m, 1H), 2.70 (dd, J^1 = 13.6 Hz, J^2 = 10.2 Hz, 1H), 1.35 (s, 9H); ¹³C **NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 191.4, 166.1, 163.6, 129.1, 114.4, 110.2, 100.6, 69.4, 55.6, 48.3, 45.1, 36.7, 29.9; **HRMS** (ESI) m/z = 31.0927 calcd. for C₁₅H₂₁O₃S₂ [M+H]⁺, found: 313.0940; **IR** (neat, cm⁻¹): 2961w, 2923w, 2858w, 1679m, 1609s, 1578w, 1469w, 1385w, 1362w, 1258s, 1162s, 1125w, 1029w, 837w.

3-((*tert***-Butyldisulfaneyl)methyl)-7-methylchromn-4-o ne (5g):** The title compound was prepared according to general procedure (**GP2-1**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10

1.3 mol%), Na₂CO₃ (27.3)mg, 0.260 mmol, equiv), 2-(allyloxy) -4-methylbenzaldehyde 4g (35.2 mg, 0.200 mmol, 1.0 equiv), and SS-(tert-butyl) 4-methylbenzenesulfono(dithioperoxoate) 2a (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 100:1) gave the desired product 5g as a colorlrss liquid in 36% yield (21.3 mg); **TLC R**_f = 0.4 (PE:EtOAc = 50:1); ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.77 (d, J = 8.1 Hz, 1H), 6.84 (d, J = 6.5 Hz, 1H), 6.78 (s, 1H), 4.66 (dd, J¹ = 1)11.4 Hz, $J^2 = 4.6$ Hz, 1H), 4.40 (dd, $J^1 = 11.4$ Hz, $J^2 = 9.1$ Hz, 1H), 3.30 (dd, $J^1 = 13.5$ Hz, $J^2 = 3.9$ Hz, 1H), 3.11 (m, 1H), 2.36 (s, 3H), 1.35 (s, 9H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 192.5, 161.6, 147.7, 127.2, 122.9, 118.3, 117.8, 69.1, 48.3, 45.4, 36.6, 30.0, 21.9; **HRMS** (ESI) m/z = 319.0797 calcd. for C₁₅H₂₀O₂NaS₂ $[M+Na]^+$, found: 319.0791; **IR** (neat, cm⁻¹): 2960w, 2901w, 2854w, 1683m, 1618s, 1469w, 1422w, 1364w, 1331w, 1232w, 1154w, 1042w, 907s, 825s, 650w.

3-((*tert***-Butyldisulfaneyl)methyl)-7-methylchromn-4-o ne (5h):** The title compound was prepared according to general procedure (**GP2-1**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (27.3 mg, 0.260

mmol, 1.3 equiv), 2-(allyloxy)-4-chlorobenzaldehyde **4h** (39.3 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono (dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 100:1) gave the desired product **5h** as a colorlrss liquid in 65% yield (41.2 mg); **TLC R**_f = 0.5 (PE:EtOAc = 50:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.81 (d, *J* = 8.9 Hz, 1H), 7.00 (d, *J* = 7.2 Hz, 2H), 4.70 (dd,

 $J^{1} = 11.5$ Hz, $J^{2} = 4.6$ Hz, 1H), 4.43 (dd, $J^{1} = 11.3$ Hz, $J^{2} = 9.6$ Hz, 1H), 3.29 (dd, $J^{1} = 13.6$ Hz, $J^{2} = 3.9$ Hz, 1H), 3.18 – 3.11 (m, 1H), 2.70 (dd, $J^{1} = 13.6$ Hz, $J^{2} = 9.9$ Hz, 1H), 1.35 (s, 9H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 191.8, 161.9, 142.0, 128.6, 122.4, 119.1, 118.0, 69.5, 48.4, 45.3, 36.3, 29.9; HRMS (ESI) m/z = 317.0431 calcd. for C₁₄H₁₈O₂S₂Cl [M+H]⁺, found: 317.0443; IR (neat, cm⁻¹): 2961w, 2923w, 2854w, 1690m, 1600s, 1568w, 1720w, 1425m, 1379w, 1364w, 1321w, 1258w, 1029w, 908s, 725w.

3-((*tert***-Butyldisulfaneyl)methyl)-7-fluorochroman-4-on e (5i):** The title compound was prepared according to general procedure (**GP2-1**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (27.3 mg, 0.260

mmol, 1.3 equiv), 2-(allyloxy)-4-fluorobenzaldehyde **4i** (36.0 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 100:1) gave the desired product **5i** as a colorlrss liquid in 68% yield (40.7 mg); **TLC R**_f = 0.5 (PE:EtOAc = 20:1); ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.90 (dd, J^1 = 8.8 Hz, J^2 = 6.6 Hz, 1H), 6.76 – 6.72 (m, 1H), 6.66 (dd, J^1 = 9.8 Hz, J^2 = 2.4 Hz, 1H), 4.70 (dd, J^1 = 11.5 Hz, J^2 = 4.7 Hz, 1H), 4.44 (dd, J^1 = 11.5 Hz, J^2 = 9.4 Hz, 1H), 3.30 (dd, J^1 = 13.6 Hz, J^2 = 3.9 Hz, 1H), 3.18 – 3.11 (m, 1H), 2.70 (dd, J^1 = 13.6 Hz, J^2 = 10.0 Hz, 1H), 1.35 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 191.4, 167.5 (d, J = 256.5 Hz, 1C), 163.3 (d, J = 13.7 Hz, 1C), 129.9 (d, J = 11.4 Hz, 1C), 117.5 (d, J = 2.5 Hz, 1C), 110.0 (d, J = 22.8 Hz, 1C), 104.6 (d, J = 24.5 Hz, 1C), 69.6, 48.4, 45.2, 36.3, 29.9; **HRMS** (ESI) m/z = 301.0727 calcd. for C₁₄H₁₈O₂S₂F [M+H]⁺, found: 301.0734; **IR** (neat, cm⁻¹): 2963*w*, 2923*w*, 2861*w*, 1689*s*, 1616*s*, 1588*m*, 1469*w*, 1438*m*, 1382*w*, 1364*w*, 132*w*, 1244*s*, 1145*s*, 1119*w*, 1029*w*, 910*w*, 854*m*, 732*m*.

5-Bromo-3-((*tert*-butyldisulfaneyl)methyl)chroman-4-one

(5j): The title compound was prepared according to general procedure (GP2-3) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (27.3 mg, 0.260 mmol, 1.3

equiv), 2-(allyloxy)-6-bromobenzaldehyde **4j** (48.2 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 100:1) gave the desired product **5j** as a colorlrss liquid in 62% yield (44.6 mg); **TLC R**_f = 0.6 (PE:EtOAc = 20:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.27 (d, *J* = 7.7 Hz, 1H), 7.21 (d, *J* = 7.9 Hz, 1H), 6.94 (d, *J* = 8.2 Hz, 1H), 4.67 (dd, *J*¹ = 11.5 Hz, *J*² = 4.7 Hz, 1H), 4.38 (dd, *J*¹ = 11.4 Hz, *J*² =

9.6 Hz, 1H), 3.30 (dd, $J^1 = 13.7$ Hz, $J^2 = 4.0$ Hz, 1H), 3.21 – 3.14 (m, 1H), 2.67 (dd, $J^1 = 13.7$ Hz, $J^2 = 10.0$ Hz, 1H), 1.33 (s, 9H); ¹³**C** NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 191.2, 163.1, 135.1, 128.5, 121.8, 118.7, 117.7, 68.6, 48.5, 45.7, 36.3, 29.9; HRMS (ESI) m/z = 360.9926 calcd. for C₁₄H₁₈O₂S₂Br [M+H]⁺, found: 360.9933; IR (neat, cm⁻¹): 2964w, 2924w, 1696s, 1593s, 1559w, 1468m, 1445s, 1365w, 1314s, 1251m, 1165m, 1028w, 948w, 862m, 788m.

3-((*tert***-Butyldisulfaneyl)methyl)-5-chlorochroman-4-one** (**5k**): The title compound was prepared according to general procedure (**GP2-3**) with phenanthrenequinone (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (27.3 mg, 0.260 mmol, 1.3 equiv),

2-(allyloxy)-6-chlorobenzaldehyde **4k** (39.3 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 100:1) gave the desired product **5k** as a colorlrss liquid in 92% yield (58.0 mg); **TLC R**_f = 0.6 (PE:EtOAc = 20:1); ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.32 (t, *J* = 8.1 Hz, 1H), 7.04 (d, *J* = 8.0 Hz, 1H), 6.91 (d, *J* = 8.4 Hz, 1H), 4.68 (dd, *J*¹ = 11.4 Hz, *J*² = 4.6 Hz, 1H), 4.40 (dd, *J*¹ = 11.5 Hz, *J*² = 9.5 Hz, 1H), 3.31 (dd, *J*¹ = 13.6 Hz, *J*² = 4.0 Hz, 1H), 3.22 – 3.15 (m, 1H), 2.69 (dd, *J*¹ = 13.6 Hz, *J*² = 9.9 Hz, 1H), 1.35 (s, 9H); ¹³C **NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 191.0, 163.0, 134.8, 134.6, 124.8, 117.9, 116.9, 68.7, 48.4, 46.1, 36.3, 29.9; **HRMS** (ESI) *m*/*z* = 339.0521 calcd. for C₁₄H₁₇O₂S₂ClNa [M+Na]⁺, found: 339.0266; **IR** (neat, cm⁻¹): 2961*w*, 2923*w*, 2861*w*, 1690*s*, 1595*s*, 1565*m*, 1468*m*, 1448*s*, 1362*m*, 1311*s*, 1256*s*, 1164*m*, 1088*w*, 1061*w*, 1029*s*, 955*m*, 878*s*, 791*s*, 765*s*, 702*w*, 645*w*, 530*w*.

3-((tert-Butyldisulfaneyl)methyl)-8-fluorochroman-4-one

(51): The title compound was prepared according to general procedure (GP2-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (27.3 mg, 0.260 mmol, 1.3 equiv), 2-(allyloxy)-3-fluorobenzaldehyde 41 (36.0 mg, 0.200

mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 50:1) gave the desired product **5l** as a white solid in 78% yield (47.1 mg); **TLC R**_f = 0.4 (PE:EtOAc = 20:1); **MP**: = 44 °C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.66 (d, *J* = 8.0 Hz, 1H), 7.33 – 7.26 (m, 1H), 6.98 – 6.93 (m, 1H), 4.79 (dd, *J*¹ = 11.5 Hz, *J*² = 4.6 Hz, 1H), 4.51 (dd, *J*¹ = 11.5 Hz, *J*² = 9.4 Hz, 1H), 3.30 (dd, *J*¹ = 13.5 Hz, *J*² = 4.0 Hz, 1H), 3.26 – 3.17 (m, 1H), 2.73 (dd, *J*¹ = 13.6 Hz, *J*² = 9.7 Hz, 1H), 1.35 (s, 9H); ¹³C **NMR** (101 MHz,

CDCl₃, 300 K): δ (ppm) = 191.8, 151.5 (d, J = 248.9 Hz, 1C), 149.9 (d, J = 11.5 Hz, 1C), 122.6, 122.4 (d, J = 3.9 Hz, 1C), 121.9 (d, J = 17.5 Hz, 1C), 121.9 (d, J = 17.5 Hz, 1C), 69.8, 48.4, 45.5, 36.2, 29.9; **HRMS** (ESI) m/z = 323.0546 calcd. for C₁₄H₁₇FNaO₂S₂ [M+Na]⁺, found: 323.0559; **IR** (neat, cm⁻¹): 2961w, 2941w, 1695s, 1618m, 1587w, 1499s, 1453w, 1364w, 1298m, 1262m, 1219w, 1165w, 1064w, 1018w, 910w, 802w, 764w, 730w, 587w.

3-((*tert***-Butyldisulfaneyl)methyl)-8-methoxychroman-4-on e (5m):** The title compound was prepared according to general procedure (**GP2-1**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (27.3 mg, 0.260 mmol, 1.3 equiv), 2-(allyloxy)-3-methoxybenzaldehyde **4m** (38.4 mg,

0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 100:1) gave the desired product **5m** as a white solid in 78% yield (48.7 mg); **TLC R**f = 0.5 (PE:EtOAc = 20:1); **MP**: = 58 °C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.48 (d, *J* = 7.9 Hz, 1H), 7.05 (d, *J* = 8.1 Hz, 1H), 6.96 (t, *J* = 7.9 Hz, 1H), 4.76 (dd, *J*¹ = 11.5 Hz, *J*² = 4.5 Hz, 1H), 4.52 (dd, *J*¹ = 11.5 Hz, *J*² = 9.0 Hz, 1H), 3.91 (s, 3H), 3.27 (dd, *J*¹ = 13.5 Hz, *J*² = 4.0 Hz, 1H), 3.20 – 3.13 (m, 1H), 2.74 (dd, *J*¹ = 13.5 Hz, *J*² = 9.9 Hz, 1H), 1.34 (s, 9H); ¹³C **NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 192.7, 151.5, 148.8, 121.1, 121.0, 118.5, 116.7, 69.6, 56.2, 48.3, 45.3, 36.3, 29.9; **HRMS** (ESI) *m*/*z* = 355.0746 calcd. for C₁₅H₂₀O₃NaS₂ [M+Na]⁺, found: 355.0746; **IR** (neat, cm⁻¹): 2960w, 2923w, 1688s, 1605*m*, 1583*m*, 1491*s*, 1441*m*, 1362*w*, 1301*m*, 1268*s*, 1251*m*, 1215*m*, 1188*m*, 1166*m*, 1062*w*, 1029*w*, 958*w*, 735*w*.

2-((*tert*-Butyldisulfaneyl)methyl)-2,3-dihydro-1*H*-benzo[*f*]chromen-1-one (5n): The title compound was prepared according to general procedure (GP2-3) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%),

Na₂CO₃ (27.3 mg, 0.260 mmol, 1.3 equiv), 2-(allyloxy)-1-naphthaldehyde **4n** (42.4 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono (dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 100:1) gave the desired product **5n** as a white solid in 72% yield (47.6 mg); **TLC R**_f = 0.6 (PE:EtOAc = 20:1); **MP**: = 88 – 90 °C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) =9.43 (d, *J* = 8.6 Hz, 1H), 7.93 (d, *J* = 9.0 Hz, 1H), 7.75 (d, *J* = 8.9 Hz, 1H), 7.63 (t, *J* = 7.8 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 1H), 7.11 (d, *J* = 9.0 Hz, 1H), 4.75 (dd, *J*¹ = 11.4 Hz, *J*² = 4.6 Hz, 1H), 4.58 (dd, *J*¹ = 11.4 Hz, *J*² = 8.6 Hz, 1H), 3.34 (dd, *J*¹ = 13.5 Hz, *J*² = 4.0 Hz,

1H), 3.25 - 3.17 (m, 1H), 2.80 (dd, $J^1 = 13.5$ Hz, $J^2 = 10.1$ Hz, 1H), 1.37 (s, 9H); ¹³C **NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 193.8, 163.6, 137.6, 131.6, 129.7, 129.2, 128.4, 125.8, 124.9, 118.6, 112.1, 68.9, 48.4, 46.2, 37.1, 30.0; **HRMS** (ESI) m/z = 333.0977 calcd. for C₁₈H₂₁O₂S₂ [M+H]⁺, found: 333.0993; **IR** (neat, cm⁻¹): 2961w, 2923w, 2858w, 1666m, 1618w, 1598m, 1569w, 1613m, 1471m, 1435s, 1376m, 1364m, 1345w, 1236s, 1208w, 1164w, 1142w, 1127w, 908s, 825m, 754s, 650m, 580w.

3-((*tert***-Butyldisulfaneyl)methyl)-3-methylchroman-4-one (50):** The title compound was prepared according to general procedure (**GP2-1**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (27.3 mg, 0.260 mmol, 1.3

equiv), 2-((2-methylallyl)oxy)benzaldehyde **4o** (35.2 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 100:1) gave the desired product **5o** as a colorlrss liquid in 85% yield (50.2 mg); **TLC R**_f = 0.5 (PE:EtOAc = 20:1); ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.90 (d, *J* = 7.9 Hz, 1H), 7.48 (t, *J* = 6.9 Hz, 1H), 7.03 (t, *J* = 7.5 Hz, 1H), 6.98 (d, *J* = 8.4 Hz, 1H), 4.55 (d, *J* = 11.6 Hz, 1H), 4.21 (d, *J* = 11.6 Hz, 1H), 3.21 (d, *J* = 13.5 Hz, 1H), 2.96 (d, *J* = 13.5 Hz, 1H), 1.31 (s, 9H), 1.28 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 195.2, 161.1, 135.9, 127.9, 121.6, 119.5, 117.7, 73.6, 48.2, 46.6, 46.5, 29.7, 17.6; **HRMS** (ESI) *m/z* = 317.0797 calcd. for C₁₅H₂₀O₂NaS₂[M+Na]⁺, found: 317.0791; **IR** (neat, cm⁻¹): 2961*w*, 2923*w*, 2860*w*, 1685*s*, 1606*s*, 1581*w*, 1491*s*, 1364*m*, 1465*s*, 1384*w*, 1362*m*, 1311*s*, 1282*s*, 1212*s*, 1165*m*, 1146*m*, 1104*w*, 1037*m*, 1021*m*, 948*m*, 822*s*, 694*w*, 527*w*.

3-((*tert***-Butyldisulfaneyl)methyl)-3-methyl-6-nitrochr oman-4-one (5p):** The title compound was prepared according to general procedure (**GP2-3**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10

mol%), Na₂CO₃ (27.3 mg, 0.260 mmol, 1.3 equiv), 2-((2-methylallyl)oxy) -5-nitrobenzaldehyde **4p** (44.2 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 100:1) gave the desired product **5p** as a colorlrss liquid in 46% yield (31.4 mg); **TLC R**_f = 0.4 (PE:EtOAc = 50:1); ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.79 (s, 1H), 8.33 (d, J = 9.2 Hz, 1H), 7.26 (s, 1H), 4.69 (d, J = 13.9 Hz, 1H), 4.35 (d, J = 11.9 Hz, 1H), 3.20 (d, J = 13.7 Hz, 1H), 2.96 (d, J = 13.7 Hz, 1H), 1.31 – 1.30 (m, 12H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 193.2, 165.0, 142.4, 130.2, 124.5, 119.1, 74.2, 48.4, 46.6, 46.2, 29.7, 17.7; **HRMS** (ESI) *m/z* = 342.0828

calcd. for C₁₅H₂₀NO₄S₂ [M+H]⁺, found: 342.0833; **IR** (neat, cm⁻¹): 2964*w*, 2924*w*, 2861*w*, 1702*m*, 1616*s*, 1588*m*, 1525*m*, 1479*m*, 1433*m*, 1336*s*, 1279*s*, 1216*w*, 1165*w*, 1079*w*, 1017*m*, 931*w*, 840*w*, 748*w*, 687*w*.

2-((*tert***-Butyldisulfaneyl)methyl)-2-methyl-2,3-dihydro-1***H***-benzo[***f***]chromen-1-one (5q): The title compound was prepared according to general procedure (GP2-3) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%),**

Na₂CO₃ (27.3 mg, 0.260 mmol, 1.3 equiv), 2-((2-methylallyl)oxy)-1-naphthaldehyde **4q** (45.3 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono (dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 100:1) gave the desired product **5q** as a colorlrss liquid in 74% yield (51.2 mg); **TLC R**_f = 0.5 (PE:EtOAc = 50:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 9.44 (d, *J* = 8.7 Hz, 1H), 7.93 (d, *J* = 8.9 Hz, 1H), 7.75 (d, *J* = 8.1 Hz, 1H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.4 Hz, 1H), 7.10 (d, *J* = 9.1 Hz, 1H), 4.67 (d, *J* = 11.5 Hz, 1H), 4.32 (d, *J* = 11.6 Hz, 1H), 3.27 (d, *J* = 13.6 Hz, 1H), 3.03 (d, *J* = 13.4 Hz, 1H), 1.34 (s, 3H), 1.29 (s, 9H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 196.4, 163.1, 137.5, 131.9, 129.6, 129.4, 128.4, 125.9, 124.9, 118.5, 111.1, 73.4, 48.2, 47.2, 46.9, 29.7, 18.0; HRMS (ESI) *m/z* = 347.1134 calcd. for C₁₉H₂₃O₂S₂ [M+H]⁺, found: 347.1145; **IR** (neat, cm⁻¹): 2964*m*, 2924*w*, 2857*w*, 1668*s*, 1616*w*, 1599*w*, 1565*w*, 1513*s*, 1468*m*, 1433*s*, 1365*s*, 1279*w*, 1234*w*, 1205*w*, 1165*w*, 1142*w*, 1028*w*, 994*w*, 828*s*, 754*m*, 503*w*.

3-((*tert***-Butyldisulfaneyl)methyl)-3-methyl-1-tosyl-2,3-dihy droquinolin-4(1***H***)-one (5r): The title compound was prepared according to general procedure (GP2-3**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (27.3 mg, 0.260 mmol, 1.3 equiv),

N-(2-formylphenyl)-4-methyl-*N*-(2-methylallyl)benzenesulfonamide **4r** (65.9 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 50:1) gave the desired product **5r** as a colorlrss liquid in 40% yield (35.8 mg); **TLC R**_f = 0.2 (PE:EtOAc = 20:1); ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.00 (d, *J* = 7.9 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 2H), 7.63 (d, *J* = 8.5 Hz, 1H), 7.43 (t, *J* = 7.9 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.10 (t, *J* = 7.6 Hz, 1H), 4.20 (s, 2H), 3.39 (d, *J* = 13.6 Hz, 1H), 2.97 (d, *J* = 13.6 Hz, 1H), 2.43 (s, 3H), 1.34 – 1.32 (m, 12H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 195.7, 144.5, 142.3, 136.8, 134.6, 130.1, 129.2, 126.9, 123.5, 122.0, 118.6, 54.5, 48.3, 47.8, 47.7, 29.8, 21.6, 19.8; **HRMS** (ESI) m/z = 450.1126 calcd. for C₂₂H₂₈NO₃S₃ [M+H]⁺, found: 450.1125; **IR** (neat, cm⁻¹): 2964*m*, 2924*w*, 2861*w*, 1685*m*, 1599*m*, 1479*m*, 1456*m*, 1369*s*, 1296*w*, 1222*w*, 1165*s*, 1085*w*, 1039*w*, 965*w*, 1165*w*, 920*w*, 811*w*, 742*w*, 663*m*, 571*m*, 543*w*.

3-((tert-Butyldisulfaneyl)methyl)-1-tosyl-2,3-dihydroquino lin-4(1H)-one (5s): The title compound was prepared according to general procedure (GP2-3)with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (27.3)mg, 0.260 mmol, 1.3 equiv),

N-allyl-*N*-(2-formylphenyl)-4-methylbenzenesulfonamide **4s** (63.1 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 50:1) gave the desired product **5s** as a white solid in 46% yield (39.7 mg); **TLC R**f = 0.5 (PE:EtOAc = 5:1); **MP**: = 71 – 74 °C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.94 – 7.91 (m, 2H), 7.63 (d, *J* = 8.1 Hz, 2H), 7.57 (t, *J* = 6.8 Hz, 1H), 7.26 – 7.22 (m, 4H), 4.76 (dd, *J*¹ = 14.2 Hz, *J*² = 5.0 Hz, 1H), 3.75 (dd, *J*¹ = 14.3 Hz, *J*² = 12.5 Hz, 1H), 3.29 (dd, *J*¹ = 13.7 Hz, *J*² = 3.4 Hz, 1H), 2.69 – 2.62 (m, 1H), 2.51 (dd, *J*¹ = 13.7 Hz, *J*² = 9.3 Hz, 1H), 2.40 (s, 3H), 1.34 (s, 9H); ¹³C **NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 193.7, 144.5, 142.4, 136.6, 134.8, 130.2, 128.0, 127.0, 125.2, 124.7, 123.8, 49.6, 48.3, 44.9, 37.8, 29.9, 21.6; **HRMS** (ESI) *m*/*z* = 458.0889 calcd. for C₂₁H₂₅NO₃NaS₂ [M+Na]⁺, found: 458.0888; **IR** (neat, cm⁻¹): 2961*w*, 2924*w*, 2857*w*, 1688*m*, 1598*m*, 1475*m*, 1458*m*, 1355*s*, 1296*w*, 1262*w*, 1224*w*, 1162*s*, 1089*s*, 1038*w*, 952*w*, 885*w*, 812*m*, 764*m*, 734*m*, 660*s*, 623*s*, 546*m*.

Ethyl 2-(*tert*-butyldisulfaneyl)-2-(4-oxochroman-3-yl) acetate (5t): The title compound was prepared according to general procedure (GP2-3) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (27.3 mg, 0.260 mmol,

1.3 equiv), ethyl (*E*)-4-(2-formylphenoxy)but-2-enoate **4t** (46.9 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 50:1) gave the desired product **5t** as a colorlrss liquid in 44% yield (31.3 mg); **TLC R**_f = 0.2 (PE:EtOAc = 20:1); ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.84 (d, *J* = 7.8 Hz, 1H), 7.49 (t, *J* = 6.9 Hz, 1H), 7.05 – 6.96 (m, 2H), 4.94 (dd, *J*¹ = 11.4 Hz, *J*² = 5.0 Hz, 1H), 4.43 (t, *J* = 11.8 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 3.69 (d, *J* = 9.4 Hz, 1H), 3.53 – 3.47 (m, 1H), 1.40 – 1.31 (m, 12H); ¹³**C NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 191.4, 170.3, 161.6, 136.2,

127.4, 121.6, 120.3, 117.8, 68.9, 61.6, 53.6, 48.8, 47.8, 29.8, 14.1; **HRMS** (ESI) m/z= 377.0852 calcd. for C₁₇H₂₂O₄NaS₂ [M+Na]⁺, found: 377.0843; **IR** (neat, cm⁻¹): 2961w, 2923w, 1731s, 1690s, 1608s, 1479s, 1365w, 1292m, 1244m, 1215m, 1149m, 1037w, 1012w, 948w, 768w, 755w.

6-((*tert*-Butyldisulfaneyl)methyl)-6,7-dihydro-5*H*-cyclopent a[*b*]pyridin-5-one (5u): The title compound was prepared according to general procedure (GP2-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%),

Na₂CO₃ (27.3 mg, 0.260 mmol, 1.3 equiv), 2-(allyloxy)benzaldehyde **4u** (29.4 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 10:1) gave the desired product **5u** as a colorlrss liquid in 66% yield (32.7 mg); **TLC R**f = 0.3 (PE:EtOAc = 3:1); **MP**: = 62 °C; ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 8.83 (d, *J* = 4.9 Hz, 1H), 8.02 (d, *J* = 7.2 Hz, 1H), 7.33 (dd, *J*¹ = 7.8 Hz, *J*² = 4.8 Hz, 1H), 3.53 (dd, *J*¹ = 18.9 Hz, *J*² = 8.8 Hz, 1H), 3.38 (dd, *J*¹ = 12.9 Hz, *J*² = 3.7 Hz, 1H), 3.31 – 3.15 (m, 2H), 2.83 (dd, *J*¹ = 13.0 Hz, *J*² = 9.5 Hz, 1H), 1.35 (s, 10H); ¹³C **NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 205.0, 173.0, 156.1, 132.2, 129.9, 122.7, 48.3, 46.9, 41.6, 34.9, 29.9; **HRMS** (ESI) *m*/*z* = 268.0824 calcd. for C₁₃H₁₈NOS₂ [M+H]⁺, found: 268.0824; **IR** (neat, cm⁻¹): 2964*w*, 2924*w*, 1713*s*, 1576*m*, 1468*w*, 1416*w*, 1365*w*, 1285*w*, 1165*w*, 1097*w*, 782*w*, 725*w*.

2-((*tert***-Butyldisulfaneyl)methyl)-2,3-dihydro-1***H***-inden-1-o ne (5v): The title compound was prepared according to general procedure (GP2-1) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (27.3 mg, 0.260 mmol, 1.3**

equiv), 2-allylbenzaldehyde **4v** (29.2 mg, 0.200 mmol, 1.0 equiv), and *SS*-(*tert*-butyl) 4-methylbenzenesulfono(dithioperoxoate) **2a** (110.4 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 100:1) gave the desired product **5v** as a colorlrss liquid in 81% yield (43.0 mg); **TLC R**_f = 0.5 (PE:EtOAc = 50:1); ¹H NMR (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.75 (d, *J* = 7.7 Hz, 1H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.48 (d, *J* = 7.7 Hz, 1H), 7.37 (t, *J* = 7.4 Hz, 1H), 3.40 (d, *J* = 16.8 Hz, 2H), 3.08 (d, *J* = 15.6 Hz, 2H), 2.73 (t, *J* = 12.8 Hz 1H), 1.36 (s, 9H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 206.5, 153.5, 136.5, 135.0, 127.5, 126.6, 124.0, 48.2, 47.1, 42.0, 32.4, 30.0; **HRMS** (ESI) *m*/*z* = 289.0691 calcd. for C₁₄H₁₈ONaS₂ [M+Na]⁺, found: 289.0696; **IR** (neat, cm⁻¹): 2960w, 2921w, 1709s, 1609w, 1463m, 1362m, 1329w, 1295w, 1276m, 1206w, 1166m, 1094w, 1029w, 754s, 591w, 470w.

5-Chloro-3-(((2-methyl-4-oxopentan-2-yl)disulfan eyl)methyl)chroman-4-one (5w): The title compound was prepared according to general procedure (GP2-2) with phenanthrene-9,10-dione

(4.2 mg, 0.020 mmol, 10 mol%), Na₂CO₃ (27.3 mg, 0.260 mmol, 1.3 equiv), 2-(allyloxy)-6-chlorobenzaldehyde **4w** (39.3 mg, 0.200 mmol, 1.0 equiv), and *SS*-(2-methyl-4-oxopentan-2-yl) 4-methylbenzenesulfono(dithioperoxoate) **2f** (146.6 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 100:1) gave the desired product **5w** as a colorlrss liquid in 53% yield (38.0 mg); **TLC R**f = 0.6 (PE:EtOAc = 20:1); ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.33 (t, *J* = 8.1 Hz, 1H), 7.04 (d, *J* = 7.9 Hz, 1H), 6.91 (d, *J* = 8.4 Hz, 1H), 4.67 (dd, *J*¹ = 11.5 Hz, *J*² = 4.7 Hz, 1H), 4.38 (dd, *J*¹ = 11.5 Hz, *J*² = 9.6 Hz, 1H), 3.30 (dd, *J*¹ = 13.6 Hz, *J*² = 4.2 Hz, 1H), 3.17 (m, 1H), 2.76 (m, 3H), 2.16 (s, 3H), 1.45 (s, 3H), 1.44 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃, 300 K): δ (ppm) = 206.3, 190.8, 163.0, 134.9, 134.5, 124.8, 117.8, 116.9, 68.6, 53.2, 49.7, 46.1, 36.4, 32.1, 27.2, 27.0; **HRMS** (ESI) *m*/*z* = 381.0356 calcd. for C₁₆H₁₉O₃S₂ClNa [M+Na]⁺, found: 381.0364; **IR** (neat, cm⁻¹): 2964*w*, 2924*w*, 2867*w*, 1690*s*, 1593*s*, 1468*m*, 1448*s*, 1251*m*, 1176*w*, 1028*m*, 954*s*, 880*s*, 793*s*, 742*w*, 525*w*.

3-((((3*R***,5***R***,7***R***)-Adamantan-1-yl)disulfaneyl)methyl) -5-chlorochroman-4-one (5x):** The title compound was prepared according to general procedure (**GP2-3**) with phenanthrene-9,10-dione (4.2 mg, 0.020 mmol, 10

mol%), Na₂CO₃ (27.3 mg, 0.260 mmol, 1.3 equiv), 2-(allyloxy)-6-chlorobenzaldehyde **4x** (39.3 mg, 0.200 mmol, 1.0 equiv), and *SS*-((3*s*,5*s*,7*s*)-adamantan-1-yl) 4-methylbenzenesulfono(dithioperoxoate) **2g** (141.8 mg, 0.4000 mmol, 2.0 equiv) in MeCN (2 mL) at 30 °C for 12 h. Purification via silica gel chromatography (PE:EtOAc = 100:1) gave the desired product **5x** as a colorlrss liquid in 67% yield (52.9 mg); **TLC R**_f = 0.6 (PE:EtOAc = 20:1); ¹**H NMR** (400 MHz, CDCl₃, 300 K): δ (ppm) = 7.32 (t, *J* = 8.1 Hz, 1H), 7.03 (d, *J* = 7.9 Hz, 1H), 6.91 (d, *J* = 8.4 Hz, 1H), 4.68 (dd, J^1 = 11.5 Hz, J^2 = 4.6 Hz, 1H), 4.39 (dd, J^1 = 11.5 Hz, J^2 = 9.3 Hz, 1H), 3.27 (dd, J^1 = 13.5 Hz, J^2 = 4.0 Hz, 1H), 3.19 (m, 4.3 Hz, 1H), 2.65 (dd, J^1 = 13.5 Hz, J^2 = 9.9 Hz, 1H), 2.07 (s, 3H), 1.86 (s, 6H), 1.67 (s, 6H); ¹³C NMR (101 MHz, CDCl₃, 300 K): δ (ppm) = 191.2, 163.0, 134.8, 134.5, 124.8, 117.9, 116.9, 68.7, 50.1, 45.9, 42.6, 36.8, 36.0, 29.8; **HRMS** (ESI) *m*/*z* = 417.0720 calcd. for C₂₀H₂₃O₂S₂ClNa [M+Na]⁺, found: 417.0723; **IR** (neat, cm⁻¹): 2907*s*, 2950*m*, 1690*s*, 1690*s*, 1593*s*, 1565*w*, 1468m, 1445*s*, 1314*s*, 1251*s*, 1121*w*, 1102*w*, 1038*m*, 954*w*, 880*m*, 794*m*.

6. Spectra

¹H NMR Spectrum of 4-Formylphenyl (*R*)-2-(6-methoxynaphthalen-2-yl) propanoate 1aj

3.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0. fl (ppm)

¹³C NMR Spectrum of 4-Formylphenyl (*R*)-2-(6-methoxynaphthalen-2-yl) propanoate 1aj

¹H NMR Spectrum of (3a*S*,5a*R*,8a*R*,8b*S*)-2,2,7,7-Tetramethyltetrahydro-3a*H*-bis([1,3]dioxolo)[4,5-*b*:4',5'-*d*]pyran-3a-yl)methyl 4-formylbenzoate 1aj

¹³C NMR Spectrum of (3a*S*,5a*R*,8a*R*,8b*S*)-2,2,7,7-Tetramethyltetrahydro-3a*H*-bis([1,3]dioxolo)[4,5-*b*:4',5'-*d*]pyran-3a-yl)methyl 4-formylbenzoate 1aj

¹H NMR Spectrum of 4-(((2*R*,5*R*)-5-Isopropyl-2-methylcyclohexyl)oxy)benz aldehyde 1ak

¹³C NMR Spectrum of 4-(((2*R*,5*R*)-5-Isopropyl-2-methylcyclohexyl)oxy)benz aldehyde 1ak

fl (ppm)

¹³C NMR Spectrum of 4-Formylphenyl 2-(4-(2,2-dichlorocyclopropyl) phenoxy) -2-methylpropanoate 1am

¹H NMR Spectrum of 4-Formylphenyl 2-(4-(4-chlorobenzoyl)phenoxy)-2methylpropanoate 1an

¹³C NMR Spectrum of 4-Formylphenyl 2-(4-(4-chlorobenzoyl)phenoxy)-2methylpropanoate 1an

¹H NMR Spectrum of SS-(tert-Butyl) 4-methylbenzo(dithioperoxoate) 3a

¹³C NMR Spectrum of SS-(tert-Butyl) 4-methylbenzo(dithioperoxoate) 3a

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR Spectrum of SS-(tert-Butyl) benzo(dithioperoxoate) 3b

¹H NMR Spectrum of SS-(tert-Butyl) 4-methoxybenzo(dithioperoxoate) 3c

¹³C NMR Spectrum of SS-(tert-Butyl) 4-methoxybenzo(dithioperoxoate) 3c

¹³C NMR Spectrum of SS-(tert-Butyl) 4-acetamidobenzo(dithioperoxoate) 3d

¹H NMR Spectrum of SS-(tert-Butyl) 4-fluorobenzo(dithioperoxoate) 3e

¹³C NMR Spectrum of SS-(tert-Butyl) 4-fluorobenzo(dithioperoxoate) 3e

¹H NMR Spectrum of SS-(tert-Butyl) 4-bromobenzo(dithioperoxoate) 3f

¹³C NMR Spectrum of SS-(tert-Butyl) 4-bromobenzo(dithioperoxoate) 3f

¹H NMR Spectrum of SS-(tert-Butyl) 4-iodobenzo(dithioperoxoate) 3g

¹³C NMR Spectrum of SS-(tert-Butyl) 4-iodobenzo(dithioperoxoate) 3g

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 50 40 30 20 10 0 -10 60 fl (ppm)

¹H NMR Spectrum of *SS*-(*tert*-Butyl) 4-(trifluoromethyl)benzo(dithioperoxoate) 3h

¹³C NMR Spectrum of *SS*-(*tert*-Butyl) 4-(trifluoromethyl)benzo(dithioperoxoate) 3h

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR Spectrum of SS-(tert-Butyl) 4-cyanobenzo(dithioperoxoate) 3i

¹³C NMR Spectrum of SS-(tert-Butyl) 4-cyanobenzo(dithioperoxoate) 3i

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR Spectrum of SS-(tert-Butyl) [1,1'-biphenyl]-4-carbo(dithioperoxoate) 3j

¹³C NMR Spectrum of SS-(tert-Butyl) [1,1'-biphenyl]-4-carbo(dithioperoxoate) 3j

¹H NMR Spectrum of SS-(tert-Butyl) 4-(trimethylsilyl)benzo(dithioperoxoate) 3k

¹³C NMR Spectrum of SS-(tert-Butyl) 4-(trimethylsilyl)benzo(dithioperoxoate) 3k

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR Spectrum of SS-(tert-Butyl) 3-methylbenzo(dithioperoxoate) 31

¹³C NMR Spectrum of SS-(tert-Butyl) 3-methylbenzo(dithioperoxoate) 31

¹H NMR Spectrum of SS-(tert-Butyl) 3-methoxybenzo(dithioperoxoate) 3m

¹³C NMR Spectrum of SS-(tert-Butyl) 3-methoxybenzo(dithioperoxoate) 3m

fl (ppm)

¹H NMR Spectrum of SS-(tert-Butyl) 3-phenoxybenzo(dithioperoxoate) 3n

¹³C NMR Spectrum of SS-(tert-Butyl) 3-phenoxybenzo(dithioperoxoate) 3n

¹H NMR Spectrum of SS-(tert-Butyl) 3-iodobenzo(dithioperoxoate) 30

¹³C NMR Spectrum of SS-(tert-Butyl) 3-iodobenzo(dithioperoxoate) 30

¹H NMR Spectrum of SS-(tert-Butyl) 3-cyanobenzo(dithioperoxoate) 3p

¹³C NMR Spectrum of SS-(tert-Butyl) 3-cyanobenzo(dithioperoxoate) 3p

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR Spectrum of SS-(tert-Butyl) 3-nitrobenzo(dithioperoxoate) 3q

13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -C fl (ppm)

¹³C NMR Spectrum of SS-(tert-Butyl) 3-nitrobenzo(dithioperoxoate) 3q

¹H NMR Spectrum of SS-(tert-Butyl) 2-methylbenzo(dithioperoxoate) 3r

¹³C NMR Spectrum of SS-(tert-Butyl) 2-methylbenzo(dithioperoxoate) 3r

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR Spectrum of SS-(tert-Butyl) 2-methoxybenzo(dithioperoxoate) 3s

¹³C NMR Spectrum of SS-(tert-Butyl) 2-methoxybenzo(dithioperoxoate) 3s

fl (ppm)

¹H NMR Spectrum of SS-(tert-Butyl) 2-bromobenzo(dithioperoxoate) 3t

¹³C NMR Spectrum of *SS*-(*tert*-Butyl) 2-bromobenzo(dithioperoxoate) 3t

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR Spectrum of SS-(*tert*-Butyl) 2-(trifluoromethyl)benzo(dithioperoxoate) 3u

¹³C NMR Spectrum of SS-(tert-Butyl) 2-(trifluoromethyl)benzo(dithioperoxoate)3u

¹H NMR Spectrum of SS-(tert-Butyl) naphthalene-2-carbo(dithioperoxoate) 3v

¹³C NMR Spectrum of *SS*-(*tert*-Butyl) naphthalene-2-carbo(dithioperoxoate) 3v

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR Spectrum of SS-(tert-Butyl) phenanthrene-9-carbo(dithioperoxoate) 3w

¹³C NMR Spectrum of SS-(tert-Butyl) phenanthrene-9-carbo(dithioperoxoate) 3w

¹H NMR Spectrum of *SS*-(*tert*-Butyl) 2,3,4,5,6-pentafluorobenzo(dithioperoxoate) 3x

¹³C NMR Spectrum of SS-(tert-Butyl) 2,3,4,5,6-pentafluorobenzo(dithioperoxoate) 3x

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR Spectrum of *SS*-(*tert*-Butyl) 1-methyl-1*H*-pyrrole-2-carbo(dithioperoxo ate) 3y

¹³C NMR Spectrum of *SS*-(*tert*-Butyl) 1-methyl-1*H*-pyrrole-2-carbo(dithioperoxo ate) 3y

¹H NMR Spectrum of SS-(tert-Butyl) furan-2-carbo(dithioperoxoate) 3z

¹³C NMR Spectrum of *SS*-(*tert*-Butyl) 1-methyl-1*H*-indole-3-carbo (dithioperoxo ate) 3ab

S85

¹H NMR Spectrum of *SS*-(*tert*-Butyl) benzo[*b*]thiophene-3-carbo(dithioperoxoate) 3ac

¹³C NMR Spectrum of *SS*-(*tert*-Butyl) benzo[*b*]thiophene-3-carbo(dithioperox oate) 3ac

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR Spectrum of SS-(tert-Butyl) benzofuran-2-carbo(dithioperoxoate) 3ad

¹³C NMR Spectrum of SS-(tert-Butyl) benzofuran-2-carbo(dithioperoxoate) 3ad

¹H NMR Spectrum of SS-(tert-Butyl) pyridine-3-carbo(dithioperoxoate) 3ae

¹³C NMR Spectrum of SS-(tert-Butyl) pyridine-3-carbo(dithioperoxoate) 3ae

¹H NMR Spectrum of SS-(tert-Butyl) quinoline-3-carbo(dithioperoxoate) 3af

¹³C NMR Spectrum of SS-(tert-Butyl) quinoline-3-carbo(dithioperoxoate) 3af

¹H NMR Spectrum of 4-(*tert*-Butyldisulfannecarbonyl)phenyl (*R*)-2-(6-methoxy-naphthalen-2-yl)propanoate 3ag

¹³C NMR Spectrum of 4-(*tert*-Butyldisulfannecarbonyl)phenyl (*R*)-2-(6-methoxy-naphthalen-2-yl)propanoate 3ag

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR Spectrum of 4-(*tert*-Butyldisulfannecarbonyl)phenyl (*R*)-2-(4-isobutyl-phenyl)propanoate 3ah

¹³C NMR Spectrum of 4-(*tert*-Butyldisulfannecarbonyl)phenyl (*R*)-2-(4-isobutyl-phenyl)propanoate 3ah

¹H NMR Spectrum of 4-(*tert*-Butyldisulfannecarbonyl)phenyl 2-(4-(2,2-dichloro cyclopropyl)phenoxy)-2-methylpropanoate 3ai

¹³C NMR Spectrum of 4-(*tert*-Butyldisulfannecarbonyl)phenyl 2-(4-(2,2-dichloro cyclopropyl)phenoxy)-2-methylprop anoate 3ai

¹H NMR Spectrum of ((3a*S*,5a*R*,8a*R*,8*bS*)-2,2,7,7-Tetramethyltetrahydro-3a*H*bis([1,3]dioxolo)[4,5-*b*:4',5'-*d*]pyran-3a-yl)methyl 4-(*tert*-butyldisulfannecarbonyl) benzoate 3aj

¹³C NMR Spectrum of ((3a*S*,5a*R*,8a*R*,8b*S*)-2,2,7,7-Tetramethyltetrahydro-3a*H*-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-yl)methyl 4-(*tert*-butyldisulfannecarbonyl) benzoate 3aj

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR Spectrum of 4-(*tert*-Butyldisulfannecarbonyl)phenyl 5-(2,5-dimethyl phenoxy)-2,2-dimethylpentanoate 3ak

¹³C NMR Spectrum of 4-(*tert*-Butyldisulfannecarbonyl)phenyl 5-(2,5-dimethyl phenoxy)-2,2-dimethylpentanoate 3ak

¹H NMR Spectrum of *SS*-(*tert*-Butyl) 4-(((2*R*,5*R*)-5-isopropyl-2-methylcyclohexyl) oxy)benzo(dithioperoxoate) 3al

¹³C NMR Spectrum of *SS*-(*tert*-Butyl) 4-(((2*R*,5*R*)-5-isopropyl-2-methylcyclohex yl)oxy)benzo(dithioperoxoate) 3al

fl (ppm)

¹H NMR Spectrum of 4-(*tert*-Butyldisulfannecarbonyl)phenyl 2-(4-(4-chloroben zoyl)phenoxy)-2-methylpropanoate 3am

¹³C NMR Spectrum of 4-(*tert*-Butyldisulfannecarbonyl)phenyl 2-(4-(4-chloroben zoyl)phenoxy)-2-methylpropanoate 3am

¹H NMR Spectrum of 4-(*tert*-Butyldisulfannecarbonyl)phenyl (4*R*)-4-((8*R*,9*S*,10*S*, 13*R*,14*S*,17*R*)-10,13-dimethyl-3,7,12-trioxohexadecahydro-1*H*-cyclopenta[*a*]phen anthren-17-yl)pentanoate 3an

¹³C NMR Spectrum of 4-(*tert*-Butyldisulfannecarbonyl)phenyl (4*R*)-4-((8*R*,9*S*, 10*S*,13*R*,14*S*,17*R*)-10,13-dimethyl-3,7,12-trioxohexadecahydro-1*H*-cyclopenta[*a*] phenanthren-17-yl)pentanoate 3an

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR Spectrum of SS-Isopropyl 4-methylbenzo(dithioperoxoate) 3ao

¹³C NMR Spectrum of SS-Isopropyl 4-methylbenzo(dithioperoxoate) 3ao

¹H NMR Spectrum of SS-Cyclohexyl 4-methylbenzo(dithioperoxoate) 3ap

¹³C NMR Spectrum of SS-Cyclohexyl 4-methylbenzo(dithioperoxoate) 3ap

¹H NMR Spectrum of SS-(2-Methyl-1-oxo-1-phenylpropan-2-yl) 4-methylbenzo (dithioperoxoate) 3aq

¹³C NMR Spectrum of SS-(2-Methyl-1-oxo-1-phenylpropan-2-yl) 4-methylbenzo (dithioperoxoate) 3aq

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR Spectrum of *SS*-(2-Methyl-4-phenylbutan-2-yl) 4-methylbenzo(dithiop eroxoate) 3ar

3.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0 fl (ppm)

¹³C NMR Spectrum of *SS*-(2-Methyl-4-phenylbutan-2-yl) 4-methylbenzo(dithiop eroxoate) 3ar

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR Spectrum of *SS*-(2-Methyl-4-oxopentan-2-yl) 4-methylbenzo(dithioper oxoate) 3as

¹³C NMR Spectrum of SS-(2-Methyl-4-oxopentan-2-yl) 4-methylbenzo(dithioper oxoate) 3as

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)chroman-4-one 5a

¹³C NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)chroman-4-one 5a

¹H NMR Spectrum of 2-((*tert*-Butyldisulfaneyl)methyl)-2,3-dihydro-1*H*-benzo [*f*]chromen-1-one 5b

¹³C NMR Spectrum of 2-((*tert*-Butyldisulfaneyl)methyl)-2,3-dihydro-1*H*-benzo [*f*]chromen-1-one 5b

fl (ppm)

¹H NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-6-chlorochroman-4-one 5c

¹³C NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-6-chlorochroman-4-one 5c

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-6-fluorochroman-4-one 5d

¹³C NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-6-fluorochroman-4-one 5d

¹H NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-6-nitrochroman-4-one 5e

¹³C NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-6-nitrochroman-4-one 5e

¹H NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-7-methoxychroman-4one 5f

¹³C NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-7-methoxychroman-4one 5f

¹H NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-7-methylchroman-4-one 5g

¹³C NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-7-methylchroman-4-one 5g

¹H NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-7-chlorochroman-4-one 5h

¹³C NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-7-chlorochroman-4-one 5h

¹H NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-7-fluorochroman-4-one 5i

¹³C NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-7-fluorochroman-4-one 5i

¹H NMR Spectrum of 5-Bromo-3-((*tert*-butyldisulfaneyl)methyl)chroman-4-one 5j

¹³C NMR Spectrum of 5-Bromo-3-((*tert*-butyldisulfaneyl)methyl)chroman-4-one 5j

¹H NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-5-chlorochroman-4-one 5k

¹³C NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-5-chlorochroman-4-one 5k

¹H NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-8-fluorochroman-4-one 5l

¹³C NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-8-fluorochroman-4-one 5l

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-8-methoxychroman-4one 5m

¹³C NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-8-methoxychroman-4one 5m

¹³C NMR Spectrum of 2-((*tert*-Butyldisulfaneyl)methyl)-2,3-dihydro-1*H*-benzo[*f*] chromen-1-one 5n

¹H NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-3-methylchroman-4-one 50

¹³C NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-3-methylchroman-4-one 50

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-3-methyl-6-nitrochroman -4-one 5p

¹³C NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-3-methyl-6-nitrochroma n-4-one 5p

fl (ppm)

¹H NMR Spectrum of 2-((*tert*-Butyldisulfaneyl)methyl)-2-methyl-2,3-dihydro-1*H*-benzo[*f*]chromen-1-one 5q

¹³C NMR Spectrum of 2-((*tert*-Butyldisulfaneyl)methyl)-2-methyl-2,3-dihydro-1*H*-benzo[*f*]chromen-1-one 5q

¹³C NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-3-methyl-1-tosyl-2,3dihydroquinolin-4(1*H*)-one 5r

¹H NMR Spectrum of 3-((tert-Butyldisulfaneyl)methyl)-1-tosyl-2,3-dihydroquino lin-4(1*H*)-one 5s

¹³C NMR Spectrum of 3-((*tert*-Butyldisulfaneyl)methyl)-1-tosyl-2,3-dihydroquino lin-4(1*H*)-one 5s

¹H NMR Spectrum of Ethyl 2-(*tert*-butyldisulfaneyl)-2-(4-oxochroman-3-yl) acetate 5t

¹³C NMR Spectrum of Ethyl 2-(*tert*-butyldisulfaneyl)-2-(4-oxochroman-3-yl) acetate 5t

¹H NMR Spectrum of 6-((*tert*-Butyldisulfaneyl)methyl)-6,7-dihydro-5*H*-cyclopen ta[*b*]pyridin-5-one 5u

¹³C NMR Spectrum of 6-((*tert*-Butyldisulfaneyl)methyl)-6,7-dihydro-5*H*-cyclopen ta[*b*]pyridin-5-one 5u

¹H NMR Spectrum of 2-((*tert*-Butyldisulfaneyl)methyl)-2,3-dihydro-1*H*-inden-1-one 5v

¹³C NMR Spectrum of 2-((*tert*-Butyldisulfaneyl)methyl)-2,3-dihydro-1*H*-inden -1-one 5v

fl (ppm)

¹H NMR Spectrum of 5-Chloro-3-(((2-methyl-4-oxopentan-2-yl)disulfaneyl)meth yl)chroman-4-one 5w

¹³C NMR Spectrum of 5-Chloro-3-(((2-methyl-4-oxopentan-2-yl)disulfaneyl)meth yl)chroman-4-one 5w

¹³C NMR Spectrum of 3-(((((3*R*,5*R*,7*R*)-Adamantan-1-yl)disulfaneyl)methyl)-5-

¹H NMR Spectrum of 3-((((3*R*,5*R*,7*R*)-Adamantan-1-yl)disulfaneyl)methyl)-5chlorochroman-4-one 5x

7. References

- Sala, R.; Roudesly, F.; Veiros, L.; Broggini, G.; Oble, J.; Poli, G. Adv. Synth. Catal. 2020, 362, 2486.
- [2] Liu, X.-R.; Tian, X.; Huang, J.-W.; Qian, Y.; Xu, X.-F.; Kang, Z.-H.; Hu, W.-H. Org. Lett. 2022, 24, 1027.
- [3] Li, F.; Zhou, Y.-R.; Yang, H.; Liu, D.-D.; Sun, B.; Zhang, F.-L. Org. Lett. 2018, 20, 146.
- [4] Cao, J.; Wang, G.-Q.; Gao, L.-Z.; Chen, X.; Li, S.-H. Chem. Sci. 2018, 9, 3664.
- [5] Schwarz, J.-L.; Huang, H.-M.; Paulisch, T.-O.; Glorius, F. ACS Catal. 2020, 10, 1621.
- [6] Liu, D.-Y.; Wang, Y.-M.; Kong, L.-C.; Zhu, G.-G. Org. Lett. 2017, 19, 2929.
- [7] Ren, X.-R.; Ke, Q.-M.; Zhou, Y.-Y.; Jiao, J.-C.; Li, G.-X.; Cao, S.; Gao, Q.-W.; Wang, X. Angew. Chem. Int. Ed. 2023, 62, e202302199.
- [8] Xiao, X.; Feng, M.-H.; Jiang, X.-F. Angew. Chem. Int. Ed. 2016, 55, 14121.
- [9] Zhang, J.-J.; Studer, A. Nat. Commun. 2022, 13, 3886.