Supporting Information

Exploiting π and Hydrogen Bonding Interactions of Strain-free Pyridinium Tetrafluoroborate Salt for Stereoselective Synthesis of O-Aryl Glycosides

Anjali Aghi^a, Sankar Sau^a and Amit Kumar^a*

^aDepartment of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar 801106, India.

*E-mail: <u>amitkt@iitp.ac.in</u>

Table of Contents

General Information	S3
General Procedure for the synthesis of trichloroacetimidates	S3 - S4
General Procedure for the synthesis of pyridinium salts	S4
General Procedure for glycosylation	S4
Optimization of reaction conditions	S5 - S6
Compound characterization list	
Characterization data	S10 – S41
Gram Scale reaction	S41
Mechanistic studies:	
a. NMR and IR studies	S41 - S47
b. Hammett Plot	S47 – S48
References	S48 – S49
NMR Spectra	S49- S134
DFT Calculations	S135 – S145

General Information:

All chemicals were purchased as reagent grade and used without further purification unless otherwise mentioned. Solvents were purified by standard procedures. All reactions were carried out under a nitrogen atmosphere with freshly distilled solvents unless otherwise mentioned. Molecular sieves (4Å) were flame-dried before use. Reactions were monitored by analytical thin-layer chromatography 60 F₂₅₄ silica gel, precoated on aluminum plates. TLC plates were visualized by spraying 10% H₂SO₄ in MeOH and heating until spots appeared or under UV light (254 nm). Column chromatography was performed using silica gel (100–200 mesh). ¹H and ¹³C NMR spectra were recorded at 400, 100 and 500, 125 MHz, respectively. Chemical shifts (δ) are reported in parts per million (ppm) relative to tetramethylsilane or solvent residual signals (¹H NMR: solvent CDCl₃, δ = 7.26 ppm; DMSO-*d*₆, δ = 2.50 ppm; ¹³C NMR: solvent CDCl₃, δ = 77.00 ppm; DMSO-*d*₆, δ = 39.52 ppm). The following abbreviations explained multiplicities: (s, singlet; d, doublet; t, triplet; q, quartet; m, multiple), coupling constant (hertz). HRMS spectra were recorded on an ESI-mass spectrometer (Q-TOF, positive ion) and acetonitrile was used to dissolve the sample.

Donors (glycosyl trichloroacetimidates) (1a - 1g) and pyridinium salts (A-H) were prepared by following the known literature procedure. NMR data of known compounds were consistent with the literature reports.

List of glycosyl trichloroacetimidate donors used in the studies.¹⁴

General procedure for the synthesis of glycosyl *a*-trichloroacetimidates (GP-1):

To a solution of glycosyl hemiacetal (1.0 mmol, 1.0 equiv) in dry CH₂Cl₂ (10 mL) was added CCl₃CN (10.0 mmol, 10.0 equiv) and a catalytic amount of DBU (0.1 mmol, 0.1 equiv) at 0 °C. After 10 min, the ice bath was removed, and the resulting mixture was allowed to stir at room temperature for 1 h. After completion, the reaction mixture was concentrated in vacuo and purified by silica gel column chromatography using ethyl acetate and hexane gradient and 1% of TEA to obtain glycosyl α -trichloroacetimidates (**1a-1f**).

General procedure for the synthesis of glycosyl β-trichloroacetimidates (GP-2):

To a solution of glycosyl hemiacetal (1.0 mmol, 1.0 equiv) in dry CH_2Cl_2 (10 mL) was added CCl_3CN (10.0 mmol, 10.0 equiv) and K_2CO_3 (5.0 mmol, 5.0 equiv) at room temperature. The reaction mixture was allowed to stir at room temperature for 1 h. After completion, the reaction mixture was concentrated in vacuo and purified by silica gel column chromatography using ethyl acetate and hexane gradient and 1% of TEA to obtain glycosyl β -trichloroacetimidates (**1g**).

List of catalysts A-H used in the studies.⁵

General Procedure for the synthesis of pyridinium salts (GP-3)⁵:

To a round-bottom flask equipped with a stirring bar was added an ethyl ether solution of pyridine, then the corresponding acid was added dropwise. A white precipitation was observed. When the pyridine was consumed completely, the precipitation was filtered, and washed with diethyl ether three times. Afterward, the solid was dried under a vacuum to afford the targeted products (**A-H**).

General Procedure for Glycosylation (GP-4):

Under N₂ atmosphere, glycosyl trichloroacetimidate (1.0 equiv.), and phenol acceptor (1.5 equiv.), were weighed into a round bottom flask with a magnetic stir bar. Anhydrous DCM (0.1 M) and activated 4Å MS (molecular sieves) were added followed by the addition of catalyst (10 mol %) and the reaction mixture was stirred at 0 °C for 3 h. After completion, the reaction was diluted with DCM and washed with brine solution. The aqueous phase was extracted with DCM (3X). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was subjected to silica gel chromatography to give the corresponding *O*-aryl glycosides (**3-9**).

Table S1: Optimization Conditions

1

BnO Bn	OBn OBnOO BnOOC 1a NH	+ $2Cl_3$ $2a$	condition	S ^a BnO- BnO	BnO O	
Entry	Catalyst	Solvent	Temp. (°C)	Time (h)	Yield ^b (%)	α:β ^c
1	Α	DCM	0	3	74	1:9
2	А	Et ₂ O	0	3	73	1:4
3	А	ACN	0	3	64	1:1.1
4	А	THF	0	3	52	1:3.5
5	А	Toluene	0	3	68	1:3.5
6	А	DCM	-20	3	75	1:9
7^d	А	DCM	0	3	78	1:9
8 ^e	А	DCM	0-rt	12	58	β only
9 f	Α	DCM	0	3	79	β only
10	В	DCM	0-rt	24	-	-
11	С	DCM	0-rt	24	-	-
12	D	DCM	0	3	76	1:3
13	E	DCM	0	3	68	1:2.1
14	F	DCM	0	3	63	1:2.5
15 ^g	HBF ₄	DCM	0	3	66	1:3
16	BF ₃ ·OEt ₂	DCM	0	1	69	1:5.5
17	TMSOTf	DCM	0	1	57	3:1
18^h	А	DCM	0	3	74	1:6.6

1

^{*a*}1a (0.1 mmol, 1 equiv.), 2a (0.15 mmol, 1.5 equiv.), catalyst (15 mol %), solvent [0.05 M], 4Å MS (molecular sieves) at 0 °C under nitrogen atmosphere. ^{*b*}Yield of isolated product. ^{*c*}Anomeric ratios were determined by ¹H NMR spectroscopy. ^{*d*}10 mol % of catalyst was used. ^{*e*}5 mol % of catalyst was used. ^{*f*}[0.1 M] DCM was used. ^{*g*}HBF₄ - 48% wt. in H₂O was used. ^{*h*}Inverse addition conditions were used.

Table S2: Compound Characterization List

(+)	= yes,	(-)	= no	1
· /	. .	~ ~		

Structure	New	Appearance	$^{1}\mathrm{H}$	¹³ C	COSY	HSQC	HRMS
	compoun						
	ds						
3a BRO OBR OBRO BRO BRO	_(6)	white solid	+	+	-	-	-
3b BRO OBRO OBRO OBRO	_(6)	white solid	+	+	-	-	_
3c BRO COBR	_(6)	white solid	+	+	-	-	-
3d BnO OBn OBn OBn OBnO OBnO OBnO OBnO OB	_(6)	white solid	+	+	-	-	-
3e BRO OBR OBRO OBRO OBRO OME	_(6)	white solid	+	+	+	+	-
3f Bno Bno Bno Bno F	_(6)	white solid	+	+	-	- (+ ¹⁹ F)	-
3g BnO BnO BnO CI	_(4)	white solid	+	+	-	-	-
3h BnO OBn BnO OBn I	+	white solid	+	+	_	_	+

4a Meo Meo Meo	+	Colorless sticky liquid	+	+	+	+	+
4b MeO MeO MeO MeO OMe	+	White solid	+	+	+	+	+
4c OMe MeO OMe MeO OMe	+	Colorless sticky liquid	+	+	+	+	+
4d OMe MeO MeO NHBoc MeO OMe	+	Colorless sticky liquid	+	+	-	-	+
5a Ph O O O O Bno O O O O O O O O O O O O O O O O O O O	_(9)	White solid	+	+	-	-	-
5b Ph O O O O O O O O O O O O O O O O O O	+	White solid	+	+	-	-	+
5c Ph O O O O O O O O O O O O O O O O O O	+	White solid	+	+	+	+	+
5d Ph O BnO BnO BnO BnO NHBoc O O O O O O O O O O O O O	+	White solid	+	+	+	+	+
5e Ph 0 0 BnO BnO COOMe	+	White solid	+	+	+	+	+
6a BnO BnO BnO	+	Colorless sticky liquid	+	+	-	-	+
6b BnO BnO BnO BnO O OMe	+	Colorless sticky liquid	+	+	+	+	+
6e OAc BnO	+	Colorless sticky liquid	+	+	-	-	+
7a BnO OBn BocHN OMe BnO BnO OMe	_(7)	White solid	+	+	-	-	-
7b BnO OBn BnO BnO OMe	+	White solid	+	+	+	+	+

7c BnO OBn BnO BnO COOMe	_(7)	White solid	+	+	+	+	-
7d Bno OBn Bno Bno O	+	White solid	+	+	+	+	+
7e Bno OBn OH Bno Bno OH	+	Colorless sticky liquid	+	+	-	-	+
7f BnO OBn BnO O NHBoc O O O O O O O O O O O O O O O O O O O	+	Colorless sticky liquid	+	+	-	-	+
8a BRO BRO BRO	_(4)	Colorless sticky liquid	+	+	-	-	-
8b BnO 0 BnO 0 BnO 0 OMe	+	Colorless sticky liquid	+	+	-	-	+
8c BnO 0 BnO BnO CI	+	Colorless sticky liquid	+	+	+	+	+
8d BnO O OH BnO BnO OH	+	Colorless sticky liquid	+	+	-	-	+
8e BnO BnO BnO NO ₂	+	Colorless sticky liquid	+	+	+	+	+
8f BnO O BnO O BnO O OTBS	+	Colorless sticky liquid	+	+	-	-	+
8g BnO BnO BnO NHBoc	e +	Colorless sticky liquid	+	+	-	-	+
Sh Bno 0 Bno 0 H'H H'O	+	Colorless sticky liquid	+	+	-	-	+

Characterization Data:

Phenyl 2,3,4,6-tetra-*O*-benzyl–β-D-glucopyranoside (3a)

Following **GP-4**, **3a** was prepared from **2,3,4,6-tetra-***O***-benzyl**– α –**D-trichloroacetimidate** (0.1 mmol, 69 mg), **phenol** (0.15 mmol, 14 mg), **catalyst** (1.6 mg, 10 mol%), as a white solid (79%, β only). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)). The NMR data was consistent with the literature.⁶

¹**H** NMR (500 MHz, CDCl₃) δ 7.36 – 7.26 (m, 20H), 7.19 (d, J = 7.8 Hz, 2H), 7.11 – 7.04 (m, 3H), 5.06 (d, J = 10.9 Hz, 1H), 5.02 (d, J = 6.8 Hz, 1H, H-1 β), 4.96 (d, J = 10.8 Hz, 1H), 4.84

(dd, *J* = 13.7, 11.0 Hz, 3H), 4.62 – 4.52 (m, 3H), 3.81 – 3.78 (m, 1H), 3.75 (dd, *J* = 6.7, 3.8 Hz, 2H), 3.72 – 3.66 (m, 4H), 3.62 (dd, *J* = 9.6, 4.8 Hz, 1H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 157.3, 138.4, 138.2, 138.0, 137.9, 129.5, 128.4, 128.3, 128.2, 127.9, 127.8, 127.7, 127.6, 116.8, 101.6 (C1-β), 84.6, 81.9, 77.6, 75.7, 75.1, 75.0, 75.0, 73.4, 68.8, 29.7.

2-Methylphenyl 2,3,4,6-tetra-*O*-benzyl-α/β-D-glucopyranoside (3b)

Following **GP-4**, **3b** was prepared from **2,3,4,6-tetra-***O***-benzyl**– α –**D-trichloroacetimidate** (0.1 mmol, 69 mg), **2-methylphenol** (0.15 mmol, 16 mg), **catalyst** (1.6 mg, 10 mol%), as a white solid (50 mg, 79%, α : β = 1:25). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)). The NMR data was consistent with the literature.⁶

¹**H** NMR (500 MHz, CDCl₃) δ 7.36 – 7.27 (m, 18H), 7.23 – 7.20 (m, 2H), 7.19 – 7.12 (m, 2H), 7.08 (d, J = 8.2 Hz, 1H), 7.00 – 6.95 (m, 1H), 5.51 (d, J = 3.3 Hz, 0.04H, H-1 α), 5.09 (d, J = 10.8 Hz, 1H), 5.05 (d, J = 7.3 Hz, 1H, H-1 β), 4.97 (d, J = 11.0 Hz, 1H), 4.88 (d, J = 3.2 Hz, 1H), 4.86 (d, J = 1.9 Hz, 1H), 4.85 (d, J = 5.6 Hz, 1H), 4.61 (d, J = 1.8 Hz, 1H), 4.60 – 4.52 (m, 2H), 3.83 – 3.76 (m, 3H), 3.77 – 3.69 (m, 2H), 3.64 – 3.61 (m, 1H), 2.32 (s, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 155.4, 138.5, 138.2, 138.1, 137.9, 130.8, 128.4, 128.3, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 126.9, 122.3, 114.7, 101.1, 84.8, 82.1, 77.7, 75.7, 75.1, 75.0, 73.5, 68.7, 16.7.

3-Methylphenyl 2,3,4,6-tetra-*O*-benzyl-α/β-D-glucopyranoside (3c)

Following **GP-4**, **3c** was prepared from **2,3,4,6-tetra-***O***-benzyl** $-\alpha$ –**D-trichloroacetimidate** (0.1 mmol, 69 mg), **3-methylphenol** (0.15 mmol, 16 mg), **catalyst** (1.6 mg, 10 mol%), as a white

solid (50 mg, 75%, α : β = 1:10). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)). The NMR data was consistent with the literature.⁶

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.41 – 7.27 (m, 21H), 7.22 – 7.13 (m, 3H), 6.89 (dd, J = 11.1, 7.1 Hz, 3H), 5.49 (d, J = 3.5 Hz, 0.11H, H1-α), 5.06 (d, J = 10.9 Hz, 1H), 5.01 (d, J = 7.5 Hz, 1H, H1-β), 4.96 (d, J = 10.9 Hz, 1H), 4.85 (dd, J = 13.2, 10.9 Hz, 3.6H), 4.69 (d, J = 12.0 Hz, 0.19H), 4.63 – 4.52 (m, 3H), 4.49 (d, J = 10.7 Hz, 0.18H), 4.41 (d, J = 12.0 Hz, 0.13H), 4.22 (t, J = 9.2 Hz, 0.15H), 3.84 – 3.59 (m, 7H), 2.32 (s, 3.3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 157.3, 139.6, 138.5, 138.2, 138.1, 137.9, 129.2, 128.4, 128.4, 128.3, 127.9, 127.8, 127.7, 127.6, 127.5, 123.4, 117.7, 113.8, 101.7 (C1-β), 84.6, 82.0, 77.6, 75.7, 75.1, 75.0, 74.9, 73.4, 68.8, 21.5.

4-Methylphenyl 2,3,4,6-tetra-*O*-benzyl-α/β-D-glucopyranoside (3d)

Following **GP-4**, **3d** was prepared from **2,3,4,6-tetra-***O***-benzyl**– α –**D-trichloroacetimidate** (0.1 mmol, 69 mg), **4-methylphenol** (0.15 mmol, 16 mg), **catalyst** (1.6 mg, 10 mol%), as a white solid (48 mg, 76%, α : β = 1:16). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)). The NMR data was consistent with the literature.⁶

¹**H** NMR (400 MHz, CDCl₃) δ 7.34 (m, 18H), 7.21 – 7.16 (m, 2H), 7.09 (d, J = 8.3 Hz, 2H), 6.99 (d, J = 8.5 Hz, 2H), 5.45 (d, J = 3.4 Hz, 0.06H, H1-α), 5.06 (d, J = 10.9 Hz, 1H), 4.99 – 4.92 (m, 2H, H1-β, OCH₂Ph), 4.83 (t, J = 11.7 Hz, 3H), 4.57 (dt, J = 15.1, 12.1 Hz, 3H), 3.82 – 3.65 (m, 5H), 3.59 (dd, J = 9.2, 3.3 Hz, 1H), 2.31 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.3, 138.5, 138.2, 138.1, 137.9, 132.0, 129.9, 128.4, 128.3, 127.9, 127.8, 127.7, 127.6, 116.9, 102.0, 84.6, 82.0, 77.6, 77.3, 75.8, 75.0, 75.0, 73.5, 68.7, 20.6.

4-Methoxyphenyl 2,3,4,6-tetra-*O*-benzyl-β-D-glucopyranoside (3e)

Following **GP-4**, **3e** was prepared from **2,3,4,6-tetra-***O***-benzyl–\alpha–D-trichloroacetimidate** (0.1 mmol, 69 mg), **4-Methoxyphenol** (0.15 mmol, 15 mg), **catalyst** (1.6 mg, 10 mol%) as a white solid (50 mg, 73%, α : β = 1:11). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)). The NMR data was consistent with the literature.⁶

¹**H** NMR (500 MHz, CDCl₃) δ 7.39 – 7.27 (m, 21H), 7.22 – 7.19 (m, 2H), 7.05 (d, J = 9.1 Hz, 2H), 6.82 (d, J = 9.1 Hz, 2H), 5.38 (d, J = 3.5 Hz, 0.09H, H1-α), 5.07 (d, J = 10.9 Hz, 1H), 4.96 (d, J = 10.9 Hz, 1H), 4.90 (d, J = 7.5 Hz, 1H, H1-β), 4.86 (d, J = 11.6 Hz, 1H), 4.82 (d, J = 1.2 Hz, 1.6H), 4.70 (d, J = 11.9 Hz, 0.15H), 4.62 – 4.59 (m, 2H), 4.57 – 4.54 (m, 2H), 4.51 (d, J = 10.7 Hz, 0.16H), 4.43 (d, J = 12.0 Hz, 0.11H), 4.20 (t, J = 9.3 Hz, 0.09H).3.82 – 3.79 (m, 0.6H), 3.78 (s, 3H), 3.76 – 3.71 (m, 3H), 3.70 – 3.66 (m, 2H), 3.61 – 3.57 (m, 1H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 155.2, 151.5, 138.5, 138.2, 138.1, 137.9, 128.4, 128.3, 128.2, 127.9, 127.8, 127.7, 127.6, 127.5, 118.4, 114.5, 102.8 (C-1β), 96.3 (C-1α), 84.6, 82.0, 79.7, 77.7, 75.7, 75.1, 75.0, 73.4, 68.8, 55.6.

4-Fluorophenyl 2,3,4,6-tetra-O-benzyl-α/β-D-glucopyranoside (3f)

Following **GP-4**, **3f** was prepared from **2,3,4,6-tetra-***O***-benzyl**– α –**D-trichloroacetimidate** (0.1 mmol, 69 mg), **4-Fluorophenol** (0.15 mmol, 17 mg), **catalyst** (1.6 mg, 10 mol%) as a white solid (51 mg, 81%, α : β = 1:25). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (500 MHz, CDCl₃) δ 7.37 – 7.28 (m, 18H), 7.20 (dd, J = 7.4, 2.0 Hz, 2H), 7.05 (dd, J = 9.2, 4.5 Hz, 2H), 6.97 (dd, J = 9.1, 8.3 Hz, 2H), 5.36 (d, J = 3.5 Hz, 0.04H, 1H, H1- α), 5.04 (d, J = 10.9 Hz, 1H), 4.96 (d, J = 10.9 Hz, 1H, H1- β), 4.92 (d, J = 7.6 Hz, 1H), 4.87 – 4.83 (m, 3H), 4.68 (d, J = 12.0 Hz, 0.04H), 4.61 – 4.53 (m, 3H), 4.50 (d, J = 10.8 Hz, 0.06H), 4.42 (d, J =

12.0 Hz, 0.04H), 4.19 (t, *J* = 9.3 Hz, 0.03H), 4.14 (d, *J* = 7.2 Hz, 0.01H), 3.80 (dd, *J* = 10.7, 1.9 Hz, 1H), 3.76 – 3.73 (m, 2H), 3.72 – 3.66 (m, 2H), 3.61 – 3.58 (m, 1H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 159.4, 157.4 (d, $J_{C-F} = 238$ Hz), 153.5, 153.4 (d, $J_{C-F} = 2.3$ Hz), 138.4, 138.1, 138.0, 137.9, 128.4, 128.3, 128.2, 127.9, 127.8, 127.7, 127.6, 118.1 (d, $J_{C-F} = 8.2$ Hz), 115.8 (d, $J_{C-F} = 22.9$ Hz), 102.3 (C-1 β), 84.6, 81.9, 77.6, 75.8, 75.1, 75.0, 73.4, 68.7.

HRMS (**ESI-TOF**): calculated for C₄₀H₃₉FO₆ [M+Na]⁺ 657.2623 found 657.2596.

4-Chlorophenyl 2,3,4,6-tetra-*O*-benzyl-β-D-glucopyranoside (3g)

Following **GP-4**, **3g** was prepared from **2,3,4,6-tetra-***O***-benzyl–\alpha–D-trichloroacetimidate** (0.05 mmol, 35 mg), **4-Chlorophenol** (0.075 mmol, 10.4 mg), **catalyst** (0.9 mg, 10 mol%) as a white solid (25 mg, 76%, α : β = 1:25). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)). The NMR data was consistent with the literature.⁴

¹**H** NMR (500 MHz, CDCl₃) δ 7.35 – 7.27 (m, 18H), 7.23 (d, J = 9.0 Hz, 2H), 7.20 – 7.17 (m, 2H), 7.00 (d, J = 9.0 Hz, 2H), 5.52 (d, J = 1.8 Hz, 0.04H, H1- α), 5.00 (d, J = 10.9 Hz, 1H), 4.96 – 4.92 (m, 2H), 4.87 – 4.79 (m, 3H), 4.56 (dt, J = 18.4, 11.0 Hz, 3H), 3.81 – 3.72 (m, 3H), 3.70 – 3.64 (m, 2H), 3.63 – 3.57 (m, 1H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 155.9, 138.4, 138.1, 137.9, 129.4, 128.2, 127.9, 127.8, 127.8, 127.7, 127.6, 118.2, 101.7 (C1-β), 84.6, 81.9, 77.6, 75.8, 75.1, 75.0, 73.5, 68.7.

4-Iodophenyl 2,3,4,6-tetra-*O*-benzyl-β-D-glucopyranoside (3h)

Following **GP-4**, **3h** was prepared from **2,3,4,6-tetra-***O***-benzyl**– α –**D-trichloroacetimidate** (0.1 mmol, 69 mg), **4-Iodophenol** (0.15 mmol, 33 mg), **catalyst** (1.6 mg, 10 mol%) as a white solid (60 mg, 82%, β only). **R**_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (500 MHz, CDCl₃) δ 7.56 (d, J = 8.8 Hz, 2H), 7.30 (dd, J = 8.6, 3.8 Hz, 18H), 7.19 (dd, J = 7.3, 1.9 Hz, 2H), 6.84 (d, J = 8.8 Hz, 2H), 4.99 (d, J = 10.9 Hz, 1H), 4.97 – 4.93 (m, 2H, H1-β), 4.87 – 4.80 (m, 3H), 4.59 – 4.50 (m, 3H), 3.78 (dd, J = 10.8, 1.6 Hz, 1H), 3.74 (dd, J = 5.4, 2.8 Hz, 2H), 3.67 (dt, J = 8.9, 4.3 Hz, 2H), 3.62 – 3.58 (m, 1H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 157.1, 138.4, 138.0, 137.9, 137.8, 128.4, 128.4, 128.2, 127.9, 127.8, 127.7, 119.1, 101.4 (C1-β), 85.3, 84.6, 81.8, 77.5, 75.7, 75.1, 75.0, 73.4, 68.7.

HRMS (ESI-TOF): calculated for C₄₀H₃₉IO₆ [M+Na]⁺ 765.1684 found 765.1719.

4-Methyl carbonyl 2,3,4,6-tetra-*O*-benzyl-α/β-D-glucopyranoside (3i)

Following **GP-4**, **3i** was prepared from **2,3,4,6-tetra-***O***-benzyl**– α –**D-trichloroacetimidate** (0.1 mmol, 69 mg), **4-Methoxyphenol** (0.15 mmol, 15 mg), **catalyst** (1.6 mg, 10 mol%) as a white solid (49 mg, 71%, α : β = 1:2.4). R_f = 0.3 (ethyl acetate/hexane 1:4 (v/v)). The NMR data was consistent with the literature.⁶

¹**H** NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.8 Hz, 2H), 7.36 – 7.26 (m, 26H), 7.20 – 7.17 (m, 2H), 7.14 – 7.04 (m, 4H), 5.47 (d, J = 3.5 Hz, 0.42H, H1- α), 5.07 (d, J = 7.5 Hz, 1.26H), 5.02 (d, J = 12.1 Hz, 1H), 4.97 (d, J = 7.5 Hz, 1H), 4.92 (d, J = 10.4 Hz, 1H), 4.86 (dd, J = 12.2, 5.4 Hz, 3H), 4.81 (d, J = 3.1 Hz, 1H), 4.65 (d, J = 12.1 Hz, 0.5H), 4.59 – 4.49 (m, 4H), 4.39 (d, J = 12.0 Hz, 0.47H), 3.90 (s, 3H), 3.90 (s, 1.1H), 3.81 – 3.74 (m, 4H), 3.73 – 3.62 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 166.6, 160.7, 138.3, 137.9, 137.8, 131.5, 131.4, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 124.3, 116.1, 100.8 (C1-β), 95.2 (C1-α), 84.5, 81.8, 79.5, 77.5, 75.8, 75.2, 75.1, 75.0, 73.4, 71.0, 68.6, 51.9.

3,5-Dibromophenyl 2,3,4,6-tetra-O-benzyl-β-D-glucopyranoside (3j)

Following **GP-4**, **3j** was prepared from **2,3,4,6-tetra-***O***-benzyl**– α –**D-trichloroacetimidate** (0.1 mmol, 69 mg), **3,5-dibromophenol** (0.15 mmol, 38 mg), **catalyst** (1.6 mg, 10 mol%) as a white solid (64 mg, 83%, β only). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)).

¹**H NMR (500 MHz, CDCl₃)** δ 7.35 (t, J = 1.6 Hz, 1H), 7.33 – 7.27 (m, 18H), 7.18 (dd, J = 7.3, 2.0 Hz, 2H), 7.13 (d, J = 1.6 Hz, 2H), 4.96 – 4.91 (m, 3H, 2 X OCH₂Ph, H1- β), 4.85 – 4.80 (m, 3H), 4.60 – 4.51 (m, 3H), 3.76 (dd, J = 10.8, 1.8 Hz, 1H), 3.73 – 3.70 (m, 2H), 3.67 (dd, J = 10.9, 4.9 Hz, 2H), 3.63 – 3.59 (m, 1H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 158.2, 138.3, 137.9, 137.8, 128.4, 128.4, 128.3, 128.1, 127.9, 127.8, 127.7, 127.6, 123.0, 119.2, 101.4 (C1-β), 84.5, 81.7, 77.3, 75.7, 75.2, 75.1, 75.0, 73.5, 68.5.

HRMS (**ESI-TOF**): calculated for C₄₀H₃₈Br₂O₆ [M+Na]⁺ 797.0911 found 797.0905.

2-Hydroxyphenyl 2,3,4,6-tetra-*O*-benzyl-β-D-glucopyranoside (3k)

Following **GP-4**, **3k** was prepared from **2,3,4,6-tetra-***O***-benzyl**– α –**D-glucopyranosyl trichloroacetimidate** (0.1 mmol, 69 mg), **catechol** (0.15 mmol, 16 mg), **catalyst** (1.6 mg, 15 mol%) as a white solid (44 mg, 70%, β only). $R_f = 0.5$ (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (500 MHz, CDCl₃) δ 7.37 – 7.27 (m, 18H), 7.16 (dd, *J* = 7.5, 2.0 Hz, 2H), 7.08 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.04 – 7.00 (m, 1H), 6.97 (dd, *J* = 8.0, 1.7 Hz, 1H), 6.78 – 6.74 (m, 1H), 4.98 (dd, *J* = 7.3, 3.7 Hz, 2H), 4.92 (d, *J* = 10.9 Hz, 1H), 4.86 (dd, *J* = 11.3, 5.6 Hz, 2H), 4.72 (d, *J* = 11.7 Hz, 1H), 4.64 (d, *J* = 12.1 Hz, 1H), 4.52 (dd, *J* = 17.4, 11.4 Hz, 2H), 4.21 – 4.14 (m, 2H), 3.83 – 3.66 (m, 4H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 148.5, 145.1, 138.4, 138.0, 137.7, 136.9, 128.6, 128.4, 128.2, 127.9, 127.8, 127.7, 125.2, 120.3, 119.9, 115.7, 101.1, 81.9, 78.8, 77.4, 77.2, 75.7, 75.0, 74.2, 73.5, 71.4, 68.2.

HRMS (**ESI-TOF**): calculated for C₄₀H₄₀O₇ [M+Na]⁺ 655.2666 found 655.2642.

3-Hydroxyphenyl 2,3,4,6-tetra-O-benzyl-α/β-D-glucopyranoside (31)

Following **GP-4**, **31** was prepared from **2,3,4,6-tetra-***O***-benzyl**– α –**D-glucopyranosyl trichloroacetimidate** (0.05 mmol, 35 mg), **rescorcinol** (0.075 mmol, 8 mg), **catalyst** (1.25 mg, 15 mol%) as a white solid (44 mg, 70%, α : β = 1:4). R_f = 0.3 (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 23H), 7.21 – 7.17 (m, 2H), 7.15 – 7.11 (m, 1H), 6.67 – 6.62 (m, 1H), 6.59 (t, *J* = 2.3 Hz, 1H), 6.52 (m, 1H), 5.42 (d, *J* = 3.5 Hz, 0.24H, H1- α), 5.05 – 5.01 (m, 1H), 4.99 – 4.92 (m, 2H), 4.89 – 4.76 (m, 4H), 4.67 (d, *J* = 12.0 Hz, 0.3H), 4.61 – 4.53 (m, 3H), 4.48 (d, *J* = 10.7 Hz, 0.25H), 4.40 (d, *J* = 12.0 Hz, 0.35H), 4.18 (t, *J* = 9.3 Hz, 0.25H), 3.84 – 3.72 (m, 4H), 3.70 – 3.60 (m, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 158.5, 157.9, 156.8, 138.7, 138.4, 138.1, 137.9, 130.2, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 109.7, 109.4, 109.2, 104.3, 104.1, 101.6 (C1-β), 95.4 (C1-α), 84.6, 81.9, 79.6, 77.7, 75.8, 75.1, 75.0, 74.9, 73.5, 73.4, 73.2, 70.7, 69.1.

HRMS (**ESI-TOF**): calculated for C₄₀H₄₀O₇ [M+Na]⁺ 655.2666 found 655.2692.

1,4-Bis(2,3,4,6-tetra-O-benzyl-β-D-glucopyranosyloxy)benzene (3m)

Following **GP-4**, **3m** was prepared from **2,3,4,6-tetra-***O***-benzyl–\alpha–D-trichloroacetimidate** (0.1 mmol, 69 mg), **hydroquinone** (0.15 mmol, 16 mg), **catalyst** (1.6 mg, 10 mol%) as a white solid (76 mg, 69%, β only). R_f = 0.3 (ethyl acetate/hexane 1:4 (v/v)). The NMR data was consistent with the literature.⁸

¹**H** NMR (500 MHz, CDCl₃) δ 7.36 – 7.27 (m, 18H), 7.20 – 7.16 (m, 2H), 7.00 (s, 2H), 5.04 (d, J = 10.9 Hz, 1H), 4.95 (d, J = 10.9 Hz, 1H), 4.91 (d, J = 7.5 Hz, 1H, H1- β), 4.83 (t, J = 10.2 Hz, 3H), 4.56 (m, 4H), 3.79 – 3.67 (m, 5H), 3.58 (d, J = 3.2 Hz, 1H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 152.9, 138.5, 138.2, 138.0, 137.9, 128.4, 128.3, 127.7, 118.0, 102.4 (C1-β), 84.6, 81.9, 77.6, 75.7, 75.0, 75.0, 73.5, 68.7.

1-Naphthyl 2,3,4,6-tetra-*O*-benzyl-α/β-D-glucopyranoside (3n)

Following **GP-4**, **3n** was prepared from **2,3,4,6-tetra-***O***-benzyl–\alpha–D-trichloroacetimidate** (0.1 mmol, 69 mg), **1-Naphthol** (0.15 mmol, 22 mg), **catalyst** (1.6 mg, 10 mol%) as a white solid (51 mg, 77%, α : β = 1:5). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)). The NMR data was consistent with the literature.⁴

¹**H** NMR (500 MHz, CDCl₃) δ 8.31 (dd, J = 8.4, 1.2 Hz, 1H), 7.83 (dt, J = 8.2, 1.0 Hz, 1H), 7.56 (d, J = 8.2 Hz, 1H), 7.50 (ddd, J = 8.2, 6.8, 1.4 Hz, 1H), 7.47 – 7.41 (m, 1H), 7.39 – 7.27 (m, 21H), 7.21 (dd, J = 7.7, 1.9 Hz, 2H), 7.15 (dd, J = 7.8, 1.0 Hz, 1H), 5.65 (d, J = 3.5 Hz, 0.16H, H1-α), 5.24 (d, J = 7.7 Hz, 1H, H1-β), 5.18 (d, J = 10.7 Hz, 1H), 5.14 (d, J = 10.7 Hz, 0.18H), 4.99 (d, J = 10.9 Hz, 1H), 4.95 (d, J = 10.6 Hz, 1H), 4.88 (dd, J = 10.9, 3.5 Hz, 2H), 4.78 (d, J = 11.9 Hz, 0.19H), 4.68 (d, J = 12.0 Hz, 0.18H), 4.63 – 4.51 (m, 3H), 4.44 (d, J = 12.0 Hz, 0.15H), 4.36 (t, J = 9.3 Hz, 0.13H), 3.97 (dd, J = 8.9, 7.7 Hz, 1H), 3.86 – 3.62 (m, 6H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 152.9, 138.4, 138.0, 137.9, 134.5, 128.4, 128.4, 128.4, 128.3, 127.9, 127.9, 127.8, 127.7, 127.5, 126.3, 125.8, 125.5, 122.3, 122.0, 109.4, 101.4 (C1-β), 96.2 (C1-α), 84.8, 82.2, 82.0, 80.0, 77.7, 75.8, 75.4, 75.2, 75.0, 73.5, 72.9, 70.9, 68.7, 68.2.

3,4-Methylenedioxyphenyl 2,3,4,6-tetra-*O***-benzyl-***α*/β**-D-glucopyranoside** (30)

Following **GP-4**, **30** was prepared from **2,3,4,6-tetra-***O***-benzyl**– α –**D-trichloroacetimidate** (0.1 mmol, 69 mg), **sesamol** (0.15 mmol, 21 mg), **catalyst** (1.6 mg, 10 mol%) as a colorless sticky liquid (47 mg, 72%, α : β = 1:3). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (500 MHz, CDCl₃) δ 7.38 – 7.27 (m, 26H), 7.21 – 7.13 (m, 3H), 6.71 – 6.66 (m, 2.6H), 6.59 – 6.54 (m, 1.4H), 5.95 (s, 2H), 5.93 (s, 0.65H), 5.33 (d, J = 3.5 Hz, 0.3H, H1-α), 5.04 (dd, J = 10.8, 7.0 Hz, 1.4H), 4.95 (d, J = 11.0 Hz, 1H), 4.88 (d, J = 11.0 Hz, 0.4H), 4.86 (d, J = 6.0 Hz, 1H, H1-β), 4.84 (d, J = 2.9 Hz, 2.5H), 4.83 – 4.79 (m, 1.5H), 4.69 (d, J = 11.9 Hz, 0.4H), 4.63 – 4.52 (m, 4H), 4.50 (d, J = 10.7 Hz, 0.3H), 4.43 (d, J = 12.0 Hz, 0.3H), 3.80 – 3.75 (m, 1H), 3.75 – 3.65 (m, 5H), 3.63 – 3.54 (m, 2H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 152.7, 148.0, 143.1, 138.4, 138.2, 138.1, 137.9, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 109.4, 109.2, 108.0, 107.9, 102.8, 101.3, 101.2, 100.4, 100.1 (C1-β), 96.6 (C1-α), 84.6, 81.9, 79.6, 77.6, 77.4, 77.3, 77.2, 75.7, 75.1, 75.0, 73.5, 73.4, 73.3, 70.7, 68.7.

HRMS (**ESI-TOF**): calculated for C₃₆H₃₈O₇ [M+Na]⁺ 605.2510 found 605.2519.

Estryl 2,3,4,6-tetra-*O*-benzyl-β-D-glucopyranoside (3p)

Following **GP-4**, **3p** was prepared from **2,3,4,6-tetra-***O***-benzyl**– α –**D-trichloroacetimidate** (0.1 mmol, 69 mg), **estrone** (0.15 mmol, 40 mg), **catalyst** (1.6 mg, 10 mol%) as a colorless sticky liquid (51 mg, 67%, α : β = 1:10). **R**_f = 0.3 (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (500 MHz, CDCl₃) δ 7.39 – 7.24 (m, 19H), 7.20 (td, *J* = 7.0, 1.4 Hz, 3H), 6.90 (s, 1H), 6.81 (d, *J* = 2.6 Hz, 2H), 5.49 (d, *J* = 3.5 Hz, 0.1H (H1- α), 5.09 – 5.00 (m, 1H), 5.01 – 4.91 (m, 2H), 4.90 – 4.76 (m, 3H), 4.69 (d, *J* = 12.0 Hz, 0.13H), 4.66 – 4.49 (m, 3H), 4.48 (d, *J* = 10.6 Hz, 0.14H), 4.41 (d, *J* = 12.0 Hz, 0.11H), 4.20 (t, *J* = 9.3 Hz, 0.07H), 3.88 (d, *J* = 8.1 Hz, 0.22H), 3.81 – 3.59 (m, 6H), 2.90 – 2.78 (m, 2H), 2.55 – 2.47 (m, 1H), 2.43 – 2.37 (m, 1H), 2.27 (d, *J* = 4.5 Hz, 1H), 2.20 – 2.12 (m, 1H), 2.09 – 1.94 (m, 4H), 1.69 – 1.40 (m, 10H), 1.31 – 1.23 (m, 2H), 0.92 (s, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 221.0, 155.3, 138.4, 138.2, 138.1, 137.7, 137.8, 134.0, 128.4, 128.3, 128.2, 127.9, 127.8, 127.7, 126.4, 116.9, 114.5, 101.8 (C1-β), 95.2 (C1-α), 84.6, 81.9, 77.6, 75.7, 75.0, 74.9, 73.4, 68.8, 50.4, 47.9, 44.0, 38.2, 35.8, 31.5, 29.5, 26.5, 25.8, 21.5, 13.8.

HRMS (**ESI-TOF**): calculated for C₅₂H₅₆O₇ [M+Na]⁺ 815.3918 found 815.3905.

2-methoxy-4-formylphenyl 2,3,4,6-tetra-*O*-benzyl-α/β-D-glucopyranoside (3q)

Following **GP-4**, **3q** was prepared from **2,3,4,6-tetra-***O***-benzyl**– α –**D-glucopyranosyl trichloroacetimidate** (0.05 mmol, 35 mg), **2-methoxy-4-formylphenol** (0.075 mmol, 12 mg), **catalyst** (0.9 mg, 10 mol%) as colorless sticky liquid (18 mg, 53%, α : β = 1:10). R_f = 0.3 (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (100 MHz, CDCl₃) δ 9.88 (s, 1H), 9.87 (s, 0.12H), 7.45 (d, J = 1.8 Hz, 1H), 7.38 – 7.27 (m, 25H), 7.24 – 7.18 (m, 3H), 5.56 (d, J = 3.5 Hz, 0.10H), 5.19 (d, J = 10.7 Hz, 1H), 5.16 (d, J = 3.5 Hz, 0.12H), 5.11 (d, J = 11.4 Hz, 0.14H), 5.05 (d, J = 7.6 Hz, 1H), 4.99 (d, J = 10.9 Hz, 1H), 4.91 (dd, J = 10.9, 4.1 Hz, 0.3H), 4.85 (dd, J = 10.5, 2.6 Hz, 3H), 4.82 (s, 1H), 4.79 (d, J = 4.8 Hz, 0.2H), 4.77 (d, J = 2.6 Hz, 0.12H), 4.68 – 4.65 (m, 0.41H), 4.60 – 4.51 (m, 3H), 4.48 (d, J = 10.8 Hz, 0.5H), 4.45 (d, J = 6.8 Hz, 0.2H), 4.41 – 4.38 (m, 0.2H), 4.30 – 4.26 (m, 0.2H), 3.90 (s, 3.3H), 3.84 – 3.78 (m, 2H), 3.75 (td, J = 8.3, 3.0 Hz, 1H), 3.71 – 3.58 (m, 4H), 3.53 – 3.49 (m, 0.3H).

¹³C NMR (125 MHz, **CDCl**₃) δ 191.1, 152.1, 150.2, 138.4, 138.2, 137.9, 137.8, 131.5, 128.4, 128.30, 127.9, 127.8, 127.7, 127.6, 127.5, 126.3, 115.5, 109.6, 101.7, 84.3, 81.4, 77.5, 77.2, 75.8, 75.3, 75.1, 74.8, 73.5, 68.7, 55.8.

HRMS (**ESI-TOF**): calculated for C₄₂H₄₂O₈ [M+Na]⁺ 697.2772 found 697.2790.

2,3,4,6-tetra-*O*-benzyl- α/β -D-glucopyranosyl- $(1 \rightarrow O)$ -N-tert-butoxycarbonyl-L-tyrosine methyl ester (3r)

Following **GP-4**, **3r** was prepared from **2,3,4,6-tetra-***O***-benzyl–\alpha–D**-trichloroacetimidate (0.1 mmol, 69 mg), **Boc-Tyr-OMe** (0.15 mmol, 44 mg), **catalyst** (2.5 mg, 15 mol%) as a colorless sticky liquid (59 mg, 74%, α : β = 1:10). R_f = 0.3 (ethyl acetate/hexane 1:4 (v/v)).

¹**H NMR (500 MHz, CDCl**₃) δ 7.36 – 7.27 (m, 20H), 7.19 (dd, J = 7.4, 2.0 Hz, 2H), 7.06 – 6.99 (m, 4H), 5.44 (d, J = 3.4 Hz, 0.10H, H1-α), 5.04 (d, J = 10.9 Hz, 1H), 4.99 – 4.94 (m, 3H, 2 X OCH₂Ph, H1-β), 4.87 – 4.81 (m, 3H), 4.61 – 4.52 (m, 4H), 3.79 (dd, J = 10.7, 1.6 Hz, 1H), 3.76 – 3.72 (m, 3H), 3.71 (s, 3H), 3.63 – 3.55 (m, 1H), 3.09 – 3.01 (m, 2H), 1.43 (s, 10H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 172.4, 156.5, 155.1, 138.4, 138.1, 138.0, 137.9, 130.3, 128.4, 128.3, 128.2, 127.9, 127.8, 127.7, 116.9, 101.7 (C1-β), 84.6, 81.9, 79.9, 77.6, 75.7, 75.1, 75.0, 73.4, 68.7, 54.4, 52.2, 37.5, 28.3.

HRMS (ESI-TOF): calculated for C₄₉H₅₅NO₁₀ [M+Na]⁺ 840.3718 found 840.3680.

4-A llyl-2-methoxyphenyl 2,3,4,6-tetra-*O*-benzyl-α/β-D-glucopyranoside (3s)

Following **GP-4**, **3s** was prepared from **2,3,4,6-tetra-***O***-benzyl–\alpha–D**-glucopyranosyl trichloroacetimidate (0.06 mmol, 40 mg), **4-allyl-2-methoxyphenol** (0.09 mmol, 14 mg), **catalyst** (1.0 mg, 10 mol%) as a colorless sticky liquid (28 mg, 67%, α : β = 1:4). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (500 MHz, CDCl₃) δ 7.44 – 7.24 (m, 23H), 7.20 (dd, *J* = 7.6, 1.9 Hz, 1H), 7.15 (dd, *J* = 14.5, 8.0 Hz, 2H), 6.98 (d, *J* = 8.1 Hz, 0.2H), 6.78 – 6.70 (m, 1H), 6.69 (dd, *J* = 8.2, 2.0 Hz, 1H), 6.01 – 5.93 (m, 1H), 5.53 (d, *J* = 3.6 Hz, 0.2H, H1- α), 5.27 (d, *J* = 10.8 Hz, 1H), 5.16 – 5.03 (m, 2H), 4.99 (d, *J* = 10.9 Hz, 1H), 4.98 – 4.86 (m, 1H), 4.90 – 4.77 (m, 4H), 4.71 (d, *J* = 11.8 Hz, 0.17H), 4.65 – 4.51 (m, 3H), 4.49 (dd, *J* = 14.8, 11.4 Hz, 0.5H), 4.42 (d, *J* = 12.0 Hz, 0.2H), 4.26 (t, *J* = 9.4 Hz, 0.2H), 4.18 – 4.15 (m, 0.2H), 3.98 (d, *J* = 9.4 Hz, 0.12H), 3.99 (t, *J* = 10.4 Hz, 0.2H), 4.26 (t, *J* = 9.4 Hz, 0.2H), 4.18 – 4.15 (m, 0.2H), 3.98 (d, *J* = 9.4 Hz, 0.12H), 3.99 (t, *J* = 12.0 Hz, 0.2H), 4.26 (t, *J* = 9.4 Hz, 0.2H), 4.18 – 4.15 (m, 0.2H), 3.98 (d, *J* = 9.4 Hz, 0.12H), 3.99 (t, *J* = 0.2 Hz), 4.26 (t, *J* = 9.4 Hz, 0.2H), 4.18 – 4.15 (m, 0.2H), 3.98 (d, *J* = 9.4 Hz, 0.12H), 3.99 (t, *J* = 0.2 Hz), 4.26 (t, *J* = 9.4 Hz, 0.2H), 4.18 – 4.15 (m, 0.2H), 3.98 (d, *J* = 9.4 Hz, 0.12H), 3.99 (t, *J* = 0.2 Hz), 4.26 (t, *J* = 9.4 Hz, 0.2H), 4.18 – 4.15 (m, 0.2H), 3.98 (d, *J* = 9.4 Hz, 0.12H), 3.99 (t, *J* = 0.2 Hz), 4.26 (t, *J* = 9.4 Hz, 0.2H), 4.18 – 4.15 (m, 0.2H), 3.98 (d, *J* = 9.4 Hz), 0.12H), 3.99 (t, *J* = 0.2 Hz), 4.26 (t, *J* = 9.4 Hz), 0.2H), 4.18 – 4.15 (m, 0.2H), 3.98 (d, *J* = 9.4 Hz), 0.12H), 3.99 (t, *J* = 0.2 Hz), 4.26 (t, *J* = 9.4 Hz), 0.2H), 4.18 – 4.15 (m, 0.2H), 3.98 (d, *J* = 9.4 Hz), 0.12H), 3.99 (t, *J* = 0.2 Hz), 4.26 (t, *J* = 9.4 Hz), 0.2H), 4.18 – 4.15 (t, *J* = 9.4 Hz), 0.12H), 3.99 (t, *J* = 0.2 Hz), 0.2H), 4.26 (t, *J* = 9.4 Hz), 0.2H), 4.18 – 4.15 (t, *J* = 9.4 Hz), 0.12H), 3.99 (t, *J* = 0.2 Hz), 0.2H), 4.18 – 4.15 (t, *J* = 9.4 Hz), 0.12H), 3.99 (t, *J* = 0.2 Hz), 0.2H), 0.2H

9.4 Hz, 0.12H), 3.96 – 3.93 (m, 0.15H), 3.82 (s, 0.71H), 3.80 (s, 3H), 3.79 – 3.70 (m, 4H), 3.69 – 3.56 (m, 2H), 3.38 – 3.33 (m, 2H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 150.8, 149.9, 145.2, 143.8, 138.6, 138.6, 138.2, 138.0, 137.5, 135.2, 128.4, 128.3, 128.0, 127.9, 127.9, 127.8, 127.7, 127.6, 127.5, 120.6, 120.5, 120.1, 117.8, 115.7, 112.8, 112.4, 102.9, 97.1, 84.5, 81.8, 81.7, 81.4, 79.6, 79.3, 79.1, 77.7, 77.2, 76.7, 75.7, 75.1, 75.0, 74.6, 73.4, 72.7, 71.0, 68.9, 68.3, 67.7, 55.7, 39.9.

HRMS (ESI-TOF): calculated for C₄₄H₄₆O₇ [M+Na]⁺ 709.3136 found 709.3125.

4-(((tert-butyldimethylsilyl)oxy)methyl)phenyl 2,3,4,6-tetra-*O*-benzyl-β-D-glucopyranoside (3t) ____OBn

Following **GP-4**, **3t** was prepared from **2,3,4,6-tetra-***O***-benzyl**– α –**D-glucopyranosyl trichloroacetimidate** (0.05 mmol, 35 mg), **4-(((tert-butyldimethylsilyl)oxy)methyl)phenol** (0.075 mmol, 18 mg), **catalyst** (1.25 mg, 10 mol%) as a colorless sticky liquid (26 mg, 68%, β only). $R_f = 0.5$ (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.26 (m, 18H), 7.24 (d, *J* = 8.8 Hz, 2H), 7.19 (dd, *J* = 7.3, 2.1 Hz, 2H), 7.05 (d, *J* = 8.6 Hz, 2H), 5.05 (d, *J* = 10.9 Hz, 1H), 4.99 (d, *J* = 7.5 Hz, 1H, H1- β), 4.95 (d, *J* = 10.9 Hz, 1H), 4.83 (t, *J* = 11.8 Hz, 3H), 4.69 (s, 2H), 4.62 – 4.50 (m, 3H), 3.81 – 3.58 (m, 6H), 1.56 (s, 6H), 0.94 (s, 9H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 156.4, 138.4, 138.2, 138.1, 137.9, 135.6, 128.4, 128.3, 128.2, 127.9, 127.8, 127.8, 127.7, 127.6, 127.4, 116.6, 101.8 (C1-β), 84.6, 81.9, 77.6, 75.7, 75.0, 75.0, 73.4, 68.7, 64.6, 25.9, -5.2.

HRMS (**ESI-TOF**): calculated for C₄₇H₅₆SiO₇ [M+Na]⁺ 783.3688 found 783.3658.

2-Methylphenyl 2,3,4,6-tetra-*O*-methyl-β-D-glucopyranoside (4a)

Following **GP-4**, **4a** was prepared from **2,3,4,6-tetra-***O***-methyl–\alpha–D-glucopyranosyl trichloroacetimidate** (0.1 mmol, 40 mg), **2-methylphenol** (0.15 mmol, 16 mg), **catalyst** (1.6 mg, 10 mol%) as colorless sticky liquid (26 mg, 78%, β only). R_f = 0.4 (ethyl acetate/hexane 1:4 (v/v)).

¹**H NMR** (**500 MHz**, **CDCl**₃) δ 7.16 – 7.11 (m, 2H), 6.99 – 6.90 (m, 2H), 4.81 (d, J = 7.5 Hz, 1H, H1-β), 3.67 (s, 3H), 3.67 (s, 3H), 3.65 (d, J = 2.0 Hz, 1H), 3.62 – 3.57 (m, 1H), 3.56 (s, 3H), 3.42 – 3.40 (m, 1H), 3.39 (s, 3H), 3.34 – 3.30 (m, 1H), 3.27 (d, J = 1.6 Hz, 1H), 3.26 (d, J = 4.6 Hz, 1H), 2.27 (s, 2H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 155.6, 130.8, 127.5, 126.8, 122.2, 114.6, 101.1 (C1-β), 86.6, 83.6, 79.2, 74.7, 71.1, 60.9, 60.8, 60.4, 59.4, 16.5.

HRMS (**ESI-TOF**): calculated for C₁₇H₂₆O₆ [M+Na]⁺ 349.1622 found 349.1661.

4-Methoxyphenyl 2,3,4,6-tetra-*O*-methyl-β-D-glucopyranoside (4b)

Following **GP-4**, **4b** was prepared from **2,3,4,6-tetra-***O***-methyl**– α –**D-trichloroacetimidate** (0.1 mmol, 40 mg), **4-methoxyphenol** (0.15 mmol, 20 mg), **catalyst** (1.6 mg, 10 mol%) as white solid (25 mg, 73%, β only). R_f = 0.4 (ethyl acetate/hexane 1:4 (v/v)).

¹**H NMR** (**500 MHz**, **CDCl**₃) δ 6.98 (d, J = 9.1 Hz, 2H), 6.81 (d, J = 9.1 Hz, 2H), 4.71 (d, J = 7.3 Hz, 1H, H1-β), 3.77 (s, 3H), 3.66 (s, 3H), 3.65 (s, 3H), 3.64 (d, J = 2.0 Hz, 1H), 3.60 – 3.56 (m, 1H), 3.55 (s, 3H), 3.39 (s, 3H), 3.38 – 3.33 (m, 1H), 3.28 – 3.21 (m, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.2, 151.5, 118.3, 102.5, 86.3, 83.5, 79.1, 74.7, 71.2, 60.8, 60.56, 60.4, 59.4, 55.6.

HRMS (ESI-TOF): calculated for $C_{17}H_{26}O_7 [M+Na]^+$ 365.1571 found 365.1602.

4-Chlorophenyl 2,3,4,6-tetra-*O*-methyl-β-D-glucopyranoside (4c)

Following **GP-4**, **4c** was prepared from **2,3,4,6-tetra-***O***-methyl–\alpha–D**-glucopyranosyl trichloroacetimidate (0.1 mmol, 40 mg), **4-chlorophenol** (0.15 mmol, 19 mg), catalyst (1.6 mg, 10 mol%) as colorless sticky liquid (23 mg, 68%, β only). R_f = 0.4 (ethyl acetate/hexane 1:4 (v/v)).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.23 (d, J = 9.0 Hz, 2H), 6.95 (d, J = 9.0 Hz, 2H), 4.77 (d, J = 7.2 Hz, 1H, H1-β), 3.66 (d, J = 2.1 Hz, 1H), 3.65 (s, 3H), 3.64 (s, 3H), 3.59 – 3.56 (m, 1H), 3.55 (s, 3H), 3.40 (dd, J = 4.8, 2.2 Hz, 1H), 3.38 (s, 3H), 3.29 – 3.21 (m, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.9, 129.3, 127.5, 118.1, 101.5 (C1-β), 86.3, 83.4, 79.0, 74.8, 71.1, 60.9, 60.6, 60.5, 59.4.

HRMS (ESI-TOF): calculated for $C_{16}H_{23}ClO_6 [M+Na]^+$ 369.1075 found 369.1086.

2,3,4,6-tetra-O-methyl- β -d-glucopyranosyl- $(1 \rightarrow O)$ -N-tert-butoxycarbonyl-l-tyrosine methyl ester (4d)

Following **GP-4**, **4d** was prepared from **2,3,4,6-tetra-***O***-methyl**– α –**D**-glucopyranosyl t (0.1 mmol, 40 mg), **Boc-Tyr-OMe** (0.15 mmol, 44 mg), **catalyst** (1.6 mg, 10 mol%) as colorless sticky liquid (35 mg, 69%, β only). $R_f = 0.3$ (ethyl acetate/hexane 1:4 (v/v)).

¹**H NMR** (**500 MHz**, **CDCl**₃) δ 7.02 (d, J = 8.5 Hz, 2H), 6.93 (d, J = 8.6 Hz, 2H), 4.94 (d, J = 8.2 Hz, 1H), 4.80 (d, J = 7.2 Hz, 1H, H1-β), 4.57 – 4.50 (m, 1H), 3.70 (s, 3H), 3.67 – 3.65 (m, 1H), 3.65 (s, 3H), 3.64 (s, 3H), 3.58 – 3.56 (m, 1H), 3.55 (s, 3H), 3.41 – 3.38 (m, 1H), 3.38 (s, 3H), 3.27 – 3.22 (m, 3H), 3.07 – 2.97 (m, 2H), 1.41 (s, 9H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.4, 156.4, 155.1, 130.4, 130.3, 129.8, 129.0, 127.4, 116.7, 115.4, 101.3 (C1-β), 86.3, 83.4, 79.9, 79.0, 74.7, 71.1, 60.9, 60.5, 60.4, 59.3, 54.4, 52.2, 37.4, 28.3.

HRMS (ESI-TOF): calculated for C₂₅H₃₉NO₁₀ [M+Na]⁺ 536.2466 found 536.2455.

Phenyl 2,3,di-O-benzyl-4,6-di-O-benzylidene-β-D-glucopyranoside (5a)

Following **GP-4**, **5a** was prepared from **2,3-di**-*O*-benzyl–4,6–*O*-benzylidene- α –D-glucopyranosyl trichloroacetimidate (0.05 mmol, 30 mg), phenol (0.075 mmol, 7 mg), catalyst (0.9 mg, 10 mol%) as white solid (19 mg, 71%, β only) with minor impurity of the byproduct. $R_f = 0.5$ (ethyl acetate/hexane 1:4 (v/v)). The NMR data was consistent with the literature.⁸

¹**H** NMR (500 MHz, CDCl₃) δ 7.52 (dd, J = 7.5, 2.0 Hz, 2H), 7.40 – 7.27 (m, 15H), 7.09 (t, J = 8.7 Hz, 3H), 5.62 (s, 1H), 5.16 (d, J = 7.4 Hz, 1H, H1-β), 5.00 (d, J = 10.9 Hz, 1H), 4.97 (d, J = 11.4 Hz, 1H), 4.88 (d, J = 11.5 Hz, 1H), 4.80 (dd, J = 20.7, 9.2 Hz, 2H), 4.44 – 4.35 (m, 1H), 3.90 – 3.76 (m, 5H), 3.58 (dd, J = 9.5, 4.8 Hz, 1H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.0, 138.3, 138.0, 137.2, 129.6, 128.9, 128.4, 128.3, 128.2, 128.1, 128.0, 127.8, 127.6, 125.9, 123.0, 116.8, 101.9 (C1-β), 101.2, 81.7, 81.2, 80.8, 75.5, 75.2, 68.7, 66.2.

2-Methylphenyl 2,3,di-O-benzyl-4,6-di-O-benzylidene-β-D-glucopyranoside (5b)

Following **GP-4**, **5b** was prepared from **2,3-di**-*O*-benzyl–**4,6**–*O*-benzylidene- α –D-glucopyranosyl trichloroacetimidate (0.05 mmol, 30 mg), **2-Methylphenol** (0.075 mmol, 8 mg), catalyst (0.9 mg, 10 mol%) as white solid (20 mg, 74%, β only) with minor impurity of the byproduct. $R_f = 0.5$ (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 7.5, 2.0 Hz, 2H), 7.38 – 7.28 (m, 13H), 7.18 (t, J = 7.0 Hz, 2H), 7.00 (dd, J = 16.0, 8.1 Hz, 2H), 5.62 (s, 1H), 5.17 (d, J = 7.5 Hz, 1H, H1- β), 5.01 (d, J = 10.8 Hz, 1H), 4.97 (d, J = 11.4 Hz, 1H), 4.91 (d, J = 10.9 Hz, 1H), 4.84 (d, J = 11.3 Hz, 1H), 4.81 – 4.75 (m, 1H), 4.40 (dd, J = 10.6, 5.1 Hz, 1H), 3.92 – 3.83 (m, 3H), 3.61 – 3.54 (m, 1H), 2.31 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.1, 138.4, 138.0, 137.2, 131.0, 128.9, 128.3, 128.2, 128.0, 127.9, 127.7, 127.6, 126.9, 125.9, 122.6, 114.7, 101.5 (C1-β), 101.2, 81.9, 81.3, 81.0, 75.6, 75.2, 68.7, 66.1, 16.5.

HRMS (**ESI-TOF**): calculated for C₃₄H₃₄O₆ [M+Na]⁺ 561.2248 found 561.2271.

4-Methoxyphenyl 2,3,di-O-benzyl-4,6-di-O-benzylidene-β-D-glucopyranoside (5c)

Following **GP-4**, **5c** was prepared from **2,3-di**-*O*-benzyl–4,6–*O*-benzylidene- α –D-glucopyranosyl trichloroacetimidate (0.05 mmol, 30 mg), **4-methoxyphenol** (0.075 mmol, 9 mg), catalyst (0.9 mg, 10 mol%) as white solid (21 mg, 75%, β only). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)).

¹**H NMR (500 MHz, CDCl**₃) δ 7.51 (dd, *J* = 7.5, 2.0 Hz, 2H), 7.41 – 7.29 (m, 14H), 7.02 (d, *J* = 9.1 Hz, 2H), 6.85 (d, *J* = 9.1 Hz, 2H), 5.61 (s, 1H), 5.04 – 4.93 (m, 3H, H1-β), 4.86 (dd, *J* = 14.4, 11.1 Hz, 2H), 4.39 (dd, *J* = 10.5, 5.0 Hz, 1H, H6), 3.87 – 3.81 (m, 2H - H3, H4), 3.79 (s, 3H), 3.79 – 3.71 (m, 2H, H2), 3.54 – 3.48 (m, H5).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 155.5, 151.1, 138.4, 138.1, 137.2, 128.9, 128.4, 128.3, 128.2, 128.0, 127.7, 127.6, 125.9, 118.5, 114.6, 103.2 (C1-β), 101.1, 81.8, 81.2, 80.8, 75.5, 75.2, 68.7, 66.1, 55.6.

HRMS (**ESI-TOF**): calculated for C₃₄H₃₄O₇ [M+Na]⁺ 577.2197 found 577.2159.

2,3-di-O-benzyl-4,6-benzylidene- β -d-glucopyranosyl- $(1 \rightarrow O)$ -N-tert-butoxycarbonyl-l-tyrosine methyl ester (5d)

Following GP-4, 5d was prepared from 2,3-di-O-benzyl-4,6-O-benzylidene-α-Dglucopyranosyl trichloroacetimidate (0.05 mmol, 30 mg), Boc-Tyr-OMe (0.075 mmol, 22 mg), **catalyst** (0.9 mg, 10 mol%) as white solid (26 mg, 74%, β only). R_f = 0.4 (ethyl acetate/hexane 1:4 (v/v)).

¹**H NMR (400 MHz, CDCl**₃) δ 7.50 (dd, *J* = 7.5, 2.0 Hz, 2H), 7.40 – 7.28 (m, 13H), 7.07 (d, *J* = 8.4 Hz, 2H), 6.97 (d, *J* = 8.6 Hz, 2H), 5.60 (s, 1H), 5.11 (d, *J* = 7.5 Hz, 1H, H1-β), 4.95 (dd, *J* = 11.1, 6.9 Hz, 3H), 4.84 (t, *J* = 10.8 Hz, 2H), 4.56 (dd, *J* = 13.7, 5.9 Hz, 1H), 4.39 (dd, *J* = 10.5, 5.0 Hz, 1H), 3.87 – 3.74 (m, 4H), 3.72 (s, 3H), 3.57 – 3.51 (m, 1H), 3.11 – 2.99 (m, 2H), 1.42 (s, 9H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.3, 156.1, 138.3, 138.0, 137.2, 130.5, 130.4, 128.9, 128.3, 128.2, 128.0, 127.8, 127.6, 125.9, 116.9, 101.9 (C1-β), 101.2, 81.7, 81.2, 80.8, 79.9, 75.5, 75.2, 68.6, 66.2, 54.4, 52.2, 37.5, 28.3.

HRMS (ESI-TOF): calculated for C₄₂H₄₇O₁₀N [M+Na]⁺ 748.3092 found 748.3069.

4-Methyl carbonyl Phenyl 2,3,di-O-benzyl-4,6-di-O-benzylidene-β-D-glucopyranoside (5e)

Following **GP-4**, **5e** was prepared from **2,3-di**-*O*-benzyl–4,6–*O*-benzylidene- α –D-glucopyranosyl trichloroacetimidate (0.045 mmol, 27 mg), methyl 4-hydroxybenzoate (0.068 mmol, 22 mg), catalyst (0.9 mg, 10 mol%) as white solid (18 mg, 67%, β only). R_f = 0.3 (ethyl acetate/hexane 1:4 (v/v)).

¹**H NMR (400 MHz, CDCl₃)** δ 8.04 – 8.00 (m, 2H), 7.50 (td, *J* = 5.3, 3.0 Hz, 3H), 7.38 (m, 5H), 7.33 – 7.28 (m, 8H), 7.07 – 7.03 (m, 2H), 5.60 (s, 1H), 5.21 (d, *J* = 7.4 Hz, 1H, H1- β), 4.98 – 4.91 (m, 2H), 4.85 (dd, *J* = 13.0, 11.2 Hz, 2H), 4.40 (dd, *J* = 10.5, 5.0 Hz, 1H), 3.90 (s, 3H), 3.89 – 3.75 (m, 4H), 3.62 – 3.56 (m, 1H).

¹³C{¹H} (100 MHz, CDCl₃) δ 166.5, 160.4, 138.3, 137.8, 137.1, 133.4, 131.6, 129.0, 128.4, 128.3, 128.2, 128.0, 127.9, 127.7, 125.9, 124.7, 116.0, 115.8, 115.5, 101.2 (C1-β), 101.1, 81.5, 81.1, 80.7, 75.6, 75.2, 68.6, 66.3, 52.0.

HRMS (ESI-TOF): calculated for $C_{35}H_{34}O_8$ [M+Na]⁺ 605.2146 found 605.2174.

2-Methylphenyl 2,3,4-tri-*O*-benzyl-6-*O*-acetyl-α/β-D-glucopyranoside (6a)

Following **GP-4**, **6a** was prepared from **2,3,4-tri-***O***-benzyl-6**–*O***-acetyl**- α/β –**D**-glucopyranosyl trichloroacetimidate (0.05 mmol, 30 mg), **2-methylphenol** (0.07 mmol, 7.6 mg), **catalyst** (1.1 mg, 10 mol%) as colorless sticky liquid (21 mg, 79%, $\alpha/\beta = 1.6$). R_f = 0.4 (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (500 MHz, CDCl₃) δ 7.42 – 7.24 (m, 19H), 7.20 – 7.10 (m, 2H), 7.03 – 6.92 (m, 2H), 5.45 (d, J = 3.4 Hz, 0.16H, H1- α), 5.08 (d, J = 10.7 Hz, 1H), 5.02 (d, J = 7.7 Hz, 1H), 4.98 (d, J = 10.9 Hz, 1H), 4.95 – 4.80 (m, 4H), 4.78 (d, J = 10.8 Hz, 0.13H), 4.74 (d, J = 11.8 Hz, 0.27H), 4.72 – 4.62 (m, 0.27H), 4.60 (d, J = 10.8 Hz, 1H), 4.33 (dd, J = 11.8, 2.2 Hz, 1H), 4.28 (s, 0.16H), 4.24 (dd, J = 11.8, 5.8 Hz, 1H), 3.83 – 3.75 (m, 2H), 3.75 – 3.62 (m, 1H), 3.67 – 3.56 (m, 1H), 2.32 (s, 0.6H), 2.29 (s, 3H), 2.02 (s, 3H), 1.99 (s, 0.6H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 170.7, 155.3, 138.3, 138.0, 137.5, 130.9, 128.5, 128.4, 128.1, 128.0, 127.9, 127.8, 127.7, 127.5, 126.8, 122.5, 114.7, 101.1 (C1-β), 95.84 (C1-α), 84.7, 81.9, 81.8, 77.4, 76.7, 75.8, 75.1, 75.0, 72.9, 63.1, 62.8, 20.8, 16.6.

HRMS (ESI-TOF): calculated for C₃₆H₃₈O₇ [M+Na]⁺ 605.2510 found 605.2511.

4-Methoxyphenyl 2,3,4-tri-*O*-benzyl-6-*O*-acetyl-α/β-D-glucopyranoside (6b)

Following **GP-4**, **6b** was prepared from **2,3,4-tri-***O***-benzyl-6**–*O***-acetyl**- α/β –**D**-glucopyranosyl trichloroacetimidate (0.05 mmol, 30 mg), **4-Methoxyphenol** (0.07 mmol, 7.6 mg), **catalyst** (1.1 mg, 10 mol%) as colorless sticky liquid (21 mg, 77%, α/β = 1:3). R_f = 0.3 (ethyl acetate/hexane 1:4 (v/v)).

¹**H NMR (400 MHz, CDCl**₃) δ 7.39 – 7.27 (m, 19H), 7.00 (dd, J = 9.2, 2.6 Hz, 2H), 6.83 (d, J = 9.1 Hz, 2H), 5.32 (d, J = 3.5 Hz, 0.32H, H1-α), 5.07 (dd, J = 10.8, 6.9 Hz, 1.3H), 4.98 (d, J = 10.9 Hz, 1H), 4.92 – 4.86 (m, 3H, H1-β), 4.83 (d, J = 10.9 Hz, 2H), 4.59 (d, J = 10.9 Hz, 1H), 4.34 (d, J = 11.1 Hz, 1H), 4.28 – 4.20 (m, 2H), 3.78 (s, 3H), 3.78 (s, 0.46H), 3.75 – 3.68 (m, 2H), 3.60 (dd, J = 11.4, 6.8 Hz, 2H), 2.04 (s, 1H), 1.98 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.7, 155.4, 138.3, 138.1, 137.6, 128.5, 128.4, 128.2, 128.1, 128.0, 127.8, 118.4, 118.2, 114.5, 102.7 (C1-β), 84.6, 81.9, 75.1, 72.9, 63.1, 55.6, 20.8.

HRMS (**ESI-TOF**): calculated for C₃₆H₃₈O₈ [M+Na]⁺ 621.2459 found 621.2496.

2,3,4-tri-O-benzyl-6-O-acetyl- α/β -D-glucopyranosyl- $(1 \rightarrow O)$ -N-tert-butoxycarbonyl-L-

tyrosine methyl ester (6c)

Following **GP-3**, **6c** was prepared from **2,3,4-tetra-***O***-methyl–6–***O***-acetyl-\alpha/\beta–D-glucopyranosyl trichloroacetimidate (0.04 mmol, 24 mg), Boc-Tyr-OMe** (0.05 mmol, 17 mg), **catalyst** (0.9 mg, 10 mol%) as colorless sticky liquid (17 mg, 75%, α/β = 1:5.2). R_f = 0.3 (ethyl acetate/hexane 1:3 (v/v)).

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 17H), 7.24 (d, J = 8.6 Hz, 1H), 7.08 – 6.94 (m, 5H), 5.37 (d, J = 3.6 Hz, 0.16H, H1- α), 5.03 (d, J = 10.9 Hz, 1H), 5.00 – 4.94 (m, 3H), 4.88 (d, J = 10.8 Hz, 1H), 4.82 (dd, J = 10.9, 4.4 Hz, 2H), 4.57 (dd, J = 12.8, 9.8 Hz, 2H), 4.33 (dd, J = 11.8, 1.9 Hz, 1H), 4.24 (dd, J = 11.9, 5.2 Hz, 1H), 3.74 (t, J = 5.7 Hz, 2H), 3.71 (s, 3H), 3.67 – 3.58 (m, 2H), 3.09 – 2.98 (m, 2.39H), 2.03 (s, 3H), 1.98 (s, 0.57H), 1.41 (s, 10.7H).

¹³C {¹H} NMR (100 MHz, CDCl₃) δ 150.0, 138.35, 137.6, 130.3, 128.5, 128.4, 128.2, 128.1, 127.8, 116.9, 101.6, 84.5, 81.8, 75.7, 75.0, 75.0, 73.0, 63.9, 63.1, 61.4, 52.2, 28.3.

HRMS (ESI-TOF): calculated for C₄₄H₅₁O₁₁N [M+Na]⁺ 792.3354 found 792.3317.

Phenyl 2,3,4,6-tetra-*O*-benzyl-β-D-galactopyranoside (7a)

Following **GP-4**, **7a** was prepared from **2,3,4,6-tetra-***O***-benzyl**– α –**D-galactopyranosyl trichloroacetimidate** (0.1 mmol, 69 mg), **phenol** (0.15 mmol, 19 mg), **catalyst** (0.9 mg, 5 mol%) as white solid (48 mg, 78%, β only). $R_f = 0.5$ (ethyl acetate/hexane 1:4 (v/v)). The NMR data was consistent with the literature.⁶

¹**H** NMR (500 MHz, CDCl₃) δ 7.33 (m, 21H), 7.26 – 7.22 (m, 1H), 7.10 – 7.06 (m, 2H), 7.05 – 7.01 (m, 1H), 5.04 – 4.98 (m, 3H, H1- β , 2XOCH₂Ph), 4.87 (d, *J* = 10.9 Hz, 1H), 4.78 (q, *J* = 11.8 Hz, 2H), 4.66 (d, *J* = 11.7 Hz, 1H), 4.48 – 4.40 (m, 2H), 4.13 (dd, *J* = 9.7, 7.7 Hz, 1H), 3.96 (d, *J* = 2.7 Hz, 1H), 3.72 – 3.67 (m, 1H), 3.66 – 3.60 (m, 3H).

¹³C{¹H} (100 MHz, CDCl₃) δ 157.4, 138.5, 128.4, 128.3, 128.2, 127.8, 127.7, 127.6, 122.4, 116.9, 101.9, 82.0, 79.2, 75.4, 74.5, 73.8, 73.6, 73.3, 73.1, 68.8.

4-Methoxyphenyl 2,3,4,6-tetra-*O*-benzyl-α/β-D-galactopyranoside (7b)

Following **GP-4**, **7b** was prepared from **2,3,4,6-tetra-***O***-benzyl**– α –**D-galactopyranosyl trichloroacetimidate** (0.1 mmol, 69 mg), **4-methoxyphenol** (0.15 mmol, 19 mg), **catalyst** (0.9 mg, 5 mol%) as white solid (46 mg, 73%, α : β = 1:9). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (500 MHz, CDCl₃) δ 7.40 – 7.27 (m, 22H), 7.03 (d, J = 9.1 Hz, 2H), 6.79 (d, J = 9.1 Hz, 2H), 5.39 (d, J = 3.3 Hz, 0.11H, H1-α), 5.01 (dd, J = 13.5, 11.3 Hz, 2H), 4.87 – 4.85 (m, 2H, OCH₂Ph, H1-β), 4.80 – 4.74 (m, 2H), 4.66 (d, J = 11.7 Hz, 1H), 4.47 – 4.39 (m, 2H), 4.17 (dd, J = 7.9, 3.0 Hz, 0.33H), 4.09 (dd, J = 9.7, 7.7 Hz, 1H), 3.94 (d, J = 2.8 Hz, 1H), 3.77 (s, 3.5H), 3.66 – 3.58 (m, 4H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 155.1, 151.6, 138.5, 138.4, 137.8, 128.4, 128.3, 128.2, 127.8, 127.7, 127.6, 127.5, 118.6, 118.4, 114.4, 103.1 (C1-β), 82.1, 79.3, 75.4, 74.5, 73.7, 73.5, 73.3, 73.1, 68.8, 55.6.

HRMS (**ESI-TOF**): calculated for C₄₁H₄₂O₇ [M+Na]⁺ 669.2823 found 669.2849.

4-Methyl carbonyl 2,3,4,6-tetra-*O*-benzyl-β-D-galactopyranoside (7c)

Following **GP-4**, **7c** was prepared from **2,3,4,6-tetra-***O***-benzyl**– α –**D-galactopyranosyl trichloroacetimidate** (0.1 mmol, 69 mg), **Methyl 4-hydroxybenzoate** (0.15 mmol, 23 mg), **catalyst** (0.9 mg, 5 mol%) as white solid (49 mg, 74%, β only). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)). The NMR data was consistent with the literature.⁷

¹**H NMR** (**500 MHz**, **CDCl**₃) δ 7.97 (d, J = 8.8 Hz, 2H), 7.40 – 7.27 (m, 20H), 7.06 (d, J = 8.9 Hz, 2H), 5.06 (d, J = 7.7 Hz, 1H, H1-β), 4.97 (dd, J = 11.2, 8.2 Hz, 2H), 4.87 (d, J = 10.8 Hz, 1H), 4.81 – 4.74 (m, 2H), 4.65 (d, J = 11.6 Hz, 1H), 4.43 (q, J = 11.6 Hz, 2H), 4.14 (dd, J = 9.7, 7.7 Hz, 1H), 3.96 (d, J = 2.6 Hz, 1H), 3.90 (s, 3H), 3.72 (t, J = 6.3 Hz, 1H), 3.67 – 3.55 (m, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 166.7, 160.9, 138.3, 138.2, 137.7, 131.4, 128.4, 128.3, 128.2, 127.8, 127.7, 127.6, 127.5, 124.1, 116.1, 101.0 (C1-β), 81.9, 78.9, 77.3, 74.5, 74.0, 73.6, 73.1, 73.0, 68.8, 51.9.

4-Iodophenyl 2,3,4,6-tetra-*O*-benzyl–β-D-galactopyranoside (7d)

Following **GP-4**, **7d** was prepared from **2,3,4,6-tetra-***O***-benzyl**– α –**D-galactopyranosyl trichloroacetimidate** (0.1 mmol, 69 mg), **4-Iodophenol** (0.15 mmol, 34 mg), **catalyst** (0.9 mg, 5 mol%) as white solid (51 mg, 82%, β only). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)).

¹**H NMR (400 MHz, CDCl**₃) δ 7.55 – 7.50 (m, 2H), 7.38 – 7.22 (m, 20H), 6.84 – 6.79 (m, 2H), 4.98 – 4.90 (m, 3H, 2 X OCH₂Ph, H1- β), 4.84 (d, *J* = 10.8 Hz, 1H), 4.80 – 4.72 (m, 2H), 4.64 (d, *J* = 11.7 Hz, 1H), 4.41 (q, *J* = 11.6 Hz, 2H), 4.09 (dd, *J* = 9.7, 7.7 Hz, 1H, H2), 3.93 (d, *J* = 2.7 Hz, 1H, H4), 3.68 – 3.54 (m, 4H, H3, H5, H6).

¹³C{¹H} (100 MHz, CDCl₃) δ 157.3, 138.4, 138.3, 138.2, 137.7, 128.4, 128.3, 128.2, 127.8, 127.6, 127.5, 119.2, 101.6 (C1-β), 85.0, 82.0 (C3), 79.0 (C2), 75.4, 74.53, 73.9, 73.6, 73.2 (C4), 73.1 (C5), 68.8 (C6).

HRMS (ESI-TOF): calculated for C₄₀H₃₉IO₆ [M+Na]⁺ 765.1684 found 765.1650.

2-Hydroxyphenyl 2,3,4,6-tetra-*O*-benzyl-β-D-galactopyranoside (7e)

Following **GP-4**, **7f** was prepared from **2,3,4,6-tetra-***O***-benzyl**– α –**D-galactopyranosyl trichloroacetimidate** (0.1 mmol, 69 mg), **catechol** (0.15 mmol, 16 mg), **catalyst** (0.9 mg, 5 mol%) as colorless sticky liquid (47 mg, 76%, β only). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)).

¹**H NMR (500 MHz, CDCl₃)** δ 7.44 – 7.27 (m, 22H), 7.08 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.04 – 7.00 (m, 1H), 5.02 – 4.92 (m, 3H), 4.83 – 4.77 (m, 3H), 4.62 (d, *J* = 11.4 Hz, 1H), 4.57 – 4.45 (m, 2H), 4.36 (t, *J* = 6.6 Hz, 1H), 4.18 – 4.16 (m, 2H), 4.09 (s, 1H), 3.67 – 3.59 (m, 2H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 148.9, 145.2, 138.4, 138.2, 137.8, 137.2, 128.5, 128.4, 128.3, 128.1, 127.7, 127.5, 125.4, 121.2, 119.8, 115.8, 102.0 (C1-β), 79.2, 75.6, 74.8, 74.5, 74.4, 73.5, 72.6, 70.7, 68.8.

HRMS (**ESI-TOF**): calculated for C₄₀H₄₀O₇ [M+Na]⁺ 655.2666 found 655.2662.

2,3,4,6-tetra-*O*-benzyl- α/β -D-galactopyranosyl- $(1 \rightarrow O)$ -N-tert-butoxycarbonyl-L-tyrosine methyl ester (7f)

Following **GP-4**, **7e** was prepared from **2,3,4,6-tetra-***O***-benzyl**– α –**D-galactopyranosyl trichloroacetimidate** (0.1 mmol, 69 mg), **Boc-Tyr-OMe** (0.15 mmol, 23 mg), **catalyst** (0.9 mg, 5 mol%) as colorless sticky liquid (54 mg, 69%, α : β = 1:6.25). R_f = 0.3 (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.27 (m, 20H), 7.25 – 7.20 (m, 1H), 7.04 – 6.96 (m, 4H), 5.46 (d, *J* = 3.3 Hz, 0.16H, H1- α), 5.01 – 4.93 (m, 4H, H1), 4.85 (d, *J* = 10.9 Hz, 1H), 4.76 (d, *J* = 4.8 Hz, 1H), 4.65 (d, *J* = 11.7 Hz, 1H), 4.55 (dd, *J* = 15.5, 8.0 Hz, 1H), 4.47 – 4.35 (m, 2H), 4.10 (dd, *J* = 9.7, 7.7 Hz, 1H), 3.96 (d, *J* = 2.7 Hz, 1H), 3.71 (s, 0.5H), 3.69 (s, 3H), 3.67 – 3.58 (m, 3H), 3.02 (dd, *J* = 13.1, 6.9 Hz, 2H), 1.42 (s, 10H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.4, 170.0, 156.5, 155.0, 138.3, 137.8, 130.2, 129.8, 128.4, 128.3, 128.2, 127.8, 127.6, 127.5, 117.0, 101.9 (C1-β), 82.0, 79.2, 75.4, 74.5, 73.7, 73.6, 73.3, 73.0, 68.7, 52.2, 28.3.

HRMS (ESI-TOF): calculated for C₄₉H₅₅NO₁₀ [M+Na]⁺ 840.3718 found 840.3707.

2-Methylphenyl 2,3,4-tri-*O*-benzyl-α/β-D-xylopyranoside (8a)

Following **GP-4**, **8a** was prepared from **2,3,4-tri-***O***-benzyl–\alpha/\beta–D-xylopyranosyl trichloroacetimidate** (0.05 mmol, 30 mg), **2-methylphenol** (0.075 mmol, 8.5 mg), **catalyst** (0.9 mg, 10 mol%) as colorless sticky liquid (21 mg, 81%, $\alpha:\beta = 1:12.5$). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)). The NMR data was consistent with the literature.⁴

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.27 (m, 16H), 7.16 (t, J = 7.2 Hz, 2H), 7.02 – 6.93 (m, 2H), 5.42 (d, J = 3.5 Hz, 0.08H, H1-α), 5.03 (dd, J = 11.0, 6.9 Hz, 2H, OCH₂Ph, H1-β), 4.91 (s, 2H), 4.84 (d, J = 10.9 Hz, 1H), 4.76 (d, J = 11.6 Hz, 1H), 4.66 (d, J = 11.6 Hz, 1H), 4.00 (dd, J = 11.4, 4.1 Hz, 1H), 3.77 – 3.66 (m, 3H), 3.39 – 3.31 (m, 1H), 2.34 (s, 0.26H), 2.29 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.1, 138.5, 138.2, 138.0, 130.9, 128.5, 128.3, 127.9, 127.9, 127.8, 127.7, 127.6, 126.8, 122.4, 114.6, 101.5 (C1-β), 83.6, 81.6, 77.7, 75.6, 75.2, 73.3, 63.9, 16.5.

4-Chlorophenyl 2,3,4-tri-*O*-benzyl-β-D-xylopyranoside (8b)

Following **GP-4**, **8b** was prepared from **2,3,4-tri-***O***-benzyl**– α/β –**D**-**xylopyranosyl trichloroacetimidate** (0.05 mmol, 30 mg), **4-chlorophenol** (0.075 mmol, 10 mg), **catalyst** (0.9 mg, 10 mol%) as colorless sticky liquid (20 mg, 68%, β only). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 15H), 7.25 (d, *J* = 8.1 Hz, 2H), 6.95 (d, *J* = 9.0 Hz, 2H), 4.96 – 4.91 (m, 2H, OCH₂Ph, H1- β), 4.88 (s, 2H), 4.80 (d, *J* = 11.0 Hz, 1H), 4.75 (d, *J* = 11.6 Hz, 1H), 4.64 (d, *J* = 11.6 Hz, 1H), 3.98 (dd, *J* = 11.7, 4.6 Hz, 1H, H5a), 3.71 – 3.62 (m, 3H, H2 – H4), 3.37 – 3.29 (m, 1H, H5b).

¹³C{1H} NMR (100 MHz, CDCl₃) δ 155.7, 138.5, 138.1, 137.9, 129.5, 128.4, 128.1, 118.2, 102.2 (C1-β), 83.4, 81.4, 77.6, 75.6, 75.1, 73.4, 63.9.

HRMS (ESI-TOF): calculated for C₃₂H₃₁ClO₅ [M+Na]⁺ 553.1752 found 553.1766.

4-Methoxyphenyl 2,3,4-tri-*O*-benzyl-α/β-D-xylopyranoside (8c)

Following **GP-4**, **8c** was prepared from **2,3,4-tri-***O***-benzyl–\alpha/\beta–D-xylopyranosyl trichloroacetimidate** (0.05 mmol, 30 mg), **4-methoxyphenol** (0.075 mmol, 9.8 mg), **catalyst** (0.9 mg, 10 mol%) as colorless sticky liquid (21 mg, 71%, $\alpha:\beta = 1:7.6$). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.28 (m, 17H), 7.00 (d, J = 9.1 Hz, 2H), 6.84 (d, J = 9.1 Hz, 2H), 5.27 (d, J = 3.6 Hz, 0.14H, H1-α), 5.01 (d, J = 10.9 Hz, 1H), 4.96 – 4.86 (m, 3H, 2 x OCH₂Ph, H1-β), 4.82 (d, J = 10.9 Hz, 1H), 4.76 (d, J = 11.6 Hz, 1H), 4.65 (d, J = 11.6 Hz, 1H), 3.99 (dd, J = 11.6, 4.8 Hz, 1H, H5a), 3.78 (s, 3.4H), 3.72 – 3.62 (m, 3H, H2-H4), 3.30 (dd, J = 11.6, 9.5 Hz, 1H, H5b).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.3, 151.2, 138.6, 138.3, 138.0, 128.5, 128.4, 128.3, 128.1, 127.9, 127.8, 118.4, 118.2, 114.5, 103.2 (C1-β), 83.6, 81.6, 77.7, 75.6, 75.1, 73.4, 63.9, 55.6.

HRMS (**ESI-TOF**): calculated for C₃₃H₃₄O₆ [M+Na]⁺ 549.2248 found 549.2232.

ester (8d)

2,3,4-tri-*O*-benzyl- β -D-xylopyranosyl- $(1 \rightarrow O)$ -N-tert-butoxycarbonyl-L-tyrosine methyl

Following **GP-4**, **8d** was prepared from **2,3,4-tri-***O***-benzyl–\alpha/\beta–D-xylopyranosyl trichloroacetimidate** (0.05 mmol, 30 mg), **Boc-Tyr-OMe** (0.075 mmol, 22 mg), **catalyst** (0.9 mg, 10 mol%) as colorless sticky liquid (24 mg, 70%, β only). R_f = 0.3 (ethyl acetate/hexane 1:4 (v/v)).

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 16H), 7.06 (d, J = 8.3 Hz, 2H), 6.96 (d, J = 8.4 Hz, 2H), 5.00 – 4.94 (m, 3H, 2 X CH₂Ph, H1-β), 4.89 (s, 2H), 4.78 (dd, J = 20.2, 11.3 Hz, 2H), 4.65 (d, J = 11.6 Hz, 1H), 4.56 (dd, J = 12.8, 5.8 Hz, 1H), 3.99 (dd, J = 11.6, 4.4 Hz, 1H), 3.72 (s, 3H), 3.68 (dd, J = 10.9, 6.1 Hz, 3H), 3.38 – 3.30 (m, 1H), 3.10 – 2.98 (m, 2H), 1.43 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.3, 156.2, 155.1, 138.5, 138.2, 138.0, 130.4, 130.2, 128.5, 128.3, 128.1, 127.9, 127.8, 127.7, 127.6, 116.9, 102.1 (C1-β), 83.5, 81.4, 77.6, 75.6, 75.0, 73.4, 63.9, 54.4, 52.2, 37.4, 28.3.

HRMS (ESI-TOF): calculated for C₄₁H₄₇NO₉ [M+Na]⁺ 720.3143. found 720.3148.

4-(((tert-butyldimethylsilyl)oxy)methyl)phenyl 2,3,4,6-tri-*O*-benzyl-β-D-xylopyranoside (8e)

Following **GP-4**, **8e** was prepared from **2,3,4-tri-***O***-benzyl–\alpha/\beta–D-xylopyranosyl trichloroacetimidate** (0.05 mmol, 30 mg), **4-(((tert-butyldimethylsilyl)oxy)methyl)phenol** (0.075 mmol, 19 mg), **catalyst** (0.9 mg, 10 mol%) as colorless sticky liquid (29 mg, 80%, β only). $R_f = 0.5$ (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (400 MHz, CDCl₃) δ 7.30 – 7.17 (m, 18H), 6.94 (d, J = 8.6 Hz, 2H), 4.92 (dd, J = 8.8, 5.5 Hz, 2H, H1-β), 4.82 (d, J = 1.3 Hz, 2H), 4.74 (d, J = 10.9 Hz, 1H), 4.69 (d, J = 11.6 Hz, 1H), 4.64 – 4.55 (m, 3H), 3.92 (dd, J = 11.6, 4.6 Hz, 1H), 3.66 – 3.55 (m, 3H), 3.26 (dd, J = 11.6, 9.3 Hz, 1H), 0.87 (s, 9H), 0.03 (s, 6H).

¹³C{1H} NMR (100 MHz, CDCl₃) δ 156.1, 138.5, 138.2, 138.0, 135.7, 128.4, 128.3, 128.1, 127.9, 127.8, 127.7, 127.6, 127.4, 116.6, 102.3 (C1-β), 83.6, 81.5, 77.6, 75.6, 75.1, 73.4, 64.6, 63.9, 25.9, 18.4, -5.2.

HRMS (**ESI-TOF**): calculated for C₃₉H₄₈SiO₆ [M+Na]⁺ 663.3112 found 663.3127.

Estryl 2,3,4-tri-*O*-benzyl-α/β-D-xylopyranoside (8f)

Following **GP-4**, **8f** was prepared from **2,3,4-tri-***O***-benzyl–\alpha/\beta–D-xylopyranosyl trichloroacetimidate** (0.05 mmol, 30 mg), **estrone** (0.075 mmol, 22 mg), **catalyst** (0.9 mg, 10 mol%) as colorless sticky liquid (22 mg, 64%, α : β = 1:10). R_f = 0.3 (ethyl acetate/hexane 1:4 (v/v)).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.36 – 7.27 (m, 18H), 7.22 (d, J = 8.6 Hz, 1H), 6.85 (dd, J = 8.5, 2.4 Hz, 1H), 6.79 (dd, J = 12.0, 2.3 Hz, 1H), 5.39 (d, J = 3.6 Hz, 0.1H, H1-α), 5.01 – 4.95 (m, 2H, H1-β), 4.89 (d, J = 1.4 Hz, 2H), 4.78 (dd, J = 18.6, 11.2 Hz, 3H), 4.64 (d, J = 11.7 Hz, 1H), 3.98 (dd, J = 11.6, 4.5 Hz, 1H), 3.72 – 3.60 (m, 4H), 3.33 (dd, J = 11.6, 9.2 Hz, 1H), 2.89 (dd, J = 8.7, 3.9 Hz, 2H), 2.51 (dd, J = 18.8, 8.6 Hz, 1H), 2.40 (d, J = 10.2 Hz, 1H), 2.30 – 1.93 (m, 6H), 1.63 – 1.49 (m, 9H), 0.92 (s, 3H).

¹³C{1H} NMR (100 MHz, CDCl₃) δ 155.1, 138.6, 138.3, 138.1, 137.9, 134.3, 128.1, 127.9, 127.8, 127.6, 126.4, 117.1, 114.6, 102.3, 83.6, 81.5, 77.7, 75.6, 75.0, 73.3, 63.9, 50.4, 47.9, 44.0, 38.2, 35.8, 31.5, 29.6, 26.4, 25.8, 21.5, 13.8.

HRMS (ESI-TOF): calculated for C₄₅H₅₁O₆ [M+Na]⁺ 710.3578 found 710.3599.

2-Hydroxyphenyl 2,3,4-tri-*O*-benzyl-β-D-xylopyranoside (8g)

Following **GP-4**, **8g** was prepared from **2,3,4-tri-***O***-benzyl–\alpha/\beta–D-xylopyranosyl trichloroacetimidate** (0.05 mmol, 30 mg), **catechol** (0.15 mmol, 9 mg), **catalyst** (0.9 mg, 10 mol%) as colorless sticky liquid (29 mg, 80%, β only). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (400 MHz, CDCl₃) δ 7.41 – 7.27 (m, 16H), 7.06 – 6.95 (m, 3H), 6.78 (t, *J* = 7.3 Hz, 1H), 4.96 (m, 2H, OCH₂Ph, H1- β), 4.90 – 4.84 (m, 2H), 4.77 (d, *J* = 11.6 Hz, 1H), 4.73 (d, *J* = 11.6 Hz, 1H), 4.67 (d, *J* = 11.6 Hz, 1H), 4.12 (t, *J* = 9.3 Hz, 1H), 3.91 (t, *J* = 11.0 Hz, 1H), 3.80 (dd, *J* = 11.0, 5.6 Hz, 1H), 3.70 – 3.63 (m, 1H), 3.59 – 3.54 (m, 1H).
¹³C{¹H} NMR (100 MHz, CDCl₃) δ 198.9, 148.7, 145.1, 138.5, 138.1, 137.0, 128.5, 128.5, 128.4, 128.2, 128.0, 127.8, 127.7, 125.3, 120.6, 119.8, 115.9, 101.4 (C1-β), 81.3, 78.5, 75.7, 74.4, 73.5, 61.0.

HRMS (**ESI-TOF**): calculated for C₃₂H₃₂O₆ [M+Na]⁺ 631.3036 found 631.3034.

4-Nitrophenyl 2,3,4-tri-*O*-benzyl-α/β-D-xylopyranoside (8h)

Following **GP-4**, **8h** was prepared from **2,3,4-tri-***O***-benzyl**– α/β –**D**-xylopyranosyl trichloroacetimidate (0.05 mmol, 30 mg), **4-nitrophenol** (0.075 mmol, 22 mg), catalyst (0.9 mg, 10 mol%) as colorless sticky liquid (20 mg, 72%, $\alpha:\beta = 1:14$). R_f = 0.4 (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 9.2 Hz, 2H), 7.37 – 7.29 (m, 17H), 7.05 (d, J = 9.2 Hz, 2H), 5.36 (d, J = 3.5 Hz, 0.07H, H1-α), 5.10 (d, J = 6.7 Hz, 1H, H1-β), 4.90 – 4.87 (m, 3H), 4.83 (d, J = 11.1 Hz, 1H), 4.76 (d, J = 11.7 Hz, 1H), 4.65 (d, J = 11.6 Hz, 1H), 4.04 – 3.98 (m, 1H), 3.72 – 3.69 (m, 3H, H2 – H4), 3.45 – 3.38 (m, 1H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.7, 142.7, 138.3, 137.8, 128.5, 128.4, 128.0, 127.9, 127.8, 127.7, 125.8, 116.4, 101.1 (C1-β), 83.0, 80.9, 77.4, 75.23, 73.3, 64.0.

HRMS (ESI-TOF): calculated for C₃₂H₃₁NO₇ [M+Na]⁺ 564.1993 found 564.1959.

4-Methoxyphenyl 2,3,4,6-tetra-O-benzyl- α/β -D-glucopyranoside (9a)

Following **GP-4**, **9a** was prepared from **2,3,4,6-tetra-***O***-benzyl-** β **-D-glucopyranosyl trichloroacetimidate** (0.05 mmol, 35 mg), **4-methoxyphenol** (0.075 mmol, 9 mg), **catalyst** (0.9 mg, 10 mol%) as colorless sticky liquid (20 mg, 64%, α : β = 2:1). R_f = 0.4 (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (400 MHz, CDCl₃) δ 7.41 – 7.26 (m, 29H), 7.17 (dd, J = 19.4, 7.7 Hz, 3H), 7.03 (dd, J = 13.3, 5.2 Hz, 3H), 6.81 (dd, J = 9.1, 3.1 Hz, 3H), 5.37 (d, J = 3.3 Hz, 1H, H1- α), 5.06 (d, J = 10.9 Hz, 1H,), 4.96 (d, J = 10.9 Hz, 0.6H), 4.91 – 4.79 (m, 5H), 4.70 (d, J = 12.0 Hz, 1H), 4.63 – 4.55 (m, 3H), 4.50 (d, J = 10.7 Hz, 1H), 4.42 (d, J = 12.0 Hz, 1H), 4.19 (t, J = 9.3 Hz, 1H), 3.93 (d, J = 10.1 Hz, 1H), 3.78 (s, 1.5H), 3.78 (s, 3H), 3.75 – 3.69 (m, 4H), 3.62 – 3.57 (m, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.2, 154.9, 151.5, 150.7, 138.7, 138.1, 138.0, 137.8, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 118.4, 118.1, 114.5, 114.4, 102.7 (C1-β), 96.3 (C1-α), 84.6, 82.0, 81.9, 79.7, 75.7, 75.7, 75.1, 75.0, 75.0, 73.4, 73.2, 70.6, 68.8, 68.3, 55.6, 55.5.

4-Chlorophenyl 2,3,4,6-tetra-*O*-benzyl-α-D-glucopyranoside (9b)

Following **GP-4**, **9b** was prepared from **2,3,4,6-tetra-***O***-benzyl-** β **-D-glucopyranosyl trichloroacetimidate** (0.05 mmol, 35 mg), **4-chlorophenol** (0.075 mmol, 11 mg), **catalyst** (0.9 mg, 10 mol%) as colorless sticky liquid (20 mg, 64%, α only). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)) along with the minor impurity of the byproduct.

¹**H** NMR (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 20H), 7.23 (d, *J* = 8.9 Hz, 2H), 7.01 (d, *J* = 8.9 Hz, 2H), 5.38 (d, *J* = 3.5 Hz, 1H, H1- α), 5.05 (d, *J* = 10.8 Hz, 1H), 4.89 (d, *J* = 12.7 Hz, 2H), 4.82 (dd, *J* = 16.9, 4.7 Hz, 3H), 4.70 (d, *J* = 19.4 Hz, 1H), 4.60 (dd, *J* = 17.5, 12.9 Hz, 2H), 4.49 (d, *J* = 10.6 Hz, 2H), 4.41 (d, *J* = 12.0 Hz, 1H), 4.18 (t, *J* = 9.1 Hz, 1H), 3.83 – 3.76 (m, 2H), 3.72 (dt, *J* = 11.5, 6.2 Hz, 3H), 3.59 – 3.53 (m, 1H).

¹³C{¹H} (100 MHz, CDCl₃) δ 155.1, 138.6, 138.0, 137.8, 137.6, 129.3, 128.5, 128.4, 128.0, 127.9, 127.8, 127.7, 118.0, 95.6 (C1-α), 81.8, 79.6, 75.8, 75.1, 73.5, 73.4, 70.8, 68.1.

HRMS (**ESI-TOF**): calculated for C₄₀H₃₉ClO₆ [M+Na]⁺ 673.2327 found 673.2352.

3,5-Dibromophenyl 2,3,4,6-tetra-*O*-benzyl-α-D-glucopyranoside (9c)

Following **GP-4**, **9c** was prepared from **2,3,4,6-tetra-***O***-benzyl-** β **-D-glucopyranosyl trichloroacetimidate** (0.05 mmol, 35 mg), **3,5-dibromophenol** (0.075 mmol, 19 mg), **catalyst** (0.9 mg, 10 mol%) as colorless sticky liquid (19 mg, 62%, α only). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (500 MHz, CDCl₃) δ 7.39 – 7.27 (m, 20H), 7.22 (t, J = 1.5 Hz, 1H), 7.16 (d, J = 1.6 Hz, 2H), 5.32 (d, J = 3.5 Hz, 1H, H1- α), 5.02 (d, J = 10.8 Hz, 1H), 4.88 – 4.79 (m, 3H), 4.63 – 4.58 (m, 2H), 4.48 – 4.40 (m, 2H), 4.16 – 4.09 (m, 2H), 3.76 (d, J = 5.3 Hz, 2H), 3.69 (dd, J = 9.6, 3.6 Hz, 2H), 3.58 (d, J = 10.6 Hz, 1H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.6, 156.8, 138.6, 128.5, 128.4, 128.1, 127.9, 127.8, 126.5, 123.1, 119.0, 117.8, 95.9 (C1-α), 81.7, 79.6, 75.8, 75.1, 73.6, 73.4, 71.4, 68.1.

4-(*p*-tolyl) phenyl 2,3,4,6-tetra-*O*-benzyl-β-D-glucopyranoside (10a)

Following literature known procedure¹¹, the title compound **9a** was prepared from **4-Iodophenyl 2,3,4,6-tetra-***O***-benzyl-** β **-D-glucopyranoside** (0.07 mmol, 54 mg) and *p***-tolylboronic acid** (0.08 mmol, 12 mg) as white solid (33 mg, 68%). R_f = 0.4 (ethyl acetate/hexane 1:4 (v/v)).

¹**H** NMR (500 MHz, CDCl₃) δ 7.50 (dd, J = 8.7, 0.9 Hz, 2H), 7.46 (d, J = 7.7 Hz, 2H), 7.38 – 7.27 (m, 18H), 7.25 – 7.19 (m, 3H), 7.14 (dd, J = 8.7, 1.0 Hz, 2H), 5.08 – 5.04 (m, 2H), 4.97 (d, J = 10.8 Hz, 1H), 4.87 (d, J = 10.3 Hz, 1H), 4.86 – 4.84 (m, 1H), 4.83 (d, J = 3.4 Hz, 1H), 4.61 (d, J = 12.0 Hz, 1H), 4.58 (d, J = 10.8 Hz, 1H), 4.55 (d, J = 12.0 Hz, 1H), 3.82 (d, J = 10.4 Hz, 1H), 3.79 – 3.76 (m, 2H), 3.75 – 3.68 (m, 2H), 3.64 (dd, J = 9.6, 4.7 Hz, 1H), 2.40 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 156.6, 138.4, 138.2, 138.1, 137.9, 137.7, 136.6, 135.6, 129.4, 128.3, 127.9, 127.8, 127.6, 117.1, 101.7, 84.6, 81.9, 77.6, 75.7, 75.1, 75.1, 75.0, 73.5, 68.8, 21.1.

HRMS (**ESI-TOF**): calculated for C₄₇H₄₆O₆ [M+Na]⁺ 729.3187 found 729.3182.

4-(phenylethynyl) phenyl 2,3,4,6-tetra-O-benzyl-β-D-glucopyranoside (10b)

Following literature known procedure¹¹, the title compound **9b** was prepared from **4-Iodophenyl 2,3,4,6-tetra-***O***-benzyl-***β***-D-glucopyranoside** (0.07 mmol, 54 mg) and **phenyl acetylene** (0.08 mmol, 12 mg) as white solid (36 mg, 73%). $R_f = 0.4$ (ethyl acetate/hexane 1:4 (v/v)).

¹**H NMR (400 MHz, CDCl**₃) δ 7.55 – 7.52 (m, 2H), 7.48 – 7.45 (m, 2H), 7.35 – 7.27 (m, 22H), 7.19 (dd, *J* = 7.2, 2.1 Hz, 2H), 7.04 (d, *J* = 8.8 Hz, 2H), 5.05 – 4.93 (m, 3H), 4.88 – 4.80 (m, 3H), 4.61 – 4.49 (m, 4H), 3.83 – 3.74 (m, 3H), 3.71 – 3.63 (m, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.2, 138.4, 137.9, 133.1, 131.5, 128.5, 128.4, 128.4, 128.3, 128.2, 127.9, 117.4, 116.7, 101.3, 89.1, 88.5, 84.5, 81.9, 77.6, 75.8, 75.2, 75.1, 75.1, 73.5, 68.7.

HRMS (**ESI-TOF**): calculated for C₄₈H₄₄O₆ [M+Na]⁺ 739.3030 found 739.3025.

2,3,4,6-tetra-*O*-benzyl-1-deoxy-1-fluoro-α/β-D-glucopyranoside (10c)

Following **GP-4**, **9c** was prepared from **2,3,4,6-tetra-***O***-benzyl-\alpha-D-glucopyranosyl trichloroacetimidate** (0.05 mmol, 35 mg) and **pyridinium tetrafluoroborate** (8.3 mg, 1 equiv.) as colorless sticky liquid (18 mg, 75%, α : β = 3:1). R_f = 0.5 (ethyl acetate/hexane 1:4 (v/v)). The title compound was also observed as the byproduct in the glycosylation reaction.

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 (m, 23H), 7.18 – 7.13 (m, 2H), 5.56 (dd, J = 53.2, 2.5 Hz, 1H), 5.27 (dd, J = 52.9, 6.7 Hz, 0.3H), 4.97 (d, J = 10.9 Hz, 1H), 4.91 (d, J = 11.1 Hz, 0.3H),

4.87 (d, *J* = 5.5 Hz, 1.2H), 4.85 – 4.82 (m, 1.5H), 4.80 (d, *J* = 3.2 Hz, 1H), 4.71 (d, *J* = 11.8 Hz, 1.2H), 4.61 (d, *J* = 12.0 Hz, 1.2H), 4.56 (d, *J* = 4.6 Hz, 0.3H), 4.52 (d, *J* = 10.8 Hz, 1.2H), 4.48 (d, *J* = 12.2 Hz, 1H), 3.98 (dd, *J* = 20.1, 10.7 Hz, 2H), 3.78 – 3.71 (m, 3H), 3.70 – 3.65 (m, 1H), 3.61 (dd, *J* = 9.3, 2.6 Hz, 1H), 3.55 (dd, *J* = 9.6, 2.5 Hz, 0.6H).

¹³C{¹H} (100 MHz, CDCl₃) δ 138.4, 137.6, 128.5, 128.4, 128.1, 128.0, 127.9, 127.8, 105.5 (d, $J_{C-F} = 226.7$ Hz), 81.4, 79.3 (d, $J_{C-F} = 24.8$ Hz), 76.6, 75.8, 75.4, 75.2, 74.9, 73.5, 73.5, 72.6 (d, $J_{C-F} = 4$ Hz), 67.8.

Gram Scale reaction:

Under N₂ atmosphere, glycosyl imidate (685 mg, 1.0 mmol, 1.0 equiv.), 4-iodophenol (328 mg, 1.5 mmol, 1.5 equiv.), were weighed into a round bottom flask with a magnetic stir bar. Anhydrous DCM (0.1 M) and activated 4Å MS (molecular sieves) was added followed by addition of catalyst (10 mol %) and the reaction mixture was stirred at 0 °C for 3 h. After completion, the reaction was diluted with DCM and washed with brine. The aqueous phase was extracted with DCM (3X). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was subjected to silica gel chromatography to afford the product (502 mg, 71% yield with α : β = 1:10).

Mechanistic studies:

(a) ¹H NMR titration for studying interactions between phenol and catalyst.

Phenol (2a) (2.80 mg, 0.03 mmol, 1.0 eq) was dissolved in 0.6 mL of CDCl₃. After each ¹H-NMR measurement, 0.99 mg (0.005 mmol) of catalyst **A** was added and the NMR spectrum was remeasured.

Figure S1a: The full spectra of the NMR titration of the reaction between 2a and A.

Figure S1b: The zoomed in spectra of the NMR titration of the reaction between phenol **2a** and catalyst **A**

Table S3: Chemical shift and peak width of OH in each NMR titration measurement

Entry	Ratio	Chemical Shift (ppm)	Peak width (Hz)
1.	1/0	4.854	3.20
2.	1/0.4	4.845	18.2
3.	1/0.6	4.861	36.15
4.	1/0.8	4.865	64.45
5.	1/1	4.867	67.30
6.	1/1.2	4.870	92.85
7.	1/1.4	4.868	95.20

From **Figure S1**, the shift and broadening of the O-H peak suggest the close interaction of phenol and catalyst via π - π stacking and H-bonding interactions as shown in the Int. 2a-A.

2a/[A] = [0.05 M]/[0.07 M]	δ = -150.3140
	a second a second a second a second a second a second for a second second second second second a
2a/[A] = [0.05 M]/[0.06 M]	$\delta = -150.3138$
2a/[A] = [0.05 M]/[0.05 M]	$\delta = -150.3172$
2a/[A] = [0.05 M]/[0.04 M]	δ = -150.3203
2a/[A] = [0.05 M]/[0.03 M]	$\delta = -150.3253$
2a/[A] = [0.05 M]/[0.02 M]	$\delta = -150.3425$
[A]	δ = -150.8261
-50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -1 f1 (ppm)	50 -160 -170 -180 -190 -200 -210 -220

Figure S2: ¹⁹F-NMR showing interactions of catalyst B with phenol A in CDCl₃ (0.6mL).

There was a slight shift in ¹⁹F-NMR, from -150.82 ppm to -150.31 ppm (**Figure 2**). This observation also suggests H-bonding interactions of O-H with the tetrafluoroborate anion of the catalyst.

(b) IR studies:

For further understanding of the interactions of phenol and catalyst, IR studies were performed and we observed a significant shift and broadening of the O-H peak in the spectra. Therefore, it was observed that the catalyst pyridinium tetrafluoroborate in the presence of phenol shows the shift and broadening of O–H stretch due to H-bonding interactions.

Figure S3: (a) ¹H NMR (glycosyl trichloroacetimidate donor **1a**) in CDCl₃ (b) ¹H NMR of pyridinium tetrafluoroborate in DMSO- d_6 (c) a mixture of **1a** and catalyst (10 mol %) after 2 h in CDCl₃. (d) a mixture of **1a** and catalyst (10 mol %) after 12 h in CDCl₃.

The ¹H NMR study for the interaction between the catalyst and glycosyl trichloroacetimidate was performed. The diminishing of N-H peak suggests slow decomposition of the imidate due to the H-bonding interactions between the imidate N-H and the tetrafluoroborate anion of the catalyst along with the formation of **2,3,4,6-tetra-***O***-benzyl-1-deoxy-1-fluoro-** α/β **-D-glucopyranoside** as the byproduct in trace amount.

(iii) ¹H NMR study for the interaction between glycosyl trichloroacetimidate and phenol.

Figure S4: (a) ¹H NMR of glycosyl trichloroacetimidate donor **1a** in CDCl₃ (b) ¹H NMR of phenol **A** in CDCl₃ (c) ¹H NMR of glycosyl trichloroacetimidate donor **1a** (1.0 equiv.) and phenol **A** (1.5 equiv.) after 12h in CDCl₃.

(c) Hammett Plot:

Table S4: Calculation for Hammett Plot.

Functional	kx/kn	log (kx/kH)	σ-
group			
H	1	0	0
OMe	1.25	0.097	-0.26
Me	1.05	0.022	-0.17
Cl	0.57	-0.244	0.19
COOMe	0.43	-0.366	0.75

References:

- (a) Addanki, R. B.; Moktan, S.; Halder, S.; Sharma, M.; Sarmah, B. K.; Bhattacharyya, K.; Kancharla, P. K., Exploiting the Strained Ion-Pair Interactions of Sterically Hindered Pyridinium Salts Toward S_N2 Glycosylation of Glycosyl Trichloroacetimidates. *J. Org. Chem.* 2024, *89*, 3713-3725.
- Nielsen, M. M.; Stougaard, B. A.; Bols, M.; Glibstrup, E.; Pedersen, C. M., Glycosyl Fluorides as Intermediates in BF₃·OEt₂-Promoted Glycosylation with Trichloroacetimidates. *Eur. J. Org. Chem.* 2017, 2017, 1281-1284.
- 3. Hoch, M.; Heinz, E.; Schmidt, R. R., Carbohydr. Res. 1989, 191, 21-28.
- McKay, M. J.; Naab, B. D.; Mercer, G. J.; Nguyen, H. M., Selective formation of β-O-aryl glycosides in the absence of the C (2)-ester neighboring group. *J. Org. Chem.* 2009, 74, 4705-4711.
- Jiao, Q.; Guo, Z.; Zheng, M.; Lin, W.; Liao, Y.; Yan, W.; Liu, T.; Xu, C., Anion-Bridged Dual Hydrogen Bond Enabled Concerted Addition of Phenol to Glycal. *Adv. Sci.* 2024, *11*, 2308513.
- Nielsen, M. M.; Holmstrøm, T.; Pedersen, C. M., Stereoselective O-glycosylations by pyrylium salt organocatalysis. *Angew. Chem.* 2022, *134*, e202115394.
- Lai, J.; Wu, S.; Zhou, Z.; Liu, H.; Tu, Y.; Zhang, Q.; Wang, L., Stereoselective Aromatic O-Glycosylation of Glycosyl Chloride with Arylboronic Acid under an Air Atmosphere. J. Org. Chem. 2023, 88, 10721-10734.

- 8. Thomas, H. G.; Mieusset, J.-L., Oxidatively induced glycosylation starting from hydroquinone glycosides. *Tetrahedron* **2008**, *64*, 5124-5131.
- 9. Dimakos, V.; Liu, J. J.; Ge, Z.; Taylor, M. S., Copper-mediated anomeric O-arylation with organoboron reagents. *Org. Biomol. Chem.* **2019**, *17*, 5671-5674.
- Huang, K. T.; Winssinger, N., IPy₂BF₄-Mediated Glycosylation and Glycosyl Fluoride Formation. Wiley Online Library: 2007.
- Baghel, A. S.; Pratap, R.; Kumar, A., Ru (II)-Catalyzed Weakly Coordinating Carbonyl-Assisted Dialkynylation of (Hetero) Aryl Ketones. J. Org. Chem. 2023, 88, 8542-8552.

¹H NMR spectrum of catalyst A (500 MHz, DMSO-*d*₆)

¹⁹F NMR spectrum of catalyst A (471 MHz, DMSO-*d*₆)

¹H NMR spectrum of catalyst B (500 MHz, DMSO-*d*₆)

¹H NMR spectrum of catalyst C (500 MHz, DMSO-*d*₆)

¹⁹F NMR spectrum of catalyst D (471 MHz, DMSO-*d*₆)

¹H NMR spectrum of compound - catalyst E (500 MHz, DMSO-*d*₆)

 $^{13}\mathrm{C}$ {¹H} NMR spectrum of compound - catalyst E (125 MHz, DMSO-d_6)

¹⁹F {¹H} NMR spectrum of compound - catalyst E (471 MHz, DMSO-*d*₆)

¹H NMR spectrum of compound - catalyst F (400 MHz, DMSO-*d*₆)

¹⁹F {¹H} NMR spectrum of compound - catalyst F (376 MHz, DMSO-*d*₆)

¹H NMR spectrum of compound - catalyst G (500 MHz, DMSO-*d*₆)

¹³C {¹H} NMR spectrum of compound - catalyst G (125 MHz, DMSO-*d*₆)

¹⁹F {¹H} NMR spectrum of compound - catalyst G (471 MHz, DMSO-*d*₆)

¹H NMR spectrum of compound 1a (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 1a (100 MHz, CDCl₃)

¹H NMR spectrum of compound 1b (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 1b (100 MHz, CDCl₃)

¹H NMR spectrum of compound 1c (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 1c (100 MHz, CDCl₃)

¹H NMR spectrum of compound 1d (400 MHz, CDCl₃)

¹³C {¹H}NMR spectrum of compound 1d (100 MHz, CDCl₃)

¹H NMR spectrum of compound 1e (500 MHz, CDCl₃)

¹³C NMR spectrum of compound 1e (125 MHz, CDCl₃)

¹H NMR spectrum of compound 1f (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 1f (100 MHz, CDCl₃)

¹H NMR spectrum of compound 1g (500 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 1g (125 MHz, CDCl₃)

¹H NMR spectrum of compound 3a (500 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 3a (125 MHz, CDCl₃)

¹H NMR spectrum of compound 3b (500 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 3b (125 MHz, CDCl₃)

¹H NMR spectrum of compound 3c (500 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 3c (125 MHz, CDCl₃)

¹H NMR spectrum of compound 3d (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 3d (100 MHz, CDCl₃)

¹H NMR spectrum of compound 3e (500 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 3e (125 MHz, CDCl₃)

COSY spectrum of compound 3e

HSQC spectrum of compound 3e

¹H NMR spectrum of compound 3f (500 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 3f (125 MHz, CDCl₃)

¹⁹F{1H} (471 MHz) NMR spectra of 3f in CDCl₃

¹H NMR spectrum of compound 3g (500 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 3g (125 MHz, CDCl₃)

¹H NMR spectrum of compound 3h (500 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 3h (125 MHz, CDCl₃)

¹H NMR spectrum of compound 3i (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 3i (100 MHz, CDCl₃)

¹H NMR spectrum of compound 3j (500 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 3j (125 MHz, CDCl₃)

COSY spectrum of compound 3j

¹H NMR spectrum of compound 3k (500 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 3k (125 MHz, CDCl₃)

¹H NMR spectrum of compound 3l (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 3l (100 MHz, CDCl₃)

COSY spectrum of compound 31

¹H NMR spectrum of compound 3m (500 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 3m (125 MHz, CDCl₃)

¹H NMR spectrum of compound 3n (500 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 3n (125 MHz, CDCl₃)

¹H NMR spectrum of compound 3o (500 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 30 (125 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 3p (125 MHz, CDCl₃)

¹H NMR spectrum of compound 3q (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 3q (100 MHz, CDCl₃)

¹H NMR spectrum of compound 3r (500 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 3r (125 MHz, CDCl₃)

¹H NMR spectrum of compound 3s (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 3s (100 MHz, CDCl₃)

¹H NMR spectrum of compound 3t (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 3t (100 MHz, CDCl₃)

¹H NMR spectrum of compound 4a (500 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 4a (125 MHz, CDCl₃)

COSY spectrum of compound 4a

HSQC spectrum of compound 4a

¹H NMR spectrum of compound 4b (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 4b (100 MHz, CDCl₃)

HSQC spectrum of compound 4b

¹H NMR spectrum of compound 4c (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 4c (100 MHz, CDCl₃)

COSY spectrum of compound 4c

¹H NMR spectrum of compound 4d (500 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 4d (125 MHz, CDCl₃)

¹H NMR spectrum of compound 5a (400 MHz, CDCl₃)

¹³C {1H} NMR spectrum of compound 5a (100 MHz, CDCl₃)

¹H NMR spectrum of compound 5b (400 MHz, CDCl₃)

¹³C NMR spectrum of compound 5b (100 MHz, CDCl₃)

¹H NMR spectrum of compound 5c (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 5c (100 MHz, CDCl₃)

COSY spectrum of compound 5c

¹H NMR spectrum of compound 5d (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 5d (100 MHz, CDCl₃)

COSY spectrum of compound 5d

S100

¹H NMR spectrum of compound 5e (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 5e (100 MHz, CDCl₃)

COSY spectrum of compound 5e

HSQC spectrum of compound 5e

¹H NMR spectrum of compound 6a (500 MHz, CDCl₃)

¹³C {1H} NMR spectrum of compound 6a (125 MHz, CDCl₃)

COSY spectrum of compound 6a

HSQC spectrum of compound 6a

¹H NMR spectrum of compound 6b (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 6b (100 MHz, CDCl₃)

S106

¹H NMR spectrum of compound 6c (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 6c (100 MHz, CDCl₃)

¹H NMR spectrum of compound 7a (500 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 7a (125 MHz, CDCl₃)

¹H NMR spectrum of compound 7b (500 MHz, CDCl₃)

¹³C {¹H}NMR spectrum of compound 7b (125 MHz, CDCl₃)

COSY spectrum of compound 7b

HSQC spectrum of compound 7b

¹H NMR spectrum of compound 7c (500 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 7c (125 MHz, CDCl₃)

¹H NMR spectrum of compound 7d (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 7d (100 MHz, CDCl₃)

COSY spectrum of compound 7d

HSQC spectrum of compound 7d

¹H NMR spectrum of compound 7e (400 MHz, CDCl₃)

¹³C {1H} NMR spectrum of compound 7e (100 MHz, CDCl₃)

¹³C {¹H}NMR spectrum of compound 7f (100 MHz, CDCl₃)

¹H NMR spectrum of compound 8a (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 8a (100 MHz, CDCl₃)

¹H NMR spectrum of compound 8b (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 8b (100 MHz, CDCl₃)

¹H NMR spectrum of compound 8c (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 8c (100 MHz, CDCl₃)

COSY spectrum of compound 8c

HSQC spectrum of compound 8c

¹H NMR spectrum of compound 8d (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 8d (100 MHz, CDCl₃)

¹H NMR spectrum of compound 8e (400 MHz, CDCl₃)

¹³C {¹H}NMR spectrum of compound 8e (100 MHz, CDCl₃)

COSY spectrum of compound 8e

¹H NMR spectrum of compound 8f (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 8f (100 MHz, CDCl₃)

¹H NMR spectrum of compound 8g (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 8g (100 MHz, CDCl₃)

¹H NMR spectrum of compound 8h (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 8h (100 MHz, CDCl₃)

¹H NMR spectrum of compound 9a (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 9a (100 MHz, CDCl₃)

¹H NMR spectrum of compound 9b (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 9b (100 MHz, CDCl₃)

¹H NMR spectrum of compound 9c (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 9c (100 MHz, CDCl₃)

COSY spectrum of compound 9c

HSQC spectrum of compound 9c

¹H NMR spectrum of compound 10a (500 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 10a (125 MHz, CDCl₃)

¹H NMR spectrum of compound 10b (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 10b (100 MHz, CDCl₃)

¹H NMR spectrum of compound 10c (400 MHz, CDCl₃)

¹³C {¹H} NMR spectrum of compound 10c (100 MHz, CDCl₃)

¹H NMR spectrum of compound 2-*d* (400 MHz, CDCl₃)

DFT Calculation Data

Density functional theory $(DFT)^1$ calculations were conducted using the Gaussian 16 program package². For geometry optimization and harmonic frequency calculations, the popular hybrid functional B3LYP level of theory and the 6-31g(++)(d,p) Pople basis set is utilized. The bulk solvent effects were included by using the SMD model³. Geometry optimization and frequencies were calculated at 273.15 K and 1 atm pressure. All the structures were generated by Gaussview.

Overview of the calculated optimized structures:

Reaction Coordinates:

1) Glycosyl donor (1b)

Number of imaginary frequencies = 0

Energy = -2355.969369 Hartree

Atom	Coordinates (Angstroms)		
	X	Y	Ζ
С	3.079621	-0.243104	0.397814
С	2.520574	-1.122624	-0.744802
С	1.011222	-1.435054	-0.599768
С	0.283750	-0.123934	-0.316476
С	0.762225	0.510079	0.846197
С	2.141308	0.929214	0.774960
С	2.336396	2.167745	-0.102051
0	-1.096034	-0.412607	-0.077613
С	-2.003651	0.537168	-0.357494
Ν	-1.732278	1.659318	-0.870599
0	3.334584	-1.095350	1.513133
С	4.348551	-0.618602	2.391853
0	2.674311	-0.451505	-1.998344
С	3.929041	-0.679062	-2.638134
0	1.678466	3.267234	0.513807
С	1.756559	4.453077	-0.265310

С	0.863915	-3.720547	0.055975
0	0.747828	-2.355004	0.442226
С	-3.404772	0.000559	0.043883
Cl	-4.689921	1.201387	-0.322973
Cl	-3.425969	-0.349162	1.809726
Cl	-3.750745	-1.511199	-0.879156
Η	4.033514	0.179562	0.051667
Η	3.079651	-2.065942	-0.751056
Η	0.652465	-1.828252	-1.561546
Η	0.357678	0.531359	-1.189168
Η	2.368431	1.228396	1.801776
Η	1.954746	2.016474	-1.120484
Η	3.415719	2.374121	-0.181590
Η	-2.556902	2.238299	-1.018010
Η	4.472004	-1.376532	3.169514
Η	5.303544	-0.486982	1.861631
Η	4.074609	0.331571	2.870644
Η	3.917187	-0.104725	-3.567645
Η	4.773022	-0.340736	-2.022312
Η	4.061720	-1.744333	-2.872677
Η	1.230629	5.236672	0.286186
Η	2.800923	4.763861	-0.421740
Η	1.276340	4.320020	-1.246073
Η	0.604357	-4.316405	0.934457
Η	0.168050	-3.961314	-0.760735
Η	1.884910	-3.979583	-0.255737

2) **Phenol** (2a)

Number of imaginary frequencies = 0

Energy = -307.507615 Hartree

Atom Coordinates (Angstroms)

	X	Y	Z
С	-0.269082	1.202037	-0.000000
С	1.129280	1.223747	-0.000000
С	1.860245	0.031365	-0.000000
С	1.177102	-1.190987	-0.000000
С	-0.218856	-1.227200	0.000000
С	-0.940019	-0.026903	0.000000
Ο	-2.308378	-0.114454	0.000000
Н	-0.835700	2.130566	-0.000000
Н	1.644921	2.180219	-0.000001
Н	2.945930	0.053395	-0.000000
Н	1.732419	-2.125016	0.000000
Н	-0.756195	-2.170925	0.000000
Н	-2.696376	0.775036	0.000003

3) Catalyst (A)

Number of imaginary frequencies = 0

Energy = -673.434223 Hartree

Atom	Coordinates (Angstroms)			
	X	Y	Z	
С	-3.379163	-1.053092	0.012910	
С	-2.014462	-1.291483	-0.011935	
Ν	-1.158708	-0.250090	-0.027999	
С	-1.562922	1.035680	-0.020421	
С	-2.918336	1.323803	0.003748	
С	-3.835222	0.268661	0.020503	
Н	-4.067445	-1.889975	0.025972	
Н	-1.572020	-2.279924	-0.019562	
Н	-0.145907	-0.450440	-0.048893	

Н	-0.782098	1.786178	-0.033645
Н	-3.244053	2.357102	0.009511
Н	-4.900507	0.475386	0.039529
В	2.583386	0.013472	0.006410
F	3.317592	-0.261514	1.169967
F	3.404683	-0.065071	-1.128088
F	1.531810	-0.962987	-0.117225
F	1.986658	1.287742	0.093368

4) Int. I

Number of imaginary frequencies = 0

Energy = -980.947194 Hartree

Coordinates (Angstroms)

	X	Y	Z
С	2.865462	-2.750923	-0.927735
С	2.559409	-1.412722	-1.116193
Ν	2.603976	-0.568300	-0.066624
С	2.934531	-0.959070	1.180272
С	3.249116	-2.287457	1.417725
С	3.213924	-3.192143	0.352405
Н	2.829302	-3.430813	-1.770718
Н	2.277950	-0.983298	-2.069720
Н	2.368120	0.423851	-0.223254
Н	2.932208	-0.190227	1.943362
Н	3.513906	-2.602155	2.420168
Н	3.455904	-4.236951	0.519026
В	0.872774	2.785749	0.006550
F	1.098637	4.163585	0.019341
F	-0.244468	2.488006	-0.822681
F	2.020359	2.123657	-0.539856
F	0.641610	2.297423	1.300872
С	-3.078107	0.439669	0.341637
С	-4.223071	-0.000441	1.012771
С	-4.735786	-1.282214	0.787645
С	-4.088858	-2.126153	-0.123460
С	-2.944538	-1.699606	-0.800580

С	-2.436765	-0.413434	-0.568179
0	-1.315908	-0.044277	-1.255865
Н	-2.684545	1.436944	0.519508
Н	-4.713749	0.667593	1.715650
Н	-5.625692	-1.617950	1.311750
Н	-4.476071	-3.124368	-0.310161
Н	-2.439555	-2.348434	-1.510420
Н	-1.039357	0.862308	-1.021571

5) Int. II

Number of imaginary frequencies = 0

Energy = -3336.9163 Hartree

Atom	Coordinates (Angstroms)		
	Х	Y	Ζ
С	3.839010	-2.817752	0.182028
С	2.946028	-2.188906	1.276517
С	2.897418	-0.641840	1.224948
С	2.647799	-0.210671	-0.222702
0	3.628189	-0.707849	-1.095469
С	3.664788	-2.144297	-1.200093
С	2.489104	-2.707642	-2.001816
0	2.763607	1.211440	-0.387538
С	1.670607	1.966930	-0.224881
Ν	0.565556	1.535911	0.214372
0	5.189538	-2.748667	0.637375
С	6.047374	-3.734561	0.072158
0	1.597217	-2.640579	1.130675
С	1.312740	-3.873924	1.787162
0	2.567784	-2.211469	-3.331299
С	1.481504	-2.645846	-4.139048
С	4.166825	0.120134	3.092599
0	4.100868	-0.051625	1.681312
С	2.011730	3.418030	-0.662633
Cl	0.599615	4.502856	-0.461981

Cl	2.502741	3.416813	-2.398177
Cl	3.371511	4.042225	0.347652
Η	3.551659	-3.874845	0.086926
Η	3.342676	-2.496186	2.251964
Η	2.049310	-0.311518	1.839024
Η	1.638307	-0.508478	-0.522939
Η	4.568415	-2.330986	-1.786660
Η	1.519374	-2.449669	-1.555270
Η	2.568580	-3.806551	-2.003903
Η	-0.171102	2.239945	0.254365
Η	7.028239	-3.600337	0.535122
Η	5.681955	-4.749562	0.288505
Η	6.155834	-3.620535	-1.015126
Η	0.258790	-4.093774	1.600002
Η	1.921353	-4.700880	1.397387
Η	1.478653	-3.789064	2.870268
Η	1.627086	-2.215710	-5.133240
Η	1.456538	-3.743153	-4.222743
Η	0.518809	-2.299377	-3.735312
Η	5.117134	0.617211	3.302795
Η	3.342596	0.751810	3.454509
Η	4.145296	-0.837878	3.630178
С	-2.694059	-0.655542	4.862933
С	-2.946019	0.285717	3.877649
N	-3.720304	-0.046582	2.825612
С	-4.272503	-1.266710	2.673199
С	-4.049323	-2.240839	3.633024
С	-3.252458	-1.931286	4.739281
Н	-2.072300	-0.388850	5.709312
Н	-2.555753	1.295726	3.889484
Η	-3.899494	0.666554	2.102427

-4.873928 -1.417261 1.785281
-4.493255 -3.221706 3.511096
-3.067340 -2.681061 5.501735
-3.401380 2.670549 0.195065
-3.932068 3.944608 -0.012491
-3.129567 2.047918 -1.051704
-2.222492 2.734784 0.958445
-4.358052 1.866676 0.895450
-5.401590 -0.546322 -2.267481
-6.537277 -1.201216 -2.754041
-6.546668 -2.590119 -2.919653
-5.399644 -3.324206 -2.593253
-4.258596 -2.683430 -2.106146
-4.257732 -1.290354 -1.941846
-3.116967 -0.714892 -1.461959
-5.399358 0.533326 -2.144589
-7.417929 -0.616153 -3.005636
-7.431247 -3.092311 -3.299976
-5.390056 -4.403580 -2.720101
-3.364391 -3.246429 -1.854393
-3.216665 0.252197 -1.372642

6) *O*-aryl glycoside

Number of imaginary frequencies = 0

Energy = -1075.498780 Hartree

Atom	Coordinates (Angstroms)			
	Х	Y	Ζ	
С	3.082043	-1.036162	-0.639949	
С	4.461721	-1.241544	-0.504959	
С	5.278954	-0.281415	0.093237	
С	4.701721	0.906170	0.563124	
С	3.332694	1.128328	0.431842	

С	2.514523	0.159477	-0.174113
0	1.186483	0.485570	-0.253424
Н	2.478352	-1.809331	-1.099967
Н	4.890628	-2.170340	-0.871569
Н	6.346336	-0.453124	0.195314
Н	5.321181	1.665971	1.032079
Н	2.877911	2.047532	0.788333
С	-2.447851	-0.113087	0.179351
С	-1.426848	-1.032220	0.879980
С	-0.266881	-1.480710	-0.035058
С	0.259575	-0.363584	-0.959013
0	-0.731660	0.440407	-1.517577
С	-1.777916	0.977493	-0.676882
С	-1.337208	2.197508	0.132193
0	-3.305932	-0.944677	-0.602644
С	-4.596260	-0.392804	-0.842791
0	-0.850548	-0.366256	2.005494
С	-1.601856	-0.496564	3.210331
0	-1.053512	3.261223	-0.771037
С	-0.586005	4.426093	-0.106504
С	-0.645254	-3.833688	-0.290681
0	-0.650930	-2.546169	-0.900330
Η	-3.045998	0.380801	0.957626
Η	-1.963537	-1.928167	1.215382
Η	0.555157	-1.809006	0.614449
Η	0.765594	-0.820061	-1.813303
Η	-2.513457	1.333781	-1.404055
Η	-0.462371	1.974893	0.751542
Н	-2.166341	2.489700	0.797098
Н	-5.159207	-1.142798	-1.404216
Н	-5.119256	-0.181980	0.101930
Н	-4.553077	0.529568	-1.437947
---	-----------	-----------	-----------
Н	-1.053494	0.047929	3.983099
Н	-2.608360	-0.065611	3.121654
Н	-1.691008	-1.551237	3.506852
Н	-0.400430	5.183278	-0.872921
Н	-1.333307	4.811929	0.604138
Н	0.349567	4.229915	0.438045
Н	-0.882231	-4.552655	-1.078793
Н	0.344031	-4.068870	0.127787
Н	-1.398805	-3.922640	0.502937

7) Trichloroacetamide

Number of imaginary frequencies = 0

Energy = -1588.001865 Hartree

Atom

Coordinates (Angstroms)

Ζ

Y

0	1.566235	1.636424	-0.171372
С	1.302292	0.444927	-0.129187
Ν	2.202919	-0.549451	-0.124943
С	-0.203325	-0.015110	-0.008041
Cl	-1.290345	1.315912	-0.479427
Cl	-0.498090	-0.452287	1.722962
Cl	-0.546206	-1.451277	-1.049856
Η	3.185676	-0.304238	-0.133872
Н	1.959108	-1.529827	-0.089725

Х

References:

- 1. Kohn, W.; Sham, L. J., Self-consistent equations including exchange and correlation effects. *Phy. Rev.* **1965**, *140*, A1133.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F.

Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings,
B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G.
Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J.
E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N.
Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C.
Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi,
J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox,
Gaussian, Inc., Wallingford CT, 2016.

 Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, *113*, 6378–6396.