Bromotrifluoromethoxylation of Allenes: An Expedient Access to Allylic Trifluoromethoxy Derivatives

Rui Liu,^a Yangdong Hou,^{*b} Pingping Tang^{*a,b}

^{*a*}College of Chemistry and Environmental Science, Kashi University, Xinjiang 844008, China;

^bState Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China

E-mail: ptang@nankai.edu.cn,

hyangdong2015@163.com

Table of Contents

1. Materials and Methods	S1
2. Experimental Data	
3. NMR Spectrum of Products	

1 General Information

Materials: All purchased reagents were used without further purification unless otherwise stated., THF and toluene were distilled from sodium/benzophenone prior to use, DCE, C₂H₅OC₂H₅, DMC, Et₂O, CH₃CN, CH₂Cl₂ was distilled from CaH₂. Analytical thin layer chromatography was performed on 0.20 mm Qingdao Haiyang silica gel plates. Silica gel (200-300 mesh) (from Qingdao Haiyang Chem. Company, Ltd.) was used for flash chromatography.

Methods: ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker AV 400 MHz instrument at 400 MHz (¹H NMR), 100 MHz (¹³C NMR), and 376 MHz (¹⁹F NMR), or Bruker AV 600 MHz instrument at 600 MHz (¹H NMR), 151 MHz (¹³C NMR). Chemical shifts were reported in ppm down field from internal Me₄Si and external CCl₃D, respectively. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), br (broad). Coupling constants were reported in Hertz (Hz). MS were recorded on a VG ZABHS spectrometer with the ESI resource. High resolution mass spectrometry (HRMS) spectra were obtained on a Bruker miorOTOF-QII instrument. Optical rotations were determined using an Autopol IV-T.

2 Condition Optimization

Table S1. Initial Attempt^a

In a glove box, to a 2 mL of vial tube were added CsF (0.15 mmol, 3.0 equiv.), DBDMH (14.3 mg, 0.05 mmol, 1.0 equiv.), **1a** (9.62 mg, 0.05 mmol, 1.0 equiv.) in 0.125 mL CH₃CN, then TFMS (27.0 μ L, 0.15 mmol, 3.0 equiv.) were added. The reaction mixture was stirred for 16 h at 50 °C. After cooling to room temperature, acetonitrile (1.0 mL) and benzotrifluoride (6.0 μ L, 0.049 mmol) were added to the reaction mixture. The yield of **3a** was determined by comparing the integration of the ¹⁹F NMR resonance (-60.0 ppm, -60.2 ppm) with that of benzotrifluoride (-62.8 ppm).

Entry	Addition	Yield (%) (<i>E</i> / <i>Z</i>) ^{<i>b</i>}
1	(DHQD) ₂ PHAL (10%) AgF (0.3 equiv)	24 (58:42)
2	AgF (0.3 equiv)	23 (56:44)
3	/	11 (63:37)

^{*a*} **1a** (0.05 mmol), TFMS (3.0 equiv.), DBDMH (1.0 equiv.), CsF (3.0 equiv.), CH₃CN (0.125 ml), 50 ^oC, 16 h. ^{*b*}Determined by ¹⁹F NMR spectrum with benzotrifluoride as internal standards. The *E/Z* value is provided in parenthesis.

Table S2. Screening of the Solvent^a

In a glove box, to a 2 mL of vial tube were added CsF (0.15 mmol, 3.0 equiv.), TBATB (24.1 mg, 0.05 mmol, 1.0 equiv.) and **1a** (9.62 mg, 0.05 mmol, 1.0 equiv.) in 0.125 mL solvent, then TFMS (27.0 μ L, 0.150 mmol, 3.0 equiv) were added. The reaction mixture was stirred for 16 h at 50 °C. After cooling to

Entry	Solvent	Yield (%) (<i>E</i> /Z) ^{<i>b</i>}	
1	MeCN	86 (84:16)	
2	DME	12 (67: 33)	
3	DCM	31 (50:50)	
4	DEA	N.D.	
5	EtOAc	12 (67:33)	
6	DMC	19 (63:37)	
7	THF	36 (63: 37)	
8	1,4-Dioxane	29 (72:28)	
9	Anisole	29 (69:31)	
10	Hexane	N.D.	
11	Toluene	30 (76:24)	

room temperature, acetonitrile (1.0 mL) and benzotrifluoride (6.0 μ L, 0.049 mmol) were added to the reaction mixture. The yield of **3a** was determined by comparing the integration of the ¹⁹F NMR resonance (-60.0 ppm, -60.2 ppm) with that of benzotrifluoride (-62.8 ppm).

^{*a*} **1a** (0.05 mmol), TFMS (3.0 equiv.), TBATB (1.0 equiv.), CsF (3.0 equiv.), CH₃CN (0.125 ml), 50 °C, 16 h. ^{*b*}Determined by ¹⁹F NMR spectrum with benzotrifluoride as internal standards. The E/Z value is provided in parenthesis. N.D. = not detected.

Table S3. Screening of the fluorine salts^{*a*}

In a glove box, to a 2 mL of vial tube were added fluorine salts (0.15 mmol, 3.0 equiv.), TBATB (24.1 mg, 0.05 mmol, 1.0 equiv.), and **1a** (9.62 mg, 0.05 mmol, 1.0 equiv.) in 0.125 mL CH₃CN, then TFMS (27.0 μ L, 0.15 mmol, 3.0 equiv.) were added. The reaction mixture was stirred for 16 h at 50 °C. After cooling to room temperature, acetonitrile (1.0 mL) and benzotrifluoride (6.00 μ L, 0.049 mmol) were added to the reaction mixture. The yield of **3a** was determined by comparing the integration of the ¹⁹F NMR resonance (-60.0 ppm, -60.2 ppm) with that of benzotrifluoride (-62.8 ppm).

Entry	Fluorine salt	Yield (%) (<i>E</i> / <i>Z</i>) ^{<i>b</i>}
1	NaF	N.D.
2	KF	63 (78:22)
3	CsF	86 (84:16)
4	AgF	27 (52:48)
5	CaF_2	N.D.
6	ZnF2	N.D.
7	CsF (2.0 equiv)	60 (75:25)
8	CsF (4.0 equiv)	77 (82:18)
9	CsF (5.0 equiv)	52 (68:32)

^{*a*} **1a** (0.05 mmol), TFMS (3.0 equiv.), TBATB (1.0 equiv.), CH₃CN (0.125 ml), 50 °C, 16 h. ^{*b*}Determined by ¹⁹F NMR spectrum with benzotrifluoride as internal standards. The E/Z value is provided in parenthesis. N.D. = not detected.

Table S4. Screening of the "OCF₃" equivalent^a

In a glove box, to a 2 mL of vial tube were added CsF (0.15 mmol, 3.0 equiv.), TBATB (24.1 mg, 0.05 mmol, 1.0 equiv.) and **1a** (9.62 mg, 0.05 mmol, 1.0 equiv.) in 0.125 mL CH₃CN, then TFMS were added. The reaction mixture was stirred for 16 h at 50 °C. After cooling to room temperature, acetonitrile (1.0 mL) and benzotrifluoride (6.0μ L, 0.049 mmol) were added to the reaction mixture. The yield of **3a** was determined by comparing the integration of the ¹⁹F NMR resonance (-60.0 ppm, -60.2 ppm) with that of benzotrifluoride (-62.8 ppm).

Entry	[TFMS]	Yield (%) (<i>E</i> /Z) ^b
1	1.0	7 (85:15)
2	2.0	58 (77:23)
3	3.0	86 (84:16)
4	4.0	84 (76:24)
5	5.0	87 (73:27)
6	6.0	76 (76:24)

^{*a*} **1a** (0.05 mmol), TFMS (3.0 equiv.), TBATB (1.0 equiv.), CH₃CN (0.125 ml), 50 °C, 16 h. ^{*b*}Determined by ¹⁹F NMR spectrum with benzotrifluoride as internal standards. The E/Z value is provided in parenthesis. N.D. = not detected.

Table S5. Screening of the Bromine reagent^a

In a glove box, to a 2 mL of vial tube were added CsF (0.15 mmol, 3.0 equiv.), bromine reagent (0.05 mmol, 1.0 equiv.) and **1a** (9.62 mg, 0.05 mmol, 1.0 equiv.) in 0.125 mL CH₃CN, then TFMS (27.0 μ L, 0.15 mmol, 3.0 equiv.) were added. The reaction mixture was stirred for 16 h at 50 °C. After cooling to room temperature, acetonitrile (1.0 mL) and benzotrifluoride (6.0 μ L, 0.049 mmol) were added to the reaction mixture. The yield of **3a** was determined by comparing the integration of the ¹⁹F NMR resonance (-60.0 ppm, -60.2 ppm) with that of benzotrifluoride (-62.8 ppm).

· • •			
Entry	Br ⁺ reagent	Yield (%) $(E/Z)^{b}$	
1	NBS	16 (56:44)	
2	DBDMH	11 (63:37)	
3	TBCA	1	
4	PHBP	N.D.	
5	TBATB (1.0 eq)	86 (84:16)	
6	TBCO	N.D.	
7	N-Bromosaccharin	2 (50:50)	
8	5,5-Dibromo-2,2-dimethyl-4,6-dioxo-1,3-dioxane	5 (60:40)	
9	TBATB (1.5 eq)	82 (80:20)	
10	TBATB (2.0 eq)	80 (76:24)	

^{*a*} **1a** (0.05 mmol), TFMS (3.0 equiv.), [Br⁺] (1.0 equiv.), CH₃CN (0.125 ml), 50 °C, 16 h. ^{*b*}Determined by ¹⁹F NMR spectrum with benzotrifluoride as internal standards. The *E/Z* value is provided in parenthesis.

N.D. = not detected. **Table S6. Screening of the temperature**

In a glove box, to a 2 mL of vial tube were added CsF (0.15 mmol, 3.0 equiv.), TBATB (24.1 mg, 0.05 mmol, 1.0 equiv.) and **1a** (9.62 mg, 0.05 mmol, 1.0 equiv.) in 0.125 mL CH₃CN, then TFMS (27.0 μ L, 0.15 mmol, 3.0 equiv.) were added. The reaction mixture was stirred for 16 h at different temperature. After cooling to room temperature, acetonitrile (1.0 mL) and benzotrifluoride (6.0 μ L, 0.049 mmol) were added to the reaction mixture. The yield of **3a** was determined by comparing the integration of the ¹⁹F NMR resonance (-60.0 ppm, -60.2 ppm) with that of benzotrifluoride (-62.8 ppm).

Entry	Temperature	Yield (%) $(E/Z)^{b}$
1	rt	66 (84:16)
2	40	74 (80:20)
3	50	84 (82:18)
4	60	78 (77:23)
5	70	72 (58: 42)

^{*a*} **1a** (0.05 mmol), TFMS (3.0 equiv.), $[Br^+]$ (1.0 equiv.), CH₃CN (0.125 ml), 50 °C, 16 h. ^{*b*}Determined by ¹⁹F NMR spectrum with benzotrifluoride as internal standards. The *E/Z* value is provided in parenthesis. N.D. = not detected.

3 Synthesis of Substrates

3.1 Typical Procedure for the Preparation of compound 6k-6s^[1]:

To a solution of **5** (10.0 mmol, 1.0 equiv.), DMAP (2.0 mmol, 0.2 equiv.), Et₃N (30.0 mmol, 3.0 equiv.), and CH_2Cl_2 (100.0 mL) at room temperature were added EDCI (1-ethyl-(3-(3-dimethylamino) propyl)-carbodiimide hydrochloride) (20.0 mmol, 2.0 equiv.) and **4** (12.0 mmol, 1.2 equiv.). The reaction mixture was stirred at room temperature for 6 h before quenched with H_2O (30.0 mL) and extracted 3 times with CH_2Cl_2 (30.0 mL). The combined organic layer was dried over Na_2SO_4 . The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel to give the target compound **6k**.

benzyl 4-ethynylbenzoate (6k): The reaction was carried out on 10 mmol scale. The compound **6k** was obtained in 70% yield (1.7 g) as a yellow oil after flash column chromatography (hexane/EtOAc = 30/1); ¹H NMR (600 MHz, Chloroform-*d*) δ 8.03 (d, J = 7.9 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 7.4 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.35 (t, J = 7.3 Hz, 1H), 5.37 (s, 2H), 3.23 (s, 1H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.9, 135.9, 132.2, 130.3, 129.7, 128.8, 128.5, 128.4, 127.0, 82.9, 80.3, 67.1; HRMS-ESI (m/z): Calc'd for C₁₆H₁₃O₂ [M+H]⁺ 237.0910, found 237.0913.

(4-chlorophenyl) (phenyl)methyl 4-ethynylbenzoate (6l): The reaction was carried out on 10 mmol scale. The compound 6l was obtained in 72% yield (2.5 g) as a white solid after flash column chromatography (hexane/EtOAc = 10/1); m.p.: 69.8 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.08 (d, J = 8.1 Hz, 2H), 7.57 (d, J = 8.1 Hz, 2H), 7.43 – 7.30 (m, 9H), 7.07 (s, 1H), 3.25 (s, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ 165.0, 139.7, 138.8, 134.1, 132.3, 130.1, 129.8, 129.0, 128.9, 128.7, 128.4, 127.3, 127.2, 82.9, 80.5, 77.2; HRMS-ESI (m/z): Calc'd for C₂₂H₁₅ClNaO₂ [M+Na]⁺ 369.0653, found 369.0657.

4-ethynylbenzyl 3-phenylpropiolate (6m): The reaction was carried out on 15 mmol scale. The compound **6m** was obtained in 72% yield (2.8 g) as a yellow oil after flash column chromatography (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 7.7 Hz, 2H), 7.51 (d, *J* = 7.8 Hz, 2H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.37 (t, *J* = 7.1 Hz, 4H), 5.25 (s, 2H), 3.10 (s, 1H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 153.9, 135.7, 133.2, 132.5, 130.9, 128.7, 128.5, 122.5, 119.6, 87.2, 83.3, 80.4, 78.0, 67.2; HRMS-ESI (m/z): Calc'd for C₁₈H₁₂O₂ Na [M+Na]⁺ 283.0730, found 283.0732.

4-ethynylbenzyl benzo[d] [1,3] dioxole-5-carboxylate (60): The reaction was carried out on 20 mmol scale. The compound **60** was obtained in 80% yield (4.5 g) as a yellow solid after flash column chromatography (hexane/EtOAc = 10/1); m.p.: 59.6 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 (dd, J = 8.1, 1.8 Hz, 1H), 7.50 (d, J = 8.1 Hz, 3H), 7.38 (d, J = 7.9 Hz, 2H), 6.83 (dd, J = 8.2, 1.0 Hz, 1H), 6.03 (d, J = 1.3 Hz, 2H), 5.31 (s, 2H), 3.09 (s, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ 165.8, 151.9, 147.9, 137.0, 132.4, 128.0, 125.7, 124.0, 122.1, 109.7, 108.1, 102.0, 83.4, 77.8, 66.2; HRMS-ESI (m/z): Calc'd for C₁₇H₁₃O₄ [M+H]⁺ 281.0808, found 281.0807.

4-ethynylbenzyl 1-(4-chlorophenyl) cyclopropane-1-carboxylate (6q): The reaction was carried out on 14 mmol scale. The compound **6q** was obtained in 45% yield (2.0 g) as a yellow solid after flash column chromatography (hexane/EtOAc = 10/1); m.p.: 67.2 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 (d, *J* = 8.2 Hz, 2H), 7.27 (s, 4H), 7.13 (d, *J* = 8.8 Hz, 2H), 5.05 (s, 2H), 3.06 (s, 1H), 1.69 – 1.56 (m, 2H), 1.24 – 1.10 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.8, 137.9, 136.8, 133.1, 132.3, 132.0, 128.4, 127.4, 121.8, 83.3, 77.7, 66.1, 28.6, 16.9; HRMS-ESI (m/z): Calc'd for C₁₉H₁₆ClO₂ [M+H]⁺ 311.0833, found 311.0838.

4-ethynylbenzyl 2-(4-benzoylphenyl) propanoate (6r): The reaction was carried out on 20 mmol scale. The compound **6r** was obtained in 92% yield (6.8 g) as a yellow oil after flash column chromatography (hexane/EtOAc = 10/1) ; ¹H NMR (400 MHz, Chloroform-d) δ 7.81 – 7.73 (m, 3H), 7.68 (dt, J = 7.7, 1.5 Hz, 1H), 7.62 – 7.56 (m, 1H), 7.54 – 7.50 (m, 1H), 7.49 – 7.39 (m, 5H), 7.18 (d, J = 8.1 Hz, 2H), 5.10 (s, 2H), 3.85 (q, J = 7.2 Hz, 1H), 3.07 (s, 1H), 1.55 (d, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.5, 173.8, 140.7, 138.1, 137.6, 136.6, 132.6, 132.4, 131.6, 130.1, 129.3, 129.2, 128.7, 128.4, 127.8, 122.1, 83.3, 77.8, 66.1, 45.5, 18.4; HRMS-ESI (m/z): Calc'd for C₂₅H₂₀NaO₃ [M+Na]⁺ 391.1305, found 391.1310.

4-ethynylbenzyl 2-(4-(4-chlorobenzoyl) phenoxy)-2-methylpropanoate (6s): The reaction was carried out on 12 mmol scale. The compound **6s** was obtained in 83% yield (4.3 g) as a white solid after flash column chromatography (hexane/EtOAc = 10/1); m.p.: 72.5 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 (t, *J* = 8.3 Hz, 4H), 7.45 – 7.35 (m, 4H), 7.18 (d, *J* = 8.0 Hz, 2H), 6.76 (d, *J* = 8.8 Hz, 2H), 5.16 (s, 2H), 3.08 (s, 1H), 1.66 (s, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.0, 173.3, 159.4, 138.3, 136.3, 135.7, 132.2, 132.0, 131.1, 130.4, 128.5, 128.3, 122.3, 117.2, 83.0, 79.4, 78.1, 66.7, 25.4; HRMS-ESI (m/z): Calc'd for C₂₆H₂₂ClO₄ [M+H]⁺ 433.1201, found 433.1199.

3.2 Typical Procedure for the Preparation of Allene synthesis 1a-1t^[2,3]:

According to a modified literature procedure, to a pressure tube was added CuI (50 mol%), $(CH_2O)_n$ (2.5 equiv.), dioxane (0.50 M), alkyne (1.0 equiv.), and amine (1.8 equiv.) sequentially under Ar. The reaction mixture was heated to 115 °C and stirred 6 h. The reaction was quenched with H₂O and extracted with DCM. The separated organic layers were dried over Na₂SO₄, and the solvents were removed in vacuo. The crude product was purified by column chromatography on silica gel to provide the target compounds **1a-1v**.

4-(propa-1,2-dien-1-yl)-1,1'-biphenyl (1a): The reaction was carried out on 10 mmol scale. The compound **1a** was obtained in 81% yield (1.6 g) as a white solid after flash column chromatography (hexane); m.p.: 59.6 °C; ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.70 – 7.58 (m, 4H), 7.54 – 7.36 (m, 5H), 6.28 (t, *J* = 6.8 Hz, 1H), 5.25 (d, *J* = 6.8 Hz, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.1, 140.9, 139.8, 133.1, 128.9, 127.4, 127.3, 127.2, 127.0, 93.8, 79.0.

Me

1-methyl-4-(propa-1,2-dien-1-yl) benzene (1b): The reaction was carried out on 10 mmol scale. The compound **1c** was obtained in 87% yield (1.1 g) as a colorless liquid after flash column chromatography (hexane); ¹H NMR (400 MHz, Chloroform-d) δ 7.14 (d, J = 8.7 Hz, 2H), 6.77 (d, J = 8.7 Hz, 2H), 6.04 (t, J = 6.8 Hz, 1H), 5.04 (d, J = 6.8 Hz, 2H), 3.71 (s, 3H).

1-(tert-butyl)-4-(propa-1,2-dien-1-yl) benzene (1c): The reaction was carried out on 8.9 mmol scale. The compound **1c** was obtained in 92% yield (1.4 g) as a yellow oil after flash column chromatography (hexane); ¹**H NMR** (400 MHz, Chloroform-d) δ 7.38 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 6.19 (t, J = 6.8 Hz, 1H), 5.16 (d, J = 6.8 Hz, 2H), 1.35 (s, 9H); ¹³**C NMR** (101 MHz, Chloroform-d) δ 209.9, 150.1, 131.1, 126.5, 125.7, 93.7, 78.7, 34.7, 31.5.

1-methoxy-4-(propa-1,2-dien-1-yl) benzene (1d): The reaction was carried out on 20 mmol scale. The compound **1d** was obtained in 58% yield (1.7 g) as a yellow liquid after flash column chromatography (hexane); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 6.14 (t, J = 6.8 Hz, 1H), 5.13 (d, J = 6.8 Hz, 2H), 3.81 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 209.5, 158.8, 127.9, 126.2, 114.3, 93.5, 78.9, 55.4.

MeO

1-methoxy-3-(propa-1,2-dien-1-yl) benzene (1e): The reaction was carried out on 20 mmol scale. The compound **1e** was obtained in 78% yield (2.3 g) as a yellow liquid after flash column chromatography (hexane/EtOAc = 50/1); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.18 – 7.10 (m, 1H), 6.84 – 6.74 (m, 2H), 6.67 (d, *J* = 8.1 Hz, 1H), 6.06 (t, *J* = 7.8 Hz, 1H), 5.07 (d, *J* = 6.8 Hz, 2H), 3.72 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 210.0, 160.0, 135.5, 129.7, 119.5, 112.9, 112.0, 94.1, 79.0, 55.3.

1,2-dimethoxy-4-(propa-1,2-dien-1-yl) benzene (1f): The reaction was carried out on 10 mmol scale. The compound **1f** was obtained in 68% yield (1.2 g) as a yellow oil after flash column chromatography (hexane/EtOAc = 60/1); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.86 (s, 1H), 6.81 (d, *J* = 1.1 Hz, 2H), 6.12 (t, *J* = 6.8 Hz, 1H), 5.14 (d, *J* = 6.8 Hz, 2H), 3.88 (d, *J* = 4.5 Hz, 6H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 209.5, 149.3, 148.4, 126.6, 119.4, 111.4, 109.4, 93.9, 79.1, 56.1, 55.9.

CI

2-(propa-1,2-dien-1-yl) naphthalene (1g): The reaction was carried out on 6 mmol scale. The compound **1g** was obtained in 79% yield (777.8 mg) as a yellow solid after flash column chromatography (hexane/EtOAc = 30/1); m.p.: 60.2 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 – 7.74 (m, 3H), 7.66 (s, 1H), 7.54 – 7.38 (m, 3H), 6.34 (t, *J* = 6.7 Hz, 1H), 5.23 (d, *J* = 7.1 Hz, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.5, 133.8, 132.7, 131.6, 128.4, 127.9, 127.8, 126.4, 125.8, 125.5, 124.8, 94.5, 79.3.

1-chloro-4-(propa-1,2-dien-1-yl) benzene (1h): The reaction was carried out on 20 mmol scale. The compound **1h** was obtained in 50% yield (1.5 g) as a yellow liquid after flash column chromatography (hexane); ¹**H NMR** (400 MHz, Chloroform-d) δ 7.28 (d, J = 8.6 Hz, 2H), 7.22 (d, J = 8.6 Hz, 2H), 6.13 (t, J = 6.8 Hz, 1H), 5.17 (d, J = 6.8 Hz, 2H); ¹³C NMR (75 MHz, CDCl3) δ 209.7, 132.4, 132.4, 128.6, 127.8, 93.0, 79.1.

Br

1-bromo-4-(propa-1,2-dien-1-yl) benzene (1i): The reaction was carried out on 11.1 mmol scale. The compound **1i** was obtained in 68% yield (1.5 g) as a yellow liquid after flash column chromatography (hexane); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (d, J = 8.5 Hz, 2H), 7.16 (d, J = 8.3 Hz, 2H), 6.11 (t, J = 6.8 Hz, 1H), 5.15 (d, J = 6.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl3) δ 210.5, 133.7, 132.4, 128.9, 121.2, 93.9, 80.0.

ethyl 4-(propa-1,2-dien-1-yl) benzoate (1j): The reaction was carried out on 6.3 mmol scale. The compound 1j was obtained in 67% yield (794.8 mg) as a yellow oil after flash column chromatography (hexane/EtOAc = 100/1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.3 Hz, 2H), 6.17 (t, *J* = 6.7 Hz, 1H), 5.18 (d, *J* = 6.8 Hz, 2H), 4.35 (q, *J* = 7.1 Hz, 2H), 1.37 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 210.6, 166.4, 138.9, 129.9, 128.8, 126.5, 93.7, 79.2, 60.9, 14.4.

BnO

benzyl 4-(propa-1,2-dien-1-yl) benzoate (1k): The reaction was carried out on 7.2 mmol scale. The compound **1k** was obtained in 68% yield (1.2 mg) as a yellow oil after flash column chromatography (hexane/EtOAc = 30/1); ¹**H NMR** (600 MHz, Chloroform-d) δ 7.91 (d, J = 8.1 Hz, 2H), 7.35 (d, J = 7.5 Hz, 2H), 7.29 (t, J = 7.5 Hz, 2H), 7.24 (d, J = 8.1 Hz, 3H), 6.09 (t, J = 6.8 Hz, 1H), 5.26 (s, 2H), 5.10 (d, J = 6.8 Hz, 2H); ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 210.8, 166.3, 139.3, 136.2, 130.2, 128.7, 128.5, 128.3, 128.2, 126.6, 93.7, 79.3, 66.7; **HRMS-**ESI (m/z): Calc'd for C₁₇H₁₅O₂ [M+H]⁺ 251.1067, found 251.1071.

(4-chlorophenyl) (phenyl)methyl 4-(propa-1,2-dien-1-yl) benzoate (11): The reaction was carried out on 7.2 mmol scale. The compound 11 was obtained in 85% yield (2.2 g) as a white solid after flash column chromatography (hexane/EtOAc = 40/1); m.p.: 65.3 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.09 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 7.6 Hz, 2H), 7.38 – 7.32 (m, 6H), 7.32 – 7.27 (m, 3H), 7.10 (s, 1H), 6.17 (t, J = 6.8 Hz, 1H), 5.17 (d, J = 6.8 Hz, 2H); ¹³C NMR (101 MHz, Chloroform-d) δ 210.7, 165.2, 139.9, 139.5, 138.9, 133.8, 130.1, 128.7, 128.7, 128.5, 128.2, 128.1, 127.1, 126.7, 93.6, 79.3, 76.6; HRMS-ESI (m/z): Calc'd for C₂₃H₁₇ClNaO₂ [M+Na]⁺ 383.0809, found 383.0815.

4-(propa-1,2-dien-1-yl) benzyl 3-phenylpropiolate (1m): The reaction was carried out on 10.8 mmol scale. The compound **1m** was obtained in 84% yield (2.5 g) as a yellow oil after flash column chromatography (hexane/EtOAc = 30/1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 7.4 Hz, 2H), 7.44 (t, *J* = 7.4 Hz, 1H), 7.39 - 7.30 (m, 6H), 6.18 (t, *J* = 6.8 Hz, 1H), 5.24 (s, 2H), 5.17 (d, *J* = 6.7 Hz, 2H), 5.24 (s, 2H), 5.17 (d, *J* = 6.7 Hz, 2H), 5.24 (s, 2H), 5

2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.1, 153.9, 134.6, 133.5, 133.1, 130.8, 129.1, 128.6, 127.0, 119.6, 93.6, 86.8, 80.6, 79.0, 67.6; HRMS-ESI (m/z): Calc'd for C₁₉H₁₄O₂Na [M+Na]⁺ 297.0886, found 297.0895.

4,4-dimethyl-6-(propa-1,2-dien-1-yl) thiochromane (1n): The reaction was carried out on 10 mmol scale. The compound **1n** was obtained in 87% yield (1.9 g) as a yellow oil after flash column chromatography (hexane); ¹H NMR (400 MHz, Chloroform-d) δ 7.25 (s, 1H), 7.06 – 6.93 (m, 2H), 6.09 (t, J = 6.8 Hz, 1H), 5.12 (d, J = 6.8 Hz, 2H), 3.07 – 2.95 (m, 2H), 1.97 – 1.90 (m, 2H), 1.32 (s, 6H); ¹³C NMR (151 MHz, Chloroform-d) δ 209.6, 142.2, 130.5, 129.6, 126.9, 124.9, 124.5, 94.0, 79.0, 37.7, 33.1, 30.2, 23.2; HRMS-ESI (m/z): Calc'd for C₁₄H₁₇S [M+H]⁺ 217.1045, found 217.1047.

4-(propa-1,2-dien-1-yl) benzyl benzo[d] [1,3] dioxole-5-carboxylate (10): The reaction was carried out on 16.1 mmol scale. The compound **10** was obtained in 65% yield (3.1 g) as a yellow solid after flash column chromatography (hexane/EtOAc = 30/1); m.p.: 59.7 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 (dd, J = 8.2, 1.7 Hz, 1H), 7.40 (d, J = 1.7 Hz, 1H), 7.31 – 7.20 (m, 4H), 6.74 (d, J = 8.2 Hz, 1H), 6.09 (t, J = 6.8 Hz, 1H), 5.94 (s, 2H), 5.21 (s, 2H), 5.07 (d, J = 6.8 Hz, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 210.1, 165.9, 151.8, 147.8, 134.8, 134.2, 128.7, 127.0, 125.6, 124.2, 109.7, 108.1, 101.9, 93.7, 79.1, 66.6; HRMS-ESI (m/z): Calc'd for C₁₈H₁₄NaO₄ [M+Na]⁺ 317.0784, found 317.0786.

3-(propa-1,2-dien-1-yl) thiophene (1p): The reaction was carried out on 20 mmol scale. The compound **1x** was obtained in 87% yield (2.2 g) as a yellow liquid after flash column chromatography (hexane); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 – 7.29 (m, 1H), 7.13 – 7.06 (m, 2H), 6.25 (t, *J* = 6.8 Hz, 1H), 5.10 (d, *J* = 6.5 Hz, 2H); ¹³C NMR (101 MHz, Chloroform-*d*)) δ 210.4, 135.2, 126.4, 126.0, 120.9, 88.7, 78.2; HRMS-ESI (m/z): Calc'd for C₇H₇S⁺ [M+H]⁺ 123.0263, found 123.0267.

4-(propa-1,2-dien-1-yl) benzyl 1-(4-chlorophenyl) cyclopropane-1-carboxylate (1q): The reaction was carried out on 6.4 mmol scale. The compound **1q** was obtained in 73% yield (1.5 g) as a yellow oil after flash column chromatography (hexane/EtOAc = 40/1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.13 (s, 4H), 7.10 (d, *J* = 8.0 Hz, 2H), 7.01 (d, *J* = 8.2 Hz, 2H), 6.00 (t, *J* = 6.8 Hz, 1H), 5.00 (d, *J* = 6.8 Hz, 2H), 4.92 (s, 2H), 1.50 (q, *J* = 4.0 Hz, 2H), 1.02 (q, *J* = 4.0 Hz, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 209.9, 173.7, 137.9, 134.6, 133.8, 133.0, 131.9, 128.3, 128.0, 126.7, 93.6, 78.9, 66.4, 28.6, 16.7; HRMS-ESI (m/z): Calc'd for C₂₀H₁₇ClNaO₂ [M+Na]⁺ 347.0809, found 347.0808.

4-(propa-1,2-dien-1-yl) benzyl 2-(4-benzoylphenyl) propanoate (1r): The reaction was carried out on 18.5 mmol scale. The compound **1r** was obtained in 55% yield (3.9 g) as a yellow oil after flash

column chromatography (hexane/EtOAc = 30/1); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.80 – 7.72 (m, 3H), 7.68 (d, J = 7.8 Hz, 1H), 7.59 (t, J = 7.4 Hz, 1H), 7.53 (d, J = 7.5 Hz, 1H), 7.50 – 7.39 (m, 3H), 7.23 (d, J = 8.1 Hz, 2H), 7.18 (d, J = 8.2 Hz, 2H), 6.13 (t, J = 6.8 Hz, 1H), 5.14 (d, J = 6.8 Hz, 2H), 5.08 (d, J = 3.7 Hz, 2H), 3.84 (q, J = 7.2 Hz, 1H), 1.57 – 1.51 (m, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 210.1, 196.6, 173.9, 140.8, 138.0, 137.6, 134.5, 134.1, 132.6, 131.7, 130.2, 129.4, 129.1, 128.7, 128.5, 128.4, 126.9, 93.7, 79.1, 66.6, 45.5, 18.5; HRMS-ESI (m/z): Calc'd for C₂₆H₂₂NaO₃ [M+Na]⁺ 405.1461, found 405.1464.

4-(propa-1,2-dien-1-yl) benzyl 2-(4-(4-chlorobenzoyl) phenoxy)-2-methylpropanoate (1s): The reaction was carried out on 9.9 mmol scale. The compound **1s** was obtained in 72% yield (3.2 g) as a yellow solid after flash column chromatography (hexane/EtOAc = 10/1); m.p.: 76.7 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 – 7.58 (m, 2H), 7.57 – 7.53 (m, 2H), 7.36 (d, *J* = 8.5 Hz, 2H), 7.15 – 7.08 (m, 4H), 6.68 (d, *J* = 8.9 Hz, 2H), 6.02 (t, *J* = 6.8 Hz, 1H), 5.09 (s, 2H), 5.04 (d, *J* = 6.8 Hz, 2H), 1.59 (s, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.1, 194.3, 173.6, 159.6, 138.5, 136.5, 134.5, 133.7, 132.1, 131.3, 130.4, 129.0, 128.6, 126.9, 117.3, 93.6, 79.5, 79.1, 67.3, 29.8, 25.5; HRMS-ESI (m/z): Calc'd for C₂₇H₂₄ClO₄ [M+H]⁺ 447.1358, found 447.1359.

penta-3,4-dien-1-ylbenzene (1t): The reaction was carried out on 15 mmol scale. The compound **1t** was obtained in 92% yield (2.0 g) as a colorless liquid after flash column chromatography (hexane); ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.29 - 7.26 (m, 2H), 7.22 - 7.16 (m, 3H), 5.18 - 5.11 (m 1H), 4.72 - 4.62 (m, 2H), 2.78 - 2.68 (m, 2H), 2.37 - 2.25 (m, 2H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 208.7, 141.9, 128.6, 128.4, 126.0, 89.6, 75.3, 35.5, 30.1; **HRMS-**ESI (m/z): Calc'd for C₁₁H₁₂Na [M+Na]⁺ 167.0831, found 167.0833.

 $1u^{[4]}, 1v^{[5]}, 1w^{[5]}, 1x^{[2,3]}$ were synthesized according to the relevant literature.

3.3 Typical Procedure for the Preparation of Allenylic Trifluoromethoxylation 3a-

3t

In a glove box, to a 2.0 mL sealed tube were added in sequence CsF (91.1 mg, 0.6 mmol, 3.0 equiv.), TBATB (96.4 mg, 0.2 mmol, 1.0 equiv.), 0.5 mL CH₃CN, **1a** (38.5 mg, 0.2 mmol, 1.0 equiv.) and TFMS (108 μ l, 0.6 mmol, 3.0 equiv.). The mixture was stirred at 50 °C for 16 h. After cooling to room temperature, the reaction mixture was concentrated in vacuo. The residue was then added 3 mL CH₂Cl₂ and filtered. The organic layer was concentrated in vacuo. The residue was purified by preparative TLC. (**Note**: It's difficult to obtain pure spectra, we only get pure NMR spectrum of one configuration including *Z*-**3e**, *E*-**3j**, *E*-**3b**, *E*-**3b**. We can obtain both pure NMR spectra of two configurations of

the other compounds.)

4-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl)-1,1'-biphenyl (3a): The reaction was carried out on 0.2 mmol scale. The compound *E-3a* was obtained in 72% yield (47.2 mg) as yellow oil and *Z-3a* (9.5 mg, 14%) as yellow oil after purified by preparative TLC (*n*-hexane).

 $\mathbf{R}_{\rm f} = 0.6 (n$ -hexane)

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.63 (t, J = 8.1 Hz, 4H), 7.48 (t, J = 7.5 Hz, 2H), 7.41 (d, J = 6.5 Hz, 2H), 7.34 (s, 1H), 7.32 (s, 1H), 4.85 (s, 2H); ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 141.6, 140.2, 139.5, 133.8, 129.1, 128.8, 127.9, 127.6, 127.2, 121.7 (q, J = 256.7 Hz),118.3, 68.3 (q, J = 3.6 Hz); ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -60.2 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₁₆H₁₂BrNaF₃O [M+Na]⁺ 378.9916, found 378.9909.

 $\mathbf{R}_{\rm f} = 0.6 (n-{\rm hexane})$

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, J = 8.1 Hz, 2H), 7.66 – 7.59 (m, 4H), 7.46 (t, J = 7.5 Hz, 2H), 7.37 (t, J = 7.3 Hz, 1H), 7.17 (s, 1H), 4.77 (s, 2H); ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 141.8, 140.5, 133.3, 131.7, 129.8, 129.0, 127.8, 127.2, 127.1, 121.7 (q, J = 258.6 Hz), 116.6, 72.8 (q, J = 3.0 Hz); ¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ -60.2 (s, 3F) ; **HRMS-ESI (m/z):** Calc'd for C₁₆H₁₂BrNaF₃O [M+Na]⁺ 378.9916, found 378.9924.

1-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl)-4-methylbenzene (3b): The reaction was carried out on 0.2 mmol scale. The compound *E*-3b was obtained in 65% yield (38.4 mg) as yellow oil and *Z*-3b (8.3 mg, 14%) as yellow oil after purified by preparative TLC (*n*-hexane).

 $\mathbf{R}_{\rm f} = 0.5 \ (n\text{-hexane})$

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.32 (s, 1H), 7.20 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.1 Hz, 2H), 4.78 (s, 2H), 2.36 (s, 3H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 139.9, 138.9, 132.1, 129.7, 128.2, 121.6 (q, J = 256.7 Hz), 117.7, 68.3 (q, J = 3.6 Hz), 21.4; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -60.3 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₁₁H₁₁BrF₃O [M+H]⁺ 294.9940, found 294.9945.

$\mathbf{R}_{\mathrm{f}} = 0.5 (n \text{-hexane})$

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.56 (d, J = 7.8 Hz, 2H), 7.20 (d, J = 7.8 Hz, 2H), 7.09 (s, 1H), 4.74 (s, 2H), 2.37 (s, 3H); ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 139.2, 132.2, 131.5, 129.2, 129.2, 121.6 (q, J = 256.7 Hz), 115.7, 72.9 (q, J = 3.7 Hz), 21.5; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -60.2 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₁₁H₁₁BrF₃O [M+H]⁺ 294.9940, found 294.9932..

1-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl)-4-(tert-butyl) benzene (3c): The reaction was carried out on 0.2 mmol scale. The compound *E*-3c was obtained in 60% yield (40.5 mg) as yellow oil and *Z*-3c (12.8 mg, 19%) as yellow oil after purified by preparative TLC (*n*-hexane).

 $\mathbf{R}_{\rm f} = 0.5 \ (n\text{-hexane})$

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.42 (d, J = 8.4 Hz, 2H), 7.33 (s, 1H), 7.18 (d, J = 8.3 Hz, 2H), 4.81 (s, 2H), 1.34 (s, 9H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 152.1, 139.8, 132.1, 128.1,121.7(q, J = 258.6 Hz), 117.7, 68.4 (q, J = 3.7 Hz), 34.9, 31.3; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -60.2 (s, 3F) ; **HRMS**-ESI (m/z): Calc'd for C₁₄H₁₇BrF₃O [M+H]⁺ 337.0409, found 337.0412.

 $\mathbf{R}_{\rm f} = 0.5 \ (n\text{-hexane})$

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.62 (d, J = 8.4 Hz, 2H), 7.44 – 7.39 (m, 2H), 7.10 (s, 1H), 4.74 (s, 2H), 1.33 (s, 9H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 152.3, 132.1, 131.4, 129.1, 125.4, 121.6 (q, J = 257.6 Hz), 115.7, 73.0 (q, J = 3.6 Hz), 34.9, 31.3; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -60.2 (s, 3F) ; **HRMS-**ESI (m/z): Calc'd for C₁₄H₁₇BrF₃O [M+H]⁺ 337.0409, found 337.0412.

1-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl)-4-methoxybenzene (3d): The reaction was carried out on 0.2 mmol scale. The compound **Z-3d** was obtained in 64% yield (40.4 mg) as colorless oil and **E-3d** (9.3 mg, 15%) as colorless oil after purified by preparative TLC (*n*-hexane).

*(E)-*3d

 $\mathbf{R}_{\mathrm{f}} = 0.6 \ (n\text{-hexane})$

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.29 (s, 1H), 7.17 (d, J = 8.7 Hz, 2H), 6.91 (d, J = 8.7 Hz, 2H), 4.78 (s, 2H), 3.83 (s, 3H); ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 160.0, 139.6, 135.3, 129.7, 127.4, 121.6 (q, J = 258.2 Hz), 120.8, 116.6, 114.4, 68.4 (q, J = 3.8 Hz), 55.5. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -60.3 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₁₁H₁₀BrF₃NaO₂ [M+H]⁺ 332.9708, found 332.9703.

 $\mathbf{R}_{\rm f} = 0.6 \ (n\text{-hexane})$

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.66 (d, J = 8.8 Hz, 2H), 7.05 (s, 1H), 6.92 (d, J = 8.7 Hz, 2H), 4.74 (s, 2H), 3.84 (s, 3H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 160.2, 132.0, 130.9, 126.7, 121.6 (q, J = 256.8 Hz), 114.4, 113.9, 73.3 (q, J = 3.5 Hz), 55.4; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -60.1 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₁₁H₁₀BrF₃NaO₂ [M+H]⁺ 332.9708, found 332.9703.

1-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl)-3-methoxybenzene (3e): The reaction was carried out on 0.2 mmol scale. The compound **Z-3e** was obtained in 62% yield (38.6 mg) as yellow oil after purified by preparative TLC (*n*-hexane/EtOAc 100:1 (v/v)).

 $\mathbf{R}_{f} = 0.6 (n-hexane/EtOAc \ 100:1 \ (v/v))$

¹**H NMR** (400 MHz, Chloroform-d) δ 7.31 (d, J = 7.9 Hz, 1H), 7.24 (t, J = 2.1 Hz, 1H), 7.18 (d, J = 7.6 Hz, 1H), 7.11 (s, 1H), 6.93 – 6.89 (m, 1H), 4.74 (d, J = 1.1 Hz, 2H), 3.83 (s, 3H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 159.5, 135.6, 131.9, 129.5, 121.9, 121.6 (q, J = 256.9 Hz), 116.9, 114.8, 114.4, 72.6 (q, J = 3.4 Hz), 55.4; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -60.3 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₁₁H₁₀BrF₃NaO₂ [M+H]⁺ 332.9708, found 332.9703.

4-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl)-1,2-dimethoxybenzene (3f): The reaction was carried out on 0.2 mmol scale. The compound **Z-3f** was obtained in 66% yield (45.0 mg) as yellow solid and **E-3f** (10.9 mg, 16%) as yellow solid after purified by preparative TLC (*n*-hexane/EtOAc 50:1 (v/v)).

 $\mathbf{R}_{f} = 0.5 (n-hexane/EtOAc 50:1 (v/v))$

¹**H NMR** (400 MHz, Chloroform-d) δ 7.30 (s, 1H), 6.89-6.87 (m, 1H), 6.82-6.80 (m, 1H), 6.78-6.77 (m, 1H), 4.81 (s, 2H), 3.90 (s, 3H), 3.87 (s, 3H); ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 149.6, 149.2, 140.0, 127.7, 121.6 (q, J = 257.2 Hz), 121.2, 116.7, 111.3, 111.1, 68.7 (q, J = 4.2 Hz), 56.1, 55.9; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -60.3 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₁₂H₁₃BrF₃O₃ [M+H]⁺ 340.9995, found 340.9996; m.p.: 71.2 °C.

$\mathbf{R}_{f} = 0.5 (n-hexane/EtOAc 50:1 (v/v))$

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.36 (d, J = 2.1 Hz, 1H), 7.23-7.20 (m, 1H), 7.04 (s, 1H), 6.89-6.86 (m, 1H), 4.73 (s, 2H), 3.90 (m, 6H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 149.8, 148.7, 132.1, 126.9, 123.0, 121.6 (q, J = 256.5 Hz), 114.4, 112.0, 110.9, 73.2 (q, J = 3.5 Hz), 56.0, 56.0; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -59.4 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₁₂H₁₃BrF₃O₃ [M+H]⁺ 340.9995, found 340.9996; m.p.: 70.8 °C.

2-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl) naphthalene (3g): The reaction was carried out on 0.2 mmol scale. The compound *E*-3g was obtained in 68% yield (45.0 mg) as white solid and *Z*-3g (9.3 mg, 14%) as yellow oil after purified by preparative TLC (*n*-hexane/EtOAc 100:1 (v/v)).

(E)-**3g**

 $\mathbf{R}_{f} = 0.6 (n-hexane/EtOAc 50:1 (v/v))$

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.90 – 7.82 (m, 3H), 7.72 (s, 1H), 7.58 – 7.49 (m, 3H), 7.34-7.32 (m, 1H), 4.85 (s, 2H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 139.9, 133.3, 133.1, 132.3, 128.8, 128.4, 127.9, 127.7, 127.1, 127.0, 125.7, 121.7 (q, J = 257.1 Hz), 118.6, 68.4 (q, J = 3.5 Hz); ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -59.8 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₁₄H₁₀BrF₃NaO [M+Na]⁺ 352.9759, found 352.9754; m.p.: 78.3 °C.

 $R_{f} = 0.6 (n-hexane/EtOAc 50:1 (v/v))$

¹**H NMR** (400 MHz, Chloroform-d) δ 8.14 (s, 1H), 7.88 – 7.83 (m, 3H), 7.77-7.75 (m, 1H), 7.54 – 7.49 (m, 2H), 7.29 (s, 1H), 4.80 (s, 2H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 133.4, 133.1, 132.1, 131.8, 129.1, 128.5, 128.0, 127.8, 127.0, 126.6, 126.4, 121.6 (q, J = 256.8 Hz), 116.9, 72.7 (q, J = 3.3 Hz); ¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -60.3 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₁₄H₁₀BrF₃NaO [M+Na]⁺ 352.9759, found 352.9754.

1-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl)-4-chlorobenzene (3h): The reaction was carried out on 0.2 mmol scale. The compound *E*-3h was obtained in 72% yield (45.4 mg) as colorless oil and *Z*-3h (5.1 mg, 8%) as colorless oil after purified by preparative TLC (*n*-hexane).

*(E)-*3h

 $\mathbf{R}_{\rm f} = 0.5 \ (n\text{-hexane})$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.37 (d, *J* = 8.0 Hz, 2H), 7.30 (s, 1H), 7.17 (d, *J* = 8.1 Hz, 2H), 4.73 (s, 2H); ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 138.6, 134.9, 133.3, 129.6, 129.3, 121.6 (q, *J* = 257.1 Hz), 119.0, 68.0 (q, *J* = 3.8 Hz); ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -60.4 (s, 3F); **HRMS-**ESI (m/z):

Calc'd for C₁₀H₈ClF₃O [M+H]⁺ 314.9394, found 314.9386.

 $\mathbf{R}_{\rm f} = 0.5 (n$ -hexane)

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.58 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 7.08 (s, 1H), 4.73 (s, 2H); ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 134.8, 132.8, 130.6, 130.5, 128.7, 121.6 (q, J = 256.6 Hz), 117.5, 72.3 (q, J = 3.7 Hz); ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -60.6 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₁₀H₈ClF₃O [M+H]⁺ 314.9394, found 314.9386.

1-bromo-4-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl) benzene (**3i**): The reaction was carried out on 0.2 mmol scale. The compound *E*-**3i** was obtained in 73% yield (52.6 mg) as colorless oil and *Z*-**3i** (6.5mg, 9%) as colorless oil after purified by preparative TLC (*n*-hexane).

 $\mathbf{R}_{\rm f} = 0.5 \ (n-{\rm hexane})$

¹**H NMR** (400 MHz, Chloroform-d) δ 7.53 (d, J = 8.4 Hz, 1H), 7.27 (s, 1H), 7.10 (d, J = 8.2 Hz, 1H), 4.74 (s, 1H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 138.6, 133.7, 132.2, 129.8, 123.1, 121.6 (d, J = 257.0 Hz), 119.0, 68.0 (q, J = 3.6 Hz); ¹⁹**F NMR** (376 MHz, Chloroform-d) δ -59.2 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₁₀H₇Br₂F₃NaO [M+Na]⁺ 380.8708, found380.8706.

 $\mathbf{R}_{\rm f} = 0.5 \ (n\text{-hexane})$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.51 (s, 4H), 7.07 (s, 1H), 4.73 (s, 2H); ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 133.2, 131.7, 130.7, 130.7, 123.1, 121.6 (q, J = 256.7 Hz), 117.6, 72.3 (q, J = 3.6 Hz); ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -59.1 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₁₀H₇Br₂F₃NaO [M+Na]⁺ 380.8708, found380.8706.

ethyl 4-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl) benzoate (3j): The reaction was carried out on 0.2 mmol scale. The compound E-3j was obtained in 61% yield (43.1 mg) as yellow solid after purified by preparative TLC (*n*-hexane/EtOAc 30:1 (v/v)).

 $\mathbf{R}_{f} = 0.5 (n-hexane/EtOAc 30:1 (v/v))$

¹H NMR (400 MHz, Chloroform-d) δ 8.19 – 8.11 (m, 2H), 7.45 (s, 1H), 7.41 – 7.35 (m, 2H), 4.83 (s,

2H), 4.51 - 4.42 (m, 3H), 1.48 (t, J = 6.6 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.0, 139.0, 138.8, 130.6, 130.2, 128.2, 121.5 (q, J = 257.6 Hz), 120.1, 67.8 (q, J = 3.8 Hz), 61.3, 14.4; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -60.4 (s, 3F); HRMS-ESI (m/z): Calc'd for C₁₃H₁₃BrF₃O₃ [M+H]⁺ 352.9995, found 352.9997; m.p.: 79.4 °C.

benzyl 4-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl) benzoate (3k): The reaction was carried out on 0.2 mmol scale. The compound *E-***3k** was obtained in 49% yield (40.7 mg) as white solid and *Z-***3k** (4.2 mg, 5%) as white solid after purified by preparative TLC (*n*-hexane/EtOAc 30:1 (v/v)).

 $\mathbf{R}_{f} = 0.5 (n-hexane/EtOAc 30:1 (v/v))$

¹**H NMR** (400 MHz, Chloroform-d) δ 8.02 (d, J = 8.4 Hz, 2H), 7.38 – 7.36 (m, 2H), 7.34 – 7.27 (m, 4H), 7.22 (s, 1H), 7.20 (s, 1H), 5.29 (s, 2H), 4.66 (s, 2H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 165.9, 139.3, 138.7, 135.9, 130.4, 128.8, 128.5, 128.4, 128.3, 120.2, 67.9 (q, J = 3.7 Hz), 67.1; ¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -60.3 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₂₁H₁₇BrClF₃NaO₃ [M+Na]⁺ 510.9894, found 510.9886; m.p.: 81.8 °C.

 $R_{f} = 0.6$ (*n*-hexane/EtOAc 30:1 (v/v))

¹**H NMR** (400 MHz, Chloroform-d) δ 8.09 (d, J = 8.4 Hz, 2H), 7.69-7.67 (m, 2H), 7.46 – 7.44 (m, 2H), 7.42 – 7.33 (m, 3H), 7.18 (s, 1H), 5.37 (s, 2H), 4.75 (s, 2H); ¹³**C NMR** (101 MHz, Chloroform-d) δ 166.1, 139.0, 136.0, 130.6, 130.2, 129.8, 129.1, 128.8, 128.5, 128.4, 121.5 (q, J = 257.6 Hz), 119.0, 72.0 (q, J = 3.6 Hz), 67.0; ¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -60.2 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₂₁H₁₇BrClF₃NaO₃ [M+Na]⁺ 510.9894, found 510.9886; m.p.: 80.3 °C.

(4-chlorophenyl) (phenyl)methyl 4-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl) benzoate (3l): The reaction was carried out on 0.2 mmol scale. The compound E-3l was obtained in 51% yield (52.3 mg) as yellow oil after purified by preparative TLC (*n*-hexane/EtOAc 20:1 (v/v)).

 $\mathbf{R}_{\rm f} = 0.5 \text{ (}n\text{-hexane/EtOAc } 20:1 \text{ (v/v)}\text{)}$ ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.09 (d, *J* = 8.2 Hz, 2H), 7.38 – 7.27 (m, 12H), 7.03 (s, 1H), 4.69 (s, 2H); ¹³C NMR (151 MHz, Acetonitrile-*d*₃) δ 165.6, 141.2, 140.5, 139.5, 136.6, 134.3, 131.0, 129.8, 129.7, 129.6, 129.4, 129.2, 127.7, 122.5 (q, *J* = 256.7 Hz), 121.1, 78.0, 69.0 (d, *J* = 3.7 Hz); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -60.3 (s, 3F); HRMS-ESI (m/z): Calc'd for C₂₄H₁₇BrClF₃NaO₃ [M+Na]⁺ 546.9894, found 546.9885.

4-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl) benzyl 3-phenylpropiolate (3m): The reaction was carried out on 0.2 mmol scale. The compound *E*-3m was obtained in 55% yield (48.3 mg) as colorless oil and *Z*-3m (6.1 mg, 7%) as colorless oil after purified by preparative TLC (*n*-hexane/EtOAc 20:1 (v/v)).

 $\mathbf{R}_{f} = 0.5$ (*n*-hexane/EtOAc 5:1 (v/v))

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.73 (d, J = 7.7 Hz, 2H), 7.60 (d, J = 7.9 Hz, 3H), 7.53-7.49 (m, 3H), 7.40 (d, J = 7.7 Hz, 2H), 5.41 (s, 2H), 4.91 (s, 2H); ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 153.9, 139.2, 135.6, 135.1, 133.1, 130.9, 129.0, 128.7, 128.5, 121.6 (q, J = 257.0 Hz), 119.5, 118.9, 87.2, 80.4, 68.0 (q, J = 3.9 Hz), 67.1; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -60.3 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₂₀H₁₅BrF₃O₃ [M+H]⁺ 439.0151, found 439.0147.

 $\mathbf{R}_{f} = 0.5 (n-hexane/EtOAc 5:1 (v/v))$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.66 (d, J = 7.9 Hz, 2H), 7.59 (d, J = 7.7 Hz, 2H), 7.47-7.42 (m, 3H), 7.39-7.36 (m, 2H), 7.14 (s, 1H), 5.27 (s, 2H), 4.75 (s, 2H); ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 154.0, 135.6, 134.7, 133.2, 131.3, 130.9, 129.5, 128.7, 128.6, 121.6 (q, J = 256.8 Hz), 119.6, 117.4, 87.1, 80.5, 72.4 (q, J = 3.7 Hz), 67.3; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -60.3 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₂₀H₁₅BrF₃O₃ [M+H]⁺ 439.0151, found 439.0147.

6-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl)-4,4-dimethylthiochromane (3n): The reaction was carried out on 0.2 mmol scale. The compound *E-3n* was obtained in 49% yield (37.4 mg) as yellow oil and *Z-3n* (12.2 mg, 16%) as yellow oil after purified by preparative TLC (*n*-hexane/EtOAc 50:1 (v/v)).

 $\mathbf{R}_{\rm f} = 0.6 \text{ (n-hexane/EtOAc 50:1 (v/v)$)}$ ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.30 (s, 1H), 7.29 (s, 1H), 7.12 (d, *J* = 8.0 Hz, 1H), 6.92 (dd, *J* = 8.1, 2.0 Hz, 1H), 4.80 (s, 2H), 3.09 - 3.05 (m, 2H), 2.01 - 1.97 (m, 2H), 1.35 (s, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 142.6, 140.1, 133.5, 130.6, 127.0, 126.4, 125.8, 121.6 (q, *J* = 257.0 Hz), 116.9, 68.7 (q, *J* = 3.7 Hz), 37.3, 33.1, 30.1, 23.3; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -60.3 (s, 3F); HRMS-ESI (m/z): Calc'd for C₁₅H₁₇BrOS [M+H]⁺ 381.0130, found 381.0132.

 $\mathbf{R}_{f} = 0.6 (n-hexane/EtOAc 50:1 (v/v))$

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.71 (s, 1H), 7.35 (d, J = 8.2 Hz, 1H), 7.09 (d, J = 8.2 Hz, 1H), 7.04 (s, 1H), 4.73 (s, 2H), 3.08 – 3.01 (m, 2H), 2.01 – 1.93 (m, 2H), 1.34 (s, 6H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 141.9, 133.7, 132.2, 129.9, 127.6, 126.8, 121.6 (q, J = 257.6 Hz), 114.9, 73.1 (q, J = 3.4 Hz), 37.5, 33.2, 30.3, 23.3; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -60.1 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₁₅H₁₇BrOS [M+H]⁺ 381.0130, found 381.0132.

4-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl) benzyl benzo[d] [1,3] dioxole-5-carboxylate (30): The reaction was carried out on 0.2 mmol scale. The compound *E*-30 was obtained in 50% yield (45.9 mg) as yellow solid and *Z*-30 (7.3 mg, 8%) as yellow solid after purified by preparative TLC (*n*-hexane/EtOAc 20:1 (v/v)).

 $\mathbf{R}_{f} = 0.6 (n-hexane/EtOAc 20:1 (v/v))$

¹**H NMR** (400 MHz, Chloroform-d) δ 7.63 – 7.61(m, 1H), 7.42 (d, J = 1.7 Hz, 1H), 7.39 – 7.37 (m, 2H), 7.27 (s, 1H), 7.18 – 7.16 (m, 2H), 6.76 (d, J = 8.2 Hz, 1H), 5.96 (s, 2H), 5.25 (s, 2H), 4.69 (s, 2H); ¹³**C NMR** (101 MHz, Chloroform-d) δ 165.8, 152.0, 147.9, 139.3, 136.9, 134.7, 128.6, 128.5, 125.7, 124.0, 121.6 (d, J = 257.1 Hz), 118.8, 109.7, 108.2, 102.0, 68.1 (q, J = 3.5 Hz), 66.1; ¹⁹**F NMR** (376 MHz, Chloroform-d) δ -60.3 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₁₉H₁₄BrF₃NaO₅ [M+Na]⁺ 480.9869, found 480.9878; m.p.: 79.3 °C.

 $\mathbf{R}_{f} = 0.6 (n-hexane/EtOAc 20:1 (v/v))$

¹**H NMR** (400 MHz, Chloroform-d) δ 7.71 – 7.69 (m, 1H), 7.67 – 7.65 (m, 2H), 7.51 (d, J = 1.7 Hz, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.13 (s, 1H), 6.84 (d, J = 8.2 Hz, 1H), 6.04 (s, 2H), 5.33 (s, 2H), 4.75 (s, 2H); ¹³**C NMR** (101 MHz, Chloroform-d) δ 165.8, 151.9, 147.9, 136.9, 134.2, 131.5, 129.5, 128.0, 125.7, 124.1, 121.6 (q, J = 256.6 Hz), 117.1, 109.7, 108.2, 102.0, 72.5 (q, J = 3.6 Hz), 66.3; ¹⁹**F NMR** (376 MHz, Chloroform-d) δ -59.8 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₁₉H₁₄BrF₃NaO₅ [M+Na]⁺ 480.9869, found 480.9878; m.p.: 81.9 °C.

3-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl) thiophene (3p): The reaction was carried out on 0.2 mmol scale. The compound *E-3p* was obtained in 56% yield (32.2 mg) as colorless liquid after purified by preparative TLC (*n*-hexane).

(E)-**3p**

 $\mathbf{R}_{\mathrm{f}} = 0.5 \ (n\text{-hexane})$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.86 (s, 1H), 7.49 (d, J = 5.0 Hz, 1H), 7.38 – 7.30 (m, 1H), 7.15 (s, 1H), 4.74 (s, 2H); ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 135.3, 128.5, 126.9, 126.8, 125.4, 121.6 (q, J = 256.8 Hz), 115.3, 72.9 (q, J = 3.9 Hz); ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -59.1 (s, 3F); **HRMS**-ESI (m/z): Calc'd for C₈H₇BrF₃OS [M+H]⁺ 286.9348, found 286.9350.

3q, 65% *E/Z* = 86:14

4-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl) benzyl 1-(4-chlorophenyl) cyclopropane-1-carboxylate (3q): The reaction was carried out on 0.2 mmol scale. The compound *E*-3q was obtained in 56% yield (54.8 mg) as yellow oil and *Z*-3p (8.8 mg, 9%) as yellow oil after purified by preparative TLC (*n*-hexane/EtOAc 20:1 (v/v)).

 $\mathbf{R}_{f} = 0.6 (n-hexane/EtOAc 20:1 (v/v))$

¹**H NMR** (400 MHz, Chloroform-d) δ 7.24 (s, 2H), 7.21 (s, 5H), 7.16 – 7.08 (m, 4H), 5.00 (s, 2H), 4.67 (s, 2H), 1.57 (q, J = 4.0 Hz, 2H), 1.13 (q, J = 4.0 Hz, 2H); ¹³**C NMR** (101 MHz, Chloroform-d) δ 174.0, 139.3, 137.9, 136.8, 134.5, 133.2, 132.0, 128.5, 128.4, 127.9, 121.6 (q, J = 257.1 Hz), 118.7, 68.1 (q, J = 3.5 Hz), 66.1, 28.7, 16.9; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -60.0 (s, 3F); **HRMS**-ESI (m/z): Calc'd for C₂₁H₁₇BrClF₃NaO₃ [M+Na]⁺ 510.9894, found 510.9902.

 $\mathbf{R}_{f} = 0.6 (n-hexane/EtOAc 20:1 (v/v))$

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.60 (d, J = 8.1 Hz, 2H), 7.29 (s, 4H), 7.21 (d, J = 8.2 Hz, 2H), 7.10 (s, 1H), 5.09 (s, 2H), 4.74 (s, 2H), 1.65 (q, J = 4.1 Hz, 2H), 1.20 (q, J = 4.1 Hz, 2H); ¹³**C NMR** (101 MHz, Chloroform-d) δ 174.0, 138.0, 136.8, 134.0, 133.2, 132.0, 131.5, 129.4, 128.5, 127.4, 121.6 (q, J = 256.8 Hz), 117.0, 72.5 (q, J = 3.4 Hz), 66.3, 28.8, 16.9; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -59.8 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₂₁H₁₇BrClF₃NaO₃ [M+Na]⁺ 510.9894, found 510.9891.

4-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl) benzyl 2-(4-benzoylphenyl) propanoate (3r): The reaction was carried out on 0.2 mmol scale. The compound *E-3***r** was obtained in 57% yield (62.4 mg) as a colorless liquid and *Z-3***r** (11.9 mg, 10%) as colorless liquid after purified by preparative TLC (*n*-hexane/EtOAc 10:1 (v/v)).

 $\mathbf{R}_{f} = 0.5 (n-hexane/EtOAc 5:1 (v/v))$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.80 – 7.74 (m, 3H), 7.67 (d, J = 7.6 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.50 – 7.40 (m, 3H), 7.31 – 7.23 (m, 3H), 7.16 (d, J = 7.7 Hz, 2H), 5.12 (s, 2H), 4.73 (s, 2H), 3.87 (q, J = 7.2 Hz, 1H), 1.57 (d, J = 7.2 Hz, 3H); ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 196.5, 173.9, 140.7, 139.2, 138.1, 137.5, 136.5, 136.3, 134.7, 132.7, 131.6, 130.2, 129.3, 129.2, 128.7, 128.4, 128.4, 128.4, 128.3, 121.6 (q, J = 257.6 Hz), 118.7, 68.0 (q, J = 3.5 Hz), 66.1, 45.5, 18.5; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -59.9 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₂₇H₂₂BrF₃NaO₄ [M+Na]⁺ 569.0546, found 569.0553.

 $\mathbf{R}_{f} = 0.5$ (*n*-hexane/EtOAc 5:1 (v/v))

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.81 – 7.73 (m, 3H), 7.68 (d, J = 7.7 Hz, 1H), 7.58 (d, J = 8.0 Hz, 3H), 7.54 (d, J = 7.8 Hz, 1H), 7.45 (dt, J = 16.7, 7.6 Hz, 3H), 7.25 (d, J = 7.6 Hz, 2H), 7.09 (s, 1H), 5.12 (s, 2H), 4.73 (s, 2H), 3.87 (q, J = 7.2 Hz, 1H), 1.56 (d, J = 7.3 Hz, 3H); ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 196.6, 173.9, 140.7, 138.1, 137.6, 136.6, 134.2, 132.7, 131.7, 131.4, 130.2, 129.4, 129.2, 128.7, 128.5, 127.9, 121.6 (q, J = 256.7 Hz), 117.1, 72.5 (q, J = 3.8 Hz), 66.3, 45.5, 18.5; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -59.9 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₂₇H₂₂BrF₃NaO₄[M+Na]⁺ 569.0546, found 569.0553.

4-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl) benzyl 2-(4-(4-chlorobenzoyl) phenoxy)-2methylpropanoate (3s): The reaction was carried out on 0.2 mmol scale. The compound *E*-3s was obtained in 65% yield (79.5 mg) as a white solid after purified by preparative TLC (*n*-hexane/EtOAc 10:1 (v/v)).

$\mathbf{R}_{f} = 0.6 (n-hexane/EtOAc \ 10:1 \ (v/v))$

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.67 (dd, J = 15.8, 8.7 Hz, 4H), 7.45 (d, J = 8.5 Hz, 2H), 7.30 – 7.27 (m, 2H), 7.25 (s, 1H), 7.16 (d, J = 7.8 Hz, 2H), 6.80 (d, J = 8.9 Hz, 2H), 5.19 (s, 2H), 4.72 (s, 2H), 1.69 (s, 6H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 194.1, 173.5, 159.6, 139.0, 138.6, 136.4, 136.1, 135.8, 135.0, 132.0, 131.2, 128.8, 128.7, 128.4, 121.5 (q, J = 257.2 Hz), 119.0, 117.4, 79.6, 68.0 (q, J = 3.6 Hz), 66.8, 25.6; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -59.7 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₂₈H₂₃BrClF₃O₅ [M+ H]⁺ 611.0442, found 611.0438; m.p.: 84.2 °C.

(4-bromo-5-(trifluoromethoxy) pent-3-en-1-yl) benzene (3t): The reaction was carried out on 0.2 mmol scale. The compound *E*-3t was obtained in 32% yield (19.8 mg) as yellow oil and *Z*-3t (14.8 mg, 24%) as yellow oil after purified by preparative TLC (*n*-hexane).

 $\mathbf{R}_{\rm f} = 0.6 \ (n\text{-hexane})$

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.23 – 7.20 (m, 2H), 7.12 – 7.08 (m, 3H), 7.07 (s, 1H), 6.16 (t, J = 8.0 Hz, 1H), 4.39 (s, 2H), 2.38 – 2.32 (m, 2H), 2.26 – 2.20 (m, 2H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 140.3, 134.3, 128.8, 128.7, 121.6 (q, J = 257.6 Hz), 120.1, 66.6 (q, J = 4.0 Hz), 33.5, 31.9; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -59.6 (s, 3F); **HRMS**-ESI (m/z): Calc'd for C₁₂H₁₂BrF₃NaO [M+Na]⁺ 330.9916, found 330.9910.

 $\mathbf{R}_{\mathrm{f}} = 0.6 (n\text{-hexane})$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.31 -7.29 (m, 2H), 7.23 - 7.19 (m, 3H), 6.17 - 6.15(m, 1H), 4.56 (s, 2H), 2.76 - 2.74 (m, 2H), 2.57 - 2.54 (m, 2H); ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 140.9, 134.3, 128.6, 128.5, 126.4, 121.5 (q, J = 256.6 Hz), 119.0, 71.8 (q, J = 4.0 Hz), 34.1, 32.8; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -60.3 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₁₂H₁₂BrF₃NaO [M+Na]⁺ 330.9916, found 330.9910.

4 Other Substrates

^bDetermined by ¹⁹F NMR spectrum with benzotrifluoride as internal standards **Scheme S1** Other substrates

5 Gram Scale Reaction

In a glove box, to a 40.0 mL vial tube were added CsF (2.3 g, 15.0 mmol, 3.0 equiv.), TBATB (2.4 g, 5.0 mmol, 1.0 equiv.) and **1a** (961.5 mg, 5.0 mmol, 1.0 equiv.) in 12.5 mL CH₃CN, then TFMS (2.7 mL, 15 mmol, 3.0 equiv.) were added. The mixture was stirred at 50 °C for 16 h. After cooling to room temperature, the reaction mixture was then added 50 mL CH₂Cl₂. The yield was determined by ¹⁹F NMR using benzotrifluoride as an internal standard. The filtrate was concentrated, and the residue was purified by chromatography on silica gel, eluting with hexanes to afford 232.2 mg (*Z*)-4-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl)-1,1'-biphenyl ((*Z*)-3a, 13% yield) and 1.1 g (*E*)-4-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl)-1,1'-biphenyl ((*E*)-3a, 60% yield).

6 Transformations of Compounds 3a

To a flask was added compound **3a** (41.2 mg, 0.10 mmol), Pd/C (4.2 mg) and dry CH₃CN (0.4 mL). After the reaction was stirred at 30 °C under 1 atm H₂ for 24 h, the resulting mixture was filtered. The compound **5a** was obtained in 61% yield (19.6 mg) as yellow oil after purified by preparative TLC (*n*-hexane). $\mathbf{R}_{f} = 0.5$ (*n*-hexanes).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.59-7.53 (m, 4H), 7.45 – 7.41 (m, 2H), 7.35-7.32 (m, 1H), 7.27-7.25 (m, 2H), 4.00 (t, J = 6.3 Hz, 2H), 2.80-2.76 (m, 2H), 2.08-2.01 (m, 2H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 141.1, 139.8, 139.4, 129.0, 128.9, 127.4, 127.3, 127.2, 121.9 (q, J = 254.1 Hz), 66.6 (q, J = 3.2 Hz), 31.3, 30.5; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -60.6 (s, 3F); **HRMS-**ESI (m/z): Calc'd for C₁₆H₁₆F₃O⁺ [M+H]⁺ 281.1148, found 281.1147.

To a solution of 4-(2-bromo-3-(trifluoromethoxy) prop-1-en-1-yl)-1,1'-biphenyl (**3a**) (35.7 mg, 0.1 mmol, 1.0 equiv.) in dry CH₃CN (2.0 mL) at 30 °C (oil bath) under N₂ were added DBU (1,8-diazabicyclo [5.4.0] undec-7-ene) (90.0 μ L, 6.0 mmol, 6.0 equiv.). The reaction mixture was stirred for 36 h. When completed, the reaction was diluted with CH₂Cl₂ (10.0 mL) and washed with saturated aqueous solution of NH₄Cl (5.00 mL). The aqueous fraction was separated and extracted three times with CH₂Cl₂ (10.0 mL). The combined organic layers were dried over Na₂SO₄. The filtrate was concentrated in vacuo, and the residue was purified by preparative TLC, eluting with *n*-hexanes to afford 12.7 mg 4-(3-(trifluoromethoxy) prop-1-yn-1-yl)-1,1'-biphenyl (**5b**) as a colorless liquid (46% yield). $R_f = 0.4$ (*n*-hexanes).

¹H NMR (600 MHz, Chloroform-*d*) δ 7.61 – 7.56 (m, 4H), 7.55-7.54 (m, 2H), 7.47-7.45 (m, 2H), 7.39-7.37 (m, 1H), 4.86 (s, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 142.1, 140.3, 132.5, 129.0, 128.0, 127.2, 121.8 (q, *J* = 257.4 Hz), 120.6, 88.2, 81.5, 56.2 (q, *J* = 4.6 Hz); ¹⁹F NMR (376 MHz, Chloroform-

7 Mechanistic Experiment

In a glove box, to a 2.0 mL vial tube were added TBATB (96.4 mg, 0.2 mmol, 1.0 equiv.), and **1a** (38.4 mg, 0.2 mmol, 1.0 equiv.) in 0.5 mL deuterated acetonitrile. The reaction mixture was stirred for 1 h at 50 °C. After cooling to room temperature, the complex system was characterized by ¹H NMR spectrum.

- a ¹H NMR spectrum of **1a**;
- b ¹H NMR spectrum of the bromonium active intermediates;
- c ¹H NMR spectrum of the *E*-3a;
- d ¹H NMR spectrum of the **Z-3a**.

In a glove box, to a 2.0 mL vial tube were added TBATB (24.1 mg, 0.05 mmol, 1.0 equiv.), and **1a** (9.62 mg, 0.05 mmol, 1.0 equiv.) in 0.125 mL CH₃CN. The reaction mixture was stirred for 1 h at 50 °C. After cooling to room temperature, the complex system was characterized by HRMS (Scheme S3). **HRMS**-ESI (m/z): Calc'd for $C_{15}H_{12}Br [M+]^+ 271.0117$, found 271.0119.

8 D-NOESY NMR spectrum (400 MHz, CDCl₃) of (E)-3a, (Z)-3a

and (Z)-3d

Scheme S6 2D- H-¹H NOESY NMR spectrum (400 MHz, CDCl₃) of (Z)-3d

Reference

- [1] Wang, L. Y.; Jiang, X. H.; Tang, P. P. Silver-mediated fluorination of alkyl iodides with TMSCF₃ as the fluorinating agent. *Org. Chem. Front.* **2017**, *4*, 1958-1961.
- [2] Zhao, Z. S.; Racicot, L.; Murphy, G. K. Fluorinative Rearrangements of Substituted Phenylallenes Mediated by (Difluoroiodo)toluene: Synthesis of α-(Difluoromethyl) styrenes. *Angew. Chem. Int. Ed.* 2017, 56, 11620-11623.
- [3] Liu, J. W.; Han, Z. B.; Wang, X. M.; Wang, Z.; Ding, K. L. Highly Regio- and Enantioselective Alkoxycarbonylative Amination of Terminal Allenes Catalyzed by a Spiroketal-Based Diphosphine/Pd (II) Complex. J. Am. Chem. Soc. 2015, 137, 15346-15349.
- [4] Hu, T. J.; Beluze, C.; Fagué, V.; Kambire, O. E.; Bouyssi, D.; Monteiro, N.; Amgoune, A. Nickle-Catalyzed Photoredox Allenylation of Alkyl Halides. Org. Lett. 2024, 26, 9519-9524.
- [5] Xia, X. F.; Wang, Y. Q.; Zhang, L. L.; Song, X. R.; Liu, X. Y.; Liang, Y. M. Palladium-Catalyzed C-H Activation and Intermolecular Annulation with Allenes. *Chem. Eur. J.* 2014, 20, 5087-5091.

NMR Spectra of Substrates

¹H NMR spectrum ((400 MHz, CDCl₃) of 1a

¹³C NMR spectrum ((101 MHz, CDCl₃)) of **1a**

¹³C NMR spectrum ((101 MHz, CDCl₃) of 1c

¹³C NMR spectrum (101 MHz, CDCl₃) of 1d

¹H NMR spectrum (400 MHz, CDCl₃) of 1e

¹³C NMR spectrum (101 MHz, CDCl₃) of 1e

¹³C NMR spectrum (101 MHz, CDCl₃) of **1f**

 1 H NMR spectrum (400 MHz, CDCl₃) of **1g**

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 1g

¹H NMR spectrum ((400 MHz, CDCl₃)) of 1j

¹³C NMR spectrum ((101 MHz, CDCl₃)) of 1j

¹H NMR spectrum (600 MHz, CDCl₃) of **6k**

¹³C NMR spectrum (151 MHz, CDCl₃) of **6k**

¹H NMR spectrum (600 MHz, CDCl3) of 1k

¹³C NMR spectrum (151 MHz, CDCl3) of 1k

¹³C NMR spectrum (101 MHz, CDCl₃) of **61**

¹H NMR spectrum (400 MHz, CDCl₃) of **11**

¹³C NMR spectrum (101 MHz, CDCl₃) of **11**

 ^{13}C NMR spectrum (151 MHz, CDCl₃) of 6m

 1 H NMR spectrum (400 MHz, CDCl₃) of 1m

 13 C NMR spectrum (101 MHz, CDCl₃) of **1m**

¹H NMR spectrum (400 MHz, CDCl₃) of **1n**

¹³C NMR spectrum (151 MHz, CDCl₃) of **1n**

¹H NMR spectrum (400 MHz, CDCl₃) of **60**

¹³C NMR spectrum (101 MHz, CDCl₃) of **60**

¹H NMR spectrum (400 MHz, CDCl₃) of **10**

¹³C NMR spectrum (151 MHz, CDCl₃) of 10

¹H NMR spectrum (400 MHz, CDCl₃) of **1p**

¹³C NMR spectrum (101 MHz, CDCl₃) of **1p**

¹³C NMR spectrum (101 MHz, CDCl₃) of 6q

¹H NMR spectrum (400 MHz, CDCl₃) of **1q**

¹³C NMR spectrum (101 MHz, CDCl₃) of **1q**

¹³C NMR spectrum (101 MHz, CDCl₃) of 6r

¹H NMR spectrum (400 MHz, CDCl₃) of **1r**

¹³C NMR spectrum (101 MHz, CDCl₃) of 1r

¹³C NMR spectrum (101 MHz, CDCl₃) of 6s

¹H NMR spectrum (400 MHz, CDCl₃) of 1s

¹³C NMR spectrum (101 MHz, CDCl₃) of 1s

¹³C NMR spectrum (101 MHz, CDCl₃) of 1t

¹H NMR spectrum (400 MHz, CDCl₃) of (*E*)-3a

¹³C NMR spectrum (151 MHz, CDCl₃) of (*E*)-3a

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (*E*)-3a

¹H NMR spectrum (400 MHz, CDCl₃) of (Z)-3a

¹³C NMR spectrum (101 MHz, CDCl₃) of (Z)-3a

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (Z)-3a

S57

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (*E*)-3b

¹³C NMR spectrum (101 MHz, CDCl₃) of (*E*)-3b

¹H NMR spectrum (400 MHz, CDCl₃) of (Z)-3b

¹³C NMR spectrum (151 MHz, CDCl₃) of (Z)-3b

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (**Z**)-3b

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (*E*)-3c

¹H NMR spectrum (400 MHz, CDCl₃) of (Z)-3c

¹³C NMR spectrum (101 MHz, CDCl₃) of (Z)-3c

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (Z)-3c

¹³C NMR spectrum (151 MHz, CDCl₃) of (*E*)-3d

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (*E*)-3d

¹H NMR spectrum (400 MHz, CDCl₃) of (Z)-3d

¹³C NMR spectrum (101 MHz, CDCl₃) of (Z)-3d

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (Z)-3d

¹³C NMR spectrum (101 MHz, CDCl₃) of (**Z**)-3e

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (**Z**)-3e

¹H NMR spectrum (400 MHz, CDCl₃) of (*E*)-3f

¹³C NMR spectrum (151 MHz, CDCl₃) of (*E*)-3f

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (*E*)-3f

¹³C NMR spectrum (101 MHz, CDCl₃) of (Z)-3f

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (Z)-3f

¹H NMR spectrum (400 MHz, CDCl₃) of (*E*)-3g

¹³C NMR spectrum (101 MHz, CDCl₃) of (*E*)-3g

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (*E*)-3g

¹³C NMR spectrum (101 MHz, CDCl₃) of (**Z**)-3g

¹⁹F NMR spectrum (376 MHz, DMSO-*d*₆) of (*Z*)-3g

¹H NMR spectrum (600 MHz, CDCl₃) of (*E*)-3h

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (*E*)-3h

¹³C NMR spectrum (151 MHz, CDCl₃) of (Z)-3h

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (**Z**)-3h

¹H NMR spectrum (400 MHz, CDCl₃) of (*E*)-3i

¹³C NMR spectrum (101 MHz, CDCl₃) of (*E*)-3i

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (E)-3i

¹³C NMR spectrum (151 MHz, CDCl₃) of (Z)-3i

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (Z)-3i

¹H NMR spectrum (400 MHz, CDCl₃) of (*E*)-3j

¹³C NMR spectrum (101 MHz, CDCl₃) of (*E*)-3j

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (*E*)-3j

¹H NMR spectrum (400 MHz, CDCl₃) of (*E*)-3k

¹³C NMR spectrum (101 MHz, CDCl₃) of (*E*)-3k

¹H NMR spectrum (400 MHz, CDCl₃) of (Z)-3k

¹³C NMR spectrum (101 MHz, CDCl₃) of (Z)-3k

¹⁹F NMR spectrum (376 MHz, DMSO-d₆) of (Z)-3k

¹³C NMR spectrum (151 MHz, Acetonitrile-*d*₃) of (*E*)-31

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (*E*)-31

¹H NMR spectrum (600 MHz, CDCl₃) of (*E*)-3m

¹³C NMR spectrum (151 MHz, CDCl₃) of (*E*)-3m

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (*E*)-3m

¹³C NMR spectrum (151 MHz, CDCl₃) of (Z)-3m

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (Z)-3m

¹³C NMR spectrum (101 MHz, CDCl₃) of (*E*)-3n

¹H NMR spectrum (400 MHz, CDCl₃) of (*E*)-3n

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (*E*)-3n

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (**Z**)-3n

¹³C NMR spectrum (101 MHz, CDCl₃) of (Z)-3n

¹H NMR spectrum (400 MHz, CDCl₃) of (*E*)-30

¹³C NMR spectrum (101 MHz, CDCl₃) of (*E*)-30

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (*E*)-30

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (**Z**)-30

¹³C NMR spectrum (101 MHz, CDCl₃) of (Z)-30

¹H NMR spectrum (600 MHz, CDCl₃) of (*E*)-3p

¹³C NMR spectrum (151 MHz, CDCl₃) of (*E*)-3p

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (*E*)-3p

¹H NMR spectrum (400 MHz, CDCl₃) of (*E*)-3q

¹³C NMR spectrum (101 MHz, CDCl₃) of (*E*)-3q

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (*E*)-3q

¹H NMR spectrum (400 MHz, CDCl₃) of (**Z**)-3q

¹³C NMR spectrum (101 MHz, CDCl₃) of (Z)-3q

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (**Z**)-3q

¹³C NMR spectrum (151 MHz, CDCl₃) of (*E*)-3r

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (*E*)-3r

¹H NMR spectrum (600 MHz, CDCl₃) of (Z)-3r

¹³C NMR spectrum (151 MHz, CDCl₃) of (Z)-3r

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (*E*)-3r

¹³C NMR spectrum (101 MHz, CDCl₃) of (*E*)-3s

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (*E*)-3s

¹H NMR spectrum (400 MHz, CDCl₃) of (*E*)-3t

¹³C NMR spectrum (101 MHz, CDCl₃) of (*E*)-3t

¹⁹F NMR spectrum (376 MHz, CDCl₃) of (*E*)-3t

¹³C NMR spectrum (151 MHz, CDCl₃) of (Z)-3t

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of (Z)-3t

¹H NMR spectrum (400 MHz, CDCl₃) of **5a**

¹³C NMR spectrum (101 MHz, CDCl₃) of **5a**

¹⁹F NMR spectrum (376 MHz, CDCl₃) of **5a**

 ^{19}F NMR spectrum (376 MHz, CDCl_3) of 5b