Supporting Information for

Surface Ligand Modified Silver Nanoparticles-based SERS Sensing Platform for Ultrasensitive Detection of Thiram Pesticide in Green Tea Leaf: Roles of Coating Agents on Sensing Performance

Dong Thi Linh^{a,b}, Quan-Doan Mai^{a,*}, Dao Thi Nguyet Nga^a, Nguyen Tuan Anh^a,

Hoang Van Tuan^a, Ha Anh Nguyen^{a,**}, Xuan Hoa Vu^c, Anh-Tuan Le^{a,d,***}

^aPhenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam

^b Faculty of Fundamental Sciences, Thai Nguyen University of Technology, 666 3/2 road, Thai Nguyen city 24000, Vietnam

^cInstitute of Science and Technology, TNU-University of Sciences, Tan Thinh ward, Thai Nguyen city 24000, Vietnam

^dFaculty of Materials Science and Engineering (MSE), Phenikaa University, Hanoi 12116,

Vietnam

Corresponding authors:

*<u>doan.maiquan@phenikaa-uni.edu.vn</u> (Q.D. Mai)

**<u>anh.nguyenha@phenikaa-uni.edu.vn</u> (H.A.Nguyen)

**<u>tuan.leanh@phenikaa-uni.edu.vn</u> (A.T.Le)

Calculation of limit of detection (LOD)

The standard curve of linear detecting range was given as:

$$Y = A + B \times Log(X) \tag{1}$$

where A and B are intercept and slope of regression equation obtained through the plot of the logarithmic SERS intensity (Y) – logarithmic concentration (X).

The LOD is calculated using the following equation ¹:

$$LOD = 10^{[(Y_{blank} + 3SD)/Y_{blank} - A]/B}$$
(2)

where Y_{blank} and SD are the SERS signal and the standard deviation of blank sample, respectively.

SD is calculated via the well-known formula:

$$SD = \sqrt{\frac{1}{n-1} \times \sum_{i}^{n} (x_i - x_{average})^2}$$
(3)

where x_i if the "i" sample of the series of measurements, $x_{average}$ is the average value of SERS signal obtained from the blank sample repeated n times.

Calculation of relative standard deviation (RSD)

The RSD value of repeatability and reproducibility is calculated via the well-known formula:

$$RSD = \frac{SD \times 100}{x_{average}}$$
(4)

where SD is the standard deviation that calculates using equation 4 and $x_{average}$ is the average value of SERS signal obtained from each measurement.

Figure S1: DLS measurements of (a) e-Ag-O, (b) e-Ag-C and (c) e-Ag-bio.

Figure S2: Zeta potential of (a) e-Ag-O, (b) e-Ag-C and (c) e-Ag-bio. Inset the pH values

of three samples.

Figure S3: The molecular structure of thiram

Figure S4: SERS spectra of thiram at concentration 10⁻⁵ M with three kinds of e-Ag substrates

Figure S5: Absorption spectra of a mixture of thiram solution and e-Ag-O solution over an incubation period of 55 min

Figure S6: Linear response at (a) 928 cm⁻¹, (b) 1382 cm⁻¹ of thiram with concentration range from 10^{-4} M to 10^{-9} M

 Chen, R.; Shi, H.; Meng, X.; Su, Y.; Wang, H.; He, Y. Dual-Amplification Strategy-Based SERS Chip for Sensitive and Reproducible Detection of DNA Methyltransferase Activity in Human Serum. *Anal. Chem.* 2019, *91* (5), 3597–3603. https://doi.org/10.1021/acs.analchem.8b05595.