Conversion of recovered carbon black from waste tire to activated carbon via chemical/microwave methods for efficient removal of heavy

metal ions from wastewater

M. M. El-Maadawy¹, Amir A. Elzoghby^{*1}, Ahmed M. Masoud^{*1}, Alzahraa M. Eldeeb², Ahmed M. A. El Naggar³, Mohamed H. Taha¹

¹ Nuclear Materials Authority, P.O. Box 530, El Maddi, Cairo, Egypt

² Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt

³Egyptian Petroleum Research Institute (EPRI), 1 Ahmed El-Zomor St., Nasr City, Cairo, Egypt

* Corresponding author: amirelzoghby33@gmail.com, chemmaso010@hotmail.com

Figure S1: Expected aqueous speciation of Cd(II) concentration (50 mg L⁻¹) as a function of pH in 0.1 M HNO₃ using Medusa/Hydra program.

Figure S2: Van't Hoff plot for Cd(II) sorption onto C-AC and MC-AC sorbents.

Figure S3: Recycling investigation for Cd(II) uptake using MC-AC sorbent.

Kinetics	Equations	
Pseudo-first-order	$Log\left(q_{e}-q_{t}\right)=Log q_{e}-\frac{K_{1}}{2.303}t$	
Pseudo-second-order	$\left(\frac{t}{q_t}\right) = \frac{1}{K_2 q_e^2} + \frac{1}{q_e} t$	
Intra-particle diffusion model (IPD) $q_t = K_{id} t^{0.5} + C_i$	
Isotherms	Equations	
Langmuir model	$\frac{C_e}{q_e} = (1 K_L q_{max}) + \begin{bmatrix} C_e \\ q_m \end{bmatrix}$	
Freundlich model	$\ln q_e = \ln K_F + \left[\frac{1}{n}\right] \ln C_e$	
Temkin model	$q_e = \frac{RT}{b_T} \ln K_T C_e$	
Thermodynamics	Equations	
lo	$g K_C = -\frac{\Delta H^o}{2.303 R} X \frac{1}{T} + C$	
-	$-\Delta G^o = 2.303 \ RT \log K_C$	
	$\Delta G^o = \Delta H^o - T \Delta S^o$	

 Table S1: Kinetics, isotherm, and thermodynamics equations for Cd(II) ions adsorption of [1-5]

qe (mg g⁻¹) is the equilibrium concentration of Cd(II) ions, and qt (mg g⁻¹) is the adsorbed amount of Cd(II) ions after time t (min), k_1 (min⁻¹) and k_2 (min⁻¹) are the rate constants for the pseudo first and second order, respectively. K_{id} (mg/g. min^{0.5}) is a rate constant, and C is the thickness of the boundary layer. Ce (mg L⁻¹) is equilibrium concentration of Cd(II) ions, q_{max} (mg g⁻¹) is the theoretical adsorption capacity, K_L is Langmuir constant, K_F and n are Freundlich constants. b_T is Temkin constant that refers to the adsorption heat, and K_T (L min⁻¹) is the equilibrium binding constant. K_C is a non-dimensional equilibrium constant and it equals $K_d X 1000 X \rho$ [1]; T is the temperature (K), **R** is the universal gas constant (8.314 J mol⁻¹. K⁻¹), ρ is solution denisty g/ L, and C is a constant.

- L. Largitte, R. Pasquier, A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon, Chem. Eng. Res. Des. 109 (2016) 495–504. https://doi.org/10.1016/J.CHERD.2016.02.006.
- [2] Y.S. Kim, J.H. Kim, Isotherm, kinetic and thermodynamic studies on the adsorption of paclitaxel onto Sylopute, J. Chem. Thermodyn. 130 (2019) 104–113. https://doi.org/10.1016/J.JCT.2018.10.005.
- [3] K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156 (2010) 2–10. https://doi.org/10.1016/J.CEJ.2009.09.013.
- [4] A.M. Masoud, Sorption behavior of uranium from Sulfate media using purolite A400 as a strong base anion Exchange resin, Int. J. Environ. Anal. Chem. (2020). https://doi.org/10.1080/03067319.2020.1763974.
- [5] P. Saha, S. Chowdhury, Insight Into Adsorption Thermodynamics, Thermodynamics. (2011). https://doi.org/10.5772/13474.

Desorption investigation		
Eluent Type	Concentration, M	%
Hydrochloric acid	0.5	93.5
Sulfuric acid	0.5	74.4
Nitric acid	0.5	56.2

Table S2: Cd(II) recovery from loaded MC-AC sorbent using different solutions (5.0 g/L, room temperature; 240 min).