Supporting Information

Synergic Effect of CaI₂ and LiI on Ionic Conductivity of Solution-based Synthesized Li₇P₃S₁₁ Solid Electrolyte

Tran Anh Tu^{1,2,3}, Tran Viet Toan^{1,2}, Luu Tuan Anh^{1,2}, Le Van Thang^{1,2,3}, Nguyen Huu Huy Phuc^{1,2,3*}

¹Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., Dist. 10, Ho Chi Minh City, Vietnam

²Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City, Vietnam

³VNU-HCM Key Laboratory for Material Technologies, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., Dist. 10, Ho Chi Minh City, Vietnam

Corresponding author: nhhphuc@hcmut.edu.vn (NHH. Phuc)

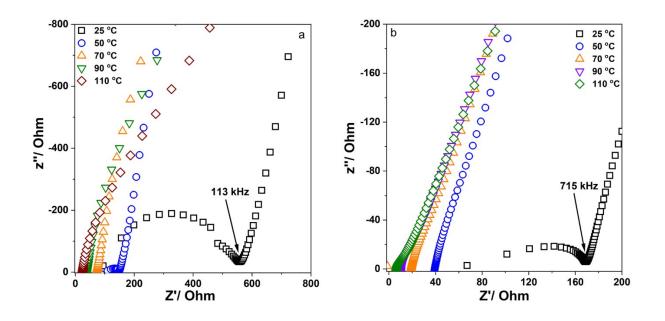


Figure S1: Electrochemical Impedance Spectra of the prepared (a) LPS and (b) 5CaI₂ solid electrolyte.

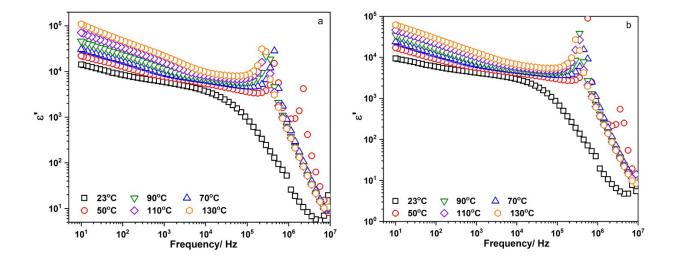


Figure S2: Frequency dependence of the real part of dielectric constant, ϵ ', of (a) 5CaCl₂ and (b) 5CaBr₂

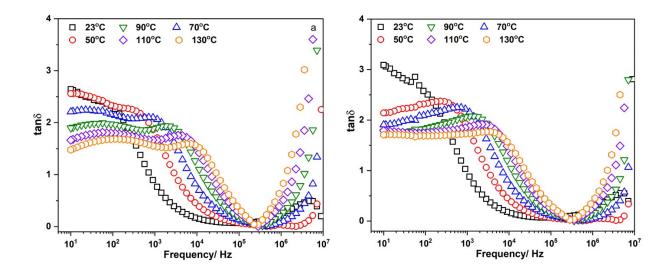


Figure S3: Frequency dependence of the real part of the loss factor, tand, of (a) $5CaCl_2$ and (b) $5CaBr_2$