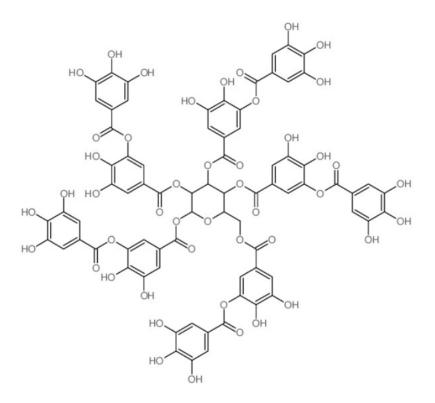
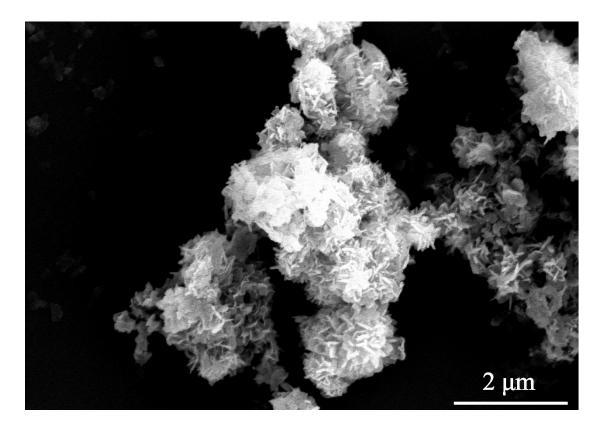
Electronic Supplementary Material (ESI)

Mechanism Insight into the High-efficiency Catalytic Killing of E.

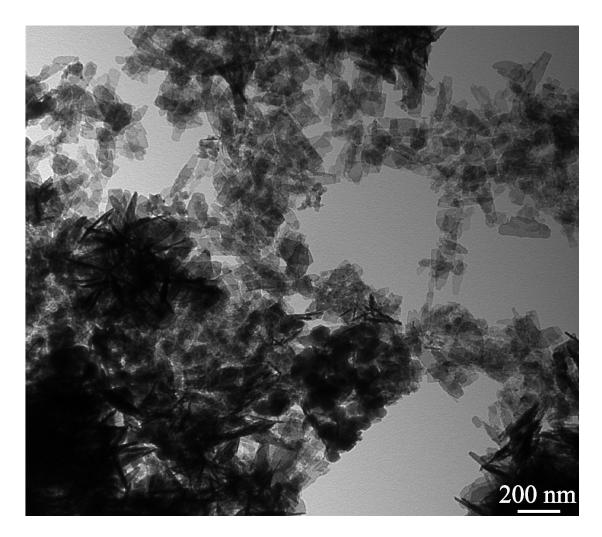
coli by Metal-phenolic Network as a Nanozyme

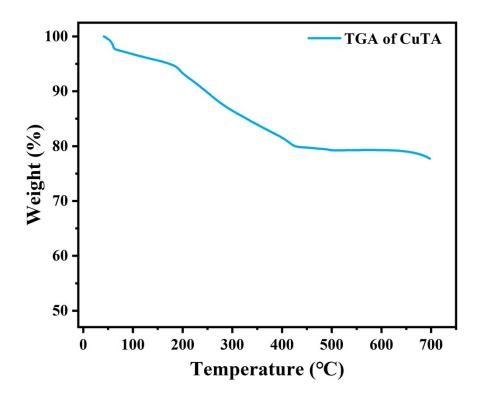

Weiyun Guo^{a, b, c*}, Chaoyun Wu^{a,b}, Guanghui Li^a, Yonghui Wang^a, Shenghua He^a, Jihong Huang^{a, c}, Xueli Gao^a, Xiaoyue Yue^b

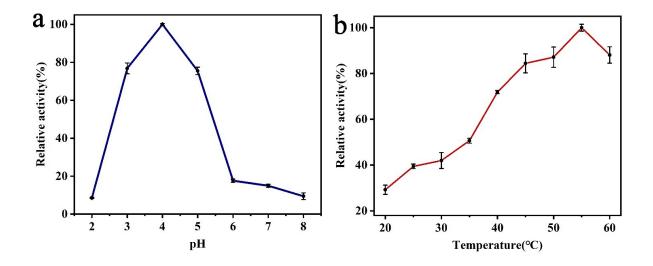
^a Food and Pharmacy College, Xuchang University, Xuchang 461000, China;

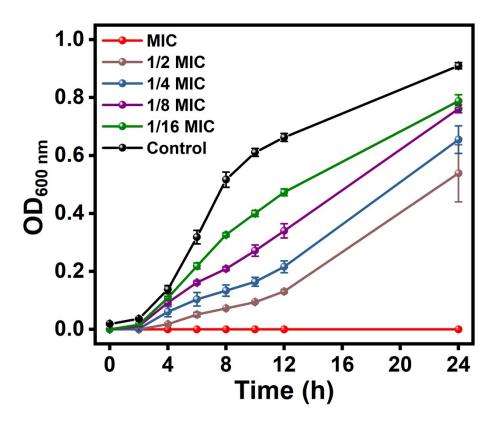

^b College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China;

^c Food Laboratory of Zhongyuan. Luohe 462000, China;

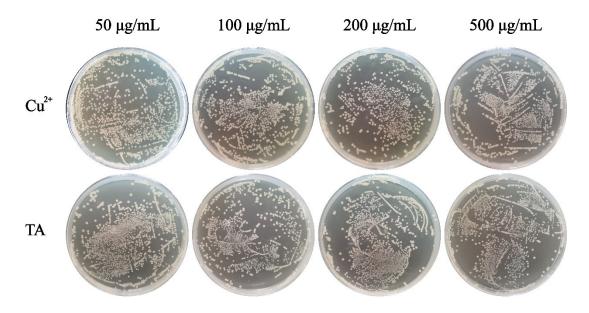

1.1 Supplementary Figures


Supplementary Figure 1. The structure of the Tannic acid.


Supplementary Figure 2. SEM image of CuTA nanozyme.


Supplementary Figure 3. TEM image of CuTA nanozyme.

Supplementary Figure 4. TGA analysis of CuTA.


Supplementary Figure 5. (a) pH and (b) temperature optimization of the catalytic activity of CuTA peroxidases

Supplementary Figure 6. Growth curve analysis of *E.coli* with or without the presence of various CuTA concentrations.

Supplementary Figure 7. The images show MIC measurement results.

Supplementary Figure 8. Photographs of *E. coli* plates after treatment with different concentrations of Cu^{2+} and TA alone.

Phenolic ligands	Metal ion	Bacteria	Ref
ТА	Zn ²⁺	E. coli	1
ТА	Fe ³⁺	S. aureus	2
GA	Cu ²⁺	S. aureus, E. coli	3
EGCG	Mg^{2+}	S. aureus, E. coli	4
РА	Fe ³⁺	S. aureus, E. coli, MRSA	5
ТА	Cu ²⁺	E. coli	This Work

Table S1. The anti-bacteria of different forms of MPN-based materials

References

- 1. Ninan, N., Forget, A., Shastri, V. P., Voelcker, N. H., & Blencowe, A. Antibacterial and Anti-Inflammatory pH-Responsive Tannic Acid-Carboxylated Agarose Composite Hydrogels for Wound Healing, *ACS Appl. Mater. Interfaces* 2016, 8, 42, 28511–28521
- 2. Deng, H., Yu, Z., Chen, S., Fei, L., Sha, Q., & Zhou, N., et al. Facile and eco-friendly fabrication of polysaccharides-based nanocomposite hydrogel for photothermal treatment of wound infection - sciencedirect. Carbohydrate Polymers, 230.
- 3. Tu, Q., Shen, X., Liu, Y., Zhang, Q., Zhao, X., & Maitz, M. F., et al. (2019). A facile metal-phenolic-amine strategy for dual-functionalization of blood-contacting devices with antibacterial and anticoagulant properties. Mater.chem.front, 3(2), 265-275.
- 4. Hu, C., Zhang, F., Kong, Q., Lu, Y., & Wang, Y. (2019). Synergistic chemical and photodynamic antimicrobial therapy for enhanced wound healing mediated by multifunctional light-responsive nanoparticles. Biomacromolecules 2019, 20, 12, 4581–4592
- Liang, Y., Li, Z., Huang, Y., Yu, R., & Guo, B. Dual-Dynamic-Bond Cross-Linked Antibacterial Adhesive Hydrogel Sealants with On-Demand Removability for Post-Wound-Closure and Infected Wound Healing, ACS Nano 2021, 15, 4, 7078–7093