Supplementary Information

In-situ growth of Bi-MOFs on cotton fabrics via ultrasonic synthesis strategy for recyclable photocatalytic textiles

Hengjie Qin¹, Ying Lv², Koji Nakane*1

 Frontier Fiber Technology and Science, University of Fukui, Bunkyo 3-9-1, Fukui, 910-8507, Japan. Email: nakane@matse.u-fukui.ac.jp
 New Energy College, Xi'an Shiyou University, No.18 East Section 2nd Dianzi Road, Xi'an, 710065, China To evaluate the loading of MOF on the CCF under different synthesis conditions, three different methods were used.

By weighing data:
loading mass (%) =
$$\frac{M_{MOF@CCF} - M_{CCF}}{M_{CCF}} \times 100\%$$
#(S1)

Where $M_{MOF@CCF}$ (g) is the dry weight of the sample after MOF loading and M_{CCF} (g) is the dry weight of the CCF substrate. The synthesis experiments were repeated three times for each sample and the average values were calculated.

$$By BET data^{1}:$$

$$loading mass (\%) = \frac{SA_{MOF@CCF} - SA_{CCF}}{SA_{MOF} - SA_{CCF}} \times 100\% \# (S2)$$
Where $SA_{MOF@CCF} (m^{2}/g)$, $SA_{CCF} (m^{2}/g)$ and $SA_{MOF} (m^{2}/g)$ are the surface area of MOF@CCF composites, bare CCF and MOF powder, respectively.
$$By TG data^{2}:$$

$$wt\%_{MOF, 275°C/wt\%_{MOF, 600°C}} \# (S3)$$

wt%_{MOF@CCF}, 275°C/*wt%_{MOF@CCF}*, 600°C

Where ^{wt%}MOF, 275°C, ^{wt%}MOF, 600°C and ^{wt%}MOF@CCF, 275°C, ^{wt%}MOF@CCF, 600°C are the weight percent for the MOF powder and MOF@CCF composites of the TG curve, respectively. In this equation, it is assumed that the absorbed solvent in the sample is removed at 275

°C and that the MOF is completely transformed to Bi₂O₃ at 600 °C.

Fig. S1 Images of samples after CAU-17 loading. (a, d) CAU-17 0@CCF, (b, e) CAU-17 200@CCF, (c, f) CAU-17 ST@CCF. (d-f) Folding the sample 2 times and maintaining the same pressure for 1 min.

Fig. S2 SEM of (a) cotton fabric and (b) carboxymethylated cotton fabric.

Fig. S3 SEM images of (a) CAU-17_ST@CF, (b) CAU-17_0@CF, (c) CAU-17_50@CF, (d) CAU-17_100@CF, (e) CAU-17_150@CF, and (f) CAU-17_200@CF.

Table. S1 Atomic percent of element obtained from XPS spectrum of MOF@CCF composites.

	Atomic percentage (%)			
Sample	C 1s	O 1s	Bi 4f	
CAU-17_ST@CCF	52.79	40.03	7.18	
CAU-17_0@CCF	54.29	37.70	8.01	
CAU-17_50@CCF	54.83	38.29	6.88	
CAU17_100@CCF	51.37	42.01	6.62	
CAU-17_150@CCF	52.14	41.40	6.46	

53.92

40.22

Fig. S4 XPS high-resolution spectra of MOF@CCF composites.

Samples	Eg (eV)	K (min ⁻¹)	R ²
Blank RhB	-	2.5379*10-5	0.9054
CCF	-	5.1195*10-5	0.7929
CAU-17_0@CCF	3.85	0.0012	0.9303
CAU-17_50@CCF	3.48	0.0059	0.9695
CAU-17_100@CCF	3.03	0.0151	0.9903
CAU-17_150@CCF	2.96	0.0242	0.9980
CAU-17_200@CCF	2.92	0.0158	0.9938
CAU-17_ST@CCF	3.58	4.5699*10-4	0.8802
CF	-	3.7899*10-5	0.9707
CAU-17_0@CCF	3.82	0.0013	0.9805
CAU-17_50@CCF	3.51	0.0025	0.9863
CAU-17_100@CCF	3.36	0.0026	0.9861
CAU-17_150@CCF	3.32	0.0042	0.9914
CAU-17_200@CCF	3.17	0.0025	0.9863
CAU-17_ST@CCF	3.36	1.7359*10-4	0.1814

Table. S2 The photocatalysis performance results of samples.

Fig. S5 The concentration of Bi in solution after each cycle of photodegradation reaction.

Photocatalyst	Time (min)	Photocatalytic Efficiency (%)	References
MIL-100(Fe)@cotton	660	96	Lee et. al^3
ST-400 composite	120	94	Landi et. al ⁴
Cotton/PDA/Ag/AgCl	180	95	Ding et. al ⁵
Ag ₃ VO ₄ @MIL-125-NH ₂ @Cotton	160	92	Emam et. al ⁶
WCF/BWO-1.5	180	93.73	Qin et. al ⁷
ZnO/BiOBr coated cotton fabrics	240	96.4	Yang et. al ⁸
Cot-Ag@AgBr	480	98	Wang et. al ⁹
TiO ₂ -coated cotton fabric	70	73	Özdemir et. al ¹⁰
CAU-17_150@CCF	180	98.77	This work

Table. S3 Comparison of RhB photodegradation performance with other cotton fabric

 composite photocatalytic materials

References

- 1 J. Zhao, D. T. Lee, R. W. Yaga, M. G. Hall, H. F. Barton, I. R. Woodward, C. J. Oldham, H. J. Walls, G. W. Peterson and G. N. Parsons, *Angew. Chem. Int. Ed.*, 2016, **55**, 13224–13228.
- 2G. W. Peterson, A. X. Lu and T. H. I. Epps, *ACS Appl. Mater. Interfaces*, 2017, **9**, 32248–32254.
- 3S. Lee, S. Ahn, H. Lee and J. Kim, RSC Adv., 2022, 12, 17505–17513.
- 4S. Landi, J. Carneiro, S. Ferdov, A. M. Fonseca, I. C. Neves, M. Ferreira, P. Parpot, O. S. G. P. Soares and M. F. R. Pereira, J. Photochem. Photobiol. Chem., 2017, 346, 60–69.
- 5K. Ding, W. Wang, D. Yu, W. Wang, P. Gao and B. Liu, *Appl. Surf. Sci.*, 2018, 454, 101–111.
- 6H. E. Emam, H. B. Ahmed, E. Gomaa, M. H. Helal and R. M. Abdelhameed, *Cellulose*, 2020, **27**, 7139–7155.
- 7Q. Qin, R. Guo, S. Lin, S. Jiang, J. Lan, X. Lai, C. Cui, H. Xiao and Y. Zhang, *Cellulose*, 2019, **26**, 3909–3922.
- 8H. Yang, Q. Zhang, Y. Chen, Y. Huang, F. Yang and Z. Lu, *Carbohydr. Polym.*, 2018, **201**, 162–171.
- 9M. Wang, M. Zhang, Q. Gao, Y. Liu, M. Zhang, R. Shen, Y. Zhang, J. Hu and G. Wu, *Cellulose*, 2020, 27, 10047–10060.
- 10 A. O. Özdemir, B. Caglar, O. Çubuk, F. Coldur, M. Kuzucu, E. K. Guner, B. Doğan, S. Caglar and K. V. Özdokur, *Mater. Chem. Phys.*, 2022, **287**, 126342.